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Abstract 

 
Seven GARCH and stochastic volatility (SV) models are compared to model empirically 
the volatility of returns on four commodities relevant for South America economies: gold, 
copper, oil, and natural gas. Our results show that SV models outperform GARCH models 
on average. We find that the best-performing return volatility models are: GARCH-t for 
gold, SV-t for copper and oil, and SV with leverage effects (SV-L) for natural gas. The 
inclusion of fat tails and jumps components largely raise the performance of GARCH 
models, while this contribution is less for SV models. Even, SV models with jumps are 
usually outperformed by the basic SV model. We also find evidence of a leverage effect 
in oil and copper, resulting from their dependence on world economic activity; and of an 
inverse leverage effect in gold and natural gas, consistent with the former's role as safe 
asset and with uncertainty about the latter's future supply. Additionally, in most cases 
there is no evidence of an impact of volatility on the mean or MA-type first order 
autocorrelation.  
 
JEL Codes: C11, C52, G15. 
 
Keywords: Returns, Volatility, GARCH, Stochastic Volatility, Commodities, Bayesian 
Estimation, Fat Tails, Jumps, Leverage. 
 



Contents

1 Introduction 1

2 Methodology 3
2.1 GARCH Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 SV Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Bayesian Estimation and Comparison Models . . . . . . . . . . . . . . . . . . . . . . 5

2.3.1 The Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.3 The Bayes Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Empirical Analysis 7
3.1 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Estimation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.1 Gold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 Copper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.3 Oil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.4 Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.5 Comparative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Robustness Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Conclusions 16

5 Tables T-1

6 Figures F-1



1 Introduction

Over the last three decades commodity spot markets have experienced increasing levels of volatility
(see Calvo-Gonzalez et al. (2010) and Jacks et al. (2011)) and also became more sensitive to
macroeconomic and �nancial developments (see Chen (2010) and Batten et al. (2010)). This is
relevant for South American countries that are commodity export dependent according to UNCTAD
(2017). For example, as of 2015, Peru and Chile�s copper exports amounted to 19% and 23% of total
export value, respectively; while Colombia and Ecuador�s oil exports reached 34% of total export
value1. Moreover, gold amounted to 43%, 24%, and 20% of international reserves in Venezuela,
Colombia and Bolivia, respectively during period 2000-2017 according to the World Gold Council
(2017). These features reduce resilience agaisnt commodity volatility surges which can impair
economic growth of primary commodity exporters through lower accumulation of capital, higher
tax revenue volatility, currency devaluations, higher �nancial sector fragility, among other negative
implications; see Cavalcanti et al. (2015), Ehrhart and Guerineau (2013), Jhonson and Soenen
(2009), Kinda et al. (2016), and Fernández et al. (2016). Hence, obtaining accurate volatility
estimates is an issue of interest for policy makers decisions.

This paper uses Chan and Grant�s (2016a) approach to compare seven pairs of GARCH and SV
models applied to daily return series for four important commodities in South American countries
export basket: gold, copper, oil, and natural gas, by using Bayes Factors. The authors expect to
�ll a gap in studies on volatility applied to commodity markets that provide a formal comparison
of the goodness of �t of both model families.

Volatility changes over time have been conventionally estimated using GARCH models, where
the conditional variance is considered a deterministic process. For example, Akgiray et al.(1991)
argue that political tensions impact gold and silver volatility by analyzing changes in GARCH
coe¢ cient estimates in four di¤erent sub-periods. Bracker and Smith (1999) �nd signi�cant evidence
of leverage e¤ect on copper futures returns using a battery of asymetric GARCH models. Narayan
and Narayan�s (2007) estimation of asymmetric GARCH models applied to returns on oil in 1991-
2006 point to the existence of regime changes. Additionally, Nomikos and Andriasopoulos (2012)
study volatility in futures contracts for eight energy markets using an EGARCH model with jumps
in the returns equation. The results show that a shock on oil volatility takes longer than natural gas
one to revert (998 vs. 155 days, respectively), while the jump component takes longer to dissipate
for natural gas than for oil (72 vs. 36 days, respectively). They also highlight that all products,
except oil, show an inverse leverage e¤ect; i.e., positive returns today announce an increase in
volatility tomorrow. The presence of jumps in two natural gas series from di¤erent markets (UK
and U.S.) is examined by Mason and Wilmot (2014), who �nd that jumps are more signi�cant
in the UK than in the U.S., re�ecting structural dissimilarities between both markets. Moreover,
Hammoudeh and Yuan (2008) �nd, after cotrolling by oil and interest rate shocks, evidence of
leverage e¤ects on copper while the contrary holds for gold and silver, which turns the latter two
into safe assets in uncertainty scenarios2.

Alternatively, other research works consider stochastic volatility (SV) models, where volatility is
a latent variable governed by a stochastic process. For example, Vo (2009) suggest that the inclusion
of regime changes into the SV model applied to WTI oil returns prevents the overestimation of the

1Data obtained from OEC (2015).
2For further references see Ramírez and Fadiga (2003), Lucey and Tully (2006), Watkins and McAleer (2008),

Ewing and Malik (2010), Fong and See (2002), Choi and Hammoudeh (2010) and Charles and Darné (2014)
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parameters for volatility persistence. Larsson and Nossman (2011) model WTI oil returns in 1989-
2009 using an SV model with correlated jumps (SV-CJ) introduced by Du¢ e et al. (2000). They
suggest that extreme changes in oil returns during the 1990s were governed by price jumps, while
in the 21st century they were dominated by volatility jumps. Additionally, the authors argue that
models that do not include SV or jumps do not provide a good representation of oil volatility during
stress periods like the Gulf War and the 2009 crisis. Du et al. (2011) use an SV-J model to �nd that
inventories and speculation are relevant to explain oil volatility. Brooks and Prokopczuk (2013)
study volatility in three commodity market segments (metals, energy, and agriculture) and the S&P
500 index comparing3 three SV models (SV, SV-J, and SV-CJ). They indicate that models with
jumps perform better and con�rm that the correlation between commodity and S&P 500 volatilities
is low, suggesting that commodities can be instrumental in diversifying risk. Additionally, Liu et
al. (2014) study the volatility of returns on copper and aluminum spot and futures markets using
the SV-J and SV-CJ models; and �nd that models that include jumps provide a better measure of
risk than the standard SV model4.

Nonetheless, literature comparing the goodness of �t and inference capabilities of GARCH and
SV model families still scarce. For instance, Taylor (1994), Ghysels et al. (1996), Andersson (2001),
Carrasco and Chen (2002) and Bai et al. (2003) use a theoretical approach to compare both families
based on the similarity of kurtosis and �rst-order autocorrelation of the squared returns generated
by the models relative to the properties of the original series. Other studies like Garcia and Renault
(1998), Lehar et al. (2002), Fleming and Kirby (2003) and Pederzolli (2011) compare both families
using a value-at-risk approach, while works like Danielson (1994), Kim et al. (1998), Gerlach and
Tuyl (2006), Nakajima (2012) and more recently Chan and Grant (2016a) compare both families
using a Bayesian approach.

The main results of this paper shows that on average SV models perform better than GARCH
family for modeling commodity returns volatility. For gold, GARCH-t model outperforms the
rest of models in both families. For copper and oil, SV-t is selected, while for natural gas, SV-L
(SV with leverage e¤ect) performs best. Moreover, considering fat tails and jumps component
substantially boots model performance in GARCH family, although this contribution is lower for
the SV family. Even, SV model with jumps are usually outperformed by the basic SV model. Also,
there is evidence of leverage e¤ect in copper and oil, because of their relationship with the state
of the global economy, while for gold and natural gas, there is evidence of inverse leverage e¤ect,
where future volatility is expected to be higher in response to current positive returns. In the case
of gold, this e¤ect is due to its role as safe asset in stress episodes, while in the case of natural
gas, demand pressures increase uncertainty about future supply. Finally, there is no evidence of
an impact of volatility on the mean in most products nor of MA-type �rst order autocorrelation in
the returns.

The rest of the paper is organized as follows. Section 2 describes the seven pairs of GARCH
and SV models, as well as the Bayesian estimation and comparison methods. Section 3 presents
the data and estimation results for the four commodities; and a justi�cation is provided for the
selection of the models based on historical events and the nature of each good. Section 4 presents

3The authors use the Deviance Information Criterion (DIC) which is a Bayesian criterion proposed by Spiegelhalter
et al. (2002) and used to compare SV models using the conditional data likelihoods. This criterion is also used and
discussed by Chan and Grant (2016b).

4Schmitz et al. (2014) arrived to the same conclusion for the soy and wheat markets (and for agricultural markets
in general).
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the conclusions.

2 Methodology

This section brie�y presents the two classes of models with time-changing volatilities used in the
empirical section. The �rst class are GARCH models developed by Bollerslev (1986) as an extension
of the seminal work by Engle (1982). The second group are SV models originally developed by
Taylor (1986, 1994).

2.1 GARCH Models

Following the notation used by Chan and Grant (2016a), Bollerslev�s GARCH (1,1) model is de�ned
as:

yt = �+ �t; (1)

�2t = �o + �1�
2
t�1 + �1�

2
t�1;

�t � N(0; �2t );

where �0 = 0, �20 = var(yt), �0 > 0, �1 � 0, �1 � 0 and �1 + �1 < 1. This model is named
GARCH-1. A GARCH (2,1) model is considered next:

�2t = �o + �1�
2
t�1 + �1�

2
t�1 + �2�

2
t�2; (2)

where �2�1 = �0 = 0, �20 = var(yt) is a constant and the same restrictions are applied to the
coe¢ cients of �2t to ensure non-negativity and stationarity. This model is named GARCH-2. The
third model preserves the same form as (1), but with t-student innovations; i.e., �t � t�(0; �

2
t ). The

selection of this distribution can capture extreme events that may be omitted by the GARCH-1
and GARCH-2 models. This model is named GARCH-t. The fourth model, named GARCH-J,
modi�es (1) by including a random jump component that allows adjustment to infrequent data
changes:

yt = �+ ktqt + �t; (3)

where qt is a jump that follows a Bernoulli distribution with a success probability of prob(qt = 1) =
�. When qt = 1 a jump takes place in period t with a magnitude determined by kt � N (�k; �2k).
The �fth model includes �2t in the equation for the conditional mean; i.e., the returns are dependent
on volatility. This model is named GARCH-M:

yt = �+ ��2t + �t; (4)

where the parameter � may be understood as the risk premium. The sixth is a GARCH model that
includes a dynamic element in the errors of process yt via a �rst-order moving average component
(MA(1)); i.e., (1) is:

yt = �+ �t;

�t = ut +  ut�1, (5)
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where the invertibility of the MA(1) component is ensured by assuming j j < 1 and ut � N (0; �2t ).
This model is named GARCH-MA. The last speci�cation uses the asymmetric GARCH structure
proposed by Glosten et al. (1993); i.e., introduces an additional impact from the excess negative
returns on the variance in (1):

�2t = �o + [�1 + �1(�t�1 < 0)] �
2
t�1 + �1�

2
t�1; (6)

where 1(:) is an indicative function that is triggered when �t�1 < 0. In this scenario, the asymmetric
e¤ect is represented by � > 05, which measures the additional impact from a lagged negative shock
on current volatility. This model is named GARCH-L.

2.2 SV Models

Following Chan and Grant�s (2016a) notation, the model named SV-1 is the canonical SV model:

yt = �+ �yt ; (7)

ht = �h + �h1(ht�1 � �h) + �
h
t ;

�yt � N(0; eht);

�ht � N(0; !2h);

where ht is the log-volatility following an AR(1) stationary process, as j�h1 j < 1, disturbances �ht
and �yt are uncorrelated, and the process is initialized with h1 � N (�h;

!2h
(1��2h1 )

). The second model,

named SV-2, has the same equation for the mean as (7), but includes an additional lag in the
log-volatility equation:

ht = �h + �h1(ht�1 � �h) + �h2(ht�2 � �h) + �
h
t ,

where �h1 ; �h2 are assumed to lie inside the unit circle and h1 and h2 are initialized with: h1; h2 �
N (�h;

(1��h2 )!
2
h

(1+�h2 )((1��h2 )
2��2h1 )

). The model named SV-t is similar to SV-1 but with:

�yt � t�(0; e
ht): (8)

The fourth SV model admits the existence of random jumps and is named SV-J. The equation for
the mean in (7) is:

yt = �+ ktqt + �
y
t ; (9)

where the jump indicator qt and the jump size kt have the same characteristics of a GARCH-
J model. The �fth model, Koopman and Uspensky�s (2002) SV-M model, where the stochastic
volatility is included in the equation for the mean, is:

yt = �+ �eht + �yt : (10)

5A value of � < 0 indicates that in response to a positive return scenario today, volatility tomorrow is higher. This
is evidence of an inverse leverage e¤ect.
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An SV model is also speci�ed to include the dynamics of innovations in yt, represented by an MA(1)
process named SV-MA:

yt = �+ �yt ;

�yt = ut +  ut�1, (11)

ut � N (0; eht);

where u0 = 0, j j < 1. Finally, this paper uses an SV model with leverage e¤ect, named SV-L. In
this speci�cation, the mean and log-volatility equations are the same as in (7), but disturbances �ht
and �yt are allowed to be correlated:0@ �yt

�ht

1A � N

240;
0@ eht �e

1
2
ht!h

�e
1
2
ht!h !2h

1A35 ; (12)

where � is the parameter indicating a correlation between the shocks. When � < 0, there is a
negative correlation in the returns and their volatility6.

2.3 Bayesian Estimation and Comparison Models

Brie�y, the Bayesian approach follows Bayes�theorem: �(�jy) / f(yj�)�(�), where �(�jy) is the
posterior distribution of a set of parameters represented by �, conditional on the data; f(yj�) is
the likelihood function; and �(�) is the prior or ex-ante criterion for the behavior of �. Along these
lines, Markov Chain Monte Carlo (MCMC) methods are used to sample the posterior distributions
of interest, �(�jy). Some details of the model estimation and comparison process are discussed
next.

2.3.1 The Priors

The same priors as Chan and Grant (2016a) are used to perform inferences. The selected priors
share three characteristics: (i) they are the same for the GARCH and SV models; (ii) they are
functions whose densities are independent and can be integrated into the unit; and (iii) they are
relatively non-informative, and therefore play an unimportant role in using the data to derive a
posterior distribution function for the parameters.

First, the assumptions for the GARCH-1 model are � � N (�0; Vu) and log  � N (0; V)1(�1+
�1 < 1), where  = (�0; �1; �1)

0 follows a truncated log-normal distribution that admits certain
parameter space to ensure stationarity. The hyper-parameters have the following values: �0 = 0,
Vu = 10, 0 = (1; log 0:1; log 0:8)0 and V = diag(10; 1; 1). In GARCH-2, e = (�0; �1; �1; �2),
and therefore log e � N (e0; Ve)1(�1 + �1 + �2 < 1), e0 = (1; log 0:1; log 0:8; log 0:1) and Ve =
diag(10; 1; 1; 1). In the remaining GARCH models, the priors for � and  are the same as in
GARCH-1. In GARCH-J, the intensity of jumps is assumed to follow a uniform distribution,
whereas the average jump and the jump variance, � = (�k; log �

2
k)
0, behave like a normal bivariate

distribution: � � U(0; 0:1) and � � N (�0; V�). The hyper-parameters are �0 = (0; log 10)0 and
V� = diag(10; 1). In the case of GARCH-M, � � N (�0; V�), where �0 = 0 and V� = 100. In the

6A value of � > 0 indicates a positive correlation between the returns and their volatility and, therefore, provides
evidence of an inverse leverage e¤ect.
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case of GARCH-MA,  � N ( 0; V )1(j j < 1), where  0 = 0 and V = 1. In GARCH-t, � > 2
and � � U(2; 100). Finally, the distribution of the � parameter in GARCH-L is assumed to be
(�j) � U(��1; 1� �1 � �1).

Regarding the SV models, the priors for parameters �, �h, �h1 and !2h in SV-1 are � �
N (�0; V�), �h � N (�h0 ; V�h), �h1 � N (�h0 ; V�h1 )1(j�h1 j < 1) and !2h � IG(�h; Sh), respectively.
The hyper-parameters are �0 = 0; �h0 = 1; V� = V�h = 10; �h0 = 0:97; V�h1

= 0:12; �h = 5

and Sh = 0:16. The same priors are maintained for SV-2, and �h = (�h1 ; �h2)
0, such that:

�h � N(�h0 ; V�h)1(�h 2 A), where A is a space where stationarity is ensured. The hyper-
parameters are �h0 = (0:97; 0)0, V�h = diag(0:12; 1). Concerning the remaining models: (i) the
same priors are assumed as in the SV-1 model for parameters �, �h, �h1and !

2
h; (ii) the priors for

the additional parameters are the same as the prior for their GARCH counterparts, and (iii) the �
parameter is distributed as U(�1; 1).

2.3.2 The Algorithm

Both kinds of models are estimated using the MCMC methods proposed by Chan and Grant (2016a,
b). The purpose is taking samples from the posterior distributions of the models by performing
Markov-type sampling and using posterior draws to calculate several magnitudes of interest such
as the posterior means and marginal likelihoods7.

Metropolis-Hastings algorithms are used in the GARCH models to sample from the posterior
distributions. The parameters of the models are grouped to perform the estimations in di¤erent
blocks. In this way, it is possible to begin sampling from the complete conditional densities of the
parameters. It is important to mention that, in contrast with Chan and Grant (2016a), who use
a normal distribution to sample the parameters of the volatility equation, this paper uses a Beta
distribution. The reason for this change is that the MCMC chains of these parameters in most
GARCH models presented a �sticky chain problem.� Following Rosenthal (2011) and Junker et
al. (2016), these papers set out to solve it by raising the level of acceptance of the parameters,
thereby avoiding stagnation of the chain by diminishing the variance of the generating density. If
the problem persists, it is possible to change the generating density of the algorithm. In our case,
while diminishing the variance level increases the level of the acceptance ratio, the chains continued
to show protracted stagnation during several simulation periods. In response, a Beta distribution
is substituted for the density of the Metropolis-Hastings algorithm, thereby obtaining well-behaved
chains with higher acceptance ratios.

In the SV models it is necessary to simulate the conditional density of the vector of non-
observable log-volatilities, p(hjy;�i), where �i represents the parameter vector for each model
i = 1; : : : ; n. For this purpose, this paper uses the adaptive Metropolis-Hastings algorithm proposed
by Chan (2015) and based on Chan and Jeliazkov (2009)8. Carrying out the simulation of marginal
likelihoods requires a generating (or importance) density, from which the target density draws,
p(yjMi), are done, where Mi represents the i model; see Koop (2003). Once all draws are done, a
weighted average is calculated, where the weights are assigned according to the contribution of each
draw to decrease the bias of the proposed density relative to the target density, so as to obtain an
unbiased and consistent estimator for the latter. The importance sampling estimator for p(yjMi)

7Complete details about the algorithm may be found in the appendix of Chan and Grant (2016a).
8For details about the sampling for SV-MA and SV-t, see Chan (2013) and Chan and Hsiao (2014), respectively.
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is de�ned as p̂IS = 1
N

NP
n=1

p(yj�n)p(�n)
g(�n)

, where �1 : : :�N are independent draws obtained from the

importance density. Along these lines, the selection of this density is based on Chan and Eisenstat
(2015), who propose approximating g(�) through the cross-entropy method, which is instrumental
in deriving an optimal density that minimizes the Kullback-Leibler divergence relative to the ideal
density9. Additionally, the ideal density should be in the same parametric class as the densities for
the priors.

2.3.3 The Bayes Factor

Once the marginal likelihoods are obtained, a formal method for comparing the models is the
Bayes factor (BF). The goal is comparing a group of models fM1; : : : ;Mig, where i = 1; : : : ; n and
each Mk model is made up of two separate components: a likelihood function p(yj�k;Mk) and a
prior density p(�kjMk). The BF provides a criterion for comparing models Mi and Mj , de�ned
as BFij =

p(yjMi)
p(yjMj)

, where p(yjMk) is the marginal likelihood of model Mk (k = i; j) and models
are a priori equally likely. A possible interpretation is that the marginal likelihood is a predictive
density under Mk across the observed data y. Therefore, BFij > 1 will indicate that the observed
data are more likely to be obtained using Mi rather than Mj , which can be considered as evidence
in favor of Mi. The strength of this evidence is proportional to the value obtained by the BF10.

3 Empirical Analysis

3.1 The Data

This paper uses four S&P GSCI spot price index time series. The returns are expressed as yt =
100 � (logPt � logPt�1), where Pt is the closing price in period t. The commodities analyzed are
gold and copper (metal items), as well as oil and natural gas (energy items). The daily data are
drawn from Bloomberg: January-1983-April 2017 for gold and copper; January 1987-April 2017 for
oil; and January 1994-April 2017 for natural gas.

A disaggregated analysis is warranted by the fact that the dynamics of the volatility of returns
is governed by peculiar characteristics in each market, and therefore shows a di¤erent behavior over
time; see Batten et al. (2010). Figure 1 shows the four return series, which show both turbulence
and stability episodes. This behavior is similar to that of �nancial return series, which show clusters
originated by episodes of macroeconomic, �nancial, or geopolitical stress.

Table 1 shows a summary of statistics for the returns and square returns. Panel A shows that:
(i) the average return of the four series is close to zero; (ii) all series except natural gas show
negative returns on average; (iii) the series show high kurtosis (above six on average); and (iv)
gold and gas show the narrowest and widest distance between the maximum and minimum returns,
respectively (which is consistent with the standard deviation of each series). Panel B shows that
the empirical distribution of the square returns on oil have greater symmetry and kurtosis than the
other goods, mainly due to the extreme event created by the Gulf War11.

9For further details, see appendix B in Chan and Grant (2016a) and appendices A and B in Chan and Grant
(2016b).
10For a further discussion about the BF, see Koop (2003).
11 If the Gulf War is excluded from the sample, the kurtosis diminishes by two-thirds of its current value.
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3.2 Estimation Results

One hundred thousand simulations were performed for each parameter with a burn-in of 50 thousand
to ensure convergence12. It is important to note that there is a group of common parameters (i.e.,
�0; �1; �1; �; �h; �h1 , �h2 , and !

2
h) belonging to the seven GARCH and SV models for each good;

and that none of them show a zero value in their credibility intervals. The following sections
describe the estimation results for the remaining models taking GARCH-1 and SV-1 as reference13.

The results are presented for each commodity, where the even- (2-8) and odd-numbered (3-9)
Tables show the results for the GARCH and SV families, respectively.14

In Figure 2, the estimated implicit volatilities for the best model in each family (for each
commodity) are presented and compared with the square returns. The models capture accurately
the dates of the events that caused volatility surges; and the volatilities estimated for both families
are highly correlated during their periods of analysis.

3.2.1 Gold

Table 2 shows the results for the GARCH family. The estimation of GARCH-t yields � = 3:95,
suggesting the occurrence of extreme events a¤ecting gold returns (Figure 1). Additionally, in
GARCH-J, � indicates that the jump probability is 0.10; i.e., 25 jumps per year on average,15

with an average magnitude of �k = �0:144, implying that the series experienced more negative
jumps over time. Regarding GARCH-M, no evidence is found that market participants demand
a risk premium to invest in gold. Similarly, GARCH-MA shows no evidence of �rst-order serial
correlation in the returns; i.e., the persistence of unexpected shocks in the process governing the
returns is no greater than one day. The results are consistent with Lucey and Tully (2006), who
also �nd no evidence of ARCH-M and/or �rst-order serial correlation e¤ects in gold returns. The
GARCH-L model shows evidence of an inverse leverage e¤ect (� < 0) implying that positive returns
today generate higher volatility tomorrow. Lucey and Tully (2006) and Hammoudeh and Yuan
(2008) �nd similar results and suggest that gold can play a role as safe asset in the face of adverse
events. Finally, based on the marginal log-likelihoods, GARCH-t provides the best �t, followed by
GARCH-J and GARCH-2. The Q(20) and Q2(20) statistics suggest that only GARCH-t, GARCH-
J do not reject the null hypothesis of no autocorrelation in the standardized residuals and the
square standardized residuals.

Table 3 shows the results for the SV models. The SV-t model shows that � = 12:60, suggesting
evidence of extreme events, although to a lesser extent than the GARCH-t model. Regarding SV-J,
� = 0:01, i.e., there are 2.5 jumps per year with an average magnitude of �k = �0:35, implying
that returns experienced a greater number of falls over time. In this regard, Brook and Prokopzuk
(2013) estimate an SV-J and �nd a jump intensity of 0:0532; i.e., 13 jumps per year, while for an
SV-CJ model they �nd a jump intensity of 0.0172; i.e., 2.52 jumps per year, similar to our results.
Additionally, SV-M and SV-MA do not show evidence of a risk premium or serial correlation in the

12Trace plots, histograms and autocorrelation �gures were generated for each parameters in all GARCH and SV
models to con�rm the existence of convergence. All �gures are available upon request.
13 Information from the U.S. Geological Survey (USGS) annual reports was used to identify the historic events that

may have a¤ected gold and copper volatility directly.
14The Tables include the Ljung-Box Q and McLeod-Li Q2 statistics applied to the standardized residuals and their

squares, respectively. In both cases the null hypothesis is the absence of autocorrelation.
15The average number of jumps is denoted as j = ��n

N
, where � is the jump probability, n is the number of

observations, and N is the number of years in the sample.
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returns. SV-L yields � > 0, implying a positive relationship between shocks on the returns process
and on volatility; i.e., there is evidence of an inverse leverage e¤ect as in GARCH-L. In this respect,
Brooks and Prokopzuk (2013) also �nd that � > 0 and suggest that this kind of asymmetry, which
is the opposite of what is normally found in stock markets, is created by changes in the share of
market participants that perform hedging and speculative operations. They argue that when the
returns are positive, the number of speculators increases more than the number of hedgers, and
therefore future volatility will be higher when today�s returns are positive. Thus, positive returns
on gold may indicate the beginning of a new stress episode. Finally, SV-t provides the best goodness
of �t, followed by SV-L and SV-1.The Q(20) and Q2(20) statistics suggest that SV-2, and SV-t do
not reject the null hypothesis of no autocorrelation in the standardized residuals and the square
standardized residuals.

From an economic perspective, it is arguable that models with fat tails in both GARCH and
SV families provide a better �t for gold. Unlike other commodities, gold is considered highly
liquid in �nancial markets and plays a role as store of value, portfolio diversi�er, and safe asset
in adverse macroeconomic scenarios. Therefore, events that trigger increases in gold volatility are
often associated with international instability episodes, which may explain the existence of fat
tails. In regard to the evidence of inverse leverage e¤ect, this feature indicates that events related
to abrupt falls in gold returns16 are more relevant in explaining volatility that those that triggered
its role as safe asset17. Moreover, the role of safe asset is not always triggered as, for example,
in the 1990s when the strength of the dollar and central bank gold sales deteriorated the role of
gold as an investment asset, although events like the Asian and Russian crises took place in that
period18.

Figure 2 shows relevant episodes in the history of gold volatility �uctuations. The beginning
of the sample in 1983 shows a growing trend in volatility, created by the launching of gold futures
trading in the London and Tokyo stock exchanges and by the run to safe gold investments in the
wake of the 1980s crisis. A jump in volatility took place in 1985, probably triggered by banks�
adoption of a net seller position and the weakening of the dollar against European currencies and
the yen. Later the collapse of stock exchanges around the world on October 19th, 1987 (Black
Monday) caused a surge in the demand for gold19.

Between August 1990 and February 1991, the Gulf War provoked an increasing trend in volatil-
ity. Next, the bursting of the Dotcom bubble in 2000 and the 9/11 attacks20 brought volatility to
new peaks and triggered gold�s safe asset role in response to a weakening dollar. Other jumps were
associated with bank sales increasing by 40% and 80% in 2005 and 2007, and with investment �ows
towards ETFs21. Later, the Global Financial Crisis (GFC) (September 2008) seriously a¤ected

16Dollar appreciation episodes, unexpected gold sales by central banks, and appearance of substitute investment
instruments, among others.
17The 1980s crisis, the Savings & Loan crisis, the 2001 and 2008 �nancial crises, geopolitical tensions between the

U.S. and other countries, among other factors.
18Developments like the 1994 Mexican Crisis, the 1997 Asian Crisis, and the 1998 Russian Crisis created �nancial

panic but did not drive investors to use gold massively as safe asset. On the contrary, in this period (1992-1999) gold
returns experienced negative jumps.
19 In that year, futures trading operations increased 20% relative to the months in the run-up to Black Monday

(1986).
20 It should be noted that the consolidation of the mining industry reduced the number of �rms, limited the gold

supply, and made the supply/demand balance more sensitive during the �rst decade of the new millennium.
21Additionally, the 2006 U.N. Security Council sanctions to curb Iran�s nuclear program created considerable

geopolitical tensions.

9



economic activity in most developed economies and provoked a massive run towards gold, in turn
causing a surge in volatility until end-2009. An important development was the greater frequency
of clusters in contrast to the ones occurred in the 1980s, which may be associated with the weak-
ening of the dollar during the U.S. recessions from 2001 to a few years after the 2008 crisis. This
is consistent with Batten et al. (2010), who indicate that gold responds to monetary variables like
in�ation and money supply growth.

Another abrupt increase in volatility in 2011 was caused by growing speculative demand for
gold in the run-up to the European Union debt crisis. Next, a new peak in volatility occurred in
2013, associated with the upcoming change in the Fed�s monetary stance, which would result in
future interest rate increases and the phasing out of Quantitative Easing. This prompted a 50%
fall in global gold investment.

3.2.2 Copper

Table 4 shows the results for the GARCH family. The GARCH-t model yields � = 6:38, suggesting
the occurrence of extreme events. The average jump in GARCH-J is �k = �0:33 (i.e., the fall
in returns is almost twice as large as for gold), indicating that the series for returns on copper
experienced more falls than jumps across the sample. Additionally, � = 0:10, which translates into
25 jumps per year. GARCH-M shows evidence that market participants demand a risk premium.
At the same time, there is no evidence of �rst-order serial correlation in the disturbances of the
returns on copper. GARCH-L yields � > 0; i.e., there is a leverage e¤ect where, given current
negative returns, volatility will be greater in the future. Along these lines, Hammoudeh and Yuan
(2008) �nd that � > 0 and argue that the returns on copper are asymmetrical because they are
linked to global economic activity22. Finally, based on the values of the marginal log-likelihoods,
GARCH-t provides the best �t, followed by GARCH-J and GARCH-2. The Q(20) and Q2(20)
statistics suggest that none of the models in the GARCH family reject the null hypothesis.

Table 5 shows the results for the SV family. SV-t yields � = 10:52 and at the same time, SV-J
yields � = 0:04 and �k = �0:07, indicating 10 jumps per year on average and a lower negative jump
than for gold. For example, Liu et al. (2014) �nd a jump probability of 0.05 and �k < 0, similar
to the results found in this paper. Additionally, there is no evidence of a risk premium and serial
correlation in SV-M and SV-MA, respectively. SV-L shows a negative correlation between shocks on
copper returns and their volatility, � = �0:12, similar to the �ndings by Liu et al. (2014). Finally,
SV-t provides the best �t, followed by SV-2 and SV-L. The Q(20) and Q2(20) statistics suggest
that none of the models in the SV family, but only SV-2 and SV-J reject the null hypotheses.

The history of copper returns can be instrumental in explaining the �ndings in this paper.
As copper is used mainly in manufacturing,23 its volatility is governed by supply and demand
movements. Gerwe (2016) points out that inventories, economic activity and the dollar exchange
rate are copper price fundamentals24. Figure 2 shows a volatility peak in 1987, when COMEX
and LME (London Metal Exchange) copper inventories experienced a fall caused by developments
like the highest copper consumption in eight years, supply disruptions created by miners�strikes

22 In contrast, Bracker and Smith (1999) �nd an inverse leverage e¤ect, like in the case of gold, for three asymmetric
GARCH models.
23Gerwe (2016) indicates that, in 2014, 39% of �nal copper consumption was used to produce electric and electronic

goods, while 30% was used in construction.
24Gerwe (2016) also indicates that wars cause an increase in the demand for copper; however, the war periods

mentioned in the section about gold were not accompanied by considerable volatility surges.
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in Canada, operative problems in African ports, and concerns about COMEX�s ability to ful�ll
contracts for physical delivery of copper25. Next, high volatility persisted between 1988 and 1989
because of strike announcements in Peru and Papua New Guinea and the closure of foundries in
Chile and the U.S.

Later, in June 1996 the scandal around the Sumimoto Corporation (which reported USD 1.8
billion losses resulting from illicit copper trading operations) brought volatility to levels similar to
the 1987 peak. Moreover, volatility remained high in response to concerns about LME regulatory
agency practices.

Subsequently, in 2004 the market became sensitive to industry announcements, especially con-
cerns about growth in China and other Emerging Market Economies. In 2005 volatility reached
2004 levels, re�ecting developments like miners�strikes in Chile and the U.S. and market specula-
tion (third and fourth quarters). Volatility jumped again in 2006 in response to falling COMEX
and LME inventories and a sustained increase in Asian demand for copper.

Volatility in 2008 was associated with a price rally triggered by a drop in world copper invento-
ries. The abrupt drop in returns at the beginning of the GFC was partially o¤set by a 38% increase
in Chinese consumption, but volatility remained high until end-2009. Eventually, a new peak in
volatility appeared at the end of 2011 as a consequence of Chinese imports and an inventory buildup
in metal exchanges. At last, in the next years, volatility showed a downward trend in despite of
changes in China�s consumption pattern and other industry announcements.

In sum, evidence suggests that volatility in copper returns was governed by changes in world
inventories, global consumption, market speculation, and industry announcements. The presence of
fat tails and jumps in copper returns is founded on elements such as temporary adverse sentiment in
the market for copper securities in response to price manipulation or increased uncertainty about
potential production cuts. The results also suggest the presence of leverage e¤ects in copper�s
volatility, as during global recession episodes world copper consumption falls relatively more than
in a normal macroeconomic environment. Preference for SV-t over SV-L seems to be explained by
the fact that the structure of SV-L does not generate su¢ cient variability to capture the impact of
more transitory events compared with crisis events, which have a longer e¤ect on �nancial market
sentiment.

3.2.3 Oil

Table 6 shows the results for the GARCH family. GARCH-t estimation yields � = 7:63, suggesting
the existence of extreme values. The average jump in GARCH-J is -0.55, indicating that, on average,
jumps in returns were negative. Additionally, the jump probability is 0.09, which translates into 23
jumps per year. Compared with copper and gold, falls in oil returns are more abrupt. GARCH-M
shows evidence of a risk premium demanded by market participants to invest in the oil market.
Again, there is no evidence of �rst-order serial correlation in GARCH-MA. Regarding GARCH-L,
� > 0; i.e., there is evidence of asymmetry in oil returns. This is consistent with the literature; see
for example Nomikos and Andriasopoulos (2012) and Chan and Grant (2016a). Regarding goodness
of �t, GARCH-t is preferred, followed by GARCH-J and GARCH-L. Also, the Q(20) and Q2(20)
statistics show that none of the models reject the no autocorrelation null hypothesis. Moreover, oil
results in Chan and Grant(2016a) are qualitatively similar to the ones obtained in this research.

25 In October 1987, the CFTC (Commodity Future Trading Commission) unsuccessfully looked for evidence of
copper price manipulation.
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For example, their GARCH-J model yields �k < 0 and a jump intensity of 0.05, while GARCH-L
yields � > 0. The only exception is GARCH-MA, which indicates the presence of �rst-order serial
correlation and provides the best �t in the GARCH family. This last feature may be a consequence
of using weekly series where �rst-order autocorrelation exist, in contrast with using daily data.

Table 7 shows the results for the SV family. The SV-t model yields � = 12:58, which is much
higher that for gold and copper; and indicates that oil returns show innovations that further depart
from the t-Student distribution. This is also present in the results obtained by Chant and Grant
(2016a), where the value of � is higher than 40. In SV-J, the jump probability is 0.05 and �k < 0. In
the same line, Larsson and Nossman (2011) and Brooks and Prokopczuk (2013) �nd that the jump
probability in SV-J is 0.01 and 0.025, respectively; i.e., six jumps per year on average. Additionally,
both calculate a negative jump value for the returns. In contrast, neither SV-M nor SV-MA provide
an additional contribution in modeling oil volatility. The SV-L model shows a negative correlation
between shocks on oil returns and their volatility because � = �0:25, which is similar to the results
found by Brooks and Prokopczuk (2013). Based on the values for the marginal log-likelihood, the
selected model is SV-t, followed by SV-L and SV-2. Comparing the results in this paper for the SV
family with those obtained by Chan and Grant (2016a), the jump value for the returns in SV-J is
positive, �k > 0. Additionally, SV-t tails are similar to those in a normal distribution, as � = 56:13.
At the same time, they present SV-MA as the best model, while this paper �nds a low goodness of
�t like in SV-1. Again, these di¤erences re�ect the fact that the authors use weekly data beginning
in 1994; i.e., they do not include the impact of the Gulf War and the 1990s crises on oil returns.
Moreover, using weekly data implies smoothing out the extreme data that may appear in a daily
basis. The Q(20) and Q2(20) statistics show that none of the models reject the no autocorrelation
null hypothesis.

The results suggest that introducing fat tails and a leverage e¤ect is bene�cial in the case
of oil. While oil depends on supply/demand fundamentals like short-run supply inelasticity in
the face of price changes, history shows that geopolitical con�icts, as well as announcements by
the Organization of Petroleum Exporting Countries (OPEC) cartel, have a substantial impact
on expectations about the global availability of oil inventories, and therefore about the process
governing oil volatility. Figure 2 shows that the �rst volatility peak (also the largest in the whole
sample) occurred during the Gulf War in 1990-1991. Another peak occurred, on May 23, 1998,
when OPEC agreed to cut production to mitigate the decline in returns created by weak global
consumption in the wake of the Asian crisis. Moreover, Operation Desert Fox (a massive bombing
campaign against Iraq) was launched in December of the same year. Later, the bursting of the
Dotcom bubble at end-2000 triggered a recession, which in turn caused a fall in U.S. oil consumption
and negative returns in the oil market. Next, during the 2001-2002 period, the 9/11 attacks, the
subsequent U.S. invasion of Iraq and an oil strike in Venezuela further exacerbated volatility.

In 2005, damages in the U.S. Gulf of Mexico oil facilities caused by the Rita and Katrina
hurricanes and sustained Asian demand drove global oil inventories down and triggered widespread
uncertainty. In the run-up to the GFC, oil volatility escalated as a result of a speculative commodity
boom. When the GFC put an end to it, oil volatility climbed to its highest levels since the Gulf War.
In February 2011, the Libyan civil war a¤ected oil exports and created considerable uncertainty
in the crude oil market. At last, Chinese slowdown contributed to increasing volatility since 2014;
and economic and political instability took the market to considerable peaks in 2016.

In sum, the presence of fat tails originates in unexpected changes in the output of strategic
crude producers and U.S.-OPEC political tensions. The results also suggest the presence of leverage
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e¤ects, implying that negative oil returns today indicate higher volatility tomorrow. This usually
takes place in the wake of economic crises, where a downward trend in oil returns prompts massive
inventory sello¤s and volatility surges as a consequence.

3.2.4 Natural Gas

Table 8 shows the results for the GARCH family. The GARCH-t model yields � = 10:55, similar
to oil. At the same time, GARCH-J yields �k = 0:45 and a jump probability of 0.09; i.e., 23 jumps
per year. In contrast with previous series, only gas yields �k > 0 . The results for GARCH-J are
consistent with the literature; e.g., Mason and Wilmot (2014) �nd a jump intensity of 0.015, with a
positive jump value. Additionally, Nomikos and Andriosopoulos (2012) �nd a positive average jump
with an intensity of occurrence of 0.058. At the same time, there is no evidence of a risk premium
as a requirement to invest in natural gas market; and GARCH-MA does not make a signi�cant
contribution. In parallel, GARCH-L results suggest � < 0, pointing evidence of an inverse leverage
e¤ect like in the case of gold. Nomikos and Andriosopoulos (2012) argue this feature is explained
by the fact that positive demand shocks dominated supply shocks, and therefore natural gas price
increases become an indicator of volatility-enhancing scarcity. Moreover, based on the marginal
log-likelihoods, the preferred model is GARCH-t, followed by GARCH-J and GARCH-L.

Table 9 shows the results for the SV family. While there is evidence of extreme events in the
return series, innovations tend to a normal distribution, as SV-t yields � = 48:95. SV-J yields a
jump probability of 0.05; i.e., 13 jumps per year on average, with a magnitude of 0.44. Again,
the risk premium coe¢ cient in SV-M and the serial correlation coe¢ cient in SV-MA include zero
in their respective credibility intervals. However, SV-L shows a positive asymmetric relationship
between returns and volatility, implying an inverse leverage e¤ect, as explained above. Finally, the
marginal likelihoods indicate that the preferred model is SV-L, followed by SV-2 and SV-t.

The results suggest that the importance of the inverse leverage e¤ect dominates the fat tail
component. An inspection of high-volatility episodes in this market (Figure 2) shows that the �rst
peak (February 2, 1996) was caused by scarce gas inventories and triggered a substantial price
increase. Later, according to Roesser (2009), the Federal Energy Regulatory Commission (FERC)
detected price manipulation to drive up the price of Western U.S. gas, which explains the volatility
peak between end-2000 and the beginning of 2001. On February 2003, volatility surge was once
more the result of supply/demand mismatches caused by severe winters, which a¤ected U.S. gas
distribution facilities and led to a peak in demand. The Katrina and Rita hurricanes (August and
September 2005, respectively) caused serious damage to the Gulf of Mexico facilities and created
considerable volatility in natural gas returns. The 2008 volatility peaks were caused by a mix of
supply/demand fundamentals and �nancial market speculation. In April 2008, a gas leak in the
Gulf of Mexico facilities caused concerns about a possible supply reduction in the context of the
GFC. Figure 2 shows a growing trend in volatility until mid-2010 caused by global recovery.

The evidence of inverse leverage e¤ect is consistent with the nature of the natural gas market,
where production is inelastic to price. Therefore, the volatility of gas returns is highly sensitive
to available supply, which may vary due to climatic developments and infrastructure restrictions.
Positive returns indicate excess demand and therefore higher future uncertainty about natural gas
supply conditions. This is consistent with Mu (2007) and Roesser (2009), who argue that an
important fundamental in gas price is the supply/demand balance. More speci�cally, Mu (2007)
�nds that unexpected weekly inventory changes and temperature levels may cause uncertainty
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about future supply conditions. Moreover, Geman (2005) underscores that storage is costlier for
gas than for oil, and therefore gas trade takes place in local markets, thereby reducing the industry�s
capacity to meet demand pressures.

The Q(20) and Q2(20) statistics indicate that all models in both families reject the no autocor-
relation null hypothesis26.

3.2.5 Comparative Analysis

Tables 2-9 above show the marginal (log) likelihoods for each commodity and each of the seven
GARCH and SV models. This allows calculation of the Bayes Factors (BFs hereinafter) to identify
the best-�tting models.

First, GARCH-t (Mj following the notation in Section 2) is selected within the GARCH family.
In this case, BFij < 1 indicates preference forMj overMi. For GARCH family, the results indicate
that GARCH-t is better than all other models for all commodities. At the same time, GARCH-J
is better than the other models except GARCH-t, for all commodities. Also, BF�s show that not
preferred models provide similar levels of goodness of �t.

On the other hand, SV-t (Mj) is selected from the SV family. This model is preferred for all
commodities with exception of natural gas where SV-L is dominant. The BF is equal to one when
comparing an SV-t and SV-2 for natural gas. Also, SV-L shows better performance than SV-J for
all commodities. At last, as in GARCH family, BF�s show that goodness of �t levels are similar
between not preferred models.

Futhermore, when both families (GARCH and SV) are compared. The following models are
selected: GARCH-t for gold; SV-t for copper and oil; and SV-L for natural gas27.

According to the results, three SV models and one GARCH model were selected. This is
explained by the structure of SV models, which includes a stochastic disturbance in the volatil-
ity process, while its GARCH counterparts assume that volatility is governed by a deterministic
process. This makes the SV volatility process more �exible, as it incorporates information on events
a¤ecting the volatility process in real time. Moreover, our results are in line with Danielson (1994),
Kim et al. (1998), Nakajima (2012) and Chant and Grant (2016a) that use a Bayesian approach to
compare GARCH and SV models and suggest that SV family outperforms GARCH one on average.
The only exception is GARCH-t for gold which outperforms every model in SV family. This can
be possible as demostrated in Kim et al. (1998) and Nakajima (2012) when incorporating fat tails
to GARCH model structure.

In relation to the above, the jump and fat tail extensions contribute to a lesser extent to SV
family performance against its counterpart GARCH. This is re�ected in the parameter estimates.
Regarding the jump component, parameters � and �k are higher on average in GARCH models,
while parameter �2k is lower. An explanation for this feature, is that the jump component is
capturing excess of kurtosis that GARCH structure cannot do by itself, which might be information
not necessarily related to a jump event. Therefore, including "non-jump events information" in the
jump component might introduce bias in parameter values. Jumps are supposed to be rare events
that appear in the sample. On the contrary, SV models are more compatible with this assumption

26An option for ensuring no autocorrelation in the residuals is including more lags in the return or volatility
equations. However, this warrants careful assessment in future research, as it would involve models di¤erent from the
ones used in this paper.
27Tables showing the BFs are available upon request.
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because their structure allows them to capture a greater proportion of the excess of kurtosis related
to "non-jump events" than GARCH models do. As a consequence, the jump component in SV-J
models is more likely to admit only extreme values which in turn produce more unfrequent(lower
�), larger (higher �k) and less disperse (lower �

2
k) jumps in the sample. Our results are in line

with Nakajima (2012) that �nds lower kappas for SV-J models than for GARCH-J models, and
suggests that when an excess shock appears, the volatility process of the SV-J model will capture
the shock, while the GARCH model will capture it by the jump component. Nevertheless, in terms
of performance, we �nd that SV-J models are usually outperformed by the basic SV model. Similar
results are found in Nakajima (2009,2012) where SV and SV-J models showed similar performance
when applied to model S&P 500, NASDAQ AND TOPIX indexes.

Regarding the fat tail component, the value of � is lower in GARCH models than in SV models.
The lower the value of �, the larger the mass of probability allocated at the tails of the returns
distribution. Therefore, this implies a higher probability of ocurrence of extreme events. As in the
jump component, the fat tail component greatly increases GARCH models performance, not only by
capturing extreme event information, but also by capturing excess of kurtosis GARCH structure
is not able to do by itself. On the opposite, SV models capture enough variability, therefore,
increasing the value of � as a result. This last feature explains why � parameter in SV models are
usually higher which indicates that perturbances of the model are more likely to aproximate to a
normal distribution.

Besides, we �nd evidence of leverage e¤ect in all the return series, nonetheless, there are di¤er-
ences in terms of performance. For instance, for all products as except for natural gas, GARCH-L
model is outperform by basic GARCH model on average. However, in SV family, SV-L model
usually outperforms the basic SV model and also the SV-t model for the case of natural gas. This
feature can be explain by the volatility process structure of SV models which can capture more
excess kurtosis than GARCH models with no fat tail or jumps components incorporated. This is
supported by Nakajima (2009,2012) results where the inclusion of leverage e¤ect in SV models or
GARCH models with fat tails or jumps components incorporated raise the level of goodness of �t.
Additionally, this make sense with the levels of kurtosis of the products. We infer that the fat tail
component is usually more bene�cial for series with high kurtosis, whereas, the leverage component
becomes more bene�cial when kurtosis is lower as in natural gas. Regardless of the level of kurtosis,
we can conclude that leverage e¤ect is important for modeling commodity volatility dynamics.

3.3 Robustness Analysis

A sensitivity analysis is performed on the change in priors. For the sake of simplicity and brevity,
only the best models in each family are re-estimated for each commodity. Robustness of the value
and sign of the estimated coe¢ cient is tested, as well as the marginal log-likelihood in a scenario
of non-informative priors28. Therefore, the following hyper-parameters are assumed: V�0 = 100,
V0 = diag(100; 100; 100), V�0 = diag(100; 100) for GARCH-t and GARCH-J; and V�0 = 100,
V�h1

= 100, V� = 100, V�h = 100, �h = 2:5, V� = 100 for SV-t and SV-L.
Table 10 shows the results for four commodities and for GARCH-t and GARCH-J. They suggest

a slight goodness-of-�t decrease in GARCH-J for oil, equal to 1.4% relative to the initial value. Table
11 shows the same results for SV-t and SV-L. Evidence suggests similar conclusions. For example,

28A scenario using informative priors was also run. The results are available upon request.
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marginal log-likelihood in SV-t for gold decreases by 0.21%. Parameters � and � decrease for copper
and natural gas in SV-t and SV-L, respectively.

It is possible to re-calculate the BFs using the new marginal log-likelihoods, but the order of
preference of models for each commodity remains unchanged. GARCH-t continues to dominate the
SV family in modeling gold volatility. SV-t continues to be preferred over GARCH-t for copper
and oil, while again SV-L dominates SV-L and GARCH-t in modeling natural gas.

In sum, using of non-informative priors in both families does not introduce relevant changes in
the results. The previously selected models (GARCH-t, SV-t, and SV-L) continue to provide the
best �t for their respective commodity. No signi�cant changes were identi�ed in the value of the
parameters estimated for both families relative to the baseline scenario. Additionally, there are no
changes in the sign of the estimated coe¢ cients.

4 Conclusions

Seven GARCH and SV models are compared to model empirically the volatility of returns on four
commodities relevant for South America economies. We �nd that SV models outperform GARCH
models on average. Overall, GARCH-t is the best model in both families for modeling gold volatil-
ity. However, SV-t outperforms the rest of models for copper and oil, while SV-L performs best
for natural gas. The inclusion of fat tails and jumps components largely raise the performance
of GARCH models, while this contribution is less for SV models. Even, SV-J models are usually
outperform by the basic SV model. This �ndings are compatible with the results presented in Chan
and Grant (2016a) and Nakajima (2009,2012). Moreover, fat tails are preferred in gold, cooper and
oil which have historically shown sensitivity to global macroeconomic instability, geopolitical ten-
sions, market speculation, as except for natural gas where short-term supply/demand mismatches
are more relevant to explain its volatility dynamics.

Futhermore, there is evidence of leverage e¤ect for all the products. Oil and copper show
a standard leverage e¤ect, where negative returns today indicate greater future uncertainty. In
contrast, the results also suggest evidence of inverse leverage e¤ects gold and gas show; i.e., positive
returns today increase volatility tomorrow. Additionally, most products do not show evidence of a
risk premium or MA-type �rst-order serial correlation.

A long-term view of volatility dynamics under di¤erent stress episodes that impacted commodity
markets allow us to have better knowledge of what components contribute more to its modeling.
Our results suggest that a development strategy based on primary commodity trade may involve
greater volatility in macroeconomic aggregates, in turn translating into higher welfare costs because
of the evidence of extreme events. Also, policy makers must focus on countercyclical economic policy
because of the existence of leverage e¤ect in commodities such as copper or oil. To cope with this
issues �scal programs such as stabilization funds or stronger promotion of derivative markets must
be in the agenda.
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5 Tables

Table 1. Summary Statistics for Returns and Squared Returns

Mean Std. Deviation Skewness Kurtosis Min. Max. Obs.

Panel A: Returns

Gold 0.011 1.055 -0.214 9.910 -9.811 8.830 8653

Copper 0.015 1.619 -0.234 7.408 -12.516 11.902 8653

Oil 0.013 2.211 -0.825 18.385 -38.404 13.572 7643

Natural Gas 0.007 3.131 0.035 5.185 -16.698 18.765 5872

Panel B: Squared Returns

Gold 1.100 3.300 11.900 221.500 0.000 96.300 8651

Copper 2.600 6.600 8.500 121.400 0.000 156.600 8651

Oil 4.900 20.400 51.300 3609.100 0.000 1474.900 7641

Natural Gas 9.800 20.000 6.000 59.300 0.000 352.100 5871
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Table 2. Gold: Parameter Posterior Means, Standard Deviations (in parentheses) and 95%
Credibility Intervals (in brackets) for the GARCH Models

GARCH GARCH-2 GARCH-t GARCH-J GARCH-M GARCH-MA GARCH-L

� 0:007
(0:010)

[�0:012;0:026]

0:007
(0:010)

[�0:012;0:026]

0:007
(0:008)

[�0:008;0:022]

0:012
(0:008)

[�0:005;0:028]

�0:011
(0:014)

[�0:038;0:017]

0:007
(0:009)

[�0:012;0:026]

0:020
(0:010)

[0:001;0:040]

�o 0:034
(0:000)

[0:034;0:034]

0:035
(0:000)

[0:035;0:036]

0:002
(0:000)

[0:002;0:002]

0:003
(0:000)

[0:002;0:003]

0:034
(0:000)

[0:034;0:035]

0:034
(0:000)

[0:034;0:034]

0:042
(0:000)

[0:042;0:042]

�1 0:077
(0:000)

[0:076;0:078]

0:080
(0:000)

[0:079;0:081]

0:024
(0:000)

[0:023;0:025]

0:031
(0:000)

[0:031;0:032]

0:077
(0:000)

[0:076;0:078]

0:077
(0:000)

[0:076;0:078]

0:109
(0:001)

[0:106;0:111]

�1 0:896
(0:000)

[0:895;0:896]

0:838
(0:001)

[0:836;0:839]

0:954
(0:001)

[0:952;0:955]

0:949
(0:000)

[0:948;0:949]

0:896
(0:000)

[0:895;0:896]]

0:896
(0:000)

[0:895;0:896]

0:883
(0:000)

[0:882;0:884]

�2 - 0:054
(0:001)

[0:052;0:056]

- - - - -

� - - - 0:100
(0:000)

[0:100;0:100]

- - -

�k - - - �0:144
(0:086)

[�0:314;0:024]

- - -

�2k - - - 3:663
(0:237)

[3:208;4:149]

- - -

� - - - - 0:021
(0:013)

[�0:004;0:046]

- -

 - - - - - �0:001
(0:012)

[�0:025;0:024]

-

� - - 3:947
(0:020)

[3:908;3:983]

- - - -

� - - - - - - �0:050
(0:002)

[�0:054;�0:046]

LogL �11930:3
(0:09)

�11928:4
(0:18)

�11154:7
(0:20)

�11245:5
(0:10)

11936:5
(0:19)

�11933:5
(0:12)

�11935:1
(0:15)

Q(20) 0:4339 0:4319 0:3502 0:3719 0:4294 0:3726 0:4070

Q2(20) 0:9999 0:9998 0:9902 0:9992 0:9999 0:9999 1:0000

Notes: Q(20) and Q2(20) are the p-values of the Ljung-Box and McLeod-Li statistics where the
null hypotheses are no autocorrelation in the standarized residuals and standarized squared

residuals, respectively.
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Table 3. Gold: Parameter Posterior Means, Standard Deviations (in parentheses) and 95%
Credibility Intervals (in brackets) for the SV Models

SV SV-2 SV-t SV-J SV-M SV-MA SV-L

� 0:00
(0:01)

[�0:011;0:019]

0:00
(0:01)

[�0:012;0:018]

0:01
(0:01)

[�0:008;0:021]

0:01
(0:01)

[�0:008;0:021]

�0:00
(0:01)

[�0:022;0:019]

0:00
(0:01)

[�0:011;0:020]

0:01
(0:00)

[�0:004;0:032]

�h �0:33
(0:08)

[�0:483;0:168]

�0:24
(0:17)

[�0:502;0:069]

�0:35
(0:09)

[�0:542;�0:168]

�0:36
(0:08)

[�0:517;�0:191]

�0:33
(0:08)

[�0:480;�0:170]

�0:32
(0:08)

[�0:471;�0:169]

�0:310
(0:08)

[�0:478;�0:141]

�h1 0:97
(0:00)

[0:956;0:975]

0:94
(0:00)

[0:938;0:948]

0:98
(0:00)

[0:971;0:981]

0:97
(0:00)

[0:968;0:978]

0:97
(0:01)

[0:952;0:975]

0:96
(0:01)

[0:952;0:974]

0:97
(0:00)

[0:963;0982]

!2h 0:05
(0:01)

[0:042;0:070]

0:04
(0:00)

[0:006;0:054]

0:04
(0:00)

[0:040;0:042]

0:04
(0:00)

[0:039;0:041]

0:06
(0:01)

[0:042;0:077]

0:06
(0:01)

[0:043;0:072]

0:04
(0:00)

[0:033;0:059]

�h2 - 0:03
(0:01)

[0:038;0:041]

- - - - -

� - - - 0:01
(0:00)

[0:006;0:021]

- - -

�k - - - �0:35
(0:07)

[�0:503;�0:253]

- - -

�2k - - - 7:78
(1:93)

[5:057;10:577]

- - -

� - - - - 0:01
(0:01)

[�0:016;0:040]

- -

 - - - - - �0:02
(0:01)

[�0:045;�0:001]

-

� - - 12:60
(1:07)

[10:684;14:901]

- - - -

� - - - - - - 0:20
(0:032)

[0:149;0:265]

LogL �11327:8
(0:12)

�11332:4
(0:18)

�11199:1
(0:69)

�11327:9
(0:57)

�11334:2
(0:13)

�11329:6
(0:19)

�11320:3
(0:23)

Q(20) 0:281 0:056 0:141 0:283 0:328 0:362 0:325

Q2(20) 0:000 0:176 0:191 0:001 0:000 0:000 0:000

Notes: Q(20) and Q2(20) are the p-values of the Ljung-Box and McLeod-Li statistics where the
null hypotheses are no autocorrelation in the standarized residuals and standarized squared

residuals, respectively
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Table 4. Copper: Parameter Posterior Means, Standard Deviations (in parentheses) and 95%
Credibility Intervals (in brackets) for the GARCH Models

GARCH GARCH-2 GARCH-t GARCH-J GARCH-M GARCH-MA GARCH-L

� 0:013
(0:014)

[�0:016;0:040]

0:013
(0:014)

[�0:015;0:040]

0:016
(0:013)

[�0:010;0:042]

0:032
(0:014)

[0:004;0:060]

�0:058
(0:019)

[�0:096;�0:020]

0:013
(0:015)

[�0:016;0:041]

0:007
(0:014)

[�0:020;0:035]

�o 0:033
(0:000)

[0:032;0:033]

0:034
(0:000)

[0:034;0:035]

0:008
(0:000)

[0:007;0:008]

0:003
(0:000)

[0:003;0:004]

0:033
(0:000)

[0:033;0:034]

0:033
(0:000)

[0:032;0:033]

0:047
(0:000)

[0:046;0:047]

�1 0:058
(0:000)

[0:057;0:058]

0:060
(0:000)

[0:059;0:061]

0:032
(0:001)

[0:031;0:033]

0:040
(0:001)

[0:039;0:041]

0:058
(0:000)

[0:057;0:058]

0:058
(0:000)

[0:057;0:059]

0:057
(0:001)

[0:056;0:059]

�1 0:930
(0:000)

[0:929;0:930]

0:874
(0:001)

[0:872;0:875]

0:951
(0:001)

[0:950;0:953]

0:948
(0:000)

[0:948;0:949]

0:929
(0:000)

[0:928;0:930]

0:930
(0:000)

[0:929;0:931]

0:916
(0:000)

[0:915;0:917]

�2 - 0:053
(0:001)

[0:051;0:054]

- - - - -

� - - - 0:099
(0:001)

[0:095;0:100]

- - -

�k - - - �0:326
(0:119)

[�0:561;�0:095]

- - -

�2k - - - 4:518
(0:362)

[3:849;5:272]

- - -

� - - - - 0:040
(0:007)

[0:026;0:055]

- -

 - - - - - �0:005
(0:012)

[�0:028;0:018]

-

� - - 6:385
(0:043)

[6:302;6:467]

- - - -

� - - - - - - 0:017
(0:002)

[0:013;0:020]

LogL �15081:1
(0:23)

�15081:8
(0:11)

�14844:0
(0:09)

�14864:8
(0:19)

�15088:8
(0:34)

�15085:2
(0:09)

�15097:4
(0:10)

Q(20) 0:6003 0:6002 0:6784 0:6988 0:5167 0:5537 0:5498

Q2(20) 0:7914 0:8148 0:1337 0:4436 0:8198 0:7902 0:9013

Notes: Q(20) and Q2(20) are the p-values of the Ljung-Box and McLeod-Li statistics where the
null hypotheses are no autocorrelation in the standarized residuals and standarized squared

residuals, respectively.
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Table 5. Copper: Parameter Posterior Means, Standard Deviations (in parentheses) and 95%
Credibility Intervals (in brackets) for the SV Models

SV SV-2 SV-t SV-J SV-M SV-MA SV-L

� 0:02
(0:01)

[�0:009;0:042]

0:02
(0:01)

[�0:008;0:044]

0:02
(0:01)

[�0:007;0:043]

0:02
(0:01)

[�0:011;0:043]

0:02
(0:02)

[�0:022;0:058]

0:02
(0:01)

[�0:009;0:041]

0:01
(0:01)

[�0:017;0:036]

�h 0:60
(0:11)

[0:390;0:808]

0:59
(0:12)

[0:387;0:788]

0:41
(0:13)

[0:139;0:662]

0:55
(0:08)

[0:397;0:713]

0:60
(0:11)

[0:388;0:815]

0:60
(0:11)

[0:387;0:809]

0:60
(0:11)

[0:390;0:815]

�h1 0:99
(0:00)

[0:979;0:990]

0:84
(0:08)

[0:689;0:98]

0:99
(0:01)

[0:969;0:994]

0:97
(0:00)

[0:968;0:978]

0:99
(0:00)

[0:980;0:991]

0:99
(0:00)

[0:980;0:990]

0:99
(0:00)

[0:981;0:990]

!2h 0:02
(0:00)

[0:013;0:023]

0:04
(0:01)

[�0:019;0:285]

0:02
(0:01)

[0:007;0:040]

0:04
(0:00)

[0:037;0:039]

0:02
(0:00)

[0:013;0:022]

0:02
(0:00)

[0:013;0:023]

0:02
(0:00)

[0:013;0:022]

�h2 - 0:13
(0:08)

[0:024;0:049]

- - - - -

� - - - 0:04
(0:02)

[0:0130;0:0830]

- - -

�k - - - �0:07
(0:20)

[�0:4029;0:4312]

- - -

�2k - - - 2:04
(0:85)

[0:893;4:160]

- - -

� - - - - �0:00
(0:01)

[�0:021;0:019]

- -

 - - - - - �0:02
(0:01)

[�0:046;�0:002]

-

� - - 10:52
(2:38)

[7:775;16:597]

- - - -

� - - - - - - �0:12
(0:05)

[�0:220;�0:022]

LogL �14893:6
(0:03)

�14890:9
(0:15)

�14839:0
(0:02)

�14920:4
(0:40)

�14900:4
(0:06)

�14895:2
(0:07)

�14893:9
(0:04)

Q(20) 0:282 0:227 0:345 0:156 0:301 0:492 0:313

Q2(20) 0:063 0:022 0:519 0:012 0:083 0:047 0:066

Notes: Q(20) and Q2(20) are the p-values of the Ljung-Box and McLeod-Li statistics where the
null hypotheses are no autocorrelation in the standarized residuals and standarized squared

residuals, respectively
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Table 6. Oil: Parameter Posterior Means, Standard Deviations (in parentheses) and 95%
Credibility Intervals (in brackets) for the GARCH Models

GARCH GARCH-2 GARCH-t GARCH-J GARCH-M GARCH-MA GARCH-L

� 0:033
(0:001)

[�0:005;0:071]

0:034
(0:019)

[�0:004;0:072]

0:035
(0:019)

[�0:001;0:071]

0:056
(0:021)

[0:015;0:097]

�0:023
(0:025)

[�0:071;0:025]

0:034
(0:020)

[�0:005;0:073]

0:022
(0:020)

[�0:015;0:06]

�o 0:052
(0:001)

[0:051;0:053]

0:054
(0:001)

[0:053;0:056]

0:024
(0:001)

[0:022;0:026]

0:017
(0:001)

[0:015;0:020]

0:052
(0:001)

[0:051;0:054]

0:052
(0:001)

[0:051;0:054]

0:066
(0:001)

[0:065;0:067]

�1 0:078
(0:001)

[0:077;0:079]

0:081
(0:001)

[0:080;0:082]

0:045
(0:001)

[0:044;0:047]

0:055
(0:001)

[0:053;0:058]

0:077
(0:001)

[0:076;0:079]

0:078
(0:001)

[0:077;0:079]

0:070
(0:001)

[0:068;0:072]

�1 0:914
(0:001)

[0:913;0:916]

0:859
(0:001)

[0:857;0:861]

0:934
(0:001)

[0:931;0:936]

0:930
(0:001)

[0:928;0:932]

0:915
(0:001)

[0:913;0:916]

0:914
(0:001)

[0:913;0:916]

0:906
(0:001)

[0:905;0:907]

�2 - 0:052
(0:001)

[0:051;0:054]

- - - - -

� - - - 0:093
(0:007)

[0:075;0:100]

- - -

�k - - - �0:547
(0:188)

[�0:920;�0:186]

- - -

�2k - - - 7:902
(0:951)

[6:270;10:034]

- - -

� - - - - 0:018
(0:005)

[0:009;0:027]

- -

 - - - - - 0:006
(0:013)

[�0:019;0:032]

-

� - - 7:632
(0:061)

[7:514;7:747]

- - - -

� - - - - - - 0:027
(0:002)

[0:023;0:031]

LogL �15767:3
(0:10)

�15768:6
(0:19)

�15620:1
(0:08)

�15655:3
(0:05)

�15775:5
(0:15)

�15770:9
(0:09)

�15774:5
(0:15)

Q(20) 0:7394 0:7373 0:7653 0:7923 0:7273 0:6871 0:7149

Q2(20) 0:3779 0:3626 0:2612 0:2889 0:4668 0:3761 0:4777

Notes: Q(20) and Q2(20) are the p-values of the Ljung-Box and McLeod-Li statistics where the
null hypotheses are no autocorrelation in the standarized residuals and standarized squared

residuals, respectively

T-6



Table 7. Oil: Parameter Posterior Means, Standard Deviations (in parentheses) and 95%
Credibility Intervals (in brackets) for the SV Models

SV SV-2 SV-t SV-J SV-M SV-MA SV-L

� 0:04
(0:02)

[�0:000;0:074]

0:04
(0:02)

[0:003;0:081]

0:04
(0:02)

[0:000;0:074]

0:05
(0:02)

[0:011;0:096]

0:07
(0:03)

[0:009;0:122]

0:04
(0:02)

[0:000;0:072]

0:02
(0:02)

[�0:021;0:054]

�h 1:20
(0:11)

[0:985;1:415]

1:18
(0:18)

[0:852;1:467]

1:05
(0:13)

[0:784;1:310]

1:11
(0:14)

[0:838;1:370]

1:21
(0:11)

[0:984;1:422]

1:20
(0:11)

[0:987;1:420]

1:20
(0:11)

[0:980;1:421]

�h1 0:98
(0:00)

[0:977;0:989]

0:84
(0:08)

[0:675;0:972]

0:99
(0:00)

[0:985;0:993]

0:99
(0:00)

[0:983;0:993]

0:98
(0:00)

[0:979;0:989]

0:98
(0:00)

[0:978;0:989]

0:99
(0:00)

[0:979;0:990]

!2h 0:02
(0:00)

[0:015;0:027]

0:04
(0:01)

[0:000;0:302]

0:01
(0:00)

[0:009;0:016]

0:02
(0:00)

[0:011;0:020]

0:02
(0:00)

[0:014;0:026]

0:02
(0:00)

[0:015;0:025]

0:02
(0:00)

[0:014;0:025]

�h2 - 0:14
(0:08)

[0:029;0:050]

- - - - -

� - - - 0:05
(0:02)

[0:0132;0:0959]

- - -

�k - - - �0:73
(0:36)

[�1:3286;�0:1462]

- - -

�2k - - - 8:65
(4:44)

[3:402;18:930]

- - -

� - - - - �0:01
(0:01)

[�0:026;0:004]

- -

 - - - - - �0:01
(0:01)

[�0:036;0:011]

-

� - - 12:58
(1:80)

[9:685;16:597]

- - - -

� - - - - - - �0:25
(0:05)

[�0:355;�0:143]

LogL �15625:0
(0:02)

�15623:8
(0:15)

�15598:3
(0:01)

�15628:7
(0:42)

�15631:0
(0:09)

�15628:4
(0:05)

�15616:5
(0:03)

Q(20) 0:569 0:531 0:626 0:373 0:568 0:586 0:582

Q2(20) 0:129 0:107 0:214 0:201 0:102 0:134 0:159

Notes: Q(20) and Q2(20) are the p-values of the Ljung-Box and McLeod-Li statistics where the
null hypotheses are no autocorrelation in the standarized residuals and standarized squared

residuals, respectively
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Table 8. Natural gas: Parameter Posterior Means, Standard Deviations (in parentheses) and 95%
Credibility Intervals (in brackets) for the GARCH Models

GARCH GARCH-2 GARCH-t GARCH-J GARCH-M GARCH-MA GARCH-L

� 0:017
(0:035)

[�0:051;0:089]

0:017
(0:035)

[�0:051;0:085]

0:018
(0:035)

[�0:049;0:086]

�0:009
(0:044)

[�0:096;0:076]

0:024
(0:055)

[�0:085;0:131]

0:018
(0:036)

[�0:051;0:088]

0:044
(0:035)

[�0:025;0:111]

�o 0:216
(0:004)

[0:208;0:225]

0:226
(0:004)

[0:218;0:234]

0:164
(0:006)

[0:152;0:175]

0:148
(0:005)

[0:140;0:159]

0:215
(0:004)

[0:207;0:224]

0:216
(0:004)

[0:208;0:224]

0:225
(0:004)

[0:217;0:233]

�1 0:078
(0:001)

[0:077;0:080]

0:081
(0:001)

[0:080;0:083]

0:059
(0:001)

[0:057;0:061]

0:069
(0:001)

[0:067;0:071]

0:078
(0:001)

[0:076;0:080]

0:078
(0:001)

[0:077;0:080]

0:097
(0:001)

[0:095;0:099]

�1 0:902
(0:001)

[0:900;0:904]

0:846
(0:001)

[0:843;0:848]

0:908
(0:002)

[0:905;0:912]

0:904
(0:001)

[0:902;0:905]

0:902
(0:001)

[0:900;0:904]

0:902
(0:001)

[0:900;0:904]

0:902
(0:001)

[0:900;0:903]

�2 - 0:052
(0:001)

[0:051;0:054]

- - - - -

� - - - 0:095
(0:006)

[0:079;0:100]

- - -

�k - - - 0:454
(0:354)

[�0:249;1:142]

- - -

�2k - - - 13:009
(1:655)

[10:012;16:669]

- - -

� - - - - �0:001
(0:006)

[�0:012;0:010]

- -

 - - - - - 0:000
(0:014)

[�0:028;0:027]

-

� - - 10:554
(0:130)

[10:305;10:800]

- - - -

� - - - - - - �0:040
(0:001)

[�0:042;�0:037]

LogL �14525:0
(0:05)

�14526:7
(0:09)

�14477:9
(0:14)

�14493:5
(0:08)

�14530:5
(0:23)

�14528:7
(0:16)

�14520:5
(0:21)

Q(20) 0:0217 0:0212 0:0200 0:0234 0:0217 0:0163 0:0222

Q2(20) 0:0009 0:0006 0:0005 0:0015 0:0009 0:0009 0:0006

Notes: Q(20) and Q2(20) are the p-values of the Ljung-Box and McLeod-Li statistics where the
null hypotheses are no autocorrelation in the standarized residuals and standarized squared

residuals, respectively
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Table 9. Natural gas: Parameter Posterior Means, Standard Deviations (in parentheses) and 95%
Credibility Intervals (in brackets) for the SV Models

SV SV-2 SV-t SV-J SV-M SV-MA SV-L

� 0:02
(0:03)

[�0:048;0:086]

0:01
(0:04)

[�0:056;0:082]

0:02
(0:03)

[�0:049;0:086]

�0:00
(0:05)

[�0:105;0:100]

0:05
(0:07)

[�0:083;0:175]

0:02
(0:03)

[�0:049;0:085]

0:04
(0:04)

[�0:047;0:113]

�h 2:05
(0:08)

[1:890;2:206]

2:04
(0:11)

[1:857;2:208]

2:00
(0:09)

[1:833;2:169]

2:01
(0:09)

[1:833;2:178]

2:05
(0:08)

[1:892;2:205]

2:05
(0:08)

[1:891;2:212]

2:05
(0:08)

[1:903;2:214]

�h1 0:98
(0:00)

[0:966;0:983]

0:92
(0:08)

[0:750;1:053]

0:98
(0:00)

[0:969;0:984]

0:98
(0:00)

[0:967;0:984]

0:97
(0:00)

[0:965;0:982]

0:98
(0:00)

[0:967;0:983]

0:96
(0:03)

[0:892;0:983]

!2h 0:02
(0:00)

[0:015;0:027]

0:03
(0:01)

[0:022;0:045]

0:02
(0:00)

[0:013;0:023]

0:02
(0:00)

[0:015;0:027]

0:02
(0:00)

[0:016;0:027]

0:02
(0:00)

[0:014;0:025]

0:04
(0:03)

[0:015;0:103]

�h2 - 0:04
(0:08)

[�0:106;0:213]

- - - - -

� - - - 0:05
(0:03)

[0:0047;0:0974]

- - -

�k - - - 0:44
(0:85)

[�1:4073;2:0453]

- - -

�2k - - - 6:18
(5:06)

[1:271;18:502]

- - -

� - - - - �0:00
(0:01)

[�0:019;0:011]

- -

 - - - - - �0:01
(0:01)

[�0:035;0:015]

-

� - - 48:95
(22:80)

[19:830;95:881]

- - - -

� - - - - - - 0:18
(0:11)

[�0:040;0:322]

LogL �14467:8
(0:03)

�14465:7
(0:14)

�14465:7
(0:02)

�14471:5
(0:13)

�14474:8
(0:04)

�14471:5
(0:01)

�14463:4
(0:07)

Q(20) 0:027 0:022 0:024 0:035 0:027 0:022 0:035

Q2(20) 0:000 0:000 0:000 0:000 0:000 0:000 0:000

Notes: Q(20) and Q2(20) are the p-values of the Ljung-Box and McLeod-Li statistics where the
null hypotheses are no autocorrelation in the standarized residuals and standarized squared

residuals, respectively
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