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Resumen

Gaussian Multiplicative Chaos

Jhon Kevin Astoquillca Aguilar

2020

Asesor: Beltran Ramirez, Johel Victorino
Título obtenido: Magíster en Matemáticas

La teoría de Kolmogorov-Obukhov-Mandelbrot de disipación de energía en
desarrollo de turbulencia se estableció para estudiar el comportamiento caótico
de los fluidos. En ausencia de una base matemática rigurosa, Kahane introduce el
caos gaussiano multiplicativo como un objeto aleatorio inspirado en la teoría del
caos aditivo desarrollada por Wiener. En esta tesis desarrollamos teoría aleatoria
en el espacio de medidas de Radon con el objetivo de definir rigurosamente el caos
multiplicativo gaussiano. Seguimos el artículo de Kahane y debilitamos algunas
condiciones para proporcionar una introducción accesible y autocontenida.
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Procesos gaussianos
Caos gaussiano multiplicativo
Martingalas



Abstract

The Kolmogorov-Obukhov-Mandelbrot theory of energy dissipation in turbulence
developed was established to study the chaotic behavior of fluids. In the absence
of a rigorous mathematical basis, Kahane introduced the Gaussian multiplicative
chaos as a random object inspired by the additive chaos theory developed by
Wiener. In this thesis we developed random theory in the spaces of Radon
measures in order to rigorously define Gaussian multiplicative chaos. We follow
Kahane’s paper and weaken some conditions to provide an accessible and self-
contained introduction.

Key words and phrases: Random measures, Gaussian processes, Gaussian
multiplicative chaos, martingales with discrete parameter.
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Introduction

The idea of Gaussian multiplicative chaos was introduced by Mandelbrot [Man72]
in his work on the Komogorov-Obukhov’s model of energy dissipation in
turbulence. Despite its functionality, it could not be constructed mathematically
until 1985 where Kahane, in his article Sur le chaos multiplicative [Kah85],
provides the fundamental ideas to define it as a random object.

Gaussian multiplicative chaos appears naturally in several branches of
mathematics, such as mathematical physics or mathematical finance. The reader
is referred to [RV14] for some examples. Motivated by its wide applicability,
this thesis explores the theory of multiplicative chaos in an introductory way by
focusing on the first definition of Kahane. The goal is the definition and study
of random measures of the form

M(dt) = exp

(
X(t)− 1

2
E[X2(t)]

)
σ(dt) (1)

where (X(t))t∈T is a centred Gaussian field and σ is a given Radon measure on a
locally compact Polish metric space T . Gaussian multiplicative chaos is a random
measure of this form that allows the Gaussian field to have infinity variance, i.e.,
E[X2(t)] = ∞. In this case it is not clear what meaning to give to (1) a priori
because X is not longer a Gaussian field. We proceed in the text considering that
the function K(t, s) = E[X(t)X(s)] is of the form

K(t, s) =
∞∑
n=1

Kn.

For every Kn(t, s), we find a Gaussian field Xn(t) such that Kn(t, s) =

E[Xn(t)Xn(s)] and then we use an approximation procedure to give meaning
to (1). The text is organized as follows.

In Chapter 1, we present some basic definitions and results of probability
theory in the context which we are interested in.
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In Chapter 2, we introduce Gaussian random objects and some results about
them. Here, we realize the importance of the covariance kernel. Its richness
provides good properties to the Gaussian field.

In Chapter 3, we work with measures defined on locally compact Polish metric
spaces. The set of Radon measures defined on this space is endowed with a Borel
σ-algebra in order to define a random measure. Some facts about distribution
and convergence of random measures are given.

In Chapter 4, Gaussian multiplicative chaos is defined as a randommeasure. It
is obtained as a weak limit of random measures. We discuss some problems about
the definition such as uniqueness and degeneracy. Finally, we briefly present an
extension of the theory.

Jhon Kevin Astoquillca Aguilar
Lima, Perú.
2020



Chapter 1

Probability Theory

This chapter is devoted to the basic of probability theory that will
be used in the text. For more detail and proofs, the reader is
referred to [AL06], [Kal02], [Kle13], [Bog07] and [Ros06].

1.1 Stochastic Processes

1.1.1 Basic Notions

A probability space is a triple (Ω,F ,P) consisting of:

• the sample space Ω which is an arbitrary nonempty set,

• the σ-algebra F of subsets of Ω, which are called events, and

• the probability measure P : F → [0, 1].

The Borel σ-algebra on Rd, 1 ≤ d < ∞, is denoted by B(Rd). A measurable
function

X : (Ω,F) → (Rd,B(Rd))

ω 7→ X(ω)

is called random variable. If we want to specify that d = 1 or d ≥ 2 we say that
X is a real random variable or random vector, respectively. The expected value
of the real random variable X is the integral with respect to the measure P:∫

Ω

X(ω)P(dω).
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It is denoted by E[X] or EX. This expectation exists if the the expectation of
the positive part X+ and the negative part X− of X are not infinite at the same
time. We are considering

x+ = max{x, 0}, x− = min{−x, 0}.

Note that EX = EX+ − EX−.
We say that a random variable is integrable if E|X| <∞. The expected value

of the random vector X = (X1, . . . , Xd) is E[X] = (EX1, . . . ,EXd) provided that
each real random variable Xi, i ∈ J1, dK, is integrable. Here J1, dK = [1, d] ∩ Z.
We say that a property is true P almost surely or simply a.s. if it is true outside
a set N ∈ F such that P(N) = 0.

For every real p ≥ 1, we denote by Lp(Ω,F ,P), or simply Lp, the space of
random variables X such that |X|p is integrable and where random variables
which agree a.s. are identified. Since the measure P is finite, we have for b < a,

La(Ω,F ,P) ⊂ Lb(Ω,F ,P).

Let X be a random variable, the probability measure PX(·) := P(X−1(·))
defined on B(Rd) is called the probability distribution (or simply distribution)
of X. We write X D

= Y when the random variables X and Y have the same
distribution.

Definition 1.1.1. The collection {Xα : α ∈ X} of real random variables defined
on (Ω,F ,P) is called a stochastic process indexed by the set X

We usually use the notation (Xα)α∈X or (Xα)α if it is clear. When the index
set is N = {1, 2, . . . }, we can refer to it as a sequence of random variables. The
family

{PX : (α1, α2, . . . , αk) ∈ X k, X = (Xα1 , . . . , Xαk), k ∈ N}

of distributions is said to be the family of finite dimensional distribution
associated with the stochastic process {Xα : α ∈ X}. Let X = (Xα)α∈X and
Y = (Yα)α∈X be stochastic processes, we say that they have the same distribution
and it is denoted by X D

= Y if for every k ∈ N and (α1, . . . , αk) ∈ X k,

(Xα1 , . . . , Xαk)
D
= (Yα1 , . . . , Yαk).
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1.1.2 Daniell-Kolmogorov Theorem

Let µ be a probability measure on (R,B(R)), we can ask if there is a probability
measure (Ω,F , P ) and a real random variable X on it such that its distribution
is µ. The answer is affirmative, it is enough to consider (Ω,F , P ) = (R,B(R), µ)

and the random variable X to be the map X(ω) = ω. Thus

PX(A) = P (A) = µ(A).

Analogously, let µ be a probability measure on (Rd,B(Rd)). The probability
space (Rd,B(Rd), µ) and the random vector X(ω) = ω can be considered to
obtain a random variable with distribution µ.

The Daniell-Kolmogorov theorem deal with this problem when we want to
construct a stochastic process {Xα : α ∈ X} indexed by X on some probability
space (Ω,F , P ) when a family of finite dimensional distributions is given. The
version of the theorem we will use appears as Theorem 6.3.1 of [AL06].

Theorem 1.1.2. Let X be a nonempty set. Let QX = {ν(α1,α2,...,αk) :

(α1, α2, . . . , αk) ∈ X k, k ∈ N} be a family of probability measures such that for
each k ∈ N and (α1, α2, . . . , αk) ∈ X k,

1. ν(α1,α2,...,αk) is a probability measure on (Rk,B(Rk)),

2. for all B1, B2, . . . , Bk ∈ B(R), 2 ≤ k <∞,

ν(α1,...,αk)(B1 × · · · ×Bk−1 × R) = ν(α1,...,αk−1)(B1 × · · · ×Bk−1),

3. and for any permutation (i1, i2, . . . , ik) of (1, 2, · · · , k),

ν(αi1 ,...,αik )(Bi1 × · · · ×Bik) = ν(α1,...,αk)(B1 × · · · ×Bk).

Then, there exists a probability space (Ω,F , P ) and a stochastic process XX =

{Xα : α ∈ X} on (Ω,F , P ) such that QX is the family of finite dimensional
distributions associated with XX .

Remark. In the proof of [AL06], Ω = RX , F = B(R)⊗X and the stochastic
process X = {Xα : α ∈ X} is a projection from RX to R. Provided that
the above conditions (usually called consistency conditions) hold, the probability
measure P build on (RX ,B(R)⊗X ) is unique.
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1.1.3 Measure Theory

We recall some basic results of measure theory. In the remainder of the chapter
we deal with random variables defined on the probability space (Ω,F ,P).

Theorem 1.1.3 (Monotone convergence theorem). Let (Xn)n∈N be an increasing
sequence of positive random variables and let X = limn→∞Xn a.s. Then

E[X] = lim
n→∞

E[Xn].

Theorem 1.1.4 (Dominated convergence theorem). Let (Xn)n∈N be a sequence
of random variables, let X = limn→∞Xn a.s. and |Xn| ≤ Z for every n ∈ N with
Z ∈ L1. Then

E[X] = lim
n→∞

E[Xn].

Theorem 1.1.5 (Differentiation under the integral sign I). Let I be an open
interval of R and f : I × Ω→ R be a function such that

(i) for every t ∈ I fixed, the function ω 7→ f(t, ω) is in L1 (then it is a stochastic
process indexed by I);

(ii) for every ω ∈ Ω fixed, the function t 7→ f(t, ω) is differentiable on I;

(iii) there exists a random variable Z ∈ L1 such that for every t ∈ I,∣∣∣∣∂f∂t (t, ·)
∣∣∣∣ ≤ Z(·) a.s.

Then the function
t 7→ E[f(t, ω)]

is differentiable on I, ∂
∂t
f(t, ·) ∈ L1 and

d

dt
E[f(t, ω)] = E

[
∂

∂t
f(t, ω)

]
.

We can weaken the third hypotheses even further:
(iii)′ for any compact subset K ⊂ I, there exists a nonnegative random

variable ZK ∈ L1 such that,

sup
t∈K

∣∣∣∣∂f∂t (t, ·)
∣∣∣∣ ≤ ZK(·) a.s.

Fubini and Tonnelli
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If the index set X of a stochastic process (Xα)α∈X is endowed with the σ-
algebra A we can ask if the map

X : X × Ω → R
(α, ω) 7→ Xα(ω)

is measurable with respect to the product σ-algebra A ⊗ F . In the affirmative
case we say that the stochastic process is measurable. The following theorem due
to Fubini and Tonnelli is used to interchange the order of integration of positive
stochastic processes.

Theorem 1.1.6. Let µ be a σ-finite measure on (X ,A) and (Xα)α∈X a
measurable stochastic process taking values in R+ then

1. The function

α 7→
∫
X
X(α, ω)P(dω)

is measurable with respect to A and

ω 7→
∫

Ω

X(α, ω)µ(dα)

is a random variable.

2. We have∫
X×Ω

X(α, ω)dµ⊗ P = E
[∫
X
X(α, ω)µ(dα)

]
=

∫
X
E [X(α, ω)]µ(dα).

1.2 Weak Convergence

In this section we introduce convergence in distribution as a particular case
of weak convergence. The latter will be useful to characterize probability
distributions.

Definition 1.2.1. For any probability measures µ, µ1, µ2, . . . on Rd we say that
µn converges weakly to µ and it is denoted by µn

w−→ µ if∫
fdµn →

∫
fdµ

for any bounded continuous function f on Rd.

7



We say that a sequence of random variables (Xn)n∈N defined on (Ω,F ,P)
converges to the random variable X in distribution if their distributions PXn
converges weakly to the distribution PX of X. More explicitly,

E[f(Xn)]→ E[f(X)]

for any bounded continuous function f on Rd. It is denoted by Xn
D−→ X.

In the study of the distributions of the random variables, the characteristic
functions are a very useful and easy to apply tool.

Definition 1.2.2. The characteristic function of a probability measure µ on
(Rd,B(Rd)) is the function µ̂ : Rd → C defined as

µ̂(ξ) =

∫
eiξ·xµ(dx), ξ ∈ Rd.

where · denotes the usual Euclidean product on Rd and i =
√
−1.

If X is a random variable on (Ω,F ,P) that takes values in Rd, the
characteristic function of X is the characteristic function of its probability
distribution:

φX(ξ) = P̂X(ξ) =

∫
eiξ·xPX(dx) = E[exp(iξ ·X)], ξ ∈ Rd.

Example 1.2.3. A Dirac measure on Rd is the probability measure δx defined
for a given x ∈ Rd and A ∈ B(Rd) by

δx(A) = 1A(x) =

{
0, x /∈ A;

1, x ∈ A.

If a random variable X has the Dirac measure δx as a distribution, then X = x

a.s. Its characteristic function is

E[eiξ·X ] = eiξ·x.

The following theorem is one of the most important tools in the text. It is
used to characterize distributions and establish convergence in distribution. It
appears as Theorem 5.3 of [Kal02].

Theorem 1.2.4. (Uniqueness and continuity, Levy) For any probability measures
µ, µ1, µ2, . . . on Rd, we have µn

w−→ µ if and only if µ̂n → µ̂ for every ξ ∈ Rd.

8



As a consequence, we can uniquely determine a probability measure µ on Rd

with its characteristic function µ̂ using the theorem with µn = ν, i.e., if µ̂ = ν̂

then µ = ν.
In the literature, characteristic functions also are called Fourier transform.

The Fourier transform of a random variable X and a measure µ are φX and µ̂,
respectively, both defined above. In this language, Theorem 1.2.4 tells us that
the Fourier transform is injective for measures. If two random variables have the
same Fourier transform then they have the same distribution.

For measures on Rd
+ = {(x1, . . . , xd) : xk ≥ 0, k ∈ J1, dK} (endowed with

B(Rd
+) = B(Rd) ∩ Rd

+) we can consider the Laplace transform µ̃, given by

µ̃(ξ) =

∫
e−ξ·xµ(dx), ξ ∈ Rd

+.

A corresponding statement of Theorem 1.2.4 holds for the Laplace transforms of
measures on Rd

+, then the Laplace transform is injective. Note that in this case
µn

w−→ µ if and only if ∫
fdµn →

∫
fdµ

for any bounded continuous function f on Rd
+. Thus, if Xn ≥ 0 for every n ∈ N

and X ≥ 0, the sequence (Xn)n converges in distribution to X if and only if

E[f(Xn)]→ E[f(X)],

for any bounded continuous function f on R+.

1.3 Independence

The notion of independence is an extremely useful tool in probability theory. It
makes calculations much easier. We start with independence of events.

We say that the events {A1, . . . , An} ⊂ F are independent if

P(Aλ1 ∩ · · · ∩ Aλk) = P(Aλ1) · · ·P(Aλk)

for all {λ1, . . . , λk} ⊂ J1, nK.

Definition 1.3.1. A collection of events {Aλ : λ ∈ Λ} ⊂ F is called independent
if for every finite subcollection {λ1, . . . , λk} ⊂ Λ, k ∈ N,

P(Aλ1 ∩ · · · ∩ Aλk) = P(Aλ1)P(Aλ2) · · ·P(Aλk).

9



More general, we can define independence for σ-algebras.

Definition 1.3.2. Let {Bn : n ∈ N} be sub-σ-algebras of F . We say that they
are independent if for every An ∈ Bn, the collection of event {A1, A2, . . . } is
independent.

We say that the random variables {Xn : n ∈ N} are independent if the
σ-algebras {σ(Xn) : n ∈ N} are independent, where σ(Xn) is the σ-algebra
generated by Xn, i.e.,

σ(Xn) = {X−1
n (A) : A ∈ B(Rd)}.

Independence of real random variables can be characterized by Fourier
transform.

Proposition 1.3.3. Let X1, . . . , Xn be real random variables, the following are
equivalent:

(i) X1, . . . , Xn are independent.

(ii) For all bounded measurable function fi : R→ R, i ∈ J1, nK,

E

[
n∏
i=1

fi(Xi)

]
=

n∏
i=1

E[fi(Xi)].

(iii) The characteristic function of X = (X1, . . . , Xn) is

φX(ξ1, . . . , ξn) =
n∏
i=1

φXi(ξi).

As a consequence we have

Proposition 1.3.4. If X and Y are independent real random variables then

φX+Y (ξ) = φX(ξ)φY (ξ).

The following result is handy to verifies that σ-algebras are independent. We
say that a nonempty family of subsets of Ω is a π-system if it is closed under
finite intersections.

Proposition 1.3.5. Let {Bn : n ∈ N} be σ-algebras of F . For every n ∈ N, let
Cn ⊂ Bn be a π-system such that σ(Cn) = Bn. Suppose that for every An ∈ Cn,
the collection {An : n ∈ N} is independent. Then, the σ-algebras {Bn : n ∈ N}
are independent.

10



Remark 1.3.6. The π-system

C =

{
k⋂
i=1

X−1
αi

(Bαi) : (α1, . . . , αk) ∈ X k, Bαi ∈ B(R), k ∈ N

}

generates the σ-algebra σ(Xα : α ∈ X ).

We say that the stochastic processes {Xn
α : α ∈ X}, n ∈ N, are independent

if the σ-algebras σ(Xn
α : α ∈ X ) are independent. By Remark 1.3.6, it is satisfied

if for every k ∈ N and (α1, . . . , αk) ∈ X k, the random vectors {Xn : n ∈ N} are
independent, where Xn = (Xn

α1
, . . . , Xn

αk
).

Given any sequence of sub-σ−algebras {Fn : n ∈ N} of F , we may introduce
the associated tail σ-algebra

T =
⋂
n∈N

σ(Fn+1,Fn+2, . . . ),

where σ(Fn+1,Fn+2, . . . ) is the σ-algebra generated by ∪k≥n+1Fk.

Theorem 1.3.7. Let {Fn : n ∈ N} be an independent collection of σ-fields. Then
if A ∈ T then P(A) = 1 or 0.

1.4 Martingales and Uniform Integrability

In this section we introduce two special stochastic processes with important limit
properties. Martingales are hugely studied by its applications. In order to define
them we need to introduce conditional expectation and filtration.

Definition 1.4.1 (Conditional expectation). Let X be an integrable random
variable and G ⊂ F be a sub-σ-algebra. A random variable Y that is measurable
with respect to G and

E[X1A] = E[Y 1A]

for all A ∈ G is called the conditional expectation of X given G and is written as
E[X|G].

We have some properties from the definition. Let X1 and X2 be integrable
random variables:

• If G = F , then
E[X1|G] = X1.

11



• Linearity. Let a ∈ R, then

E[aX1 +X2|G] = aE[X1|G] + E[X2|G].

• If X1 is measurable with respect to G, then

E[X1|G] = X1.

• If X1 is independent of X2, then

E[X1|σ(X2)] = E[X1].

Definition 1.4.2 (Filtration). A collection {Fn : n ∈ N} of sub-σ-algebras of F
is called a filtration if Fn ⊂ Fn+1 for all n ∈ N.

Let {Xn : n ∈ N} be a stochastic process. The σ−algebras

Fn = σ(X1, . . . , Xn)

form a filtration. It is called the natural filtration of the stochastic process.

Definition 1.4.3. We say that a stochastic process {Xn : n ∈ N} is a martingale
with respect to the filtration {Fn : n ∈ N} if

• Xn is integrable for every n ∈ N,

• Xn is measurable with respect to Fn for every n ∈ N and

• for all n ∈ N
E[Xn+1|Fn] = Xn.

Example 1.4.4 (Random walk). Let (Xn)n∈N be a sequence of independent real
random variables with the same distribution, namely

µ(±1) =
1

2
.

For every n ∈ N, we set

Sn =
n∑
k=1

Xk.

The stochastic process {Sn : n ∈ N} is called random walk. We will prove that
this process is a martingale with respect to the natural filtration. For every
n ∈ N,

12



• Sn is integrable:

E[|Sn|] ≤
n∑
k=1

E[|Xn|] = nE[|X1|] = n,

• it is clear that Sn is measurable with respect to Fn for every n ∈ N,

• and

E[Sn+1|σ(X1, ..., Xn)] = E[Sn +Xn+1|σ(X1, ..., Xn)]

= E[Sn|σ(X1, ..., Xn)] + E[Xn+1|σ(X1, ..., Xn)]

= Sn + E[Xn+1]

= Sn.

The following result is an example of the good properties that we have from
martingales.

Theorem 1.4.5. Let (Xn)n∈N a nonnegative martingale with respect to Fn such
that

E[X1] <∞.

Then (Xn)n∈N converges a.s. to a finite limit X and E[X] <∞.

Uniform integrability is considered as a generalization of dominated
convergence theorem because it allows us interchange limit and expectation.

Definition 1.4.6. A stochastic process {Xn : n ∈ N} is said to be uniformly
integrable if

lim
K→∞

(
sup
n∈N

E[|Xn|1{|Xn|≥K}]
)

= 0.

If we have a uniformly integrable sequence such that there is a random variable
X such that

lim
n→∞

Xn = X a.s.

Then
lim
n→∞

E[Xn] = E[X].

Starting from the definition it is a bit difficult verifying the condition of uniform
integrability. The next theorem give us a simple condition that implies this. It
is most often applied (and we will do) with p = 2.
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Theorem 1.4.7. Let (Xn)n∈N be a sequence of random variables such that

sup
n∈N

E[|Xn|p] <∞

for some p > 1. Then the sequence is uniformly integrable.
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Chapter 2

Gaussian Fields

Before introducing the reader to Gaussian Multiplicative Chaos,
we need to mention some facts about Gaussian random objects.
Most of them are related with the kernel: Existence, regularity of
trajectories, independence and distributions. This chapter is based
on [Jan97] and [LG16].

Throughout this chapter, we deal with random variables defined on a probability
space (Ω,F ,P). Some of the probability spaces should be chosen appropriately
in the existence results that follow.

2.1 Gaussian Random Variables

We say that a real random variable Z is standard Gaussian if its density with
respect to Lebesgue measure is

1√
2π

exp

(
−x

2

2

)
Its characteristic function is

E[eiξZ ] = e−ξ
2/2.

Using the fact that∫ +∞

−∞
e−x

2/2dx =
√

2π and
∫ +∞

0

xe−x
2/2dx = 1

15



and integrating by parts we get that Z belongs to Lp, for any positive integer p.
Since La ⊂ Lb for b < a, then Z belongs to all spaces Lp, 1 ≤ p <∞. Moreover,
we have

EZ = 0, var(Z) := E[Z2 − (E[Z])2] = 1.

Let σ > 0 and m ∈ R, a real random variable X is said to be Gaussian with
N (m,σ2)-distribution when it satisfies any of the following equivalent properties:

1. X D
= σZ +m, where Z is a standard Gaussian variable;

2. the distribution of X has density

1√
2πσ

exp

(
−(x−m)2

2σ2

)
;

3. the characteristic function of X is

E[eiξX ] = exp

(
imξ − σ2

2
ξ2

)
.

We have then
E[X] = m, var(X) = σ2.

The distribution N (m,σ2) is also called normal distribution. By convention,
when σ = 0 (degenerate case), N (m, 0) is simply the Dirac mass atm, Property 3
still holds in that case. The reason is that the sequence (Xn)n∈N with distribution
N (m,σ2

n) converge in distribution to X = m a.s. when σn → 0. In fact,

lim
n→∞

exp

(
imξ − σ2

2
ξ2

)
= exp(imξ),

so this follows from Theorem 1.2.4.

Proposition 2.1.1. Suppose that X follows the N (m,σ2)-distribution, X ′

follows the N (m′, σ′2)-distribution and they are independent. Then X+X ′ follows
the N (m+m′, σ2 + σ′2)-distribution.

Proof. This is a straightforward consequence of Proposition 1.3.4:

φX+X′(ξ) = φX(ξ)φX′(ξ) = E[eiξX ]E[eiξX
′
]

= exp

(
i(m+m′)ξ − σ2 + σ′2

2
ξ2

)
.
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A random vector X = (X1, . . . , Xd) is said to be Gaussian if for all v =

(v1, . . . , vd) ∈ Rd, the variable

Z := v ·X = vtX = v1X1 + · · · vdXd (2.1)

is a Gaussian random variable.
Remark. When we use matrix algebra, the vectors are in Rd×1

Example 2.1.2. If X1, · · · , Xd are independent Gaussian variables, Proposition
2.1.1 shows that the random vector X = (X1, . . . , Xd) is a Gaussian vector.

Example 2.1.3. If X1, · · · , Xd are independent Gaussian variables, the random
vector X = (X1, . . . , Xd) is a Gaussian vector thanks to Proposition 2.1.1.

Note that if X = (X1, . . . , Xd) is a Gaussian vector then Xi is a Gaussian
variable for every i ∈ J1, dK. The converse is not true.
Let X be a Gaussian vector with values in Rd. We have for every v ∈ Rd,

E[Z] = E[v ·X] = v ·m,

var(Z) = var(v ·X) =
d∑

j,k=1

vjvkΣ(j, k) = vtΣv,

where m = (EX1, . . . ,EXd) and Σ(j, k) = cov(Xj, Xk) := E[XjXk]. Note that
var(Z) is nonnegative, it follows that for every v ∈ Rd.

vtΣv ≥ 0.

In this case, we say that the matrix Σ is positive semi-definite. Since Z follows
the N (v ·m, vtΣv)−distribution, we can easily obtain the characteristic function
of X:

E[exp(iξ ·X)] = exp(iξ ·m− 1

2
ξtΣξ).

As a result of Proposition 1.2.4 we can characterize the distribution of any
Gaussian vector with the vector m and the matrix Σ. We denote by N (m,Σ)

the distribution of this random vector. In this case, the Gaussian variables do
not always have density.

Proposition 2.1.4. A random vector is Gaussian if and only if its characteristic
function is

exp

(
iξ ·m− 1

2
ξtΣξ

)
,
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where m ∈ Rd and Σ is a symmetric and positive semi-definite matrix. This
Gaussian vector has a density if and only if the matrix Σ is nondegenerate. Its
density is given by

ϕ(v) = (2π)−d/2(det(Σ))−1/2 exp

(
−1

2
(v −m)tΣ−1(v −m)

)
, v ∈ Rd.

Remark 2.1.5. If a matrix Σ is symmetric and for all v ∈ Rd − {0}

vtΣv > 0,

where 0 = {0, 0, . . . , 0}, then it is nondegenerate because its eigenvalues are real
and greater that zero. If a symmetric matrix Σ′ is positive semi-definite and
degenerate we can approximate it by nondegenerate matrices. In fact, we can
consider Σε = Σ′ + εI where ε > 0 and I is the identity matrix. They are
symmetric and for every v 6= 0,

vtΣεv = vt(Σ′ + εI)v = vtΣ′v + ε ‖v‖2 > 0.

Now, we introduce a very useful Gaussian integration by parts. Let X be a
Gaussian variable with mean zero and variance σ2, then its density is

ϕ(x) =
1√
2πσ

exp

(
− x2

2σ2

)
.

Note that
σ2ϕ′(x) = −ϕ(x)x.

Hence given a continuously differentiable function F : R → R, we can integrate
by parts

E[XF (X)] =

∫
xF (x)ϕ(x)dx

= −σ2

∫
F (x)ϕ′(x)dx

= −σ2F (x)ϕ(x)
∣∣+∞
−∞ + σ2

∫
F ′(x)ϕ(x)dx

= σ2E[F ′(X)]

Therefore,
E[XF (X)] = E[X2]E[F ′(X)]. (2.2)

These computations are possible if
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1. XF (X) and F ′(X) are integrable and

2. limx→±∞ F (x)ϕ(x) = 0.

The identity (2.2) can be generalized to d dimensions. In this case second
condition is written as

lim
‖x‖→∞

F (x)ϕ(x) = 0.

Lemma 2.1.6. Let X = (X1, . . . , Xd) be a centred Gaussian vector (every
Gaussian coordinate has mean zero) and let F : Rd → R be a continuous
differentiable function satisfying the condition of computation 1 and 2. Then

E[XiF (X)] = E[XiX] · E[∇F (X)] =
d∑
j=1

E[XiXj]E
[
∂

∂xj
F (X)

]
.

for every i ∈ J1, dK.

Proof. Assume first that X has nondegenerate covariance matrix Σ. Then, its
density is

ϕ(v) = (2π)−d/2(det(Σ))−1/2 exp

(
−1

2
vtΣ−1v

)
.

Note that
∇ϕ(v) = −ϕ(v)Σ−1v.

Then Σ∇ϕ(v) = −ϕ(v)v and integrating by parts

E[XF (X)] =

∫
vF (v)ϕ(v)dv

= −
∫
F (v)Σ∇ϕ(v)dv

= Σ

∫
∇F (v)ϕ(v)dv

= ΣE[∇F (X)].

To see the general case, replace Σ by the nondegenerate Σ + εnI and take limit
εn ↓ 0. We can consider an independent Gaussian vector Y with covariance
matrix I (see Example 2.6.5) and Yn :=

√
εnY . Then X + Yn has Σ + εnI as a

covariance matrix and

E[(X + Yn)F (X + Yn)] = (Σ + εnI)E[∇F (X + Yn)].
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Since every component of Yn converges to 0 a.s., we have by dominated
convergence theorem,

E[XF (X)] = ΣE[∇F (X)].

As a consequence, with the same properties of F in Lemma 2.1.6, we have
the following result.

Corollary 2.1.7. Let Z = (Y,X1, . . . , Xd) be a centred Gaussian vector and
X = (X1, . . . , Xd), then

E[Y F (X)] = E[Y X] · E[∇F (X)] =
d∑
i=1

E[Y Xi]E
[
∂F

∂xi
(X)

]
,

provided that Y F (X) is integrable.

Proof. We consider the function F̃ : Rd+1 → R defined by

F̃ (y, x1, . . . , xd) = F (x1, . . . , xd).

It follows from the previous lemma that,

E[ZF̃ (Z)] = ΣE[∇F̃ (Z)].

In the first coordinate of the vector we have

E[Y F (X)] = E[Y F̃ (Z)] = E[Y 2]E

[
∂F̃

∂y
(Z)

]
+

d∑
i=1

E[Y Xi]E

[
∂F̃

∂xi
(Z)

]

= E[Y 2]E
[
∂F

∂y
(X)

]
+

d∑
i=1

E[Y Xi]E
[
∂F

∂xi
(X)

]

= 0 +
d∑
i=1

E[Y Xi]E
[
∂F

∂xi
(X)

]
.

Then

E[Y (F (X))] =
d∑
i=1

E[Y Xi]E
[
∂F

∂xi
(X)

]
.
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2.2 Gaussian Fields

Given X an arbitrary set, we say that the stochastic process X = (X(x))x∈X

is a Gaussian field indexed by X if, for every d ∈ N and (x1, . . . , xd) ∈ X d,
(X(x1), . . . , X(xd)) is a Gaussian vector. In the literature, Gaussian fields indexed
by subsets of R are usually called Gaussian processes.

The important thing to know about Gaussian fields is that their distribution
is completely determined by their mean function m : x → E[Xx] and covariance
(also called covariance kernel or simply kernel) K(x, y) = cov(X(x), X(y)).

Definition 2.2.1. A function Σ : X 2 → R is called positive definite if for any
d ∈ N and (v1, . . . , vd) ∈ Rd,

d∑
j,k=1

vjvkΣ(xj, xk) ≥ 0. (2.3)

Since the left-hand side in (2.3) corresponds to the variance of the variable
Z in (2.1) (with Xj = X(xj)), the covariance of a Gaussian field is positive
definite. Moreover, it is easy to see that the covariance is symmetric. The
following reciprocal statement also holds:

Theorem 2.2.2. (Existence of Gaussian Fields) Given m : X → R arbitrary,
Σ : X 2 → R positive definite and symmetric, there exists a unique distribution P
on (RX ,B(R)⊗X ), under which the coordinate projections (X(x))x∈X constitute a
Gaussian field with mean function m and covariance K.

Proof. This is a consequence of the Daniell-Kolmogorov theorem (1.1.2). We
consider

QX = {νx = N (mx,Σx) : d ≥ 1, x = (x1, . . . , xd) ∈ X d},

where mx = (m(x1), . . . ,m(xd)) and Σx = (Σ(xj, xk))1≤j,k≤d. The three
conditions have to be fulfilled:

1. νx is a probability measure on (Rd,B(Rd)) for every x ∈ X d.

2. Let A = A1 × · · · × Ad where Ai ∈ B(R) for every i ∈ J1, dK, x′ =

(x1, . . . , xd+1) ∈ X d+1, x = (x1, . . . , xd) and π : Rd+1 → Rd be the function
that projects into the first d coordinates,

π(x′) = x.
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We denote by νx′π−1 the measure on Rd defined by

νx′π
−1(A) := νx′(A× R).

for every A ∈ B(Rd). Then

νx′(A× R) =

∫
Rd+1

1A×R(v)νx′(dv)

=

∫
Rd+1

1A(π(v))νx′(dv)

=

∫
Rd

1A(w)(νx′π
−1)(dw).

The last equality is obtained by the change of variable formula. Hence, it
is enough to show that νx′π−1 = νx. Its characteristic function is∫

Rd
exp(iξ · w)(νx′π

−1)(dw) =

∫
Rd+1

exp(iξ · π(v))νx′(dv)

=

∫
Rd+1

exp(iξ′ · v)νx′(dv)

= exp

(
iξ′ ·mx′ −

1

2
(ξ′)tΣx′ξ

′
)

= exp

(
iξ ·mx −

1

2
ξtΣxξ

)
,

where ξ′ ∈ π−1(ξ) and its last coordinate is 0.

3. It is analogous to the previous one. Let g : Rd → Rd be a permutation of
coordinates g(v1, . . . , vd) = (vj1 , . . . , vjd) and y = (xj1 , . . . , xjd). Then

νy(Bj1 × · · · ×Bjd) =

∫
Rd

1Bj1×···×Bjd (v)νy(dv)

=

∫
Rd

1Bj1×···×Bjd (g(g−1(v)))νy(dv)

=

∫
Rd

1B1×···×Bd(g
−1(v))νy(dv)

=

∫
Rd

1B1×···×Bd(w)(νyg)(dw).
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Hence, it is enough to show that νyg = νx, its characteristic function is∫
Rd

exp(iξ · w)(νyg)(dw) =

∫
Rd

exp(iξ · g−1(v))νy(dv)

=

∫
Rd

exp(ig(ξ) · v)νy(dv)

= exp

(
ig(ξ) ·my −

1

2
(g(ξ))tΣyg(ξ)

)
= exp

(
iξ ·mx −

1

2
ξtΣxξ

)
.

The beautiful thing about this is that it lets us construct Gaussian fields with
any prescribed mean function and positive definite covariance kernel. Now, we are
going to choose some special kernels. For the three examples (x1, . . . , xd) ∈ X d

and v = (v1, . . . , vd) ∈ Rd. These are zero-mean Gaussian fields also called
centered.

Example 2.2.3. (Random plane). X = Rd, m(x) = 0 and K(x, y) = x · y. This
satisfies the covariance kernel conditions,

d∑
i,j=1

vivjxi · xj =

∣∣∣∣∣
d∑
i=1

vixi

∣∣∣∣∣
2

≥ 0.

Since X(x) is Gaussian for every x ∈ Rd, it follows N (0, ‖x‖)-distribution. If we
consider Z = (Z1, . . . , Zd) with independent coordinates which follow N (0, 1)-
distribution, it is a Gaussian vector with distribution N (0, Id). Then for every
x ∈ Rd, the random variable Z ·x is Gaussian with the same distribution of X(x),
i.e., X(x)

D
= Z · x. For each sample we have a plane in Rd+1 that passes through

the origin and has (Z1, . . . , Zd,−1) as a normal vector.

Example 2.2.4. (Standard Brownian Motion). X = [0,∞), m(x) = 0 and
K(x, y) = min{x, y}. This satisfies the covariance kernel conditions,

d∑
i,j=1

vivj min{xi, xj} ≥ min
i∈J1,dK

{xi}

(
d∑
i=1

vi

)2

≥ 0.

Brownian motion is by far the most known stochastic process for its many
applications.
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Example 2.2.5. (Square Exponential). X = Rd, m(x) = 0 and K(x, y) =

exp(−α|x− y|2), where α is a positive real number. This process is heavily used
in machine learning and regression (prediction). This satisfies the covariance
kernel conditions,

d∑
i,j=1

vivje
−α|xi−xj |2 ≥ exp

(
min

i,j∈J1,dK
{−α|xi − xj|2}

)( d∑
i=1

vi

)2

≥ 0.

Note that if X is a centred Gaussian vector and X
D
= Y , then Y is a

centred Gaussian vector with the same covariance kernel, it is an application
of Theorem 1.2.4. It can be extended to Gaussian fields.

Lemma 2.2.6. Let X = (X(x))x∈X be a centred Gaussian process with covariance
K and Y be a stochastic process with the same distribution, then Y is a centred
Gaussian field with the same covariance kernel.

Proof. Let d ∈ N and (x1, . . . , xd) ∈ X d, then

(X(x1), . . . , X(xd))
D
= (Y (x1), . . . , Y (xd)).

It follows that (Y (x1), . . . , Y (xd)) is a Gaussian vector. By definition, Y is a
Gaussian field. Since the kernel of Y and X coincide in {x1, . . . , xd}2, we can
choose indexes appropriately and have

E[Y (x)] = 0

and
E[Y (x)Y (y)] = K(x, y)

for every x, y ∈ X . This completes the proof of the lemma.

2.3 Gaussian Spaces

For the sake of extensive study on Gaussian random objects, we add this section.
Here we will see that centred Gaussian fields may also be viewed as a subset of a
Hilbert space.

A Gaussian linear space is a real linear space of random variables which are
centered Gaussian. This space is a linear subspace of L2 with the norm

‖X‖2 =

(∫
|X|2dP

)1/2
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and inner product

〈X, Y 〉 =

∫
XY dP = E[XY ]

of L2 on it. Thus, ifX1, . . . , Xn belong to a Gaussian linear space G and v1, . . . , vn

are arbitrary real numbers,
∑n

i=1 viXi ∈ G, and then
∑n

i=1 viXi ∈ G is a centred
Gaussian variable.

A Gaussian Hilbert space is a Gaussian linear space which is complete with
to the norm ‖·‖2 (see Definition 3.1.11), i.e., a closed subspace of L2 consisting
of centred Gaussian random variables. A Gaussian linear space can always be
completed to a Gaussian Hilbert space.

Theorem 2.3.1. If G ⊂ L2 is a Gaussian linear space, then its closure G in L2

is a Gaussian Hilbert space.

Proof. Suppose that X ∈ G. We have to show that X has centered normal
distribution. There exists a sequence Xn ∈ G such that Xn → X in L2. Let
σ2 = ‖X‖2

2 = E[X2] and σ2
n = ‖Xn‖2

2. Then

σ2
n = E[X2

n]→ E[X2] = σ2

as n → ∞. Convergence in L2 imply convergence in distribution (see
Remark 2.5.2). Then for every ξ ∈ R,

E[eiξX ] = lim
n→∞

E[eiξXn ] = lim
n→∞

exp
(
−σn

2
ξ2
)

= exp
(
−σ

2
ξ2
)
.

The result then follows from Theorem 1.2.4.

We give some important examples of Gaussian spaces.

Example 2.3.2. Let X be any nondegenerate, centred Gaussian variable. Then
{vX : v ∈ R} is one-dimensional Gaussian Hilbert space.

Example 2.3.3. Let X = (X1, . . . , Xd) be a centred Gaussian vector. Then
their linear span {

d∑
i=1

viXi : vi ∈ R

}
is a finite-dimensional Gaussian Hilbert space.
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Example 2.3.4. Let Z1, . . . , Zd be independent real Gaussian variables. Then
their linear span {

d∑
i=1

viZi : vi ∈ R

}
is a finite-dimensional Gaussian Hilbert space. In this case {Z1, . . . , Zd} is an
orthogonal base.

Example 2.3.5. More generally, if X = (X(x))x∈X is a centred Gaussian field,
then the linear span of {X(x) : x ∈ X} is a Gaussian linear space, and by
Theorem 2.3.1, the closed linear span of {X(x) : x ∈ X} in L2 is a Gaussian
Hilbert space.

2.4 Regularity of Trajectories

Definition 2.4.1. Let (X(x))x∈X be a stochastic process. The sample paths of
X are the mappings

X → R
x 7→ X(x)(ω)

obtained by fixing ω ∈ Ω. The sample paths of X thus form a family of mappings
from X into R indexed by ω ∈ Ω.

From now on the index set X will be a metric space (T, ρ). Thus, it makes
sense to talk about continuity or measurability of sample paths. In this section, we
will show that by making some small modifications we can obtain those properties.

Definition 2.4.2. Let (X(t))t∈T and (X̃(t))t∈T be two stochastic processes. We
say that X̃ is a modification of X (also we can say that X̃ is a version of X) if

∀t ∈ T, P{X(t) = X̃(t)} = 1.

Modifications conserve the distribution.

Proposition 2.4.3. Let X̃ be a version of X, then X̃ and X has the same
distribution.

Proof. Let d ∈ N and (x1, x2, . . . , xd) ∈ X d, consider V = (X(x1), . . . , X(Xd))

and Ṽ = (X̃(x1), . . . , X̃(Xd)). We have

{V = Ṽ } = {X(x1) = X̃(x1), . . . , X(xd) = X̃(xd)} =
d⋂
j=1

{X(xj) = X̃(xj)},
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then P(V = Ṽ ) = 1. Now, for every A ∈ B(Rd),

P(V ∈ A) = P(V ∈ A, V = Ṽ ) + P(V ∈ A, V 6= Ṽ )

= P(Ṽ ∈ A, V = Ṽ ) + P(Ṽ ∈ A, V 6= Ṽ )

= P(Ṽ ∈ A).

The equality P(Ṽ ∈ A, V 6= Ṽ ) = P(V ∈ A, V 6= Ṽ ) = 0 holds for every
A ∈ B(Rd). It follows that V and Ṽ have the same distribution.

The following result is a consequence of the previous proposition and
Lemma 2.2.6.

Corollary 2.4.4. Let X be a centred Gaussian field with covariance kernel K,
then a modification X̃ is also a centred Gaussian field with covariance kernel K.

Particularly, if X is a random plane or a standard Brownian motion, then X̃
is also a random plane or a standard Brownian motion, respectively. However,
sample paths of X̃ might have quite different properties than the sample paths
of X.

Example 2.4.5. Let ([0, 1],B([0, 1), λ) be a probability space where λ is the
Lebesgue measure on [0, 1] and X = [0, 1]. Let us consider D the diagonal of
[0, 1]× [0, 1] and we define

X(x, ω) = 0 ∀(x, ω), X̃(x, ω) = 1D(x, ω).

We have X(x, ω) = 0 for ever x, ω ∈ [0, 1] and X̃(x, ω) = 0 for ω 6= x, 1 for
ω = x. We have therefore X(x, ω) = X̃(x, ω) for all ω 6= x that it to say a.s.
because λ(D) = 0. Then X and X̃ are version of the same process. However, the
trajectories of X are continuous while those of X̃ are not.

The following theorem given by Kolmogorov and Chentsov provides a widely
used criterion for establishing when a stochastic process has a version whose
sample paths are continuous. It applies to processes indexed by parameters that
takes values in Euclidean spaces.

Theorem 2.4.6. (Kolmogorov-Chentsov) Let X be a stochastic process whose
index set is a compact D ⊂ Rd such that exists a, b, c > 0 verifying for every
t, s ∈ D:

E[|X(t)−X(s)|a] ≤ c|t− s|1+b.

Then exists a continuous version of X.
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Example 2.4.7. Let us consider the Brownian motion B = (B(x))x∈[0,1]. If
x < y, the random variable B(y)−B(x) is distributed according to N (0, y − x).
In fact, B(y)−B(x) is a centred Gaussian variable and

var(B(y)−B(x)) = y − 2(min{x, y}) + x = y − x.

Thus B(y) − B(x)
D
=
√
y − xZ, where Z is a standard Gaussian variable.

Consequently, for every a > 0,

E[|B(y)−B(x)|a] = (y − x)a/2E[|Z|a] = Ca(y − x)a/2

where Ca = E[|Z|a] < ∞. Taking a > 2, we can apply Theorem 2.4.6 with
b = a

2
− 1. It follows that B has a modification which has continuous sample

paths.

In Section 4.2 we will see, under more conditions on the metric space T , we
can get a measurable modification of Gaussian fields with continuous kernel.

2.5 Convergence of Gaussian Processes

There are several different notions of continuity for stochastic processes; the three
most important are continuity in probability, in L2, and almost surely.

1. Continuity in probability:

lim
s→t

P{|X(t)−X(s)| > ε} = 0, for each t ∈ T and each ε > 0.

For t fixed we say that X(s) converges in probability to X(t). It is denoted
by X(s)

P−→ X(t).

2. Continuity in mean square, or L2 continuity:

lim
s→t

E[|X(t)−X(s)|2] = 0, for each t ∈ T.

For t fixed we say that X(s) converges in L2 to X(t). It is denoted by
X(s)

L2

−→ X(t).

3. Continuity with probability one, or almost sure

P{lim
s→t
|X(t)−X(s)| = 0, for all t ∈ T} = 1.

For t fixed we say that X(s) converges almost sure to X(t). It is denoted
by X(s)

a.s.−−→ X(t).
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The limit of functions f : T → R can be obtained in a discrete way

lim
s→t

f(t) = L⇐⇒ For every tn → t : lim
n→∞

f(tn) = L.

As a consequence we obtain a discrete theory which is easier to study. The
stochastic process (a sequence) {Xn : n ∈ N} converges to X

1. in probability if

lim
n→∞

P{|Xn −X| > ε} = 0, and each ε > 0.

It is denoted by Xn
P−→ X;

2. in L2 if
lim
n→∞

E[|Xn −X|2] = 0, .

It is denoted by Xn
L2

−→ X;

3. with probability one, or almost sure if

P
{

lim
n→∞

|Xn −X| = 0
}

= 1.

It is denoted by Xn
a.s.−−→ X.

These modes of convergence are related

Proposition 2.5.1. If a sequence (Xn)n∈N converges a.s. or in L2 to X, then
it converges in probability. Conversely, if a sequence (Xn)n∈N converges in
probability to X, there exists a subsequence (Xnk)k∈N which converges a.s. to
the random variable X.

Remark 2.5.2. Finally, we introduced convergence in distribution in Section 1.2,
it is the weakest mode of convergence in the sense that convergence in probability
implies convergence in distribution.

For Gaussian fields defined on metric spaces, continuity in probability and in
L2 are equivalent; moreover they can easily be characterized using the covariance
kernel.

Theorem 2.5.3. Let (X(t))t∈T be a centred Gaussian field defined on a metric
space T . Then the following are equivalent.
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(i) t 7→ X(t) is continuous in probability.

(ii) t 7→ X(t) is continuous in L2.

(iii) The covariance kernel K(s, t) is a continuous function on T × T .

Proof. (i) ⇒ (ii) Let t ∈ T and (tn)n∈N be a sequence in T such that tn → t. We
want to prove

X(tn)
L2

−→ X(t).

By hypothesis
X(tn)

P−→ X(t),

then Yn = X(tn) − X(t)
P−→ 0. The random variable Yn is Gaussian and follows

the N (0, σn)-distribution. Since Yn
D−→ 0, by Theorem 1.2.4

exp

(
−ξ

2σ2
n

2

)
= φYn(ξ)→ φ0(ξ) = exp

(
−ξ

202

2

)
= 1.

With ξ = 1 we have σn → 0. Then

E[|X(tn)−X(t)|2] = E[Y 2
n ] = σ2

n → 0.

(i) ⇐ (ii) It follows from Proposition 2.5.1.
(ii) ⇒ (iii) By definition K(t, s) = E[X(t)X(s)], it is a inner product in L2,

then it is continuous in L2 × L2, i.e., if Xn
L2

−→ X and Yn
L2

−→ Y we have

lim
n→∞

E[XnYn] = E[XY ].

Let (tn)n∈N and (sn)n∈N be sequences in T such that tn → t and sn → s. Since
X(tn)

L2

−→ X(t) and Y (sn)
L2

−→ Y (s), we have

lim
n→∞

K(tn, sn) = lim
n

E[X(tn)Y (sn)] = E[X(t)Y (s)] = K(t, s).

(ii) ⇐ (iii) Since

E[|X(t)−X(s)|2] = K(t, t)− 2K(t, s) +K(s, s),

it follows from continuity of K(t, t) in T × T .
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2.6 Independence of Gaussian Fields

Let K(s, t) be a real function, positive definite and symmetric defined on T × T .
From now on we will call this functions as kernel, then by Theorem 2.2.2
there exists a probability space and a centred Gaussian field defined on it with
covariance kernel K1. If I have another kernel K2 we can get a centred Gaussian
field defined in another probability space, not necessarily the same. In this
section we define a probability space where both Gaussian fields exist and they
are independent. This idea will be extended for a countable collections of kernels.

Proposition 2.6.1. Let K1 and K2 be kernels defined on T×T then there exists a
probability space and independent centred Gaussian fields (X(t))t∈T and (Y (t))t∈T

defined on it with covariance kernel K1 and K2, respectively.

Proof. Let (Ω1,F1,P1) and (Ω2,F2,P2) be the spaces obtained by Theorem 2.2.2
and the Gaussian fields X ′ = (X ′(t))t∈T and Y ′ = (Y ′(t))t∈T with covariance
function K1 and K2, respectively, and

(Ω1 × Ω2,F1 ⊗F2,P1 ⊗ P2)

be the product space and πi : Ω1 × Ω2 → Ωi the projections on the i−th
coordinate, i = 1, 2. We claim that the process X = (X(t))t∈T , where

X(t) = X ′(t) ◦ π1,

defined on the product space is a Gaussian field with K1 as covariance kernel.
According to Lemma 2.2 we have to proof that X and X ′ have the same
distribution. Let d ∈ N and (t1, . . . , td) ∈ T d, then the characteristic function of
V = (X(t1), . . . , X(td)) is∫

Ω1×Ω2

exp

(
i

d∑
i=1

ξiX(ti)(ω1, ω2)

)
dP1 ⊗ P2

=

∫
Ω1×Ω2

exp

(
i

d∑
i=1

ξiX
′(ti)(ω1)

)
dP1 ⊗ P2

=

∫
Ω1

exp

(
i

d∑
i=1

ξiX
′(ti)(ω1)

)
dP1.

The latter is the characteristic function of V ′ = (X ′(t1), . . . , X ′(td)). Analogously,
we define Y = (Y (t))t∈T . Let us see that they are independent. Let W =
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(Y (t1), . . . , Y (td)) and W ′ = (Y ′(t1), . . . , Y ′(td)). Note that

V = V ′ ◦ π1 and W = W ′ ◦ π2.

Then for every A,B ∈ B(Rd),

P1 ⊗ P2(V ∈ A,W ∈ B) = P1 ⊗ P2((V ′)−1(A)× Ω2 ∩ Ω1 × (W ′)−1(B))

= P1 ⊗ P2((V ′)−1(A)× (W ′)−1(B))

= P1(V ′ ∈ A)P2(W ′ ∈ B)

= P1 ⊗ P2(V ∈ A) · P1 ⊗ P2(W ∈ B).

The last equation is due to the equality of distributions.

Example 2.6.2. We can repeat the procedure in a finite case. Let Σ1 and
Σ2 be symmetric and positive semi-definite matrices Rd×d. Then there exists a
probability space and independent centred Gaussian vectors X and Y defined on
it with covariance matrix Σ1 and Σ2, respectively. In this case is not necessary
Daniell-Kolmogorov theorem.

Example 2.6.3. Let K1 be a kernel and σ a positive number. Note that if we set
K2(s, t) = σ, it is a kernel. Thus, we can get a centred Gaussian field (X(t))t∈T

and a Gaussian variable σZ where Z is a standard Gaussian variable such that
for every d ∈ N and (t1, . . . , td) ∈ T d, the variables (X(t1), . . . , X(td)) and Z are
independent.

We repeat the procedure for a countable collection of kernels.

Theorem 2.6.4. Let (Kn)n∈N be a sequence of kernels defined on T × T , then
there exists a probability space and independent centred Gaussian fields (Xn(t))t∈T

defined on it with covariance kernel Kn, respectively for every n ∈ N.

Proof. For every n ∈ N, let (X ′n(t))t∈T be a centred Gaussian field with covariance
kernel Kn defined on (Ωn,Fn,Pn),

(Ω,F ,P) =

(∏
n∈N

Ωn,
⊗
n∈N

Fn,
⊗
n∈N

Pn

)
,

the product space and πn(ω) = ωn are projections. We consider the stochastic
processes

{Xn(t) = X ′n(t) ◦ πn, t ∈ T : n ∈ N}
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defined on the product space. Let d ∈ N and (t1, . . . , td) ∈ T d, the characteristic
function of Vn = (Xn(t1), . . . , Xn(td)) is∫

Ω

exp

(
i

d∑
i=1

ξiXn(ti)(ω)

)
dP =

∫
Ω

exp

(
i

d∑
i=1

ξiX
′
n(ti)(ωn)

)
dP

=

∫
Ωn

exp

(
i

d∑
i=1

ξiX
′
n(ti)(ωn)

)
dPn.

Then (Xn(t))t∈T and (X ′n(t))t∈T have the same distribution. To prove that the
collection of stochastic processes {Xn(t) : n ∈ N} is independent we need to prove
that the collection {Vn : n ∈ N} is independent (see Remark 1.3.6), i.e., that the
collection of σ-algebras {V −1

n (An) : n ∈ N, An ∈ B(Rd)} is independent. For a
finite collection {n1, . . . , nk} ⊂ N we set

V ′ni = (X ′ni(t1), . . . , X ′ni(td)) = Vni ◦ πni

for i ∈ J1, kK. Then,

P(Vn1 ∈ An1 , . . . Vnk ∈ Ank) = P((V ′n1
)−1(An1)× · · · × (V ′nk)

−1(Ank))

= Pn1(V
′
n1
∈ An1)× · · · × Pnk(V

′
nk
∈ Ank)

= P(Vn1 ∈ An1)× · · · × P(Vnk ∈ Ank).

In the first equation the product is in ⊗nFn, complete the rest with Ωn for
n ∈ N \ {n1, . . . , nk}.

Example 2.6.5. Again as Example 2.6.2. Let (Σn)n∈N be a sequence of
symmetric and positive semi-definite matrices Rd×d. Then there exists a
probability space and independent centred Gaussian vectors (Xn)n∈N defined on
it with covariance matrix Σn, respectively for every n ∈ N.
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Chapter 3

Random Measures

A Gaussian Multiplicative Chaos is formally defined as a random
measure. We develop random theory on the space of Radon
measures defined on a Polish metric space, then we define random
measures and some basic notions of them. This chapter is based on
[DVJ08a] and [DVJ08b].

3.1 Measures on Metric Spaces

The subject of this section is measure theory on metric spaces. We denote the
space by T and its metric by ρ. Let B(T ) be the Borel σ−algebra, the one
generated by the open sets; its elements are the Borel sets. Every measure on T
in this text is a nonnegative, countably additive set function defined on B(T ).

A metric space is called locally compact if for each point x ∈ T it has a
compact neighborhood, i.e., there exists an open set U and a compact K included
in T , such that x ∈ U ⊂ K.

Let E ∈ B(T ). The measure µ is called outer regular on E if

µ(E) = inf{µ(U) : U ⊃ E,U open}.

Similarly, µ is named inner regular on E if

µ(E) = sup{µ(K) : K ⊂ E,K compact},

and locally finite if every point of T has a neighborhood U for which µ(U) is
finite. This property can be characterized with compact subsets.
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Lemma 3.1.1. On locally compact metric spaces, locally finiteness is equivalent
to finiteness on compact subsets.

Proof. Let µ be a locally finite measure and K ⊂ T compact. For every x ∈ K,
we have an open set Ux such that µ(Ux) < ∞. Since {Ux : x ∈ K} is an open
cover for K, there is a finite subcover {Uxi : i ∈ J1, nK, xi ∈ K} such that

K ⊂
n⋃
i=1

Uxi ,

then

µ(K) ≤ µ

(
n⋃
i=1

Uxi

)
≤

n∑
i=1

µ(Uxi) <∞.

Conversely, for every x ∈ T , there is an open set U and a compact set K, such
that x ∈ U ⊂ K. Since µ(K) <∞, then µ(U) <∞.

If µ is outer regular and inner regular on all Borel sets, µ is called regular.

Definition 3.1.2. A measure µ on a locally compact metric space is called Radon
measure if it is locally finite and regular.

A metric space is called separable if it contains a countable dense subset i.e.
there exists a set D = {xn ∈ T : n ∈ N} such that D = T. When T is locally
compact and separable there exists an increasing sequence (Kn)n∈N of compact
subsets of T such that T =

⋃
n∈NKn. This space is σ-compact.

Definition 3.1.3. A metric space is said to be σ-compact if it is union of
countable many compact subsets.

As a consequence, in locally compact separable metric spaces.

• It can be obtained a special increasing sequence of compacts which contain
all compacts (see Proposition 3.1.8).

• A Radon measure is σ-finite.

• Every closed set F is σ-compact, i.e., it can be written as a countable union
of compact sets. In fact,

F =
⋃
n∈N

F ∩Kn.
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• Every open set is σ-compact, i.e., it can be written as a countable union of
compact sets. In fact, consider

Fn =

{
x ∈ T : ρ(x, F ) <

1

n

}
,

where ρ(x, F ) = inf{d(x, y) : y ∈ F}. Then

F =
⋂
n∈N

Fn.

Note that Fn is an open set. Thus, by Morgan’s law every open set is a
countable union of σ-compact sets.

An important property of these spaces is the ease of finding regular measures.
The next result is a special case of Theorem 2.18 of [Rud87] recalling here only
what we need.

Theorem 3.1.4. Let T be a locally compact separable metric space and µ a
measure on T such that µ(K) <∞ for every compact set. Then µ is regular.

Remark 3.1.5. Probability measures defined on Polish metric spaces (see
Definition 3.1.13) are regular (see [Bil99]).

As a consequence of the previous theorem, a measure µ on T is a Radon
measure if and only if µ is finite on compact sets.

Example 3.1.6. Dirac measure is a Radon measure on locally compact separable
metric spaces. For every compact set K, we have δa(K) = 1 or 0, for some a in
the space. In general, finite measures in these spaces are Radon measures.

Example 3.1.7. Lebesgue measure λ on Rd is a Radon measure. Since every
closed ball is compact, this space is locally compact. Rd is separable, and for
every compact K

λ(K) <∞.

Proposition 3.1.8. Let T be a locally compact separable metric space. Then
there exists an increasing sequence (Kn)n∈N of compact subsets of T such that
Kn ⊂ K◦n+1 for every n ∈ N and T = ∪n∈NKn. Furthemore, every compact K of
T is contained in a Kj for some j ∈ N.
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Proof. Let (K ′n)n∈N be the family of compact sets of T such that
⋃
n∈NK

′
n = T .

We define the desired family of compacts as follows. Let K0 = K ′0. For each
x ∈ K0 let Ux be the open set obtained by definition of locally compact. Since
{Ux : x ∈ K0} is an open cover forK0, there is a finite subcover {Uxi : i ∈ J1,mK}.
Set

U0 =
m⋃
i=0

Uxi =
m⋃
i=0

Uxi .

Since every Uxi has compact closure, U0 is compact and

K0 ⊂
m⋃
i=1

Uxi ⊂ U◦0 .

Define K1 = K ′1 ∪ U0. It follows that K0 ⊂ K◦1 . We continue with the same
procedure by induction. Let Un be a compact set such that Kn ⊂ U◦n and define
Kn+1 = K ′n+1 ∪ Un for every n ∈ N. Since K ′n ⊂ Kn, we have,

T =
⋃
n∈N

K ′n =
⋃
n∈N

Kn.

Suppose K ⊂ T is compact, then {K◦n : n ∈ N} is an open cover of K and there
is a finite subcover {K◦ni : i ∈ J1,mK}. Set N = max{n1, . . . , nm} then

K ⊂
m⋃
i=1

K◦ni = K◦N ⊂ KN .

The next definition will be important to define random measures.

Definition 3.1.9. A measure µ on a metric space is called boundedly finite if
µ(B) <∞ for all bounded measurable set B ∈ B(T ).

A subset B of T is called bounded if it is included in a ball of finite radius.
Thus, this definition only depends on the metric; if we change the metric, it is
possible that a bounded set is not bounded in the new metric and vice versa as
we will see in Example 3.1.10.

Note that if T is a locally compact separable metric space and µ is boundedly
finite, then it is a Radon measure because compact sets are bounded, so we can
use Theorem 3.1.4. However, the next example shows that the converse does not
hold.
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Exercise 3.1.10. We consider R with the metric ρ(x, y) = min{|x − y|, 1}
which induces the same topology than the usual metric, but in this metric every
measurable set is bounded, in particular R. The Lebesgue measure λ is a Radon
measure but λ(R) =∞.

Remark. If two metrics ρ1 and ρ2 on T generate the same topology we say that
they are equivalent. Note that if there exists two positive constants α, β such
that

αρ1(x, y) ≤ ρ2(x, y) ≤ βρ1(x, y),

then ρ1 and ρ2 are equivalent. The converse is not true.

Since measures on a metric space T are defined on B(T ) that is generated
by open sets, they ignore the interchange of equivalent metrics. Topological
properties such as locally compactness or separability are preserved under this
interchange. With this in mind, we can ask if there exists an equivalent metric
of a locally compact separable metric space such that bounded sets are included
in compact sets. The answer is affirmative, it is a consequence of the Theorem
2.61 of [HG61]. It says that there is an equivalent metric such that

∀B ⊂ T bounded, B is compact, (3.1)

that is, a set is compact if and only if it is bounded and closed. Therefore, in
this space, a measure µ is a Radon measure if and only if it is boundedly finite.

There is a property that is not preserved by interchange of equivalent metrics,
completeness.

Definition 3.1.11. A metric space is said to be complete if every Cauchy
sequence of points in T has a limit that is also an element of T .

The following proposition shows that a metric space with the property (3.1)
is complete.

Proposition 3.1.12. Let T be a metric space such that every bounded set has a
compact closure then T is complete.

Proof. Let (xn)n∈N be a Cauchy sequence in T , then it is bounded. Since
{xn : n ∈ N} is bounded and closed, it is compact. Hence, the sequence has
a convergence subsequence converging to x0 ∈ T . For being Cauchy sequence,
the whole sequence converges to x0.

Definition 3.1.13. A metric space separable and complete is called Polish
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3.2 Random Measures

Random measures theory is a branch of modern probability of increasing interest
in both theory and applications. Throughout the next sections of this chapter we
deal with measures defined on a locally compact Polish metric space T with the
property (3.1) and random variables defined on the probability space (Ω,F ,P).

In order to define random measures we introduce the following family of
measures

M =M(T ) = {µ boundedly finite on T}

and the family of sets

{A ∈ B(T ) : B is bounded}.

In M we introduce the σ−algebra B(M) generated by all evaluation maps πA
with A ∈ A which are defined by

πA : M → R+

µ 7→ µ(A).

It is the smallest σ−algebra with respect to which every evaluation map is a
measurable function. In R+ is considered B(R+).

Definition 3.2.1. A random measureM is a measurable mapping from (Ω,F ,P)

into (M,B(M)).

For the richness of the metric space we can make the definition more flexible.
First, by Property (3.1),

M = {µ Radon measure on T}.

Second, in the definition of B(M) we can consider the whole collection of
evaluation maps A ∈ B(T ).

Proposition 3.2.2. The σ-algebra B(M) is the smallest with respect to which
every evaluation map πA, A ∈ B(T ) is measurable, i.e.,

σ(πA : A ∈ B(T )) = σ(πA : A ∈ A).

Proof. Let A ∈ B(T ). We have to prove that the map

πA : (M,B(M)) → (R+,B(R+))

µ 7→ µ(A)
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is measurable. We consider a sequence of compact sets (Kn)n∈N included in A

such that µ(A) = limn→∞ µ(Kn). Then for every a ∈ R+,

{µ ∈M : µ(A) ≥ a} =
⋂
m∈N

⋃
n∈N

{µ ∈M : µ(Kn) > a− 1/n}.

In other word,

π−1
A ([a,∞)) =

⋂
m∈N

⋃
n∈N

π−1
Kn

(
(a− 1

n
,∞)

)
.

The proof follows by Remark 3.2.4. The other inclusion is trivial.

Remark 3.2.3. In the other sense we can consider a smaller collection thanks to
Theorem A.2.6.III of [DVJ08a]. The σ-algebra B(M) is the smallest σ-algebra
with respect to which the evaluation map πA is measurable for all sets in a
semiring S of bounded sets generating B(T ). Therefore

σ(πA : A ∈ B(T )) = σ(πA : A ∈ A) = σ(πA : A ∈ S).

A semiring S is a collection of subsets of T with the properties (i) S is a π-
system (ii) every symmetric difference of sets of S can be represented as a finite
union of disjoint sets in S.

Remark 3.2.4. It is useful to note that the collection {π−1
A (G) : G ∈ B(R+), A ∈

R} generates the σ-algebra σ(πA : A ∈ S). In fact, this collection is contained
in M. Conversely, with the σ-algebra generated for it every evaluation map is
measurable, then it containsM. Particularly, it happens with R = A or B(T ).

In the notation of random measures, for every sample point ω ∈ Ω we associate
a particular realization that is a Radon measure on T ; we denote it by M(·, ω).
For each fixed A ∈ B(T ), M(A) = M(A, ·) is a function mapping Ω into R+, and
thus we can ask if it is a random variable. The following result shows that this
is true.

Theorem 3.2.5. Let M be a mapping from (Ω,F ,P) to (M,B(M)) and S a
semiring of bounded Borel sets such that generating B(T ). Then M is a random
measure if and only if M(A) is a random variable for every A ∈ S.

Proof. Because M(A)(ω) = M(A, ω) = πA(M(·, ω)) as in Figure 3.1, we have for
any G ∈ B(R+)

M−1(π−1
A (G)) = (M(A))−1(G).
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WhenM(A) is a random variable, M−1(π−1
A (G)) ∈ F , it follows by Remark 3.2.4

that M is a random measure. Conversely, when M is a random measure,
M−1(π−1

A (G)) ∈ F , so then M(A) is a random variable.

Ω M

R+

M :ω 7→M(·,ω)

M(A):ω 7→M(A,ω) πA:µ7→µ(A)

Figure 3.1: Random Measure M

Particularly we have the previous theorem with S = A or B(T ). Let us
summarize the ideas. When M is a random measure, then

• for fixed A ∈ B(T ), the mapping ω 7→ M(ω,A) is measurable from (Ω,F)

to (R+,B(R+)) and

• for every ω ∈ Ω, the mapping A 7→ M(ω,A) is a Radon measure on
(T,B(T )).

We give some examples of random measures.

Example 3.2.6. The map δ : T →M defined by

δ(ω,A) = δω(A) = 1A(ω), ω ∈ T,A ∈ B(T ),

is a random measure, where δω are Dirac measures. In fact, the map is well
defined since Dirac measures are totally finite and for every A ∈ B(T ), we have
a nonnegative random variable 1A(ω). We conclude with Theorem 3.2.5.

Example 3.2.7. Let T = R and {Z(x) : x ∈ R} be a Gaussian process with
continuous paths. Then set

M(A, ω) =

∫
A

Z2(x, ω)dx.

It is a random measure. For every ω ∈ Ω, it is clear that M(A, ω) ≥ 0 because
Z2(x, ω) ≥ 0. Moreover, M(∅, ω) = 0 and for a disjoint sequence (An)n∈N of

41



elements of B(R):

M

(⋃
n∈N

An, ω

)
=

∫ ∑
n∈N

1AnZ
2(x, ω)σ(dx)

=
∑
n∈N

∫
1AnZ

2(x, ω)σ(dx)

=
∑
n∈N

M(An, ω).

We use monotone convergence theorem to interchange the integral with the sum.
Since x 7→ Z2(x, ω) is continuous, it is bounded in every compact K, thus

M(K,ω) =

∫
K

Z2(x, ω)dx <∞.

Hence, by Theorem 3.1.4 it is a Radon measure. Now, we have to prove that
for every element A of S = {[a, b) : a ≤ b ∈ R}, M(A) is a nonnegative random
variable. The collection

S = {[a, b) : a ≤ b ∈ R}

of subsets is a semiring on R and σ(S) = B(R). For every n ∈ N, we can divide
the set A into subintervals Ani with lengths 1/n or less. Let

Tn = {Ani : i ∈ J1, knK}

be the sequence of partitions and tni ∈ Ani. Since Riemann integral and Lebesgue
integral agree in continuous function, as n→∞

Mn(A) =
kn∑
i=1

Z2(tni)λ(Ani)→
∫
A

Z2(x)dx = M(A).

Therefore, M(A) is a nonnegative random variable as the pointwise limit of
nonnegative random variables. This completes the proof.

Given a random measure M ,

{M(A) : A ∈ B(T )}

is a family of nonnegative random variables. In the other direction, we can ask
when a family of nonnegative random variables form a random measure. Since it
is a measure we require for disjoint sets A,B ∈ B(T ) that

M(A ∪B) = M(A) +M(B) a.s. (3.2)
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and for all sequences of bounded Borel sets An such that An ↓ ∅,

M(An)→ 0 a.s. (3.3)

The next result answers the question, it appears as Theorem 9.1.XV of [DVJ08b].

Theorem 3.2.8. Let {MA : A ∈ B(T )} be a family of nonnegative random
variables indexed by the sets of B(T ) and a.s. finite valued on bounded Borel sets.
In order for there to exist a random measure M(A, ω) such that, for all A ∈ B(T )

M(A) = MA a.s.,

it is necessary and sufficient that (3.2) hold for all pairs A, B of disjoint elements
of A and that (3.3) hold for all sequences {An : n ∈ N} of elements of A with
An ↓ ∅.

In Chapter 4 we will use a stronger version of this theorem considering a
countable collection that generates B(T ), namely

R =

{
k⋃
i=1

Ai : Ai are disjoint elements of C, i ∈ J1, kK, k ∈ N

}
,

where

C = {Closed balls with center xi and radius qi : xi ∈ D, qi ∈ Q}

and D is a countable dense subset of T . It is a consequence of Lemma 9.1.XIV
of [DVJ08b].

Theorem 3.2.9. Let {MA : A ∈ R} be a family of nonnegative random variables
indexed by the sets A ∈ R. In order that, with probability 1, the MA(ω) should
admit an extension to a measure on σ(R) = B(T ), it is necessary and sufficient
that (3.2) hold for all pairs A, B of disjoint elements of R and that (3.3) hold
for all sequences {An : n ∈ N} of elements of R with An ↓ ∅.

Remark 3.2.10. Note that R ⊂ A, then if a family of nonnegative random
variables indexed by the sets A satisfying the conditions (3.2) and (3.3) we can
use the previous theorem.
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3.3 Properties of Random Measures

The Gaussian Multiplicative Chaos is built as a weak limit of a sequence of
random measures. Among the different modes of convergence of random measures
we introduce one that is related with the metric space and weak convergence of
random variables.

Definition 3.3.1. We say that the sequence of random measures (Mn)n∈N defined
on T converge weakly to the random measure M defined on T if for every finite
family {A1, . . . , Ak} of bounded and measurable sets of B(T ), i.e., Ai ∈ A,
i ∈ J1, kK, the distribution of the random vector (Mn(A1), . . . ,Mn(Ak)) converge
weakly in B(Rk

+) to the distribution of (M(A1), . . . ,M(Ak)).

To obtain a random object well defined we need uniqueness in a distribution
sense.

Definition 3.3.2. The distribution of a random measure M is the probability
measure it induces on (M,B(M)). It is denoted by PM

Note that with π−1
A (G) ∈ B(M), A ∈ B(T ) and G ∈ B(R+) we have,

PM(π−1
A (G)) = P(ω ∈ Ω : M(·, ω) ∈ π−1

A (G))

= P(ω ∈ Ω : M(A, ω) ∈ G)

= PM(A)(G).

It gives us an idea that it is possible to characterize the distribution of a random
measure with some family of elements of {M(A) : A ∈ B(T )}.

Proposition 3.3.3. The distribution of a random measure M is determined by
the distribution of (M(A1), . . . ,M(Ak)) for all finite families of elements of A.

This is a consequence of the following lemma.

Lemma 3.3.4. Let P1 and P2 be probability measures on (Ω,F). Suppose that
there exists a π-system C ⊂ F such that σ(C) = F and

∀A ∈ C, P1(A) = P2(A).

Then P1 = P2.
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In Remark 3.2.4 we see a collection of subset ofM that generates B(M) but it
is not a π-system. We consider a slightly different collection which is a π-system
and still generateM:

C =

{
k⋂
i=1

π−1
Ai

(Gi) : Ai ∈ A, Gi ∈ B(R+), k ∈ N, i ∈ J1, kK

}
.

Proof of Proposition 3.3.3. Let M1 and M2 be random measures and their
distributions PM1 and PM2 , respectively. If

(M1(A1), . . . ,M1(Ak))
D
= (M2(A1), . . . ,M2(Ak)),

then for G1, . . . , Gk ∈ B(R+),

P(M1(A1) ∈ G1, . . . ,M1(Ak) ∈ Gk) = P(M2(A1) ∈ G1, . . . ,M2(Ak) ∈ Gk).

Consequently, if C = ∩ki=1π
−1
Ai

(Gi)

PM1(C) = P(M1 ∈ C)

= P(M1(A1) ∈ G1, . . . ,M1(Ak) ∈ Gk)

= P(M2(A1) ∈ G1, . . . ,M2(Ak) ∈ Gk)

= PM2(C).
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Chapter 4

Gaussian Multiplicative Chaos

In 1985, in his article Sur le chaos multiplicatif, Kahane introduced
and developed the theory of Gaussian multiplicative chaos. Using a
kernel σ-positive definite we will construct a random measure with
an approximation procedure following the ideas of the article. We
deal with the uniqueness and degeneracy of the object and finally
we introduce an extension of the theory. This chapter is based on
[Kah85] and [RV14].

4.1 The Chaos

Chaotic phenomena are disordered and irregular dynamic behaviors found in
many natural systems, have long been involved in physics, particularly in the
study of fluid motion. In the latter, the Navier-Stokes equations have contributed
to the complete description of fluid flow. Despite being widely applied in different
branches of science, it has not yet been proven if this equation has a solution in
three dimensions and if they are smooth. It belongs to the seven millennium
problems for which the Clay Mathematics Institute has offered a US$ 1 million
award for a correct solution. One of the key thing in this problem is about
understanding turbulence: The chaotic random motion of particle in fluids. It is
difficult to model and understand mathematically.

Around 1940, it is the Russian school that makes the essential mathematical
contributions, studying the velocity flux of a turbulent flow as a random field (A.
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N. Kolmogorov, A, Obukhoff, ...). In 1961 Kolmogorov and Obukhoff study the
distribution of energy dissipation as a random measure introducing the concept of
random multiplicative cascades. A rich geometrical and scaling perspective was
subsequently advanced by Mandelbrot in 1974 (He defined this random measure
as a limit of a martingale), and a complete mathematical treatment was initiated
by Kahane and Peyrière in 1976.

With the aim of giving mathematical rigor to the Kolmogorov-Obukhov
energy dissipation model introduced by Mandelbrot, Kahane developed the
Gaussian multiplicative chaos in 1985.

4.2 The seminal work of Kahane in 1985

Throughout this chapter we deal with centred Gaussian fields indexed with (T, ρ),
a Polish metric space locally compact with the property (3.1). As in the precede
chapter,M(T ) denotes the space of Radon measures defined on B(T ).

4.2.1 Existence

In this section we provide the first definition of Gaussian multiplicative chaos due
to Kahane in the article [Kah85]. Let K(s, t) be a continuous kernel on T ×T . It
is a kernel of a Gaussian field X = (X(t))t∈T defined on some probability space
(Ω,F ,P) (see Theorem 2.2.2), then

K(t, s) = E[X(t)X(s)].

Remark 4.2.1. We can get a measurable version of X if it is continuous in L2,
it is due to the Theorem 1 of the page 171 of [GS74]. The condition is satisfied
because K is continuous on T × T , we can use Theorem 2.5.3. This version is
still a Gaussian field with the same covariance kernel (see Corollary 2.4.4).

Let σ ∈M(T ), then we are able to integrate X(t, ω) with respect to σ, P and
σ ⊗ P. We associate to X(t) the process P defined by

P (t) = exp

(
X(t)− 1

2
E[X2(t)]

)
= exp

(
X(t)− 1

2
K(t, t)

)
.

Since the distribution of the process X(t) depends only on K(t, s), the same is
true for the distribution of P (t). Notice the normalization

EP (t) = 1 (4.1)
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for every t ∈ T. It follows from the following lemma.

Lemma 4.2.2. Let X be a centred Gaussian variable with variance σ and v ∈ R,
then X − v is a Gaussian variable and

E
[
eX−v

]
= exp

(
σ2

2
− v
)
.

Let s, t ∈ T , since X(t)+X(s) is a centered Gaussian variable by the previous
lemma,

EP (t)P (s) = exp(K(t, s)).

With the measure σ and the process P we can built a random measure.

Theorem 4.2.3. The mapping

M(A, ω) =

∫
A

P (t, ω)σ(dt),

denoted by Pσ, is a random measure.

Proof. For every ω ∈ Ω, M(·, ω) is a measure on T (the proof is the same as
Example 3.2.7). For every compact set K of T , we have by Fubini’s theorem and
(4.1),

EM(K) = E
∫
K

P (t)σ(dt) =

∫
K

EP (t)dσ(t) = σ(K). (4.2)

Then M(K, ·) is finite a.s. Particularly, it is true to the compacts (Kn)n∈N

obtained in Proposition 3.1.8. Since every compact is contained in some Kj,
M(A, ·) is finite in compacts sets a.s. Hence by Theorem 3.1.4 it is a Radon
measure a.s. Finally, by Fubini’s theorem,M(A) is a nonnegative random variable
for every A ∈ B(T ). We can conclude using Theorem 3.2.5.

The random measure M depends only on K(t, s) and σ where K(t, t) is the
variance of X(t). The aim of this text is formally define a random measure as
in Theorem 4.2.3 for a “Gaussian field” with infinite variance, i.e., K(t, t) can
be infinite. In [Kah85] Kahane constructed a theory relying on the notion of a
σ-positive definite . A function K : T × T → R+ ∪ {∞} is σ−positive definite if
there exists a sequence Kn : T × T → R+ of continuous kernels such that

K(s, t) =
∞∑
n=1

Kn(s, t).
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We can consider independent Gaussian fields (Xn(t))t∈T with covariance Kn (see
Theorem 2.6.4). It is considered an approximation procedure to get the random
measure desired. For every n ∈ N, we set

Σn(t, s) = (K1 +K2 + · · ·+Kn)(t, s).

It is a positive kernel, then the process

Yn(t) = (X1 + · · ·+Xn)(t)

is a Gaussian field with covariance Σn. We define

Qn(t) = (P1P2 · · ·Pn)(t) = exp

(
Yn(t)− 1

2
Σn(t, t)

)
.

Given σ ∈M(T ), we have the random measure Mn = Qnσ.

Theorem 4.2.4. The sequence of random measures (Mn)n∈N converge weakly in
the spaceM(T ) to a random measure M , which is called Gaussian multiplicative
chaos.

Proof. Let
Fn = σ(Xi(t) : i ∈ J1, nK, t ∈ T )

and A ∈ B(T ) be a bounded set. We will prove that the sequence {Mn(A) : n ∈
N} is a martingale with respect to the filtration (Fn)n∈N.

• Since the map
Qn : (T × Ω) → R+

(t, ω) 7→ 1A(t)Qn(t, ω)

is measurable with the σ-algebra B(T ) ⊗ Fn, by Fubini’s theorem 1.1.6
Mn(A) is measurable with respect to Fn for every n ∈ N.

• We deduce from (4.2) that Mn(A) is integrable:

E[Mn(A)] = σ(A) ≤ σ(A) <∞

for every n ∈ N.

• Finally, let B ∈ Fn,

E[Mn+1(K)1B] = E
[∫

A

(P1 · · ·Pn1B)Pn+1σ(dt)

]
,
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using Fubini and (4.1)

E
[∫

A

(P1 · · ·Pn1B)Pn+1σ(dt)

]
=

∫
A

E[P1 · · ·Pn1B]E[Pn+1]σ(dt)

= E
[∫

A

P1 · · ·Pn1Bσ(dt)1B

]
= E [Mn(A)1B] .

Therefore
E[Mn+1(A)|Fn] = Mn(A).

Since E[Mn(A)] = σ(A) for every n ∈ N,

sup
n∈N

E[Mn(A)] = σ(A) <∞,

by Theorem (1.4.5) Mn(A) converge a.s. to a random variable MA. Moreover,

• for all disjoint and bounded A1, A2 in B(T ),

MA1∪A2 = lim
n→∞

Mn(A1 ∪ A2)

= lim
n→∞

∫
A1∪A2

Qn(t)σ(dt)

= lim
n→∞

∫
A1

Qn(t)σ(dt) +

∫
A2

Qn(t)σ(dt)

= MA1 +MA2 .

• for any bounded sequence (An)n∈N such that An ↓ ∅, we have by (4.2),

E[MAn ] = σ(An)→ 0

when n→∞. Thus (MAn)n converges in L1 to 0. On the other hand, the
sequence (MAn)n is decreasing, it follows that it converges a.s. to a random
variable M∞. We can extract a subsequence of (MAn)n which converges to
0. Thus M∞ = 0 a.s. Therefore

MAk → 0 a.s.

Satisfied (3.2) and (3.3), Theorem 3.2.9 allows us to conclude that there is a
random measure M such that for every bounded set B of T ,

M(A) = MA a.s.
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Finally, the sequence of random measures Mn converges weakly to the random
measure M . It follows of a.s. convergence of (Mn(A1), . . . ,Mn(Ak)) to
(M(A1), . . . ,M(Ak)) for every finite family {A1, . . . , Ak} of bounded sets Ai ∈
B(T ).

Thus, for every σ ∈M and a σ-positive definite kernel K, we have a random
measure M . There are important questions about the construction of M related
with the good definition what we will focus in the rest of the chapter.

4.2.2 Uniqueness

We can obtain other decomposition if we interchange the order of Kn in

K(s, t) =
∞∑
n=1

Kn(s, t). (4.3)

As a consequence, there are different nonnegative and positive definite kernels
(K ′n)n∈N such that

∑∞
n=1 K

′
n = K. For the sake of well definition of the Gaussian

multiplicative chaos, we need that the limit of the random measures obtained
with the kernels K ′n to be the same in distribution.

Theorem 4.2.5. The distribution of the Gaussian multiplicative chaos does not
depend on the sequence (Kn)n∈N of kernels used in the decomposition (4.3) of K.

In order to give a proof we need the following lemma.

Lemma 4.2.6. Let (X1, . . . , Xn) and (Y1, . . . , Yn) be two independent centred
Gaussian vectors such that

∀i, j ∈ J1, nK, E[XiXj] ≤ E[YiYj].

Then for all combination of nonnegative numbers p1, . . . , pn and for F (x) = e−λx,
x ∈ R+ and λ > 0,

E

[
F

(
n∑
i=1

pie
Xi− 1

2
E[X2

i ]

)]
≤ E

[
F

(
n∑
i=1

pie
Yi− 1

2
E[Y 2

i ]

)]
.

Proof. We define

ϕ(t) = E

[
F

(
n∑
i=1

pie
Zi(t)− 1

2
E[Zi(t)

2]

)]
,
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with Zi(t) =
√
tXi +

√
1− tYi, t ∈ [0, 1], i ∈ J1, nK. It is a deterministic

interpolation. The aim of the proof is show that ϕ is decreasing on [0, 1]. Thus

ϕ(1) ≤ ϕ(0).

We consider
f(t) = F (Wn(t)) ,

where

Wn(t) =
n∑
i=1

pi exp

(
Zi(t)−

1

2
E[Zi(t)

2]

)
.

Note that E[Zi] = 0 and

E[Z2
i ] = tE[X2

i ] + (1− t)E[Y 2
i ].

In order to derivative under the expectation we satisfy the conditions of
Theorem 1.1.5:

(i) For every t ∈ (0, 1) fixed, f(t, ω) is a integrable random variable, because
F is continuous and bounded.

(ii) For every ω fixed, t 7→ f(t, ω) is differentiable and

f ′(t, ω) =

(
n∑
i=1

pi exp

(
Zi(t)−

E[Zi(t)
2]

2

)(
Xi

2
√
t
− Yi

2
√

1− t
− E[X2

i ]− E[Y 2
i ]

2

))
× F ′(Wn(t)).

(iii) Let K be a compact subset of (0, 1). For every i ∈ J1, nK,

sup
t∈K

∣∣∣∣exp

(
Zi(t)−

E[Zi(t)
2]

2

)∣∣∣∣ ≤ exp(Xi + Yi),

sup
t∈K

∣∣∣∣( Xi

2
√
t
− Yi

2
√

1− t
− E[X2

i ]− E[Y 2
i ]

2

)∣∣∣∣ ≤ |aXi + bYi + c|.

Since the bounds are in L1 as well as their product and F is bounded, we
can conclude that for every w ∈ Ω,

sup
t∈K

∣∣∣∣ ddtf(t, ω)

∣∣∣∣ ≤ Z(ω)

for some Z ∈ L1.
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Therefore, we can take the derivative under the expectation,

ϕ′(t) = E

[(
n∑
i=1

pi
2

exp

(
Zi(t)−

E[Zi(t)
2]

2

)(
Xi√
t
− Yi√

1− t
− E[X2

i ] + E[Y 2
i ]

))
× F ′(Wn(t))]

=
n∑
i=1

pi
2
E
[(

Xi√
t
− Yi√

1− t

)
exp

(
Zi(t)−

E[Zi(t)
2]

2

)
F ′(Wn(t)

]
−

n∑
i=1

pi
2
E
[(
E[X2

i ]− E[Y 2
i ]
)

exp

(
Zi(t)−

E[Zi(t)
2]

2

)
F ′(Wn(t)

]
(4.4)

Considering X =
(
Xi√
t
− Yi√

1−t

)
, Y =

(
Z1 − 1

2
E[Z2

1 ], . . . , Zn − 1
2
E[Z2

n]
)
and

F̃ (x1, . . . , xn) = exiF ′

(
n∑
j=1

pie
xi

)
,

we can apply Corollary 2.1.7. Note that

∇F̃ (x1, . . . , xn) = exiF ′′

(
n∑
j=1

pie
xi

)
(p1e

x1 , . . . , 1 + pie
xi , . . . , pne

xn).

Then

E[XF (Y )] =E[XY ] · E[∇F (Y )]

=
(
E[X2

i ]− E[Y 2
i ]
)
E
[
exp

(
Zi(t)−

E[Z2
i (t)

2

)
F ′(Wn(t))

]
+

n∑
j=1

pj (E[XiXj]− E[YiYj])

× E
[
exp

(
Zi(t) + Zj(t)−

E[Z2
i (t)]

2
− E[Z2

i (t)]

2
F ′′(Wn(t))

)]
,

where we have used the following fact,

E
[(

Xi√
t
− Yi√

1− t

)
Zj

]
= E[XiXj]− E[YiYj].

We use the last equation in (4.4) and we get

ϕ′(t) =
1

2

n∑
i=1

n∑
j=1

pipj (E[XiXj]− E[YiYj])

× E
[
exp

(
Zi(t) + Zj(t)−

E[Z2
i (t)]

2
− E[Z2

i (t)]

2

)
F ′′(Wn(t))

]
.
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Since F is convex in R+, F ′′(x) ≥ 0, and by hypothesis we have

ϕ′(t) ≤ 0

for every t ∈ (0, 1). It can be proved by dominated convergence theorem that the
function ϕ is continuous on [0, 1]. Therefore ϕ is decreasing on [0, 1].

It can be extended in some sense to Gaussian fields

Corollary 4.2.7. Let (Xt)t∈T and (Yt)t∈T be independent Gaussian fields with
covariance KX and KY respectively such that

KX(t, s) ≤ KY (t, s)

for every t, s ∈ T . Then for F (x) = e−λx, x ∈ R+ and λ > 0,

E
[
F

(∫
A

exp

(
X(t)− E[X2(t)]

2

)
σ(dt)

)]
≤ E

[
F

(∫
A

exp

(
Y (t)− E[Y 2(t)]

2

)
σ(dt)

)]
,

where A ∈ B(T ) is bounded and σ ∈M(T ).

Proof. We prove the case when the Gaussian fields has continuous paths, the
general case is proved in [Kah85]. Let K be a compact set and D a countable
dense subset of K. Thus, for every n ∈ N, we have kn elements of D such that

K ⊂
kn⋃
i=1

Bn
i .

where Bn
i = B(tni , 1/n) is the ball with center tni and radius n−1 and tni ∈ D for

i ∈ J1, knK. By continuity of t 7→ X(t, ω) we have

X(t) = lim
n→∞

kn∑
i=1

1Bni (t)X(tni ).

We can do the same to P (t) and by dominated convergence theorem∫
K

P (t)σ(dt) = lim
n→∞

kn∑
i=1

σ(Bn
i )P (tni ).

With the same argument

E
[
F

(∫
K

P (t)σ(dt)

)]
= lim

n→∞
E

[
F

(
kn∑
i=1

σ(Bn
i )P (tni )

)]
.

Lemma 4.2.6 is used to conclude. The same procedure works to bounded sets
because its closure is compact.
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Proof of Proposition 4.2.5. Let (Kn)n∈N and (K ′n)n∈N be two decomposition of K
with associated independent Gaussian fields sequences (Xn)n∈N and (X ′n)n∈N and
associated random measures (Mn)n∈N and (M ′

n)n∈N, respectively. Both sequences(
n∑
k=1

Kk

)
n∈N

and

(
n∑
k=1

K ′n

)
n∈N

converge pointwise toward K in a nondecreasing way. Therefore, if we choose a
compact set K ⊂ T then, for each p ∈ N the sequence((

n∑
k=1

K ′k −
p∑

k=1

Kk

)−)
n∈N

.

converges pointwise to 0 in a nonincreasing way, where f− the negative part of
f , i.e.,

(f(t))− = max{−f(t), 0}.

By Dini’s Theorem (see A.0.1) we have uniform convergence, i.e., there exists a
n0 ∈ N such that for every n ≥ n0,∣∣∣∣∣

(
n∑
k=1

K ′k(t, s)−
p∑

k=1

Kk(t, s)

)−∣∣∣∣∣ < ε,

for every (t, s) ∈ K ×K. Since 0 ≤ f(t)− ≤ f(t), we have
p∑

k=1

Kk(t, s) ≤ ε+
n∑
k=1

K ′k(t, s).

We can consider a standard Gaussian variable Z independent of (X ′n)n for every
n ∈ N such that the random variable

∑n
k=1 X

′
k +
√
εZ has ε+

∑n
k=1 K

′
k(t, s) as a

covariance function. We can apply Lemma 4.2.7

E [F (Mp(K))] ≤ E
[
F

(∫
K

exp

(
Yn(t) +

√
εZ − E[Y 2

n (t)]

2
− E[Z2]

2

)
σ(dt)

)]
= E

[
F

(
e
√
εZ− ε

2

∫
K

exp

(
Yn(t)− E[Y 2

n (t)]

2

)
σ(dt)

)]
= E

[
F
(
e
√
εZM ′

n(K)
)]
.

Since the sequences of random measures (Mn)n∈N and (M ′
n)n∈N converge weakly

to M and F is continuous and bounded,

E[F (M(K))] = lim
p→∞

E[F (Mp(K))]
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and
E[F (e

√
εZM ′(K))] = lim

n→∞
E
[
F
(
e
√
εZM ′

n(K)
)]
.

Therefore,
E[F (M(K))] ≤ E

[
F
(
e
√
εZM ′(K)

)]
.

Since ε > 0 can be chosen arbitrarily small, we can use dominated convergence
theorem to get

E[F (M(K))] ≤ E[F (M ′(K))].

The opposite inequality is proved analogously. Thus

E[F (M(K))] = E[F (M ′(K))].

Since F (x) = e−λx, by Theorem 1.2.4 we have M(K)
D
= M ′(K). If we consider

the measure

µ(dt) =
n∑
i=1

λi1Bi(t)σ(dt),

where Bi ⊂ T are bounded sets and we follow the same procedure we have

E

[
F

(
n∑
i=1

λiM(Ai)

)]
= E

[
F

(
n∑
i=1

λiM
′(Bi)

)]
.

By Theorem 1.2.4,

(M(B1), . . . ,M(Bn))
D
= (M ′(B1), . . . ,M ′(Bn)).

Hence M and M ′ have the same distribution.

4.2.3 Degeneracy

Let A be a bounded set, then

M(A) = lim
n→∞

∫
A

Qn(t)σ(dt).

We are focus in the event

{ω ∈ Ω : M(A)(ω) = 0}.

For fixed m we can consider for n ≥ m

Mn(A) =

∫
A

exp

(
Yn(t)− E[Y 2

n (t)]

2

)
σ(dt)

=

∫
A

exp

(
Ym(t)− E[Y 2

m(t)]

2

)
exp

(
n∑

k=m+1

Xk(t)−
E[X2

k(t)]

2

)
σ(dt).
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Since
exp

(
Yn(t)− E[Y 2

n (t)]

2

)
> 0,

that {M(A) = 0} happens depends on

exp

(
n∑

k=m+1

Xk(t)−
E[X2

k(t)]

2

)
σ(dt).

Thus, {M(A) = 0} ∈ σ(Xm+1, Xm+2, . . . ) for every m ∈ N. It follows that it is
in the tail of the independent family of σ-algebras Bk = σ(Xk(t) : t ∈ T ), k ∈ N.
Hence, by Theorem 1.3.7

P(M(A) = 0) ∈ {0, 1}.

So it is possible that M identically vanishes. It is called degenerate case. It is
not so straightforward to check if the Gaussian multiplicative chaos is degenerate
or not, but there is an easy condition to avoid P(M(A) = 0) = 1.

Proposition 4.2.8. Let A be a bounded set such that σ(A) > 0. Then
P(M(A) = 0) = 0 if

E[M(A)] = σ(A).

This condition is satisfied if Mn(A) is a martingale bounded in Lp, for some
p > 1, i.e.,

supE[Mp
n(A)] <∞,

then it is uniformly integrable (see Theorem 1.4.7). Thus

E[M(A)] = lim
n→∞

E[Mn(A)] = σ(A).

We give an example in the next section.

4.3 Model of Mandelbrot

In [Man72], Mandelbrot introduced the “limit-lognormal” model, the Kahane’s
theory is developed to give meaning to it. We define ln+(x) by

ln+(x) = max{ln(x), 0}.

The “limit-lognormal” model deals with a kernel K defined on Rd and given by

K(x, y) = log+

(
R

|x− y|

)
, (4.5)

where R > 0. We can obtain a Gaussian multiplicative chaos from this kernel.
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Lemma 4.3.1. The function K of the form (4.5) is of σ-positive type.

For easy we can work with

f(x) := K(x+ z, z) = ln+

(
R

|x|

)
.

Proof. It can be written by straightforward calculations as

ln+

(
R

|x|

)
=

∫ ∞
0

(t− |x|)+νR(dt),

where
νR(dt) = 1[0,R)

dt

t2
+
δ(dt)

R
.

For all r > 0, we have

ln+

(
R

|x|

)
=

1

r
ln+

(
Rr

|x|r

)
=

1

r

∫ ∞
0

(t− |x|r)+νRr(dt).

Therefore we have to look the r > 0 such that (t − |x|r)+ is positive definite: It
is known as the Kuttner-Golubov problem (see [Gne01]). We can write

ln+

(
T

|x|

)
=
∞∑
n=1

Kn

with

Kn(x) =

∫ 1
n−1

1
n

(t− |x|r)+νRr(dt)

with r = 1 in dimension 1 and r = 1/2 in dimension 2. In dimension 3 it is an
open question whether it is of σ-positive definite. Note that, using the notation
of Section 2, we have,

E[M2
n(A)] =

∫ ∫
E[Qn(x)Qn(y)]σ(dx)σ(dy)

=

∫ ∫
exp (Σn)σ(dx)σ(dy)

≤
∫ ∫

exp (K(x, y))σ(dx)σ(dy)

≤
∫ ∫

R

|x− y|
σ(dx)σ(dy).

If we consider d = 2 and σ the Lebesgue measure on Rd it follows that the
martingale is bounded in L2. Then the Gaussian multiplicative chaos associated
is nondegenerate.

58



Conclusions

1. The result and applications. The Gaussian multiplicative chaos is a
random measure well defined on a Polish metric space. It is understood as
the limit of random measures obtained from Gaussian fields and a Radon
measure. In this text we present this procedure rigorously and detailed for
being an introduction to the subject. We developed the Kahane’s seminal
paper [Kah85] with modern ideas of [RV14]. The latter provides several
applications of the subject in Economics: Volatility of a financial asset,
Physics: Liouville Quantum Gravity and KPZ, and mainly the Kolmogorov-
Obhukov model in turbulence (we present a brief introduction in Section
4.3) which is where the Gaussian multiplicative chaos topic originates.

2. Extensions of the theory. In the light of natural applications of Kahane’s
theory, we note that it is difficult to use. Mainly because proving that a
kernel is σ-positive definite is not an easy task. One way to facilitate this
would be to develop a theory that allows obtaining a Gaussian multiplicative
chaos with positive definite kernels, which appear more naturally.

Our theory does not address the following:

• Is a kernel σ-positive definite a positive definite? A kernel K of σ-
positive definite is nonnegative and positive definite. The reciprocal is
still an open question.

• What happens if you work with another way of approximation? For
example, convolutions.

The second point is developed in [RV10] in Euclidean spaces. For σ-positive
definite kernels the random measure obtained is the same as Kahane. The
procedure consists of using a sequence of continuous functions that converge
to the Dirac delta function. Thus, the convolution of the kernel with this
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sequence gives us a sequence of differentiable kernels that smooth down
their singularities. The Gaussian multiplicative chaos is obtained as the
weak limit of the random measures of these kernels. It gives us a theory that
works with positive definite functions and Gaussian fields with continuous
paths. The theory is therefore much easier to use.
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Appendix A

Analysis

Theorem A.0.1. (Dini’s Theorem) Let X be a compact topological space and
(fn)n∈N be a sequence of continuous functions from X to R. Suppose that:

• The sequence (fn)n∈N is nondecreasing, i.e., for every x ∈ X, the sequence
of real numbers (fn(x))n∈N is nondecreasing.

• The sequence (fn)n∈N converges pointwise to a continuous function f from
X to R.

Then the sequence (fn)n∈N converges uniformly to f .

In the previous theorem, we can replace the hypothesis “nondecreasing” by
“nonincreasing”.
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