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Abstract

This master thesis is devoted to the state estimation of a particular form of PDE
systems, coupled parabolic PDEs with spatial dependent coefficients. This form
of PDEs represent some dynamic systems such as Tubular Reactors, Diffusion in
lithium-ion cells and Diffusive Gradient in Thin Films sensor. Other methods for
this problem use "Backstepping" observers, in which the estimation error system is
transformed into another system that is stable, reducing the problem to calculate the
Kernel functions making the transformation possible. In some cases this calculation
is not simple, also the simulation in real time of the observer system, that is also a
PDE, can be difficult. The method presented in this thesis uses the properties of the
so-called Modulating Functions in order to estimate the states. The procedure con-
sists of generating an orthonormal basis of functions that can represent the state as a
combination of them. Then auxiliary systems are formed from the original systems
with boundary conditions that help in the simplification of the problem. Resolving
these auxiliary systems, result in the calculation of the Modulating kernels. All of
these steps can be made offline and do not have to be repeated. The functions are
used together with the orthonormal basis in the online part, that consists of an inte-
gration of a combination of the kernel functions, inputs and outputs of the system
in a time window. Finally, with a matrix multiplication the coefficients for the ba-
sis expansion of the state can be obtained, resulting in the desired state estimation.
The present method is tested in systems that resemble the forms of the dynamics of
Tubular Reactors and the performance is compared to other methods.
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Kurzfassung

Diese Masterarbeit widmet sich der Zustandsschätzung einer bestimmten Art von
Systemen, gekoppelten partiellen Differenzialgleichungen mit raumabhängigen Ko-
effizienten. Diese besondere Form von PDEs repräsentiert einige dynamische Sys-
teme wie Röhrenreaktoren, Diffusion in Lithium-Ionen-Batterien und Gradienten
in dünnen Schichten. Andere Methoden für dieses Problem benutzen "Backstep-
ping" Beobachter, bei denen das Schätzfehlersystem in ein anderes stabiles System
transformiert wird, wodurch das Problem reduziert wird, um die Kernfunktionen zu
berechnen, die die Transformation ermöglichen. In manchen Fällen ist diese Berech-
nung nicht einfach. Auch die Simulation in Echtzeit des Beobachters System, das
auch eine PDE ist, kann sehr schwierig sein. Die in dieser Arbeit vorgestellte Meth-
ode verwendet die Eigenschaften der sogenannten Modulationsfunktionen, um die
Zustände zu schätzen. Das Verfahren besteht darin, eine Orthonormalbasis von
Funktionen zu erzeugen können, die den Zustand als Kombination von ihnen repräsen-
tieren, dann werden Hilfssysteme gebildet von dem ursprünglichen Systemen mit
Randbedingungen, die bei der Vereinfachung helfen, von dem Problem. Das Au-
flösen dieser Hilfssysteme ergibt die Berechnung der modulierende Kerne. Alle
diese Schritte können offline durchgeführt und müssen nicht wiederholt werden.
Die Funktionen werden zusammen mit der Orthonormalbasis im Online-Teil ver-
wendet. Dieser Teil besteht aus einer Integration einer Kombination der Kernfunk-
tionen, Eingaben und Ausgaben des Systems in einem Zeitfenster. Schließlich kön-
nen die Koeffizienten zur Basiserweiterung mit einer Matrixmultiplikation berech-
net werden, was zu der gewünschte Zustandsschätzung führt. Das Verfahren wird
am Beispiel der Dynamik eines Rohreaktors getestet und die Ergebnisse werden mit
anderen Methoden verglichen.
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Chapter 1

Introduction

1.1 Motivation

Many systems are modelled by Partial Differential Equations(PDEs). For example,
solar collector systems[19], drilling systems [23] [6], chemical reaction systems [14],
medical imaging, seismic imaging, oil exploration and computer tomography [15].
A particular type of this kind of systems are Coupled Reaction-Diffusion PDEs. This
type of systems are characterized for a coupling between the system states in the
PDEs. Every equation has the form of a Reaction-Diffusion PDE and are dependant
on the other ones making the system more complex in comparison to a normal PDE.

Example of this kind of systems are Chemical Tubular Reactors [25] where the
state variables: temperature and concentration, are coupled by the PDE related to
each one of this states. [27] Develops a novel tubular reactor-enhanced ecological
floating bed to enhance nitrogen removal of secondary effluents. Excessive nitrogen
emission is a common problem in the secondary effluents of rural waste-water treat-
ment facilities. From both of the systems it is evident a coupling between states and
a diffusion-reaction dynamic.

Other example are Diffusive Gradients in Thin Films(DGT), [5] an in situ pas-
sive sampling techniques commonly used in environmental chemistry, which has
been applied to the detection of elements and compounds in natural environments,
including water, sediment and soil. Based on Fick’s first law of diffusion, the time-
weighted average concentration of labile species during the deployment time can
be obtained using DGT. [28] Shows that DGT can be used to get measurements of
antibiotics in urban waste-waters. This is crucial to map the impact of antibiotic pol-
lution and to provide the basis for designing water quality and environmental risk
in regular water monitoring programs. Another example is the diffusion of lithium
ions in the porous electrodes of lithium-ion that comprise multiple active materi-
als. Manufacturers are using multiple active materials in the positive electrode of
lithium-ion cells to combine power and energy characteristics or reduce degrada-
tion [16] [20]. The recent interest to use electrochemical models for online state-of-
charge estimation motivates the design of observers for the PDEs appearing in these
models.
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For the control of this kind of systems, a measurement of the whole spatial do-
main is often required and this requisite is nearly impossible with physical sensors.
Because of this, observers are devolped in order to estimate the whole state only
with boundary measurements. An observer in combination with a control strategy
can enable a feedback output control to achieve its goal with only boundary mea-
surements that can be done with a sensor collocated at the boundary. Different kinds
of observers, such as adaptive and iterative observers have been proposed by [24],
recursive observers based methods have been introduced in [17]. Different other
types of observers have been proposed for coupled dynamical cascade systems in-
cluding Ordinary Differential Equations (ODE) and PDEs for example in [22].

Most of the work related to state estimation for coupled diffusion-reaction PDEs
uses the backstepping approach to solve the problem. This method uses an observer
system, very similar in form to the original system with an output feedback in order
to correct the estimation. The idea of the backstepping method is to stabilize the
estimation error system transforming it with Volterra integral transformations to a
stable system. The main task in the method is the calculation of the Kernels thor-
ough the solultion of non-trivial PDEs and can be made offline, but the simulation
of the observer system that is also a Coupled Reaction-Diffusion PDE has to be made
online and requires the solution of the PDEs that can be a heavy computational task.
The approach of this thesis is based on the so-called modulating function (MF), intro-
duced in the early 1950s by Shinbrot [30] [31], to be used for parameters identication
of ODEs. In this case, modulating functions are used for the state estimation. This
method reduces the original problem to a calculation of the coefficients that are used
in the basis representation of the actual state through the solution of a linear system
of equations, making the process of estimation much simpler to calculate and also
less computational intensive.

The problem of state estimation for coupled Reaction Diffusion with the use of
Modulating functions implies different aspects of the whole observer. The filter char-
acteristics of the observer are very important to the solution of the problem. Here,
numerics issues are crucial in the solving since the basis approximation and the inte-
gration required in the modulation process can be a source of error on the estimation
and it has to be addressed. The signal model control is another area to be explored,
since the use of the modulating function requires some conditions imposed on each
modulating function used and together with the auxiliary models obtained, requires
a controller to fulfill these requirements. Another topic of interest is the system class
that the current work can be applied to. In our case we are dealing with Linear
Coupled PDE systems with Reaction and Advection terms that also have spatially
dependent coefficients with main applications on Chemical Tubular Reactors and
DGT that are described previously. All of these related topics are resumed in the
Figure 1.1. where this overview is shown.
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FIGURE 1.1: Overview of the related topics in the thesis

1.2 State of the art

The problem of state estimation for coupled linear parabolic equations is strongly
related to the stabilization problem. The estimation problem, commonly requires
the design of an observer that has stability properties for the origin of the estima-
tion error system. Thus, this stability implies the convergence of the state estimate
and finally implying a successful state estimation. With this relation, the following
section also includes investigation related to the stabilization problem. Most of the
investigation realized for both stabilization and estimation problem have been ad-
dressed using the backstepping method for PDEs. The backstepping method uses
an invertible Volterra integral transformation mapping, that transforms the system
into a exponentially stable target system. In the case of the state estimation, it trans-
forms the observer error dynamics to achieve a stabilization of the estimation error
and in consequence a convergence in the state estimate to the actual state. The main
problem is to find the Kernels in the integral transformation that ensures the actual
transformation. That requires to solve other PDE in order to find the Kernel needed.

One of the early attempts on the solution of the problem was done in [3]. The
work was devoted to the solution of the stabilization problem for reaction-diffusion
PDEs with the same diffusitivity parameters. The restriction of same diffusitivity
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parameters is established because in the Kernel equation, a different diffusivity pa-
rameter sets an overdetermined PDE with no solution without other specific con-
strains on the form of the Kernel matrix. The paper uses the method of successive
approximations to have a solution for the kernel matrix.
In [2] using a similar approach to [3], the problem of state estimation for reaction-
diffusion PDEs with the same diffusivity parameters is done. The observer is de-
signed in order to have a convergence in the estimation error system, transforming
the original system through the use of the Kernel matrix. Similar to [3], a very sim-
ilar PDE has to be solved in order to obtain the Kernel Matrix and using the same
approach of [3], a solution is obtained.
In [1] the extension is done for reaction-advection-diffusion equations also with
the same restriction of the same diffusivity parameters through the backstepping
method. The next step in reducing the system restrictions for the stabilization prob-
lem is done in [2], where the problem is resolved for a reaction-diffusion system with
constant parameters, not requiring to have the same diffusitivity parameters as the
previous works. This is done by imposing some constraints on the kernel matrix.
In [26] some of the results from [2] are used to design an observer for a reaction-
diffusion system with constant parameters that is used for an Output feedback sta-
bilization of the same system.
Then, in [18] and [10] a next step in generalizing the type of systems approached
is done by solving the stabilization and estimation for coupled reaction-diffusion
systems with spatially-varying reaction terms. In [10] the estimation is done for a
2-Coupled reaction-diffusion PDE with spatially varying coefficients, which can be
used to model the diffusion phenomena in lithium-ion batteries with electrodes that
comprise multiple active materials. and in [11] the approach is generalized for a n-
Coupled reaction-diffusion PDE with spatially varying coefficients.

The Modulating Function Based method is different in conception from the PDE
backstepping approach because it involves approximate the signals as a function ba-
sis representation and using some properties of the modulating function and apply-
ing a modulation operation in the original system, transform the original system into
a series of algebraic relations. Often this process also involves some restrictions in
the modulating functions that can be understood as an auxiliary system(also called
signal modelling) that can be resolved before the estimation.
The method has been used for parameters and source estimation for one dimen-
sional PDEs [21]. In this work Modulation Function methods are used to estimate
the source function and velocity for the wave equation and . It is also explore the
influence of different parameters in the method, such as the length of the Basis, the
size of the Time window and the type of basis functions chosen. The results also
show the behavior of the estimation with respect to noise on the output of the sys-
tem, showing a good performance and robustness of the method.



1.3. Objectives 5

[7] develops fault detection and isolation for a parabolic PDE system using Modula-
tion functions, applying the method for a faulty heat conducting rod. This method
traces back the fault detection problem to a trajectory planning problem using Mod-
ulating functions obtained by the realization of a set-point change for their signal
models, and using previous results on motion planning for distributed parameter
systems the fault detection and isolation can be achieved.
The most recent result [12] is related to the state estimation for reaction diffusion
PDE with constant parameters. In this work the whole state is estimated from a
measurement in the boundary. Through the use of Modulating functions the esti-
mation problem is transformed in a linear system of equations for the coefficients of
the basis expansion that represents the whole state. The resulting auxiliary system
has a very similar form of the original system. This work makes the foundation for
the present work, since it demonstrates that the Modulation Function approach is
possible for Reaction Diffusion PDE systems and how the state estimation can be
achieved. In the present thesis, this results are very inspiring for the formulation of
the same problem but for Coupled Reaction Diffusion PDE systems.

So far no work has been made in relation of state estimation using Modulating
Functions for Coupled Reaction-Diffusion PDE.

1.3 Objectives

The problem to solve is the state estimation for linearly coupled Reaction-Diffusion
with spatially varying coefficients PDE systems. In this kind of problem the usually
solution is the use of backstepping observers, that similar to their controller counter-
part involves founding a kernel and also solving a PDE due to the observer equation,
a computing intensive task. The modulation function as in [12] is an alternative since
only involve simple matrix multiplication and an integral that can be done numer-
ically. Main limitations here involve the basis expansion approximation to the state
that can cause an error on the estimation. Also the signal model control(SMC) prob-
lem is crucial to the convergence time since the modulation function requisites has
to be solved in a time window. All of these aspects have to be taken into account
for the solution of the state estimation using modulation functions. With this back-
ground the general objective of this thesis is the development and implementation
of a MFs based state estimation for coupled PDE systems.

The specific objectives of this thesis are:

• Development of a theoretical framework for the use of Modulating Functions
in coupled PDE systems.

• Implementation and simulation on a specific application(Tubular chemical re-
actors)
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• Check and compare performance of the MF based observer with other ob-
servers

1.4 Outline

The thesis is organized in a way that the reader can follow the natural development
of the framework and the generalization of the method. It is structured as follows:

Chapter 2 presents some fundamentals about the main topics that are related
to the thesis, such as Coupled Parabolic PDEs, Modulating Function, the control of
this type of PDEs. This theoretical framework will allow the reader to have a better
understanding of the thesis and also will familiarize with some of the concepts pre-
sented throughout the next chapters.

Chapter 3 presents the use of Modulating functions for the state estimation of
a n-Coupled Reaction-Advection-Diffusion PDE with spatially varying coefficients.
In this chapter, the problem is stated and then using Modulating Functions an Aux-
iliary System is derived. After solving this system, a reconstruction of the state
through the solution of a linear system of equations can be done.

Chapter 4 presents an implementation of the method developed in the last chap-
ter. Different parameters of the observer are tested in order to analyze their influence
on the estimation. Finally, simulation results are presented and compared with other
works results.

Chapter 5 finalizes the manuscript showing the main conclusions and future
work to be done.
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Chapter 2

Theoretical Fundamentals

This chapter will explain some fundamentals that are needed for the understand-
ing of the modulating function method applied and also will be referred in the ap-
plication of the method in the next chapter since it provides some results that are
fundamental on the developing of the method for the present thesis.

2.1 Coupled Parabolic Reaction-Advection-Diffusion PDE with
spatially varying coefficients

This thesis is devoted to a class of linear systems modelled by the following n cou-
pled reaction-advection-diffusion equations with spatially-varying coefficients:

∂U
∂t

(x, t) = Σ(x)
∂2U
∂x2 (x, t) + Φ(x)Ux(x, t) + Λ(x)U(x, t) (2.1)

With the Dirichlet-type left actuation and the Neumann-type right boundary
condition:

U(0, t) = Uc(t), Ux(L, t) = 0 (2.2)

where
U(x, t) =

[
u1(x, t) . . . un(x, t)

]T

is the state vector and
Uc(t) =

[
uc1(t) . . . ucn(t)

]T

is the input vector. Σ(x) is the nxn matrix, whose components ϵij(x), ϕij(x), λij(x)
for i = 1, ..., n, are the diffusion term coefficients, advection term coefficients and
diffusion term coefficients respectively.

Σ(x) =


ϵ11(x) . . . ϵ1n(x)

...
. . .

...
ϵn1(x) . . . ϵnn(x)

 , Φ(x) =


ϕ11(x) . . . ϕ1n(x)

...
. . .

...
ϕn1(x) . . . ϕnn(x)



Λ(x) =


λ11(x) . . . λ1n(x)

...
. . .

...
λn1(x) . . . λnn(x)


(2.3)
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The state estimation of this kind of systems are explored in the Chapter 5.
If Φ(x) = 0, the system becomes a reaction-diffusion PDE with spatially varying

coefficients and has the following form:

∂U
∂t

(x, t) = Σ(x)
∂2U
∂x2 (x, t) + Λ(x)U(x, t) (2.4)

The state estimation of this kind of systems are explored in the Chapter 4.
Also if Σ(x) and Λ(x) are not dependant on x, then the system becomes a reaction-

diffusion PDE with constant coefficients with the following form:

∂U
∂t

(x, t) = Σ
∂2U
∂x2 (x, t) + ΛU(x, t) (2.5)

Definition 2.1.1. [29] Let ui(x, t) and uj(x, t) be two different states of a system modelled
by (3.1)-(3.3). If λij ̸= 0 or λji ̸= 0, ui(x, t) and uj(x, t) are said to be directly coupled.

Definition 2.1.2. [29] A system modelled by (3.1)-(3.3) is said fully coupled, if for any two
different states ui(x, t) and uj(x, t), there exists a series of other states ui, ur1 , ur2 , ..., urm

with m ≥ n − 2, such that the states ur1 , ur2 , ..., urm , uj are directly coupled in turn, which
means that the system cannot be decomposed into any number of independent subsystems.

These definitions are important because the focus of the thesis is the state estima-
tion for Coupled Reaction-Advection-Diffusion PDE systems that are fully coupled.

2.2 Modulating Function

Definition 2.2.1. (Modulating Function) A function φ ∈ Ck([a, b], R) is called a modu-
lating function of order k with k ∈ N∗ if and only if:

φ(i)(a) = φ(i)(b) = 0, i = 0, 1, ..., k − 1 (2.6)

An extension to distributed systems can be obtained by defining the kernel func-
tion in the time and spatial domain [8] [7].

Definition 2.2.2. (Modulation Functional) The state modulation functional is defined by

M[h] =
∫ t

t−T

∫ L

0
m(x, τ − t + T)h(x, τ)dxdτ (2.7)

where h : [0, L]× R+
0 − > R and m : [0, L]× [0, T]− > R is the modulating function to

be constructed.

For simplicity the following notation is used:

⟨m, h⟩Ω,I := M[h]

where Ω := [0, L] and I := [t − T, t] with receding horizon length T > 0. If the
integration only concerns the temporal or spatial variable, ⟨m, h⟩I and ⟨m, h⟩Ω are
used.
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Here, some properties of the modulation functional with respect to the time
derivative and spatial derivative are stated:

Shift of time derivative
Using derivation by parts, the following is stated:

⟨φ, ut⟩Ω,I =
∫ t

t−T

∫ L

0
φ(x, τ − t + T)ut(x, τ)dxdτ

=
∫ L

0
(φu −

∫ t

t−T
φt(x, τ − t + T)u(x, τ)dτ)dx

=
∫ L

0
φu

∣∣∣t

t−T
− ⟨φt, u⟩Ω,I

(2.8)

In general:

Theorem 2.2.3. Given φ, a modulation function, and u, one of the states of the system
represented in 2.1, then the following is true:

⟨φ,
∂nu
∂tn ⟩Ω,I =

∫ L

0
(

n−1

∑
i=0

(−1)i ∂i φ

∂ti
∂(n−1)−iu
∂t(n−1)−i

)
∣∣∣t

t−T
dx + (−1)n⟨∂n φ

∂tn , u⟩Ω,I (2.9)

Proof. The base case(n = 1) has been demonstrated in 2.8 Then we will proceed to
demonstrate the general case using the inductive step. Inductive Step(n → n + 1):

⟨φ,
∂n+1u
∂tn+1 ⟩Ω,I =

∫ t

t−T

∫ L

0
φ(x, τ − t + T)

∂n+1u
∂tn+1 dxdτ

=
∫ L

0
(φ

∂nu
∂tn

∣∣∣t

t−T
−

∫ t

t−T
φt(x, τ − t + T)

∂nu
∂tn dτ)dx

=
∫ L

0
φ

∂nu
∂tn

∣∣∣t

t−T
dx − ⟨φt,

∂nu
∂tn ⟩Ω,I

(2.10)

Using 2.9, then

⟨φ,
∂n+1u
∂tn+1 ⟩Ω,I =

∫ L

0
φ

∂nu
∂tn

∣∣∣t

t−T
− ⟨φt,

∂nu
∂tn ⟩Ω,I

=
∫ L

0
φ

∂nu
∂tn

∣∣∣t

t−T
− (

∫ L

0
(

n−1

∑
i=0

(−1)i ∂i φt

∂ti
∂(n−1)−iu
∂t(n−1)−i

)
∣∣∣t

t−T
+ (−1)n⟨∂n φt

∂tn , u⟩Ω,I)

=
∫ L

0
φ

∂nu
∂tn

∣∣∣t

t−T
+

∫ L

0
(

n−1

∑
i=0

(−1)i+1 ∂i+1 φ

∂ti+1
∂(n−(i+1))u
∂t(n−(i+1))

)
∣∣∣t

t−T
+ (−1)n+1⟨∂n+1 φ

∂tn+1 , u⟩Ω,I

=
∫ L

0
(φ

∂nu
∂tn +

n

∑
i=1

(−1)i ∂i φ

∂ti
∂(n−i)u
∂t(n−i)

)
∣∣∣t

t−T
+ (−1)n+1⟨∂n+1 φ

∂tn+1 , u⟩Ω,I

⟨φ,
∂n+1u
∂tn+1 ⟩Ω,I =

∫ L

0
(

n

∑
i=0

(−1)i ∂i φ

∂ti
∂(n−i)u
∂t(n−i)

)
∣∣∣t

t−T
+ (−1)n+1⟨∂n+1 φ

∂tn+1 , u⟩Ω,I

(2.11)

Shift of space derivative Using derivation by parts, the following is stated:
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⟨φ, ux⟩Ω,I =
∫ t

t−T

∫ L

0
φ(x, τ − t + T)ux(x, τ)dxdτ

=
∫ t

t−T
(φu −

∫ L

0
φx(x, τ − t + T)u(x, τ)dx)dτ

=
∫ t

t−T
φu

∣∣∣L

0
dτ − ⟨φx, u⟩Ω,I

(2.12)

In general:

Theorem 2.2.4. Given φ a modulation function and u one of the states of the system repre-
sented in 2.1, then the following is true:

⟨φ,
∂nu
∂xn ⟩Ω,I =

∫ t

t−T
(

n−1

∑
i=0

(−1)i ∂i φ

∂xi
∂(n−1)−iu
∂x(n−1)−i

)
∣∣∣L

0
+ (−1)n⟨∂n φ

∂xn , u⟩Ω,I (2.13)

Proof. The base case(n = 1) has been demonstrated in 2.12 Then we will proceed to
demonstrate the general case using the inductive step. Inductive Step(n → n + 1):

⟨φ,
∂n+1u
∂xn+1 ⟩Ω,I =

∫ t

t−T

∫ L

0
φ(x, τ − t + T)

∂n+1u
∂tn+1 dxdτ

=
∫ t

t−T
(φ

∂nu
∂xn −

∫ L

0
φx(x, τ − t + T)

∂nu
∂xn dx)dτ

=
∫ t

t−T
φ

∂nu
∂xn

∣∣∣L

0
− ⟨φx,

∂nu
∂xn ⟩Ω,I

(2.14)

Assuming 2.13 for n, then

⟨φ,
∂n+1u
∂xn+1 ⟩Ω,I =

∫ t

t−T
φ

∂nu
∂xn

∣∣∣L

0
− ⟨φx,

∂nu
∂xn ⟩Ω,I

=
∫ t

t−T
φ

∂nu
∂xn

∣∣∣L

0
− (

∫ t

t−T
(

n−1

∑
i=0

(−1)i ∂i φx

∂xi
∂(n−1)−iu
∂x(n−1)−i

)
∣∣∣L

0
+ (−1)n⟨∂n φx

∂xn , u⟩Ω,I)

=
∫ t

t−T
φ

∂nu
∂xn

∣∣∣L

0
+

∫ t

t−T
(

n−1

∑
i=0

(−1)i+1 ∂i+1 φ

∂xi+1
∂(n−(i+1))u
∂x(n−(i+1))

)
∣∣∣t

t−T
+ (−1)n+1⟨∂n+1 φ

∂xn+1 , u⟩Ω,I

=
∫ t

t−T
(φ

∂nu
∂xn +

n

∑
i=1

(−1)i ∂i φ

∂xi
∂(n−i)u
∂x(n−i)

)
∣∣∣L

0
+ (−1)n+1⟨∂n+1 φ

∂xn+1 , u⟩Ω,I

⟨φ,
∂n+1u
∂xn+1 ⟩Ω,I =

∫ t

t−T
(

n

∑
i=0

(−1)i ∂i φ

∂xi
∂(n−i)u
∂x(n−i)

)
∣∣∣L

0
+ (−1)n+1⟨∂n+1 φ

∂xn+1 , u⟩Ω,I

(2.15)

These properties of the Modulation functional are very useful in the state estima-
tion, since they enable to shift the derivatives applied to the state, to the modulating
function. The other terms in the summatory can be eliminated with more restrictions
on the modulating function and others can be known with the boundary sensing and
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the actuation. The propierties are used in the Chapters 3,4 and 5 for the derivation
of the auxiliary systems.

2.3 Orthonormal Basis of Functions

An orthonormal basis for an inner product space V is a basis for V whose vectors are
orthonormal, that is, they are all unit vectors and orthogonal to each other. In the
case related to this thesis, the goal is to approximate the state, a function dependant
on time and space, as a linear combination of an orthonormal basis of functions. In
order to obtain more insight on the system behaviour, a certain solution structure
of the desired state is proposed using the following function expansion representa-
tion[12]:

u(x, t) =
∞

∑
k=0

ck(t)ψk(x) (2.16)

The precise task will then be to estimate the time dependent coefficients ck for
every time instance given an approximation order N ∈ N and an appropriate spatial
orthonormal function basis ψk. Let us denote the respective function space with
X := { f : Ω → R, || f ||2v < ∞} = span{ψk, k ∈ N0} where the related scalar
product is defined as ⟨ f , g⟩v =

∫
Ω v(x) f (x)g(x)dx with the weighting function v.

The right choice of a proper description for the solution structure of w has to be made
as part of the estimator design process. The orthonormal basis Ψ = {ψk, ||ψk||v = 1∧
⟨ψk, ψj⟩v = 0fork ̸= j} with respect to the weighted inner product can be constructed
by applying the Gram-Schmidt procedure.

For an example of how precise this function expansion representation can be,
the state of a 2-Coupled Reaction-Diffusion system that represents a temperature-
concentration system of Chemical Tubular reactors given by [2] and simplified by [4].
In Figure 2.1, the original states are shown in the first row and the function expan-
sion represented with the hat in the row below, illustrating the similitude between
the original and approximated states, important for the estimation using modula-
tion functions, since the modulation function observer will estimate this function
expansion. The integral squared error of this approximation is presented in Figure
2.2, showing better results with N = 5. Also the absolute error of this approximation
is shown in the Figure 2.3 where the maximum errors are located in the boundaries
of x and t. The error caused by the approximation is significantly important in the
estimation process because the method is estimating a basis expansion of the state
and the best scenario possible is when the estimation is equal to the basis expansion
and if the basis expansion already has an error in the projection, then the estimation
will also have this error, making this projection error important to take into account.
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FIGURE 2.1: Original states (above) and projected states (below)

2.4 Backstepping Control of coupled parabolic reaction-diffusion
PDE

The backstepping method for PDE systems [9] uses an invertible Volterra integral
transformation mapping, that transforms the system into a exponentially stable tar-
get system. The main problem is to find the Kernels in the integral transformation
that ensures the actual transformation. That requires to solve other PDEs in order to
find the Kernel needed.

For this purpose, in [29] the kernel function H(x, y) is computed such that the
following backstepping transformation:

W(x, t) = U(x, t)−
∫ x

0
K(x, y)U(y, t)dy (2.17)

can transform the system defined in 2.5 into the following target system:

∂W
∂t

(x, t) = Σ(x)
∂2W
∂x2 (x, t)− C̃W(x, t)

∂W
∂x

(x, t) = 0

W(1, t) = 0

(2.18)
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FIGURE 2.2: Integral squared error of the basis projection of the state
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FIGURE 2.3: Absolute error of the approximation for N=5



2.5. Backstepping Control of coupled parabolic reaction-diffusion with spatially
varying coefficients PDE

15

where C̃ is a n × n matrix with the components cij for i, j = 1, 2, ..., n , K(x, y)
is the kernel matrix with the form: K(x, y) = k(x, y)Inxn and k(x, y) is the kernel
function given by:

k(x, y) = −k̃x
I1(

√
k̃(x2 − y2))

k̃(x2 − y2)
(2.19)

where I1 is the modified Bessel function of the first kind and the parameter k̃ is
defined by the following equation:

k̃Inxn = (C̃ + Λ)Σ−1 (2.20)

If the parameter k̃ is chosen such that S[C̃] = (C + CT)/2 is positive definite, then
the target system (2.18) is exponentially stable with the following convergence rate:

||W(x, t)||2,n ≤ ||W(x, 0)||2,ne−σmin(S[C̃])t (2.21)

In order to fulfil this condition, the next inequality has to be fulfilled:

−S[Λ] +
Σmin

4
Inxn + k̃Σ > 0 (2.22)

Thus, the controller defined by:

Uc(x, t) = −
∫ 1

0
k̃

I1(
√

k̃(x2 − y2))

k̃(x2 − y2)
U(y, t)dy (2.23)

stabilizes the system defined by 2.5. With these requirements, the control can be
done. This method is useful for solving the problem of the signal modelling control
when the auxiliary system that is also a Coupled Reaction-Diffusion system.

2.5 Backstepping Control of coupled parabolic reaction-diffusion
with spatially varying coefficients PDE

Considering the system defined in 2.4 with the following boundary conditions:

U(0, t) = 0

U(1, t) = Uc(t)
(2.24)

In [18] the following feedback control law:

U(t) =
∫ 1

0
K(1, ξ)u(ξ, t)dξ (2.25)

where the kernel matrix K(x, ξ) is a solution from the following matrix system of
PDEs:

ΣKxx(x, ξ)− Kξξ(x, ξ)Σ = K(x, ξ)Λ(ξ) + CK(x, ξ) (2.26)
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in the domain T = (x, ξ) : 0 ≤ ξ ≤ x ≤ 1, with the boundary conditions

ΣKξ(x, x)− ΣKx(x, x) + Σ
d

dx
K(x, x) = −Λ(x)− C

ΣK(x, x) = K(x, x)Σ

Kij = 0, i ≤ j

(2.27)

In order to obtain the kernel K, it is necessary to define first:

L(x, ξ) =
√

ΣKx(x, ξ) + Kξ(x, ξ)
√

Σ (2.28)

Then the original nxn system in 2.27 is replaced by a n2 × n2 system of first-order
hyperbolic equation on the same domain

√
ΣKx + Kξ

√
Σ = L

√
ΣLx − Lξ

√
Σ = KΛ(ξ) + CK

(2.29)

with the following boundary conditions:

• If i = j, then

Lii(x, x) = −λii(x) + ci

2
√

ϵi

Kii(x, 0) = 0
(2.30)

• If i < j, then

Lij(x, x) = −
λij(x) + ci√

ϵi +
√

ϵj

Kij(x, x) = Kij(x, 0) = 0

(2.31)

• If i > j and ϵi ̸= ϵj then

Lij(x, x) = −
λij(x) + ci√

ϵi +
√

ϵj

Kij(x, x) = 0

Kij(1, ξ) = lij(ξ)

(2.32)

Then, similar to [13] the kernels can be calculated using the successive approxima-
tion method and the control problem solved. With these requirements, the control
can be done. This method is useful for solving the problem of the signal modelling
control with relation to the auxiliary system(see Chapter 3) that when it is a Coupled
Reaction-Diffusion with spatially varying coefficients system.

Finally, all of these fundamentals are very important in the state estimation prob-
lem that the present thesis deals with. The properties of the modulation function and
the orthornormal basis of functions are essential in deriving the modulation kernel
equations that implies solving an auxiliary system, where the backstepping control
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is an approach that can solve the requirement imposed on the modulation function
and thus, achieving the state estimation required.
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Chapter 3

State estimation of n-Coupled
Reaction-Advection-Diffusion PDE

The following chapter will explore the state estimation of n-Coupled Reaction-Advection-
Diffusion PDEs using modulating functions. First, the problem statement is ex-
plained and then with the use of modulation functionals, auxiliary systems are ob-
tained. These auxiliary systems are closely related to the original system and their
solution are the modulating functions. Then, a linear combination of the coefficients
from the basis expansion can be obtained with the calculation of the modulation ker-
nel that is dependent on the input, output and the modulating functions obtained
previously. Finally, the decoupling of the coefficients can be made by generating
more linear combinations and establishing a linear system of equations to solve and
obtain the coefficients. With the coefficients, the state can be reconstructed using the
function expansion representation.

3.1 Problem Statement

The system which states are going to be estimated is a n-Coupled Reaction-Diffusion
PDE with spatially varying coefficients described by the following equations:

U = Σ(x)Uxx + Φ(x)Ux + Λ(x)U

Σ(x) =


ϵ11(x) . . . ϵ1n(x)

...
. . .

...
ϵn1(x) . . . ϵnn(x)

 , Φ(x) =


ϕ11(x) . . . ϕ1n(x)

...
. . .

...
ϕn1(x) . . . ϕnn(x)



Λ(x) =


λ11(x) . . . λ1n(x)

...
. . .

...
λn1(x) . . . λnn(x)


U(x, t) =

[
u1(x, t) . . . un(x, t)

]T

(3.1)

With a mixed type boundary condition:

P1Ux(0, t) + P0U(0, t) = F(t) (3.2)
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That can be a Dirichlet or Neumann type boundary condition choosing either P1 = 0
or P0 = 0 respectively.

A known actuation at the boundary:

Q1Ux(L, t) + Q0U(L, t) = G(t) (3.3)

And a measurement at the boundary

Y(t) = R1Ux(x∗, t) + R0U(x∗, t) (3.4)

With x∗ = 0 or L
The problem is to estimate the state U(x, t) with the measurements Y(t) and the

inputs G(t)

3.2 Derivation of the Auxiliary Systems

For the derivation of the auxiliary system, we apply the modulation functional to
the state. First we apply the modulation functional to the second spatial derivative
of the state. Using the properties of the Theorem 2.2.4

⟨φ, unxx⟩Ω,I =
∫ t

t−T
φ(x, τ − t + T)unx(x, τ)dτ

∣∣∣x=L

x=0

−
∫ t

t−T
φx(x, τ − t + T)un(x, τ)dτ

∣∣∣x=L

x=0
+ ⟨φxx, un⟩Ω,I

=
∫ t

t−T
(M2

L + M2
0)[φ, un]dτ + ⟨φxx, un⟩Ω,I (3.5)

where:

M2
L[φ, un] = φ(L, τ − t + T)unx(L, τ)− φx(L, τ − t + T)un(L, τ)

M2
0[φ, un] = −φ(0, τ − t + T)unx(0, τ) + φx(0, τ − t + T)un(0, τ)

(3.6)

Now we apply the modulation functional to the spatial derivative of the state.
Using the properties of the Theorem 2.2.4

⟨φ, unx⟩Ω,I =
∫ t

t−T
φ(x, τ − t + T)un(x, τ)

∣∣∣x=L

x=0
+ ⟨φx, un⟩Ω,I

⟨φ, unx⟩Ω,I =
∫ t

t−T
(M1

L + M1
0)(φ, un)dτ + ⟨φx, un⟩Ω,I (3.7)

Where:
M1

L(φ, un) = φ(L, τ − t + T)un(L, τ)

M1
0(φ, un) = −φ(0, τ − t + T)un(0, τ)

(3.8)
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The next step is to apply the Modulation functional to the time derivative of the
state.Using the properties of the Theorem 2.2.3:

⟨φ, unt⟩Ω,I =
∫ L

0
φ(x, τ − t + T)un(x, τ)dx

∣∣∣τ=t

τ=t−T
− ⟨φt, un⟩Ω,I

Selecting the following conditions for the modulating function, and using a func-
tion basis {ψm, m ∈ 0, 1, ..., N} for estimation:{

φm(x, 0) = 0

φm(x, T) = v(x)ψm(x)
(3.9)

Then, the spatial integration terms becomes:

∫ L

0
φm(x, τ − t + T)un(x, τ)dx

∣∣∣τ=t

τ=t−T
=

∫ L

0
φm(x, T)un(x, t)dx

Using the basis expansion from Equation (2.16) in Chapter 2

∫ L

0
φm(x, T)un(x, t)dx =

∞

∑
i=0

ci(t)⟨ψm, ψi⟩v = cm(t)

Finally:

⟨φm, unt⟩Ω,I = cm(t)− ⟨φm
t , un⟩Ω,I (3.10)

Applying the modulation functional to the Equation (3.1):

⟨φm
i , uit⟩Ω,I =

n

∑
j=1

⟨φm
i , ϵij(x)ujxx⟩+

n

∑
j=1

⟨φm
i , ϕij(x)ujx⟩+

n

∑
j=1

⟨φm
i , λij(x)uj⟩, i = 1, ..., n

(3.11)
Using MF associative properties

⟨φm
i , uit⟩Ω,I =

n

∑
j=1

⟨ϵij(x)φm
i , ujxx⟩+

n

∑
j=1

⟨ϕij(x)φm
i , ujx⟩+

n

∑
j=1

⟨λij(x)φm
i , uj⟩, i = 1, ..., n

From the previous results, Equation (3.2), (3.7) and (3.10):

cm
i (t) = ⟨φm

it
, ui⟩Ω,I +

n

∑
j=1

∫ t

t−T
(M2

L + M2
0)[ϵij(x)φm

i , uj] + (M1
L + M1

0)[ϕij(x)φm
i , uj]dτ

+
n

∑
j=1

⟨(ϵij φ
m
i )xx − (ϕij φ

m
i )x + λij φ

m
i , uj⟩Ω,I , i = 1, ..., n
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Expanding the spatial derivations in the left part:

cm
i (t) = ⟨φm

it
, ui⟩Ω,I +

n

∑
j=1

∫ t

t−T
(M2

L + M2
0)[ϵij(x)φm

i , uj] + (M1
L + M1

0)[ϕij(x)φm
i , uj]dτ

+
n

∑
j=1

⟨ϵij φ
m
ixx

+ (2ϵij − ϕij)φm
ix
+ (ϵijxx

− ϕijx
+ λij)φm

i , uj⟩Ω,I , i = 1, ..., n

(3.12)

Up to this part, the procedure is straightforward similar to [12], but it is worth notic-
ing that to eliminate the part in brackets will imply to solve a coupled PDE with only
1 equation, making it an ill posed problem. In order to solve this, the idea is to gen-
erate more equations. Multiplying by ki every Equation (3.12) and adding together
every equation we have:

n

∑
i=1

kicm
i (t) =

n

∑
i=1

n

∑
j=1

ki

∫ t

t−T
(M2

L + M2
0)[ϵij(x)φm

i , uj] + (M1
L + M1

0)[ϕij(x)φm
i , uj]dτ

+
n

∑
i=1

ki⟨φm
it

, ui⟩Ω,I +
n

∑
i=1

ki

n

∑
j=1

⟨ϵij φ
m
ixx

+ (2ϵij − ϕij)φm
ix
+ (ϵijxx

+ ϕijx
+ λij)φm

i , uj⟩Ω,I

(3.13)
Putting ki into the brackets and changing index i with j

n

∑
i=1

kicm
i (t) =

n

∑
i=1

n

∑
j=1

ki

∫ t

t−T
(M2

L + M2
0)[ϵij(x)φm

i , uj] + (M1
L + M1

0)[ϕij(x)φm
i , uj]dτ

+
n

∑
i=1

ki⟨φm
it

, ui⟩Ω,I +
n

∑
i=1

n

∑
j=1

⟨k jϵji φ
m
jxx

+ k j(2ϵjix − ϕji)φm
jx + k j(ϵjixx

+ ϕjix
+ λji)φm

i , ui⟩Ω,I

(3.14)
Then interchanging the summations:

n

∑
i=1

kicm
i (t) =

n

∑
i=1

n

∑
j=1

ki

∫ t

t−T
(M2

L + M2
0)[ϵij(x)φm

i , uj] + (M1
L + M1

0)[ϕij(x)φm
i , uj]dτ

+
n

∑
i=1

⟨ki φ
m
imt

+
n

∑
j=1

(k jϵji φ
m
jxx

+ k j(2ϵji − ϕji)φm
jx + k j(ϵjixx

+ ϕjix
+ λji)φm

i ), ui⟩Ω,I

(3.15)
Finally dividing and multiplying by ki the term in brackets, we have

n

∑
i=1

kicm
i (t) =

n

∑
i=1

n

∑
j=1

ki

∫ t

t−T
(M2

L + M2
0)[ϵij(x)φm

i , uj] + (M1
L + M1

0)[ϕij(x)φm
i , uj]dτ

+
n

∑
i=1

ki⟨φm
it
+

n

∑
j=1

(
k j

ki
ϵji φ

m
jxx

+
k j

ki
(2ϵji − ϕji)φm

jx +
k j

ki
(ϵjixx

+ ϕjix
+ λji)φm

i ), ui⟩Ω,I

(3.16)
For now, we will assume that the terms M2

L, M2
0, M1

L, M1
0 can be calculated with

known terms. That will be demonstrated in the next section. In order to vanish
the term in brackets and leaving the left part of Equation (3.16) only with known
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terms, we have the following condition:

−φm
it
=

n

∑
j=1

k j

ki
ϵji φ

m
jxx

+
n

∑
j=1

k j

ki
(2ϵji − ϕji)φm

jx +
n

∑
j=1

k j

ki
(ϵjixx

+ ϕm
jix
+ λji)φm

i , i = 1, . . . , n

(3.17)
The following coupled PDE is implied for the determination of the modulating func-
tions:

−φm
t (x, t) = Σ̄(x)φm

xx(x, t) + Φ̄(x)φm
x (x, t) + Λ̄(x)φm(x, t)

Σ̄(x) =


k1
k1

ϵ11(x) . . . kn
k1

ϵn1(x)
...

. . .
...

k1
kn

ϵ1n(x) . . . kn
kn

ϵnn(x)



Φ̄(x) =


k1
k1
(2ϵ11x − ϕ11)(x) . . . kn

k1
(2ϵn1x − ϕn1)(x)

...
. . .

...
k1
kn
(2ϵ1nx − ϕ1n)(x) . . . kn

kn
(2ϵnnx − ϕnn)(x)



Λ̄(x) =


k1
k1
(ϵ11xx + ϕ11x + λ11)(x) . . . kn

k1
(ϵn1xx + ϕn1x + λn1)(x)

...
. . .

...
k1
kn
(ϵ1nxx + ϕ1nx + λ1n)(x) . . . kn

kn
(ϵnnxx + ϕnnx + λnn)(x)



(3.18)

With the initial and final condition given by Equation (3.9)

φm(x, 0) = 0

φm(x, T) = v(x)ψm(x)
(3.19)

The boundary conditions are free at the moment, but the main problem is that the
final condition needs to be met. For that reason, we add the following boundary
condition:

φm(0, τ) = ηm(τ) (3.20)

The main problem in this system is the negative sign in the spatial derivative im-
plying a non-causal nature in the distributed dynamics. For that reason, we made a
transformation to forward time:

ξm(x, σ) := φm(x, T − σ) (3.21)
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Resulting in the transformed auxiliary problem with an added boundary condition
for the signal model control to fulfil the specifications

ξm
σ (x, σ) = Σ̄(x)ξm

xx(x, σ) + Φ̄(x)ξm
x (x, σ) + Λ̄(x)ξm(x, σ)

Σ̄(x) =


k1
k1

ϵ11(x) . . . kn
k1

ϵn1(x)
...

. . .
...

k1
kn

ϵn1(x) . . . kn
kn

ϵnn(x)



Φ̄(x) =


k1
k1

2ϵ11x − ϕ11(x) . . . kn
k1

2ϵ1nx − ϕ1n(x)
...

. . .
...

k1
kn

2ϵn1x − ϕn1(x) . . . kn
kn

2ϵnnx − ϕnn(x)



Λ̄(x) =


k1
k1

ϵ11xx + ϕ11x + λ11(x) . . . kn
k1

ϵ1nxx + ϕ1nx + λ1n(x)
...

. . .
...

k1
kn

ϵn1xx + ϕn1x + λn1(x) . . . kn
kn

ϵnnxx + ϕnnx + λnn(x)


ξm(x, 0) = v(x)ψm(x)

ξm(x, T) = 0

ξm(0, σ) = η̃m(σ)

(3.22)

The specification: ξm(x, T) = 0 is main reason of the added boundary condition for
the auxiliary model. This specification implies that the auxiliary model has to stabi-
lize in the time window T. If not, the approximation of the coefficient cm will have
an error introduced and in consequence, the estimation will have an error induced.

If Equation (3.22) holds true, then Equation (3.16) becomes:

n

∑
i=1

kicm
i (t) =

n

∑
i=1

n

∑
j=1

ki

∫ t

t−T
(M2

L + M2
0)[ϵij(x)φm

i , uj] + (M1
L + M1

0)[ϕij(x)φm
i , uj]dτ

(3.23)
In order to determine each one of cm

i , we can form other (n − 1) more equations
similar to Equation (3.23), with different ki to form a system of n equations that
have the following form: And if Equation (3.16) holds true for every one of these
equations, then:

n

∑
i=1

khicm
i (t) =

n

∑
i=1

n

∑
j=1

khi

∫ t

t−T
(M2

L + M2
0)[ϵij(x)φm

i , uj] + (M1
L + M1

0)[ϕij(x)φm
i , uj]dτ

h = 1, . . . , n
(3.24)

If the function basis approximation order is N, then we will have N + 1 systems with
the form of Equation (3.22). In total, it will make n(N + 1) auxiliary systems to solve
and n(N + 1)2 modulating functions in total. It is also worth noticing, that after
solving Equation (3.22), an inverse transformation in time has to be made in order
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to obtain the modulation functions. This transformation has the following form:

φm(x, σ) := ξm(x, T − σ) (3.25)

The main idea for the procedure is to use a different modulating function for every
equation of the system. Then to overcome the coupling that exists int the system, we
add together all the equations to get the coupling into the modulating function equa-
tion. Finally we can construct more coupled systems adding together the equations
but with different constants.

3.3 Calculation of the Modulation Operators

Now we will proceed to demonstrate that M2
L, M1

L, M2
0 and M1

0 can be calculated
with known terms. Without loss of generality, we will assume x∗ = 0. We have the
following system of equations:

P1Ux(0, t) + P0U(0, t) = F(t)

R1Ux(0, t) + R0U(0, t) = Y(t)

If P1 and R1 or P0 and R0 are linearly independent , then U(0, t) and Ux(0, t) can be
determined: [

Ux(0, t)
U(0, t)

]
=

[
P1 P0

R1 R0

]−1 [
F(t)
Y(t)

]
(3.26)

With also knowledge of the Modulation Function φ, then M2
0 and M1

0 can be
known and calculated.

n

∑
i=1

n

∑
j=1

khi

∫ t

t−T
(M2

0[ϵij(x)φm
hi, uj] + M1

0[ϕij(x)φm
hi, uj)]dτ =

n

∑
i=1

n

∑
j=1

khi

∫ t

t−T
(−(ϵij φ

m
hi)(0, τ − t + T)ujx(0, τ)

+((ϵij φ
m
hi)x − ϕij φ

m
hi)(0, τ − t + T)uj(0, τ))dτ

(3.27)

Putting the equation in a vectorial form:

=
∫ t

t−T

[
−Σ̃h(0, τ − t + T) (Σ̃hx − Φ̃h)(0, τ − t + T)

] [Ux(0, τ)

U(0, τ)

]
dτ (3.28)

Where:
Σ̃h(x, t) = {khi(φhiϵij)(x, t)}1≤i,j≤n

Φ̃h(x, t) = {khi(ϕij φhi)(x, t)}1≤i,j≤n
(3.29)
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Using the relation in Equation (3.26), we have:

=
∫ t

t−T

[
−Σ̃h(0, τ − t + T) (Σ̃hx − Φ̃h)(0, τ − t + T)

] [P1 P0

R1 R0

]−1 [
F(τ)
Y(τ)

]
dτ

(3.30)
Now for M2

L, M1
L, we can rewrite the equation similarly:

n

∑
i=1

n

∑
j=1

khi

∫ t

t−T
(M2

L[ϵij(x)φm
hi, uj] + M1

L[ϕij(x)φm
hi, uj)]dτ

=
n

∑
i=1

n

∑
j=1

khi

∫ t

t−T
((ϵij φ

m
hi)(L)ujx(L)− ((ϵij φ

m
hi)x + ϕij φ

m
hi)(L)uj(L))dτ

=
∫ t

t−T
(Σ̃h(L)Ux(L)− (Σ̃hx(L) + Φ̃h(L))U(L))dτ

(3.31)

From here, we can use the relation from Equation (4.7) to only use known terms.

• If Q1 is invertible, then Ux(L, t) = Q−1
1 (G(t)− Q0U(L, t))

n

∑
i=1

n

∑
j=1

khi

∫ t

t−T
[M2

L(ϵij(x)φm
hi, uj] + M1

L[ϕij(x)φm
hi, uj)]dτ

=
∫ t

t−T
(Σ̃h(L)Q−1

1 G − ((Σ̃hx + Φ̃h)(L) + Σ̃h(L)Q−1
1 Q0)U(L))dτ

(3.32)

And imposing

(Σ̃hx + Φ̃h)(L, τ − t + T) + Σ̃h(L, τ − t + T)Q−1
1 Q0 = 0 (3.33)

Then we have:

n

∑
i=1

n

∑
j=1

khi

∫ t

t−T
(M2

L[ϵij(x)φm
hi, uj] + M1

L[ϕij(x)φm
hi, uj)]dτ

=
∫ t

t−T
(Σ̃h(L, τ − t + T)Q−1

1 G(τ))dτ

(3.34)

Finally in addition with Equation (3.30):

n

∑
i=1

n

∑
j=1

khi

∫ t

t−T
(M2

L + M1
L)[ϵij(x)φm

hi, uj] + (M2
0 + M1

0)[ϕij(x)φm
hi, uj)]dτ

=
∫ t

t−T

[
−Σ̃h(0, τ − t + T) (Σ̃hx − Φ̃h)(0, τ − t + T)

] [P1 P0

R1 R0

]−1 [
F(τ)
Y(τ)

]
dτ

+
∫ t

t−T
(Σ̃h(L, τ − t + T)Q−1

1 G(τ))dτ

(3.35)
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• If Q0 is invertible, then U(L, t) = Q−1
0 (G(t)− Q1Ux(L, t))

n

∑
i=1

n

∑
j=1

khi

∫ t

t−T
M2

L[ϵij(x)φhi]m,uj
+ M1

L[ϕij(x)φm
hi, uj]dτ

=
∫ t

t−T
((Σ̃h(L) + (Σ̃hx + Φ̃h)(L)Q−1

0 Q1)Ux(L)− ((Σ̃hx + Φ̃h)(L)Q−1
0 G))dτ

(3.36)
And imposing

Σ̃h(L, τ − t + T) + (Σ̃hx + Φ̃h)(L, τ − t + T)Q−1
0 Q1 = 0 (3.37)

Then we have:

n

∑
i=1

n

∑
j=1

khi

∫ t

t−T
(M2

L[ϵij(x)φm
hi, uj] + M1

L[ϕij(x)φm
hi, uj])dτ

= −
∫ t

t−T
((Σ̃hx + Φ̃h)(L, τ − t + T)Q−1

0 G(τ))dτ

(3.38)

Finally in addition with Equation (3.30):

n

∑
i=1

n

∑
j=1

khi

∫ t

t−T
(M2

L + M1
L)[ϵij(x)φm

hi, uj] + (M2
0 + M1

0)[ϕij(x)φhim , uj)]dτ

=
∫ t

t−T

[
−Σ̃h(0, τ − t + T) (Σ̃hx − Φ̃h)(0, τ − t + T)

] [P1 P0

R1 R0

]−1 [
F(τ)
Y(τ)

]
dτ

−
∫ t

t−T
((Σ̃hx + Φ̃h)(L, τ − t + T)Q−1

0 G(τ))dτ

(3.39)

We can see here that in both of the cases, we can express M2
L, M1

L, M2
0 and M1

0 in
the known terms from the problem statement and also with the modulation func-
tions obtained from the auxiliary models. Also it is worth noticing that Equation
(3.33) and (3.37) adds a boundary condition to the auxiliary systems.

3.4 Reconstruction of the states

For the reconstruction of the states, we will have to ensure first that the auxiliary
systems requirements are fulfilled. Once we solved the auxiliary system problem,
after an inverse time transformation with the Equation (3.25) then we will have as
outcome the modulating functions φm

ij for 1 ≤ i, j ≤ n and 0 ≤ m ≤ N. Then we can
rewrote Equation (3.24) in a linear system of equations form:

K


cm

1 (t)
...

cm
n (t)

 = Mm(t) (3.40)
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Where:

Mm(t) =


∑n

i=1 ∑n
j=1 k1i

∫ t
t−T(M2

L + M1
L)[ϵij(x)φm

1i, uj] + (M2
0 + M1

0)[ϕij(x)φm
1i, uj)]dτ

...

∑n
i=1 ∑n

j=1 kni
∫ t

t−T(M2
L + M1

L)[ϵij(x)φm
ni, uj] + (M2

0 + M1
0)[ϕij(x)φm

ni, uj)]dτ


(3.41)

and using:

K =


k11 . . . k1n
...

. . .
...

kn1 . . . knn

 , C(t) =
[
C0(t) . . . CN(t)

]
=


c10(t) . . . c1N (t)

...
. . .

...
cn0(t) . . . cnN (t)

 (3.42)

If K is invertible or non-singular, then we can have the coefficients uncoupled:

C(t) = K−1
[
M0(t) . . . MN(t)

]
(3.43)

With these coefficients we can reconstruct the state using the function expansion
representation showed in Chapter 2:

U(x, t) =


∑∞

k=0 ck
1(t)ψ

k(x)
...

∑∞
k=0 ck

n(t)ψk(x)

 ≈


∑N

k=0 ck
1(t)ψ

k(x)
...

∑N
k=0 ck

n(t)ψk(x)

 = C(t)Ψ(x) (3.44)

With this expression we can reconstruct the state and solve the problem of the state
estimation.

It can be observed that for the reconstruction of the state we require first the
calculation of the coefficients of the basis expansion. This calculation notated in
Equation (3.43) depends on the matrix K and Mm

3.5 Implementation

For the implementation of the method, we can divide the procedure in two parts:
Offline and online, because there are some steps in the procedure that do not need
to be iterated. The offline part starts with the calculation of the orthonormal basis of
functions. This step is done using the Gram-Schmidt procedure described in Chapter
2 and it will require to specify the approximation order N beforehand, a function
basis and a weight function v(x). The outcome of the Gram-Schmidt procedure
will be the elements of the orthonormal basis Ψ(x) = [ψ0(x), ..., ψN(x)]. After the
orthonormal basis calculation, the auxiliary models can be solved since now the
boundary conditions of the models are defined. This solution will require the design
of a boundary control in order to fulfil the constraints on the modulating functions.
All of these steps can be made offline since there is no update to be done.



28 Chapter 3. State estimation of n-Coupled Reaction-Advection-Diffusion PDE

The next steps are from the online part, illustrated in Figure 3.1. After the calcu-
lation of the modulating functions, with every time step the measuring of the system
has to be done. With the modulating functions, measurement and inputs of the sys-
tem, the modulation kernels can be calculated and therefore the modulation kernel
vector. Then, the decoupling of the coefficients can be made with Equation (3.43)
and finally the reconstruction of the states can be done with Equation (3.44). The
procedure can be resumed in the following steps:

• Offline part

1. Define parameters for orthonormal basis calculation:

Approximation order N, Function Basis, Weight function v(x)

2. Gram-Schmidt procedure to obtain the Orthonormal Basis Ψ(x) = [ψ0(x), ..., ψN(x)]

3. Create and solve auxiliary models with initial condition v(x)Ψ(x) and
control scheme η to achieve ξ(x, T) = 0. Solution will be ξ(x, σ)

4. Inverse time transformation (3.21) to obtain modulating functions φ(x, t)

• Online part

1. Measurement of the system

2. Calculation of the modulation kernels

3. Decoupling of the coefficients with (3.43)

4. Calculation of the states with (3.44)

The most heavy computational part in the whole process is the solution of the
auxiliary models since it is a coupled PDE solution , but the main advantage is that
it can be made offline, therefore there is no burden onto the online computation. In
the online part, the decoupling and calculation of the states are matrix multiplication
without further complications and also the matrices K−1 and Ψ(x) can be calculated
offline and there is no need for an actualization in the online section. The modulation
part implies a numerical integration that it is the more heavy computational part in
the online part. This integration can be done with numerical methods such as the
trapezoidal rule or Newton-Cotes formulas for further improvement.

The present chapter has explained the application of the modulating function
method for the state estimation of n-Coupled Reaction-Advection-Diffusion PDE.
Using the theoretical framework from the last chapter, the method implementation
is not complicated and as explained in the last subsection, the separation into offline
and online parts makes the implementation easier.
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φL, φ0

K

Ψ(x)

System (3.1)

Ut = Σ(x)Uxx + Φ(x)U + Λ(x)U

Modulation (3.41)

Mm(t)

Decoupling (3.43)

K−1 [M0(t) . . . MN(t)
] Reconstruction (3.44)

Ψ(x)C(t) Û(x, t)
C(t)

FIGURE 3.1: Diagram of the online implementation part
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Chapter 4

Comparative Simulations

This chapter presents simulations that show the performance of the observer devel-
oped in the last chapter for three different type of systems in order to demonstrate
the feasibility of the use of the modulation function observer. The first one is a sta-
ble Coupled Reaction Diffusion PDE that represents a linearised Chemical Tubular
Reactor for which a backstepping observer has also been developed. Here, the effect
of the different parameters such as the time window T, time sample Ts and con-
trol strategy are explored; furthermore, the performance of the observer with noise
in the measurement is tested. Additionally, a comparison with the aforementioned
backstepping observer is done. The second system is an unstable Coupled Reaction
Diffusion PDE, which is used to demonstrate the performance of the observer on
an unstable system and also the same parameters are explored. Finally, a coupled
Reaction Diffusion PDE with spatially varying coefficients is used to showcase the
use of the observer for such systems and its performance.

4.1 Stable 2-Coupled Reaction-Diffusion PDE

4.1.1 Problem Definition

In order to exemplify the use and efficiency of the method, a linearized Chemi-
cal Tubular Reactor model is used for the simulation. The coupled temperature-
concentration system of Chemical Tubular Reactors is given by [4]:

u1t(x, t) = D1u1xx(x, t) + k0δ(1 − u2(x, t))e−
µ

1+u1(x,t)

u2t(x, t) = D2u2xx(x, t) + k0(1 − u2(x, t))e−
µ

1+u1(x,t)

u1x(0, t) = 0

u2x(0, t) = 0

u1(1, t) = u1c(t)

u2(1, t) = u2c(t)

(4.1)

with the physical parameters:

D1 = 0.14, D2 = 0.16, k0 = 2.426x107, δ = 0.5, µ = 20. (4.2)
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The system is linearized around us
1 and us

2, which are the steady-state variables and
by setting vi(x, t) = ui(x, t)− us

i (x) the steady state can be obtained as follows:

v1t(x, t) = D1v1xx(x, t) + a11v1(x, t) + a12(x)v2(x, t)

v2t(x, t) = D2v2xx(x, t) + a21v1(x, t) + a22(x)v2(x, t)
(4.3)

where:

a11(x) = k0δ
1 − us

2(x)
(1 + us

1(x))2 e
− µ

1+us
1(x)

a21(x) =
1
δ

a11(x)

a12(x) = −k0δus
2(x)e

− µ

1+us
1(x)

a22(x) =
1
δ

a12(x).

(4.4)

Finally, by taking the average values of the coefficients aij(x), the following linear
2-Coupled Reaction-Diffusion PDE is obtained:

U = ΣUxx + ΛU

Σ =

[
0.14 0

0 0.16

]
, Λ =

[
−0.065 −0.146
−0.130 −0.293

]

U(x, t) =
[
u1(x, t) u2(x, t)

]T

(4.5)

with a Neumann boundary condition:

Ux(0, t) = 0 (4.6)

a known actuation at the boundary:

U(L, t) = G(t) (4.7)

and a measurement at the boundary

Y(t) = Ux(L, t). (4.8)

The problem is to estimate the state U(x, t) based on the knowledge of the actuation
G(t) and the measurement Y(t).

4.1.2 Solution of the problem

For the solution of this problem the same argument explored in the Chapter 3 is
used, but with x∗ = L. In this case, the auxiliary systems are similar to Equation
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(3.22): 

ξm
σ (x, σ) = Σ̄ξm

xx(x, σ) + Λ̄ξm(x, σ)

Σ̄ =

[
k1
k1

ϵ11
k2
k1

ϵ21
k1
k2

ϵ21
k2
k2

ϵ22

]
=

[
ϵ11 0
0 ϵ22

]

Λ̄ =

[
k1
k1
(ϵ11xx + λ11)

k2
k1
(ϵ12xx + λ12)

k1
k2
(ϵ21xx + λ21)

k2
k2
(ϵ22xx + λ22)

]
=

[
λ11

k2
k1

λ12
k1
k2

λ21 λ22

]
ξm(x, 0) = v(x)ψm(x)

ξm(x, T) = 0

ξm(0, σ) = ηm(σ)

(4.9)

For the present problem since x∗ = L, the modulation kernel can be reformulated
as:

n

∑
i=1

n

∑
j=1

khi

∫ t

t−T
(M2

L + M2
0)[ϵij(x)φm

hi, uj] + (M1
L + M1

0)[ϕij(x)φm
hi, uj]dτ

=
∫ t

t−T

[
−Σ̃h(0, τ − t + T) (Σ̃hx − Φ̃h)(0, τ − t + T)

] [Ux(0, τ)

U(0, τ)

]
dτ

+
∫ t

t−T

[
Σ̃h(L, τ − t + T) −(Σ̃hx + Φ̃h)(L, τ − t + T)

] [Ux(L, τ)

U(L, τ)

]
dτ

(4.10)

and using the problem conditions from Equation (4.6), (4.7) and (4.8):

n

∑
i=1

n

∑
j=1

khi

∫ t

t−T
(M2

L + M2
0)[ϵij(x)φm

hi, uj] + (M1
L + M1

0)[ϕij(x)φm
hi, uj]dτ

=
∫ t

t−T

[
−Σ̃h(0, τ − t + T) Σ̃hx(0, τ − t + T)

] [ 0
U(0, τ)

]
dτ

+
∫ t

t−T

[
Σ̃h(L, τ − t + T) −Σ̃hx(L, τ − t + T)

] [Y(τ)
G(τ)

]
dτ.

(4.11)

If we impose the following boundary condition on the modulation functions:

φm
hix
(0, t) = 0, 1 ≤ (h, i) ≤ 2 (4.12)

Then Σ̃hx = 0 is valid, and consequently the modulation kernel can be reduced to:

n

∑
i=1

n

∑
j=1

khi

∫ t

t−T
(M2

L + M2
0)[ϵij(x)φm

hi, uj] + (M1
L + M1

0)[ϕij(x)φm
hi, uj]dτ

=
∫ t

t−T

[
Σ̃h(L, τ − t + T) −Σ̃hx(L, τ − t + T)

] [Y(τ)
G(τ)

]
dτ.

(4.13)
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Using the added boundary condition in Equation (4.12), the auxiliary system from
Equation (4.9) becomes:

ξm
σ (x, σ) = Σ̄ξm

xx(x, σ) + Λ̄ξm(x, σ)

Σ̄ =

[
ϵ11 0
0 ϵ22

]
, Λ̄ =

[
λ11

k2
k1

λ12
k1
k2

λ21 λ22

]
ξm(x, 0) = v(x)ψm(x)

ξm
x (0, σ) = 0

ξm(L, σ) = ηm(σ)

ξm(x, T) = 0

(4.14)

If Equation (4.14) is fulfilled and the backwards time transformation from Equa-
tion (3.25) is applied, then the modulation functions φhim can be obtained and there-
fore Σ̃h and Σ̃hx . Finally, the coefficients uncoupled can be obtained in a similar form
to Equation (3.43):

C(t) = K−1
[
M0(t) . . . MN(t)

]
(4.15)

where:

Mm(t) =



∫ t
t−T

[
Σ̃1(L, τ − t + T) −Σ̃1x(L, τ − t + T)

] [Y(τ)
G(τ)

]
dτ

...∫ t
t−T

[
Σ̃n(L, τ − t + T) −Σ̃nx(L, τ − t + T)

] [Y(τ)
G(τ)

]
dτ


(4.16)

With these coefficients we can reconstruct the state using the function expansion
representation showed in Chapter 3 with Equation (3.44):

U(x, t) ≈ C(t)Ψ(x) (4.17)

The whole procedure is straightforward similar to the one presented in Chapter
3. Finally, the state can be reconstructed using the coefficients, that are obtained
with the modulation operators that are the result of a integration that needs only the
modulation functions obtained from the auxiliary systems in Equation (4.14), the
actuation G(t) and the measurement Y(t) solving the problem stated.

4.1.3 Simulations

After the solution of the problem, explained in the last subchapter, a simulation of
the problem with different scenarios regarding to the boundary conditions and noise
presence are explored and also compared to the observer presented in [29]. The
programming and graphical representations have been developed in MATLAB®.
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Preliminaries

This part is devoted to explain the offline procedure realized for the state estimation
of the process described. In the following, the simulations and plots for the system
have been done using the following actuation and initial condition, similar to [29] in
order to keep the comparison fair:

U(1, t) = G(t) =

[
5 sin(t)

10 sin(2t)

]

U(x, 0) =

[
sin(πx) + sin(3πx)
sin(πx) + sin(3πx)

] (4.18)

The first step is to determine the function basis and order to work with. For this case,
a polynomial basis {1, x, . . . , xN} and the weight function v(x) = x(L − x)2 are used
in the Gram-Schmidt procedure to obtain the orthonormal basis. Although a higher
basis order naturally will lead to a better approximation, there is an inconvenience
with this choice. The exactitude of the basis expansion approximation is not always
better as the order increases if the step size in the dimension x does not increase also.
With a higher order basis, the higher order terms tend to have a faster dynamic at the
boundaries and in consequence, the numerical integration done for the coefficients
calculation is less accurate. An illustration of this phenomena is shown in the Figure
4.1 where using a step size XS of 2 × 10−2 in x, the best performing basis order is
N = 5, and increasing the basis order results in a worse approximation; although,
using a smaller step size of 10−3 in x, the best performing basis order is N = 16
with a smaller error on the projection. This shows that for a better approximation, a
smaller step size has to be chosen in order to select a higher basis order.

After the selection of the orthonormal basis for the approximation, the terms
v(x)ψm(x) can be calculated in order to create and solve the auxiliary models de-
scribed in Equation (3.22). For this purpose we select the following matrix K:

K =

[
1 1
1 −1

]
. (4.19)

It is worth noticing that another value of K can be chosen, but every element cannot
be zero to avoid indetermination in Equation (3.22) and the matrix must be invert-
ible in order to make possible the decoupling from Equation (3.43). The other choice
that has to be done is the control η̃m(σ) from Equation (3.22) in order to stabilize
the system in the time window T and fulfill the condition ξ(x, T) = 0. In order to
demonstrate the effect of this variable, three cases are considered: No control, a more
aggressive control(Control 1 called Cont1) and a more conservative control(Control
2 called Cont2). For this, the backstepping control explained in the Chapter 2 and
defined by Equation (2.23) is used with different k̃ values. The plot of the modulat-
ing functions is shown in Figure 4.4, and their L2-norm in the 4.5. It can be seen that
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(C) ISE of u1 with Xs = 10−3
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(D) ISE of u2 with Xs = 10−3

FIGURE 4.1: Projection errors for different function expansion order

in both cases the control strategies make possible a faster stabilization of every mod-
ulation function as Table 4.1 shows, where a reduction on the L2-norm of the modu-
lation functions exists with the ones obtained with control strategies in comparison
to the modulation functions obtained without a control strategy. On the other hand,
it is worth noticing that the modulation functions constructed with a signal model
controller have faster dynamics, especially if the control is more aggressive as in the
comparison can be seen where the MF obtained with Cont1 is much oscillating than
the MF obtained with Cont2. This is important for the modulation kernel calcula-
tion, since the dynamics of the modulation function have an impact on the precision
of the numeric integration and thus, on the state estimation.

Simulation Scenarios

The first comparison to be explored is the use of different control strategies for the
signal model control on the auxiliary systems solution from Equation (3.22). For the
present example, three different control strategies are used, the same ones used in
the last subsection. For the specifications of the simulation, a time grid resolution of
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FIGURE 4.2: Absolute error of the basis expansion for N = 5 and
Xs = 2 × 10−2

FIGURE 4.3: Absolute error of the basis expansion for N = 8 and
Xs = 10−3

MF Original Control 1 Control 2

log10||φ0
11(x, T)|| −2.64 −7.82 −5.92

log10||φ0
12(x, T)|| −5.30 −9.82 −8.24

log10||φ0
21(x, T)|| −2.11 −7.44 −5.49

log10||φ0
21(x, T)|| −2.66 −8.41 −6.30

log10||φ1
11(x, T)|| −3.89 −9.44 −7.25

log10||φ1
12(x, T)|| −6.54 −11.34 −9.40

log10||φ1
21(x, T)|| −3.34 −9.09 −6.85

log10||φ1
21(x, T)|| −3.89 −10.14 −7.74

log10||φ2
11(x, T)|| −5.16 −10.48 −8.92

log10||φ2
12(x, T)|| −6.82 −12.41 −11.09

log10||φ2
21(x, T)|| −9.49 −10.13 −8.52

log10||φ2
21(x, T)|| −6.31 −11.17 −9.39

TABLE 4.1: L2-norms of the modulating function at the end of the
time window

Ts = 10−3 has been used and a space grid resolution Xs = 2 × 10−2 with a horizon
time window T = 4 . The results are illustrated in Figure 4.6.

As distinguished in the figure, the error can be analyzed in 2 sections, before and
after the time window T. In the plots before the time window, it can be seen that
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(A) Without control (B) Control 1

(C) Control 2

FIGURE 4.4: Plots of the MF ξ0
21 with different control strategies

the faster converging strategy is Cont1, the more aggressive controller, as expected.
Then Cont2, a less aggresive controller and finally Orig, the solution without any
control strategy. This is explained by Figure 4.5, where the more aggresive con-
trollers have a faster convergence time.

After the time window, the two control strategies perform better than the so-
lution without any control strategy as expected, since as described in Table 4.1 the
final values of the modulating function at the end of the time window is smaller.
Furthermore, the condition ξ(x, T) = 0 from Equation (3.22) is not fulfilled by any
of the control strategies but is more closely approximated by Cont2 and Cont1 as
Table 4.1 shows. A strange phenomenon is the better performance of Cont2 despite
the greater value of the modulation function norm at the end of the time window.
This can be explained from a numerical point of view. The more aggressive control
strategy has faster dynamics and more oscillations in the control and the modulation
function solution. Despite the faster convergence, this also results in a less accurate
numerical integration with the same time sample. A better method for the numerical
integration and the use of a smaller sampling time can enhance the performance.

The next comparison concerns the effect of the time window T in the perfor-
mance of the estimation. The results are illustrated in Figure 4.7.

The effect of the time window T can be observed in the ISE values for the differ-
ent T values. As T increases, the estimation error decreases, since the MF final value
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FIGURE 4.5: L2-Norms of the functions ξ0
21, ξ5

22 and ξ4
11 with different

control strategies

at the time window T is smaller and results in a smaller error in the coefficients
estimation as described by Equation (3.22). A drawback in using a higher time win-
dow T, is that the size of the modulation kernel is greater and it results in a higher
computational burden since the number of operations needed in the modulation is
increasing.

The next comparison explored is the effect of the sampling time Ts on the state
estimation. Every plot has the same control strategy(Cont2). Its results are illustrated
in Figure 4.8

Time sample has an impact in the numerical integration of the modulation ker-
nels. This can be seen in the plots of each ISE, where with smaller time sample, the
error is smaller despite the equal conditions. A solution for this, is the use of dif-
ferent numerical integration such as Newton-Cotes methods that normally perform
better than the trapezoidal rule that is used for the current implementation.

Another important factor to take into account is the effect of noise in the mea-
surement in the state estimation. For this purpose, white noise with different SNR
was induced onto the measurement signal for the state estimation and the results
are presented in Figure 4.9.

Naturally, the noise has an impact on the error as shown in the plots. This effect
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(D) After T

FIGURE 4.6: ISE with different control strategies for MF solving on a
Stable Coupled Reaction Diffusion system
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FIGURE 4.7: ISE with different time window T for the modulation
operation on a Stable Coupled Reaction Diffusion system

is also a deviation from the ISE with an induced noise that increases as the SNR in-
creases. The effect of the noise is more visible on Figure 4.10 where the row above
is the absolute error for each state with a sampling time of 1e-3 and the row below



40 Chapter 4. Comparative Simulations

1 2 3 4 5 6 7 8

t

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

ISE
1

1 2 3 4 5 6 7 8

t

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

ISE
2

FIGURE 4.8: ISE with different time sample Ts for the modulation
operation on a Stable Coupled Reaction Diffusion system
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FIGURE 4.9: ISE with different SNR on the measurement for the State
Estimation on a Stable Coupled Reaction Diffusion system

is the absolute error with a sampling time of 1e-4 with an SNR of 0.1 in the mea-
surement for each case. It can be seen that as the sampling time increases the error
decreases in the middle of the space axis while the error at the boundary practically
not, where also the noise impact is much clearer.

Finally, the backstepping observer described in Chapter 2 is compared in same
conditions with the modulation function based state estimation presented in this
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FIGURE 4.10: Absolute error for the estimation with SNR=0.1 and
Ts = 10−3(above) and Ts = 10−4(below) on a Stable Coupled Reac-

tion Diffusion system

thesis. The same observer was applied and tested in [29]. For the sake of a fair
comparison, the simulations are run with the same boundary conditions on the sys-
tems described in the former subsection with Equation (4.18). For the backstepping
observer, the parameter k̃ has been chosen according to [29] to 8, according to Condi-
tion 1 in [29]; 0.5, according to Algorithm 2 in [29] and 1, in order to achieve a better
performance of the observer. The MF observer uses a time sample of 10−4, a time
window of 4 seconds and the control strategy Cont2 described before. The results of
the comparison are shown in Figure 4.11.

In the comparison can be observed that the MF observer converges in the first 4
seconds faster as can be seen on Table 4.2, with the ISE error for the first state and
the second being smaller than the other observers. In the other hand, in the section
before the time window, the backstepping observer keeps converging whereas the
MF observer stops converging as it is by design. This is explained by the ISE error at
t = 8 for the MF observer being greater than the backstepping observers. The plot
of the ISE error in Figure 4.11 shows this behaviour and the influence of the values
of the state at the boundary in the error of the MF observer after the time window T
. This comparison shows the main differences between each approach and how the
MF observer behaves with its non-asymptotic nature.



42 Chapter 4. Comparative Simulations

0 1 2 3 4 5 6 7 8

t

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

ISE
1

0 1 2 3 4 5 6 7 8

t

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

ISE
2

0 1 2 3 4 5 6 7 8

t

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

ISE
1

0 1 2 3 4 5 6 7 8

t

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

ISE
2

4 4.5 5 5.5 6 6.5 7 7.5 8

t

0

0.2

0.4

0.6

0.8

1

1.2
10

-3
ISE

1

4 4.5 5 5.5 6 6.5 7 7.5 8

t

0

1

2

3

4

5

6
10

-4
ISE

2

FIGURE 4.11: ISE comparison of the backstepping and MF observer
for the State Estimation on a Stable Coupled Reaction Diffusion sys-

tem

4.2 Unstable Coupled Reaction-Diffusion PDE

The following linear 2-Coupled Reaction-Diffusion PDE is used to demonstrate the
performance of the MF observer in an unstable system:

U = ΣUxx + ΛU

Σ =

[
2 0
0 2

]
, Λ =

[
1 2
4 5

]

U(x, t) =
[
u1(x, t) u2(x, t)

]T

(4.20)
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Observer ISE1(t = 2) ISE1(t = T = 4) ISE1(t = 8)

MF Observer 1.60 × 10−3 4.00 × 10−4 1.59 × 10−4

Backstepping Observer(K = 1) 6.45 × 10−3 7.06 × 10−4 2.96 × 10−6

Backstepping Observer(K = 0.5) 8.83 × 10−3 1.13 × 10−3 2.45 × 10−5

TABLE 4.2: ISE of u1 at different times for the stable Coupled Reaction
Diffusion PDE

With a Neumann boundary condition:

Ux(0, t) = 0 (4.21)

A known actuation at the boundary:

U(L, t) = G(t) (4.22)

And a measurement at the boundary

Y(t) = Ux(L, t) (4.23)

The problem is to estimate the state U(x, t) with the known actuation G(t) and the
measurement Y(t).

The solution to the problem is straightforward similar to the prior system, since
the only difference are the values in the parameters of the system and in conse-
quence, the Equations (4.15), (4.16) and (3.44) can also be used without any modi-
fications and the simulations can run with only the modification of the parameters
values.

For the simulation, the same boundary conditions as the former systems has been
used. Additionally, it is worth noticing that the system is unstable as can be noted
in Figure 4.13, thus making necessary the use of a control strategy for the auxiliary
systems. This can be observed in Figure 4.12

The error for the estimation without a control strategy is much greater than the
one that uses a control strategy for each state, due to the necessity to fulfil the condi-
tion ξ(x, T) = 0. The results of the estimation can also be seen in Figure 4.13 where
the original states are in the row above and the estimated states in the row below,
showing the similitude between both.

The effect of noise was also tested and the results are shown in Figure 4.14.
The absolute error is shown in Figure 4.15, where the major error is presented in

the spatial boundaries, similar to the former system. It is also worth noticing that the
error seems to increase as time increases, since the state values also increases as the
Figure 4.13 shows and according to the error induced by the approximation of the
condition ξ(x, T) = 0, resulting by the Equations (3.9) and (3.10) in an error induced
in the coefficients calculation and therefore an error in the state estimation. The
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FIGURE 4.12: ISE with different control strategy for the MF solution
for the State Estimation on an Unstable Coupled Reaction Diffusion

system

distribution of the absolute error in the time and spatial axis can be seen in Figure
4.15.

4.3 Coupled Reaction-Diffusion with spatially varying coef-
ficients PDE

The following linear 2-Coupled Reaction-Diffusion PDE with spatially varying co-
efficients is used to demonstrate the performance of the MF observer in an unstable
system: 

U = ΣUxx + ΛU

Σ =

[
1 0
0 3

]
, Λ =

[
1 x
x 1

]

U(x, t) =
[
u1(x, t) u2(x, t)

]T

(4.24)

With a Neumann boundary condition:

Ux(0, t) = 0 (4.25)

A known actuation at the boundary:

U(L, t) = G(t) (4.26)

And a measurement at the boundary

Y(t) = Ux(L, t) (4.27)

The problem is to estimate the state U(x, t) with the known actuation G(t) and the
measurement Y(t).
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FIGURE 4.13: Original states(above) and estimated states(below) of
an Unstable Coupled Reaction Diffusion system

The present system has been used in [11] with the use a backstepping observer.
For the simulation, the same boundary conditions as the former systems has been
used.

The solution to the problem is straightforward similar to the prior system, since
the only difference are the values in the parameters of the system and even the spa-
tially varying coefficients do not have any change in the formulation of the problem
and in consequence, the Equations (4.15), (4.16) and (3.44) can also be used with-
out any modifications and the simulations can run with only the modification of the
parameters values.

The results with a time sample of 1e-3 and 1e-4 are shown on Figure 4.16.
Performance of the observer also improves with a smaller time sample such as

the other systems, especially notable in the ISE of the second state.
The absolute error of the estimation is shown in 4.17 and the comparison of the

original and estimated state are shown in Figure 4.18
The influence of noise shown in Figure 4.19, where the noise seems to have a

smaller impact compared to the former systems, even increasing the SNR value as
the plots indicate.

This chapter has shown the performance of the observer in three different sys-
tems that are coupled reaction-diffusion PDE. The first system tested demonstrates
the use of the MF observer in a reaction-diffusion PDE with constant coefficients,
where also the different effect of the parameters such as sampling time, time window
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FIGURE 4.14: ISE for the state estimation for the State Estimation on
an Unstable Coupled Reaction Diffusion system

FIGURE 4.15: Comparison of the original and estimated state of an
Unstable Coupled Reaction Diffusion system

and control strategy on the estimation. Noise influence also has been investigated.
Other two systems change the original problem introducing unstable dynamics and
spatially varying coefficients respectively. The chapter demonstrates how the MF
observer can be applied and the effect of the different parameters.
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FIGURE 4.16: Effect of time sample Ts on the ISE for a Coupled Reac-
tion Diffusion system with Spatially Varying coefficients

FIGURE 4.17: Absolute error of the estimation for each state on a Cou-
pled Reaction Diffusion system with Spatially Varying coefficients

FIGURE 4.18: Comparison of the original and estimated state for the
State Estimation on a Coupled Reaction Diffusion system with Spa-

tially Varying coefficients
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FIGURE 4.19: Effect of the noise on the ISE for each state on a Coupled
Reaction Diffusion system with Spatially Varying coefficients
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Chapter 5

Conclusions

The presented modulation function based observer for Coupled Reaction-Diffusion
PDEs demonstrates a sufficiently satisfying state estimation for different systems
tested in the last chapter. The mentioned observer, requires a measurement on the
boundary, knowledge of the actuation and the modulation functions resulting from
solving auxiliary systems.

The observer approximates the original states using their basis expansion for-
mulation. In order to achieve this, the coefficients of the respective basis expansion
need to be calculated. This calculation cannot be done straightforward applying the
modulation operator as in [12] due to the coupling between states. To overcome
this problem, a linear combination of every equation can be performed and then,
the modulation operator is applied. In order to simplify this operation, auxiliary
systems need to be solved. The auxiliary systems are similar to the original system
with a modification in the coefficients that is related to a matrix K that can be freely
chosen, creating a new system. The solution of the auxiliary system, including the
signal modelling control, requires for the modulation functions to be zero at the end
of the time window, transforming the problem into a stabilization problem. If the
system is stable, there is no strict need for a controller but its use can enhance the
performance making the stabilization faster and thus, the estimation more accurate
as the results of the last chapter have shown. For this purpose, backstepping con-
trollers have been developed for different types of systems and their solution with
the signal modelling control problem can be done offline, without the necessity of
new calculations.

As the results from the last chapter shows, the MF Observer is capable of dealing
with the three kind of systems tested. The more important parameters for the ob-
server are the sampling time Ts, used for the time integration and the sampling of the
different signals; the time window T, used for the solution of the signal modelling
control; the approximation order N, that determines the number of modulation func-
tions. The results shows that the time sample has an impact in the estimation, since
the numerical integration uses a trapezoidal rule. A better suited numerical integra-
tion method can improve the estimation. The length of the time window also plays
an important role in the estimation. A longer time window gives more time to the
modulation function to stabilize as Table 4.1 shows and in consequence, a smaller
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error in the estimation. The approximation order has to be chosen in relation with
the chosen grid resolution in x, since increasing the approximation order does not
always result in a more accurate estimation. This is caused by the dynamics at the
boundaries that are very oscillating, resulting in a bad approximation due to the nu-
merical integration. The choice of these parameters has to be made carefully in order
to achieve a better state estimation. Fortunately, this tuning section can be made of-
fline and the solutions of the auxiliary systems can be compared and improved.

The estimation error can be attributed to three different parts. Numerical errors,
that are related to the numerical integration. The integration depends on the value
of the sampling time Ts and its error can be reduced using smaller values of Ts. The
error from the basis expansion approximation can be reduced by increasing the basis
order and the grid resolution in x. This allows to increment the approximation order
of the basis. Finally, the error in estimating the coefficients attributed to the non
fulfillment of the condition from Equation (3.9). If the condition is not fullfilled, then
Equation (3.10) becomes:

∫ L

0
φm(x, τ − t + T)un(x, τ)dx

∣∣∣τ=t

τ=t−T
= cm(t)−

∫ L

0
φm(x, 0)un(x, t − T)dx = ĉm(t)

where ĉm(t) are the coefficients approximated with the method and if φm(x, 0) =

ξm(x, T) = 0, then cm(t) = ĉm(t) and the estimation is faithful to the basis expan-
sion coefficients. However, if it does not fulfill, the error on the coefficients can be
calculated with:

cm(t)− ĉm(t) =
∫ L

0
φm(x, 0)un(x, t − T)dx

and using:
φ̄m(t) = sup

x
φm(x, t)

ξ̄m(t) = sup
x

ξm(x, t)

ūm(t) = sup
x

u(x, t)

an upper boundary of the coefficients error can be calculated:

cm(t)− ĉm(t) =
∫ L

0
φm(x, 0)un(x, t − T)dx ≤ Lφ̄m(0)ūn(t − T) = Lξ̄m(T)ūn(t − T).

(5.1)
The values of L and ξ̄m(T) are fixed and known from the signal modelling con-

trol problem, making the error dependant on ūn(t − T) and thus on the maximum
value of un(x, t − T) that changes with time. This explains the tendency of the errors
shown in the last chapter and in A. The errors are mostly proportional to the bound-
ary values as the results from A shows. In order to reduce this error, a better control
strategy can be used to reduce the value ξm(x, T) and the value of the time window
T can be increased in order to give more time for the system to stabilize and achieve
a reduced value of ξm(x, T).

The method explained in the thesis presents some advantages with respect to
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other observers such as the backstepping observers as described in Table 5.1. Such
advantages are the easy calculation for the state estimation, since it only requires
numerical integrations and matrix multiplications in comparison to the backstep-
ping observer that requires the solution of a coupled PDE for each time step. This
advantage also makes possible a real-time implementation of the method, especially
considering the operations needed and the possibility of the implementation with
FIR filters as described in [12]. From the results on the last chapters, the robustness
against noise is also demonstrated.

The main issue with regard to the method is the dependency on the sampling
time for the performance of the observer. The results show that smaller values of
sampling time Ts are needed in order to achieve better results due to the numerical
integration, increasing the number of values stored and operations. Another draw-
back is the state values dependency of the error from Equation (5.1), since backstep-
ping controllers with their convergence does not have this issue.

Advantages Issues
• Easy calculation for state estimation • Dependency on sampling time

• Good response to noise • Error depending on state values
• Real-time implementation

Inaccuracies Future Ideas
• Basis expansion approximation • Better suited control method

• Error at the boundaries • Combination with non-linear terms

TABLE 5.1: Advantages, issues, inaccuracies and future ideas for the
method

Further works could consider the use and development of better control meth-
ods for each system in order to reduce the error on the coefficients and the window
time T. Backstepping controllers could be further explored and their tuning in or-
der to achieve this purpose. The influence and election of the matrix K is another
topic to look into, since their values affect the coefficients for the auxiliary systems
thus, modifying the dynamics of the systems. The possibility of stabilizing unsta-
ble systems and achieving faster stabilization could be achieved by using different
values of K. Another area of interest, is the use of more equations in order to form
an overdetermined system of equations and give more robustness to the coefficients
calculation. Finally, an expansion of the method for the use with non linear coupling
systems could be explored in addition to systems with time varying coefficients in
order to develop the method in further systems.
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Appendix A

Simulation Plots

The present appendix shows the results of the simulation for the state estimation of
the system presented in Equation (4.5) with different boundary conditions in order
to illustrate their effect.

A.1 Bell shaped Boundary Condition

Using:

U(1, t) = G(t) =

[
5( 1

1+e−0.5(t−2) )(1 − 1
1+e−(t−7) )

3( 1
1+e−2(t−1) )(1 − 1

1+e−2(t−7.5) )

]
(A.1)

the results are:
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FIGURE A.1: ISE with different time sample Ts for the modulation
operation on a Stable Coupled Reaction Diffusion system with a Bell

shaped boundary condition
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FIGURE A.2: ISE with different SNR on the measurement for the State
Estimation on a Stable Coupled Reaction Diffusion system with a Bell

shaped boundary condition

FIGURE A.3: Absolute error for the estimation with SNR=0.1 and
Ts = 10−3 on a Stable Coupled Reaction Diffusion system with a Bell

shaped boundary condition
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FIGURE A.4: ISE comparison of the backstepping and MF observer
for the State Estimation on a Stable Coupled Reaction Diffusion sys-

tem with a Bell shaped boundary condition
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A.2 Sigmoid Boundary Condition

Using:

U(1, t) = G(t) =

[
5( 1

1+e−0.5(t−2) )

3( 1
1+e−2(t−1) )

]
(A.2)

the results are:
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FIGURE A.5: ISE with different time sample Ts for the modulation
operation on a Stable Coupled Reaction Diffusion system with a Sig-

moid boundary condition
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FIGURE A.6: ISE with different SNR on the measurement for the State
Estimation on a Stable Coupled Reaction Diffusion system with a Sig-

moid boundary condition

FIGURE A.7: Absolute error for the estimation with SNR=0.1 and
Ts = 10−3 on a Stable Coupled Reaction Diffusion system with a Sig-

moid boundary condition
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FIGURE A.8: ISE comparison of the backstepping and MF observer
for the State Estimation on a Stable Coupled Reaction Diffusion sys-

tem with a Sigmoid boundary condition
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A.3 Linear Boundary Condition

Using:

U(1, t) = G(t) =

[
0.5t
1 + t

]
(A.3)

the results are:
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FIGURE A.9: ISE with different time sample Ts for the modulation op-
eration on a Stable Coupled Reaction Diffusion system with a Linear

boundary condition
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FIGURE A.10: ISE with different SNR on the measurement for the
State Estimation on a Stable Coupled Reaction Diffusion system with

a Linear boundary condition

FIGURE A.11: Absolute error for the estimation with SNR=0.1 and
Ts = 10−3 on a Stable Coupled Reaction Diffusion system with a Lin-

ear boundary condition
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FIGURE A.12: ISE comparison of the backstepping and MF observer
for the State Estimation on a Stable Coupled Reaction Diffusion sys-

tem with a Linear boundary condition
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A.4 Constant Boundary Condition

Using:

U(1, t) = G(t) =

[
6
4

]
(A.4)

the results are:
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FIGURE A.13: ISE with different time sample Ts for the modulation
operation on a Stable Coupled Reaction Diffusion system with a Con-

stant boundary condition
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FIGURE A.14: ISE with different SNR on the measurement for the
State Estimation on a Stable Coupled Reaction Diffusion system with

a Constant boundary condition

FIGURE A.15: Absolute error for the estimation with SNR=0.1 and
Ts = 10−3 on a Stable Coupled Reaction Diffusion system with a Con-

stant boundary condition
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FIGURE A.16: ISE comparison of the backstepping and MF observer
for the State Estimation on a Stable Coupled Reaction Diffusion sys-

tem with a Constant boundary condition
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A.5 Sinusoidal Boundary Condition

Using:

U(1, t) = G(t) =

[
sin(6πt)
sin(8πt)

]
(A.5)

the results are:
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FIGURE A.17: ISE with different time sample Ts for the modulation
operation on a Stable Coupled Reaction Diffusion system with a Si-

nusoidal boundary condition
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FIGURE A.18: ISE with different SNR on the measurement for the
State Estimation on a Stable Coupled Reaction Diffusion system with

a Sinusoidal boundary condition

FIGURE A.19: Absolute error for the estimation with SNR=0.1 and
Ts = 10−3 on a Stable Coupled Reaction Diffusion system with a Si-

nusoidal boundary condition
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FIGURE A.20: ISE comparison of the backstepping and MF observer
for the State Estimation on a Stable Coupled Reaction Diffusion sys-

tem with a Sinusoidal boundary condition
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