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Abstract 

This work investigates two main aspects related to photovoltaic: systems and module 

characterization and performance modeling.  

The first part aims to characterize a PV generator located in Spain with a nominal power of 

109.44 kW under standard test conditions according to the datasheet. An operational photovoltaic 

system's nominal power is a valid parameter for determining its current operational state. The 

applicability of a standard procedure to estimate the nominal power of an operating generator, 

proposed by Martínez-Moreno and based on Osterwald's model, is investigated. However, the 

standard procedure does not specify how to deal with experimental data when unexpected behavior 

impedes the nominal power estimation under operating conditions. During the 6-month study, the 

power-irradiance relation showed a hysteresis effect with varying amplitudes throughout the 

campaign. Adding a data filter that removes the non-linear part of the data proves necessary to 

estimate the nominal power, complementing Martinez-Moreno's procedure to enable the 

generators' characterization.  

The second part contributes to closing a knowledge gap in the performance behavior and 

predictability of multiple PV technologies in Peru. The quality of two simple analytical models for 

estimating the outdoor performance of three different photovoltaic module technologies in Lima 

was investigated. Osterwald's and the Constant Fill Factor models were applied to estimate the 

maximum power delivered by an Aluminum Back Surface Field, a Heterojunction with Intrinsic 

Thin-layer, and an amorphous/microcrystalline thin-film tandem PV module. The results point that 

both models overestimate the expected power compared to the measured one. Implementing a 

correction factor adjusts the estimated maximum power by both models. This correction factor 
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allows us to estimate losses, calculate an adequate nominal power and minimize the estimated 

power error. The normalized root mean square error and mean bias error determine the 

implemented methodology's quality. The two crystalline silicon-based technologies present a 

similar behavior throughout the year. However, both differ considerably from the tandem one 

during different months, implying that the ambient variables have other seasonal impacts on their 

performance.   
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1 Introduction 

1.1 General Introduction 

The energy infrastructure of modern society is highly dependent on fossil fuels. The latter 

is nothing more than a form of solar energy that has been stored as chemical energy by 

photosynthesis processes and stored for millions of years in the form of gas, coal, and oil. 

Burning fossil fuels releases greenhouse gases such as carbon dioxide (CO2). These gases 

released by human activity are stored in the oceans and atmosphere, warming them up and 

interfering with the water cycle, reducing snow and ice, rising sea levels, and climate change 

[1]. To address this issue, around 77 countries announced their commitment to a net reduction 

of zero carbon emissions by 2050. Due to this, they have to increase usage of renewable 

energies, such as wind, solar, biomass, hydroelectric, among others [2]. 

The annual solar energy incident on the earth’s surface is around 10000 times more than 

the current global energy consumption in a year [3]. Photovoltaic (PV) technology takes 

incident solar energy and transforms it directly into another more useful form, electrical energy. 

There are currently various PV technologies; the most common on the market are crystalline 

Silicon, thin-film, and multi-junction [1,4]. 95% of the production share is represented by c-Si 

module technology [5]. In recent years, energy production has increased rapidly, where silicon-

based modules make a large portion, Figure 1. The latter groups Multi-Si and Mono-Si 

technologies; Multi-Si modules are less efficient and cheaper compared to Mono-Si. Thin-film 

modules represent a small part of the annual energy production because they are less efficient, 

but the manufacturing process requires fewer resources [1,3]. 
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Figure 1. Annual world energy production by technology, taken from [5] 

Peru comes into question in implementing PV technology because it has a diverse mix 

of coastline, jungle, and mountains that stretch across the country. The Peruvian Andes 

represents the largest concentration of high altitude peaks in the Americas that could prove to 

be viable locations for solar installations, considering that other parts of the world are taking 

initiatives to produce energy in a renewable way, and some installations in high altitudes with 

good performance [2]. Installations in the country’s southern coastal area would result in high 

electrical energy potential; SOLARGIS [6] estimates a power potential at around 6 kWh/kW 

as a daily average, Figure 2. The latter refers to the energy (kWh) produced in one day for 

every thousand watts of nominal power installed (kW). This amount translates to about 2191 

kWh/kW per year. The entire Peruvian coastline depicts a similar potential. By comparison, 

Peru’s PV energy potential is more significant than most European countries; however, they 

have more PV systems installed [7]. The latter would exemplify Peru’s PV power potential in 

the future if similar cumulative installations were to settle. There are currently seven PV plants 

operating in Peru, located in the southern coastal area, adding 280.48 MW and four in 

construction adding 576.46 MW resulting in a total of 856.94 MW [8–10]. 
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Figure 2. PV Power potential of Peru, taken from [6] 

The increase in recent years of global PV installations has been primarily due to large-

scale systems [11], which requires the assurance of their long-term operation to investors. For 

this purpose, international standards define the system’s characteristic parameters when 

evaluating the PV generator status [12]. One of the main parameters is the nominal power of 

the system; this refers to the output power of the system at the maximum power point when 

subjected to the standard test conditions (STC) such as irradiance of 1000 W/m2, AM 1.5 

spectrum, and uniform module temperature of 25 °C, defined in IEC60904-3 [13]. These 

measurements require laboratory conditions applicable only on module level before their 

installation in the field. Reasonable doubts may arise on the total nominal power of the entire 

PV system after its installation, for instance, due to module mismatch and cable resistance 

losses. As time passes, the environment can cause degradation mechanisms such as initial 
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degradation due to UV light, elevated temperatures, hot spots, and shading, decreasing the PV 

system nominal power [14–18]. Incorrect choice of PV technology for a specific location may 

result in a fault design of a project due to ambient conditions, and thus performance is site-

specific [14,17,19]. In this sense, it is important to estimate a PV system’s main parameters in 

actual operating conditions [20], increasing the accuracy of the PV generator performance to 

ensure its correct operation within the manufacturer’s assurance range. 

Peru’s growing demand for energy motivated the government to implement sustainable 

solutions, especially in rural areas with no connection to the national electrical grid. PV 

installations are currently the most used technology for rural electrifications projects [21–25]. 

Nevertheless, literature regarding the experimental quantification of PV yield and performance 

in Peru, even in Lima, is scarce due to limited studies for this region [21,22,26]. Absence 

knowledge of PV technologies performance can lead to technical risks and negative economic 

impacts in implementing PV projects [27]. Sadly, there is no public information on the detailed 

operation of the large PV systems already installed in the country because private companies 

maintain them. Further studies of the power and energy performance of various technologies 

in Peru may enable subsequent studies on their technical- and socio-economic performance, 

thus, enhancing the consciousness of PV’s socio-economic potential among the population. 

Such consciousness must drive politicians towards new distributed generation regulations and 

incentives for PV generation, such as net metering and feed-in tariffs. Those protocols would 

benefit everyone and enable the integration of PV systems to the electrical grid or micro-grid 

on any scale (urban, commercial, industrial, and rural) [7]. Following the trend in Latin 

American countries, the Peru government approved in 2018 policies of autogeneration and 

distribution with net-metering and feed-in tariff [9,28].  

For PV power estimation purposes, one may often find a trade-off between simplicity 

and accuracy in those models. In some cases, simplicity may be preferable, for instance, if 
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accuracy requires parameters that are not commonly available or use complex algorithms [19]. 

Studies have been done comparing the accuracy of different models and found that despite the 

simplicity of some, high accuracy of the estimated power can be achieved [19,29]. Therefore, 

studies are required to determine the PV performance estimation to determine the quality of 

models for predicting the outdoor PV power production for different technologies on the 

installation site. 

1.2 Outline 

This thesis is organized into six sections. Following this introduction, Section 2 provides 

the theoretical framework and definitions of the used parameters, the PV performance factors, 

and the utilized models. Section 3 describes the experimental details of two case studies. The 

first presents the configuration of the PV generator of 109.4 kW located in Granada, Spain. 

Similarly, the second subsection introduces the PV research laboratory and the setup for 

studying three PV technologies in Lima, Peru [30]. Section 4 illustrates the procedure followed 

for estimating the nominal power of a PV generator. Section 5 exhibits the methodology for 

studying three different PV technologies in single modules using two commonly used simple 

parametric models for power estimation [19]. Section 6 discusses the PV generator’s estimated 

nominal power and analyses the three PV technologies’ modeled power. Finally, Section 0 

summarizes the conclusions and future work. 

  



5 

2 Theoretical Framework 

This chapter introduces the basic concepts to understand the operation and dependence 

of the PV cell and the environmental factors that influence its behavior. The first part describes 

the fundamental structure of the cell and processes involved in the transformation of solar 

energy into electricity. From there, the factors that influence the performance of PV technology 

are briefly reviewed, such as irradiance, temperature, soiling, cell characteristics, among others. 

The last part presents the models used for estimating the output power. 

2.1 Fundamentals of PV technology 

The most widely used material in PV and from which the first successful solar cell was 

made is crystalline Silicon (c-Si) [1]. For this reason, the present work will explain the concepts 

of PV using c-Si. These concepts will give a basic understanding of how solar cells made of 

other materials work. The photovoltaic effect is the principle on which solar cells are based. 

This effect is closely related to the photoelectric effect, where electrons are emitted from a 

material when photons are absorbed. Similarly, the PV effect generates a potential difference 

in the union of two different materials in response to electromagnetic radiation [3]. When solar 

energy is converted directly to electricity using semiconductor materials, it is called the PV 

effect [1]. 

Silicon semiconductors behave as a conductor or insulator depending on an electric or 

magnetic field, radiation, temperature, among others. The semiconductor is characterized by 

having a conduction and valence band. The region that lies between the valence and conduction 

band is known as the bandgap, where the bandgap energy (EG) is calculated as the energy 

difference between the minimum attainable conduction band energy (EC) and the maximum 

attainable valence band energy (EV), Figure 3. Photons with an energy equal to or greater than 

the EG can be absorbed. The photon’s absorption excites an electron (red circle) from the 
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valence band to the conduction band, leaving a vacuum in the valence band. This vacuum will 

behave like a particle with a positive elemental charge known as a hole (white circle) [1,3]. 

 

Figure 3. Basic energy band diagram of a semiconductor with electron-hole pair 
generation, red and white circle respectively [1] 

A PV cell can be represented by the union of two membranes, where each of these has 

semi-permeable membranes that facilitate the collection of electrical energy. In solar cells 

based on c-Si, a membrane is composed of Silicon to which phosphorous impurities are 

incorporated. It is called n-type material because each phosphor provides a free electron, 

usually called donors. The second Silicon membrane contains Boron impurities, which 

provides a hole for each impurity called p-type material due to the hole’s positive charge, 

calling them acceptors. The region between both membranes’ junctions is the p-n junction, 

where an electric field is created due to the negative and positive charges corresponding to each 

membrane [1,3]. 

The PV effect can be divided into three basic processes: the generation of charge carriers 

due to photons absorption at the p-n junction, separation of the photogenerated charge carriers, 

and the collection of those charge carriers at the contacts. Once the electron-hole pair is 

generated, it would usually recombine in a conductor since there is no bandgap. In the insulator 

case, this bandgap energy is considerable, so the generation of the electron-hole pair requires 

a high amount of energy to excite one electron from the valance band. In the case of 

semiconductors, the photogenerated charge carriers that reach the contact can be collected 

through an external circuit. In this way, the electrons are only required to flow through the top 
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membrane, usually n-type material, and the holes through the lower membrane, p-type 

material, through electrical contacts. Once the electron is removed, it can work and be 

converted to electrical energy. After the electrons pass through the external circuit, they 

recombine with the holes near the metal interface and the lower membrane, p-type material 

[1,3]. 

2.2 Factors influencing the performance 

PV technology’s performance strongly depends on environmental factors such as 

irradiance, temperature, soiling, inclination, tilt angle, among others. To estimate PV output 

power, meteorological knowledge of the installation site is necessary [29]. As the current-

voltage curve and technology or material of the PV cell, electrical characteristics must also be 

considered [18,31]. This section discusses these factors to understand the PV module’s 

behavior in outdoor conditions.   

2.2.1 Irradiance  

Solar radiation is unpredictable and dependent on random phenomena; because of this, 

PV designs are based on statistical analysis from years of observations. The random nature 

results in an inevitable uncertainty for models and designs [29]. The amount of incident solar 

power, integration of radiation per wavelength, per unit area is known as irradiance. The PV 

cell produces electrical energy directly related to the irradiance available. The latter fluctuates 

along the year due to changes in the weather and air mass, solar beam’s optical path length 

through the atmosphere, which affects the spectral distribution of incoming solar irradiance; 

due to this, the irradiance is site-dependent [3]. Additionally, the irradiance changes during the 

day because of variations in [18]: 

• Sun’s altitude,  

• The angle between the horizontal plane and the sun,  
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• Azimuth  

• The angle between the true north  

• Projection of the sun rays to the horizontal plane 

The incident solar irradiance on a surface consists of direct, diffused, and reflected 

components. The most significant fraction of the solar irradiation comes from the direct 

component; the diffused and the reflected components must be considered for the PV operation 

analysis [3]. It should be noted that the in-place irradiance, which depends on the inclination 

and tilt of the modules, absorbed by the modules is different from the global horizontal 

proportionated by various institutions [29]. The latter adds to the uncertainty of the models for 

modules, whether on a fixed or sun-tracking installation. 

 Additional considerations can be made from the irradiance effect in PV cells, such as 

optical losses due to crystal reflections for angles higher than 60° or spectral losses. The latter 

can be attributed to lower irradiation losses, which commonly occur at higher incident angles 

for fixed systems or a high amount of the diffuse component. The angular losses have been 

pointed as the main reason for high uncertainties for PV output power estimations [32]. For 

regions where the presence of clouds is predominant, the clouds’ effect has to be considered in 

the irradiance analysis since it would result in the prevalence of the diffuse irradiance 

component [20]. The reflected component (or albedo) comes into consideration when working 

with bifacial modules, which transform the incoming irradiance on both sides of the PV module 

[33]. The produced electrical current is different on each wavelength of the solar spectrum of 

the solar radiation, usually called spectral response. The variation of the solar spectrum varies 

along the day and year, resulting in losses or gains on the electrical output of PV cells. Each 

technology has a different spectral response, i.e., thin-film modules are characterized by high 

spectral sensitivity resulting in losses of 3% in power production [29]. The electrical output of 
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a PV cell increases with solar irradiance. A positive linear relationship between the ISC and the 

irradiance is expected due to the increase of absorbed light used to excite charge carriers that 

can be used to drive an electric circuit [34]. This relationship leads to an increased current and 

a slight increase in voltage, Figure 4 (a). 

 

Figure 4. (a) Effect of increased irradiance and (b) cell temperature on I-V curve short-circuit 
current (ISC) and open-circuit voltage (VOC) [35]. 

2.2.2 Cell Temperature 

The cell temperature (TC) comes from the energy balance between solar irradiation, 

conduction, radiation, solar convection, and electricity production [29]. PV modules operation 

is affected mainly by the temperature caused by overheating due to solar radiation and high 

ambient temperature [36]. Increasing cell temperature shrinks the semiconductor’s bandgap 

energy, allowing a more significant percentage of incident light to be absorbed because they 

have enough energy to excite charge carriers [1], Figure 4 (b). This increase of TC on the PV 

panels affects the power output appreciably even in similar irradiance values [37]. 

Consequently, TC is inversely proportional to the output power and efficiency. VOC 

approximately decreases linearly with the rise in cell temperature [18].  

The Nominal Operation Cell Temperature (NOCT) estimates the TC, defined as the 

expected temperature when installed on an open structure of 45 ° of inclination submitted to an 
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irradiance of 800 W/m2, 25 °C TC, and 1 m/s wind speed, being at open circuit configuration 

[36]. The latter is defined in IEC 61215 (2005) for c-Si and IEC 61648 (2008) for modules 

based on thin-film technology [38]. The NOCT model implies that the heat transmission 

process is predominantly influenced by ambient temperature (Ta) conduction through the 

encapsulation material and not by convection from the wind. Due to the latter, the NOCT model 

could involve significant uncertainty for a non-stationary or windy environment [29]. Wind 

speed correction is considered second-order and practically impossible to predict; moreover, 

the importance of determining temperature is minimized when extrapolating in terms of the PV 

module’s output electrical power [39]. The value of NOCT, constant value, is provided by the 

manufacturer, and module temperature is estimated using the following: 

𝑇𝑐 = 𝑇𝑎 +
𝑁𝑂𝐶𝑇 − 20 °𝐶

800 𝑊/𝑚2
∙ 𝐺 (1) 

Tc is cell temperature, Ta stands for ambient temperature, NOCT is the nominal 

operating cell temperature, and G represents the in-plane irradiance. 

There are temperature coefficients for electrical parameters such as short-circuit current 

(α), open-circuit voltage (β), power (γ), or form factor due to the thermal behavior of solar 

cells. These coefficients are commonly implemented on the PV power estimation and are inside 

a range for each technology [40]. Standard temperature coefficients for Si-based cells and 

modules are presented in Table 1.  

 

2.2.3 Soiling  

Table 1.  Typical Si solar cell temperature coefficients [40]. 

Type α [ppm/°C] -  β [ppm/°C] - γ [ppm/°C] 
Si cells & modules 400-980 2400-4500 2600-5500 
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Soiling can be differentiated by the uniform presence of dust or spotted dust such as bird 

droppings. Dust accumulated on the PV panel’s surface can cause long-term sedimentation 

causing cell shading, thus obstructing incident light on cells. Soiling can be especially 

problematic in infrequent rainfall seasons or arid regions [18]. The deposition of dust over time 

and the loss of power depends on the environmental conditions and on-air pollution; 

consequently, it depends on the installation site [41]. In studying the effect of dust deposition 

on PV panels, size distribution and materials must be considered [42]. Additionally, the initial 

moments of dust deposition speed are much faster in the early stages after cleaning the front 

surface [18]. Dust accumulation is significant for angles of incidence between 40° and 80° [29]. 

A study of sand’s influence from the Sahara on glass shows that sand plays an essential role in 

crystallization [43]. The latter actively changes the glass properties and accelerates its 

degradation, meaning a loss in power generated in a module under similar conditions. Adding 

the soiling effects could reduce annual production by 10%, but the initial state is at the 

observer’s discretion [29]. Cleaning might remove soiling, but it comes with its challenges. 

Mechanical dust removal includes brushing, blowing, vibrating, and ultrasonic driving [14]. 

Lamont and El Chaar have summarized the options for system cleaning, each with its 

advantages and disadvantages [44]. For example, brushing methods might permanently 

damage the panel’s surface, and blowing requires high maintenance and energy [14]. For the 

reasons presented above, dust deposition, sedimentation, cleaning, and its effect on glass 

degradation must be considered to evaluate a PV module’s electrical behavior. 

2.3 Photovoltaic power estimation methodologies  

The electrical characterization of PV cells is made through the I-V curve, which is the 

fundamental information mechanism to extract its parameters later used in methodologies. The 

I-V curve electrical parameters determination is commonly performed in the dark or under 

illumination [29]. The former methodology is easily performed under stable conditions, such 
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as Ta, assuming the parameters do not change with illumination and represent outdoor behavior. 

The latter, under illumination, extracts the parameters with lower accuracy due to unstable 

conditions but is helpful for models involving irradiance and temperature [29]. The I-V curve 

is commonly used to extract the MPP, followed by the inverter’s algorithm, and get the power 

at MPP (PMPP), the most common parameter to identify and classify PV modules. 

Manufacturers indicate other electrical parameters such as short-circuit current (ISC) and 

open-circuit voltage (VOC) at STC. The relevance of using such parameters is questioned due 

to lower annual performance, resulting in multiple methods to estimate the behavior closer to 

outdoor conditions [29]. It should be noted that most of the models found in the literature have 

been developed for c-Si, the most prominent in the market and well-known performance. 

The models that estimate the maximum power can be classified into translation and 

numeric [45]. Conversely, the translation models consider each point of the I-V curve and treat 

current and voltage separately. Experimental measurements are made under working 

conditions to translate to a new I-V curve in desired conditions. Numerical models apply 

semiconductor physics knowledge and estimate the power at the MPP without using the entire 

I-V curve. The latter is calculated using analytical methods or numerical iterations to solve a 

PV cell’s electrical model. The extent of different methodologies is explained in great detail in 

[19,29,46]. Analytical models estimate electrical parameters without iterations within an 

acceptable range of uncertainty. Numerical methods are criticized for ignoring the rest of the 

I-V curve and relying on the accuracy of the MPP trackers algorithms from the inverter. 

Additionally, estimated parameters may lack physical significance in some cases, settle in a 

manner by starting values for each parameter [29]. Two analytical models were selected for the 

current work, which in prior studies predicted the PV power and energy generation accurately 

despite their simplicity [29,47]. 

2.3.1 Osterwald model 
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The first is Osterwald’s model. It is considered one of the simplest and is explained in 

detail in [34]: 

𝑃𝑂𝑠𝑡 = 𝑃𝑀
∗

𝐺𝑖

𝐺𝑖
∗ [1 + 𝛾(𝑇𝑐 − 𝑇𝑐

∗)] (2) 

Where POst is the predicted maximum power by the model, PM
* is the nominal power or 

power delivered by the module at STC, Gi stands for in-plane irradiance, Gi
* is the irradiance 

at STC, and TC
* is the cell temperature at STC.  From the equation, it can be highlighted that 

the PM
* should be constant over time as it represents a characteristic value of the system. 

However, there are factors that the model does not consider, such as losses due to degradation, 

dust effect, shadows, among others. Also, discrepancies with the model have been observed 

when systems with one or two-axis solar trackers are studied [48] 

2.3.2 Constant Fill Factor model 

The second is the Constant Fill Factor (FFK) model. Which estimates the MPP assuming 

the fill factor (FF) remains constant through all operating conditions. Additionally, the ISC and 

VOC have a linear relation with the Gi and TC, respectively [29,47]: 

𝑃𝐹𝐹𝑘
= 𝐼𝑆𝐶 𝑉𝑂𝐶 𝐹𝐹∗ (3) 

𝐼𝑆𝐶 = 𝐼𝑆𝐶
∗

𝐺𝑖

𝐺𝑖
∗ (4) 

𝑉𝑂𝐶 = 𝑉𝑂𝐶
∗ [1 + 𝛽(𝑇𝑐 − 𝑇𝑐

∗)] (5) 

Where PFFk is the predicted maximum power. Like Osterwald’s model, the gains or losses 

that the PV module may experience are not considered, as described above. Additionally, each 

cell is assumed to be identical in its electrical behavior [19]. 
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3 Experimental details 

This chapter introduces both experiment setups, the PV generator Calerilla and the photovoltaic 

research laboratory. The first system comprises 576 polycrystalline PV panels located in 

Granada, Spain.  The second consists of multiple PV technologies, of which three are 

considered for the present work and are located in Lima, Peru. 

3.1 Photovoltaic generator Calerilla 

The PV generator is connected to the grid in southern Spain (Latitude: 37.287, Longitude: 

-3.055), Figure 5. This generator has an annual global horizontal irradiance of 1880 kWh/m2 

and an average ambient temperature of 13.3 °C, which is advantageous in producing electrical 

energy since it has high irradiation and low temperature [49]. The generator consists of 32 

strings parallel to 18 polycrystalline modules (pc-Si) in series-connected per string. 

Additionally, the manufacturer’s sheet nominal power is 109.44 kW, but with a nominal power 

of 100 kW from the inverter. Multiple works of members of the “Universidad de Jaén” are 

based on this generator [50–53] and were shared for further analysis from GERION 

INGENIERIA. 

 
Figure 5. PV generator located in Granada, Spain [50] 

The experimental campaign was carried out from the end of March to September 2018, 

avoiding the days where there were problems or maintenance of the generator, leaving 163 

days for further analysis. Two calibrated PV modules with identical characteristics and 
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technology as the working modules measured ambient conditions. One of the modules was set 

on open-circuit (OC) to measure module temperature, and the other one in a short-circuit (SC) 

to quantify incident in-plane irradiance, respectively. It is assumed that the module temperature 

and irradiance represent the working conditions of the rest of the module’s generator. The 

direct-current (DC) measurements were carried out at the inverter’s input, using a 

programmable industrial sensor from the manufacturer Circutor, model DH96-CPM, and shunt 

resistor 500A - 150 mV (class 0.5). Likewise, the alternating-current power (PAC) was 

monitored with a high-end wattmeter, Yokogawa brand, model WT1600S. A commercial 

Graphtec data acquisition system (midi LOGGER GL220 model) was used in the data 

collection and environmental parameters, saving the data every 30 seconds for the study period. 

3.1.1 Clear day selection 

Following the procedure suggested by Martinez-Moreno [54], a filtering procedure was 

developed to select only sunny days and a smooth curve of power vs. time during the entire 

day. The latter is to avoid shading in either the generator or irradiance module and sunny for 

measurements in high irradiances (more than 800 W/m2) as required by the Osterwald model. 

First, days with problems in the recording process were filtered out, such as maintenance or 

disconnection. Secondly, employing a sinusoidal regression of the recorded PDC was applied 

using Python, equation (6). The PDC was used instead of Gi to avoid shade on the module that 

measures it. 

𝐹(𝑥) = 𝐴 𝑠𝑖𝑛(𝑏. 𝑥),   0 < 𝑥 < 𝑚  (6) 

Where m stands for the number of the day datasets, F(X) represents the normalized PDC. 

Ideally, the amplitude (A) is one since the PDC is normalized, and b is 2𝜋/2𝑚, which represents 

the period of the sinusoidal function. With the estimated a and b, the difference between the 
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normalized and adjusted PDC was measured using RMSE. Experimentally a limit of 5% was 

established to select clear-sky days. 

 
Figure 6. Sinusoidal adjustment function for identifying clear days 

Figure 7 presents the different days encounter in the selection process. Smooth 

continuous datasets characterize sunny days (black dots). Cloudy days with peaks, higher 

values than the rest, along the day (red dots). Incomplete days where a small number of datasets 

were recorded with absent measurements along the day (blue dots). It was determined that there 

were 27 sunny, 122 cloudy, and 4 days with incomplete data. 

 
Figure 7.  (a) Power and (b) and Irradiance examples for each day selections 

3.2 Photovoltaic Research Laboratory 

The Photovoltaic Research Laboratory is located in the Physics Section of the “Pontificia 

Universidad Católica del Perú” (PUCP) (12°4’S, 77°4’W) in Lima. Figure 8 shows the modules 
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under study in a structure with a tilt angle of 20° facing north. The I-V tracer is measured with 

two Keysight 34465A multimeters based on a capacitive load. The maximum power is 

extracted from each I-V curve. A tilted pyranometer EKO MS-80 measured the irradiance at 

the plane-of-array. Two class B PT100 pasted at the backside of each module were used to 

measure the module temperature. The whole laboratory is described in greater detail in [30,55]; 

it was developed based on the system described in [56]. The irradiance and module temperature 

were instantaneously measured at the IV curve trace’s beginning and end. The electrical and 

meteorological datasets were recorded every 5 minutes for each PV module. 

 
Figure 8. Photovoltaic Research Laboratory located in Lima, Peru 

The experimental campaign for this thesis was based on three silicon-based PV module 

technologies: p-type polycrystalline Aluminum-Black Surface Field (Al-BSF), n-type 

monocrystalline Heterojunction with Intrinsic Thin-layer (HIT), and 

amorphous/microcrystalline (a-Si/µc-Si) thin-film Tandem.  

3.2.1 Calibration procedure 

The outdoor calibration procedure was conducted to contrast the experimental results and 

estimate the manufacturer’s laboratory’s electrical parameters, corresponding to the local 

conditions. Due to the overestimation of the power from both models, a correction factor (k) 
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was implemented. The latter was used to estimate each panel’s calibrated characteristic 

electrical parameters after their first three months of installation (March to May 2019) in the 

Photovoltaic Research Laboratory [55]. Table 2 shows the characteristic electrical parameters 

at STC as given by the manufacturer. It also shows the respective calibrated values.  

Data sets of the I-V curve, irradiance, and module temperature, were collected during 

one year of monitoring, from June 2019 to May 2020. Each module was cleaned weekly to 

minimize soiling effects. 

3.2.2 Filtering process 

An effort was made to maximize our monitoring data quality to detect and remove 

erroneous or inconsistent measurements from the analysis. The ambient measurements were 

filtered first to ensure a proper relation to the module’s electrical response. 

3.2.2.1 Irradiance filtering 

To ensure a stable solar irradiance during the I-V tracing process. Data sets with a 

difference in incident in-plane irradiance δG, in the same plane as the modules, over 4% were 

filtered out in this manner [57]. This limit was experimentally selected from the thermopile 

Table 2.  Characteristic electrical parameters in STC of the PV modules and their calibrated 
values, taken from [55]. 

Technology Electrical parameter Datasheet Calibrated 

Al-BSF 

𝑃𝑀
∗  (𝑊) 270 269.2 

𝐼𝑆𝐶
∗  (𝐴) 9.32 9.45 

𝑉𝑂𝐶
∗  (𝑉) 37.9 37.2 
𝐹𝐹∗ 0.76 0.77 

HIT 

𝑃𝑀
∗  (𝑊) 330 324.6 

𝐼𝑆𝐶
∗  (𝐴) 6.07 6.05 

𝑉𝑂𝐶
∗  (𝑉) 69.7 70.4 
𝐹𝐹∗ 0.78 0.76 

a-Si/µc-Si Tandem 

𝑃𝑀
∗  (𝑊) 128 127.9 

𝐼𝑆𝐶
∗  (𝐴) 3.45 3.32 

𝑉𝑂𝐶
∗  (𝑉) 59.8 59.1 
𝐹𝐹∗ 0.62 0.65 
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pyranometer responsitivity expanded uncertainty of around 5% with a 95% confidence level 

[58]. 

𝛿𝐺 =
2 × |𝐺𝑠𝑡𝑎𝑟𝑡 − 𝐺𝑒𝑛𝑑|

𝐺𝑠𝑡𝑎𝑟𝑡 + 𝐺𝑒𝑛𝑑
 (7) 

Gstart and Gend stand for irradiance measurements at the start and end of the I-V tracing, 

respectively. It was assumed that Gi remained constant, withing the pyranometer expanded 

uncertainty, during the I-V curve measurement when δG was small.  

3.2.2.2 Module temperature filtering 

The measured module temperature was compared to the estimated module temperature 

using the Nominal Operation Cell Temperature (NOCT), equation (1). Differences (δT) beyond 

that value were filtered out. A limit of 50% was set experimentally, differences beyond the 

threshold were filtered out.  

𝛿𝑇 =
|𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑇𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑|

𝑇𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑
× 100% < 50% (8) 

Tmeasured stands for the measured module temperature. The panel has two points where 

the temperature is measured, so the mean was only the representative value when both values 

satisfy the condition set above. If one of the points were filtered out, the other was taken as the 

representative value. When both measurements did not comply with the threshold, the entire 

dataset was dropped since the models needed cell temperature to estimate the output power. 

3.2.2.3 Current-Voltage curve filtering 

After validating the irradiance and temperature measurements, the I-V curves passed a 

filtering algorithm to avoid erroneous measurements that would lead to erroneous electrical 

parameter estimation, for instance, due to shading on the panel. For this purpose, steps were 

established to filter systematic failures observed during the first year. 
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The first step is to discard data that correspond to the pre-charge of the capacitor. A 

negative voltage is initially applied to ensure the voltage passes through zero to extract the ISC 

[30]. In Figure 9 (a), there is a drop from the initial positive voltage (red dots) followed by a 

constant increase (continuous black dots) from negative voltage passing by 0 V until it reaches 

its maximum value, VOC. In this sense, the filter identifies the minimum voltage’s instant and 

eliminates the datasets previous to that moment (red dots). Additionally, negative voltage and 

current values were eliminated (blue dots). The measurements filtered in each step are also 

visualized in Figure 9 (b) of current measurements, where measurements corresponding to the 

pre-charge are filtered out. Complementary, Figure 9 (c) shows the filtered data in the I-V 

curve. Here, the filtered data points, red dots, from the pre-charge accumulate near the VOC are 

hidden, but some appear near this point due to the jump from the VOC to negative voltages, 

Figure 9 (c). 

 
Figure 9. Identification of the (a) pre-charge and (b) negative values of the (c) I-V 

measurement 

The second step is to identify systematic failures and filter the erroneous portion of the 

I-V curve. In Figure 10, erroneous measurements represented as red dots are present after the 

I-V curve trace is concluded when the VOC is reached. In the last datasets, the current varies 

while the voltage is maintained constant. Similarly, in Figure 11, the voltage varies while the 

current stays at the minimum value, near 0 (red dots). The minimum current and maximum 

voltage instants were searched to filter the extended portion of the I-V measurement. The first 



21 

event is selected to filter out the rest of the measurements; e.g., if the minimum current is 

reached before the maximum voltage, then the measurements past that minimum current are 

filtered out. Additionally, this filter eliminates redundant measurements after completing the I-

V tracing. 

 
Figure 10. Variable current identification on synchronization discharge time failure. 

Datasets filtered by after achieved maximum voltage, (a) Voltage vs. Dataset, (b) 
Current versus Dataset, and (c) Voltage versus Current 

 
Figure 11. Variable voltage identification on synchronization discharge time failure. 

Datasets filtered by after achieved minimum current, (a) Voltage vs. Dataset, (b) Current 
versus Dataset, and (c) Current versus Voltage  

A significant unknown step in the voltage and current is present in the middle of the 

measurement, where the maximum power point is located (Figure 12). A filter was 

implemented to identify such cases: It calculates the difference for each step of the I-V curve 

measurement and applies an experimental maximum step limit of 1.5 V and 0.1 A for the 

voltage and current, respectively. When one of the limits is surpassed, the I-V curve is not 

considered for the analysis. 
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Figure 12. Low step homogeneity along with the I-V curve measurement. Difference of 

voltage and current between each step (a) Voltage versus Dataset, (b) Current versus 
Current, and (c) Current versus Voltage. 

Additionally, to identify other systematic failures, the expected ISC and VOC values were 

calculated using Equations (5) and (9), respectively. A filter discarded I-V curves with relative 

differences between the measured and the computed values exceeding 30% and 15% for the 

ISC and VOC, respectively. 

𝐼𝑆𝐶 = 𝐼𝑆𝐶
∗

𝐺𝑖

𝐺𝑖
∗ (1 + 𝛼(𝑇𝑐 − 𝑇𝑐

∗)) 
(9) 

Another filtering process enables the detection of I-V curves affected by the shading of 

the panels. In Figure 13, a linear regression (blue line) was performed with the data sets with 

output power less than 80% of the maximum power (red dots). The normalized root mean 

square error (NRMSEIV), defined in equation (10), was calculated, and a limit of 0.006 was 

established for the Al-BSF technology. In Table 3, the limits of 𝑁𝑅𝑀𝑆𝐸𝐼𝑉 for detecting the 

shading of the modules are presented. This last value was determined experimentally in 

September due to a high number of I-V curves where the shading effect was observed. Its 

behavior was corroborated in the following months.  

𝑁𝑅𝑀𝑆𝐸𝐼𝑉 = √
1

𝑁
∑ (

𝐼𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑(𝑉)𝑖 − 𝐼𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑉)𝑖

𝐼𝑆𝐶,𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
)

2𝑁

𝑖=1

 (10) 
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Figure 13. (a) The range for shade identification, (b) linear regression, NRMSEIV, and 

(c) non-shaded curve with similar ambient conditions 

Following the filtering steps described above, 121 000 measurements were processed, 

resulting in a drop of 10 %, with about 109 000 data sets remaining. The latter were considered 

high quality and used for further analysis in the current work. The before and after measurement 

amounts of the filtering procedure for each technology are presented in Figure 14. The filtering 

procedure appears to drop more datasets for the Tandem technology than the other 

technologies. The latter is possible due to unsuitable modeling of the expected ISC described 

above, limited by the current of the lesser of the two sub-cell photogenerated currents [59], 

which may result in differences more significant than the established 15 %, mainly at 

irradiances lower than 80 W/m2. 

 

 Table 3. Values of NRMSEIV set to detect the shading of the 
module for the different technologies 

Technology NRMSEIV  
Al-BSF 0.006 

HIT 0.008 
a-Si/µc-Si Tandem 0.01 
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Figure 14. Amount of recorded data sets (a) before and (b) after the filtering procedure for 

each technology (from June 2019 to May 2020). 

Figure 15 depicts the classification of local ambient conditions by each season. Spring: 

September – December, Summer: December - March, Fall: March - June, Winter: June - 

September. The irradiance and module temperature steps were defined as 50 W/m2 and 5 °C, 

respectively. Each box represents the number of measurements normalized by one year, shown 

in percentage by the color scale. The irradiance distribution differs for each season, where high 

irradiances (from 800 to 1000 W/m2) appear noticeably in the summer season. Nonetheless, a 

considerable portion is taken at low irradiances (from 0 to 300 W/m2) throughout the year, 

especially during winter. In Lima, cloud presence is predominant during winter, spring, and 

autumn [60]. Note that STC represented by the black dot was never met; this emphasizes the 

need to investigate the performance of PV technologies under Lima’s climatic conditions. 

  

 
Figure 15. Percentage measurements by irradiance and module temperature for (a) Spring, 

(b) Summer, (c) Fall, and (d) Winter. 
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4 Procedure for calculating the nominal power of a 

photovoltaic generator 

The present chapter presents the procedure to estimate the nominal power for the 

photovoltaic generator Calerilla in Spain. The methodology suggested by Martínez-Moreno 

was followed [54], based on Osterwald’s equation (2).  

4.1 Martinez-Moreno procedure 

The procedure suggested for quality assurance is implemented to select clear days and 

previous filtering of anomalies, such as inverter saturation and shading. It is based on 

Osterwald’s model, equation (2). The latter is used to estimate the nominal power 

implementing the correction of the PDC values to 25 °C to minimize the module temperature 

power loss: 

𝑃𝑇→25
𝐷𝐶 =

𝑃𝐷𝐶

1 +  𝛾 ( 𝑇𝑀 −  25)
 (11) 

Data of high irradiance was used (between 800 and 1000 W/m2) such that the non-linear 

behavior of corrected temperature power (𝑃𝑇→25
𝐷𝐶 ) at low irradiances is avoided. As Martínez-

Moreno points out in his work, the procedure assumes that the inverter perfectly follows the 

MPP and that the error of the temperature distribution along the generator has a Gaussian or 

normal distribution. Additionally, the reference modules used to measure module temperature 

and in-plane irradiance were located in a representative place (between the edge and the center 

at a medium height) [54]. However, when carrying out this procedure, a difference was 

observed between the 𝑃𝑇→25
𝐷𝐶  before and after the maximum corrected power, see Figure 16 (b). 

This effect is usually called hysteresis in the literature [48]. In this circumstance, it was 

considered relevant to clarify the data filtering method for correct adjustment and estimation 

of the system’s nominal power. 
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4.2 Hysteresis 

The hysteresis effects refer to the phenomenon where output values depend on the inputs’ 

directional sequence application. The latter is mentioned in IEC 60751 [61] applied to the 

resistance thermometer PT100 and defined in IEC 61298-1 [62]. 

In the process of the PM
* estimation, the relation of 𝑃𝑇→25

𝐷𝐶  with G is used, which 

represents the complementary portion of the linearization of Osterwald’s equation [54]: 

𝑃𝑂𝑠𝑡 = 𝑃𝑀
∗

𝐺𝑖

𝐺𝑖
∗ [1 + 𝛾(𝑇𝑐 − 𝑇𝑐

∗)] →  
𝑃𝑂𝑠𝑡

1 + 𝛾(𝑇𝑐 − 𝑇𝑐
∗)

= 𝑃𝑀
∗

𝐺𝑖

𝐺𝑖
∗ →  𝑃𝑇→25

𝐷𝐶 = 𝑃𝑀
∗

𝐺

𝐺∗
 (12) 

For comparison, the PM
* estimation was evaluated for three groups on the same day. The 

first, called linear, corresponds to the morning measurements till the maximum PT→25
DC . The 

measurements after the latter point correspond to the second group, which is called non-linear. 

The full-day group stands for the entire day’s measurements, as a regular study would be 

conducted if the hysteresis effect was not present. Figure 16 shows the hysteresis effect for a 

particular day, June 21st of 2018, with the groups presented above. The sequence of the 

measurements is signposted with arrows and the procedure results for the particular day. Notice 

that the difference in power is better appreciated in low irradiances, lower than 800 W/m2.   

 
Figure 16. Corrected power (PT→25

DC ) versus irradiance (G) as of June 21st, 2018, (a) data 
group selection and (b) linear regression of each group for the PM

* estimation. 
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5 Monitoring versus power’s estimation of three 

different PV technologies 

In this section, the first year of operation of the Photovoltaic Research Laboratory of the 

Physics Section at the PUCP is presented alongside the analysis of three different PV 

technologies’ nominal parameters using two analytical models for power estimation. 

5.1 Effective nominal parameters 

For each model, the estimated power was calculated using the calibrated parameters in  

Table 2 with the measured in-plane irradiance (Gi) and cell temperature (TC) values. The 

measured power was obtained at each I-V curve's maximum power point (Pmpp). Exemplarily, 

Figure 17 displays the linear relation between the estimated power and the HIT module 

measured PMPP using both models, Osterwald’s (POsterwald) and Constant Fill Factor (PFFk). Here, 

the data for the entire month of September 2019 is analyzed. Linear regression was used to 

correlate the estimated and measured power values. For both cases, the linear regression slope 

is slightly larger than 1: a = 1.052 and 1.051 for the Osterwald and the FFk model, respectively, 

indicating that both models overestimate the power by about 5% for the HIT module for this 

particular month.   

 
Figure 17. Estimated vs. Measured Power by (a) Osterwald and (b) constant fill factor 

(FFk) model for the HIT module in September 2019. 
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A correction factor (k) was introduced to correct the estimated power. For each lapse of 

time (month and year), a k is established, this parameter represents estimated power 

adjustment: 

𝑃𝑇𝑖 = 𝑃𝑂𝑖 ∙ 𝑘−1, 𝑤𝑖𝑡ℎ 𝑘 = 𝑎−1. (13) 

Here POi represents the maximum instantaneous observed power, and PTi is the estimated 

power using Osterwald’s or FFK model. Values of k higher than one represent underestimation, 

while values lower than one stand for an overestimation, and equal to one indicates a correct 

estimation of the measured power: 

𝑘 {
> 1,               𝑢𝑛𝑑𝑒𝑟𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛
= 1,         𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛
< 1,                  𝑜𝑣𝑒𝑟𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛

 (14) 

Furthermore, given each model’s correction factor, a correction of the nominal values can be 

suggested. In this manner, we propose to define the effective nominal parameters as: 

𝑃𝑀,𝑒𝑓𝑓
∗ = 𝑃𝑀

∗ ∙ 𝑘𝑂𝑠𝑡𝑒𝑟𝑤𝑎𝑙𝑑 (15) 

𝐹𝐹𝑒𝑓𝑓
∗ = 𝐹𝐹∗ ∙ 𝑘𝐹𝐹𝑘

 (16) 

Where kOsterwald and kFFk represent the correction factor for the Osterwald and the FFK 

model, respectively, the effective nominal parameters represent the value of the characteristic 

electrical parameters installed outdoors in a specific place. For instance, in Figure 17, the 

results for September 2019 are 0.95 and 0.951 for kOserwald and kFFk, respectively. PM
*
eff stands 

for the effective nominal power, and FF*
eff for the effective nominal fill factor. By replacing 

PM
* with PM

*
eff in equation (2) and FF* with FF*

eff in equation (3), we can obtain the “corrected” 

modeled power. 

5.2 Statistics definitions 

Two statistical metrics were applied to evaluate the quality of the methodology above. 

The Normalized Root Mean Square Error (NRMSE) provides information on the predicted 
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power dispersion concerning the measured one. Whereas the Normalized Mean Bias Error 

(NMBE) pictures the deviation or trend of the modeled values: 

𝑁𝑅𝑀𝑆𝐸 = 𝑅𝑀𝑆𝐸 ∙ [ 𝑃𝑂
̅̅ ̅ ]𝑦𝑒𝑎𝑟

−1 ∙ 100% = [𝑛−1 ∑|𝑃𝑇𝑖 − 𝑃𝑂𝑖|2

𝑛

𝑖=1

]

1
2⁄

[ 𝑃𝑂
̅̅ ̅ ]𝑦𝑒𝑎𝑟

−1 ∙ 100% (17) 

𝑁𝑀𝐵𝐸 = 𝑀𝐵𝐸 ∙ [ 𝑃𝑂
̅̅ ̅ ]𝑦𝑒𝑎𝑟

−1 ∙ 100% = [𝑛−1 ∑(𝑃𝑇𝑖 − 𝑃𝑂𝑖)

𝑛

𝑖=1

] [ 𝑃𝑂
̅̅ ̅ ]𝑦𝑒𝑎𝑟

−1 ∙ 100% (18) 

PT and PO represent the modeled and measured power, respectively; n stands for the 

number of values considered during the period (month or year). [ 𝑃𝑂
̅̅ ̅ ]𝑦𝑒𝑎𝑟 is the yearly average 

measured maximum power. These definitions of NRMSE and NMBE [𝑃𝑂
̅̅ ̅ ]𝑦𝑒𝑎𝑟 differ from the 

definition used in other works [17,19,29]. In this case, the normalization was made with each 

technology’s average power over the year ([ 𝑃𝑂
̅̅ ̅ ]𝑦𝑒𝑎𝑟). The latter enables us to compare the 

NRMSE and NMBE values between months for the three technologies and the methodology 

[63]. Furthermore, it should be noted that the purpose of applying the correction factor k is to 

minimize the NMBE. 
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6 Results 

6.1 PV generator’s nominal power 

The information gathered over seven months passed several filters to estimate the PV 

generator’s nominal power. Martinez-Moreno suggests selecting sunny days to avoid low 

electrical output due to the shading of modules [54]. Osterwald’s equation linearizes the 

relationship between irradiance and power by normalizing the cell’s temperature (Equation 

12). However, the hysteresis effect was observed. The daily nominal power estimation was 

carried out using three different data groups to analyze whether this behavior was present 

throughout the study period and clarify the procedure of Martinez-Moreno. 

Figure 18 shows the daily PM
* estimation using each group: linear, non-linear, and full-

day. The linear’s daily estimated nominal power is lower than the non-linear part. The latter 

exhibits the degree of the hysteresis effect on the experimental campaign, i.e., higher estimation 

on the first three months while decreasing in the following months. While the PM
* values using 

the linear group are more stable during the experimental campaign and avoid an unknown 

factor. The full-day is not recommended because it shifts the estimation and misleads the 

evaluation of the generator’s state. Due to the above, PM
* estimation should consider the linear 

group to avoid abnormal behavior. The consideration of the non-linear part would result in an 

incorrect estimation since the irradiance and power relationship would not follow the expected 

response. Therefore, the hysteresis filtering process for high irradiances is relevant for the 

correct 𝑃𝑀
∗  estimation if the effect of hysteresis is present on a PV generator under study. 
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Figure 18. Daily Nominal Power estimation for each group: linear, non-linear, and full day. 

6.1.1 Nominal Power Estimation 

An empirical methodology allows the identification of anomalies in the operation of PV 

systems. The full-day group nominal power’s average result is 105.71 kW,  Figure 18. If we 

consider only the linear part of the data, we have a value of 104.24 kW and 107.43 kW for the 

non-linear part, respectively. Furthermore, the daily values of the non-linear part have a higher 

dispersion that also indicates a variance of the hysteresis, leading to higher values from March 

to May and lower ones from June to September. In contrast, the daily values considering only 

the linear part have lower dispersion and remain relatively constant throughout the six months. 

Table 4 collects the average estimated nominal power for each group and their errors 

concerning the one found in the datasheet of 109.44 kW. Within the estimated PM
*, one 

observes that the non-linear part has the highest average or lowest error concerning the PM
* 

from the manufacturer sheet. The error alone is not enough to have the whole picture since the 

difference could be related to experimental losses and deterioration. The linear part presents a 

lower standard deviation, indicating that this group is more in line with the Martinez procedure 

and, therefore, with the extensively studied Osterwald’s model, which describes the expected 

behavior of the solar cell. The linear group’s nominal power was considered the ‘true’ nominal 
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power since Osterwald’s equation predicts a linear behavior. The hysteresis effect was later 

discussed. The most likely origin was spatial inhomogeneities of module temperature and 

plane-of-array irradiance, the latter from PV strings misalignments [64]. 

 

6.2 Analysis of the expected power of three different PV 

technologies 

6.2.1 Correction Factor 

Following the mentioned procedure in Section 5.1, the measured and modeled values 

were compared each month. The corresponding correction factor (k) was calculated to 

minimize the expected and measured power difference. In Figure 19, the monthly and the 

yearly k for the three PV technologies. For the monthly values, only data from the respective 

month was evaluated, whereas, for the annual values, the recordings of 12 months were 

analyzed. 

 
Figure 19. Correction Constant on a monthly and annual basis for both models and three 

technologies: (a) Al-BSF, (b) HIT, and (c) Tandem, from June 2019 to May 2020. 

Table 4. Average, standard deviation, and difference of daily estimated nominal power. 

Data set labels 𝑃𝑀
∗  (kW) Standard deviation Difference (%) 

Linear 104,24 0,05 4,71 
Non-Linear 107,43 0,11 1,84 
Complete 105,71 0,11 3,41 
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First, it should be noted that the power predicted by both models is overestimated, i.e., k 

< 1 (slope a > 1), for every technology and any month. Second, we can observe similar behavior 

for both models and three technologies, i.e., when the Osterwald model’s results increase or 

decrease from one month to another, so does the one from the FFK model (Figure 19). Such 

similarity is expected since both models share similar linear dependencies on the irradiance; 

see equations (2), (3), (4), and (5). However, the k-values of both models can differ depending 

on the month/season and the technology, i.e., the higher difference in the last months. For 

instance, for the Al-BSF technology, Osterwald’s model results in a k higher than the FFK 

model for any month, which means that its predicted power is closer to the experimental power 

produced by the module. For both models, during spring and summer, the k reaches a minimum 

value and a maximum value during winter. Interestingly, for the HIT technology, k and power 

estimation by both models are very similar throughout the year, with only slight differences 

during summer and fall. The FFK model results in higher k values than Osterwald’s in the 

Tandem technology, especially at the end of summer. Furthermore, for the Tandem technology, 

the seasonal behavior of k is different than for the other technologies. Here, the k-value reaches 

its highest value during summer/fall.  

The distinct seasonal behavior of the different technologies indicates that irradiance and 

model temperature may not be sufficient to predict power correctly. Other parameters, which 

are not considered in the models, may also affect the estimated power depending on the season. 

These other parameters could be ambient parameters, such as the diffuse irradiance or the 

spectral distribution. The crystalline and thin-film silicon technologies may respond differently 

to these additional parameters due to the distinct low irradiance behavior, angular response, 

and spectral response [20]. Further measurements of another year are needed to corroborate if 

the observed seasonal trends of their k values are periodic. 
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Some trends of the monthly k values can also be observed in Figure 19. For Al-BSF 

technology, the annual k obtained from Osterwald’s model is higher than that obtained from 

the FFK model. While HIT technology presents k values are almost the same for both models. 

The Tandem technology works better with the FFK model; its annual k values are the closest 

to 1 among the three technologies, meaning that the maximum power prediction of both models 

works most accurately for the Tandem PV technology. 

6.2.2 Effective parameters 

Figure 20 shows the values of the effective parameters, PM
*
eff, and FF*

eff, which are 

calculated using k as shown in equations (15) and (16). Hence, they demonstrate the same 

behavior and trends observed for 𝑘 in Figure 19. It should be noted that the superior limits of 

the y-axis in Figure 20 (a), (b), and (c) are the calibrated values from Table 2 as a reference to 

visualize the difference of the effective values to the calibrated ones nearest to STC. It can be 

drawn a similar conclusion for the effective parameters for k: each module’s behavior could be 

attributed to the yearly average impact of other ambient parameters not considered in the 

models. 

 
Figure 20. Effective parameters on a monthly and annual basis for both models and three 

technologies: (a) Al-BSF, (b) HIT, and (c) Tandem. 

With the resulting effective parameters in Figure 20, we can recalculate the modeled 

power with Equations (2) and (3) each month and the entire year. After implementing the 

correction factor, the linear tendency was corroborated to analyze each method’s quality. The 
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latter is observed in Figure 21, where the relation between the measured and the modeled power 

using the effective parameters for 1-year is equal to 1. 

 
Figure 21. Correlation of the corrected modeled and measured power using 

(a) Osterwald’s and (b) FFk model. 1-year of data for the HIT solar cell 
module. 

6.2.3 Error analysis 

Figure 22 depicts each PV technology’s resulting monthly and annual NRMSE values 

after implementing the correction factor. It is worth mentioning that a minimum of 2000 

measurements was analyzed for each month for each technology. Hence, the NRMSE value is 

based on sufficient data sets to have a reliable statistic to re-construct the error distribution, as 

suggested in [65]. In Figure 22, both models result in very similar NRMSEs and dispersion for 

any month and technology. However, for all three technologies, one can observe that the 

monthly NRMSE value has a maximum in August and decreases from spring to fall. It will be 

interesting to see if this behavior is periodic and repeats itself in the following years. The 

Tandem technology shows the highest annual NRMSE value and the HIT the lowest. Further 

studies will aim at a better understanding of this behavior. 



36 

 
Figure 22. Normalized Root Mean Square Error (NRMSE) for each technology and model 

on a monthly and annual basis: (a) Al-BSF, (b) HIT, and (c) Tandem. 

Figure 23 depicts the monthly and annual values of the NMBE for the three PV 

technologies. All NMBE values are relatively small, below 1%, which is expected since the 

purpose of implementing the correction factor was to minimize the NMBE. Nevertheless, a 

positive NMBE value indicates that the model is still overestimating; a negative value means 

it underestimates the power. In the Al-BSF case, for Osterwald’s model, the annual NMBE is 

closest to 0, implying that the correction factor’s implementation seems to be most effective 

for this technology in maximizing the prediction accuracy. The FFK model tends to 

underestimate the power. Both models present similar annual, positive NMBE values for the 

HIT technology. These remain primarily stable during the entire year, slightly overestimating 

the modeled power with values ranging from 0 to 0.8 %. For the Tandem, both models tend to 

overestimate the measured power with a tendency to higher values over the months. 

Osterwald’s method results in lower NMBE values than the FFK method.  
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Figure 23. Normalized Mean Bias Error (NMBE) for each technology and model on a 
monthly and annual basis: (a) Al-BSF, (b) HIT, and (c) Tandem. 

Table 5 summarizes the annual values of the calculated parameters k, 𝑃𝑀,𝑒𝑓𝑓
∗ , 𝐹𝐹𝑒𝑓𝑓

∗ , 

NRMSE, and NMBE, each for both models and three technologies. For the Al-BSF technology, 

the correction factor closer to 1 implies that Osterwald’s model better predicts the power than 

the constant fill factor model when using the calibrated parameters, i.e., without the correction 

factor k. Furthermore, for the Osterwald model, lower absolute values of NRMSE and NMBE 

are closer to zero, implying that this is also the case after applying the correction factor and 

using the effective parameters for the power prediction. Whereas for the HIT technology, there 

is no apparent difference in using either model with or without k since their k values and 

NRMSE and NMBE are similar. Finally, the FFK method may be recommended for the Tandem 

technology if calibrated values are used for power prediction due to its slightly lower k value. 

However, Osterwald’s model behaves somewhat better if the correction factor is applied, as 

seen by the lower NRMSE and NMBE values. 

  

Table 5. Annual values of k, effective parameters, NRMSE, and NMBE; for Osterwald and 
FFk model for each technology (Al-BSF, HIT, and Tandem). 

Technology Method k 𝑃𝑀,𝑒𝑓𝑓
∗  (𝑊) 𝐹𝐹𝑒𝑓𝑓

∗  𝑁𝑅𝑀𝑆𝐸 (%) 𝑁𝑀𝐵𝐸 (%) 

Al-BSF Osterwald 0.93 249.20 - 3.50 0.11 
𝐹𝐹𝑘 0.90 - 0.69 3.63 -0.39 

HIT Osterwald 0.94 306.52 - 3.10 0.40 
𝐹𝐹𝑘 0.94 - 0.72 3.08 0.28 

Tandem Osterwald 0.96 122.47 - 4.13 0.64 
𝐹𝐹𝑘 0.97 - 0.63 4.46 0.91 
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7 Conclusions and outlook 

This work studied two different PV generators, one on PV plant level and another on PV 

module level. Therefore, the conclusion section is divided for each case. First, for half a year 

of monitoring a PV generator located in Granada, Spain. Alongside the procedure for 

estimating the nominal power where the hysteresis effect was present. A second comparison of 

the modeled and the measured power using two models for the first year of operation of three 

different PV module technologies installed in Lima, Peru. 

7.1 Nominal power estimation of a PV generator 

The procedure suggested by Martínez-Moreno [54] was applied to estimate the nominal 

power (PM
*) of a 109.44 kW PV generator under working conditions for six months, from 

March to September 2018. A filtering procedure was implemented to filter the data from clear-

sky days within the experimental period to achieve this. Nonetheless, these days demonstrated 

a difference in power before noon and in the afternoon, despite similar irradiance and 

temperature conditions, resulting in a hysteresis formation of the temperature-corrected power 

versus the irradiance. The hysteresis consisted of a linear part before noon and a non-linear part 

in the afternoon. The non-linear part datasets are assumed not to represent a PV generator’s 

normal behavior, considering only the linear part for the PM
* estimation results in a PM

* of 

104,24 kW with σ of 0.05. This additional step to the Martinez-Moreno methodology seemed 

appropriate to clarify the process to determine the PM
* of a PV generator. 

A possible cause for the hysteresis effect within the “Calerilla” PV generator could be 

either spatial or temporal inhomogeneities in the temperature and irradiance. More distributed 

equipment to measure module temperature and irradiance need to be installed to determine 

representative values to sections of the generator. The most likely source was spatial 

inhomogeneities of module temperature and plane-of-array irradiance due to misalignment of 
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the inclinations of strings. Such misalignments result in different angles of incidence between 

the irradiance measuring module and some PV strings, signaling the challenge of monitoring 

large PV generators. Similarly, the cell temperature measuring module cannot register possible 

inhomogeneities between the entire PV generator strings. Origins of the hysteresis and a more 

detailed explanation were published during the redaction of this thesis [64], where a new 

procedure to estimate the effective nominal power was proposed. 

7.2 Modeling the power of three PV module technologies 

During one year, the experimental campaign compared the measured power of three PV 

technologies, Al-BSF, HIT, and a-Si/µc-Si Tandem, with the modeled power using two 

relatively simple models: Osterwald’s and Constant Fill Factor (FFK). The experimental power 

was monitored through the maximum power point of I-V curve measurements. The models 

predicted the power based on measurements of the in-plane irradiance and the module 

temperature. Depending on the month and PV technology, both models overestimate the 

estimated power by about 2 to 10%. A correction factor (k) was introduced monthly and 

annually to minimize the overestimation. The monthly values of k indicated different trends 

during the different seasons of the year.  

The seasonal trends for each PV technology are different, particularly when comparing 

the crystalline-based technologies, Al-BSF and HIT, with the a-Si/µc-Si Tandem thin-film 

technology. These trends could be associated with variables other than the irradiance and 

module temperature that the models do not consider, such as the spectral distribution or the 

diffuse irradiance factor [66]. A study similar to [20] is recommended to understand the impact 

of each variable on the seasonal trend.  

By applying k to the models on an annual basis, the NMBE of the predicted maximum 

power was minimized for all technologies. NMBEs below 1% indicates a high accuracy in their 
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prediction capability. Furthermore, NRMSEs below 5% indicates a low predicted values 

dispersion. A closer look, seeking technology-specific evaluations of both models’ prediction 

capabilities, suggests that: For the Al-BSF technology, Osterwald’s model can be 

recommended for estimating the power in any case with or without the implementation of the 

correction factor. There is no apparent difference between the two models in their prediction 

accuracy, neither before nor after applying a correction factor for HIT technology. In the case 

of Tandem technology, the FFK model is recommended when using the electrical calibration 

parameters, while Osterwald’s model performs slightly better when implementing the 

correction factor. The measurements of one more year would be interesting to corroborate a 

similar seasonal behavior of the correction factor. Additionally, testing more analytical, 

iterative, and translation models [29] would be interesting to explore the performance of each 

one and recommend specific use for each technology. 
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