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Resumen

Esta tesis contiene al Trabajo de Investigación para Bachillerato presentado

en [1], donde se incluyen los capı́tulos 1, 2 y 3. Estos han sido revisados y

corregidos según correspondı́a. Los capı́tulos 4, 5 y 6 de este trabajo son con-

tribuciones nuevas.

Los neutrinos juegan un papel importante en nuestro entendimiento de la natu-

raleza y están siendo estudiados exhaustivamente en la actualidad. En particu-

lar, la solución de oscilaciones de neutrinos inducidas por masa está respaldada

por contundente evidencia experimental, y presenta un excelente escenario para

observar nuevas interacciones con materia. Como un punto de partida en la in-

vestigación en Fı́sica de Neutrinos, nuestro objetivo es revisar el formalismo de

oscilaciones de neutrinos e Interacciones No-Estándar (NSI).

Este trabajo propone la revisión de la descripción en Mecánica Cuántica de

las oscilaciones de neutrinos, discutiendo las inconsistencias de las aproxima-

ciones usuales y planteando una más precisa. El mecanismo de oscilaciones en

materia también es estudiado con el propósito de derivar las ecuaciones difer-

enciales a resolver para la evolución de estados.

Además, debido a que su masa puede causarlas, revisamos el marco comúnmente

usado de Interacciones No-Estándar de neutrinos con materia y su introducción

en las ecuaciones. Los efectos de NSI son considerados en la producción, de-

tección y propagación de neutrinos, particularmente en el contexto de Deep

Underground Neutrino Experiment (DUNE).

Para encontrar los estados evolucionados, se desarrolló un programa para re-

solver la ecuación de Schrödinger numéricamente. Los resultados fueron com-
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parados con los datos existentes de un software de simulación de experimentos

de neutrinos, permitiendo la validación de nuestras soluciones y, de la misma

manera, la modificación apropiada del software. Los efectos de las Interac-

ciones No-Estándar son presentadas de manera más evidentes.
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Chapter 1

Historical Review

To refer to the history of neutrinos is to refer to that of weak interactions, which

starts with the discovery of the radioactivity of uranium, and two of its types of

products, α and β particles, by Becquerel and Rutherford respectively. In 1914,

Chadwick experimentally demonstrated the energy spectrum of electrons emit-

ted in β -decay to be continuous. This fact was controversial, as the beta decay

of a nucleus was thought to generate a single particle (an electron) and conser-

vation of energy implies that this particle should have a well-defined energy. In

an attempt to solve this problem, conservation of energy was questioned, with

N. Bohr suggesting that energy could be conserved only in a statistical sense.

However, Pauli proposed the existence of a weakly interacting fermion that was

emitted in β -decay [2].

In 1933, Francis Perrin suggested that the new particle, now with the name of

neutrino, needed to have a mass smaller than the one of the electron, a velocity

close to the speed of light, and spin 1/2. That same year, Fermi formulated a
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theory on β -decay [3], establishing the process as:

n→ p+ e−+ ν̄ (1.1)

After these contributions, few doubted the existence of the neutrino, but it was

only observed in the 1950s by Reines and Cowan, with their measurement of

inverse β -decay (ν̄ + p → n + e+). For this purpose, they used the flux of

anti-neutrinos from a nuclear reactor and 1400 liters of liquid scintillators, con-

stituting the first reactor neutrino experiment.

There are three known neutrino flavors: the electron neutrino νe, observed by

Reines and Cowan, the muon neutrino νµ , first observed in accelerator neutrino

experiments (beams made from the reaction π+→ µ++νµ , and µ+→ e++

νe + ν̄µ), and the tau neutrino ντ , whose evidence is only inferred from the τ

decay modes. In distinction with the other fermions, neutrinos are only sensible

to weak interactions: a tiny fraction from a sample of neutrinos in a medium

will interact with matter [4].

Apart from nuclear reactors and accelerators, neutrinos can also come from

the Sun, atmospheric reactions or extragalactic sources. The Sun releases its

energy in nuclear fusion reactions taking place in the solar core, in a network

of two-particle reactions, of which the most important one is the pp chain:

p+ p→ 2H+ e++νe (1.2)
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We are also led to other neutrino production reactions:

3He+ 4He→ 7Be+ γ (1.3)

7Be+ e→ 7Li+νe (1.4)

7Be+ p→ 8B+ γ (1.5)

8B→ 8B+ e+νe (1.6)

This gives rise to the dominant energy generation mechanism in the Sun [5],

and it represents a pure flux of electron neutrinos. Then, experiments at the time

detected only electron flavor neutrino. For example, The SAGE and GALLEX

experiments made measurements by making solar neutrinos react with gallium,

according to:

νe +
71Ga→ 71Ge+ e− (1.7)

While the Kamiokande and Super-Kamiokande experiments used the reaction:

νe + e−→ νe + e− (1.8)

with an energy threshold of 5 MeV in a water Cherenkov counter. However,

the observations did not give fluxes as great as the one predicted by the solar

standard model for solar neutrinos [6]. This resulted in the so-called solar

neutrino problem: there seemed to be a loss in the flux on the neutrinos way to

Earth.

To solve the solar neutrino problem, many proposals were made, from doubt-

ing the correctness of the standard solar model, doubting the estimation of the
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cross-section for the reactions in the experiments, to assuming that neutrinos

could decay into new particles that would be invisible to detectors. As these

scenarios are fairly unlikely, neutrino oscillations, along with its resonances

due to the presence of a heavily dense medium, could also offer an explanation

about the mechanism that causes the solar neutrino problem. The difference be-

tween the measured and the predicted neutrino fluxes was solved by the SNO

experiment. It was able to measure different neutrino flavors by using their

reactions with a deuteron:

νe +d→ p+ p+ e− (1.9)

νx +d→ p+n+νx (1.10)

The total neutrino flux it obtained was in agreement with the predicted flux,

even if the mechanism for this result is not clear [7].

Having formerly been unwanted background for experiments, atmospheric neu-

trinos have provided the first indication for neutrino oscillations. The mecha-

nism for muon production in the atmosphere from Cosmic Rays is known and

accepted. A charged particle from an extragalactic source arrives at the Earth’s

atmosphere and interacts with nuclei there, causing both an electromagnetic and

a hadronic shower. From the latter, pions are produced and they then decay, as

mentioned in the accelerator experiments case. Thus, giving an expectation of

a ratio of 2 to 1 between the number of νµ and the number of νe. Once again,

the measured flux was not in agreement with the theoretical prediction, until

Super-Kamiokande measured not only the energy of the neutrinos, but their di-
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rection, and, indirectly, the differences in their traveled path. It was found that

the neutrino flavor transition was actually dependent on this length [8].

Based on these observations, the most accepted theory was that of a periodic

change in neutrino flavor, induced by their mass differences. Following the

K0− K̄0 particle system, Pontecorvo suggested that oscillations happened be-

cause the flavor eigenstates did not have a defined mass, but were a quantum

superposition of mass states (the eigenstates of the corresponding evolution op-

erator). Both bases were related by a rotation angle, θ , given by nature, and

this formulation gave rise to the usual approach to neutrino oscillations, which

will be described in more detail in the following chapter.



Chapter 2

Description of Neutrino Oscillations

2.1 The typical approach

To describe the change in neutrino flavor as it propagates through space, it

is necessary to notice first that flavor states are not energy (mass) eigenstates.

Therefore, they are not the evolution operator eigenstates, and propagation can-

not be understood directly from them. Nevertheless, the energy eigenstates

constitute a basis and can be used to write a given flavor as a superposition of

them:

|να〉= ∑
i

Uαi |νi〉 (2.1)

|να(t)〉= ∑
i

Uαie−iHt |νi〉 (2.2)

The evolution operator is then applied on the mass eigenstates and the energy

is obtained for each one of them, according to the energy-momentum relation

E2 = p2 +m2. For example, for the particular case of two generation mixing,

where U represents a rotation matrix that depends on a parameter from nature,

7



8 Chapter 2. Description of Neutrino Oscillations

θ :

U =

cosθ −sinθ

sinθ cosθ

 (2.3)

Each mass state |νi〉 has an energy Ei, and the evolved flavor state is:

|να(t)〉= e−iE1t cosθ |ν1〉− e−iE2t sinθ |ν2〉 (2.4)

Then, the transition probability from the initial neutrino flavor α into a flavor

β is:

Pνα→νβ
= sin2 2θ sin2

[
(E2−E1)

2
t
]

(2.5)

The energies involved in the probability formula can be expressed using the

relativistic approximation:

Ei =
√

p2
i +m2

i (2.6)

Ei ' pi +
m2

i
2pi

(2.7)

The use of this approximation is completely justified: the current boundaries

for neutrino masses indicate that they are less than 1 eV and their energy needs

to be higher than 100 keV to be detected. This bears a tiny ratio of ∆m2

p2 ≤ 10−10

[9].

We can then introduce this into Eq. (2.5) and make t = L. We may also consider

that, as neutrinos are ultra relativistic, pi = Ei and p1 = p2 = E. Thu we obtain

the master formula for two generations:

Pνα→νβ
= sin2 2θ sin2(

∆m2

4E
L) (2.8)
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For three generation oscillations, the mixing matrix becomes more complex:

UPMNS =


c12c13 s12c13 s13e−iδCP

−s12c23− c12s23s13eiδCP c12c23− s12s23s13eiδCP s23c13

s12s23− c12c23s13eiδCP −c12s23− s12c23s13eiδCP c23c13


(2.9)

where cmn = cosθmn, smn = sinθmn and δCP is a CP-violating phase. Obtain-

ing a master formula for three generation mixing becomes considerably more

difficult.

Although the steps followed for obtaining the probability formulas work well

and are in fact widely used experimentally, notation should be able to describe

the space-time and energy-momentum degrees of freedom for a neutrino state,

by factorizing the general states as described in [9]: considering that the afore-

mentioned quantities are not certainly known for flavor states, only mass states

can be written by defining the complete Hilbert space H as the product of

a space corresponding to the momentum and another one, to the mass of the

neutrino.

H := Hd⊗Hm (2.10)

Thus, a general neutrino mass state |νi〉 ∈H will have definite kinematical

properties [10] and will be expressed as:

|νi〉 := |νm
i 〉⊗ |pi〉 (2.11)
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and a flavor state can be written as:

|να〉= ∑
i

Uαi |νm
i 〉⊗ |pi〉 (2.12)

The wave function for this initial neutrino flavor state is:

|να(~x)〉= 〈~x|να〉= ∑
i

Uαiei~pi·~x |νm
i 〉 (2.13)

Now, we can apply the evolution operator to the state, and the neutrino flavor

state for a time t and position~x becomes:

|να(t,~x)〉= ∑
i

Uαie−iEitei~pi·~x |νm
i 〉= ∑

i
Uαie−ipix |νm

i 〉 (2.14)

Finally, the transition probability of the initial flavor α into a flavor β , defined

by
∣∣〈νβ |να(t,~x)〉

∣∣2, depends on the phase differences between mass states:

∆φik = ∆Eik · t−∆~pik ·~x (2.15)

2.2 Approximations and their accuracy

To evaluate Eq. (2.15), some assumptions are usually made, just as done for

obtaining 2.8, and as will be described below. The analysis in the following

sections will be based on the work in [11], summarizing and specifying some

details.

1. Same momentum: By establishing pi = pk = p, the space dependence of

the phase difference vanishes, and the oscillation probability depends only
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on time and energy. According to the relativistic approximation, Eq. (2.7),

we obtain:

∆φik '
∆m2

ik
2p

t (2.16)

Now, the distance between source and detector is known much more ac-

curately than the time of propagation in neutrino experiments. This is

handled here by making the time to space conversion: as neutrinos are

considered to be ultra-relativistic, L' t and

∆φik '
∆m2

ik
2p

L (2.17)

2. Same energy: As neutrinos are created in weak interactions, they have a

well-defined flavor at their source, and it is only necessary to examine the

behavior of a single energy state: oscillation probabilities can be found

by evaluating a linear superposition of mass states with same energy and

different momenta [12]. Following this argument, using the same energy

for all mass states (∆E = 0) in Eq. (2.15) is also a common approach.

It is also possible to consider ~x||~p, as the distance from source to the de-

tector is much larger than the transverse sizes [11]. By also applying an

approximation analogous to Eq. (2.7), the oscillation phase is:

∆φik =−∆pik ·L'
∆m2

ik
2E

L (2.18)

Inconsistencies can be found in the approaches, as several contradictions arise.

It is first necessary to establish some aspects regarding the observability of
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oscillations in experiments:

a) The processes of neutrino production and detection are localized and have

different coordinates in space, so we must be able to distinguish positions.

b) Transition probabilities must depend on space coordinates.

c) The production and detection of neutrinos also happen at specific instants

in time.

d) The phenomenon of neutrino oscillations is the result of quantum interfer-

ence, due to momentum (space) and energy (time) uncertainties. There-

fore, our description must account for them.

Let us first recall Eq. (2.16). The probability will not depend on any spatial

coordinates, so same momentum assumption cannot define production and de-

tection regions, contradicting aspect a). Moreover, a time-only dependence of

the phase difference could lead us to believe that detecting neutrinos, for exam-

ple, at their source would be sufficient to observe oscillations. This contradicts

the definition of flavors by the weak charged current. However, the approach

arrives at supporting aspect b) by using the time to space conversion. Note here

that the latter can only be applied if there is a classical velocity (for a point-like

particle) [11].

Assuming that the neutrino mass states all have the same momentum means that

it is well-defined -i.e., they are momentum eigenstates and their wave functions

in momentum space are delta functions:

ψi(~p) = δ (~p−~pi) (2.19)
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In the position space, this wave function becomes:

ψi(~x, t) =
1

(2π)
3
2
ei~p·~x−iEit (2.20)

The same momentum assumption then leads us to consider the wave functions

as plane waves with definite ~pi [9]. A group velocity cannot be defined for

plane waves, but it is the equivalent to a point-like particle velocity, used for

the time to space conversion. Therefore, we arrive at an internal inconsistency

of the approach.

Finally, plane waves do not account for energy-momentum spread, which con-

tradicts aspect d). The oscillation phenomenon would not be possible with

plane waves.

The same energy approach results in a phase difference that does not account

for the time dependence of oscillations, and contradicts aspect c). Furthermore,

it could be argued that same energy for the mass states can be a reality for

certain Lorentz frames. Let us follow the logic in [13], and assume there is a

Lorentz frame O where all neutrino mass states have the same energy Ei = E

and, of course:

pi ' E−
m2

i
2E

(2.21)

If we now consider another frame O ′, with a velocity v along the x axis with

respect to O . The energy E then becomes:

E ′i = γ(−vpi +E) (2.22)
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E ′i '
√

1− v
1+ v

E +
v√

1− v2

m2
i

2E
(2.23)

Defining a quantity E ′, which will be a term common to E and p of all neutrino

mass states (as it depends on E and v), we get:

E ′i ' E ′+
v

1+ v
m2

i
2E ′

, (2.24)

where

E ′ =

√
1− v
1+ v

E (2.25)

By applying the Lorentz transformation to pi as well:

p′i = E ′− 1
1+ v

m2
i

E ′
(2.26)

In general, the energy and momenta of mass eigenstates would not be equal

when changing frames. More specifically:

∆E ′i j =
v

1+ v

∆m2
i j

2E ′
, ∆p′i j =−

1
1+ v

∆m2
i j

2E ′
(2.27)

The same energy approach then is not universal, and cannot be supported with

any physical arguments: it will not work simultaneously for different experi-

mental conditions. Moreover, even if we found a frame where energies are the

same (where they are determined by the production process and have no depen-

dence on neutrino mass), it would not be particularly useful. Let us consider

the pion decay, π+→ µ+ν̄µ .
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Kinematic treatment to this case, considering massless neutrinos, gives for the

energy of ν̄µ :

Eν =
mπ

2

(
1−

m2
µ

m2
π

)
(2.28)

This is the zeroth order approximation, that would consider pi = Ei = E. How-

ever, there are in fact mass contributions. The kinematic treatment when con-

sidering neutrino mass, gives:

Ei ' E +(1−ξ )
m2

i
2E

, (2.29)

where

ξ =
1
2

(
1+

mµ2

m2
π

)
(2.30)

Thus, energy for the mass states will differ according to the Lorentz frame

considered for production. Of course, they could have the same energy if we

consider a boosted reference frame, i.e., for the case where a decaying particle

is not at rest, where we can arrive at a parameter ξ ′ = ξ ′(ξ ,v) = 1. Never-

theless, this frame does not coincide with the laboratory frame, meaning it is

not useful for calculations and predictions, and would depend on the energy of

the decaying particle. In realistic conditions, particle beams are not monochro-

matic, and the non-existence of one single value for the energy means that the

boost needed to arrive at the desired reference frame is not unique.
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2.3 An accurate treatment

As established in the previous section, plane waves cannot describe localized

neutrino production and detection, or a single localized particle for that matter.

In general, the latter is usually described by a wave packet: a superposition of

plane waves. Additionally, a wave packet has a momentum spread σp around

a central momentum ~p0, as the uncertainty relation implies that, if we have a

localized state in space, then we can know its momentum only with an uncer-

tainty σp & 1
σx

[2]. The individual plane waves that compose a wave packet

each have a value for their respective momentum that is in fact close to the

central value ~p0, determined by the production and detection processes.

Just by examining the definition of wave packet, we see that it is in agreement

with the aspects for oscillation observability, thus validating the use of wave

packets for describing the states. Let us take a closer look at this formalism.

Using the wave packet approach, a particle of mass mi is represented in the

coordinate space by a wave function of the form:

Ψ(~x, t) =
∫ d3p

(2π)3 f~p0 exp(i(~p ·~x−Ei(p)t)) (2.31)

where f~p0 is the corresponding momentum distribution with a peak at ~p0, mo-

mentum spread σp and, of course, energy given by the dispersion relation, Eq.

(2.6). Then, the evolved state for the neutrino flavor in Eq. (2.14) becomes:

|να(t,~x)〉= ∑
i

UαiΨi(t,~x) |νi〉 (2.32)
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and any other flavor states |νβ 〉 must also be described by an Eq.(2.32)-type

expression [11].

Let us now evaluate the oscillation phase. Keep in mind that neutrinos are

not only relativistic, but also almost degenerate in mass: We can consider that

the different mass states have energy and momentum differences be very small

compared to the average values, i.e, ∆Ei j� Eaverage and ∆pi j� paverage.

We can, in general, expand the energy of one mass state i as:

Ei(~p) = Ei(~̃pi +∆~p) = E(~̃pi)+
∂E
∂ p

∣∣∣
p̃i
|∆~p|, (2.33)

where ~̃pi is the average momentum of the mass state and ∆~p = ~p− ~̃pi. Our state

is a wave packet composed of a main wave and modulations to it, which all

have a velocity:

vg,i =
∂E
∂ p

∣∣∣
p̃i

(2.34)

If we consider, for simplicity, that vg,i = vg is universal and ~̃p is the overall

average value of ~p (remember the value of ~̃pi is much larger that its difference

with other ~̃p j ), we can obtain:

∆Eik = vg|∆ ~pik|+
1

2|~̃p|
∆m2

ik (2.35)

Let us notice that this newly defined group velocity can be used for establishing

relations of the form x = vt, as it is interpreted as the velocity of the localized

particle described by our wave packet. Thus, allowing us to make use of time

to space conversion t = L/vg with no contradictions.

If we introduce Eq. (2.35) into the phase difference found at first, Eq. (2.15),
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we can obtain two possible new expressions for the latter:

∆φik = ∆Eik · t−∆~pik ·~x = ∆Eik · t−∆pikL (2.36)

∆φik = (vgt−L)∆pik +
1

2|~̃p|2
EL∆m2

ik (2.37)

∆φik =
1
vg
(vgt−L)∆Eik +

1
2|~̃p|2

EL∆m2
ik (2.38)

Note that for Eq. (2.37) and Eq. (2.38), we are considering L = vgt and vg =

|~̃p|/Ẽ (the same for all mass states), and Ẽ is the average energy of the mass

states. We may take it a little further with the assumption of ultra-relativistic

neutrinos and consider vg → 1 and |~̃p| → E(~̃p). Then, we can conveniently

arrange our phase differences:

∆φik = (vgt−L)∆pik +
1

2Ẽ
L∆m2

ik (2.39)

∆φik =
1
vg
(vgt−L)∆Eik +

1
2|~̃p|

L∆m2
ik (2.40)

Both Eq. (2.39) and Eq. (2.40) can have their first term on the right hand

side vanish only for the case of the center of the wave packet, where vgt = L.

However, other positions cannot have a distance to the center of over σx to it:

∣∣vgt−L
∣∣≤ σx (2.41)

and we can establish a condition for each expression so their first term vanishes:

σx |∆pik| � 1 (2.42)
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σx

vg
|∆Eik| � 1 (2.43)

Let us also recall that Heisenberg’s uncertainty indicates that σx ∼ 1
σp

, so our

condition in Eq. (2.42) becomes:

|∆pik| � σp (2.44)

From E2 = p2 +m2, we can obtain σE = p
E σp = vgσp. Then, the uncertainty

principle also implies σx ∼
vg
σE

, and the condition in Eq. (2.43) becomes:

|∆Eik| � σE (2.45)

If the relations in Eq. (2.44) and (2.45) hold for the mass states, the phase

differences found with the same momentum and same energy assumptions are

recovered: The approximations are justified (and correct) as long as the differ-

ences in energy and momentum between the mass states are much smaller than

their corresponding quantum uncertainty. The mass contribution to the energy

and momentum of each massive neutrino needs to be very small to allow all Ei

and pi to be very close in value. In fact, so close that we may confuse them due

to quantum fluctuations.

2.4 Uncertainties and coherence

It is not a coincidence that our conditions for justifying the approaches are

related to quantum uncertainties. In fact, they are the reason for the entire

phenomenon, apart from just the use of quantum mechanics in the description:
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Eq. (2.44) and (2.45) are the so-called coherence conditions that allow neutrino

oscillations to be observable.

Let us take a look at a pion decay, π+→ µ+νµ , and follow the standard proce-

dure of 4-momentum conservation (Pπ = Pµ +Pν). Applying this for the case

in which the pion is not at rest, we can express the mass of the neutrino in

terms of the masses and momenta of the pion and muon. If the experiment to

be performed were able to precisely measure the momenta, it would be able

to determine the neutrino mass squared m2
ν and distinguish it from the other

neutrino masses, as described below, following [14].

If we consider that the experiment will detect only a specific neutrino flavor,

the rate of the events of a particular neutrino mass state will be proportional to

the probability to trigger detection and the probability for a pion to decay in the

muon channel. Therefore, the results will depend on how a neutrino flavor state

is a superposition of mass states, but not vary with spatial coordinates: there

will be no oscillation pattern.

This can be explained as follows: if the experiment can determine E and p with

independent errors, the dispersion relation can be used to find an uncertainty

for the neutrino mass squared:

σm2 =
√

[2EσE ]2 +[2pσp]2 (2.46)

For a mass state to be identified, it is necessary that ∆m2 > σm2. For this to

hold, we see from Eq. (2.46) that we need:

2pσp < ∆m2 (2.47)
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and by using the uncertainty principle, we arrive at:

σx >
2p

∆m2 (2.48)

Before continuing, we need to define a relevant quantity: the oscillation length.

Eq. (2.14) can be expressed using Eq. (2.7) as:

|να(t,~x)〉= ∑
i

Uαie
−i

m2
i

2p t |νm
i 〉 (2.49)

The probability of measuring a state given by Eq.(2.13), using time to space

conversion, is then [14]:

Pνα→νβ
= ∑

i
U2

αiU
2
β i +∑

i6= j
UαiU∗β iU

∗
α jUβ j cos(x

∆m2

2p
), (2.50)

As the periodicity of the cosine is given by 2π , we can write the term as

cos(2π
x

losc
), where

losc = 2π
2p

∆m2 (2.51)

is the oscillation length for our probability. Except for a factor of 2π , this is

precisely the condition stated in Eq. (2.48).

We can now interpret the disappearance of oscillations with precise momentum

measurements. As the pion momentum is more accurately defined, its position

will be more undetermined and the neutrino production will be delocalized [14].

When the pion momentum is measured with enough precision such that σm2

is less than all ∆m2, the uncertainty in the coordinate of the production point

exceeds the oscillation length and oscillations are averaged. For example, for an
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experiment with average momentum p = 2.5 GeV and assuming only ∆m2
21 =

7.2× 10−5 eV2, we would have losc ' 4.36× 109 eV−1 = 5.41× 108 m. If

we could not localize our production point within 500000 km, we would not

observe oscillations.

Even though this entire argument was made by taking into account only the

production of a neutrino, it can be similarly done for neutrino detection. Thus,

we have arrived at a condition for the observability of oscillations: we must

not be able to distinguish what mass state has been produced or detected. This

condition is satisfied only if neutrino production and detection have their spatial

coordinates well-defined (they have small values for σx).

It could be argued that this violates energy-momentum conservation. However,

given that neutrinos (and their processes) have spatial and time coordinates with

their respective uncertainties, so do their energy and momentum values. Then,

the states that represent our particles are not exactly eigenstates of energy and

momentum, but this does not imply the 4-momentum is not conserved [11].

Another formulation for the coherence conditions can be done in configuration

space and arrive at conditions that are in agreement with the discussion so far.

For that, we focus on the fluctuations of the oscillation phase, which must be

small as not to average the probability over the oscillation phase:

|δφ |= |∆E ·δ t−∆~p ·δ~x| � 1 (2.52)

If we assume that in no frame will the terms in Eq. (2.52) cancel (or rather if

we are not looking to get Lorentz invariant conditions), both terms need to be



2.4. Uncertainties and coherence 23

small on their own. Furthermore, the fluctuations in, for example, production

position and time are, at most, equal to the uncertainties of those quantities,

δ t . σt and |δ~x|. σx. All these relations finally arrive at [11]:

|∆E| � σE (2.53)

|∆p| � σp (2.54)

These are the exact same conditions assumed for evaluating the oscillation

phase in the wave packet approach, and support the role of the quantum un-

certainties in observing oscillations.

While we have established that coherence in production and detection is needed

for neutrino oscillations to be observed, this condition is not sufficient by itself.

For a given momentum, the waves for each mass state will travel at different

speeds vg, as they depend on the respective mass, resulting in the separation of

their centers. When the waves do not overlap, the mass states cannot interfere

and produce oscillations [14] and so, coherence is lost.

However, the waves will maintain coherence while travelling some distance in

space, called the coherence length. Its value can be deduced logically from the

conditions already mentioned. Let us consider an average group velocity for the

mass states, vg, and the average distance traveled by the different waves, l = vgt.

The separation between mass states after a time t will be given by ∆l = ∆vgt,

and for there to be interference of the states, this separation must be less than

the wave spatial spread σx, or at most, equal to it after a time tcoh =
lcoh
vg

. As a
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result of these equations, the coherence length is found to be:

lcoh '
vg∣∣∆vg
∣∣σx (2.55)

Considering ultra relativistic neutrinos, we can use p∼ E and vg ' 1. Also, by

considering an average energy, ∆vg ' ∆p
E '

∆m2

2E2 , and the coherence length is:

lcoh '
2E2

|∆m2|
σx (2.56)

Neutrino oscillations can be observed only for distances traveled that satisfy

L� lcoh, which is in fact very large [11]. Let us try again our example of an

experiment with average energy E = 2.5 GeV and ∆m2
21= 7.2×10−5 eV2, with

∆E = 0.5 GeV. We would then obtain lcoh ' 1.39× 1014 eV−1 = 1.72× 108.

Coherence is then lost in a distance much larger than the radius of the Earth

itself.

Even if it seems very difficult not to achieve, if this condition is not met, the

detection process will be able to distinguish each mass state wave as they arrive

at different times. However, depending on the characteristics of the detection,

coherence could be restored.

If the detection process takes longer than the time it takes all the wave packets

to arrive to the detection point, there may still be a coherent event. Hence, the

coherence length must have a dependence on the time resolution of the detector

[15]. From l = vgt, we can obtain:

σx =

√(
∂ l

∂vg

)2

σ2
vg
+

(
∂ l
∂ t

)2

σ2
t (2.57)
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The same approach for finding σvg gives a quantity of the order of σE/E, so it

is vanishingly small. Thus, we get σx = vgσt = vg/σE , interpreted as an effec-

tive length of the wave packet by taking into account the uncertainties of both

production and detection [11]. Then, for example, if the energy measurement

in the experiment became extremely accurate, the effective length of the wave

packet would be infinite, and so would the coherence length: the propagation

of the neutrino mass states would not cause the loss of coherence.

2.5 Summarizing the coherence conditions

Neutrino oscillations are observable only if the neutrino flavor state is a co-

herent superposition the mass states at all times: production, propagation and

detection of neutrinos are coherent. There is, however, a possible contradiction

among the conditions this sets.

Going back to the example of a very accurate measurement of energy in the

detection process, it would not allow the condition in Eq. (2.53) to be satis-

fied. Furthermore, it would imply an infinitely large uncertainty in time, so

the instant for the detection is completely undefined, contradicting the same

argument as the same energy approach.

Let us try and evaluate how both coherence conditions could work together.

They can be expressed as:

∆E ∼ ∆m2

2E
� σE (2.58)

∆m2

2E2 L�
vg

σE
(2.59)
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and would represent limits for σE [11]:

∆m2

2E
� σE �

2E2

∆m2L
, (2.60)

where vg has been maximized (vg ' 1). The stated relation between the limits

will work as long as ∆m2 is small (this explains why neutrinos oscillate, while

charged leptons do not). Moreover, by taking only the extremes:

2π
L

losc
� 2E2

∆m2 (2.61)

This ensures the compatibility of the conditions, while not necessarily the ful-

fillment of both coherence conditions. From Eq.(2.60), we can also get:

L
losc
∼ E

2πσE
(2.62)

Experimentally, σE is actually the energy resolution of the detector, which is

larger. This establishes conditions to be considered in experiment design, such

as the maximum number of observable oscillations, lcoh
losc

, and the baseline.

2.6 Some remarks

The conditions for neutrino oscillations to occur and be observable discussed

so far have a dependency on the production and detection processes. For exam-

ple, in Eq. (2.31), the neutrino mass state has a dependence on a momentum

distribution, which will be different for the neutrino states in production,
∣∣∣ f P

~p0

∣∣∣2,

and detection,
∣∣∣ f D

~p0

∣∣∣2. On the other hand, a flavor state needs to be normalized.
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Then, for that to be ensured, they need to satisfy:

∫ d3p
(2π)3

∣∣∣ f P
~p0

∣∣∣2 ∣∣∣ f D
~p0

∣∣∣2 = 1 (2.63)

So, for probabilities to even make sense, the production and detection processes

need to be taken into account. Notice that the integral represents the degree of

overlap between the momentum spectra of produced and detected neutrinos,

which will, in the end, give the detection efficiency. Of course, this does not

mean the overlap will always give 1 and solve the normalization problem. Fur-

thermore, oscillations are a phenomenon in nature, and not induced from exper-

imental conditions, i.e., the oscillation probabilities found with the formalism

have to be universal.

Of course, measurable quantities do need to consider the experimental aspects

of production, propagation and detection, and they can be represented by the

probability of the complete process. If this probability can be expressed as fac-

tors of flux (production), interaction probability (detection) and the experiment-

independent probability, then we could be able to obtain universal probabilities

[11]. This type of factorization will only be possible if all three aspects are

independent of each other.

Propagation and detection of the neutrino states will not be dependent of each

other. They will also not depend on the production process if the latter gener-

ates neutrinos with the same kinematics, which happens if the mass of different

states does not affect the momentum. This can all be reduced to having the

production process not be able to discriminate between mass states: production
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must be coherent. On that note, propagation and detection must also not dis-

tinguish masses, so the already established conditions ensure independence for

experiments as well.

Finally, universality also implies that the probabilities do not depend on the

frame of reference used. The phase difference that defines the probability ex-

plicitly includes the relation L
E and, it can be shown that the relation remains

invariant. Following the treatment in [16], let us assume an inertial reference

frame O ′ moving with velocity v in the x direction with respect to another ref-

erence frame O , and recall the Lorentz transformations for space and time:

∆x′ = γ(∆x− v∆t) (2.64)

∆t ′ = γ(−v∆x+∆t) (2.65)

where the parameter γ = 1/(1− v2). The distance between the neutrino source

and the detector measured in O ′ is:

L′ =
L
γ

(2.66)

and the transformations for momentum and energy are:

p′ = γ(p− vE) (2.67)

E ′ = γ(−vp+E) (2.68)

Notice that, if we consider the ultra-relativistic limit in O , we would have the

same condition under the boost to get to O ′: Having E = p allows us to get the
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same expressions for Eq.(2.67) and Eq.(2.68), and the ultra-relativistic limit

remains under boosts. Thus, we can also consider it for O ′ and obtain:

E ′ = p′ = γ(1− v)E (2.69)

Evidently, L′ and E ′ will not result in probabilities equal to the ones using L

and E. However, for obtaining our phase difference, we have used the approx-

imation of L = t. The parameter L does not represent the distance between the

source and detector, but rather the distance traveled by the neutrino. On one

hand, we have for O , ∆x = ∆t, and for O ′:

∆x′ = ∆t ′ = γ(1− v)∆x (2.70)

Then, the correct transformation for L is:

L′ = γ(1− v)L (2.71)

The relation L′/E ′ can now be seen to be equal to L/E [16]. That being the

case, probabilities now can be considered as universal.
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Oscillations in Matter

So far, we have established an acceptable formalism for neutrino oscillations

and found arguments to support the more simple approaches, as the necessary

conditions are usually satisfied. This has been done by only taking into ac-

count the properties of the particles themselves, without any additional poten-

tials from the medium they are in -i.e., we have considered neutrino oscillations

in vacuum.

According to the Standard Model, neutrinos have no mass and are left-handed,

which allows them to interact only through weak force. On the other hand, we

have so far assumed that the reason for the oscillation phenomenon to occur is

that neutrinos are not actually massless, giving us a hint for new physics, which

will be considered in following chapters. For the purpose of the present chapter,

we will consider only the standard interactions via weak force, through either

charged or neutral currents. Even though their interaction rate is relatively low,

oscillations can be affected when considering neutrinos in a medium, in the

presence of nucleons and electrons. The introduction of the interactions in the

theory to be used will be done by obtaining them from electroweak theory, to

30
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W+

νe

e−

e−

νe

Z0

νe

νe

X

X

Figure 3.1: Feynman diagrams of coherent forward scattering processes through charged (left)
and neutral (right) current. X represents an electron or a nucleon, and να , any flavor of neutrino.

ensure a correct understanding of the phenomenon, and following the procedure

in [2].

Specifically, the processes that will affect neutrinos in a medium are coherent

scattering, where the interaction makes the other interacting particle recoils as

a whole and remain in the same quantum state (Fig. (3.1)), and incoherent scat-

tering, where the other interacting particle recoils as a whole, but changes its

quantum state. The two processes as basically indistinguishable experimentally

if only the recoil energy is observed [17]. However, the latter is a small fraction

of the total scattering events, as the neutrino mean free path considering in nor-

mal matter can be demonstrated to be about 0.1 light years [2]. Thus, we can

neglect this process.

3.1 Evolution equation

The number of events of coherent interactions will not be vanishingly small

and they will affect the neutrino flavor states evolution, as they add an effective

potential term to the energy. Let us recall the Schrödinger equation:

i
d
dx

ν = H ν (3.1)
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For our case, H is the total Hamiltonian, and includes matter effects as:

H = H0 +HI (3.2)

where HI |να〉=Vα |να〉. In Eq.(3.2), H0 represents the vacuum hamiltonian,

related only to neutrino masses, and HI represents the interaction with matter

that is being added. Vα is the matter potential that will modify the energy

the neutrino would have in vacuum, and the eigenvalue when applying HI to

neutrino flavor states. The expression for Vα can be found from the formulation

of the interaction in electroweak theory. For the case of the charged current

shown in Fig. (3.1), the effective Hamiltonian is:

H CC(x) =
GF√

2
[νe(x)γρ(1− γ

5)e(x)][e(x)γρ(1− γ
5)νe(x)] (3.3)

Now, we actually need to find H
CC

(x) = 〈
∫

H CC(x)dx〉, averaged over the

electron background. However, Eq.(3.3) cannot be inserted directly, as pointed

out in [18]. The electrons in a medium have an energy distribution, described by

the Fermi function: f (Ee,T ) (
∫

f (Ee,T )d pe = 1), so we have to also integrate

over it. At the same time, the polarization of the electrons is unknown, so we

need to average over spin, he: 1
2 ∑he. Thus:

H ′CC
(x) =

1
2 ∑

he

∫ GF√
2
[νe(x)γρ(1− γ

5)e(x)][e(x)γρ(1− γ
5)νe(x)]d pe (3.4)

To follow the calculations, we first need to keep in mind that a Fierz transfor-
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mation allows us to rearrange the expression with:

[νe(x)γρ(1−γ
5)e(x)][e(x)γρ(1−γ

5)νe(x)]= [e(x)γρ(1−γ
5)e(x)][νe(x)γρ(1−γ

5)νe(x)]

(3.5)

We also need to remember the quantized fields:

e(x) =
1√

2EeV
e−ipexuhe(pe)ahe(pe) (3.6)

e(x) =
1√

2EeV
eipexa†

he
(pe)uhe(pe), (3.7)

where Ee is the electron energy and V is the volume in space, a and a† are the

annihilation and creation operators, and u and u, the spinors for an electron spin

he and momentum pe. We then get:

H ′CC
(x)=

1
2 ∑

he

∫ GF

2
√

2EeV
[Nhe(pe)uhe(pe)γ

ρ(1−γ
5)uhe(pe)][νe(x)γρ(1−γ

5)νe(x)]d pe,

(3.8)

where Nhe(pe) = a†
he
(pe)ahe(pe) is the number operator. Eq.(3.8) can actually

be used to find H
CC

(x):

H
CC

(x) = 〈νe(pν ,hν)e(pe,he)|
∫

H ′CC
(x)dx |νe(pν ,hν)e(pe,he)〉 (3.9)

For some final steps, we will need some other identities. First, we will consider
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equal number of electrons with positive and negative spin:

Nhe(pe) |e(h+, pe)〉= Nhe(pe) |e(h−, pe)〉=V Ne(pe) |e(he, pe)〉 (3.10)

Notice that the number density of electrons, Ne(pe) still depends on the mo-

mentum. We will also need:

∑
he

uhe(pe)γ
ρ(1− γ

5)uhe(pe) = 4Pρ
e (3.11)

∫
f (Ee,T )Ne(pe)

~γ · ~pe

Ee(pe)
= 0, (3.12)

as the integrand is odd under ~pe→−~pe, and

∫
f (Ee,T )Ne(pe)d pe = Ne, (3.13)

where Ne is finally the number density of electrons in the medium. So, we

finally arrive at:

H
CC

(x) =VCCνe,L(x)γ0
νe,L(x) (3.14)

where VCC =
√

2GFNe. Similarly, the effective Hamiltonian for the neutral

current interaction is:

H NC(x) =
GF√

2 ∑
α

[να(x)γρ(1− γ
5)να(x)]∑

f
[ f (x)γρ(g f

v −g f
Aγ

5) f (x)] (3.15)

By comparing with our previous equations, we arrive at the potential for neutral

current V f
NC =

√
2GFN f g f

V for each particle represented by f [2], where g f
V are

real dimensionless parameters for the couplings of the Z boson to fermions
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[19]. The values of g f
V are shown in the following table [2]:

Fermion g f
V

νl gν
V = 1

2
l gl

V =−1
2 −2s2

W
u,c, t gU

V = 1
2 −

4
3s2

W
d,s,b gD

V =−1
2 +

2
3s2

W

Table 3.1: Values of g f
V for fermions.

where s2
W = sinϑW

2 and ϑW is the weak mixing angle. Also, for hadrons, such

as protons and neutrons:

gp
V = 2gu

V +gd
V , gn

V = gu
V +2gd

V (3.16)

The sums over neutrino flavors α and particles f appear because the interaction

is not limited to only electrons and electron neutrinos. However, this also im-

plies that the potentials produced by interactions with protons and electrons will

cancel out, as their values for g f
V are the same, but with opposite signs. There-

fore, the potential will be reduced to that of the interaction between neutrinos

and neutrons, and we arrive at:

VNC =−1
2

√
2GFNn (3.17)

Finally, the potentials can be summarized as [2]:

H e f f (x) = ∑
α=e,µ,τ

Vανα,L(x)γ0
να,L(x) (3.18)

Vα =VCCδαe +VNC (3.19)

We can now express the total Hamiltonian in matrix form, taking into account
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that the eigenstates of H0 are the neutrino mass states, while the eigenstates of

HI are the flavor states. On top of that, we will express the H0 eigenvalues

as the relativistic approximation for the energy, E = p+ m2

2E . Our total H then

will be, in the flavor basis:

H =U


p+ m2

1
2E 0 0

0 p+ m2
2

2E 0

0 0 p+ m2
3

2E

U† +


VCC +VNC 0 0

0 VNC 0

0 0 VNC

 (3.20)

The terms with VNC in HI will only add a global phase to any flavor state we

will be evaluating, and so will the term p+ m2
1

2E from H0. Then, we can take the

terms out and finally obtain:

H =
1

2E
(UM 2U† +A) (3.21)

where U is the PMNS matrix and M 2 and A are defined as [2]:

M 2 =


0 0 0

0 ∆m2
21 0

0 0 ∆m2
31

 (3.22)

A =


ACC 0 0

0 0 0

0 0 0

 (3.23)

with ACC ≡ 2EVCC = 2
√

2EGFNe.
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3.1.1 Analytical solution of the two generation case

For two generation oscillations, for example, the new term in the Hamiltonian

will modify the sole mixing angle considered in vacuum oscillations. With the

mixing matrix in Eq.(2.3), the effective hamiltonian in the flavor basis can be

expressed as:

H =

−∆m2

2E cos2θ +
√

2GFNe
∆m2

4E sin2θ

∆m2

4E sin2θ 0

 (3.24)

The diagonalization gives a matrix of the form:

H =

λ+ 0

0 λ−

 , (3.25)

and the eigenvalues:

λ± =
−A±

√
A2 +4B2

2
, (3.26)

where

X =−∆m2

2E
cos2θ +

√
2GFNe Y =

∆m2

4E
sin2θ (3.27)

The corresponding eigenstates are:

|+〉= λ+√
λ 2
++Y 2

|να〉+
Y√

λ 2
++Y 2

|νβ 〉 (3.28)
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|−〉= λ−√
λ 2
−+Y 2

|να〉+
Y√

λ 2
−+Y 2

|νβ 〉 (3.29)

and the probability of starting with a flavor να and detecting νβ gives:

Pνα→νβ
=

4Y 2

X2 +4Y 2 sin2
(√

X2 +4Y 2 L
2

)
(3.30)

Finally, this can be rearranged in the form of Eq.(2.8) as:

Pνα→νβ
= sin2 2θM sin2

(
∆m2

M
4E

L
)
, (3.31)

where the new variables are defined as [2]:

∆m2
M = 2

√
X2 +4Y 2 =

√
(∆m2 cos2θ −Acc)2 +(∆m2 sin2θ)2 (3.32)

sin(2θM) =
4Y 2

X2 +4Y 2 =
∆m2 sin2θ

∆m2
M

(3.33)

3.2 Mikheyev-Smirnov-Wolfenstein Effect

We have established that neutrino flavor conversion is a product of coherent

mixtures of mass eigenstates, which will have different phases when evolving,

and this relative phase will produce interference. We have also established that,

when propagating in normal media, the hamiltonian for the neutrino flavors will

depend on the effective potential due only to charged current interactions. The

observed oscillation parameters then change according to Eq.(3.32) and (3.33).

Notice that there will appear a resonance in the oscillation probability when

∆m2
M reaches its minimum:
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ACC = ∆m2 cos2θ (3.34)

This potential will be given when the electron number density resonance den-

sity:

NR
e =

∆m2 cos2θ

2
√

2EGF
(3.35)

The effective mixing angle then gives θm = π/4. At this resonance, the initial

flavor can completely disappear [2]. This is the Mikheyev, Smirnov, Wolfen-

stein (MSW) Effect and it evidences the difference between oscillations in vac-

uum and matter as follows.

For media with constant matter density, enhanced transitions are produced. As

the new parameters for the probabilities will still be fixed with a certain value

of Ne, their oscillatory behavior observed in vacuum remains [20]. However,

the effective potential for normal matter is positive and the resonance density in

Eq. (3.35) can only happen if θ < π/4. Then, the probability is not symmetric

if we change θ for π/2−θ , as it is in vacuum [2].
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Non-Standard Neutrino Interactions (NSI)

The phenomenon of neutrino oscillations is by itself proof of physics beyond

the Standard Model. However, opens the possibility to consider several other

hypotheses for describing nature. We will focus on the so-called Non-Standard

Neutrino Interactions (NSI). These were first proposed by Wolfenstein as a

mechanism to induce flavor changes for massless neutrinos from their inter-

actions with matter, thus solving the solar neutrino problem [21]. While mass-

induced neutrino oscillations explain the available data well and are considered

as the “standard” solution for the changes in flavor, sub-leading effects from

New Physics may still be present and not contradict the current observations,

as studied in, for example, [22] and [23].

4.1 Motivation

In his original work, Wolfenstein evaluated a simple model with two massless

neutrino flavors, a and b, defined by the standard charged current. The coherent

forward scattering process was still considered, although the neutrino neutral

40
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current in the model included both diagonal and off-diagonal terms, and was

written as:

Lλ = cos2
α[ν̄aγλ (1+ γ5)νa + ν̄bγλ (1+ γ5)νb]

+ sin2
α[ν̄aγλ (1+ γ5)νb + ν̄bγλ (1+ γ5)νa]

(4.1)

Following this approach, the passage of neutrinos from the core to the surface of

the sun was studied. Even in the extreme case where the neutral current scatter-

ing always changes the neutrino flavor, sin2
α = 1, the mechanism turned out to

only partially account for the observed deficit of solar neutrinos. Furthermore,

sin2
α cannot be equal to 1, as it is in disagreement with the constraints given

by hadron-lepton universality [21]. Even if this is not the solution for neutrino

flavor change, it cannot be totally discarded.

4.2 Theoretical framework

Although the goal of this work is a model-independent study of the phenomenon,

it is relevant to mention how theoretical frameworks may support the existence

of Non-Standard Interactions. In fact, if neutrino oscillations call for non-zero

neutrino masses, we need to consider the scenarios to obtain them, and see-

saw suppression offers a way not only induce the masses, but to have them be

small. Adding, for instance, SU(2)L singlets leads to an extended leptonic mix-

ing matrix, and all interaction states become a superposition of light and heavy

mass states. Thus, the neutral current operator must be projected onto the light



42 Chapter 4. Non-Standard Neutrino Interactions (NSI)

mass states subspace so that it represents the interaction at low energies. This is

equivalent to simply considering UPMNS, between the three neutrino flavors and

light mass states, but it would be a part of a larger matrix now. While the ex-

tended mixing matrix is unitary, the submatrix UPMNS is not, and off-diagonal

matrix elements for the effective neutral current operator are found [24]. A

more formal derivation of this type of new interactions starting from neutrino

mass generation can be found in [25].

Non-Standard Interaction processes include να f → νβ f , for α 6= β , and να f →

να f , called Flavor Changing Neutral Currents (FCNC) and Flavor Diagonal

Neutral Currents (FDNC), respectively. The latter has the exact same form as

the standard process, but the possibility of being non-universal is considered, so

it would not add a global phase to the neutrino states. Although the new inter-

actions can also involve charged currents and, more specifically, the Lagrange

density for charged NSI with electrons can be transformed to be mathematically

equivalent to neutral current NSI, these are strongly constrained in comparison

to the neutral current processes. Thus, when studying neutrino propagation

through matter, only neutral currents are considered.

Posed from an Effective Field Theory, as in Wolfenstein’s original proposal, the

new interactions with a target fermion f that causes the mixing να and νβ are

described as:

L =−2
√

2GF ∑
P

ε
f ,P

αβ
(ν̄αγ

µPLνβ )( f̄ γµP f ), (4.2)

where GF is the Fermi constant. P represents {PR,PL}, as the interaction with
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both the left and right chirality parts of the fermion are included, each quan-

tified by the ε coefficients. This particular structure for the Lagrange density

allows the representation of the coherent contribution of NSI to Standard Model

processes. Eq. (4.2) can also be written in terms of the vector and axial com-

ponents of the interactions [26], as:

L =−
√

2GF(ν̄αγ
µPLνβ )[ f̄ γµ(ε

f
αβV + ε

f
αβAγ

5) f ], (4.3)

Let us recall Eq. (3.15), which is completely analogous to Eq. (4.3). The

resulting matter potential will once again have the vector part as the only sur-

viving term, as it is the case for chiral interactions in general, and give V f
αβ

=
√

2GFN f ε
f

αβV .

Now, for the overall non-standard matter potential in normal matter, we will

also need to sum over fermions f ∈ {u,d,e}. The total Hamiltonian will then

still be Eq. (3.21), except that the A matrix will now be:

A = ACC


1+ εee εeµ εeτ

εµe εµµ εµτ

ετe ετµ εττ

 , (4.4)

where each εαβ = ∑ f=e,u,d ε
f

αβV
N f
Ne

. Each diagonal ε is a real number, while

every off-diagonal element is εαβ = |εαβ |eφαβ . Moreover, εβα = ε∗
αβ

to ensure

the hermiticity of the Hamiltonian.

A useful expression for the appearance channel (νµ → νe) probability can be

found by making an expansion in some oscillation parameters. Particularly, if
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we consider sinθ13 and the non-diagonal ε parameters to be small, as done in

[27], we obtain:

Pνµ→νe = x2 f 2 +2xy f gcos(∆+δCP)+ y2g2 +4Âεeµ{x f [s2
23 f cos(φeµ +δCP)

+ c2
23gcos(∆+δCP +φeµ)]+ yg[c2

23gcosφeµ + s2
23 f cos(∆−φeµ)]}

+4Âεeτs23c23{x f [ f cos(φeτ +δCP)−gcos(∆+δCP +φeτ)]

− yg[gcosφeτ − f cos(∆−φeτ)]}+4Â2g2c2
23|c23εeµ − s23εeτ |2

+4Â2 f 2s2
23|s23εeµ + c23εeτ |2 +8Â2 f gs23c23{c23 cos∆[s23(ε

2
eµ − ε

2
eτ)

+2c23εeµεeτ cos(φeµ −φeτ)]− εeµεeτ cos(∆−φeµ +φeτ)}

+O(s2
13ε,s13ε

2,ε3),

(4.5)

where

x = 2s13s23, y = 2rs12c12c23, r = |∆m2
21/∆m2

31|, Â =

∣∣∣∣ A
∆m2

31

∣∣∣∣ ,
f , f̄ =

sin[∆(1∓ Â(1+ εee))]

(1∓ Â(1+ εee))
, g =

sin(Â(1+ εee)∆)

Â(1+ εee)
,

∆ =

∣∣∣∣∆m2
31L

4E

∣∣∣∣ , si j = sinθi j, ci j = cosθi j

(4.6)

When considering antineutrinos, the probability is found using f̄ , Â→ −Â,

δCP→−δCP and φαβ →−φαβ .

4.3 Other Non-Standard Interactions

As previously mentioned, the new interactions do not have to necessarily be

the result of neutral currents. They can also be charged current processes, and
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change the interacting lepton flavor. Although non-standard charged current

interactions do not have a notorious effect in neutrino propagation, they may

in fact play a larger role in neutrino production and detection, considering two

aspects:

• Neutrino production and detection are based on charged current interac-

tions, so they can distinguish among neutrino flavors.

• While current data analyses seem to point towards charged current NSI pa-

rameters that are much better constrained than neutral current ones, there

is no fundamental reason to consider them to be vanishingly small [28]. In

fact, as we reach higher energies and better precision in experiments, the

effects of charged currents may very well become visible.

Charged current non-standard interactions are expressed as:

L =−2
√

2GF ∑
P

ε
f f ′,P

αβ
(ν̄αγ

µPLlβ )( f̄ γµP f ′), (4.7)

where α 6= β . The corresponding ε parameters, of course, depend on the spe-

cific fermions involved in the process.

4.3.1 NSI in neutrino production and detection

As pointed out in [29], if the new interactions are present, these could allow, for

example, a muon neutrino to produce an electron neutrino in the detector, which

would lead us to a misinterpretation of the flavor change as a contribution to

the oscillation observations. The theoretical description for this considers that
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flavor states in both neutrino source and detector can be expressed in the same

fashion as Eq. (2.1), but with different mixing matrices:

|νs
α〉= ∑

i
U s

αi |νi〉 , (4.8)

|νd
α〉= ∑

i
Ud

αi |νi〉 , (4.9)

where the indices s and d represent source and detector respectively, and once

again Latin letters denote mass eigenstates. Then, having no matter effects and

only neutrino flavor νs
α in the source, a neutrino flavor νd

β
could be found in the

detector with probability [29]:

Pβα(t) = | 〈νd
β
|νs

α〉(t)|2 =

∣∣∣∣∣∑i j
〈ν j|Ud†

jβ e−iEitU s
αi |νi〉

∣∣∣∣∣
2

= ∑
i j
|U s

αiU
s∗
α jU

d∗
β i Ud

β j|cos[(Ei−E j)t− arg(U s
αiU

s∗
α jU

d∗
iβ Ud

jβ )]

(4.10)

From Eq. (4.10), an effect that does not depend on the propagation can already

be seen. Let us recall that the existence of NSI in no way implies that the

three neutrino flavors, as defined by the standard charged current, have changed,

but rather that the production and detection processes may have eigenstates

different to them. So we would have a neutrino mass basis, a neutrino flavor

basis and another two bases, whose eigenstates are superpositions of flavor

states. These states can therefore be parametrized as [30]:

|νs
α〉= |να〉+ ∑

γ=e,µ,τ
ε

s
αγ |νγ〉 (4.11)
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〈νd
β
|= 〈νβ |+ ∑

γ=e,µ,τ
ε

d
γβ
〈νγ | (4.12)

The parameter matrices εs and εd are arbitrary and non-unitary in general, as

they correspond to the previously defined charged current NSI parameters and

they depend on the physical processes for production and detection [31]. Thus,

the source and detector states are no longer orthonormal. New normalization

factors need to be introduced in the states so that the transition probabilities can

actually be defined [32]:

|νs
α〉=

1
Ns

α

(
|να〉+ ∑

γ=e,µ,τ
ε

s
αγ |νγ〉

)
(4.13)

〈νd
β
|= 1

Nd
β

(
〈νβ |+ ∑

γ=e,µ,τ
ε

d
γβ
〈νγ |

)
, (4.14)

where the normalization factors can be written as:

Ns
α =

√
[(1+ εs)(1+ εs†)]αα (4.15)

Nd
β
=
√
[(1+ εd†)(1+ εd)]ββ (4.16)

However, the source and detector bases are still not orthogonal, and, as men-

tioned in [32] and [31], this implies that the new normalization will also affect

calculations for neutrino fluxes and cross-sections. This can be handled in dif-

ferent ways:

• When calculating an estimate for the number of events in experiments
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simulations, normalization terms cancel out once fluxes, probabilities and

cross-sections are all corrected. Therefore, the states as defined in Eq.

(4.11) and (4.12) are used as effective flavor states for obtaining effective

transition probabilities [32].

• When using a near detector to directly measure the neutrino flux in an

experiment, the normalization factors must be included for the transition

probabilities and cross-sections [31].

4.3.2 Zero-distance effect

Considering Eq. (4.11) and (4.12) as our flavor states, and once again, no matter

effects, the transition probability gives [33]:

Pβα(L) = | 〈νd
β
|νs

α〉(L)|2 =

∣∣∣∣∣∑
γδ i

(1+ ε
d)γβ (1+ ε

s)αδUδ iU
∗
γie
−i

m2
i L

2E

∣∣∣∣∣
2

= ∑
i j

J i
αβ

J j∗
αβ
−4 ∑

i> j
Re(J i

αβ
J j∗

αβ
)sin2

(
∆m2

i jL

4E

)

+2 ∑
i> j

Im(J i
αβ

J j∗
αβ

)sin

(
∆m2

i jL

2E

)
,

(4.17)

where

J i
αβ

=U∗αiUβ i +∑
γ

ε
s
αγU∗γiUβ i +∑

γ

ε
d
γβ

U∗αiUγi +∑
γδ

ε
s
αγε

d
δβ

U∗γiUδ i (4.18)

The aforementioned effect of production and detection NSI which does not de-

pend on the propagation can be seen more clearly. If L = 0, the first term in
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Eq. (4.17) may still remain and is, in general, different from zero (or one). This

is the zero-distance effect [33]: There is a flavor transition term that is con-

stant, independent of the distance and should not be considered a contribution

to neutrino oscillations. This effect could be the reason behind the observation

of some signals at short baseline neutrino experiments [34].

4.4 NSI Constraints

4.4.1 Charged Current NSI

Given that large charged-current NSI parameters are difficult to induce in spe-

cific models, to correctly estimate the possible effects of these processes in ex-

periments, model-independent constraints must be found. Bounds for specific

NSI parameters have been found from the review of well-known experimental

measurements and the processes involved.

The work in [28] derives the constraints as follows. It is noted that the Fermi

constant, GF , is most precisely determined from the muon decay rate. However,

the muon decay process, µ− → e−+ ν̄e + νµ , could be affected by charged-

current NSI and measurements could correspond to another constant Gµ =

GF f , where f = f
(

ε
µeL
eµ ,∑αβP |ε

µeP
αβ
|2
)

is a function that carries the informa-

tion about NSI coherent contribution to standard interactions and overall inco-

herent contributions. On the other hand, the Standard Model predicts a relation

between the Fermi constant and the masses of the W and Z bosons [19]. These

are determined from kinematic measurements, so there is no new interaction

effects, and a comparison of Gµ and GF gives bounds for ε
µeL
eµ and |εµeP

αβ
|.
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Similarly, the test of the CKM matrix unitarity is considered. This test is done

through the determination of Vud and Vus from beta and Kaon decay rates, which

are predicted using GF . From the previous discussion, if Gµ is used instead,

the actual measured quantities are |V M
ux |2 ≡

|Vux|2
f 2 , assuming that leptonic NSI is

the dominating effect. By assuming CKM unitarity, bounds on the parameters

can be found.

Comparisons of the amplitudes of π and τ decays are also evaluated for con-

straining the parameters, and the results of short baseline neutrino experiments

are taken into account to support study the zero-distance effect. For this work,

we consider the results in [28] as:

|εs/d
αβ
|<


0.041 0.030 0.041

0.026 0.078 0.030

0.12 0.030 0.13

 (4.19)

This approach takes into account the weaker between the bounds found from

each specific process.

4.4.2 Neutral Current NSI

Analyses of the current available data from neutrino experiments, namely solar,

atmospheric, reactor and long baseline neutrino experiments can point toward

an agreement between the behavior of nature and a specific theoretical model.

The obtained data sets should show a preference for certain theoretical frame-

work, as the best possible fits for the data with different NSI couplings will

give the constraints [26]. For example, it has been found that a small NSI effect
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such as εdV
ee ' 0.3 gives a better fit of the data than the standard oscillation solu-

tion at 2σ [35]. Furthermore, it has been pointed out that this could be the key

to solving tensions between the types of experiments, as the impact of matter

potentials is different of each one of them.

While NSI constraints can be considered as the interaction of neutrinos with

single quarks or leptons and constraints have been found for those cases (See

[35]), we are interested in the total effect in the propagation of neutrino flavors

in a medium, as presented in Eq. (4.4). From the global analysis in [36], we

obtain for the moduli of NSI parameters:

|εαβ |<


2.45 0.19 0.44

0.19 1.6365 0.03509

0.44 0.03509 1.6481

 (4.20)

and the corresponding phases can take values in [−180◦,180◦).

These constraints are good approximations, although not precise values, as we

consider the positive bounds and consider all parameters independent. How-

ever, they give a general idea of the possible scenarios that could arise when

studying the new interactions.

4.5 Effects of NSI in propagation

4.5.1 Impact on the effective mass

Let us review neutrino oscillations in matter for two generations, but modifying

the matter potential to include Eq. (4.4). The effective hamiltonian in Eq. (3.24)
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will now become:

H =

−∆m2

2E cos2θ +
√

2GFNe(1+ εee− εαα)
∆m2

4E sin2θ +
√

2GFNeεeα

∆m2

4E sin2θ +
√

2GFNeεeα 0


(4.21)

The form of the matrix remains the same as in the standard interaction case

and the transition probability will still be Eq. (3.31), but the quantities in Eq.

(3.27), (3.32) and (3.33) will become:

A =−∆m2

2E
cos2θ +

√
2GFNe(1+ εee− εαα) (4.22)

B =
∆m2

4E
sin2θ +

√
2GFNeεeα (4.23)

∆m2
M =

√
(∆m2 cos2θ −ACC(1+ εee− εαα))2 +(∆m2 sin2θ +2ACCεeα)2

(4.24)

sin(2θM) =
∆m2 sin2θ +2ACCεεeα

∆m2
M

(4.25)

Thus, the presence of NSI will change the mixing parameters. Furthermore,

as noted in [37], this exact mechanism can cause for a misinterpretation of

the measurements as a CPT violating phenomenon, contradicting our complete

description of nature. From Eq. (4.24) and (4.25), we have for neutrinos:

∆m2
M sin(2θM) = ∆m2 sin2θ +2ACCεεeα

(4.26)
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∆m2
M cos(2θM) = ∆m2 cos2θ −ACC(1+ εee− εαα) (4.27)

On the other hand, for antineutrinos, the matter potential must be of the opposite

sign. So, assuming the NSI parameters to be real, we have:

∆m2
M sin(2θM) = ∆m2 sin2θ −2Accεεeα

(4.28)

∆m2
M cos(2θM) = ∆m2 cos2θ +Acc(1+ εee− εαα) (4.29)

If we assume the vacuum mixing angle, θ , to be the same for both neutrinos

and antineutrinos, we can obtain a simple expression for the difference between

effective mixing angles for neutrinos and antineutrinos, thus could lead to a

supposed CPT violation. In [37], it is also noted that T2K has reported such

a difference. By using their reported values, they were able to perform a fit

for the relevant NSI parameter and effectively reconstruct the CPT violation

signal. This offers then an alternative solution rather than question the whole

paradigm.

4.5.2 Degeneracies

While neutrino experiments are improved, reaching higher energies and more

precise measurements, three of the six standard oscillation parameters remain

undefined. Given the fact that several sets of parameters can give the same neu-

trino oscillation probability, rather than having definite values for them, there

are several possible degenerate solutions, and they can be summarized as fol-
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lows [38]:

1. The neutrino masses could follow the so-called normal hierarchy (NH),

given ∆m2
31 > 0, or inverted hierarchy (IH), given ∆m2

31 < 0.

2. The θ23 mixing angle may be larger than 45◦and belong to a higher octant

(HO), or smaller than 45◦and belong to a lower octant (LO).

3. δCP can still take any values between -180◦and 180◦, as CP-violation can

be observed in long-baseline experiments, which also include matter ef-

fects and could lead to fake CP-violating signals [39].

These degeneracies remain when considering the Non-Standard Interactions.

Furthermore, they can be enhanced by the presence of the new interactions,

as evidenced by the study of the framework through perturbation theory [40].

Additionally, if NSI are present, then not only are there more parameters to

constrain, but new degeneracies are found. Consider, for example, the solar

mixing angle, θ12: The Large Mixing Angle (LMA) solution, which includes

both θ12 and ∆m2
12, has been considered the correct one, as solar neutrino ob-

servations agree with its predictions [41]. However, the data was analyzed in

a framework including Non-Standard Interactions in [42] and gave way to the

LMA-D solution, where an additional value of θ12 is obtained for the same

value of ∆m2
12.

Moreover, degeneracies involving the NSI parameters arise when fitting data.

As reported in [43], there appear two relevant degeneracies between standard

and non-standard parameters. One degeneracy appears in the εµµ - θ23 plane,

due to the dependence of the disappearance probability (Pνµ→νµ
) on both those
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quantities. This may affect the expected precision when measuring θ23. An-

other degeneracy is also found between δCP and the parameters εee and ετe.

How the presence of Non-Standard Interactions may affect observations of δCP

will be described in more detail in the following section.

4.5.3 Misleading CP-violation signals

As mentioned before, long-baseline experiments may represent a good option

to determine the CP-violating phase. A measurement of the CP-asymmetry can

be defined as [44]:

ACP(δCP) =
Pνµνe(δCP)−Pν̄µ ν̄e(δCP)

Pνµνe(δCP)+Pν̄µ ν̄e(δCP)
(4.30)

ACP(δCP)≈
cosθ23 sin2θ12 sinδCP

sinθ23 sinθ13

(
∆m2

21L
4E

)
+matter effects, (4.31)

where Eq. (4.30) is the general definiton, and Eq. (4.31) is a leading-order

approximation of the first line for standard oscillations. So, rather than actually

measuring the CP-violating phase, long baseline experiments can demonstrate

CP-volation in general. The source of it is, however, unknown: whether it is a

property of neutrinos, a result of matter effects or, if they are present, interfer-

ence with the CP-violating phases of NSI parameters cannot be deduced from

Eq. (4.30). Long baseline experiments then face the challenge of distinguishing
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real from fake CP-violation signals.

For instance, recent results from NOvA and T2K experiments show a discrep-

ancy in their measured values for δCP. Non-Standard Interactions are found to

be a possible solution for this tension in [45] and [46]. It is noted that T2K

has a baseline of 295 km and reaches its first oscillation maximum at E ≈ 0.6

GeV and NOvA has a baseline of 810 km, with the first maximum at E ≈ 1.6

GeV. The quantity v = ACC/∆m2
31 is then defined to measure each experiment’s

sensitivity to matter effects, giving close to 0.14 and 0.05 for NOvA and T2K

respectively. Thus, NOvA is found to be more sensitive to NSI and it is ar-

gued that δCP measured at T2K is closer to its true value, while NOvA includes

corrections from NSI according to:

δNOvA ≈ δT 2K +φeβ , (4.32)

where β = µ,τ [45].

A thorough study of the impact of NSI on CP-violation signals was done in

[47]. By taking only one non-zero NSI parameter at a time to evaluate the effect

of the new interactions, the research estimates the change in the oscillation

probabilities thanks to either the modulus or the phase of a single parameter.

The patterns are found to include contributions from New Physics and therefore

lead to a wrong measurement of δCP. The effect that may be found on the

oscillation probabilities will be shown explicitly in the following chapter.



Chapter 5

Analysis and Results

After solving the Schrödinger equation for the evolution of neutrino flavor

states, the probabilities for flavor transitions can be obtained. For this work,

a code for solving the equation numerically has been developed. It takes into

account matter effects and a medium with constant density. An already existent

package for neutrino experiments (GLoBES) has also been used, for comparing

the solutions.

While neutrino oscillations have been extensively studied and packages for

solving the differential equation are available, we considered the development

of our own code to be an important first step. Being able to directly manage all

parameters allows testing the sensitivity of the probabilities to them and achiev-

ing good control of the values. Furthermore, the effects of New Physics were

introduced in the neutrino experiment simulation package (GLoBES). After the

modifications, the new results were verified with the use of our code.

57
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5.1 Developed code

The code for finding the numerical solution for the Schrödinger equation from

Chapter 3 was developed using Python. The neutrino flavor states were defined

as vectors with two or three complex components each, and the effective hamil-

tonians, as 2x2 or 3x3 matrices with complex elements, for oscillations in two

or three generations respectively. Hermiticity of the hamiltonian is imposed

by construction of the matrices. The method for solving the initial value prob-

lem was implicit, as our “vector components” are not independent. A function

(solve ivp) that contains Backward Differentiation Formulas (BDF), already

implemented in the SciPy library [48], was used. Several relative and absolute

tolerances were tried out as conditions for convergence of the solution, with

different orders of magnitude (the relative error manages the number of correct

digits in the result).

The results obtained with our code were verified, for the two-generation sce-

nario, with the analytical formulas for both Standard and Non-Standard Inter-

actions with matter, while the three-generation scenario was validated with the

use of the package described in the following section, for only Standard interac-

tions. Results for Non-Standard Interactions were compared to previous studies

and were, in turn, used for a correct modification of the simulation software.

The values used throughout this work for the standard oscillation parameters

for the Hamiltonian term, H0, were the latest best-fit updates in NU-fit [49],

and are shown in Table 5.1. The values for δCP will be stated for each example.

The fraction of electrons in normal matter is taken to be ∼ 0.494.



5.2. General Long Baseline Experiment Simulator — GLoBES 59

Normal Hierarchy Inverted Hierarchy

sin2
θ12 0.304 ± 0.013 0.304 ± 0.013

sin2
θ23 0.570 ± 0.024 0.575 ± 0.021

sin2
θ13 0.02221 ± 0.00068 0.02240 ± 0.00062

∆m2
21/eV 2 (7.42 ± 0.21) ×10−5 (7.42 ± 0.21) ×10−5

∆m2
31/eV 2 (2.514 ± 0.028) ×10−3 (-2.497 ± 0.028) ×10−3

Table 5.1: Best-fit values for the standard oscillation parameters

5.2 General Long Baseline Experiment Simulator — GLoBES

GLoBES is a simulation software package for short and long baseline neutrino

oscillation experiments [50]. It allows the description of experiments through a

newly-defined language (AEDL), and processing the simulated data for fitting

oscillation parameters. While the main purpose of GLoBES is the calculation

of χ2 and its projections onto certain subspaces of parameters, low-level infor-

mation such as oscillation probabilities and event rates for specific experiments

can also be read. For calculating the oscillation probabilities, the software takes

a set of input data, including the initial and detected neutrino flavors, matter

density and baseline, and applies a diagonalization algorithm for solving the

Schrödinger equation.

An AEDL file describes an experiment by including its matter profile, base-

line, detector cross-sections and efficiencies, and beam characteristics. It also

defines the channels (processes to take place) and rules (one or more channels

that may contribute to either neutrino appearance or disappearance). Thus, a

specific experiment can also be passed as an argument for the calculation of
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probabilities and event rates and spectra are obtained. Details on the functions

and commands can be found in [51].

5.2.1 Modifying GLoBES

GLoBES does include a set of functions to allow the simulation of New Physics

scenarios. This can be done by registering a probability engine and/or a prob-

ability matrix. The former allows for the modification of the hamiltonian only

and, therefore, the evolution of the flavor states. The latter allows for the direct

modification of probabilities, and it is useful for damping effects that result,

for example, from the loss of coherence of neutrino wave packets. As Non-

Standard Interactions are a hamiltonian level effect, their introduction involves

the definition of a new probability engine rather than a new probability matrix

(see [50]).

The default probability engine in the package includes six parameters and the

standard oscillation hamiltonian, so for NSI to be described, nine new parame-

ters must be described and the new probability engine must be registered with

fifteen parameters. The hamiltonian in the probability engine file also has to be

modified, to correspond to Eq.(4.4). Note we ensure the hermiticity of the new

hamiltonian in this definition.

Finally, the entire program will use fifteen-parameter vectors at all times. While

there are functions in GLoBES that allow setting parameter values with only

one command, these work for the six standard oscillation parameters. Estab-

lishing the values for the non-standard parameters must be done one by one.
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Figure 5.1: Deep Underground Neutrino Experiment: Neutrino beam path from production to
far detector. Credit: Fermilab.

5.3 About DUNE experiment

The Deep Underground Neutrino Experiment (DUNE) is an international long

baseline neutrino experiment that is currently in development. It was designed

to continue the study of neutrino properties, with a high-intensity neutrino

beam and high-precision measurements. Hosted by Fermilab, DUNE consists

of a high-performance near detector on site and a massive liquid argon time-

projection chamber far detector at the Sandford Underground Research Facil-

ity, giving way to a 1300 km baseline [52]. The path followed by the neutrino

beam is sketched in Fig. 5.1.

More specifically, the design of the experiment aims to allow the determination

of the CP-violating phase, δCP, the neutrino mass hierarchy and the octant of

the θ23 mixing angle. Furthermore, it will also allow the exploration of Beyond

Standard Model phenomena. As shown in [53], an experiment’s discovery sen-

sitivity to Non-Standard Interactions depends on the baseline length, making

DUNE particularly relevant to study them.

Thus, the effects of NSI in this work will be considered in the context of DUNE.
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For probability plots, both in our developed code an GLoBES, it is enough

to know the baseline and matter density used in the experiment. The latter

is obtained from the AEDL files provided by the DUNE collaboration [54],

where the earth profile is considered to be a layer of about 1.5 km of depth and

constant matter density, calculated using the Preliminary Earth Model [55].

5.4 Results

The plots included in this section aim to, rather than give fit values or numer-

ical results, demonstrate the possible impact of Non-Standard Interactions on

neutrino oscillation probabilities and the measurements of some of the parame-

ters. For evaluating NSI in propagation in matter, the context of DUNE is used,

meaning a baseline of 1300 km and matter density of 2.95 g/cm3. Production

and detection NSI are also considered separately, as the near detector at DUNE

should keep fluxes controlled and therefore reduce the effect of charged-current

new interactions.

5.4.1 NSI in neutrino production and detection

For this analysis, we use δCP = 0, normal mass hierarchy, and the upper bounds

for source and detector NSI values suggested in [56], which allow us to enhance

the interactions, according to current data, but not break the constraints in sec-

tion 4.4.1:

|εs/d
µe |< 0.0046, |εs/d

µτ |< 0.0018 (5.1)
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Figure 5.2: Probability ratios, PStandard/PNSI , for ε
s/d
µτ = 0.0018 (top), ε

s/d
µe = 0.0018 (middle)

and ε
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µe = 0.0046 (bottom).
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Figure 5.3: Probability ratio, PStandard/PNSI , for ε
s/d
µτ = 0.0018 and ε

s/d
µe = 0.0046 combined.
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With these values, the new (normalized) initial state νµ and final state νe were

defined. We consider only vacuum oscillation and a 1300 km baseline. Figs.

5.2 and 5.3 show the appearance probability ratio, PStandard/PNSI, for differ-

ent scenarios. First, we compare the effect of only one charged-current non-

standard parameter: ε
s/d
µτ = 0.0018, ε

s/d
µe = 0.0018 and ε

s/d
µe = 0.0046 in Fig.

5.2. The effect of the maximum value of both the parameters together (εs/d
µe =

0.0046 and ε
s/d
µτ = 0.0018) in shown in Fig. 5.3.

Let us first comment on the impact of each of the parameters here considered.

The top and middle plots in Fig. 5.2 include same magnitude NSI parameters,

however the impact of the εµe parameter has a clearly more relevant effect on

the probability. The contribution of each parameter, when combined, then seem

to add up.

Notice that for every scenario, the ratio stays close to 1 (it is actually ±10−2

numerically) for most of the energy values, but for two very noticeable peaks.

These appear at 0.7 and 1.4 GeV at ratios of 1.47 and 4.94 respectively. That

is, the probability in the standard case is larger than the non-standard one. A

couple of points can be made of this, using Eq. (4.17).

While there is an extra term adding to the probability that depends on the pro-

duction/detection non-standard parameters, they also appear in the other terms.

Particularly, they make the negative term more significant, as δCP = 0 and our

parameters are real. Furthermore, the energy values of the peaks approximately

correspond to the lowest probability points for every case, exactly where the

small valued terms in the equation play a more significant role. As also ex-

pected from the equation, the charged-current non-standard parameters do not
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Figure 5.4: ACP for a wide range of parameter values: a) Vacuum, varying δCP, b) standard
interactions varying δCP, c) NSI varying with δCP and the moduli of εee, εeµ and εeτ , d) NSI
with all moduli set to maximum, varying all phases.

change any phase in the oscillatory terms, only their amplitudes. So, the zero-

distance effect would not necessarily lead to “enhanced” probabilities, these are

just misleading.

5.4.2 Fake CP-violating signals

The definition of ACP in Eq.(4.30) will now be used to show the possible effect

on CP-violation observations of both standard and non-standard interactions

in neutrino propagation through matter. The values were chosen arbitrarily

and according to the constraints in section 5.4.2. Fig. 5.4 shows ACP for the

following cases:

(a) Vacuum oscillations considering δCP ∈ [0,2π): The solid red line repre-

sents δCP = 0, while the solid and dashed black lines represent δCP = π/2

and −π/2 respectively.
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(b) Oscillations in matter with standard oscillations: The lines correspond to

the same values of δCP.

(c) Oscillations in matter adding Non-Standard Interactions, with εee ∈ [0,1.5],

|εeµ | and |εeτ | both in [0,0.15]: The lines are the same as in the standard

interaction case.

(d) Oscillations in matter with Non-Standard Interactions, with εee = 1.5,

|εeµ |, |εeτ | = 0.15, and all phases in [0,2π): The lines correspond to the

same values of δCP as before, with present NSI parameters set to maxi-

mum.

As expected from Eq.(4.31), ACP is zero when δCP = 0 and it is maximized for

δCP = π/2 and −π/2 when there are no matter effects. However, the signal

for all values of δCP drastically changes even with only standard interactions.

Particularly, we are pointed towards a CP-violating signal even for δCP = 0,

and the parameters giving different maxima are not as clear as in the vacuum

scenario. At the same time, the possible values of the asymmetry seem to be

closer to a central value for all energies.

The effect of only the NSI moduli compared to the standard interaction case can

be seen in plot c. Notice how the band is no longer constrained by curves cor-

responding to “maximum CP-violation”. Instead, the asymmetry can take ba-

sically any (allowed) value for higher energies, unlike the vaccum case, where

larger asymmetries are found for lower energies. From the curves in plot d, we

can also see exactly how the NSI moduli affects specific signals: we no longer

see the CP-conserving signal in-between δCP = π/2,−π/2, but it becomes one
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Figure 5.5: ACP ratio for only NSI moduli (top), and NSI moduli and phases (bottom), for δCP
values of −π/2 (black), −π/4 (green), π/4 (blue), and π/2 (red), compared to standard

oscillations in matter.

of the cases for largest asymmetry. The effect of considering the NSI phases,

finally, only make for an even wider band for all energies.

We now focus on CP-violating cases. Figs. 5.5 and 5.6 show the ratio of CP-

asymmetry for fixed sets of parameters, where each plot includes curves for

δCP = −π/2 (black), δCP = −π/4 (green), δCP = π/4 (blue), and δCP = π/2

(red). Apart from vacuum and standard oscillations in matter, we consider two

cases of NSI with the moduli set to their respective maxima: one with no phases

and another with NSI phases set to φeµ = 1.5π and φeτ = 1.6π , as suggested in

[45].

We first compare oscillations in matter, with the ratio ACP,NSI/ACP,standard in

Fig. 5.5. For NSI moduli (top) alone, the ratio is positive for most energy val-

ues in all cases, and can get up to about 16. On the other hand, CP-asymmetries

seem to vary less when considering the NSI moduli and phases (bottom). How-

ever, the latter plot does include negative ratios for δCP = −π/2 in the higher
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Figure 5.6: ACP ratio for standard interactions (top), NSI moduli (middle) and NSI moduli and
phases (bottom) compared to oscillations in vacuum.

energies, and it enhances the negative peak seen in the former. Thus, for these

values of δCP, NSI moduli mostly contribute to CP-violation signals the same

way standard oscillations do (ACP for both standard and non-standard scenar-

ios have the same sign), while NSI moduli and phases may contribute in the

“opposite” way.

Fig. 5.6 shows ACP for standard interactions (top), NSI moduli only (mid-

dle) and NSI moduli and phases (bottom), compared to oscillations in vacuum

(ACP,matter/ACP,vacuum). It is more evident that matter effects play a large role

when studying CP-violation signals, and even more so if Non-Standard Inter-

actions are actually present. Very large peaks appear at about 1GeV, which sug-

gests, for example, that maximizing ACP by using low energies (see Eq.(4.31))

may only lead to a more misleading analysis of CP-violating parameters. Fur-

thermore, while NSI parameters are added, the ratios follow more complicated

patterns with δCP, rather than “signatures” for each case. Finally, the bottom
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Figure 5.7: Event rates in bins of 0.25GeV for the channels: a) νµ → νe, b) ν̄µ → ν̄e, c)
νµ → νµ , d) ν̄µ → ν̄µ considering standard interactions (blue) and NSI (yellow).

plot basically represents ratios of possible signals in the experiments mentioned

in section 5.5.3, and a discrepancy in their measurements may be more evident.

5.4.3 NSI at DUNE

We now turn to the effect of Non-Standard Interactions in event rates and fol-

lowing parameter fit in the context of DUNE. For the simulation, we consider

3.5 years in neutrino and antineutrino mode, fiducial detector mass of 40 kt and

1.07 MW beam power. All data was generated using normal mass hierarchy

and no CP-violating phases (δCP and φNSI = 0).

We show the event rates for Non-Standard Interactions, with εee = 1.5, εeµ and

εeτ = 0.15 (yellow histogram), in contrast to the standard case (blue histogram)

in Fig. 5.7. There is a very clear difference in event rates for more relevant en-

ergies (higher energies will have smaller flux either way) for both appearance

channels (top histograms), and a shift of the peak specifically for antineutrino
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appearance. On the other hand, disappearance channels (bottom histograms)

show small differences that could very well be the result of statistical fluctua-

tions. This is to be expected, as the choice of NSI parameters was driven by the

leading order approximation of the appearance channels.

Channel Standard Only εeµ = 0.02 Only εeτ = 0.02

νµ → νe 1257 / 341 1335 / 340 1294 / 340

ν̄µ → ν̄e 277 / 199 266 / 199 276 / 199

νµ → νµ 8263 / 106 8233 / 106 8253 / 106

ν̄µ → ν̄µ 4140 / 60 4142 / 60 4140 / 60

Table 5.2: Signal/Background event rates for all scenarios considered in parameter fit.

To see the effect of NSI in parameter fit, we consider data generated with addi-

tional parameters, in two scenarios: one with only εeµ = 0.02 and another with

only εeτ = 0.02. The binned event rates are not shown for these cases, as the

differences with respect to the standard case are barely noticeable and only the

ν̄µ → ν̄e channel. The total event rates are shown in Table 5.2.

While our true data may include New Physics, the fit in every case is done

considering only standard parameters and all of them are marginalized over to

find the minimum χ2. We also include Gaussian priors on sin2
θ12, sin2

θ13,

sin2
θ23 rather than those parameters themselves, and on both mass squared

differences. To obtain the allowed regions, we consider:

∆χ
2 = χ

2−χ
2
min (5.2)

where χ2 is evaluated with all parameter set to their fit values, except for those
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Figure 5.8: 1σ (red), 2σ (green) and 3σ (blue) allowed regions. Dashed lines correspond to
true εeµ = 0.02 on the left plot, and εeτ = 0.02 on the right. Solid lines represent no true NSI
parameter.

Figure 5.9: 1σ (red), 2σ (green) and 3σ (blue) allowed regions. Dashed lines correspond to
true εeµ = 0.02 on the left plot, and εeτ = 0.02 on the right. Solid lines represent no true NSI
parameter.
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Figure 5.10: 1σ (red), 2σ (green) and 3σ (blue) allowed regions. Dashed lines correspond to
true εeµ = 0.02 on the left plot, and εeτ = 0.02 on the right. Solid lines represent no true NSI
parameter.

that appear on the respective plots (all parameters fixed), and we scan only over

normal mass hierarchy.

Figs. 5.8, 5.9 and 5.10 show the allowed regions for a (seemingly) robust mea-

sured parameter, θ12, and the parameters that allow degeneracies, θ23, δCP and

∆m2
31. All regions agree on a clear shift towards lower values for δCP, even for

these small values of NSI parameters that do not seem to have a large effect on

event rates. The shift is of course more prominent when considering εeµ , as εeτ

would introduce some negative terms in the probability. Fit values of θ12 and

θ23 are not affected by the introduction of NSI in Nature, although this is only

when scanning normal hierarchy. On the other hand, the fit values of ∆m2
31 do

suffer a shift: smaller δCP and larger ∆m2
31 are needed to balance the probability

when considering the new interactions.

We finally obtain the sensitivity to CP-violation and mass hierarchy DUNE,

with data generated as previously detailed. The sensitivity in each case is de-
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Figure 5.11: DUNE sensitivity to CP-violation when only standard (blue solid lines) and Non-
Standard (red dashed lines) Interactions are present in Nature, for εeµ = 0.02 (left) and εeτ =
0.02 (right).

fined as [52]:

σCPV =
√

∆χ2
CPV

=
√

Min[∆χ2
CP(δ

test
CP = 0),∆χ2

CP(δ
test
CP = π)],

where ∆χ
2
CP = χ

2
δ test

CP
−χ

2
δ true

CP

σMH =
√

∆χ2
MH =

√
χ2

IH−χ2
NH

(5.3)

Figs. 5.11 and 5.12 show the sensitivity as functions of δCP, where the blue

lines are those obtained with data generated with only standard parameters and

the red lines correspond to εeµ = 0.02 on the left and εeτ = 0.02 on the right.

It should be noted that, as mentioned in [57], there may be a decrease in sen-

sitivity when adding more degrees of freedom (parameters to fit). However,

our comparison only contemplates different sets of data rather than different

fitted models. Thus, variations in σCPV or σMH should be attributed to the NSI

parameters considered in every case.
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Figure 5.12: DUNE sensitivity to mass hierarchy when only standard (blue solid lines) and
Non-Standard (red dashed lines) Interactions are present in Nature, for εeµ = 0.02 (left) and
εeτ = 0.02 (right).

For the CP-violation sensitivity plot, we can only confirm the previous obser-

vations of ACP in the presence of NSI. From Eq.(5.3), non-zero values of σCP

imply that the data is in disagreement with a CP-conserving scenario and, while

stronger non-standard parameters are added, the disagreement does become dif-

ferent from the standard case: the CP-asymmetry has changed. Furthermore,

the disagreement becomes larger for most values of δCP and the effect is par-

ticularly relevant for maximum CP-violation.

Finally, the sensitivity to mass hierarchy hints at how certainly we could reject,

in our case, the inverse hierarchy fit. The plots in Fig. 5.12 both show a slight

shift in the values of δCP. The sensitivity remains at values close to the standard

case, and may still allow the determinations of mass hierarchy. Notice, how-

ever, that the effect of each NSI parameters is not always to make σMH larger,

and stronger parameters may lead to smaller significances than desired.
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Conclusions

Neutrino physics is currently a very active research field, which makes for in-

teresting studies and an abundance of available information. In a context where

increasingly complex models and hypotheses are being considered for describ-

ing neutrinos, some of their aspects may seem crystal clear. This could be the

case for the widely accepted mass-induced neutrino oscillations and its quan-

tum mechanics formulation. However, some details of it could lead to incon-

sistencies, and have been discussed in this work in order to settle the robustness

of the formalism. Furthermore, while neutrino mass itself is proof of Physics

Beyond the Standard Model, we inquire about one possible consequence of it:

Non-Standard Neutrino Interactions with matter (NSI). We have reviewed the

introduction of NSI in the established formalism and its impact on neutrino

propagation, in an attempt to create a formidable starting point for further re-

search.

Neutrino oscillations are the periodic change in flavor as the result of quan-

tum interference between neutrino mass states and it is logical to express fla-

vor states as superpositions of the latter. The (evolving) mass states must be

75
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represented by wave packets, so they can in fact account for both the localiza-

tion of the particle and its corresponding quantum uncertainties. The approach

also clarifies the conditions for observing the oscillations in experiments and

leads to the coherence conditions. However, the plane wave approach, which

is commonly used and is found to include some inconsistencies, also seems to

give correct results. This can be explained by the fact that the approximations

used here correspond to the coherence conditions. As oscillation probabilities

are found to be Lorentz-invariant, the description of neutrino oscillations then

seems to be consistent.

Interactions of neutrinos with matter were then considered and the differential

equation to be solved was found, all following Standard Model processes. We

have then focused on the possibility that Non-Standard Interactions may as

well be present in Nature and how it is usually included in the equations. It is

noted that NSI may be neutral or charged-current processes. They affect not

only propagation, but also neutrino production and detection, although with

different strengths according to theoretical and experimental constraints.

Some relevant effects of Non-Standard Interactions were presented. For charged-

current NSI, the most notable effect is neutrino production (or detection for that

matter) of unexpected flavors. This could wrongfully contribute to oscillation

observations, although not necessarily enhance flavor conversion. For neutrino

propagation, the effects become more complex.

We have evaluated Non-Standard Interactions in the Deep Underground Neu-

trino Experiment (DUNE), as its 1300 km baseline allows matter effects that

make for large CP-asymmetry. It is expected to not only measure δCP pre-
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cisely, but also determine the mass hierarchy. When including NSI in Nature,

parameter fit is shown to be affected, particularly for the CP-violating phase,

and experiment sensitivities change.

Finally, we would like to mention that, while matter effects in general lead to

fake CP-violating signals, DUNE does not aim to determine δCP from the CP-

asymmetry. It aims to observe the agreement between the measured phase and

ACP, which will allow potential for the study of Physics Beyond the Standard

Model. However, NSI are not the only possible phenomenon, and evaluating

them in the context of one experiment will not suffice. As noted in [58], test-

ing frameworks call for an agreement and consistency in the results of different

experiments, model-independent parametrization of the phenomena, and sub-

sequently considering specific models to identify new signatures. Ultimately,

achieving precision in the measurement of parameters in all experiments and

the collaboration between them is of utmost importance.
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