
PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ 

ESCUELA DE POSGRADO 

Clasificación de cultivos de quinua orgánica 

mediante el uso de imágenes aéreas 

multiespectrales y técnicas de aprendizaje 

automático 

Classification of organic quinoa crops using 

multispectral aerial imagery and machine learning 

techniques 

TRABAJO DE INVESTIGACIÓN PARA OPTAR EL GRADO ACADÉMICO DE 

MAGÍSTER EN FÍSICA APLICADA 

AUTOR 

DONATO ANDRÉS FLORES ESPINOZA 

ASESOR 

MIGUEL ANGEL CATAÑO SANCHEZ 

Septiembre, 2021 



RESUMEN 

Según datos de la FAO, la planta de la quinua se originó en los alrededores del lago Titicaca 

que comparten Perú y Bolivia, destaca por la calidad nutricional que posee, así también los 

requerimientos del cultivo en cuanto a la poca exigencia en la cantidad de agua, lo cual lo 

hace un cultivo ideal para contrarrestar el cambio climático. La producción mundial de quinua 

se encuentra liderada primordialmente por los países de Perú y Bolivia, quienes concentran 

entre el 83% (año 2015) al 67% (año 2016). En ambos países dicha actividad involucra a no 

menos de 150,000 familias de pequeños productores. La producción de dicho cultivo es 

mayoritariamente orgánica con promedios bajos de producción. Como consecuencia del 

escaso uso de tecnologías productivas, el incremento de plagas, así como de la variabilidad 

cada vez más impredecible de las condiciones climáticas, los agricultores familiares de 

ambas regiones continúan presentando niveles de pobreza de 42.9% y extrema pobreza de 

21.3% en promedio. (INEI-Perú, INE Bolivia). El presente trabajo de investigación contribuye 

al mapeo de cultivos el cual constituye una herramienta esencial para la gestión agrícola y la 

seguridad alimentaria. El objetivo del trabajo de investigación es la evaluación de diversos 

métodos de clasificación del cultivo de la quinua que permitirá realizar el mapeo automático. 

El estudio se centra en el uso de técnicas de aprendizaje automático para clasificar cultivos 

de quinua a partir de imágenes aéreas multiespectrales tomadas desde un sistema aéreo no 

tripulado. La reflectancia espectral de cinco bandas ópticas se utiliza para determinar 

modelos de clasificación que se evalúan en las diferentes etapas fenológicas de la quinua. 

Se exploraron estrategias de aprendizaje automático a las imágenes obtenidas, tales como 

árboles de decisión, análisis discriminatorio, máquinas de vectores de soporte, K vecino más 

cercano, conjunto de clasificadores, métodos de aprendizaje profundo de Segnet y Unet. Los 

conjuntos de datos de entrenamiento se obtuvieron de las ubicaciones de los campos de 

quinua en Cabana en la región Puno de Perú. Los resultados muestran que las técnicas de 

aprendizaje profundo superan a otras técnicas en la tarea de clasificación. Se muestran las 

pruebas realizadas sobre las diversas etapas fenológicas en donde las técnicas de 

aprendizaje profundo obtienen una precisión de entre 81% y 95%, mientras que las demás 

técnicas su precisión fueron entre 58% y 87%.   
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 

Abstract— Crop mapping is an essential tool for agricultural 
management and food security for which remote sensing data 
can be used. This study focuses on the use of machine learning 
techniques to classify quinoa crops from multispectral aerial 
images. Spectral reflectance of five optical bands are used for 
determining classification models which are evaluated for 
different phenological stages of quinoa. Decision Trees, 
Discriminant Analysis, Support Vector Machines, K nearest 
Neighbor, Ensemble Classifiers, deep learning methods Segnet 
and Unet were explored. Training datasets were obtained from 
quinoa crop fields locations at Cabana in the Puno region of 
Peru.  An unmanned aircraft system (UAS) was used to acquire 
the multispectral images from an altitude of 50 meters. Results 
show that deep learning techniques outperform the other 
techniques in the classification task.  

I. INTRODUCTION

The Puno plateau region of Peru and Bolivia is used for 
cultivating many types of vegetable crops: alfalfa, oats, 
potato, pasture, barley, broad beans, cañihua and quinoa. An 
important agricultural economic activity is organic quinoa 
which is exported to important world markets. Due to its high 
nutritional value it is considered as a food that has become 
very important for food security. It also stands out for the 
requirements of the crop in terms of the low demand in the 
amount of water, which makes it an ideal crop to counteract 
climate change [1] [2].  

Since the second quarter of 2018, the Pontifical Catholic 
University of Peru together with the Association of 
Agricultural Producers of Vizallani1 have been executing a 
precision agriculture project that will help to optimize the 
processes and procedures for organic certification carried out 
each year by local farming organizations. The project also 
includes the registration of georeferenced maps of the 
productive units and multispectral images captured by an 
unmanned aircraft vehicle that will jointly improve the 
competitiveness of this activity for the benefit of smallholder 
farmers. 

The Association of Agricultural Producers of Vizallani1 is 
located in southern Peru in the Puno plateau as shown in Fig. 
1. Smallholder farmers near the Cabana district (15°38'58.1"S
70°19'18.9"W, elevation 3,901 m.a.s.l.) are organized in
fields of land of various sizes of no more than one hectare,
which makes it difficult to assess using satellite imagery.
Determination of remote sensing data is best obtained using
unmanned aircraft systems (UAS), flying below 50 meters
above the fields. These systems can deliver very high
resolution images with a spatial resolution of five centimeters.

*Research supported by Innovate Peru, Ministry of Production. 
A. Flores is with the Pontificia Universidad Católica del Perú, Lima,

PERU (phone: 51-999-650-502; e-mail: dflores@ pucp.edu.pe).  

Fig. 1.  Location of the Association of Agricultural Producers of 
Vizallani1  

As part of this project, technological developments 
specific to the cultivation of quinoa is being carried out, 
taking into account the difficult geographical conditions due 
to altitude (3,901 m.a.s.l) and limited knowledge of the 
population to information and communication technologies. 
Among the technological developments that the mentioned 
project raises are the use of multispectral images acquired 
from an unmanned aircraft vehicle and consequent processing 
in order to estimate parameters that allow the adequate use of 
inputs such as water, fertilizers and pesticides. In this research 
the need to classify the cultivation terrain in an automated 
way arises and will become the starting point for the analysis 
of the crop in subsequent stages. Therefore, the generation of 
georeferenced maps that allow the farmer to estimate the 
amount of quinoa cultivation and therefore its yield 
production is of vital importance for food security. To 
generate maps, proper classification of land cover is required, 
for which machine learning strategies need to be evaluated to 
the multispectral images acquired using an unmanned aircraft 
vehicle.  

Remote sensing science is playing a significant role in 
precision agriculture being crop classification an important 
first step for monitoring, assessment and crop management. 
Satellite technology is a convenient means for acquiring 
imaging data and suitable for great extensions of land. Several 
studies [3]-[8] have shown the effectiveness of machine 
learning (ML) techniques on several types of crops mainly on 
corn and soy bean using satellite images in global, 
continental, and regional scales. Smallholder farming systems 
farming generally consists of many heterogeneous fields with 
different types of crops in small areas. It is common for crops 
to rotate on a particular field, being a common practice 
especially for organic farming. Due to these conditions a 
precise and automated method is required to correctly map 
these fields using high resolution imaging for which 
unmanned aircraft systems (UAS) are more suitable than 
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satellites because they can better adapt to different time and 
spatial requirements [9], [10]. There is an increased interest in 
using UAS for crop classification due to its flexibility for 
smallholder farming [11]-[14]. Regarding machine learning 
techniques, several methods have been applied for this task 
among them decision trees [3], discriminant analysis [4], 
random forest classification [5], [6], [7], [14], maximum 
likelihood method [5], support vector machines [5], [9], [14], 
[17] and deep learning [12]-[16]. Current research can be
divided into several fronts, on the one hand about the type of
data to be processed, be multispectral images that consider the
spectrum of light reflected by the leaves of crops. The other
aspect is temporal considering phenological characteristics,
that is, the growth development of the plant. What is evident
from the present state of the art is that it becomes necessary to
consider all these aspects, which implies involving a large
amount of data [5]. In this work we consider both types of
approach towards an effective and automated method for crop
classification. Several machine learning techniques are
considered using high spatial resolution time series data.

Light is composed of particles of energy called photons, 
or quanta of light. The energy of a photon is inversely 
proportional to its wavelength, the longer the wavelength, the 
lower the energy. Photons of violet light, for example, have 
almost twice the energy of photons of red light, the longest 
visible wavelength. Photosynthesis is the process in which 
plant cells incorporate CO2 from the air into its organic 
molecules. For this to happen light energy is converted to 
chemical energy of the organic molecules. These molecules 
are important for photosynthetic organisms: they are the 
building blocks of cells and a source of chemical energy that 
fuels the metabolic reactions that sustain life. It is known that 
radiation within the visible light portion of the spectrum 
excites certain types of biological molecules, moving 
electrons into higher energy levels. Radiation with 
wavelengths longer than those of visible light does not have 
enough energy to excite these biological molecules. For light 
to be used by living organisms it must be absorbed, 
substances that are able to do this are called pigments. Most 
pigments absorb certain wavelengths and transmit or reflect 
other wavelengths. In the case of plant organisms, chlorophyll 
is the main pigment of photosynthesis, it absorbs light 
primarily in the blue (400 to 500nm) and red (600 to 700 nm) 
regions of the visible spectrum. Green light (500 to 600nm) is 
not appreciably absorbed by chlorophyll. Plants usually 
appear green because some of the green light that strikes them 
is scattered or reflected. There are many types of chlorophyll 
pigments in nature, three of them are the most important for 
photosynthesis in plants, chlorophyll a, chlorophyll b and 
carotenoids. The absorption spectrum of a pigment is a plot of 
its absorption of light at different wavelengths. The upper part 
of Fig. 2 shows the absorption spectra for chlorophyll a, 
chlorophyll b and carotenoids as a function of wavelength. 
Shown in the lower part of Fig. 2 is the action spectrum of 
photosynthesis which is the relative effectiveness of different 
wavelengths of light. The action spectrum for photosynthesis 
shows which wavelengths are used by plants to create energy, 
while the absorption spectrum shows which wavelengths are 
most absorbed by a specific molecule [19], [20]. 

In order to acquire images with an optical camera, 
reflectance must be considered. As is known light energy 
from the sun will encounter a plant leaf and will fraction in 
absorbed, transmitted and reflected energy. There is a 
wavelength dependency that for a certain type of pigment the 
proportion of reflected, absorbed and transmitted energy will 
vary at different wavelengths [22]. 

Fig. 2.  Absorption spectrum and Action Spectrum. Source: [21]  

It is evident from Fig. 2 that plants will have no 
reflectance in regions blue and red, but relative high 
reflectance in the green region. Reflected energy can be 
plotted as a function of wavelength depicting a “spectral 
signature”. Fig. 3 shows spectral signatures of various types 
of surface on a broader range of wavelengths. Reflectance of 
vegetation reveals what was shown as absorption in the 
visible part of the spectrum. Leaf pigments are transparent to 
near-infrared wavelengths (700 to 1300 nm), and leaf 
absorption is small. Most of the energy is transmitted and 
reflected, dependent on leaf structural characteristics, which 
results in a high near-infrared (NIR) plateau. The sharp rise in 
reflectance between the red and NIR regions is known as the 
red edge (680 to 750 nm) and has been found to be dependent 
on chlorophyll concentration and can be used in plant stress 
detection. The middle infrared (MIR) region (1300 to 2500 
nm) is dominated by soil and leaf water absorption, 
particularly at 1400 and 1900 nm with reflectance increasing 
when leaf liquid water content decreases [23], [24]. 
Information on how sun based radiation interacts with 
vegetation is important to decipher and process remote 
sensing data for agriculture. A plant leaf regularly has a low 
reflectance in the visible spectrum due to absorption by 
chlorophylls, a generally high reflectance in the near infrared 
as a result of internal leaf scattering and no absorption, and a 
moderately low reflectance in the infrared beyond 1.3µm due 
to absorption by water. Plant canopy reflectance is similar, 
but is modified by non-uniformity of incident solar radiation, 
plant structures, leaf area, shadows, and reflectivity of the 
background. Airborne sensors get an integrated view of all of 
these effects, and each type of crop or vegetation tends to 
have a characteristic signature that allows for discrimination 
and classification. Because of the sensitivity of chlorophyll to 
physiological disturbances when disease and physiological 
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stress affect the reflectance properties of individual leaves, the 
most pronounced changes often occur in the visible spectral 
region rather than in the infrared. 

 
Fig. 3.  Reflectance spectral signatures. Source: [23]   

However, the primary basis for aerial remote sensors to 
detect stress conditions in a crop or other vegetation is often 
not a change in the reflectance characteristics of individual 
leaves, but a reduction in the total leaf area exposed to the 
sensors. Such reduction can result from a direct loss of leaves, 
a change in their orientation, or overall plant growth 
suppression. In such situations, the overall infrared 
reflectance tends to be reduced significantly more than the 
visible reflectance due to fewer different leaf layers and an 
increase in background exposure [25].  

All these aspects regarding spectral information of leaf 
and canopy characteristics constitute valuable information 
that can be acquired using multispectral sensors considering 
additional aspects like texture and non-vegetation 
surroundings. All of which constitute data that describe 
characteristics of a particular plant or crop that is subject to be 
classified. 

It is the aim of this work to describe and evaluate several 
machine learning methods to classify quinoa crops with the 
use of aerial multispectral images acquired from an unmanned 
aircraft system. Time series acquisition is considered to deal 
with phenological aspects of the crop. The generation of an 
automated and efficient method for the determination of 
quinoa crop pixels in aerial images is accomplished.  

II. MATERIALS 

A. Study area 

The region of study focuses on agricultural fields of 
quinoa. Data was collected by means of a DJI Phantom 4 
unmanned aircraft system (UAS) with a Micasense Rededge 
multispectral camera, which acquired images up to 50 meters 
above the fields. Fig. 4 shows the UAS system employed 
during takeoff at one of the sites.  

The data was obtained from fields belonging to farmer 
Daniel Cárdenas who is part of the before mentioned 
association. The study area consists of two Quinoa fields of 
Salcedo INIA variety and its surroundings. The two fields 
shown in Fig. 5 are “Hatumpata Yurac Cruz 4” (HYC4) with 
an area of 700 m2 (0.07 Ha) and “Hatumpata Yurac Cruz 5” 
(HYC5) with an area of 800 m2 (0.08 Ha). Surrounding 
ground cover consisted of other types of vegetation (alfalfa, 
oats and grass), bare soil and house structures occupying an 
area of 6400 m2 (0.64Ha). 

 
Fig. 4.  DJI Phantom 4 with onboard Micasense Rededge Camera. 

 
Fig. 5.  Aerial view of region of study showing Quinoa fields HYC4 and 

HYC5.  

B. Image data 

As is known, the principle behind digital optical cameras 
is that they are composed of a large number of electronic 
sensors, which convert reflected light energy to an electrical 
signal. This signal is then digitized and a numerical value that 
is proportional to the intensity of the light energy is obtained 
[18]. 

A Rededge Multispectral camera from Micasense capable 
of acquiring images in five narrow spectral bands was used. 
Spectral bands used were blue (Center Wavelength: 475nm, 
Full Width at Half Maximum (FWHM) Bandwidth: 20nm), 
green (Center Wavelength: 560nm, FWHM Bandwidth: 
20nm), red (Center Wavelength: 668nm, FWHM Bandwidth: 
10nm), near-infrared (NIR, Center Wavelength: 840nm, 
FWHM Bandwidth: 40nm) and red edge (Center Wavelength: 
717nm, FWHM Bandwidth: 10nm), with a spatial resolution 
depends on flight altitude being between of 1.2 to 2.6 cm per 
pixel, 1 capture per second, 12-bit RAW and 1280 x 960 
pixels. Spectral response of each band is shown in Fig. 6 with 
a comparison to typical plant reflectance. For each band an 
image is obtained constituting a five dimensional vector data 
for each pixel. Table I shows the image data details acquired. 

To ensure spatial variability approximately 160 images 
were acquired over an area of 1.60 hectares, at an altitude of 
50 meters during a mission flight. This mission flight was 
repeated during six occasions (dates: 17/12/2018, 4/1/2019, 
25/1/2019, 2/2/2019, 16/2/2019 and 28/2/2019) in order to 
have temporal variability during different stages of the crop. 
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Fig. 6.  Micasense Rededge Multispectral Camera Spectral bands 

compared to Typical Plant Reflectance. Source: [26]   

Obtained data included quinoa, alfalfa, oats, and grass, 
soil and house structures. Fig. 7 shows an RGB version of the 
orthomosaic image over the fields being quinoa crops the 
ones located at the center acquired on January 25, 2019. 
Because of the variation of area coverage for each 
orthomosaic image as shown in Table I all time data is not 
necessarily the same in spatial terms. But in all cases the 
Quinoa fields were considered, so the variation only affects 
the other vegetation and non-vegetation classes for which 
there is plenty of data. 

C. Preprocessing of images 

Images need to be assembled in order to have an overall 
representation of the land cover that the UAS has flown over. 
Photoscan software from Agisoft was used to obtain an 
orthomosaic image of the fields in GEOTIFF format. Six 
orthomosaic images were obtained constituting the time series 
data for machine learning procedure. 

Automated vegetation detection and masking were carried 
out on each image using the Normalized Differential 
Vegetation Index (NDVI). The method is based on the 
difference of reflectance in the near-infrared and red bands as 
in: 

 𝑁𝐷𝑉𝐼 =
ேூோିோா஽

ேூோାோா஽
 

 

 
Fig. 7.  RGB image acquired on January 25, 2019. 

RED and NIR are the reflectance for red and near infrared 
spectral bands, respectively. High NDVI values will result 
from the combination of a high reflectance in the near 
infrared and lower reflectance in the red band. This 
combination is typical of the spectral “signature” of 
vegetation. Non-vegetated areas, including soil, water, snow, 
ice, and construction materials, will have much lower NDVI 
values. Typical values of NDVI for vegetation are in the 
range of 0.3 and 0.8 [27]. A simple threshold logic technique 
was used to select pixels as vegetation.  

 𝑉 = ቄ
𝐼𝑚, 𝑁𝐷𝑉𝐼 ≥ 0.3
0, 𝑁𝐷𝑉𝐼 < 0.3

 

Where V represents the segmented image and Im is the 
original multispectral image. In this way vegetation is 
segmented from other types of land cover as shown in Fig. 8, 
where black pixels refer to non-vegetation. This segmentation 
mask V will be used for the needed classification of 
vegetation. A pixel based strategy was conceived in which a 
certain region was selected. Quinoa and non-quinoa 
vegetation pixels were manually selected from image V and 
labeled considering farmer knowledge for each image. In this 
way ground truth data was obtained for each image. Fig. 9 
shows the result of this mixed NDVI and manual process in 
which 3 pixel classes are segmented: quinoa crop, other types 
of vegetation and non-vegetation pixels shown in yellow, 
light green and blue respectively. This process was repeated 
for the six orthomosaic image time series obtaining the 

TABLE I 
IMAGE DATA ACQUIRED 

Orthomosaic 
Image 

Number 
of images Date 

Quinoa phenology 
stage Class 

Number of 
pixels 

Coverage 
Area 
(m2) 

Flight 
Altitude 

(m) 

Image 
resolution 
(cm/pixel) 

   Four True Leaves Quinoa 1762789    
1 115 27-12-2018  Other Vegetation 2464839 2870 17.1 1.21 

    Non Vegetation 46717562    
         
   Six tree leaves Quinoa 1219951    

2 162 04-01-2019  Other Vegetation 7390730 11000 28.8 1.94 
    Non Vegetation 44565629    
         
   Branching Quinoa 467815    

3 95 25-01-2019  Other Vegetation 9849099 16100 48.7 3.25 
    Non Vegetation 15615408    
         
   Ear formation Quinoa 521403    

4 165 02-02-2019  Other Vegetation 9895510 12300 39 2.62 
    Non Vegetation 17162312    
         
   Florescence Quinoa 555173    

5 143 16-02-2019  Other Vegetation 12332686 13200 38.2 2.56 
    Non Vegetation 21881649    
         

   Maturity Quinoa 246830    
6 87 28-02-2019  Other Vegetation 7628707 9410 37.9 2.54 

    Non Vegetation 17720278    
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necessary labeled data ground truth for subsequent 
processing. Table I shows the image data obtained. 

 
Fig. 8.  RGB image of the vegetation segmented image 

D. Dataset preparation 

To perform machine learning, a dataset needs to be 
constructed from the othomosaic multispectral images. Pixel 
data is represented by a five dimensional vector considering 
reflectance in five spectral bands. Data was divided in 
training and testing sets as shown in Table I. Two regions 
were considered for the training dataset the HYC4 region and 
its surroundings, the HYC5 region and its surroundings were 
selected for the testing dataset. Figures 11 and 12 show the 
image time series dataset for training and testing respectively. 

 
Fig. 9.  Ground truth image of January 25, 2019, quinoa crop, other types 
of vegetation and non-vegetation pixels are shown in yellow, light green and 

blue pixels respectively. 

III. METHODS 

A supervised learning approach was used to classify land 
cover. Three classes were considered for the machine learning 
stage: quinoa crop, non-quinoa crop and non-vegetation,. In 
this work, six approaches of machine learning algorithms 
were used: Decision Trees, Discriminant Analysis, Support 
Vector Machines, K-nearest Neighbor, Ensemble Classifiers 
and Deep Learning. These techniques are often cited in state 
of the art research on land cover classification and 
comparisons of results between some of them has been the 
main focus. In the following sections a brief explanation of 
these classifiers are described for several types of land cover 
emphasizing on crop applications.  

A. Decision Trees 

A decision tree (DT) is a flowchart tree like structure in 
which a node is where a decision must be made, each branch 
represents a probable result of the decision and each leaf 
represents a class label. The method of labeling is considered 
to be a series of simple decisions based on sequential test 
results, rather than a single, complicated decision. Sets of 
decision sequences form the DT branches, and tests are 

applied to the nodes. The leaves represent the labels. DT 
construction requires the recursive partitioning of a collection 
of training data, which is divided into progressively 
homogeneous subsets based on tests applied to one or more of 
the characteristic values. Such tests are represented by nodes 
as shown in Fig. 10. The decision tree is determined using the 
CART algorithm [28]. Studies have been done to evaluate 
Decision Trees for land cover classification using satellite 
multispectral images and is regarded as a computationally 
efficient method [29], [30]. This method can be regarded as 
simple but has gained acceptance due to the fact that it has 
derived to newer techniques such as the Random Forest 
classifier.  

TEST1

TEST2 TEST3

TEST4Q

Q OV

OV NV

 
Fig. 10.  A decision tree classifier example. Each box is a node at which 

tests are applied to split the data into smaller groups. Labels Q, NQ and NV 
are leafs which refer to classes quinoa crop, other types of vegetation and 

non-vegetation.  

B. Discriminant Analysis 

Discriminant Analysis is a method used to find a linear 
combination of features that characterizes or separates two or 
more classes of objects or events. It assumes that different 
classes generate data based on different Gaussian 
distributions. It learns the most discriminative axes between 
the classes, and these axes can then be used to define a 
hyperplane onto which to project the data [31], [32]. This 
method has been used for land use classification using 
multispectral images [33], [34]. It is also used in data 
classification where reduced dimensionality is needed which 
is the case for hyperspectral images [35].  

C. Support Vector Machines 

Support Vector Machine (SVM) is a kernel based 
classification algorithm that considers data as an N 
dimensional vector (where N is the number of features, five in 
our case). The goal is to determine hyperplane boundaries that 
enclose groups of data that, after training, eventually belong 
to a certain class. It does this by maximizing margins between 
decision boundaries, which constitutes a nonlinear 
optimization problem. Support vectors constitute data that 
define the hyperplane boundaries that separate distinct classes 
[36], [37], [41, [42], [43]. Fig. 13 shows a simple example for 
a linear binary data in which data is classified and a 
hyperplane boundary is represented by a line. Data is 
represented in by two features. In our case in which data is 
represented by 5 features the hyperplane required is a 4 
dimensional boundary. Crop type classification using this 
method for multispectral satellite images has been achieved 
[5]. Images from unmanned aircraft vehicles (UAV) provide 
higher resolution, which has the advantage of providing 
texture information in addition to the spectral data are 
convenient for the SVM classification of crops [14]. 
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Fig. 11.  RGB version time series images of HYC4 region and surroundings used as training dataset, dates: a) 27-12-2018, b) 04-01-2019, c) 25-01-2019, d) 
25-01-2019, e) 16-02-2019 and f) 28-02-2019  
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(a (b

(c (d

(f) (e

 

Fig. 12.  RGB version time series images of HYC5 region and surroundings used as testing dataset, dates: a) 27-12-2018, b) 04-01-2019, c) 25-01-2019, d) 
25-01-2019, e) 16-02-2019 and f) 28-02-2019  

Compared to other non-Deep Learning techniques the SVM 
algorithm has proved to have better performance for land 
cover classification [38], [39], [40]. 

 
Fig. 13.  A Linear Support Vector Machine classification example  for 2 

features x1 and x2 in which 2 distinct data are classified. The bold line 
represents the hyperplane boundary and the dotted ones are the margins. 

Support vectors are displayed as the 3 circled data [38]. 

 

D. K Nearest Neighbor 

The goal is to memorize the training set, and then 
determine the label of each new instance based on the labels 
of the training set's closest neighbors. The reasoning for such 
approach is based on the premise that the features used to 
define the domain points are applicable to their labels such 
that close-by points are likely to be labeled the same way.  

 
Fig. 14.  A KNN classification example for 2 features petal width vs petal 
length in which 3 distinct Iris species are classified. Three new instances are 

classified consdering K=5 and are shown as circled data [44]. 
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In addition, in certain cases, locating a nearest neighbor 
can be achieved extremely fast, even though the training set is 
vast. An object is classified based on the class attributes of its 
K nearest neighbors. Hence, in this classifier, K is the main 
tuning parameter, which largely determines the performance 
of the KNN classifier. Fig. 14 shows the use of KNN for the 
known Fisher's Iris dataset [32] in which Iris flower species 
are classified from two features. This technique has been used 
for classification of crops [39], and land cover with satellite 
images [40]. These studies compare classification results with 
other types of strategies. 

Random Forest Classifier 

Ensemble classifiers refers to several methods that 
consists of a combination of classifiers in which a better 
performance can be obtained in comparison to applying 
individual models. They develop several predictive models 
from resampled versions of training data and combine 
predictions by simple averaging or voting. The random forest 
algorithm is a bagging (bootstrap aggregating) type of 
ensemble classifier. It makes use of multiple decision tree 
predictors using different random samples from the training 
dataset. A voting scheme is used to decide the outcome from 
the predictors. Fig. 15 shows an example using three decision 
trees. This classifier is often cited for comparing results for 
crop and land cover classification  [5], [6], [7], [41], [42], 
[43], [45].  

 

 
Fig. 15.  A Random Forrest classification example  in which an instance is 
classified using 3 decision trees. The results are subject to a voting scheme 

to obtain the final result. 

E. Adaboost Classifier 

Another type of ensemble approach is boosting where 
many weak classifiers can be combined into a strong 
classifier. The basic concept of most boosting methods is to 
train sequential predictors, each attempting to correct their 
predecessor. The main boosting algorithm is AdaBoost 
(adaptive boosting). The basic principle behind Adaboost is to 
set the weights of the classifiers in each iteration and train the 
data sample to ensure accurate predictions of unusual 
observations. Any machine learning algorithm, if accepting 
weights on the training set, can be used as a base classifier. It 
typically uses a decision tree as the base classifier. The output 
is a "solid" classifier centered on a weighted sum of all the 
weak hypotheses [41], [42], [43]. This classifier has been 
used for land cover classification with satellite multispectral 
and hyperspectral images [45], [46].  

These classifiers are referred to as non-deep learning 
methods.  

F. Deep Learning 

Artificial neural networks (ANNs), inspired by human 
learning process, employ a general structure of interconnected 
units to learn feature representation exclusively from data and 
minimize task specific and explicit rule based programming. 
This approach is to allow computers to learn from experience 
and to understand the world in terms of a concept hierarchy, 
with each concept being described in terms of its connection 
to simpler concepts. This approach eliminates the need for 
human operators to explicitly define all of the information 
that the computer requires by collecting information from 
experience. The idea hierarchy helps the computer to learn 
complex concepts by building them out of simpler ones. Deep 
learning models which are ANNs with more than two hidden 
layers are able to learn feature representations from data 
instead of manual feature extraction based on human 
experience [38].  

Convolutional neural networks (CNN) are a particular 
type of deep learning architecture, which is currently a very 
successful method used in image classification and many 
other types of imaging applications. It is based on mimicry of 
the hierarchy architecture of the visual cortex present in 
mammals. It is composed of a set of layers, input, output 
layers and multiple hidden layers in between as shown in Fig. 
16. The main mathematical operation on which it is based is 
convolution, it also consists of activation functions known as 
RELU layers, as well as fully connected layers and 
normalization layers.  

 
Fig. 16.  Convolutional Neural Network for image processing, e.g. 

handwriting recognition. Source: [48]. 

Convolution is the process which operates over a small 
window of an image at a time. At each window it applies a 
kernel, a matrix multiplication and sum operation. Individual 
kernels are often referred to as filters. The result of applying 
the kernel to the entire image is a new image in which 
features are mapped. The role of the convolutional layer is to 
detect local conjunctions of characteristics from the previous 
layer; the function of the pooling layer is to combine similar 
characteristics semantically into one. This process is repeated 
in subsequent layers until an output layer describes at which 
class does the image relate to [48], [49], [50]. 

The particular problem in relation to image classification 
which we specifically apply for crop classification is called 
semantic segmentation. Segmentation is important for tasks 
relating to image analysis. Semantic segmentation refers to 
how each pixel of an image is associated with a class label 
(e.g. object, human, lane, sky, ocean, or car). Current 
applications for semantic segmentation are autonomous 
driving, medical imaging, industrial inspection and remote 
sensing. Being crop classification in this work being studied 
for segmenting quinoa crops from other type of land cover 
from a multispectral image we can consider it as a semantic 
segmentation problem. 
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Fig. 17.  Fully Convolutional Neural Network for semantic segmentation. Source: [41]  

Fig. 18.  SegNet Architecture. Source: [43]. 

Several types of CNN architectures exist that have been 
developed to be applied for semantic segmentation. In this 
study SegNet and U-Net have been evaluated for crop 
classification for which quinoa pixels is segmented from other 
type of land cover.  

Deep learning algorithms have made major contributions 
to visual object recognition and classification in which a CNN 
is used consisting of convolution layers, ReLU activation 
functions, max-pooling layers and fully connected layers. 
Fully connected layers can cause loss of spatial information. 
The output layer is generally a Softmax function applied to 
the previous one-dimensional fully connected layer, that 
contains probability values for each class that determines the 
prediction output. The predicted class will be the one with the 
highest probability. In the case of semantic segmentation, an 
end to end approach is required for pixel-wise prediction. 
This means that the output layer is an image (2D) in which 
each pixel class is predicted. Fully Convolutional Networks 
(FCN) can accomplish dense predictions without any fully 
connected layers as shown in Fig. 17. To preserve spatial 
information, upsample and deconvolution layers are required. 

FCNs use an encoder-decoder architecture in which the 
encoder gradually reduces the spatial dimension with pooling 
layers and the decoder gradually recovers the object details 
and spatial dimension with upsampling operators [51]. Two 
FCN architectures used for semantic segmentation are SegNet 
and U-Net. 

The SegNet architecture is a fully convolutional neural 
network for semantic pixel-wise segmentation having an 
encoder-decoder scheme. The encoder is similar to the 13 
convolutional layers present in the VGG16 network [52]. The 
key component of SegNet is a decoder network consisting of 
a hierarchy of one decoder corresponding to each encoder. Of 
these, the appropriate decoders use the max-pooling indices 
received from the corresponding encoder to perform non-
linear upsampling of their input feature maps as shown in Fig. 
18. The key impetus behind SegNet was the need to create an 
efficient architecture for understanding road and indoor 
scenes [52]. Despite this, it has been applied to other types of 
semantic segmentation including remote sensing for weed 
classification [53], crop row detection [54] and rice and corn 
classification [55]. 
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TABLE II 
TRAINING DATASET HYC4 

NUMBER OF PIXELS 

Data Date 
Non 

Vegetation 
Other 

Vegetation 
Quinoa 

     
1 27-12-2018 2929509 159406 664265 
2 04-01-2019 3923729 1251091 593028 
3 25-01-2019 1365821 3330347 203280 
4 02-02-2019 1339181 1202338 236851 
5 16-02-2019 1659807 3594423 268550 
6 28-02-2019 1628694 2588546 135650 
 Total 12846741 12126151 2101624 

     

 
Fig. 19.  U-Net Architecture. Source: [47]. 

The U-Net architecture is another FCN network for 
semantic segmentation. It involves an encoding path 
(contracting) to capture context coupled with a decoding path 
(expanding) that gives it a "U" form as shown in Fig. 19. The 
contracting path consists of convolution layers, ReLU 
activation functions and max-pooling layers which generate 
feature maps but gradually eliminates spatial information. The 
expanding path creates a high resolution segmentation map, it 
consists of a sequence of up-convolutions and concatenation 
with the corresponding high resolution features from the 
contracting path. The output segmentation map is generated 
and will have as many channels as classes needed for 
prediction [56]. U-Net is being used for many kinds of 
applications including biomedical image segmentation [56], 
cellular segmentation [57], road extraction [58], crowd 
counting [55] and saliency detection [60]. With respect to 
agriculture applications of the U-Net architecture, it is being 
used for rice mapping [61], [62], wheat yellow rust 
monitoring [63], plant disease recognition [64], and cropland 
parcel extraction [65]. 

IV. EXPERIMENTAL RESULTS 

Experiments were performed using the data selected from 
Table I as was described as regions HYC4 and HYC5 to form 
a training and testing datasets respectively. The training 
dataset shown in Table II along with the label information 
were trained in order to get classification models of the 
methods described previously. Matlab version 2019b software 
was used to train models of the machine learning methods 
described. It is important to distinguish between non deep 
machine learning and deep learning techniques. The methods 
need to be distinguished because of the different algorithms 
involved and how the different Matlab tools are used to obtain 
models by means of training. A computer with a NVIDIA 
GeForce GTX 1070, 8GB RAM graphical processing unit 

(GPU), Intel Core i7-8700 @3.2 GHz processor, and 32 GB 
of RAM was used.  

A. Non Deep Learning Methods 

The Matlab Classification Learner App (CLA) [66] can 
train and classify data using various algorithms and compare 
the results in the same environment. To use it, datasets and 
ground truth labeled information must be adequately 
prepared. It was used to train models for the following 
classifiers: decision trees, discriminant analysis, support 
vector machines, K nearest neighbors, and ensemble 
classification. For the CLA process a validation scheme to 
avoid overfitting was used which included the use of part of 
the training dataset as validation data, in order to obtain a 
model for each classifier and its corresponding accuracy. The 
CLA provides an efficient way to decide which model has the 
best predictions in order to decide which non deep learning 
method to use for a specific dataset. Model accuracies are 
shown in Table III and as it shows best accuracies for the 
Support Vector Machine (95.4%) and Random Forest 
(94.7%) classifiers. These models were selected for testing.  
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TABLE III 
NON DEEP LEARNING MODEL ACCURACY 

Classifier Accuracy 

  
Decision tree 91.2% 

Discriminant Analysis 91.8% 
Support Vector Machines 95.4% 

K-Nearest Neighbor 
Random Forest  

Adaboost 

94.5% 
94.7% 
91.2% 

  

  

B. Deep Learning Methods 

Deep learning architectures SegNet and U-Net were 
trained using the same dataset as the previous classifiers in 
Matlab. The training dataset was divided in smaller images 
commonly known as patches. The size of the square patches 
PxP pixels was chosen in a manner to describe small groups 
of quinoa plants, which depends on the resolution of the 
image data. Two group patch sizes were considered: 8x8, 
12x12 and 16x16 for SegNet and 8x8 and 16x16 for U-Net. 
Because of the multispectral images used in this study, the 
patch image has dimensions of PxPx5, considering the 5 
channels of different wavelengths. Data augmentation was 
used in order to increase the number of patches needed for 
training. Reflection and rotation of patches were used for this 
task obtaining a total of 2 million patches for training. 
Specific Matlab functions were used for extracting patches 
from the dataset, and augmenting patches in a random 
manner. For this Matlab’s imagedatastore object is 
particularly convenient since it manages all the needed data in 
a simple and efficient way, providing the necessary 
organization for the subsequent stage of training the networks. 

Matlab commands segnetLayers and unetLayers were 
used to generate both networks. The SegNet network 
generated is composed of 31 layers as shown in Fig. 20. The 
input layer is PxPx5 followed by encoder and decoder paths. 
Each encoder and decoder path has convolution layers and 
ReLU activation layers as well as maxpooling and max 
unpooling layers. Details of all layers including 
hyperparameters can be seen on Appendix 1. For this network 
values of P used were 8, 12 and 16. 

 
Fig. 20.  SegNet architecture generated in Matlab Each blue dot represents 

a specific layer. The input layer (inputImage) is on top and otuput layer 
(pixelLabels) is in the bottom.  

 
Fig. 21.  U-Net architecture generated in Matlab Each blue dot represents 
a specific layer. The input layer (InputImageLayer) is on the left side and the 

otuput layer (Segmentation-Layer) is on the right side. 

The U-Net architecture was generated considering 
encoder depths of 3 and 4. Each depth meaning that the 
network will have 46 and 51 layers respectively. Similar to 
the SegNet network encoder and decoder paths use 
convolution, ReLU, maxpooling and max unpooling layers as 
shown in Fig. 21 for encoder depth of 4. Appendix 1 shows 
layer details for a U-Net architecture for P equal to 16, and 
depth of 4. 

C. Training Deep Learning Networks 

Matlab was used to train the six convolutional neural 
networks generated. Validation was obtained using 20% of 
the training dataset. Among training options 8 epochs were 
considered in which 12500 iterations were used to update the 
internal model parameters. Matlab code used to train the 
classifier models are shown in Appendix B1 and B2. Training 
progress of the six models are shown in Appendix C. After 
training, a network model is obtained for each of the networks 
and validation is performed in order to avoid overfitting 
during training. Three trained network models were obtained 
for each SegNet and U-Net architectures. The six network 
models obtained with validation accuracies are shown in 
Table IV. It is worthwhile noting that the best accuracies 
occur for image sizes of 8 by 8 pixels, this could be because 
of the fact that it best describes individual plants. Image 
patches of this size seem to take advantage of its resolution.   

D. Classification Results and Comparison 

For numerical assessment of the trained models the 
Testing Dataset extracted from the HYC5 region was used. 
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TABLE IV 
DEEP LEARNING MODEL VALIDATION ACCURACY 

Classifier model Validation Accuracy 

  
SegNet8 98.39% 

SegNet12 95.46% 
SegNet16 94.53% 
U_Net8 

U_Nett16_3 
U_Net16_4 

98.78% 
96.86% 
97.58% 

  

  

TABLE V 
TESTING DATASET HYC5 – GROUND TRUTH 

NUMBER OF PIXELS 

Data Date 
Non 

Vegetation 
Other 

Vegetation 
Quinoa 

     
HYC51 27-12-2018 9678093 1278911 1190432 
HYC52 04-01-2019 2590172 1081423 830120 
HYC53 25-01-2019 750116 879587 323836 
HYC54 02-02-2019 1555599 1173204 388731 
HYC55 16-02-2019 1549353 922420 385599 
HYC56 28-02-2019 1748899 841832 131625 

 Total 17872232 6177377 3250343 

     Pixel numbers of the six multispectral images are shown in 
Table V. Each image of the testing dataset was classified 
using the deep and non-deep learning models using Matlab. 
Qualitative comparison of the classification output images 
with ground truth image are shown in Fig. 22, where a group 
of selected close-up results can be seen. The full qualitative 
results of all the classified images are shown in Appendix D. 
As can be clearly noticed, deep learning techniques have 
superior performance than non-deep learning ones. Many 
other type of vegetation pixels are considered as quinoa 
pixels. Among the deep learning techniques U_Net16_4 can 
be viewed as the best classifier.  

E. Numerical Evaluation Results 

For semantic segmentation evaluation and subsequent 
numerical comparison there are several types of metrics that 
can be considered. The following metrics were used in this 
work: global accuracy (GA), mean accuracy (MA), mean 
intersection over union (mIoU), and weighted intersection 
over union (wIoU). Global accuracy is the ratio of correctly 
classified pixels, regardless of class, to the total number of 
pixels as show in equation 3. Mean accuracy is the ratio of 
correctly classified pixels in each class to total pixels, 
averaged over all classes (equation 4). These types of metrics 
are not necessarily well suited for situations where class 
pixels are extremely imbalanced.  

𝐺𝐴 =
∑ ௡೔೔೔

∑ ௧೔೔


𝑀𝐴 =
ଵ

௡೎೗
∑

௡೔೔

௧೔
௜ 

Where: 

𝑛௜௜ = number of pixels of class i predicted to belong to class i. 

𝑡௜   = total number of pixels of class i. 

𝑛௖௟  = total number of classes. 

For situations where there are different number of pixels 
for each class involved a much suited metric is based on the 
intersection over union (IoU) index. Also called the Jaccard 
Index (JI) it is defined as the area of intersection between the 
predicted segmentation map A and the ground truth map B, 
divided by the area union between the two maps. The formula 
is shown in equation 5. 

𝐼𝑜𝑈 = 𝐽(𝐴, 𝐵) =
|஺∩஻|

|஺∪஻|
                         (5) 

For computing the IoU in terms of pixels for a particular 
class, the IoU index can also be calculated as: 

𝐼𝑜𝑈 =
்௉

்௉ାி௉ାிே
                                (6) 

Where: 

TP = number of true positive pixels of a class. 

FP = number of false positive pixels. 

FN = number of false negative pixels. 

Mean IoU is the average intersection over union (IoU) of 
all classes and it is computed by equation 7. 

   𝑚𝐼𝑜𝑈 =
ଵ

௡೎೗
∑ 𝐼𝑜𝑈௜௜                                (7) 

 Weighed IoU is the average IoU of all classes, weighted 
by the number of pixels in the class. This metric can be 
considered as the best in cases where there is a wide variety 
of pixel class numbers. Table V shows this particular feature 
in the testing dataset for which it is considered as the 
preferred metric. 

𝑤𝐼𝑜𝑈 =
∑ ௧೔ .𝐼𝑜𝑈೔೔

∑ ௧೔೔
                                 (8) 

Appendix B3 shows Matlab code for numerical evaluation 
and results are shown in Table V1 of all classifiers for the 
testing dataset. It shows that the Unet classifier achieves a 
better wIoU than Segnet and the other non-deep learning 
models. It also shows better results in the first three 
phenological stages which can be attributed to high 
reflectance of vegetation due to the fact that in these stages 
the plants are more vigorous. Among the three Unet models, 
best results are obtained for the Unet16 architecture which has 
more layers than Unet8, this higher complexity can be 
attributed to a better generalization for the classification task. 

V. CONCLUSION 

In this study machine learning models were applied to 
classify quinoa crops from multispectral aerial images. Crops 
from a typical quinoa growing region of Puno in Peru were 
considered as part of the experimental setup for different 
phenological stages. Deep learning models Unet and Segnet 
outperformed Decision tree, Discriminant Analysis, Support 
Vector Machines, K-Nearest Neighbor, Random Forest and 
Adaboost classifiers allowing discrimination of quinoa crops 
from other types of land cover. An accuracy between 80 to 
95% was obtained for the Unet architecture model. Higher 
accuracies were obtained for the initial phenological stages of 
the crop. This can be explained because higher volume of 
vegetation biomass is abundant during these early stages 
compared to the final ones. Higher vegetation biomass has a 
higher reflectance in the green, rededge and near infrared 
optical bandwidths which will contribute to a better 
classification of the quinoa crop. A classification method for 
mapping quinoa crops has been obtained which can be used to 
as a previous stage for predicting yields.   
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(a)                           (b)        (c)         (d)      

Fig. 22.  Close-up results on HYC5 sample images. 
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VI. BUSINESS PLAN 

World production of quinoa is led primarily by Peru and 
Bolivia, with between 83% (year 2015) to 67% (year 2016) 
of the total volume produced. In both countries, this activity 
involves more than 150,000 families of small producers 
(81,643 families in Peru - INEI IV Agricultural Census 
2012-, and 70,000 families in Bolivia -INE I Agricultural 
Census 2013). The production of this crop is mainly organic 
with low production averages that vary from 0.3 Ton/Ha 
(Bolivia) to 0.8 Ton/Ha (Peru). As a consequence of the 
scarce use of modern technologies, the increase in pests that 
are harmful to the crop, as well as the increasingly 
unpredictable variability of climatic conditions, situations 
that contribute to family farmers in both regions continuing 
to present poverty levels of 42.9% and extreme poverty of 
21.3% on average. 

This work is part of a project that seeks to generate a 
management system to monitor the status of crops for quinoa 
producers who develop their work in the context of family 
farming to achieve certification as an organic quinoa product 
and export to foreign markets.  

Drone technology, remote sensing, and computing 
resources will be used to have  accurate information in the 
form of georeferenced maps that will be available in the 
Internet so producers can monitor their processes and 
guarantee traceability. This will be achieved with the 
development of management modules for users, producers, 
consultants, technicians and administrative staff of the 
association and buyers. A commercial product application is 

expected. A market study was carried out with the main 
objective to detail the current market for management and 
monitoring systems of organic quinoa production, as well as 
the impact that the development of the project could have on 
family farming in Puno, Peru. 

For this purpose, the study has been carried out in the area 
of the Puno region; In this region, there are 19 organizations 
that involve small family producers of organic quinoa. Of 
these, there are 5 organizations that are currently operating as 
organic operators, that is, they are working every year in the 
organic certification process of their producers. For this 
reason, the present study has been carried out with all of 
these organizations, actors and stakeholders being the 
directors and team of professionals of the 5 existing organic 
producer organizations. Among the main results found, we 
can mention the following: 

Regarding the availability and use of systems that support 
the organic certification process and/or the management of 
the production chain; it was found that more than 50% of 
producers and professionals indicated that the most used 
system was Excel (60%), followed by desktop programs 
(27%), and the web (3%). These applications are used to 
manage the organic certification process (42%), followed by 
the production management (25%), warehouse processes 
(17%) and marketing (17%). It is precisely due to the need to 
have management systems or computer programs that help in 
the production chain, that both producers and leaders as well 
as professionals and technicians interviewed showed interest 
in a new program that would help them manage in with 

TABLE V1 
CLASSIFICATION ACCURACY COMPARISON 

 
  

 
 
Classifier 

 
HYC51 

 
HYC52 

 
HYC53 

 
  

GA 
% 

 
MA 
% 

 
mIoU 

% 

 
wIoU 

% 

 
GA 
% 

 
MA 
% 

 
mIoU 

% 

 
wIoU 

% 

 
GA 
% 

 
MA 
% 

 
mIoU 

% 

 
wIoU 

% 

              
1 SVM 66.12 64.58 39.68 58.68 92.61 88.32 80.22 87.27 68.48 72.68 54.60 58.65 

2 RF 92.15 75.42 61.64 87.86 92.04 87.47 79.04 86.36 69.46 73.58 55.44 59.55 

3 SegNet8 95.83 88.10 79.56 92.59 95.06 93.54 88.25 90.67 83.23 84.09 69.39 73.92 

4 SegNet12 96.33 89.58 81.44 93.48 95.89 94.18 89.72 92.23 88.90 88.50 77.35 81.49 

5 SegNet16 96.89 91.02 84.27 94.32 95.88 94.25 89.73 92.19 90.24 90.41 79.68 83.34 

6 U_Net8 95.43 86.27 76.70 92.07 94.93 92.31 87.40 90.42 81.12 83.43 67.08 71.35 

7 U_Nett16_3 97.53 93.36 87.34 95.44 95.45 92.90 87.94 91.48 94.38 92.64 86.88 89.61 

8 U_Net16_4 97.25 92.61 85.93 94.99 94.94 91.88 86.50 90.56 94.80 92.49 87.63 90.25 

              

  
 
 
Classifier 

 
HYC54 

 
HYC55 

 
HYC56 

 
  

GA 
% 

 
MA 
% 

 
mIoU 

% 

 
wIoU 

% 

 
GA 
% 

 
MA 
% 

 
mIoU 

% 

 
wIoU 

% 

 
GA 
% 

 
MA 
% 

 
mIoU 

% 

 
wIoU 

% 

              
1 SVM 77.64 73.93 57.96 70.24 82.47 79.49 62.95 75.03 67.27 60.97 37.56 63.64 

2 RF 78.93 75.00 59.41 71.62 82.57 79.77 63.11 75.10 68.46 61.22 38.59 64.91 

3 SegNet8 90.81 87.23 76.99 84.33 86.51 83.52 69.44 78.68 66.63 57.28 35.63 61.55 

4 SegNet12 91.10 83.38 75.55 84.52 88.77 85.17 73.01 81.88 69.61 50.77 38.80 66.04 

5 SegNet16 90.83 85.40 76.19 84.37 89.07 86.07 73.73 82.19 69.04 47.75 38.77 65.26 

6 U_Net8 88.29 84.38 72.17 81.15 85.43 81.83 67.29 77.48 67.18 57.62 36.09 62.89 

7 U_Nett16_3 91.05 83.01 75.08 84.62 88.64 84.67 72.51 81.90 78.03 61.30 47.57 73.55 

8 U_Net16_4 92.19 82.83 76.50 85.89 90.03 84.94 74.56 83.54 86.35 63.71 55.73 81.00 
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organic certification (87%), crop production systems (73%), 
marketing (63%), and warehouse management (47%) [67]. 
For these reasons is that the work done in this research will 
contribute to the automation of data relevant to crop 
management. 
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TABLE A.1 
SEGNET ARCHITECTURE FOR P=8, P=12, P=16  

 

N Layer Type Hyperparameters 

    
1 'inputImage' Image Input PxPx5 images with 'zerocenter' normalization 
2 'encoder1_conv1' Convolution 64 3x3x5 convolutions with stride [1  1] and padding [1  1  1  1] 
3 'encoder1_bn_1' Batch Normalization Batch normalization 
4 'encoder1_relu_1' ReLU ReLU 
5 'encoder1_conv2' Convolution 64 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1] 
6 'encoder1_bn_2' Batch Normalization Batch normalization 
7 'encoder1_relu_2' ReLU ReLU 
8 'encoder1_maxpool' Max Pooling 2x2 max pooling with stride [2  2] and padding [0  0  0  0] 
9 'encoder2_conv1' Convolution 64 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1] 
10 'encoder2_bn_1' Batch Normalization Batch normalization 
11 'encoder2_relu_1' ReLU ReLU 
12 'encoder2_conv2' Convolution 64 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1] 
13 'encoder2_bn_2' Batch Normalization Batch normalization 
14 'encoder2_relu_2' ReLU ReLU 
15 'encoder2_maxpool' Max Pooling 2x2 max pooling with stride [2  2] and padding [0  0  0  0] 
16 'decoder2_unpool' Max Unpooling Max Unpooling 
17 'decoder2_conv2' Convolution 64 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1] 
18 'decoder2_bn_2' Batch Normalization Batch normalization 
19 'decoder2_relu_2' ReLU ReLU 
20 'decoder2_conv1' Convolution 64 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1] 
21 'decoder2_bn_1' Batch Normalization Batch normalization 
22 'decoder2_relu_1' ReLU ReLU 
23 'decoder1_unpool' Max Unpooling Max Unpooling 
24 'decoder1_conv2' Convolution 64 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1] 
25 'decoder1_bn_2' Batch Normalization Batch normalization 
26 'decoder1_relu_2' ReLU ReLU 
27 'decoder1_conv1' Convolution 3 3x3x64 convolutions with stride [1  1] and padding [1  1  1  1] 
28 'decoder1_bn_1' Batch Normalization Batch normalization 
29 'decoder1_relu_1' ReLU ReLU 
30 'softmax' Softmax softmax 
31 'pixelLabels' Pixel Classification Layer Cross-entropy loss 
    

 

APPENDIX A 

The following tables show details of the SegNet and U-Net architectures.  
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  TABLE A.2 
U-NET ARCHITECTURE FOR P=8, P=16, ENCODER DEPTH = 3 

 
N Layer Type Hyperparameters 

    

1 'ImageInputLayer' Image Input PxPx5 images with 'zerocenter' normalization 

2 'Encoder-Stage-1-Conv-1' Convolution 64 3x3 convolutions with stride [1  1] and padding 'same' 

3 'Encoder-Stage-1-ReLU-1' ReLU ReLU 

4 'Encoder-Stage-1-Conv-2' Convolution 64 3x3 convolutions with stride [1  1] and padding 'same' 

5 'Encoder-Stage-1-ReLU-2' ReLU ReLU 

6 'Encoder-Stage-1-MaxPool' Max Pooling 2x2 max pooling with stride [2  2] and padding [0  0  0  0] 

7 'Encoder-Stage-2-Conv-1' Convolution 128 3x3 convolutions with stride [1  1] and padding 'same' 

8 'Encoder-Stage-2-ReLU-1' ReLU ReLU 

9 'Encoder-Stage-2-Conv-2' Convolution 128 3x3 convolutions with stride [1  1] and padding 'same' 

10 'Encoder-Stage-2-ReLU-2' ReLU ReLU 

11 'Encoder-Stage-2-MaxPool' Max Pooling 2x2 max pooling with stride [2  2] and padding [0  0  0  0] 

12 'Encoder-Stage-3-Conv-1' Convolution 256 3x3 convolutions with stride [1  1] and padding 'same' 

13 'Encoder-Stage-3-ReLU-1' ReLU ReLU 

14 'Encoder-Stage-3-Conv-2' Convolution 256 3x3 convolutions with stride [1  1] and padding 'same' 

15 'Encoder-Stage-3-ReLU-2' ReLU ReLU 

16 'Encoder-Stage-3-DropOut' Dropout 50% dropout 

17 'Encoder-Stage-3-MaxPool' Max Pooling 2x2 max pooling with stride [2  2] and padding [0  0  0  0] 

18 'Bridge-Conv-1' Convolution 512 3x3 convolutions with stride [1  1] and padding 'same' 

19 'Bridge-ReLU-1' ReLU ReLU 

20 'Bridge-Conv-2' Convolution 512 3x3 convolutions with stride [1  1] and padding 'same' 

21 'Bridge-ReLU-2' ReLU ReLU 

22 'Bridge-DropOut' Dropout 50% dropout 

23 'Decoder-Stage-1-UpConv' Transposed Convolution 256 2x2 transposed convolutions with stride [2  2] and cropping [0  0  0  0] 

24 'Decoder-Stage-1-UpReLU' ReLU ReLU 

25 'Decoder-Stage-1-DepthConcatenation' Depth concatenation Depth concatenation of 2 inputs 

26 'Decoder-Stage-1-Conv-1' Convolution 256 3x3 convolutions with stride [1  1] and padding 'same' 

27 'Decoder-Stage-1-ReLU-1' ReLU ReLU 

28 'Decoder-Stage-1-Conv-2' Convolution 256 3x3 convolutions with stride [1  1] and padding 'same' 

29 'Decoder-Stage-1-ReLU-2' ReLU ReLU 

30 'Decoder-Stage-2-UpConv' Transposed Convolution 128 2x2 transposed convolutions with stride [2  2] and cropping [0  0  0  0] 

31 'Decoder-Stage-2-UpReLU' ReLU ReLU 

32 'Decoder-Stage-2-DepthConcatenation' Depth concatenation Depth concatenation of 2 inputs 

33 'Decoder-Stage-2-Conv-1' Convolution 128 3x3 convolutions with stride [1  1] and padding 'same' 

34 'Decoder-Stage-2-ReLU-1' ReLU ReLU 

35 'Decoder-Stage-2-Conv-2' Convolution 128 3x3 convolutions with stride [1  1] and padding 'same' 

36 'Decoder-Stage-2-ReLU-2' ReLU ReLU 

37 'Decoder-Stage-3-UpConv' Transposed Convolution 64 2x2 transposed convolutions with stride [2  2] and cropping [0  0  0  0] 

38 'Decoder-Stage-3-UpReLU' ReLU ReLU 

39 'Decoder-Stage-3-DepthConcatenation' Depth concatenation Depth concatenation of 2 inputs 

40 'Decoder-Stage-3-Conv-1' Convolution 64 3x3 convolutions with stride [1  1] and padding 'same' 

41 'Decoder-Stage-3-ReLU-1' ReLU ReLU 

42 'Decoder-Stage-3-Conv-2' Convolution 64 3x3 convolutions with stride [1  1] and padding 'same' 

43 'Decoder-Stage-3-ReLU-2' ReLU ReLU 

44 'Final-ConvolutionLayer' Convolution 3 1x1 convolutions with stride [1  1] and padding 'same' 

45 'Softmax-Layer' Softmax softmax 

46 'Segmentation-Layer' Pixel Classification Layer Cross-entropy loss 
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TABLE A.3 
U-NET ARCHITECTURE FOR P=16, ENCODER DEPTH = 3 

 
N Layer Type Hyperparameters 

    
1 'ImageInputLayer' Image Input 16x16x5 images with 'zerocenter' normalization 

2 'Encoder-Stage-1-Conv-1' Convolution 64 3x3x5 convolutions with stride [1  1] and padding 'same' 

3 'Encoder-Stage-1-ReLU-1' ReLU ReLU 

4 'Encoder-Stage-1-Conv-2' Convolution 64 3x3x64 convolutions with stride [1  1] and padding 'same' 

5 'Encoder-Stage-1-ReLU-2' ReLU ReLU 

6 'Encoder-Stage-1-MaxPool' Max Pooling 2x2 max pooling with stride [2  2] and padding [0  0  0  0] 

7 'Encoder-Stage-2-Conv-1' Convolution 128 3x3x64 convolutions with stride [1  1] and padding 'same' 

8 'Encoder-Stage-2-ReLU-1' ReLU ReLU 

9 'Encoder-Stage-2-Conv-2' Convolution 128 3x3x128 convolutions with stride [1  1] and padding 'same' 

10 'Encoder-Stage-2-ReLU-2' ReLU ReLU 

11 'Encoder-Stage-2-MaxPool' Max Pooling 2x2 max pooling with stride [2  2] and padding [0  0  0  0] 

12 'Encoder-Stage-3-Conv-1' Convolution 256 3x3x128 convolutions with stride [1  1] and padding 'same' 

13 'Encoder-Stage-3-ReLU-1' ReLU ReLU 

14 'Encoder-Stage-3-Conv-2' Convolution 256 3x3x256 convolutions with stride [1  1] and padding 'same' 

15 'Encoder-Stage-3-ReLU-2' ReLU ReLU 

16 'Encoder-Stage-3-MaxPool' Max Pooling 2x2 max pooling with stride [2  2] and padding [0  0  0  0] 

17 'Encoder-Stage-4-Conv-1' Convolution 512 3x3x256 convolutions with stride [1  1] and padding 'same' 

18 'Encoder-Stage-4-ReLU-1' ReLU ReLU 

19 'Encoder-Stage-4-Conv-2' Convolution 512 3x3x512 convolutions with stride [1  1] and padding 'same' 

20 'Encoder-Stage-4-ReLU-2' ReLU ReLU 

21 'Encoder-Stage-4-DropOut' Dropout 50% dropout 

22 'Encoder-Stage-4-MaxPool' Max Pooling 2x2 max pooling with stride [2  2] and padding [0  0  0  0] 

23 'Bridge-Conv-1' Convolution 1024 3x3x512 convolutions with stride [1  1] and padding 'same' 

24 'Bridge-ReLU-1' ReLU ReLU 

25 'Bridge-Conv-2' Convolution 1024 3x3x1024 convolutions with stride [1  1] and padding 'same' 

26 'Bridge-ReLU-2' ReLU ReLU 

27 'Bridge-DropOut' Dropout 50% dropout 

28 'Decoder-Stage-1-UpConv' Transposed Convolution 512 2x2x1024 transposed convolutions with stride [2 2] and cropping [0 0 0 0] 

29 'Decoder-Stage-1-UpReLU' ReLU ReLU 

30 'Decoder-Stage-1-DepthConcatenation' Depth concatenation Depth concatenation of 2 inputs 

31 'Decoder-Stage-1-Conv-1' Convolution 512 3x3x1024 convolutions with stride [1  1] and padding 'same' 

32 'Decoder-Stage-1-ReLU-1' ReLU ReLU 

33 'Decoder-Stage-1-Conv-2' Convolution 512 3x3x512 convolutions with stride [1  1] and padding 'same' 

34 'Decoder-Stage-1-ReLU-2' ReLU ReLU 

35 'Decoder-Stage-2-UpConv' Transposed Convolut 256 2x2x512 transposed convolutions with stride [2 2] and cropping [0 0 0 0] 

36 'Decoder-Stage-2-UpReLU' ReLU ReLU 

37 'Decoder-Stage-2-DepthConcatenation' Depth concatenation Depth concatenation of 2 inputs 

38 'Decoder-Stage-2-Conv-1' Convolution 256 3x3x512 convolutions with stride [1  1] and padding 'same' 

39 'Decoder-Stage-2-ReLU-1' ReLU ReLU 

40 'Decoder-Stage-2-Conv-2' Convolution 256 3x3x256 convolutions with stride [1  1] and padding 'same' 

41 'Decoder-Stage-2-ReLU-2' ReLU ReLU 

42 'Decoder-Stage-3-UpConv' Transposed Convolution 128 2x2x256 transposed convolutions with stride [2 2] and cropping [0 0 0 0] 

43 'Decoder-Stage-3-UpReLU' ReLU ReLU 

44 'Decoder-Stage-3-DepthConcatenation' Depth concatenation Depth concatenation of 2 inputs 

45 'Decoder-Stage-3-Conv-1' Convolution 128 3x3x256 convolutions with stride [1  1] and padding 'same' 

46 'Decoder-Stage-3-ReLU-1' ReLU ReLU 

47 'Decoder-Stage-3-Conv-2' Convolution 128 3x3x128 convolutions with stride [1  1] and padding 'same' 

48 'Decoder-Stage-3-ReLU-2' ReLU ReLU 

49 'Decoder-Stage-4-UpConv' Transposed Convolution 64 2x2x128 transposed convolutions with stride [2  2] and cropping [0  0  0  0] 

50 'Decoder-Stage-4-UpReLU' ReLU ReLU 

51 'Decoder-Stage-4-DepthConcatenation' Depth concatenation Depth concatenation of 2 inputs 

52 'Decoder-Stage-4-Conv-1' Convolution 64 3x3x128 convolutions with stride [1  1] and padding 'same' 

53 'Decoder-Stage-4-ReLU-1' ReLU ReLU 

54 'Decoder-Stage-4-Conv-2' Convolution 64 3x3x64 convolutions with stride [1  1] and padding 'same' 

55 'Decoder-Stage-4-ReLU-2' ReLU ReLU 

56 'Final-ConvolutionLayer' Convolution 3 1x1x64 convolutions with stride [1  1] and padding 'same' 

57 'Softmax-Layer' Softmax softmax 

58 'Segmentation-Layer' Pixel Classification Layer   Cross-entropy loss with 'non_vegetation', 'Other_vegetation', and 1 other classes 
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APPENDIX B 

MATLAB CODE  

% Training Dataset organization 
imds = imageDatastore('train_data.mat','FileExtensions','.mat','ReadFcn',@matReader); 
% Classes 
classNames = [ "non_vegetation","Other_vegetation","Quinua"]; 
% Ground Truth data 
pixelLabelIds = 1:3; 
pxds = pixelLabelDatastore('labeldata',classNames,pixelLabelIds); 
% Patch size 
imageSize = [16 16 5]; 
numClasses = 3; 
model = 2; %'vgg19' 
% Use of SegNet model. 
lgraph = segnetLayers(imageSize,numClasses,model); 
analyzeNetwork(lgraph) 
 
% Data augmentation  
augmenter = imageDataAugmenter('RandRotation',[0 90],'RandXReflection',true); 
 
% Datastore for extracting random patches from pixel label images 
dsTrain = randomPatchExtractionDatastore(imds, pxds,[16,16],'PatchesPerImage', 2000000, 
'DataAugmentation',augmenter); 
 
% Partitions a subset of observations for training and validation 
dsTrainT=partitionByIndex(dsTrain,[1: 1600000]); 
dsVal=partitionByIndex(dsTrain,[ 1600001: 2000000]); 
 
inputBatch = preview(dsTrainT); 
 
disp(inputBatch) 
disp(lgraph.Layers) 
 
% Preparing training options 
initialLearningRate = 0.01; 
maxEpochs = 8; 
minibatchSize = 128; 
l2reg = 0.0001; 
 
options = trainingOptions('sgdm',... 
    'InitialLearnRate',initialLearningRate, ... 
    'Momentum',0.9,... 
    'L2Regularization',l2reg,... 
    'MaxEpochs',maxEpochs,... 
    'MiniBatchSize',minibatchSize,... 
    'LearnRateSchedule','piecewise',... 
    'Shuffle','every-epoch',... 
    'GradientThresholdMethod','l2norm',... 
    'GradientThreshold',0.05, ... 
    'Plots','training-progress', ... 
    'ValidationData',dsVal, ... 
    'ValidationFrequency',2000, ... 
    'VerboseFrequency',20); 
% Training the SegNet model 
 
modelDateTime = datestr(now,'dd-mmm-yyyy-HH-MM-SS'); 
[net,info] = trainNetwork(dsTrainT,lgraph,options); 
 
% The trained SegNet model is saved 
save(['multispectralSegNet-' modelDateTime '-Epoch-' num2str(maxEpochs) 
'.mat'],'net','options'); 

B.1 Matlab code for Segnet Model training considering a 16x16 patch size. 
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% Training Dataset organization 
imds = imageDatastore('train_data.mat','FileExtensions','.mat','ReadFcn',@matReader); 
% Classes 
classNames = [ "non_vegetation","Other_vegetation","Quinua"]; 
% Ground Truth data 
pixelLabelIds = 1:3; 
pxds = pixelLabelDatastore('labeldata',classNames,pixelLabelIds); 
% Patch size 
imageSize = [16 16 5]; 
numClasses = 3; 
encoderDepth = 4; 
% Use of Unet model. 
lgraph = unetLayers(imageSize,numClasses,'EncoderDepth',encoderDepth) 
analyzeNetwork(lgraph) 
 
% Data augmentation  
augmenter = imageDataAugmenter('RandRotation',[0 90],'RandXReflection',true); 
 
% Datastore for extracting random patches from pixel label images 
dsTrain = randomPatchExtractionDatastore(imds, pxds,[16,16],'PatchesPerImage', 2000000, 
'DataAugmentation',augmenter); 
 
% Partitions a subset of observations for training and validation 
dsTrainT=partitionByIndex(dsTrain,[1: 1600000]); 
dsVal=partitionByIndex(dsTrain,[ 1600001: 2000000]); 
 
inputBatch = preview(dsTrainT); 
 
disp(inputBatch) 
disp(lgraph.Layers) 
 
% Preparing training options 
initialLearningRate = 0.01; 
maxEpochs = 8; 
minibatchSize = 128; 
l2reg = 0.0001; 
 
options = trainingOptions('sgdm',... 
    'InitialLearnRate',initialLearningRate, ... 
    'Momentum',0.9,... 
    'L2Regularization',l2reg,... 
    'MaxEpochs',maxEpochs,... 
    'MiniBatchSize',minibatchSize,... 
    'LearnRateSchedule','piecewise',... 
    'Shuffle','every-epoch',... 
    'GradientThresholdMethod','l2norm',... 
    'GradientThreshold',0.05, ... 
    'Plots','training-progress', ... 
    'ValidationData',dsVal, ... 
    'ValidationFrequency',2000, ... 
    'VerboseFrequency',20); 
% Training the UNet model 
 
modelDateTime = datestr(now,'dd-mmm-yyyy-HH-MM-SS'); 
[net,info] = trainNetwork(dsTrainT,lgraph,options); 
 
% The trained UNet model is saved 
save(['multispectralUNet-' modelDateTime '-Epoch-' num2str(maxEpochs) 
'.mat'],'net','options'); 

B.2 Matlab code for Unet Model training considering a 16x16 patch size and encoder depth of 3. 
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% Testing six images with Unet patch size 16. 
 
% Unet model 
load('multispectralUNet-06-May-2020-17-57-35-Epoch-8.mat'); 
 
testdir='testingdata001/'; 
 
Files=dir(strcat(testdir,'*.mat')); 
for k=1:length(Files) 
   FileName=Files(k).name 
   load(strcat(testdir,FileName)); 
   clear im 
   im(:,:,1)=Irel(:,:,3); 
   im(:,:,2)=Irel(:,:,2); 
   im(:,:,3)=Irel(:,:,1); 
 
   figure 
   imagesc(im) 
 
   predictPatchSize = [16 16]; 
 
% Segmenting image with UNet Model 
   segmentedImage = segmentImage(Irel,net,predictPatchSize); 
 
   figure 
   imagesc(segmentedImage) 
   str3 = strcat(testdir,'resultsUnet16_02/' ,'res_',FileName(1:length(FileName)-3),'png'); 
% Saving classified image 
   imwrite(segmentedImage,str3); 
   classNames = [ "non_vegetation","Other_vegetation","Quinua"]; 
   pixelLabelIds = 1:3; 
 
   pxdsResults = pixelLabelDatastore(str3,classNames,pixelLabelIds); 
 
   str4 = strcat(testdir,'groundT_',FileName(6:length(FileName)-3),'png'); 
 
   Ilabels=imread(str4); 
 
% Numerical evaluation 
   pxdsTruth = pixelLabelDatastore(str4,classNames,pixelLabelIds); 
   ssm = evaluateSemanticSegmentation(pxdsResults,pxdsTruth); 
   ssm.ConfusionMatrix 
   ssm.NormalizedConfusionMatrix 
   modelDateTime = datestr(now,'dd-mmm-yyyy-HH-MM-SS'); 
   save([str3(1:length(str3)-3) '_UNet16' modelDateTime '-SSM' '.mat'],'ssm'); 
end 

B.3 Matlab code for Unet Model Classification of six test images for evaluation. 
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APPENDIX C 

TRAINING PROGRESS OF DEEP LEARNING MODELS 

 

 
 

Figure C.1 Training progress for SegNet8 
 
 

 
 

Figure C.2 Training progress for SegNet12 
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Figure C.3 Training progress for SegNet116 
 
 

 
 

Figure C.4 Training progress for U-Net8 
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Figure C.5 Training progress for U-Net16_3 
 
 
 

 
 

Figure C.6 Training progress for U-Net16_4 
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APPENDIX D 

QUALITATIVE RESULTS 

 
 

Figure D.1 Qualitative results for testing dataset HYC51 a) RGB image, b) Ground truth, c) SVM, d) Random Forrest, e) 
SegNet8, f) SegNet12, g) SegNet16, h) U_Net8, i) U_Net16_3 and j) U_Net16_4. 
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Figure D.2 Qualitative results for testing dataset HYC52 a) RGB image, b) Ground truth, c) SVM, d) Random Forrest, e) 
SegNet8, f) SegNet12, g) SegNet16, h) U_Net8, i) U_Net16_3 and j) U_Net16_4. 
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Figure D.3 Qualitative results for testing dataset HYC53 a) RGB image, b) Ground truth, c) SVM, d) Random Forrest, e) 
SegNet8, f) SegNet12, g) SegNet16, h) U_Net8, i) U_Net16_3 and j) U_Net16_4. 
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Figure D.4 Qualitative results for testing dataset HYC54 a) RGB image, b) Ground truth, c) SVM, d) Random Forrest, e) 
SegNet8, f) SegNet12, g) SegNet16, h) U_Net8, i) U_Net16_3 and j) U_Net16_4. 
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Figure D.5 Qualitative results for testing dataset HYC55 a) RGB image, b) Ground truth, c) SVM, d) Random Forrest, e) 
SegNet8, f) SegNet12, g) SegNet16, h) U_Net8, i) U_Net16_3 and j) U_Net16_4. 
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Figure D.6 Qualitative results for testing dataset HYC56 a) RGB image, b) Ground truth, c) SVM, d) Random Forrest, e) 

SegNet8, f) SegNet12, g) SegNet16, h) U_Net8, i) U_Net16_3 and j) U_Net16_4. 
 

 

 




