
PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

ESCUELA DE POSGRADO

“Endpoint-inflated beta-binomial regression
for correlated count data”

TESIS PARA OPTAR POR EL GRADO DE MAGÍSTER EN

ESTADÍSTICA

Presentado por:

Boris Manuel Fazio Luna

Asesor: Victor Giancarlo Sal Y Rosas Celi

Miembros del jurado:

Dr. Cristian Bayes

Dr. Luis Benites

Dr. Giancarlo Sal y Rosas

Lima, Julio 2019

Agradecimentos

Gracias a:

• Las personas detrás de R, Stan y Libgen. Sin ellxs, realizar este trabajo habŕıa sido

enormemente más complicado.

• Los amigos y familiares que me preguntaron de qué trata mi tesis por hacerme caer en

la cuenta de que aún soy pésimo comunicando los conocimientos que he adquirido.

• Los saludos espontáneos y la inusual fijación con el vello facial por permitirme descubrir

el verdadero rostro de la estad́ıstica.

ii

Resumen

El modelo de regresión binomial con inflación en los extremos permite modelar datos de

conteo acotados en los que una alta proporción de las observaciones se encuentra en los ex-

tremos. Extendemos el modelo considerando una función de enlace de logit ordenado, la cual

aprovecha la información de orden impĺıcita en las probabilidades de inflación y exploramos

el uso de efectos aleatorios y marginalización para manejar la presencia de observaciones

repetidas. Empleamos un conjunto de datos previamente analizado en la literatura mediante

un modelo de regresión binomial con inflación en los extremos que emplea el enlace softmax

para mostrar el mejor ajuste logrado por nuestro modelo.

iii

Abstract

The endpoint-inflated binomial regression model provides a way of modeling bounded

count data with a high proportion of observations at the endpoints. We extended the model

by considering an ordered logit link which exploits the natural ordering in the inflation

probabilities and explore the utility of random effects and marginalization for dealing with

repeated measures. We use a dataset previously analyzed in the literature with an endpoint-

inflated binomial regression using a softmax link to show our model achieves an improved

fit.

iv

Contents

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Preliminary considerations . 1

1.2 Objectives . 2

2 The endpoint-inflated beta-binomial distribution 3

2.1 Binomial distribution . 3

2.2 Beta distribution . 3

2.3 Beta-binomial distribution . 4

2.4 Endpoint-inflated beta-binomial (EIBB) distribution 5

2.4.1 Alternative stochastic representations 5

3 The endpoint-inflated beta-binomial regression model 8

3.1 Model definition . 8

3.1.1 Mixture link for SR1 . 9

3.1.2 Mixture link for SR2 . 10

3.2 Considerations for Bayesian inference . 10

3.2.1 Selection of priors . 11

3.2.2 The Stan probabilistic programming language 11

3.3 Measures for model assessment . 11

3.3.1 Information criteria . 11

3.3.2 Pareto-smoothed importance sampling leave-one-out (PSIS-LOO) . . . 12

4 Simulation study 15

4.1 Simulation setup . 15

4.2 Results . 15

4.2.1 Binomial vs Beta-binomial . 15

4.2.2 Binomial vs. Endpoint-inflated binomial 16

5 Application 18

5.1 The whitefly dataset . 18

5.2 Model structure . 19

5.3 Results . 21

v

5.3.1 Model comparison . 21

5.3.2 Model interpretation . 24

6 Conclusions 26

A Code 27

A.1 Simulation study . 27

A.2 Whitefly dataset analysis . 37

Bibliography 51

vi

List of Figures

2.1 The EIBB distribution for three combinations of mean and precision parame-

ters with fixed mixture proportions (p0 = p1 = 0.25) and n = 8. 6

3.1 The black curve shows a µ′, σ′2 normal cumulative distribution function (cdf)

and how the cutpoints C0, C1 are used to retrieve the vector of probabilities.

The corresponding normal pdf is shown in gray. 10

5.1 Empirical distribution of proportion of survived insects 19

5.2 Trace plots for a beta-binomial model fit to the whitefly dataset 23

5.3 Posterior predictive graphs comparing four models fit on the whitefly dataset 24

5.4 Marginal effects of treatment on pest survival under four different models . . 25

vii

List of Tables

4.1 Leave One Out criterion and fitting time for the binomial and beta-binomial

models tested on simulated data; one hundred datasets where simulated for

each pair of comparisons. 16

4.2 Leave One Out criterion and fitting time for the binomial and endpoint-inflated

binomial models tested on simulated data; one hundred datasets where simu-

lated for each pair of comparisons. 17

5.1 Comparison of LOO criterion for three different specifications of the zero-

inflation probability in the ZIB model . 21

5.2 Comparison of LOO criterion for determining the best-fitting model 22

viii

Chapter 1

Introduction

1.1 Preliminary considerations

Inflated distributions are useful when a distribution which would otherwise be adequate

for a given type of data fails to account for an excess number of observations at particular

values of the sample space. This situation commonly arises when the recorded measurements

assign the same value to observations generated by distinct but unobserved processes; for

example, the number of outbreaks of water-associated infectious disease can be modeled

using a Poisson distribution, but excess zeros will be recorded from areas with consistent

access to safe water sources or which are not exposed to environmental conditions that are

favorable to the emergence of disease (Yang, LeJeune, Alsdorf, Lu, Shum and Liang, 2012).

The use of regression models can allow the researcher to identify the circumstances driving

each underlying process by examining the associations between covariates and the parameters

of the inflated distribution. The first inflated regression model in the literature, proposed

by Lambert (1992), used the zero-inflated Poisson (ZIP) distribution and was used to un-

derstand the circumstances driving the occurrence of manufacturing defects. Specifically,

the outcome of interest was the number of soldering defects in the manufacturing process

for components on printed wiring boards. In that situation, zeros could be generated under

ideal manufacturing conditions which do not produce defects, but also under suboptimal

conditions that lead to an error-prone process but which my still output defect-free products

most of the time.

Hall (2000) brought zero inflation into the binomial regression model. In this case, the

data were bounded counts corresponding to the number of insects, out of a known initial

amount, which remained alive after application of a pesticide. A further extension to inflation

in binomial counts has been recently described by Tian, Ma, Zhou and Deng (2015), who

proposed the endpoint-inflated binomial (EIB) model. This model can represent bounded

counts with inflation at both zero counts and at the maximum possible count, termed “one-

inflation” by Deng and Zhang (2015) in reference to the effect of the latter type of inflation

when measured in proportion scale. Tian et al. (2015) tested their model on the same dataset

used by Hall (2000) and showed an improved fit as measured through both AIC and BIC,

although they did not take into account the repeated nature of the measurements.

The present work expands on the model proposed by Tian et al. (2015) by taking into

account the natural ordering of the inflation parameters through a link function based on the

ordered probit model (Daykin and Moffatt, 2002). We fit the model to the same dataset using

1

a Bayesian framework and attempt to account for repeated measures through two different

approaches: random effects and marginalization.

1.2 Objectives

The overall objective of this thesis is to describe an endpoint-inflated beta-binomial

(EIBB) regression model and show its application in a real world problem under a Bayesian

paradigm.

Specifically, our goals are as follows:

• Provide a brief literature review of available models for analyzing inflated count data.

• Describe the EIBB distribution and its parametrization as a regression model.

• Implement a flexible framework for our model using R and Stan programming lan-

guages.

• Conduct simulation studies to understand model behavior over the space of plausible

parameters and at its boundaries.

• Show its use in analyzing a real world dataset, including model diagnostics.

2

Chapter 2

The endpoint-inflated beta-binomial distribution

In this chapter we show the steps to construct the endpoint-inflated beta-binomial distri-

bution, examine its properties and define the parametrization that will be used through the

rest of this paper.

We begin by introducing the simpler and familiar distributions that will be used as our

building blocks.

2.1 Binomial distribution

When X indicates the total number of successes in a series of n ∈ N+
0 independent

dichotomous trials, each with probability p ∈ (0, 1), we say that it has a binomial distribution.

The point mass function of a binomial random variable is

fX(x | p;n) =

(
n

x

)
px(1− p)n−x, x = 0, .., n,

with mean and variance given respectively by

E [X] = np, V [X] = np(1− p). (2.1)

The binomial upper bound n will be assumed to be known throughout this paper and

excluded from discussions of the distribution’s parameters, though the opposite can hold in

more general treatments.

2.2 Beta distribution

A random variable Y ∈ (0, 1) follows a beta distribution with parameters α, β > 0 if its

probability density function is given by

fY (y | α, β) =
Γ(α+ β)

Γ(α)Γ(β)
yα−1(1− y)β−1, y ∈ (0, 1),

with mean E [Y] = α/(α+ β) and variance V [Y] = αβ/[(α+ β)2(α+ β + 1)].

For brevity, the normalizing factor in the above probability density function (pdf) will

from this point on be expressed through the equivalent beta function:

3

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
. (2.2)

In the regression context, which will be developed later, it is more convenient to parametrize

the beta distribution in terms of its mean µ ∈ (0, 1) and a precision parameter φ > 0, as

introduced by Ferrari and Cribari-Neto (2004). The equivalences α = µ/φ and β = (1−µ)/φ

result in the corresponding reparametrized probability mass function (pmf):

fY (y | µ, φ) =

[
yµ−φ(1− y)1−µ−φ

]1/φ
B(µ/φ, (1− µ)/φ)

, y ∈ (0, 1),

which allows us to express the mean and variance respectively as

E [Y] = µ, V [Y] = µ(1− µ)
φ

φ+ 1
.

2.3 Beta-binomial distribution

Beta random variables have support over (0, 1), which includes all values that are allowed

for the p parameter in a non-degenerate binomial random variable. If repeated measurements

on a binomial random variable X are thought to reflect a randomly drawn, beta-distributed

p = Y , then the marginal distribution of X is beta-binomial. Notationally, the relationship

is

X | Y = y ∼ Binomial(p = y;n)

Y ∼ Beta(µ, φ)

⇒ X ∼ Beta-binomial(µ, φ;n).

With B(α, β) as defined in 2.2, the beta-binomial pmf is

fX(x | µ, φ;n) =

(
n

x

)
B(x+ µ/φ, n− x+ (1− µ)/φ)

B(µ/φ, (1− µ)/φ)
,

with respective mean and variance

E [X] = nµ, V [X] = nµ(1− µ)
nφ+ 1

φ+ 1
.

Comparing the above expressions with those for the binomial model in (2.1), it can be

seen that the means take the same form, both being governed by a single centrality parameter

on the unit interval. For identical values of µ and p, it can be seen that the beta-binomial

variance will exceed that of the binomial by a factor of (nφ+ 1)/(φ+ 1).

4

2.4 Endpoint-inflated beta-binomial (EIBB) distribution

A random variable Y that follows an EIBB distribution is defined as

Y | Z ∼


Degenerate(0) if Z = 0,

Beta-binomial(µ, φ;n) if Z = 1,

Degenerate(n) if Z = 2

Z ∼ Categorical(p0 , p1 , p2),

(2.3)

where Z is a discrete latent variable. The degenerate distributions are used to indicate a

deterministic result; for a random variable X ∼ Degenerate(k), its pmf is given by

fX(x|k) =

1 for x = k,

0 elsewhere.

In order to write the complete pmf for the EIBB distribution, we define Ic(y) to be the

indicator function for point c, fBB to be the pmf for a beta-binomial random variable and

introduce Y ∼ EIBB(µ, φ, p0 , p1 , p2 ;n). The EIBB random variable Y then has a pmf given

by

fY (y | µ, φ, p0 , p1 , p2 ;n) = p0I0(y) + p1fBB(y | µ, φ) + p2In(y)

=



p0 + p1 B(µ/φ,n+(1−µ)/φ)
B(µ/φ,(1−µ)/φ) if y = 0

p1
(
n
y

)B(y+µ/φ,n−y+(1−µ)/φ)
B(µ/φ,(1−µ)/φ) if y = 1, ..., n− 1

p2 + p1 B(n+µ/φ,(1−µ)/φ)
B(µ/φ,(1−µ)/φ) if y = n

0 otherwise.

(2.4)

The mean and variance for this distribution are, respectively,

E [Y] = n(p1µ+ p2),

V [Y] = n2
[
p1
(
µ+

µ(1− µ)

n

(nφ+ 1)

(φ+ 1)

)
+ p2 − (p1µ+ p2)2

]
.

(2.5)

Plots of its pmf for selected parameter values are shown in Figure 2.1.

2.4.1 Alternative stochastic representations

In Tian et al. (2015), the authors show that one can arrive at the Endpoint-inflated

binomial distribution through six differentt mechanisms, which they refer to as stochastic

representations (SR).

Equation (2.3) is the first of such SRs they present, where first one of three bins is chosen

(corresponding to zero inflation, no inflation and maximum inflation) and then values are

5

Figure 2.1: The EIBB distribution for three combinations of mean and precision parameters with
fixed mixture proportions (p0 = p1 = 0.25) and n = 8.

drawn conditional on the choice: degenerate random variables for either inflation bin or the

counting distribution (binomial in the original paper and beta-binomial in our case) for the

second bin. We will refer to this representation as SR1.

In another SR, the first step is a binary choice between inflation or no inflation. If

inflation is selected, then a second binary choice takes place to determine whether the inflation

occurs on the zero or the maximum. Otherwise, the observation is drawn from the counting

distribution. We will refer to this representation as SR2:

X ∼ Beta-binomial(µ, φ;n)

Z ∼ Bernoulli(ν)

W ∼ Bernoulli(ω)

Y = (1− Z)nW + ZX ∼ EIBBSR2(µ, φ, η, ω;n),

with the corresponding pmf given by

fY (µ, φ, η, ω;n) = (1− ν)(1− ω)I0(y) + νfBB(y | µ, φ) + (1− ν)ωIn(y), (2.6)

where ν is the probability of no inflation and ω is the probability of inflation at the maximum

(as opposed to zero inflation), given that inflation did occur. The equivalence between (2.4)

and (2.6) can be seen by setting

6

p0 = (1− ν)(1− ω),

p1 = ν,

p2 = (1− ν)ω,

which results in the following equations for the mean and variance, respectively:

E [Y] = n(νµ+ (1− ν)ω),

V [X] = n2
[
ν

(
µ+

µ(1− µ)

n

(nφ+ 1)

(φ+ 1)

)
+ (1− ν)ω − (νµ+ (1− ν)ω)2

]
.

We do not consider the rest of SRs shown by Tian et al. (2015), as they are unlikely to

represent the process we will be modelling in Section 5. It should be noted that, although the

distribution for Y resulting from these representations can be made identical with appropriate

choice of parameters, in general they will not lead to equivalent inferences once covariates

are introduced. Therefore, the choice of SR should be guided by prior knowledge on the

mechanisms which govern the phenomenon under study.

7

Chapter 3

The endpoint-inflated beta-binomial regression model

In this chapter we introduce our formulation of the EIBB regression model. We will first

present the full model likelihood and a set of suggested priors for Bayesian inference. We

finish with a brief discussion of applicable model comparison criteria.

3.1 Model definition

Let Yi =
(
Yi1 ... YiNi

)>
, i = 1, ..., N be a set of independent response vectors where

Yi ∼ EIBB(µi, φi, p0i, p1i, p2i;ni).

The following general model structure shows how we can relate covariate values to model

parameters:

µi = h1(x
>
i α)

φi = h2(z
>
i β)(

p0i, p1i, p2i

)
= h3(j

>
i γ,k

>
i δ)

where α = [α1, ..., αa]
> , β = [β1, ..., βb]

> , γ = [γ1, ..., γc]
>, and δ = [δ1, ..., δd] are coefficient

vectors, each associated with its respective covariate vector given by xi = [xi1, ..., xia]
> , zi =

[zi1, ..., zib]
> , ji = [ji1, ..., jic]

> ,ki = [ki1, ..., kid]
>. Under Bayesian inference, all parameters

are random variables so we not consider it necessary to make an explicit distinction between

fixed and random effects.

In order to map the linear predictors to parameter space, the link functions must be

defined so that

h1 : R → (0, 1)

h2 : R → R+

h3 : R2 → (0, 1)3,

with the additional constraint that the entries of h3 must sum to 1.

In the analyses that follow, we will take the usual selecton of logit for h1. We will not

be working with predictors on the dispersion parameter, but the log function is a common

choice that meets the requirements for h2.

8

3.1.1 Mixture link for SR1

Under SR1, given in (2.3), mixture proportions are determined as the parameters of a

multinomial distribution. As described in Chapter 11 of McElreath (2016), the canonical

link function for this distribution is the softmax, which for a K-dimension input vector x is

defined as

softmax(x)k =
exk∑K
j=1 e

xj
, (3.1)

which results in an output vector where all entries are in the (0, 1) range and sum up to 1.

The function is invariant under translation by a constant, that is softmax(x) = softmax(x+c),

so an arbitrary component of the input vector is generally given a fixed value of 0.

While the softmax is a reasonable choice for unordered categorical outcomes, mixture

probabilities for the EIBB model have a natural ordering. Therefore, we motivate our choice

for the link function on the mixture proportions, h3, by noting that the mixture components

can be ordered in terms of their expected values: 0 < nµ < n, for the first, second and third

components respectively and the latent Z in (2.3) which selects the mixture components can

be regarded as an ordered categorical variable. The ordered probit model (see Daykin and

Moffatt (2002) for an in-depth treatment) gives us a starting point by which to introduce a

linear predictor on its parameters p0, p1, p2.

If Φ(.;µ′, σ′2) is the cumulative distribution function of a normal with mean µ′ and vari-

ance σ′2 and C0, C1 are two real numbers such that C0 < C1, the ordered probit regression

model is given by

p0 = Φ(C0;µ
′, σ′2)

p1 = Φ(C1;µ
′, σ′2)− Φ(C0;µ

′, σ′2)

p2 = 1− Φ(C1;µ
′, σ′2).

Due to the restriction
∑

s ps = 1, we see that the above system relates two free parameters

with four unknowns. Therefore some values must be fixed to obtain a unique solution. We

choose to set C0 = −1 and C1 = 1. Figure 3.1 illustrates this setup. This allows any

combination of p0, p1, p2 to be reached, which retains the flexibility of the softmax link, while

offering a more interpretable parametrization for the inflation behavior: a value of µ′ = 0

corresponds to symmetric inflation at both endpoints, whereas higher magnitudes indicate

that the inflation proportion is comparatively higher at one of the endpoints; meanwhile, the

σ′ parameter governs the total proportion of inflation, with lower values corresponding to

less inflation.

In order to place linear predictors on µ′ and σ′2, we use the identity and log link functions

as follows:

9

Figure 3.1: The black curve shows a µ′, σ′2 normal cumulative distribution function (cdf) and how
the cutpoints C0, C1 are used to retrieve the vector of probabilities. The corresponding normal pdf
is shown in gray.

µ′i = j>i γ,

σ′2i = log(k>i δ),

with j>i γ and k>i δ defined as in (3.1).

3.1.2 Mixture link for SR2

Under SR2, given in 2.6, we don’t attempt to model a simultaneous influence on the

proportions p0i, p1i, p2i. Instead, we model one proportion at a time: the probability of

inflation, given by 1 − νi, and the probability of maximum inflation (as opposed to zero

inflation) given by ωi. This leads to a straightforward choice of logit for both parameters:

Yi ∼ EIBSR2(µi, p0i, p1i, p2i;ni)

p0i = νi(1− ωi)

p1i = 1− νi
p2i = νiωi

νi = logit−1(j>i γ)

ωi = logit−1(k>i δ).

3.2 Considerations for Bayesian inference

Statistical modeling involves choosing a likelihood function that is thought to approxi-

mate the process that generated the observed data. Under Bayesian inference, the model also

includes a prior distribution for the likelihood’s parameters. As new data arrives, the likeli-

hood governs the way in which the prior is updated to reflect what has been learned about

10

the model parameters and the updated distribution is known as the posterior. Sampling

from the resulting posterior in an efficient way often requires sophisticated computational

methods. In this section we provide certain guidelines for Bayesian inference and describe

the computational tools we used.

3.2.1 Selection of priors

Priors encode information known before taking into account the data at hand. However,

there is often an absence of substantive knowledge about the phenomenon being studied, in

which case Gelman, Carlin, Stern, Dunson, Vehtari and Rubin (2014) suggests using weakly

informative priors. These restrict the amount of probability placed over mathematically

admissible but empirically implausible parameter values. Doing this serves a dual purpose;

it is effectively a regularization procedure, which protects against extreme inferences based

on limited data, and also provides a computational advantage by constraining the parameter

space that must be explored during numerical evaluation.

Some authors suggest that improper priors can be used as a way of ”letting the data

speak for itself”, however, such a choice does not guarantee a proper posterior (Tak and

Morris, 2015). Furthermore, diffuse priors are not intrinsically non-informative criteria, as

their impact on the posterior depends on the specific parameter under consideration and the

form in which it enters the likelihood (Gelman et al., 2017).

3.2.2 The Stan probabilistic programming language

Most prior-likelihood combinations do not result in closed form posteriors. While the

posterior can be numerically evaluated at any point over the parameter space, exploring it

efficiently requires an algorithm that prioritizes regions of high probability. Markov chain

Monte Carlo (MCMC) methods are a class of algorithms that allow exploration of a distri-

bution in a series of discrete steps over parameter space, such that the long run occupancy

of states approximates the target distribution.

Stan is a probabilistic programming language which allows the user to specify priors and

likelihoods for continuous parameters (Betancourt, 2017). It uses an algorithm described

as Hamiltonian Monte Carlo (HMC) to explore target distributions. HMC is based on the

equations for physical motion and, conceptually, simulates the movement of a particle through

a vector field constructed from the posterior. A detailed description of the implementation

is availabe in Betancourt (2017).

We used Stan through the interface provided by the brms library for the R programming

language (R Core Team, 2013). The brms library allows the user to specify models by

using established R formula syntax and family specification, based on which it automatically

generates and executes Stan code (Burkner, 2018). The R code for the analyses conducted

in this document can be found in appendix A.

3.3 Measures for model assessment

3.3.1 Information criteria

Information criteria provide a way to compare the relative predictive prowess of two

or more models. Several variants have been proposed, among which Deviance Information

11

Criterion (DIC), see Spiegelhalter, Best, Carlin and Van Der Linde (2002), and Widely

Applicable Information Criterion (WAIC), see Watanabe (2010), enjoy widespread use. The

key quantity used to calculate them is the deviance, defined as

D(θ) = −2 log{L(θ | Y)},

where L is the likelihood function of the model and θ represents all of its parameters. Given

a Montecarlo posterior with S samples θs, we define the mean deviance as

D̄(θ) =

S∑
s=1

D(θs)

S
.

We will also use the deviance at the posterior mean, denoted by D(θ̄), where

θ̄ =
S∑
s=1

θs

S
.

Then, DIC is calculated as follows:

DIC = D(θ̄) + 2× (D̄(θ)−D(θ̄))

= D(θ̄) + 2× pD,

where the pD term is a penalty known as the effective number of parameters.

WAIC uses the log pointwise predictive density (lppd) to assess predictive performance

instead of deviance as well as a different penalty term. The following definition is given in

Gelman, Carlin, Stern, Dunson, Vehtari and Rubin (2014):

WAIC = −2[
∑n

i=1 log
∫
p(yi | θ)p(θ | y)p(θ)dθ −

∑n
i=1 Var(log(p(yi | θ)))]

= −2[lppd − pW].

DIC and WAIC measure the performance of the model on the same dataset used to fit

the model. Models with lower values of the first term indicate better fit and the second term

adds a penalty which corresponds to the number of effective parameters, which corrects for

overfitting. Both criterions have a share of limitations, however: Gelman, Hwang and Vehtari

(2014) show that DIC fails to produce consistent results for general posteriors, while both

DIC and WAIC are asymptotic approximations which exhibit high variance when tested on

datasets of realistic size, as shown in Vehtari, Gelman and Gabry (2017).

3.3.2 Pareto-smoothed importance sampling leave-one-out (PSIS-LOO)

The utility of WAIC derives from its asymptotic equivalence to cross validation, but

alternatives have recently been developed which provide stable estimates at smaller sample

sizes, as we will now discuss.

Leave-one-out cross validation (LOOCV) is a technique that approximates cross valida-

tion by refitting the model while holding out one observation at a time and using the held out

12

observation as the test case. However, performing LOOCV can incur a high computational

cost when models are complex or sample sizes are large.

Vehtari et al. (2017) reviews approaches for estimating LOOCV results through approx-

imations based on the single fit which produces the whole-dataset posterior. The approach

they propose weighs the contribution of each data point yi and posterior sample θs to the

likelihood through an importance ratio, defined as follows:

rsi =
1

p(yi | θs)
=
p(θs | y−i)
p(θs | y)

.

The equality holds if the data is exchangeable conditional on parameter values. A def-

inition of exchangeability due to Bernardo (1996), describes exchangeable observations as

providing the same information regardless of the order in which they are collected. Formally,

for exchangeability to hold, one must have

p(x1, ..., xn) = p(xπ(1), ...xπ(n)),

for every permutation of the values of π in the set {1, ..., n}. When this holds, one can

separate each observation’s contribution to the likelihood into a product:

p(θs | y−i)
p(θs | y)

=
p(y−i | θs)p(θs)
p(y | θs)p(θs)

=
p(y1 | θs)× ...× p(yi−1 | θs)× p(yi+1 | θs)× ...× p(yn | θs)

p(y1 | θs)× ...× p(yi | θs)× ...× p(yn | θs)

=
1

p(yi | θs)
.

Note that this requirement implies that this approximation cannot be used without the ability

to readily express the likelihood as n separate components, which can make implementation

difficult for models with complex data structures, such as time series or spatial data (Gelman,

Carlin, Stern, Dunson, Vehtari and Rubin, 2014).

If ỹi denotes an arbitrary observation which was not used to fit the model, Gelfand et al.

(1992) showed that the predictive distribution can be approximated by using the importance

ratios:

p(ỹi | y−i) ≈
∑S

s=1 r
s
i p(ỹi | θs)∑S
s=1 r

s
i

.

In practice, the above equation is evaluated by replacing yi with held-out observations yi.

However, using the raw importance ratios rsi directly can lead to estimates with high or even

infinite variance. Pareto smoothing is the procedure whereby the largest raw importance

ratios are replaced by more stable smoothed weights, wsi . Vehtari et al. (2017) describes the

process in three steps:

1. A generalized Pareto distribution is fit using the 20% largest raw importance ratios,

13

once for each held-out observation i.

2. DefineM as the number of raw importance ratios that were used to fit the Pareto. Then,

the M largest raw ratios are replaced by the expected value of the order statistics of

the fitted distribution,

w̃m = F−1
(
m− 1/2

M

)
, m = 1, ...,M,

where F−1 is the fitted Pareto cdf.

3. Finally, take the average of the smoothed weights,

w̄i =
M∑
m=1

w̃m/M,

and truncate all the smoothed weights w̃m so that they do not exceed the value of

w̄i × S3/4, where S is the total number of posterior draws available; note that this

quantity was proposed by Vehtari et al. (2017) and chosen based purely on empirical

considerations. The resulting set of weights are labeled as wi.

Now, the smoothed and truncated weights can be used for a more stable approximation

of the predictive density,

ˆelpdpsis-loo =
n∑
i=1

log

(∑S
s=1w

s
i p(yi | θs)∑S
s=1w

s
i

)
and this concludes the PSIS-LOO procedure.

Multiplying the above value by -2 converts the estimate to deviance scale, setting it

to a scale that allows direct comparison with WAIC. Such a transformation results in the

criterion known as LOOIC. For large sample sizes, LOOIC and WAIC achieve remarkably

similar values.

It is shown in Vehtari et al. (2017) that the method described above exhibits a more

robust behavior in small samples or under weak prior information and it is specifically shown

that the resulting estimates are more stable than WAIC.

The PSIS-LOO procedure is implemented in the loo R package and it will be used for

model selection in the sections that follow.

14

Chapter 4

Simulation study

In this chapter, we explore the conditions under which the full model is likely to be useful

by simulating data from an EIBB distribution parameters close to their boundary values. We

compare the model against simpler alternatives by considering the following factors: whether

the model converges at all, the time it takes to do so, the bias in its estimated regression

coefficients and predictive performance as evaluated by the PSIS-LOO criterion, introduced

in Section 3.3.

4.1 Simulation setup

We compared the binomial and beta-binomial models in order to determine the minimal

level of overdispersion, governed by φ, that can be reliably detected over a range of sample

sizes, starting at n = 100. The same was done for binomial and endpoint-inflated binomial

models to find the minimal level of reliably detectable inflation. In all cases, a linear predictor

is placed on the mean of the binomial components to simultaneously explore the effects on

parameter recovery. The linear predictor features two covariates drawn from a N(0, 0.5)

distribution with zero intercept and coefficient vector β = [0.5,−0.5]>.

One hundred datasets were simulated for each combination of parameter values, sample

size and generating distribution. Then, each of those datasets was fit to the candidate

models: a binomial one and a beta-binomial or endpoint-inflated binomial, respectively. The

posterior means for each regression coefficient where compared against the true coefficient

values to calculate bias, root mean square error (RMSE), the time taken for model fitting

was recorded and, if the model converged, LOOIC was calculated. All of these quantities

are then averaged for presentation in a summary table. As LOOIC can be badly biased in

the presence of models which failed to converge, we only calculate it if all the simulations

converged; the number of simulations where the model did not converge can be found under

the “Failed to converge” column of the summary tables.

4.2 Results

4.2.1 Binomial vs Beta-binomial

In this simulation, observations were drawn from

Y ∼ Beta-binomial(0.5X1 − 0.5X2, φ; 7)

15

where X1 and X2 were generated independently from a N(0, 0.5) distribution for each of

φ = 0.05, 0.1, 0.2, 0.5. Each dataset was then fit to binomial and beta-binomial distributions.

Table 4.1 shows that even with moderately large samples, fitting issues for the beta-

binomial disappear only when the dispersion parameter is large enough (φ = 0.2). Further-

more, the beta-binomial model is slower to fit by orders of magnitude and only approaches

the binomial in speed for very large dispersion values. It is interesting to note that even if

the PSIS-LOO criterion correctly identifies the beta-binomial as the correct model for the

data, the coefficients are in general retrieved with a smaller bias by means of the binomial

distribution. In conclusion, it seems that ignoring dispersion values below 0.1 may be safe

and even beneficial, depending on the target of inference.

Bias RMSE Failed to Time
φ n Model β1 β2 β1 β2 converge LOOIC Std. Err. (seconds)

0.05 100 Binomial 0.00 0.03 0.23 0.24 0 368.96 15.92 1.22
0.05 100 Beta-binomial 0.26 0.23 0.89 0.82 18 – – 614.82

0.05 500 Binomial -0.00 0.00 0.1 0.1 0 1816.22 35.14 5.80
0.05 500 Beta-binomial 0.12 0.01 0.39 0.42 8 – – 1269.84

0.05 1000 Binomial -0.00 -0.00 0.07 0.07 0 3631.94 49.90 11.64
0.05 1000 Beta-binomial 0.03 -0.02 0.17 0.32 5 – – 2274.36

0.1 100 Binomial -0.01 0.02 0.25 0.24 0 388.03 18.04 1.22
0.1 100 Beta-binomial 0.07 0.02 0.38 0.39 7 – – 281.13

0.1 500 Binomial 0.00 0.00 0.1 0.1 0 1950.37 41.33 5.95
0.1 500 Beta-binomial -0.01 0.26 0.22 0.18 1 – – 983.04

0.2 100 Binomial -0.02 -0.03 0.26 0.27 0 438.47 22.80 1.23
0.2 100 Beta-binomial -0.46 0.49 0.81 0.96 0 371.41 8.80 250.12

0.5 100 Binomial 0.02 0.04 0.28 0.28 0 533.82 28.92 1.20
0.5 100 Beta-binomial 0.02 0.03 0.35 0.36 0 412.85 6.50 2.73

Table 4.1: Leave One Out criterion and fitting time for the binomial and beta-binomial models tested
on simulated data; one hundred datasets where simulated for each pair of comparisons.

4.2.2 Binomial vs. Endpoint-inflated binomial

For this simulation, observations were drawn from

Y ∼ EIBB(0.5X1 − 0.5X2, p, 1− 2p, p; 7)

where X1 and X2 were generated independently from a N(0, 0.5) distribution for each of

p = 0.025, 0.05, 0.0625, 0.075. Each dataset was then fit to binomial and endpoint-inflated

binomial distributions.

16

Table 4.2 shows the results of testing the endpoint-inflated model. As it can be seen for

all n, comparatively modest increases in sample size rapidly allow the model to retrieve the

parameters without issue. Additionally, the time difference between both methods is not

large, even if the binomial is cleared favored for its simplicity.

Bias RMSE Failed to Time
φ n Model β1 β2 β1 β2 converge LOOIC Std. Err. (seconds)

0.05 100 Binomial 0.01 -0.09 0.25 0.24 0 411.47 24.35 1.25
0.05 100 EI Binomial -0.00 -0.00 0.25 0.25 40 – – 4.05

0.05 250 Binomial 0.01 -0.04 0.15 0.16 0 1004.38 37.85 2.96
0.05 250 EI Binomial -0.00 0.01 0.16 0.17 4 – – 7.44

0.05 400 Binomial -0.00 -0.04 0.11 0.11 0 1603.68 47.59 4.61
0.05 400 EI Binomial -0.00 0.02 0.12 0.12 0 1487.96 24.01 11.84

0.1 100 Binomial -0.00 -0.13 0.28 0.26 0 470.51 29.48 1.22
0.1 100 EI Binomial -0.01 -0.04 0.31 0.27 6 – – 3.04

0.1 200 Binomial 0.01 -0.13 0.19 0.18 0 938.92 41.84 2.38
0.1 200 EI Binomial -0.00 -0.01 0.22 0.21 0 776.31 14.01 5.72

0.125 100 Binomial -0.02 -0.07 0.28 0.29 0 497.31 31.52 1.17
0.125 100 EI Binomial -0.00 0.07 0.27 0.32 2 – – 2.90

0.125 150 Binomial 0.00 -0.13 0.22 0.22 0 751.97 38.67 1.78
0.125 150 EI Binomial -0.00 0.00 0.25 0.25 0 586.34 11.45 4.25

0.15 100 Binomial -0.03 -0.16 0.29 0.29 0 528.92 33.16 1.17
0.15 100 EI Binomial 0.00 0.00 0.31 0.30 0 389.12 9.04 2.85

Table 4.2: Leave One Out criterion and fitting time for the binomial and endpoint-inflated binomial
models tested on simulated data; one hundred datasets where simulated for each pair of comparisons.

17

Chapter 5

Application

In this chapter, we explore the inferences obtained by applying the EIBB regression model

to data from a horticultural experiment on pesticide efficacy. We then discuss the model’s

merits in relation to the alternatives.

5.1 The whitefly dataset

In van Iersel et al. (2000), a randomized complete block experiment with repeated mea-

sures was conducted for the purpose of evaluating the efficacy of six treatment conditions

for the control of silverleaf whiteflies on poinsettia plants. Each week, a known number of

insects was placed on one of the plant’s leaves and the number of survivors was recorded after

treatment, resulting in a bounded count outcome and a total of 640 observations. The six

conditions which were tested are a control with no pesticide, pesticide application through

subirrigation preceded by a 0, 1, 2 and 4-day no-irrigation period and application via hand

watering.

The resulting dataset contains the following variables:

• week: marks the week in which the measurement was taken; integers 1–12

• rep: identifier for the randomization block; integers 1–3

• trt: indicates which treatment was assigned; integers 0–5

• bindenom: number of insects at the beginning of the week; integers 1–15

• nlive: number of surviving insects at the end of the week, equal or less than bindenom;

integers 0–13

• plantid: identifier for each plant; integers 1–54

In Figure 5.1, we see that the proportion of surviving insects shows a clear concentration of

probability at both bounds, with zeros (no survivors) accounting for 53% of the observations

and ones (no deaths) accounting for 12% of the observations. This suggests a case where our

endpoint inflated model could be useful and the presence of repeated measures means that

clustering effects should also be evaluated.

18

Figure 5.1: Empirical distribution of proportion of survived insects

5.2 Model structure

Two analyses of this dataset with inflated models have already been published , see Hall

(2000) and Hall and Zhang (2004), but these only accounted for zero inflation. We will follow

the same model specification used by the authors for the mean of the binomial component

of the mixture and compare whether the introduction of inflation at the upper bound results

in improved fit.

We fit the following models: binomial, zero-inflated binomial with and without fixed

effects on inflation probability, and endpoint-inflated binomial with SR1 using softmax and

normal cdf links and with SR2.

Taking the same model specification from Hall and Zhang (2004), the linear predictor

with coefficient vector β at observation i as ηβi for the binomial mean takes the following

form:

ηβi = β0 + βweekweeki + βblock2block2i + βblock3block3i + βtrt2trt2i+

+ βtrt3trt3i + βtrt4trt4i + βtrt5trt5i + βtrt6trt6i,

where the trt and block variables are generated by dummy coding the six treatments and

block membership, respectively. Because all the parameters on which we will place linear

predictors have an influence on the mean of the distribution (see 2.5), we initially attempted

to include all the variables as predictors on all other parameters, so that ηβi = ηγi = ηδi.

The link functions we use reach values of zero or one rapidly for relatively small input

19

values, we will place a N(0, 5) prior for all coefficients in every model considered below; this

places little probability on values with implausibly large effect sizes and, as mentioned in 3.2,

it also helps the fitting process to be more efficient.

Among the models we will consider, we include logistic regression as a minimal bench-

mark. In this model, the observations Yi follow a simple binomial distribution with no

inflation:

Yi ∼ Binomial(µi;ni)

µi = logit−1(ηβi).

We also fit the model used by Hall and Zhang (2004), which uses a zero-inflated binomial

distribution and extend it to include predictors on p0, the probability of zero-inflation:

Yi ∼ ZIB(µi, p0i;ni)

µi = logit−1(ηβi)

p0i = logit−1(ηγi).

The first model we consider for endpoint inflation, given by Tian et al. (2015), uses SR1

and the softmax link to place predictors directly on the inflation probabilities:

Yi ∼ EIBSR1(µi, p0i, p1i, p2i;ni)

µi = logit−1(ηβi)(
p0i, p1i, p2i

)
= softmax(ηγi, 0, ηδi).

The second variant we consider is our own and also uses SR1 but links inflation proba-

bilities to predicts through an ordered probit link:

Yi ∼ EIBSR1(µi, p0i, p1i, p2i;ni)

µi = logit−1(ηβi)

p0i = Φ(−1; ηγi, σ
2)

p1i = Φ(1; ηγi, σ
2)− Φ(−1; ηγi, σ

2)

p2i = 1− Φ(1; ηγi, σ
2).

We additionally consider SR2, where the probability of inflation at either endpoint, νi,

and the mean of the inflation by both endpoints, ωi, are connected to covariates through a

logit link:

20

Yi ∼ EIBSR2(µi, p0i, p1i, p2i;ni)

µi = logit−1(ηβi)

νi = logit−1(ηδi)

ωi = logit−1(ηγi)

p0i = νi(1− ωi)

p1i = 1− νi
p2i = νiωi.

Although the different specifications we use for the endpoint-inflated models are all equally

capable of modeling any combination of inflation probabilities, the way in which they relate

covariates and inflation can offer insight into the underlying processes being studied. The

ordinal probit model, through the normal cdf mean parameter, models a situation where the

amount of inflation at one endpoint is directly in opposition with the other one and is best

suited to represent a smooth transitions from one endpoint to the other; any exchange of

probability between either endpoint is first allocated to the binomial distribution, which can

be thought of as representing an intermediate state of response intensity (see Figure 3.1).

On the other hand, the SR2 model is most useful when one seeks to explain the presence of

inflation at either endpoint; this can be useful if the inflated responses are thought to come

from a qualitatively different population and one wishes to separate them from the results

obtained from the binomial distribution.

In order to account for the repeated measures, we first selected the best-fitting model

from the above set using the LOO criterion and then refit two versions of the model, one

using random intercepts and another with the beta-binomial distribution.

5.3 Results

5.3.1 Model comparison

The original Hall and Zhang (2004) article did not place any predictors on the inflation

parameters. We first explored whether doing so could improve model fit. As shown in table

5.1, including the treatment variable as a predictor on the zero-inflation probability leads to

a non-trivial improvement in the LOO criterion (2186.59 to 2055.67). On the other hand,

the week or block variables do not improve model fit, and this is reflected by a worsening

of the LOO criterion (2055.67 to 2060.11). Based on this result, we only use the treatment

variable for the inflation parameters on all models that follow.

Model LOOIC Std. Err.

Fixed zero probability 2186.59 97.68
Treatment on zero probability 2055.67 99.55
Treatment + week + block on zero probability 2060.11 99.47

Table 5.1: Comparison of LOO criterion for three different specifications of the zero-inflation proba-
bility in the ZIB model

Table 5.2 shows that all inflated models clearly outperform a naive binomial model,

however, the difference in performance between the zero-inflated model and endpoint-inflated

21

models is small in general, with the exception of the model using a normal cdf link, which

shows a sizable improvement.

Model LOOIC Std. Err.

Binomial 2774.60 138.59
Zero-inflated binomial 2055.67 99.55
Endpoint-inflated binomial (SR1 softmax) 2020.72 92.28
Endpoint-inflated binomial (SR1 normal cdf) 1878.42 78.95
Endpoint-inflated binomial (SR2) 2025.42 95.17

Table 5.2: Comparison of LOO criterion for determining the best-fitting model

In the SR1 softmax model, we were only able to include covariate information on the

zero-inflation parameter as models with predictors for one-inflation did not converge. This

was likely due to the small fraction of observations in that category.

Finally, we attempted to model the potential overdispersion due to repeated measures by

using a random intercept approach and a marginal approach using a beta-binomial distri-

bution instead of the binomial. While the beta-binomial approach does not directly model

a correlation within units, the results in Hall and Zhang (2004) show that such correlation

is quite low. Therefore, a beta-binomial model could be more computationally efficient as it

can account for overdipersion with only one additional parameter, while the random inter-

cept model would introduce 54 additional parameters, one for each plant in the experiment.

Ultimately, however, the beta-binomial model failed to converge, as seen in the trace plots

of Figure 5.2. Therefore, the endpoint-inflated binomial model with mixed effects and SR1

normal cdf link appears to reflect the best fit for this dataset.

The good fit of our model can be further shown by using a posterior predictive plot, which

simulates random draws from the model at each datapoint. The plots in Figure 5.3 show

that our selected model is the only one which adequately models the behavior of observations

at the upper bound.

22

Figure 5.2: Trace plots for a beta-binomial model fit to the whitefly dataset

23

Figure 5.3: Posterior predictive graphs comparing four models fit on the whitefly dataset

5.3.2 Model interpretation

As the dataset used comes from an experimental study, its main purpose is providing

information on the effectiveness of the treatments. In a traditional regression model, one

may do so by directly interpreting the magnitude and sign of the coefficients in the linear

predictor. However, this becomes harder to do in models with multiple regressions on its

different parameters, all of which may be simultaneously affecting the mean response (as is

the case in our model). Therefore, we resort to marginal effects plots, which allow us to

graphically observe the overall effect of the variable of interest on the response.

Marginal plots are created by calculating the mean response for varying levels of a given

variable while every other variable is set to a fixed value: numeric variables are set to their

mean value across the sample while categorical variables to their reference level; in this case

the graph plot shows varying treatment levels with week = 6.5 and block2 = block3 = 0.

The resulting plot, shown in Figure 5.4, indicates that there is little difference among the

inferences produced by the models, including the traditional binomial regression, although the

latter underestimates the uncertainty aroun the estimates. Overall, one can conclude that

any treatment has an effect which is clearly distinguishable from the control, and among

treatments subirrigation is slightly better than hand watering but they are otherwise similar.

24

Figure 5.4: Marginal effects of treatment on pest survival under four different models

25

Chapter 6

Conclusions

Our simulation study shows that exploring the presence of inflation using MCMC can

be relatively inexpensive in terms of computation time and does not require a very large

sample size. On the other hand, models that handle overdispersion through marginalization

were shown to be far slower to fit and required a larger sample size before reliable estimates

could be obtained. Our analysis with the whitefly dataset reinforces our findings as the beta-

binomial model could not be fit on the data, despite having repeated measures and sufficient

sample size to reliably estimate the rest of parameters.

A crucial lesson to be learned from the whitefly dataset is that even when endpoint

inflation is clearly an appropriate modeling choice, it is not guaranteed to meaningfully

improve model fit unless an appropriate link function and predictor specification is used. In

particular, we discovered that the softmax, despite being a common link choice for categorical

distributions, was outperformed by a normal cdf link.

We anticipate that the normal cdf link could be a generally appropriate choice for endpoint

inflated data due to its taking advantage of the order information present in the mixture.

Because predictors placed on the cdf’s mean parameter simultaneously affect all three mixture

probabilities, this removes the need for an arbitrary choice of which probabilities to model

introduced when using a softmax link. Furthermore, as estimation of the cdf mean parameter

uses the entire mixture data, it is less affected by situations where there is a limited number

of observations at the endpoints where attempts to individually estimate each probability

would be unreliable.

26

Appendix A

Code

A.1 Simulation study

SETUP

library(drake)

library(tidyverse)

library(bayesplot)

library(rstan)

library(loo)

rstan_options(auto_write = TRUE)

options(mc.cores = parallel::detectCores())

options(stringsAsFactors = FALSE)

pkgconfig::set_config("drake::strings_in_dots" = "literals")

Inverse logistic

invlogit <- function(x)(1/(1+exp(-x)))

Softmax

softmax <- function(x)exp(x)/sum(exp(x))

Beta distribution mean-dispersion reparametrizer

repar.beta <- function(mu, rho) {

if (all(0 < mu & mu < 1 & 0 < rho)) {

list(alpha = mu / rho,

beta = (1 - mu) / rho)

} else {

stop("Parameters are out of bounds")

}

}

Draw from reparametrized beta

rbeta.repar <- function(n, mu, rho) {

with(repar.beta(mu, rho),

rbeta(n, alpha, beta))

27

}

Draw from beta-binomial (uses reparametrized beta)

rbbin <- function(n = 1000, # samples

tries = 10,# binomial attempts

mu = 0.5, rho = 1) {

rbinom(n, tries, rbeta.repar(n, mu, rho))

}

Label variables have a ’labels’ attribute

putlabel <- function(x) {

if(is.null(attr(x, "labels"))) {

stop("No ’labels’ attribute")

} else {

return(factor(x, levels = attr(x, "labels"),

labels = names(attr(x, "labels"))))

}

}

Cumulative normal-based probability vector

cumu.norm <- function(mu, s){

c(

pnorm((0 - mu)/s),

pnorm((1 - mu)/s) - pnorm((0 - mu)/s),

1 - pnorm((1 - mu)/s)

) %>% matrix(ncol = 3)

}

Simulate data for EIBB regression model estimation

eibb.sim <- function(N, # Number of observations

n, # Binomial size

bx = 0, bz = 0.5, # Coeffs (beta, latent normal means)

rho = 0.0001, s = 0, # Default: no overdispersion/inflation

sx = 0.5, sz = 0.3, # Dispersion for covariate generation

seed = 1, # Random seed

fullinfo = FALSE) {

Covariate generation

Kx <- length(bx)

x <- cbind(rep(1, N),

sapply(rep(N, Kx - 1), rnorm, sd = sx)) %>%

unlist %>% matrix(ncol = Kx)

28

Kz <- length(bz)

z <- cbind(rep(1, N),

sapply(rep(N, Kz - 1), rnorm, sd = sz)) %>%

unlist %>% matrix(ncol = Kz)

Linear predictors

mu.beta <- invlogit(x %*% bx)

mu.norm <- z %*% bz

Mixture probabilities

p <- cumu.norm(mu.norm, s)

Latent mixture component selector

Z <- apply(p, 1, function(prob.vector) sample(1:3, size = 1, prob = prob.vector))

y <- ifelse(Z == 1, 0,

ifelse(Z == 2, rbbin(N, n, mu.beta, rho),

ifelse(Z == 3, n, NA))

)

if (fullinfo) {

list(N = N, Kx = Kx, Kz = Kz,

n = ifelse(length(n) == 1, rep(n, N), n),

y = y,

x = x, z = z,

p = p,

Z = Z,

mu.norm = mu.norm,

mu.beta = mu.beta) %>% return

} else {

list(N = N, Kx = Kx, Kz = Kz,

n = if(length(n)==1){rep(n,N)}else{n},

y = y,

x = x, z = z) %>% return

}

}

tab_looic_divergent <- function(fit){

data.frame(model = attr(fit, "model_name"),

N = attr(fit, "sim")$dims_oi$log_lik,

looic = loo(fit)$estimates[3,1],

waic = waic(extract(fit, "log_lik")$log_lik)$estimates[3,1],

divergent = get_num_divergent(fit))

29

}

Endpoint-inflated binomial pmf/cdf

deibi <- function(y, mu, p1, p2, p3, n) {

if(p1+p2+p3!=1){stop("p elements must sum to 1")}

p1*ifelse(y==0, 1, 0) +

p2*dbinom(y, n, mu) +

p3*ifelse(y==n, 1, 0)

}

peibi <- function(y, mu, p1, p2, p3, n) {

pacote <- data.frame(y, mu, p1, p2, p3, n)

apply(pacote, 1,

function(x) sum(

deibi(0:x[[1]], x[[2]], x[[3]], x[[4]], x[[5]], x[[6]], x[[7]])

))

}

Endpoint-inflated beta-binomial pmf/cdf

deibb <- function(y, mu, rho, p1, p2, p3, n) {

if(p1+p2+p3!=1){stop("p elements must sum to 1")}

p1*ifelse(y==0, 1, 0) +

p2*rmutil::dbetabinom(y, n, mu, 1/rho) +

p3*ifelse(y==n, 1, 0)

}

peibb <- function(y, mu, rho, p1, p2, p3, n) {

pacote <- data.frame(y, mu, rho, p1, p2, p3, n)

apply(pacote, 1,

function(x) sum(

deibb(0:x[[1]], x[[2]], x[[3]], x[[4]], x[[5]], x[[6]], x[[7]])

))

}

Create divergence table from simulation fits

diverg.tb <- function(...) {

ddd <- list(...)

simu.label <- strsplit(

c(

names(ddd)

),"_") %>%

sapply(function(x){x[3:6]}) %>%

data.frame(row.names = c("model", "data", "pars", "n")) %>%

30

t %>% as.tibble %>%

mutate(n = as.numeric(substr(n, 2, 99)))

as.tibble(cbind(simu.label, divergent = unlist(ddd)))

}

diverg.tb2 <- function(...) {

ddd <- list(...)

simu.label <- strsplit(

c(

names(ddd)

),"_") %>%

sapply(function(x){x[1:4]}) %>%

data.frame(row.names = c("model", "data", "pars", "n")) %>%

t %>% as.tibble %>%

mutate(n = as.numeric(substr(n, 2, 99)))

as.tibble(cbind(simu.label, divergent = unlist(ddd)))

}

COMPILE MODELS

compilestan_plan <- drake_plan(

binom.model =

stan_model(file_in("Stan/bin-regression-model.stan"),

model_name = "Binomial regression"),

betab.model =

stan_model(file_in("Stan/bb-regression-model.stan"),

model_name = "BB regression"),

binRE.model =

stan_model(file_in("Stan/binRE-regression-model.stan"),

model_name = "Binomial regression with RE"),

binRE_zero.model =

stan_model(file_in("Stan/binRE_zero-regression-model.stan"),

model_name = "Binomial regression with zero-mean RE"),

eibin.model =

stan_model(file_in("Stan/eibi-regression-model.stan"),

model_name = "EIBi regression"),

eibeb.model =

stan_model(file_in("Stan/eibb-regression-model.stan"),

model_name = "EIBB regression"),

eibiP.model =

stan_model(file_in("Stan/eibi-regression-model-P.stan"),

model_name = "EIBi regression - P parametrization")

)

31

SIMULATIONS

seeds_plan <- data.frame(

target =

paste0("seed", sprintf("%03d", 1:100)),

command =

as.character(1:100),

stringsAsFactors = FALSE

)

Binomial vs Beta-Binomial simulations

simu_betab_pars <- drake_plan(

simu.betab.data_0.05_n100 =

eibb.sim(N = 10**2, n = 7,

bx = c(0, 0.5, -0.5),

rho = 0.05,

seed = seed__),

simu.betab.data_0.05_n500 =

eibb.sim(N = 5*10**2, n = 7,

bx = c(0, 0.5, -0.5),

rho = 0.05,

seed = seed__),

simu.betab.data_0.05_n1k =

eibb.sim(N = 10**3, n = 7,

bx = c(0, 0.5, -0.5),

rho = 0.05,

seed = seed__),

simu.betab.data_0.1_n100 =

eibb.sim(N = 10**2, n = 7,

bx = c(0, 0.5, -0.5),

rho = 0.1,

seed = seed__),

simu.betab.data_0.1_n500 =

eibb.sim(N = 5*10**2, n = 7,

bx = c(0, 0.5, -0.5),

rho = 0.1,

seed = seed__),

simu.betab.data_0.2_n100 =

eibb.sim(N = 10**2, n = 7,

bx = c(0, 0.5, -0.5),

rho = 0.2,

seed = seed__),

32

Evaluar sesgo en coeficientes

simu.betab.data_0.5_n100 =

eibb.sim(N = 10**2, n = 7,

bx = c(0, 0.5, -0.5),

rho = 0.5,

seed = seed__)

)

simu_betab_plan <- evaluate_plan(

plan = simu_betab_pars,

wildcard = "seed__",

values = seeds_plan$target

)

simu_betab_fits <- drake_plan(

sampling(binom.model,

data = data__,

chains = 1, iter = 2000),

sampling(betab.model,

data = data__,

chains = 1, iter = 2000,

control =

list(adapt_delta = 0.9,

max_treedepth = 15

))

)

simu_betab.fits_plan <- evaluate_plan(

plan = simu_betab_fits,

wildcard = "data__",

values = simu_betab_plan$target

)

Binomial vs Endpoint-Inflated Binomial simulations

simu_eibin_pars <- drake_plan(

simu.eibin.data_p0.05_n100 =

eibb.sim(N = 10**2, n = 7,

bx = c(0, 0.5, -0.5),

s = 0.3039784,

seed = seed__),

simu.eibin.data_p0.05_n250 =

eibb.sim(N = 2.5*10**2, n = 7,

33

bx = c(0, 0.5, -0.5),

s = 0.3039784,

seed = seed__),

simu.eibin.data_p0.05_n400 =

eibb.sim(N = 4*10**2, n = 7,

bx = c(0, 0.5, -0.5),

s = 0.3039784,

seed = seed__),

simu.eibin.data_p0.1_n100 =

eibb.sim(N = 10**2, n = 7,

bx = c(0, 0.5, -0.5),

s = 0.3901521,

seed = seed__),

simu.eibin.data_p0.1_n200 =

eibb.sim(N = 2*10**2, n = 7,

bx = c(0, 0.5, -0.5),

s = 0.3901521,

seed = seed__),

simu.eibin.data_p0.125_n100 =

eibb.sim(N = 10**2, n = 7,

bx = c(0, 0.5, -0.5),

s = 0.4346506,

seed = seed__),

simu.eibin.data_p0.125_n150 =

eibb.sim(N = 1.5*10**2, n = 7,

bx = c(0, 0.5, -0.5),

s = 0.4346506,

seed = seed__),

simu.eibin.data_p0.15_n100 =

eibb.sim(N = 10**2, n = 7,

bx = c(0, 0.5, -0.5),

s = 0.4824237,

seed = seed__)

)

simu_eibin_plan <- evaluate_plan(

plan = simu_eibin_pars,

wildcard = "seed__",

values = seeds_plan$target

)

simu_eibin_fits <- drake_plan(

34

sampling(binom.model,

data = data__,

chains = 1, iter = 2000),

sampling(eibin.model,

data = data__,

chains = 1, iter = 2000,

control =

list(adapt_delta = 0.9,

max_treedepth = 15

))

)

simu_eibin.fits_plan <- evaluate_plan(

plan = simu_eibin_fits,

wildcard = "data__",

values = simu_eibin_plan$target

)

simu_binRE_fits <- drake_plan(

binREfit =

sampling(binRE.model, data = data__, chains = 1, iter = 2000,

control = list(adapt_delta = 0.9, max_treedepth = 15))

)

simu_binRE.fits_plan <- evaluate_plan(

plan = simu_binRE_fits,

wildcard = "data__",

values = simu_betab_plan$target

)

simu_eibiP_fits <- drake_plan(

eibiPfit =

sampling(eibiP.model, data = data__, chains = 1, iter = 2000,

control = list(adapt_delta = 0.9, max_treedepth = 15))

)

simu_eibiP.fits_plan <- evaluate_plan(

plan = simu_eibiP_fits,

wildcard = "data__",

values = simu_eibin_plan$target[c(201:300,401:500,601:700,701:800)]

)

35

All sims

simu_plan <- bind_plans(

simu_betab_plan,

simu_betab.fits_plan,

simu_eibin_plan,

simu_eibin.fits_plan,

simu_eibiP.fits_plan,

simu_binRE.fits_plan

)

betab_dnumbs <- tibble(

target = paste0(simu_betab.fits_plan$target,"_divergences"),

command = paste("get_num_divergent(",simu_betab.fits_plan$target,")")

)

betab_divergences <- gather_plan(

betab_dnumbs,

target = "betab_ndiv",

gather = "diverg.tb"

)

eibin_dnumbs <- tibble(

target = paste0(simu_eibin.fits_plan$target,"_divergences"),

command = paste("get_num_divergent(",simu_eibin.fits_plan$target,")")

)

eibin_divergences <- gather_plan(

eibin_dnumbs,

target = "eibin_ndiv",

gather = "diverg.tb"

)

eibiP_dnumbs <- tibble(

target = paste0(simu_eibiP.fits_plan$target,"_divergences"),

command = paste("get_num_divergent(",simu_eibiP.fits_plan$target,")")

)

eibiP_divergences <- gather_plan(

eibiP_dnumbs,

target = "eibiP_ndiv",

gather = "diverg.tb2"

36

)

divergent_plan <- bind_plans(

betab_dnumbs,

betab_divergences,

eibin_dnumbs,

eibin_divergences,

eibiP_dnumbs,

eibiP_divergences

)

RUN ALL

plan_final <- bind_plans(

compilestan_plan,

seeds_plan,

simu_plan,

divergent_plan

)

make(plan_final, seed = 1991)

A.2 Whitefly dataset analysis

SETUP

library(tidyverse)

library(brms)

Convenience functions

Paste operator

Saves space when writing folder paths

‘%p0%‘ <- function(x, y)paste0(x, y)

Fit & save model

save_fit <- function(fitname, fitfun, formula_, ...) {

if(file.exists("out/fits/" %p0% fitname %p0% ".rds"))stop("File already exists")

saveRDS(object = fitfun(formula_, ...),

file = "out/fits/" %p0% fitname %p0% ".rds")

}

Matrix columns to list

col2list <- function(x)as.list(unname(as.data.frame(x)))

Split every n rows

split_nrow <- function(x, n)lapply(1:n, function(y)x[seq(y, nrow(x), by = n),])

37

Math functions

softmax <- function(x)(exp(x)/sum(exp(x)))

softmax2 <- function(x, y)mapply(function(...)softmax(c(...)), x, y, 0)

cutnorm <- function(mu, sd) {

p1 <- pnorm(-1, mean = mu, sd = sd)

p2 <- pnorm(1, mean = mu, sd = sd)

c(p1,

1 - p2,

p2 - p1)

}

cutnorm2 <- function(mu, sd)mapply(cutnorm, mu, sd)

DEFINE BRMS MODELS

Fit a Zero-Inflated Binomial model with constant inflation probability

fit_bin <- function(formula_, ...){

priors <- set_prior("normal(0,5)", class = "b") # weak regularization

brm(formula = formula_,

data = wf,

prior = priors,

family = zero_inflated_binomial())

}

Fit a Zero-Inflated Binomial model with constant inflation probability

fit_zib <- function(formula_, ...){

priors <- set_prior("normal(0,5)", class = "b") # weak regularization

brm(formula = formula_,

data = wf,

prior = priors,

family = zero_inflated_binomial())

}

Fit an Endpoint-Inflated Binomial model w/softmax mixture link

fit_eiBinomialSM <- function(formula_, ...){

eiBinomialSM <- custom_family(

"eiBinomialSM", dpars = c("mu", "so", "sm"), # unrestricted mixture scores

links = c("identity", "identity", "identity"),

type = "int", vars = "trials[n]",

log_lik =

function(i, draws) {

mu <- if(is.null(dim(draws$dpars$mu))) {

draws$dpars$mu

38

} else{

draws$dpars$mu[, i]

}

so <- if(is.null(dim(draws$dpars$so))) {

draws$dpars$so

} else{

draws$dpars$so[, i]

}

sm <- if(is.null(dim(draws$dpars$sm))) {

draws$dpars$sm

} else{

draws$dpars$sm[, i]

}

trials <- draws$data$trials[i]

y <- draws$data$Y[i]

eiBinomialSM_lpmf(y, mu, so, sm, trials)

},

predict =

function(i, draws, ...) {

mu <- if(is.null(dim(draws$dpars$mu))) {

draws$dpars$mu

} else{

draws$dpars$mu[, i]

}

so <- if(is.null(dim(draws$dpars$so))) {

draws$dpars$so

} else{

draws$dpars$so[, i]

}

sm <- if(is.null(dim(draws$dpars$sm))) {

draws$dpars$sm

} else{

draws$dpars$sm[, i]

}

trials <- draws$data$trials[i]

eiBinomialSM_rng(mu, so, sm, trials)

},

fitted =

function(draws) {

mu <- draws$dpars$mu

so <- draws$dpars$so

sm <- draws$dpars$sm

39

p <- split_nrow(mapply(softmax2, so, sm), 3)[-1]

trials <- median(draws$data$trials)

(p[[1]] + p[[2]]*inv_logit_scaled(mu))*trials

}

)

stan_funs <- "

vector linkfunc(real so, real sm){

return softmax([so, sm, 0]’);

}

int[] ei(int y, int ntrial) {

return {(1 - min({1, y})), (1 - min({1, ntrial - y}))};

}

real eiBinomialSM_lpmf(int y, real mu, real so, real sm, int trials) {

int yom[2] = ei(y, trials);

vector[3] pom = linkfunc(so, sm);

return log(yom[1]*pom[1] + yom[2]*pom[2] +

pom[3]*exp(binomial_logit_lpmf(y | trials, mu)));

}

int eiBinomialSM_rng(real mu, real so, real sm, int trials) {

int which_component = categorical_rng(linkfunc(so, sm));

if (which_component == 1) {

return 0;

}

if (which_component == 2) {

return trials;

}

return binomial_rng(trials, inv_logit(mu));

}

"

stanvars <- stanvar(scode = stan_funs, block = "functions") +

stanvar(as.integer(wf$bindenom), name = "trials")

40

Reasonable weak regularization for logistic coeffs

priors <- set_prior("normal(0,5)", class = "b")

brm(formula = formula_,

data = wf,

prior = priors,

family = eiBinomialSM,

stanvars = stanvars,

...)

}

Fit an Endpoint-Inflated Binomial model w/latent normal link

fit_eiBinomialLN <- function(formula_, ...){

eiBinomialLN <- custom_family(

"eiBinomialLN", dpars = c("mu", "muL", "sdL"), # mixture scores

links = c("identity", "identity", "identity"),

type = "int", vars = "trials[n]",

log_lik =

function(i, draws) {

mu <- if(is.null(dim(draws$dpars$mu))) {

draws$dpars$mu

} else{

draws$dpars$mu[, i]

}

muL <- if(is.null(dim(draws$dpars$muL))) {

draws$dpars$muL

} else{

draws$dpars$muL[, i]

}

sdL <- if(is.null(dim(draws$dpars$sdL))) {

draws$dpars$sdL

} else{

draws$dpars$sdL[, i]

}

trials <- draws$data$trials[i]

y <- draws$data$Y[i]

eiBinomialLN_lpmf(y, mu, muL, sdL, trials)

},

predict =

function(i, draws, ...) {

mu <- if(is.null(dim(draws$dpars$mu))) {

draws$dpars$mu

} else{

41

draws$dpars$mu[, i]

}

muL <- if(is.null(dim(draws$dpars$muL))) {

draws$dpars$muL

} else{

draws$dpars$muL[, i]

}

sdL <- if(is.null(dim(draws$dpars$sdL))) {

draws$dpars$sdL

} else{

draws$dpars$sdL[, i]

}

trials <- draws$data$trials[i]

eiBinomialLN_rng(mu, muL, sdL, trials)

},

fitted =

function(draws) {

mu <- draws$dpars$mu

muL <- draws$dpars$muL

sdL <- draws$dpars$sdL

p <- split_nrow(mapply(cutnorm2, muL, exp(sdL)), 3)[-1]

trials <- median(draws$data$trials)

(p[[1]] + p[[2]]*inv_logit_scaled(mu))*trials

}

)

stan_funs <- "

vector linkfunc(real muL, real sdL){

real lsdL = exp(sdL);

real p1 = normal_cdf(-1, muL, lsdL);

real p2 = normal_cdf(1, muL, lsdL);

return [p1, 1-p2, p2-p1]’;

}

int[] ei(int y, int ntrial) {

return {(1 - min({1, y})), (1 - min({1, ntrial - y}))};

}

real eiBinomialLN_lpmf(int y, real mu, real muL, real sdL, int trials) {

42

int yom[2] = ei(y, trials);

vector[3] pom = linkfunc(muL, sdL);

return log(yom[1]*pom[1] + yom[2]*pom[2] +

pom[3]*exp(binomial_logit_lpmf(y | trials, mu)));

int eiBinomialLN_rng(real mu, real muL, real sdL, int trials) {

int which_component = categorical_rng(linkfunc(muL, sdL));

if (which_component == 1) {

return 0;

}

if (which_component == 2) {

return trials;

}

return binomial_rng(trials, inv_logit(mu));

}

"

stanvars <- stanvar(scode = stan_funs, block = "functions") +

stanvar(as.integer(wf$bindenom), name = "trials")

Reasonable weak regularization for logistic coeffs

priors <- set_prior("student_t(3, 0, 10)", class = "b")

brm(formula = formula_,

data = wf,

prior = priors,

family = eiBinomialLN,

stanvars = stanvars,

...)

}

Fit an Endpoint-Inflated Binomial model w/latent normal link

fit_eiBinomialSR2 <- function(formula_, ...){

eiBinomialSR2 <- custom_family(

"eiBinomialSR2", dpars = c("mu", "pom", "pei"), # mixture scores

links = c("identity", "identity", "identity"),

type = "int", vars = "trials[n]",

log_lik =

function(i, draws) {

43

mu <- if(is.null(dim(draws$dpars$mu))) {

draws$dpars$mu

} else{

draws$dpars$mu[, i]

}

pom <- if(is.null(dim(draws$dpars$pom))) {

draws$dpars$pom

} else{

draws$dpars$pom[, i]

}

pei <- if(is.null(dim(draws$dpars$pei))) {

draws$dpars$pei

} else{

draws$dpars$pei[, i]

}

trials <- draws$data$trials[i]

y <- draws$data$Y[i]

eiBinomialSR2_lpmf(y, mu, pom, pei, trials)

},

predict =

function(i, draws, ...) {

mu <- if(is.null(dim(draws$dpars$mu))) {

draws$dpars$mu

} else{

draws$dpars$mu[, i]

}

pom <- if(is.null(dim(draws$dpars$pom))) {

draws$dpars$pom

} else{

draws$dpars$pom[, i]

}

pei <- if(is.null(dim(draws$dpars$pei))) {

draws$dpars$pei

} else{

draws$dpars$pei[, i]

}

trials <- draws$data$trials[i]

eiBinomialSR2_rng(mu, pom, pei, trials)

},

fitted =

function(draws) {

mu <- draws$dpars$mu

44

pom <- inv_logit_scaled(draws$dpars$pom)

pei <- inv_logit_scaled(draws$dpars$pei)

trials <- median(draws$data$trials)

((1-pei)*pom + pei*inv_logit_scaled(mu))*trials

}

)

stan_funs <- "

int[] ei(int y, int ntrial) {

return {(1 - min({1, y})), (1 - min({1, ntrial - y}))};

}

real eiBinomialSR2_lpmf(int y, real mu, real pom, real pei, int trials) {

int yom[2] = ei(y, trials);

return log((1-inv_logit(pei))*(yom[1]*(1 - inv_logit(pom)) +

yom[2]*inv_logit(pom)) +

inv_logit(pei)*exp(binomial_logit_lpmf(y | trials, mu)));

}

int eiBinomialSR2_rng(real mu, real pom, real pei, int trials) {

int which_component = categorical_rng([(1 - inv_logit(pei))*(1 - inv_logit(pom)),

(1 - inv_logit(pei))*inv_logit(pom), inv_logit(pei)]’);

if (which_component == 1) {

return 0;

}

if (which_component == 2) {

return trials;

}

return binomial_rng(trials, inv_logit(mu));

}

"

stanvars <- stanvar(scode = stan_funs, block = "functions") +

stanvar(as.integer(wf$bindenom), name = "trials")

Reasonable weak regularization for logistic coeffs

priors <- set_prior("student_t(3, 0, 10)", class = "b")

45

brm(formula = formula_,

data = wf,

prior = priors,

family = eiBinomialSR2,

stanvars = stanvars,

...)

}

Fit an Endpoint-Inflated Binomial model w/latent normal link

fit_eiBetaBinomialLN <- function(formula_, ...){

eiBetaBinomialLN <- custom_family(

"eiBetaBinomialLN", dpars = c("mu", "rho", "muL", "sdL"),

links = c("identity", "identity", "identity", "identity"),

type = "int", vars = "trials[n]",

log_lik =

function(i, draws) {

mu <- if(is.null(dim(draws$dpars$mu))) {

draws$dpars$mu

} else{

draws$dpars$mu[, i]

}

muL <- if(is.null(dim(draws$dpars$muL))) {

draws$dpars$muL

} else{

draws$dpars$muL[, i]

}

sdL <- if(is.null(dim(draws$dpars$sdL))) {

draws$dpars$sdL

} else{

draws$dpars$sdL[, i]

}

trials <- draws$data$trials[i]

y <- draws$data$Y[i]

eiBetaBinomialLN_lpmf(y, mu, rho, muL, sdL, trials)

},

predict =

function(i, draws, ...) {

mu <- if(is.null(dim(draws$dpars$mu))) {

draws$dpars$mu

} else{

draws$dpars$mu[, i]

}

46

muL <- if(is.null(dim(draws$dpars$muL))) {

draws$dpars$muL

} else{

draws$dpars$muL[, i]

}

sdL <- if(is.null(dim(draws$dpars$sdL))) {

draws$dpars$sdL

} else{

draws$dpars$sdL[, i]

}

trials <- draws$data$trials[i]

eiBetaBinomialLN_rng(mu, rho, muL, sdL, trials)

},

fitted =

function(draws) {

mu <- draws$dpars$mu

muL <- draws$dpars$muL

sdL <- draws$dpars$sdL

p <- split_nrow(mapply(cutnorm2, muL, exp(sdL)), 3)[-1]

trials <- median(draws$data$trials)

(p[[1]] + p[[2]]*inv_logit_scaled(mu))*trials

}

)

stan_funs <- "

vector linkfunc(real muL, real sdL){

real lsdL = exp(sdL);

real p1 = normal_cdf(-1, muL, lsdL);

real p2 = normal_cdf(1, muL, lsdL);

return [p1, 1-p2, p2-p1]’;

}

int[] ei(int y, int ntrial) {

return {(1 - min({1, y})), (1 - min({1, ntrial - y}))};

}

real eiBetaBinomialLN_lpmf(int y, real mu, real rho, real muL,

real sdL, int trials) {

int yom[2] = ei(y, trials);

47

vector[3] pom = linkfunc(muL, sdL);

real lrho = exp(rho);

real lmu = inv_logit(mu);

return log(yom[1]*pom[1] + yom[2]*pom[2] +

pom[3]*exp(beta_binomial_lpmf(y | trials, lmu/lrho, (1-lmu)/lrho)));

}

int eiBetaBinomialLN_rng(real mu, real rho, real muL, real sdL, int trials) {

int which_component = categorical_rng(linkfunc(muL, sdL));

real lrho = exp(rho);

real lmu = inv_logit(mu);

if (which_component == 1) {

return 0;

}

if (which_component == 2) {

return trials;

}

return beta_binomial_rng(trials, lmu/lrho, (1-lmu)/lrho);

}

"

stanvars <- stanvar(scode = stan_funs, block = "functions") +

stanvar(as.integer(wf$bindenom), name = "trials")

Reasonable weak regularization for logistic coeffs

priors <- set_prior("student_t(3, 0, 10)", class = "b")

brm(formula = formula_,

data = wf,

prior = priors,

family = eiBetaBinomialLN,

stanvars = stanvars,

...)

}

LOAD DATA

wf <- read_delim(

"in/whitefly.txt",

delim = " ", skip = 10

) %>%

48

mutate(

trt =

as.factor(ifelse(trt == 5, 0, trt)),

rep = as.factor(rep)

)

FIT MODELS

set.seed(69420)

Model 0: binomial

save_fit("bin_fixed", fit_bin,

nlive|trials(bindenom) ~ trt + week + rep)

Model 1: ZIB

save_fit("zib_fixed", fit_zib,

nlive|trials(bindenom) ~ trt + week + rep)

save_fit("zib_0trt", fit_zib,

bf(nlive|trials(bindenom) ~ trt + week + rep,

zi ~ trt))

save_fit("zib_0pred", fit_zib,

bf(nlive|trials(bindenom) ~ trt + week + rep,

zi ~ trt + week + rep))

Model 2: EIB - softmax SR1

save_fit("eib_fixed", fit_eiBinomialSM,

nlive ~ trt + week + rep)

save_fit("eib_0trt", fit_eiBinomialSM,

bf(nlive ~ trt + week + rep,

so ~ trt))

save_fit("eib_0pred", fit_eiBinomialSM,

bf(nlive ~ trt + week + rep,

so ~ trt + week + rep))

Model 3: EIB - normal cdf SR1

save_fit("neib_fixed", fit_eiBinomialLN,

nlive ~ trt + week + rep)

save_fit("neib_0trt", fit_eiBinomialLN,

49

bf(nlive ~ trt + week + rep,

muL ~ trt),

control = list(max_treedepth = 12))

save_fit("neib_0pred", fit_eiBinomialLN,

bf(nlive ~ trt + week + rep,

muL ~ trt + week + rep))

Model 4: EIB - SR2

save_fit("sr2_fixed", fit_eiBinomialSR2,

bf(nlive ~ trt + week + rep))

save_fit("sr2_pei", fit_eiBinomialSR2,

bf(nlive ~ trt + week + rep,

pei ~ trt))

Model 5: EIB - normal cdf SR1 + betabinomial/randeff

save_fit("eibb_0trt", fit_eiBetaBinomialLN,

bf(nlive ~ trt + week + rep,

muL ~ trt),

control = list(max_treedepth = 14, adapt_delta = 0.9))

save_fit("sr1_rand", fit_eiBinomialLN,

bf(nlive ~ trt + week + rep + (1|plantid),

muL ~ trt),

control = list(max_treedepth = 14, adapt_delta = 0.9))

50

Bibliography

Albert, J. and Chib, S. (1997). Bayesian methods for cumulative, sequential and two-step
ordinal data regression models, Technical report.

Bernardo, J. M. (1996). The concept of exchangeability and its applications, Far East Journal
of Mathematical Sciences 4: 111–122.

Betancourt, M. (2017). A conceptual introduction to hamiltonian monte carlo, arXiv preprint
arXiv:1701.02434 .

Betancourt, M. and Girolami, M. (2015). Hamiltonian monte carlo for hierarchical models,
Current trends in Bayesian methodology with applications 79: 30.

Burkner, P.-C. (2018). Advanced Bayesian multilevel modeling with the R package brms,
The R Journal 10(1): 395–411.

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M.,
Brubaker, M., Guo, J., Li, P. and Riddell, A. (2017). Stan: A probabilistic program-
ming language, Journal of statistical software 76(1).

Daykin, A. R. and Moffatt, P. G. (2002). Analyzing ordered responses: A review of the or-
dered probit model, Understanding Statistics: Statistical Issues in Psychology, Education,
and the Social Sciences 1(3): 157–166.

Deng, D. and Zhang, Y. (2015). Score tests for both extra zeros and extra ones in binomial
mixed regression models, Communications in Statistics-Theory and Methods 44(14): 2881–
2897.

Dupuy, J. (2017). Inference in a generalized endpoint-inflated binomial regression model,
Statistics .

Ferrari, S. and Cribari-Neto, F. (2004). Beta regression for modelling rates and proportions,
Journal of Applied Statistics 31(7): 799–815.

Gelfand, A. E., Dey, D. K. and Chang, H. (1992). Model determination using predictive
distributions with implementation via sampling-based methods, Technical report, STAN-
FORD UNIV CA DEPT OF STATISTICS.

Gelman, A. (2013). Understanding posterior p-values, Electronic Journal of Statistics .

Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A. and Rubin, D. (2014). Bayesian
Data Analysis, CRC Press.

Gelman, A., Hwang, J. and Vehtari, A. (2014). Understanding predictive information criteria
for bayesian models, Statistics and computing 24(6): 997–1016.

Gelman, A., Simpson, D. and Betancourt, M. (2017). The prior can generally only be
understood in the context of the likelihood, arXiv preprint arXiv:1708.07487 .

51

Greene, W. (2012). Econometric Analysis, Prentice Hall.

Hall, D. B. (2000). Zero-inflated poisson and binomial regression with random effects: a case
study, Biometrics 56(4): 1030–1039.

Hall, D. B. and Zhang, Z. (2004). Marginal models for zero inflated clustered data, Statistical
Modelling 4(3): 161–180.

Johnson, V. (2004). A bayesian χ2 test for goodness-of-fit, The Annals of Statistics 32: 2361–
2384.

Johnson, V. E. et al. (2004). A bayesian χ2 test for goodness-of-fit, The Annals of Statistics
32(6): 2361–2384.

Lambert, D. (1992). Zero-inflated poisson regression, with an application to defects in man-
ufacturing, Technometrics 34(1): 1–14.

McElreath, R. (2016). Statistical Rethinking: A Bayesian Course with Examples in R and
Stan, Vol. 122, CRC Press.

R Core Team (2013). R: A Language and Environment for Statistical Computing, R Foun-
dation for Statistical Computing, Vienna, Austria.
URL: http://www.R-project.org/

Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and Van Der Linde, A. (2002). Bayesian
measures of model complexity and fit, Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 64(4): 583–639.

Stan Development Team (2017). Stan Modeling Language: User’s Guide and Ref-
erence Manual. https://github.com/stan-dev/stan/releases/download/v2.17.0/

stan-reference-2.17.0.pdf.

Stan Development Team (2018). RStan: the R interface to Stan. R package version 2.17.3.
URL: http://mc-stan.org/

Tak, H. and Morris, C. (2015). Data-dependent posterior propriety of bayesian beta-binomial-
logit model. Available from arXiv.

Tian, G., Ma, H., Zhou, Y. and Deng, D. (2015). Generalized endpoint-inflated binomial
model, Computational Statistics and Data Analysis .

van Iersel, M. W., Oetting, R. D. and Hall, D. B. (2000). Imidacloprid applications by
subirrigation for control of silverleaf whitefly (homoptera: Aleyrodidae) on poinsettia,
Journal of economic entomology 93(3): 813–819.

Vehtari, A., Gelman, A. and Gabry, J. (2015). Pareto smoothed importance sampling, arXiv
preprint arXiv:1507.02646 .

Vehtari, A., Gelman, A. and Gabry, J. (2017). Practical bayesian model evaluation using
leave-one-out cross-validation and waic, Statistics and Computing 27(5): 1413–1432.

Wang, K. (2017). Availability and consumption of fruits and vegetables among non-hispanic
whites, blacks, hispanics, and asians in the usa: findings from the 2011–2012 california
health interview adult survey, Journal of racial and ethnic health disparities 4(3): 497–506.

Watanabe, S. (2010). Asymptotic equivalence of bayes cross validation and widely applicable
information criterion in singular learning theory, Journal of Machine Learning Research
11(Dec): 3571–3594.

52

https://github.com/stan-dev/stan/releases/download/v2.17.0/stan-reference-2.17.0.pdf
https://github.com/stan-dev/stan/releases/download/v2.17.0/stan-reference-2.17.0.pdf

Yang, K., LeJeune, J., Alsdorf, D., Lu, B., Shum, C. and Liang, S. (2012). Global distribu-
tion of outbreaks of water-associated infectious diseases, PLoS neglected tropical diseases
6(2): e1483.

Yen, S. T., Tan, A. K. et al. (2011). Fruit and vegetable consumption in malaysia: a count
system approach, International Congress.

53

	List of Figures
	List of Tables
	Introduction
	Preliminary considerations
	Objectives

	The endpoint-inflated beta-binomial distribution
	Binomial distribution
	Beta distribution
	Beta-binomial distribution
	Endpoint-inflated beta-binomial (EIBB) distribution
	Alternative stochastic representations

	The endpoint-inflated beta-binomial regression model
	Model definition
	Mixture link for SR1
	Mixture link for SR2

	Considerations for Bayesian inference
	Selection of priors
	The Stan probabilistic programming language

	Measures for model assessment
	Information criteria
	Pareto-smoothed importance sampling leave-one-out (PSIS-LOO)

	Simulation study
	Simulation setup
	Results
	Binomial vs Beta-binomial
	Binomial vs. Endpoint-inflated binomial

	Application
	The whitefly dataset
	Model structure
	Results
	Model comparison
	Model interpretation

	Conclusions
	Code
	Simulation study
	Whitefly dataset analysis

	Bibliography

