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Resumen

En la presente tesis se proponen modelos de clasificación basados en regresiones beta

inflacionadas cero-uno con efectos mixtos para modelar perfiles longitudinales de variables

fraccionarias mixtas y variables binarias de forma conjunta con formación de clústeres. Las

distintas parametrizaciones de los modelos propuestos permiten modelar distintos efectos,

como modelar directamente la media marginal a través de covariables e interpretar fácilmente

su efecto sobre ella o modelar la media condicional y las probabilidades de inflación de forma

separada. Además, se forman clústeres de grupos de individuos con perfiles longitudinales

similares a través de una variable latente, asumiendo que las variables respuesta siguen un

modelo de mixtura finita. Debido a la complejidad de los modelos, los parámetros se estiman

desde un punto de vista bayesiano, a partir de simulaciones MCMC utilizando el software

JAGS en R. Se prueban los modelos propuestos sobre diferentes bases de datos simulados

para medir el desempeño de los mismos y se comparan con otros modelos a fin de verificar

cual ajusta mejor los perfiles longitudinales de variables fraccionarias mixtas y variables

binarias. Por último, se aplican los modelos propuestos a datos reales de un banco peruano,

con información del ratio de uso de tarjetas de crédito en el periodo de un año, estado de

default del cliente y otras covariables correspondientes al cliente poseedor de la tarjeta, con

el objetivo de obtener clústeres de individuos con similar ratio de uso de tarjeta de crédito y

relacionarlos con la probabilidad de caer en default que presenta cada grupo.

Palabras-clave: variables fraccionarias, inferencia bayesiana, modelo de regresión beta infla-

cionada, modelo de efectos mixtos, modelo de mixtura finita, modelo de clasificación, MCMC.

ii



Abstract

The following thesis proposes classification models that consist of jointly fitting longitudi-

nal profiles of mixed fractional and binary variables modelled by zero-one beta inflated mixed

regressions with cluster formation. The distinct proposed parametrizations allow different ef-

fects to be modelled, such as modelling the marginal mean directly through independent

variables and easily interpret its effect on it or modelling the conditional mean and the in-

flation probabilities separately. In addition, individuals with similar fractional longitudinal

profiles are grouped into a cluster through a latent variable, assuming that the response va-

riables follow a finite mixture model. Due to the complexity of the models, the parameters are

estimated from a Bayesian point of view by simulating a MCMC using JAGS software in R.

The proposed models are fitted in various simulated datasets and are compared against other

models to measure performance in fitting fractional longitudinal profiles and binary variables.

Finally, an application on real data is conducted, consisting on longitudinal information of

credit card utilization ratio and default status as dependants variables and covariates corres-

ponding to client information, aiming to obtain clusters of clients with similar behaviour in

evolution of credit card utilization and relate them to their probability of default.

Keywords: fractional variables, Bayesian inference, beta inflated regression model, mixed

effects model, finite mixture model, classification model, MCMC.
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Chapter 1

Introduction

1.1. Preliminary considerations

In the field of credit risk the main topic to be studied is the trend of clients that fail to pay

their financial obligations or simply default. The probability of default (PD) is often modeled

by a logistic regression, which assumes that observations are independent. It is also a matter

of interest to study a client’s behavior and/or evolution through time in other variables,

for example their credit card utilization ratio (CCUR). This results in an interest of jointly

modelling the time evolution of the credit card utilization ratio of a client and its probability

of default.

The credit card utilization ratio is a fractional variable that can take values in the interval

[0, 1], this means it is a mixed random variable, with a discrete and a continuous component,

since it can take with positive probability the values of 0 and 1. For example, if a client does

not use its credit card, the utilization ratio will be 0. On the other hand, if a client use its

entire credit card line, the utilization ratio will be 1. If it is not in either of these two cases,

it must be lying in the continuous interval (0, 1).

In order to model a fractional response variable Ferrari and Cribari-Neto (2004) proposed

a beta regression model based on a reparametrization of the beta distribution and Figueroa-

Zúñiga et al. (2013) extends the model adding mixed effects to it. However, these two models

can only be used for response values in the open interval (0, 1). Simpler attempts have been

made to model a fractional mixed response variable, for example, a linear regression can be

used, yet this would not be appropriate because the estimations could fall outside the interval

[0, 1]. Alternatively, a transformation can be performed so the response values will belong to

the closed interval, but the ease of interpretation of the regression parameters is reduced or

even lost, and it also ignores the mixed nature of the variable.

In an effort to model a mixed fractional response variable, Ramalho and da Silva (2009)

proposed a two-part model that consist of fitting first a multinomial model in order to

estimate if the response variable is in the boundaries (zero or one) or lies in an open interval,

then fitting another model for the open interval. Ospina and Ferrari (2010) proposed a zero-

one beta inflated distribution or simply beta inflated distribution and in Ospina and Ferrari

(2012) they propose the zero-or-one inflated beta regression model (inflation at either 0 or 1,

but not both).

The formerly presented models where performed using frequentist procedures, Wieczorek

and Hawala (2011) and Wieczorek et al. (2012) who introduces the zero-and-one inflated beta
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regression model (inflation at both, 0 and 1) with estimations in the Bayesian framework and

Liu and Kong (2015) builds an R package which allows the implementation of this type of

models in a much easier way. Then, Bayes and Valdivieso (2016) proposed a reparametrization

of the beta inflated distribution which allows to model the mean directly through independent

variables and to easily interpret its effect on the mean. Finally, Fernandez et al. (2018) extends

the latter model for longitudinal response variables and incorporates mixed effects to it.

Regarding cluster formation on longitudinal data, De la Cruz-Meśıa et al. (2008) fits

a non-fractional response variable assuming that it follows a mixture model of sigmoidal

curves, using frequentist and Bayesian estimation procedures. Then, binary classification is

incorporated to the latter idea in Gaskins et al. (2017) and De la Cruz et al. (2017), where

the first models the longitudinal response by penalized splines and the second uses a Dirichlet

process to clusterize the trajectories.

1.2. Objectives

The main objective of this thesis is to study, estimate and apply to real data, the classi-

fication beta inflated mixed regression models for longitudinal and binary response variables

with cluster formation from a Bayesian point of view. Specifically:

Investigate about the beta inflated mixed regression model and the finite mixture model

in the literature.

Study the properties of the beta inflated mixed regression model for longitudinal res-

ponse variables with cluster formation.

Implement a program on an open-source software (JAGS) for the estimation from a

Bayesian point of view.

Conduct a simulation study where the proposed models are compared with other mo-

dels.

Apply the proposed models to real data and compare the results against other models

and the case without considering clusters.

1.3. Work organization

The thesis is organized as follows: in Chapter 2, the beta inflated distribution and their

alternative parametrizations are presented, along with their properties, advantages and li-

mitations. Chapter 3 presents the classification models consisting on different beta inflated

mixed regressions for longitudinal response variables with cluster formation, the augmented

likelihood function, the augmented posterior distribution, the chosen priors, the classification

of a new subject and the model comparison criteria. Chapter 4 shows results obtained from

a simulation study. Chapter 5 shows results obtained from the application of the models

to real data. Finally, on Chapter 6 conclusions obtained from this work are discussed and

suggestions for future studies are made.

Appendix A shows the tables corresponding to the simulation study, Appendix B shows

the regressions structures for the zero-one inflated beta model on real data, Appendix C

2



shows the MCMC results of the application to real data and Appendix D shows the R code

for the implementation of the different models used in this thesis in JAGS.

3



Chapter 2

The beta inflated distribution

This chapter introduces the beta distribution with its properties, its probability density

function and an alternative parametrization. Then, extends it to the beta inflated distribution

and presents two alternative parametrizations.

2.1. The beta distribution

The beta distribution is a continuous probability distribution with two parameters (α, β)

which allows to model response variables restricted to the interval (0, 1). The probability

density function of a random variable Y ∼ Beta(α, β) is given by

fY (y | α, β) =
Γ(α+ β)

Γ(α)Γ(β)
yα−1(1− y)β−1, 0 < y < 1,

where α > 0 and β > 0. As Ferrari and Cribari-Neto (2004) states “the beta distribution,

as is well known, is very flexible for modelling proportions since its density can have quite

different shapes depending on the values of the two parameters that index the distribution”.

This flexibility can be seen in Figure 2.1, where J-shaped, inverted-J-shaped and bell-shaped

probability density functions are presented, but it can also be U-shaped or uniform, depending

on the combination of α and β.

Figure 2.1: Probability density functions of the beta distribution for different parameter values
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The mean and variance of the beta distribution are given by

E(Y ) =
α

α+ β
and Var(Y ) =

αβ

(α+ β)2(α+ β + 1)
. (2.1)

2.2. Reparametrized beta distribution

In order to propose a beta regression and to interpret directly the effect of covariates on

the response variable mean, Ferrari and Cribari-Neto (2004) put forward a model considering

the following reparametrization

µ =
α

α+ β
and φ = α+ β,

by replacing this values in (2.1) the mean and variance under the new parametrization are

E(Y ) = µ and Var(Y ) =
V (µ)

1 + φ
,

where V (µ) = µ(1−µ), so that µ is the mean of the response variable and φ can be interpreted

as a precision parameter. The probability density function of Y will be written as

b(y | µ, φ) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)
yµφ−1(1− y)(1−µ)φ−1, 0 < y < 1, (2.2)

where 0 < µ < 1 and φ > 0, and we will use b(·|µ, φ) to refer to the beta distribution with

the mean-precision parametrization.

2.3. The beta inflated distribution

The beta distribution is defined for the interval (0, 1) but in some cases data contains

values of zero and/or one. To solve this problem, Ospina and Ferrari (2010) proposed a beta

inflated distribution (BEINF) extending (2.2) in which the probability density function of a

random variable Y ∼ BEINF(δ0, δ1, µ, φ) is given by

fY (y | δ0, δ1, µ, φ) =


δ0, y = 0.

(1− δ0 − δ1)b(y | µ, φ), y ∈ (0, 1).

δ1, y = 1,

(2.3)

where P (Y = 0) = δ0 ∈ (0, 1), P (Y = 1) = δ1 ∈ (0, 1) with δ0+δ1 ≤ 1, E(Y | Y ∈ (0, 1)) = µ,

φ > 0 and b(y | µ, φ) is the beta distribution presented in (2.2). Notice that under (2.3), Y

can now take values in the interval [0, 1] as shown in Figure 2.2. The mean and variance of

Y ∼ BEINF(δ0, δ1, µ, φ) are

E(Y ) = δ1 + (1− δ0 − δ1)µ and

Var(Y ) = δ1(1− δ1) + (1− δ0 − δ1)
(
V (µ)

1 + φ
+ (δ0 + δ1)µ

2 − 2µδ1

)
,

where V(µ) = µ(1− µ).

5
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Figure 2.2: Beta inflated distribution.

2.4. Reparametrized beta inflated distributions

2.4.1. Zero-One Inflated Beta distribution (ZOIB)

An alternative parametrization of (2.3) was proposed by Liu and Kong (2015) which

redefines the discrete probabilities as

λ0 = δ0 and λ1 =
δ1

1− δ0
,

leading to the probability density function

fY (y | λ0, λ1, µ, φ) =


λ0, y = 0.

(1− λ0)(1− λ1)b(y | µ, φ), y ∈ (0, 1).

(1− λ0)λ1, y = 1,

(2.4)

where P (Y = 0) = λ0, P (Y = 1) = (1 − λ0)λ1, E(Y | Y ∈ (0, 1)) = µ, φ > 0 and

b(y | µ, φ) is the beta distribution as presented in (2.2). This parametrization removes the

constraint δ0 + δ1 ≤ 1 of (2.3), which is a great advantage especially for computational

simulation. From now on, (2.4) will be referred as ZOIB and will be used under the notation

Y ∼ ZOIB(λ0, λ1, µ, φ). Under this parametrization the mean and variance are

E(Y ) = (1− λ0)
(
λ1 + (1− λ1)µ

)
and

Var(Y ) = (1− λ0)

[
λ0λ

2
1 + (1− λ1)

(
V (µ)

1 + φ
+ (λ0 + (1− λ0)λ1)µ2 + λ1

(
1− 2µ(1− λ0)

))]
,

where V(µ) = µ(1− µ).

2.4.2. Beta Inflated mean distribution (BIm)

In order to propose a beta inflated regression which allows to interpret the effect of

regression parameters directly on the mean, Bayes and Valdivieso (2016) put forward a model

considering the following reparametrization

6



γ = δ1 + (1− δ0 − δ1)µ, α0 =
δ0

1− γ
and α1 =

δ1
γ
,

where δ1 < γ < 1− δ0, so γ ∈ (0, 1), α0 ∈ (0, 1) and α1 ∈ (0, 1). From now on, this reparame-

trized beta inflated distribution will be referred as BIm and will be used under the notation

Y ∼ BIm(α0, α1, γ, φ). The mean and variance of this new beta inflated parametrization are

E(Y ) = γ and

Var(Y ) =
(1 + α1φ)

1 + φ
γ +

(
(1− α1)

2φ

(1− α0(1− γ)− α1γ)(1 + φ)
− 1

)
γ2.

The probability density function of Y under the new parametrization can be written as

fY (y | α0, α1, γ, φ) =


α0(1− γ), y = 0.

(1− α0(1− γ)− α1γ)b(y | γ(1−α1)
1−α0(1−γ)−α1γ

, φ), y ∈ (0, 1).

α1γ, y = 1.

(2.5)

Notice that in (2.3) and (2.4) is easier to interpret the conditional mean E(Y | Y ∈ (0, 1))

but not the marginal mean E(Y ). Because of this (2.5) gains relevance, allowing to model

this marginal mean E(Y ) = γ directly.
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Chapter 3

The classification beta inflated mixed regression mo-

del for longitudinal fractional and binary variables

with cluster formation

This chapter presents the definition of the classification beta inflated mixed regression

model for longitudinal fractional and binary variables with cluster formation, the augmen-

ted likelihood function, the augmented posterior distribution, the chosen priors for all the

parameters, the classification of a new subject, the model comparison criteria and the label-

switching problem.

3.1. Model definition

In order to model a mixed fractional variable, a beta inflated regression can be fitted

using either ZOIB (2.4) or BIm (2.5) parametrizations (leaving BEINF (2.3) behind due to

the constraint). It is unknown beforehand which of these two parametrizations will fit better

a given response variable, because according to Carlin and Louis (2008) the deviance infor-

mation criterion (DIC), used in this tesis as the model comparison criteria, is not invariant

to parametrizations (more details about DIC can be found in section 3.4). For example,

the parametrization of the ZOIB regression model proposed by Liu and Kong (2015) is like

building a two-part model, fitting first a categorical model and then a beta regression. The

categorical model consists of three categories, each one represents P(Y = 0), P(Y = 1) and

P(Y ∈ (0, 1)), respectively. The beta regression is only fitted to the third category. Therefore,

the importance of this parametrization lies on the separation of parameter estimation, where

the mean open interval (µ) does not interact with the discrete probabilities at all. On the

other hand, the importance of the parametrization of the BIm regression model proposed

by Bayes and Valdivieso (2016) lies on the easiness of covariate effects interpretation on the

mean and the joint estimation of the discrete probabilities and the marginal mean (γ), which

makes the beta distribution mean to be affected by the discrete probabilities and vice versa.

If repeated measurements of a mixed fractional variable are performed for the same subject, a

beta inflated regression with mixed effects has to be fitted as proposed by Fernandez (2017),

Fernandez et al. (2018) and Di Brisco and Migliorati (2020).

On the other hand, binary variables are often modeled by logit or probit regressions.

Regarding cluster formation, methods such as finite mixture models or Dirichlet process can

be used. Gaskins et al. (2017) proposes to jointly model longitudinal and binary response

variables with cluster formation induced by a Dirichlet process.
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This thesis joins these ideas and proposes two classification beta inflated mixed regression

models for longitudinal fractional and binary variables with cluster formation, using a latent

variable instead of the Dirichlet process to model the clusters.

Let Yi = [Yi1, Yi2, ..., Yini ]
>, i = 1, ..., n be n independent response mixed fractional vector

variables each one observed ni times and let Di, i = 1, ..., n be n independent binary response

variables for the subjects in the study.

The proposed dependent variables are modelled by:

Di |Wi = wi ∼ Bern(πwi
i )

Yij |Wi = wi ∼ ZOIB(λwi
0ij , λ

wi
1ij , µ

wi
ij , φ

wi)

Wi ∼ Cat(p)

(3.1)

and

Di |Wi = wi ∼ Bern(πwi
i )

Yij |Wi = wi ∼ BIm(αwi
0ij , α

wi
1ij , γ

wi
ij , φ

wi)

Wi ∼ Cat(p),

(3.2)

where Wi is an unobserved indicator variable of the cluster wi the subject i belongs to. Wi

follows a categorical distribution, denoted as Wi ∼ Cat(p), with probability of belonging to

each cluster p = [p1, p2, ..., pK ]> (also known as weights in the finite mixture context), given∑K
j=1 pj = 1 and the total number of clusters K; Di is a binary variable that conditional on

the cluster Wi follows a Bernoulli distribution, denoted as Di |Wi = wi ∼ Bern(πwi
i ), which

takes the value of 1 with probability πwi
i ; Yij is the fractional variable for subject i at time

j with conditional mean µwi
ij or marginal mean γwi

ij ; λwi
0ij and αwi

0ij are the parameters related

to the probability that Yij = 0, λ1ij and αwi
1ij are the parameters related to the probability

that Yij = 1 and φwi > 0 is a cluster dependent precision parameter.

The proposed regression models for (3.1) are

gπ(πwi
i ) = z>i β

wi
π

gλ0(λwi
0ij) = x̃>ijβ

wi
λ0

gλ1(λwi
1ij) = x̆>ijβ

wi
λ1

gµ(µwi
ij ) = x>ijβ

wi
µ + bi

and for (3.2) are

gπ(πwi
i ) = z>i β

wi
π

gα0(αwi
0ij) = x̃>ijβ

wi
α0

gα1(αwi
1ij) = x̆>ijβ

wi
α1

gγ(γwi
ij ) = x>ijβ

wi
γ + bi,

where βwi
π is the regression parameter vector (fixed effects) for the covariates zi depending

on the cluster wi the subject i belongs to; βwi
λ0

, βwi
λ1

, βwi
µ , βwi

α0
, βwi

α1
and βwi

γ are the regression

parameter vectors (fixed effects) for the covariate vectors x̃ij , x̆ij and xij , and bi is a random
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intercept (random effects) for the subject i. In this proposed models, the chosen link functions

gπ(.), gλ0(.), gλ1(.), gµ(.), gα0(.), gα1(.) and gγ(.) are the logit function but other functions

could be used.

The random intercepts are assumed to be independent and identically distributed with

normal distribution:

bi ∼ N(0, σ2b ),

where σ2b is the variance of the normal distribution.

To represent a finite mixture, a latent random variable W is used in (3.1) and (3.2).

According to Frühwirth-Schnatter et al. (2019) this implies that first the group (cluster)

w is drawn from 1, 2, ...,K with probabilities p1, p2, ..., pK . Then, given the group w, the

responses y and d are drawn from their respective distributions. In this case, conditional

on W , Y follows the ZOIB or BIm distribution and D follows the Bernoulli distribution.

The latent random variable W is unobserved but its inclusion to the model is important for

modelling dependencies.

According to Gelman et al. (2013) the joint distribution of the observed data Y and D,

the unobserved indicators W = [w1, ..., wn]> and the random intercepts b = [b1, ..., bn]>, con-

ditional on the model parameters θ = [(θw)>, σ2b ,p
>]>, where θw = [βwπ ,β

w
α0
,βwα1

,βwγ , φ
w]>

or θw = [βwπ ,β
w
λ0 ,β

w
λ1 ,β

w
µ , φ

w]> depending on the parametrization, w = 1, ...,K and p =

[p1, p2, ..., pK ], can be written as

P (Y ,D,W , b | θ) =P (Y ,D, b |W ,θ)P (W | θ)

=

n∏
i=1

K∏
k=1

[
pkfDi(di | θ)fYi(yi | θ, bi)

]I(wi=k) × ϕ(bi | 0, σ2b )

=
n∏
i=1

K∏
k=1

[
pkfDi(di | π

wi
i )

ni∏
j=1

fYij (yij | θ, bi)
]I(wi=k) × ϕ(bi | 0, σ2b ),

where Y and D, conditional on the cluster W , are assumed independent. Also ϕ(· | µ, σ2) is

the probability density function of a normal distribution with mean µ and variance σ2, the

indicator function I is defined as

I(wi = k) =

1, wi = k

0, otherwise

and the Bernoulli probability mass function as

fD(d | π) =

1− π, d = 0.

π, d = 1.

Finally, the augmented likelihood functions of models (3.1) and (3.2) are
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L(θ,W , b | Y ,D) =

n∏
i=1

K∏
k=1

[
pkfD(di | πwi

i )

ni∏
j=1

gY (yij | λwi
0ij , λ

wi
1ij , µ

wi
ij , φ

wi , bi)
]I(wi=k)

× ϕ(bi | 0, σ2b )

(3.3)

and

L(θ,W , b | Y ,D) =
n∏
i=1

K∏
k=1

[
pkfD(di | πwi

i )

ni∏
j=1

hY (yij | αwi
0ij , α

wi
1ij , γ

wi
ij , φ

wi , bi)
]I(wi=k)

× ϕ(bi | 0, σ2b ),

(3.4)

respectively, where fDi(di | π
wi
i ) is the probability mass function of the Bernoulli distribu-

tion with parameter πwi
i , gYij (yij | λ

wi
0ij , λ

wi
1ij , µ

wi
ij , φ

wi , bi) is the probability density function

of the ZOIB distribution with parameters λwi
0ij , λ

wi
1ij , µ

wi
ij , φ

wi and random intercept bi, and

hYij (yij | α
wi
0ij , α

wi
1ij , γ

wi
ij , φ

wi , bi) is the probability density function of the BIm distribution

with parameters αwi
0ij , α

wi
1ij , γ

wi
ij , φ

wi and random intercept bi, depending on the cluster wi the

subject i belongs to and with pk as the probability of belonging to the cluster k.

3.2. Bayesian inference

The augmented posterior distribution of θ, W and b can be written as

P (θ,W ,B | Y ,D) ∝ P (Y ,D,W , b | θ)× P (θ),

which can also be expressed as

P (θ,W , b | Y ,D) ∝ L(θ,W , b | Y ,D)× P (θ), (3.5)

where L is the augmented likelihood function and P (θ) is the prior distribution of θ. In

this thesis the parameters in θ are considered independent, so the prior distribution is the

following:

P (θ) = P (σ2b )× P (p)×
K∏
w=1

P (θw),

where

P (θw) = P (βwπ )× P (βwλ0)× P (βwλ1)× P (βwµ )× P (φw)

or

P (θw) = P (βwπ )× P (βwα0
)× P (βwα1

)× P (βwγ )× P (φw),

depending on the parametrization. For each fixed effect vector on each cluster, a multivariate

normal distribution is proposed such that
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βwπ ∼ Na(0,A
w)

βwλ0 ∼ Nb(0,B
w)

βwλ1 ∼ Nc(0,C
w)

βwµ ∼ Nd(0,D
w)

βwα0
∼ Ne(0,E

w)

βwα1
∼ Nf (0,Fw)

βwγ ∼ Ng(0,G
w),

where w = 1, ...,K; a, b, c, d, e, f and g are the number of covariates including an intercept

on the estimation of parameters πwi , λw0ij , λ
w
1ij , µ

w
ij , α

w
0ij , α

w
1ij and γwij , respectively and Aw,

Bw, Cw, Dw, Ew, Fw and Gw are their corresponding covariance matrices.

For the random intercept variance and the precision parameter φw on each cluster, an

inverse gamma distribution is proposed

σ2b ∼ Inv-Gamma(l,m)

φw ∼ Inv-Gamma(qw, rw).

Finally, for the probability of cluster membership, a Dirichlet distribution is proposed

p ∼ Dir(u),

where u = [u1, u2, ..., uK ]> > 0. For all these prior distributions, Aw, Bw, Cw, Dw, Ew,

Fw, Gw, a, b, c, d, e, f , g, l, m, qw, rw, u and K are specified hyperparameters. Note here

that we have to choose K, if one knows the number of clusters beforehand, then K should

be set to that value, but in most cases K is unknown, thus different values of K have to be

tested. Further discussion about the choice of K are included in sections 4.3 and 5.3.

By replacing all the proposed prior distributions, the augmented posterior distributions

for ZOIB and BIm parametrizations become:

P (θ,W , b | Y ,D) ∝
n∏
i=1

K∏
k=1

[
pkfDi(di | π

wi
i )

ni∏
j=1

gYij (yij | λ
wi
0ij , λ

wi
1ij , µ

wi
ij , φ

wi , bi)
]I(wi=k)

× ϕ(bi | 0, σ2b )× IG(σ2b | l,m)×DIR(p | u)

×
K∏
w=1

[
ϕa(β

w
π | 0,A

w)× ϕb(βwλ0
| 0,Bw)× ϕc(βwλ1

| 0,Cw)

× ϕd(βwµ | 0,D
w)× IG(φw | qw, rw)

]
(3.6)

and
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P (θ,W , b | Y ,D) ∝
n∏
i=1

K∏
k=1

[
pkfDi(di | π

wi
i )

ni∏
j=1

hYij (yij | α
wi
0ij , α

wi
1ij , γ

wi
ij , φ

wi , bi)
]I(wi=k)

× ϕ(bi | 0, σ2b )× IG(σ2b | l,m)×DIR(p | u)

×
K∏
w=1

[
ϕa(β

w
π | 0,A

w)× ϕe(βwα0
| 0,Ew)× ϕf (βwα1

| 0,Fw)

× ϕg(βwγ | 0,G
w)× IG(φw | qw, rw)

]
,

(3.7)

respectively for each parametrization, where ϕa(· | µ,A) is the probability density function

of a multivariate normal distribution with mean vector µ and covariance square a×a matrix

A, IG(· | a, b) is the probability density function of an inverse gamma distribution with pa-

rameters a and b and DIR(· | a) is the probability density function of a Dirichlet distribution

with vector parameter a.

Is too complex to get samples from (3.6) or (3.7) with the Gibbs Algorithm because

neither the augmented posterior distribution nor its conditional distributions are associable

to any known statistical distribution. Thus, in order to sample from both augmented posterior

distributions, according to Coro (2017), a Gibbs sampler that uses complex strategies such as

slice sampling, adaptive rejection sampling and Metropolis-Hastings algorithm can be used.

For this reason, JAGS (Just Another Gibbs Sampler) (Plummer (2012)), a software that uses

the complex strategies mentioned before, will be used in this thesis throughout the R package

RJAGS developed by Plummer et al. (2018).

3.3. Classification of new subjects

Assuming that for a new subject its fractional longitudinal trajectory ynew is known but

its binary response variable Dnew is yet unobserved, we can marginally calculate the new

subject’s probability P (Dnew = 1 | ynew,θ) over its cluster membership by using

P (Dnew = 1 | ynew,θ) =
K∑
k=1

P (Dnew = 1 | wnew = k,θ)P (wnew = k | ynew,θ),

due to the Law of total probability. Then, it can be expanded by Bayes’s rule as

P (Dnew = 1 | ynew,θ) =∑K
k=1 P (Dnew = 1 | wnew = k,θ)P (ynew | wnew = k,θ)P (wnew = k | θ)∑K

w=1 P (ynew | wnew = w,θ)P (wnew = w | θ)
.

(3.8)

Notice that P (ynew | wnew = k,θ) is the ZOIB or BIm distribution probability density

function and it must be marginally calculated over its random effect, which can be obtained

by the following integrals:
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P (ynew | wnew = k,θ) =

∫ ∞
−∞

nnew∏
j=1

gYij (yij | λk0ij , λk1ij , µkij , φk, bi)× ϕ(bi | 0, σ2b ) dbi (3.9)

and

P (ynew | wnew = k,θ) =

∫ ∞
−∞

nnew∏
j=1

hYij (yij | αk0ij , αk1ij , γkij , φk, bi)× ϕ(bi | 0, σ2b ) dbi, (3.10)

respectively, where gYij (. | λ0ij , λ1ij , µij , φ, bi) is the ZOIB distribution probability density

function with parameters λ0ij , λ1ij , µij , φ and random intercept bi; hYij (. | α0ij , α1ij , γij , φ, bi)

is the BIm distribution probability density function with parameters α0ij , α1ij , γij , φ and

random intercept bi, and ϕ(. | µ, σ2) is the normal probability density function with mean µ

and variance σ2.

It is complex to solve these integrals analytically and computational limitations arise

when performing integral numerical approximations due to the rigidity of the BIm distribu-

tion. Therefore, for approximating (3.9) and (3.10), nb values of bi are simulated from a normal

distribution with mean µ = 0 and variance σ2 = σ2b , where the value of σ2b varies at each itera-

tion according to the sampled values of the MCMC. Then
∏nnew
j=1 gYij (yij | λk0ij , λk1ij , µkij , φk, bi)

and
∏nnew
j=1 hYij (yij | αk0ij , αk1ij , γkij , φk, bi) are evaluated at each simulated bi value and the

mean of the evaluated functions are computed.

Since θ is not a fixed value, the default probabilities are approximated at each MCMC

iteration m. Then, the mean is calculated as

P (Dnew = 1 | Ynew,θ) =

1

M

M∑
m=1

∑K
k=1 P (Dnew = 1 | wnew = k,θm)P (Ynew | wnew = k,θm)P (wnew = k | θm)∑K

w=1 P (Ynew | wnew = w,θm)P (wnew = w | θm)
,

(3.11)

where M is the total number of MCMC samples.

3.4. Model comparison criteria

Comparisons of different criteria have to be made to determine which is the best model.

Goodness of fit will determine which model fits better the given data and, since we are dealing

with classification models, the prediction power will also be compared.

3.4.1. Goodness of fit

Most of the goodness of fit comparison criteria for models obtained by MCMC simulation

are based on the concept of deviance D(.), which is defined as:

D(ν) = −2log
(
L(ν | y)

)
+ C, (3.12)

where L is the likelihood function of the augmented posterior distribution, conditional on the
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observed data, y and C is a constant related to the saturated model, but cancels out when

doing model comparisons.

Using this deviance, Spiegelhalter et al. (2002) proposed a model comparison criteria

named deviance information criterion (DIC), defined as:

DIC = D(ν) + pD, (3.13)

where pD = D(ν) − D(ν̄) is the number of effective parameters. For a MCMC, D(ν) is

the mean of the deviance evaluated at each sampled value of ν and can be computed as

D(ν) = (1/M)
∑M

m=1D(νm), while D(ν̄) is the deviance evaluated at the expectation of ν.

In this case, ν = [θ,W , b] and the observed data are y and d, so the likelihoods in (3.12)

are the ones defined in (3.3) and (3.4). The lower the model DIC is, the better fit it indicates,

so the model with the lowest value on this criteria will be considered as the best.

3.4.2. Predictive power

For the predictive power of the model, the well known area under the receiver operating

characteristic (ROC) curve (AUC) is used. This metric will measure how good is the model

for making out-of-sample predictions.

3.5. Label-switching problem

As stated by Marin and Robert (2007), an important feature of a mixture model is

that it is invariant under permutations of the indices of the components. This means that

the component parameters are not identifiable, in the sense that labels can be exchanged

between them without altering the result, for example, considering a two cluster case, the

parameter vector θ> = [(θ1)>, (θ2)>]>, will lead to the same result if the values of the cluster

parameter vectors θ1 and θ2 are exchanged, giving rise to the label-switching problem.

Marin et al. (2005) proposes a solution to overcome this problem when dealing with

known number of components (which is our case). This solution consists on reordering the

labels according to the permutation that gives the maximum a posteriori (MAP) in our

MCMC sample. For example, given the total number of samples M of the MCMC, the MAP

approximation will be given in the iteration m∗ such that

m∗ = arg maxm=1,...,M

[
P (θm,Wm, bm | Y ,D)

]
,

where P (θm,Wm, bm | Y ,D) is the posterior distribution evaluated with the m-sampled

parameters and the observed data Y and D. Thus, according to Marin and Robert (2007)

the approximate MAP estimate will act as a pivot since it gives a good approximation to a

mode of the posterior distribution and we can reorder the other iterations with respect to

this mode.

This method is known as the pivotal reordering algorithm (PRA) and will be used to

solve the identifiability problem throughout the R package label.switching created by Papas-

tamoulis (2015).
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Chapter 4

Simulation study

This chapter presents a simulation study for parameter recovery, goodness of fit, predictive

power and cluster recovery. The classification beta inflated regressions with cluster formation

presented in Chapter 3 compete against each other and against the BTran model, presented

later in this chapter.

4.1. Generation of data

For this simulation study 50 datasets are generated, where each dataset consist of 400

subjects and each subject has 6 longitudinal observations, giving a total of 2400 observations

(the same number as the application to real data in Chapter 5). Different combinations of

number of subjects and longitudinal observations where also considered, the results can be

found in Appendix A.

For the fixed effects associated with the mixed fractional response Y a tridimensional

array X is constructed:

X =


x1,1 x1,2 . . . x1,6

x2,1 x2,2 . . . x2,6

...
...

. . .
...

x400,1 x400,2 . . . x400,6

 ,
where each xi,j is a vector of length 3 such that:

xi,j =

 1

j

xi,j,3

 .
The first element of xi,j represents the intercept and is constant and equal to 1, the second

element j represents the time of the measurement and the third element xi,j,3 is sampled from

a uniform distribution xi,j,3 ∼ U(−1.5, 1.5) and represents a uniform distributed covariate

related to the subject i at time j. For the fixed effects associated with binary response D a

matrix Z is constructed:

Z =


1 z1,2

1 z2,2
...

...

1 z400,2

 ,
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where zi,1 represents the intercept and is constant and equal to 1 and zi,2 is sampled from a

uniform distribution zi,2 ∼ U(−1.5, 1.5). Since the random effects are just intercepts, there

is no need of a design matrix for them in this model.

4.2. Parameter recovery

For the parameter recovery in the simulation study, the number of clusters is set to

2, with probabilities of belonging to each cluster p1 = 0.65 and p2 = 0.35. So a vector

w = [w1, ..., w400] is generated with 400 samples of W ∼ Cat(p1, p2). The parameter πw

is modelled depending on two covariates and λw0 , λw1 , µw, αw0 , αw1 and γw are modelled

depending on three covariates each. The fixed effects coefficients and the variances for the

random intercepts selected for this simulation study are shown on Table 4.1.

Parameter

(Cluster 1) Value

Parameter

(Cluster 2) Value

β1
π [-0.50, 2.00]> β2

π [-0.50, 1.00]>

β1
λ0 [-2.00, -0.70, 0.70]> β2

λ0 [-1.25, 1.00, -0.90]>

β1
λ1 [-2.00, 0.70, 0.50]> β2

λ1 [-1.50, -0.70, 0.90]>

β1
µ [-0.75, 0.90, 0.80]> β2

µ [-0.25, -0.80, 0.85]>

β1
α0

[-0.50, -0.80, 1.20]> β2
α0

[-1.10, 0.85, -1.50]>

β1
α1

[-1.10, 0.50, 0.60]> β2
α1

[-0.90, -0.50, 1.00]>

β1
γ [-0.80, 0.90, 0.80]> β2

γ [-0.30, -0.80, 0.85]>

Table 4.1: Parameter values for the simulation study

The 400 random intercepts bi are sampled from a normal distribution with mean 0 and

variance σ2b = 0.5. The precision parameters φw are set to 50 for both clusters, so we will

use just φ to simplify notation. Finally, the 400 binary responses for the 400 subjects are

sampled from

Di ∼ Bern(πwi
i )

and 6 longitudinal observations for each of the 400 subjects are sampled from

Yij ∼ ZOIB(λwi
0ij , λ

wi
1ij , µ

wi
ij , φ)

and again from

Yij ∼ BIm(αwi
0ij , α

wi
1ij , γ

wi
ij , φ),

taking into account the cluster wi of the ith element and where
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logit(πwi
i ) = z>i β

wi
π

logit(λwi
0ij) = x>

ijβ
wi
λ0

logit(λwi
1ij) = x>

ijβ
wi
λ1

logit(µwi
ij ) = x>

ijβ
wi
µ + bi

logit(αwi
0ij) = x>

ijβ
wi
α0

logit(αwi
1ij) = x>

ijβ
wi
α1

logit(γwi
ij ) = x>

ijβ
wi
γ + bi.

In order to visualize the simulated data, 200 subject responses are sampled from a random

ZOIB dataset and a random BIm dataset and are plotted without cluster information in

Figure 4.1. The ZOIB sampled responses are plotted by cluster in Figure 4.2 and the BIm

sampled responses are plotted by cluster in Figure 4.3. The spaghetti plots in Figure 4.1 does

not show a clear difference between the simulated datasets but shows us how the data looks

like when is given to the model, with no easily identifiable pattern at first sight. The spaghetti

plots in Figures 4.2 and 4.3 shows us how the models are expected to split the subjects into

different clusters considering the similarities of their response variable y trajectory and its

binary value d. Table 4.2 shows the frequency of zeros, ones and values in the open (0,1)

interval of the simulated y responses by model and cluster.

Figure 4.1: Spaghetti plots of longitudinal trajectory from a ZOIB and a BIm simulated dataset with
200 sampled subjects each. The red color represents subjects with d = 1, while black represents
subjects with d = 0.
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Figure 4.2: Spaghetti plots of longitudinal trajectory by cluster from a ZOIB simulated dataset with
a total of 200 sampled subjects. The blue line is the conditional mean µ at each time. The red color
represents subjects with d = 1, while black represents subjects with d = 0.

Figure 4.3: Spaghetti plots of longitudinal trajectory by cluster from a BIm simulated dataset with
a total of 200 sampled subjects. The blue line is the mean γ at each time. The red color represents
subjects with d = 1, while black represents subjects with d = 0.
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Model Cluster Value Frequency %

ZOIB

1

0 18 %

1 16 %

(0,1) 66 %

2

0 33 %

1 21 %

(0,1) 46 %

BIm

1

0 29 %

1 15 %

(0,1) 56 %

2

0 26 %

1 20 %

(0,1) 54 %

Table 4.2: Frequency of zeros, ones and values in the open (0,1) interval of the simulated y responses

Regarding the estimation, the prior distributions are selected to be non-informative, thus

all the fixed coefficients are set with the following priors

βwπ ∼ N2(0, 104I2)

βwλ0
∼ N3(0, 104I3)

βwλ1
∼ N3(0, 104I3)

βwµ ∼ N3(0, 104I3)

βwα0
∼ N3(0, 104I3)

βwα1
∼ N3(0, 104I3)

βwγ ∼ N3(0, 104I3),

the variance of the random intercepts and φ are set with

σ2b ∼ Inv-Gamma(0.001, 0.001)

φ ∼ Inv-Gamma(0.001, 0.001),

and the probabilities of cluster membership p are set with

p ∼ Dir(1, 1).

The estimation was performed using JAGS software in R through the package RJAGS,

discarding the first 1000 iterations and sampling the next 3000 iterations considering a thin-

ning interval equal to 6. The parameter recovery results for ZOIB and BIm models are shown

in Tables 4.3 and 4.4, respectively, where it can be seen that all parameters’ true values lie in
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the credible intervals of their corresponding parameter estimation and that point estimation

is really close to the real value.

Cluster Parameter True value Mean P2.5 % P97.5 %

1

β1λ01 -2.00 -2.01022 -2.16033 -1.82350

β1λ02 -0.70 -0.70251 -0.77599 -0.64327

β1λ03 0.70 0.70149 0.54973 0.82874

β1λ11 -2.00 -2.04531 -2.20819 -1.87471

β1λ12 0.70 0.70438 0.63239 0.78832

β1λ13 0.50 0.50431 0.38139 0.62899

β1µ1 -0.75 -0.74537 -0.83261 -0.68272

β1µ2 0.90 0.89989 0.88872 0.91368

β1µ3 0.80 0.80244 0.78527 0.82065

β1π1 -0.55 -0.54264 -0.82723 -0.34246

β1π2 2.10 2.10126 1.61484 2.79065

p1 0.65 0.65937 0.62094 0.69313

σ2b 0.50 0.49958 0.46174 0.52034

φ 50.00 50.15587 46.17712 52.80843

2

β2λ01 -1.25 -1.24258 -1.52979 -1.03545

β2λ02 1.00 1.00417 0.90143 1.11648

β2λ03 -0.90 -0.91976 -1.07734 -0.73711

β2λ11 -1.50 -1.52201 -1.87961 -1.30485

β2λ12 -0.70 -0.69285 -0.86827 -0.55123

β2λ13 0.90 0.93622 0.73304 1.21032

β2µ1 -0.25 -0.26100 -0.37708 -0.11767

β2µ2 -0.80 -0.80130 -0.82218 -0.77675

β2µ3 0.85 0.85151 0.81910 0.88458

β2π1 -0.50 -0.51421 -0.82293 -0.25689

β2π2 1.00 0.96948 0.58919 1.29483

p2 0.35 0.34063 0.30687 0.37906

σ2b 0.50 0.49958 0.46174 0.52034

φ 50.00 50.15587 46.17712 52.80843

Table 4.3: Parameter recovery results for the ZOIB model.
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Cluster Parameter True value Mean P2.5 % P97.5 %

1

β1α01
0.50 -0.51784 -0.71421 -0.34385

β1α02
-0.80 –0.80392 -0.88257 -0.73581

β1α03
1.20 1.18153 1.13258 1.23817

β1α11
-1.15 -1.14838 -1.31197 -0.98981

β1α12
0.50 0.51228 0.43984 0.57756

β1α13
0.60 0.60049 0.48017 0.74298

β1γ1 -0.80 -0.79418 -0.87281 -0.71445

β1γ2 0.90 0.89958 0.86483 0.93633

β1γ3 0.80 0.80662 0.76178 0.86482

β1π1 -0.50 -0.48314 -0.90162 -0.13216

β1π2 2.00 2.05952 1.70876 2.56960

p1 0.65 0.65007 0.60689 0.68786

σ2b 0.50 0.48275 0.46068 0.50718

φ 50.00 49.75871 46.19366 53.16776

2

β2α01
-1.10 -1.11347 -1.34095 -0.93378

β2α02
0.85 0.85772 0.74302 0.96874

β2α03
-1.50 -1.53203 -1.68264 -1.32170

β2α11
-1.00 -0.95881 -1.24728 -0.74868

β2α12
-0.50 -0.51789 -0.61756 -0.39027

β2α13
1.00 1.05495 0.88531 1.24424

β2γ1 -0.30 -0.29168 -0.40016 -0.19491

β2γ2 -0.80 -0.80136 -0.85558 -0.75881

β2γ3 0.85 0.86699 0.74121 0.94757

β2π1 -0.45 -0.44694 -0.76779 -0.19615

β2π2 1.10 1.12601 0.79993 1.45874

p2 0.35 0.34993 0.31214 0.39311

σ2b 0.50 0.48275 0.46068 0.50718

φ 50.00 49.75871 46.19366 53.16776

Table 4.4: Parameter recovery results for the BIm model.

This parameter recovery exercise is not only aiming for the proposed models to correctly

estimate the parameters but also to estimate them with less bias and variance than a simpli-
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fied version of the model. For example, Smithson and Verkuilen (2006) proposed transforming

the fractional response variable y as y′ = [y(n − 1) + 1/2]/n to constrain y′ to the open in-

terval (0, 1), where n is the size of the population. This transformation eliminates the need

of zero-one inflation, thus the model can be reduced to

Di |Wi = wi ∼ Bern(πwi
i )

Y ′ij |Wi = wi ∼ Beta(µwi
ij , φ

wi)

Wi ∼ Cat(p),

(4.1)

where

logit(πwi
i ) = z>i β

wi
π

logit(µwi
ij ) = x>

ijβ
wi
µ + bi.

From now on (4.1) will be referred as BTran model.

The parameter recovery results on this simulation study for the BTran model applied on

the ZOIB and BIm simulated datasets are shown in Tables 4.5 and 4.6, respectively, where

it can be seen that no credible interval of the BTran estimation contains the true value, this

indicates that BTran model induces high bias to the estimation. The precision parameter φ

is the most affected parameter by this transformation. Since the inflation in 0 and 1 does

not exists in the BTran model, this causes the beta distribution to become U-shaped (or

L-shaped when inflation is just in 0 or J-shaped when inflation is just in 1) and the precision

decreases drastically as can be seen in Tables 4.5 and 4.6, inducing bias in all other parameter

estimations.

Another parameter recovery studies were conducted for different scenarios, varying the

population size n, the number of longitudinal observations of each subject and the parameter

true values. Results are shown in Appendix A in Tables A.1 and A.2. The results indicate

that ZOIB and BIm estimations outperform BTran estimations in bias and length of the

credible interval when dealing with parameters related to the fractional response variable Y ,

regardless of the population size. For the parameters related to the binary response variable

D, there is not a clear difference in bias or length of credible intervals between the proposed

models and the BTran model. We can conclude that doing the BTran transformation only

affects the estimation of the parameters related to the fractional response Y inducing bias

because of the change in the precision parameter φ.

4.3. Goodness of fit

Various ZOIB simulated datasets with different population size n were fitted by the ZOIB

and BIm models. Table 4.7 shows that, for every value of n, ZOIB model outperformed BIm

model in terms of DIC, indicating that ZOIB model fits better a ZOIB simulated dataset. In

the same way, various BIm simulated datasets with different population size n were fitted by

the BIm and ZOIB models. Table 4.8 shows that, for every value of n, BIm model outper-

formed ZOIB model in terms of DIC, indicating that BIm model fits better a BIm simulated

dataset.
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Cluster Parameter True value Mean P2.5 % P97.5 %

1

β1µ1 -0.75 -0.25009 -0.29099 -0.21039

β1µ2 0.90 0.57672 0.54712 0.61052

β1µ3 0.80 0.15226 0.10857 0.19516

β1π1 -0.55 -0.54215 -0.83240 -0.34592

β1π2 2.10 2.09944 1.62850 2.77009

p1 0.65 0.65416 0.61486 0.68901

σ2b 0.50 0.00192 0.00051 0.00591

φ 50.00 1.08231 1.02166 1.16681

2

β2µ1 -0.25 -0.20746 -0.28400 -0.11026

β2µ2 -0.80 -0.62638 -0.65811 -0.59183

β2µ3 0.85 0.57959 0.53600 0.62670

β2π1 -0.50 -0.51508 -0.82826 -0.25068

β2π2 1.00 0.97894 0.58493 1.27076

p2 0.35 0.34584 0.31099 0.38514

σ2b 0.50 0.00192 0.00051 0.00591

φ 50.00 1.08231 1.02166 1.16681

Table 4.5: Parameter recovery results for the BTran model applied on the ZOIB datasets.

Cluster Parameter True value Mean P2.5 % P97.5 %

1

β1µ1 -0.80 -0.39860 -0.44074 -0.34905

β1µ2 0.90 0.56650 0.54105 0.60227

β1µ3 0.80 0.25003 0.20158 0.29625

β1π1 -0.50 -0.49085 -0.90808 -0.15779

β1π2 2.00 2.07109 1.72739 2.54600

p1 0.65 0.64989 0.60285 0.68825

σ2b 0.50 0.00854 0.00091 0.02932

φ 50.00 1.04928 1.00410 1.11807

2

β2µ1 -0.30 -0.13482 -0.20560 -0.07330

β2µ2 -0.80 -0.51788 -0.54762 -0.47545

β2µ3 0.85 0.66568 0.58172 0.74795

β2π1 -0.45 -0.44103 -0.75414 -0.17656

β2π2 1.10 1.13380 0.80146 1.50725

p2 0.35 0.35011 0.31175 0.39715

σ2b 0.50 0.00854 0.00091 0.02932

φ 50.00 1.04928 1.00410 1.11807

Table 4.6: Parameter recovery results for the BTran model applied on the BIm datasets.
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n DIC (ZOIB) DIC (BIm)

50

100

200

400

242

295

522

289

252

301

566

413

Table 4.7: DIC comparison between ZOIB and BIm models for different population sizes of ZOIB
simulated dataset.

n DIC (BIm) DIC (ZOIB)

50

100

200

400

103

−254

1

−1024

137

−85

101

−43

Table 4.8: DIC comparison between BIm and ZOIB models for different population sizes of BIm
simulated dataset.

These results might seem obvious but they show that each model outperforms the other

in the scenario that corresponds to it. Also, if the distribution of the data is unknown befo-

rehand, the best fit can help us understand if the discrete probabilities are related or not to

the conditional mean.

4.4. Predictive Power

For the predictive power of the models, 50 datasets consisting on 50 subjects each with 6

longitudinal observations are generated from the true models in order to make out-of-sample

predictions and obtain the area under the operating characteristic (ROC) curve (AUC) of

each model.

Since binary response variables are often modeled by a logistic regression (LR), it is also

included for the predictive power comparison. As stated in Chapter 1, the logistic regression

model assumes that the observations are independent, but the longitudinal information Y is

not independent since it is related to the same subject.

Morrison (2010) shows that incorporating trends of longitudinal information or time-series

as covariates helps improving a classification model. Thus, in order to not lose information

about the longitudinal trajectory of the subjects in the application of the LR model, two

extra covariates related to Y have been included in the Z matrix. This covariates focus on

recovering the trend of the longitudinal fractional variable Y in just one number, a simpler

version of what Morrison (2010) proposed but with the same objective. The first extra co-

variate zi,3 just considers the first (t = 1) and the final (t = 6) value of Y and consists on

assigning the value of 1 if the final value is larger than the first, if the final value is equal to

the first 0 is assigned and if the final value is lower than the first -1 is assigned, as can be

seen in (4.2).
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zi,3 =


1, yi,6 > yi,1.

0, yi,6 = yi,1.

−1, yi,6 < yi,1.

(4.2)

The second extra covariate zi,4 is the difference between the number of months Y went

up and the number of months Y went down, this is, if a subject reduces its Y value each

month on the 6 periods, zi,4 will take -5 as the corresponding value, as can be seen in (4.3).

zi,4 =

5∑
j=1

I(yi,j+1 > yi,j)−
5∑
j=1

I(yi,j+1 < yi,j), (4.3)

where

I(yi,j+1 > yi,j) =

1, yi,j+1 > yi,j

0, otherwise

and

I(yi,j+1 < yi,j) =

1, yi,j+1 < yi,j

0, otherwise.

Finally, three logistic regressions are included, the first one does not considers the lon-

gitudinal Y information and is labelled as LR (i), the second one considers the covariates

explained in (4.2) and (4.3) and is labelled as LR (ii) and the third one considers each

longitudinal observation as a covariate and is labelled as LR (iii).

The probability of default is calculated using (3.11) and the results of predictive power

simulation study are shown in Tables 4.9 and 4.10, where each AUC value within sample and

out of sample achieved by each model is presented.

Model
Within Sample Out of Sample

AUC Mean (AUC) SD (AUC)

ZOIB 0.8302 0.8569 0.0609

BIm 0.8302 0.8569 0.0609

BTran 0.8166 0.8569 0.0608

LR (i) 0.7114 0.5780 0.0576

LR (ii) 0.8693 0.7658 0.0644

LR (iii) 0.9355 0.7955 0.0556

Table 4.9: AUC comparison between ZOIB, BIm, BTran and logistic regression models for the ZOIB
simuated datasets.
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Model
Within Sample Out of Sample

AUC Mean (AUC) SD (AUC)

BIm 0.8268 0.8468 0.0594

ZOIB 0.8149 0.8466 0.0602

BTran 0.8217 0.8459 0.0595

LR (i) 0.6248 0.5630 0.0456

LR (ii) 0.8183 0.7325 0.0885

LR (iii) 0.9457 0.7990 0.0705

Table 4.10: AUC comparison between BIm, ZOIB, BTran and logistic regression models for the BIm
simulated datasets.

We can see in Tables 4.9 and 4.10 that the LR (iii) model outperforms the other models

in terms of within sample AUC, but the out-of-sample AUC clearly shows it is an over-

fitted model. There is not a clear difference in out-of-sample predictive power between the

ZOIB, BIm and BTran models, but they outperform the three logistics regressions, showing

that the logistic regression model is not competitive enough because of how the information

of the longitudinal variable Y is included and that LR (i), the one that does not includes

longitudinal information, clearly performs much worse than the others.

4.5. Cluster recovery

It is also a matter of interest to know if these implemented models can recover the cluster

where each subject truly belongs. Table 4.11 shows the cluster accuracy.
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Model n

Cluster accuracy

(ZOIB dataset)

Cluster accuracy

(BIm dataset)

ZOIB

50 1.000 0.980

100 1.000 1.000

200 1.000 1.000

400 1.000 0.983

BIm

50 1.000 0.980

100 1.000 1.000

200 1.000 1.000

400 1.000 0.995

BTran

50 0.960 0.980

100 0.990 0.950

200 0.965 0.975

400 0.958 0.938

LR (i)

50 0.760 0.760

100 0.700 0.700

200 0.775 0.775

400 0.698 0.698

LR (ii)

50 0.660 0.520

100 0.560 0.620

200 0.525 0.510

400 0.570 0.663

LR (iii)

50 0.580 0.620

100 0.560 0.630

200 0.630 0.500

400 0.650 0.650

Table 4.11: Cluster accuracy comparison between ZOIB, BIm, BTran and logistic regression models
for the ZOIB and BIm generated datasets.

Table 4.11 clearly shows that ZOIB, BIm and BTran models can correctly assign the

subject to the real cluster with high accuracy (near or equal to 1), contrary to what is shown

by the logistic regressions.

The code of the models (ZOIB, BIm, BTran and LR) written in JAGS can be found in

Appendix D.
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Chapter 5

Application to real data

This chapter presents the results obtained from the application of the proposed models

to real data. The classification beta inflated mixed regression models with cluster formation

presented in Chapter 3 are compared between them on a credit card (CC) portfolio of a

Peruvian bank in order to classify the bank’s clients according to its credit card utilization

ratio and its probability of default. A brief discussion of the results is at the end of the

chapter.

5.1. Data

The application dataset consists on a random selection of 100 default clients and 100

non-default clients from a Peruvian bank with one credit card with no change in its credit

line between January 2017 and December 2017 (12 logitudinal observations per client). Table

5.1 shows how this dataset looks like, where the two dependent variables are the credit card

utilization ratio (CCUR), a continuous variable bounded to the interval [0, 1] which represents

the percentage of the credit line used rounded off to two decimal places (denoted as Y in

previous sections), and Default, a binary variable that represents if the client fails to pay

its debt (1) or not (0) within the next 12 months of the observation period (denoted as D

in previous sections). The independent variables are the time, represented by Month-Year, a

binary variable that indicates if the client had a Cash Advance in the month (1) or not (0),

the number of months since the origination of the credit card and the credit line of the credit

card in Peruvian currency nuevos soles (S/).

This information was obtained the last day of each month, from January 2017 to December

2017. Then, these clients were observed until December 2018 to see if they failed to pay its

debt (default) or not. Table 5.2 shows the distribution of zeros, ones and values in the open

(0,1) interval of the 2400 real CCUR responses by month, where it can be seen that the

proportion of clients each month in the extremes (0 and 1) is significant.
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Client
Month-

Year
Cash

Advance
Months
with CC

Credit
line (S/)

CCUR Default

1 Jan-17 0 15 1000.00 0.11 0

1 Feb-17 1 16 1000.00 0.62 0
...

...
...

...
...

...
...

100 Nov-17 0 24 5500.00 0.55 0

100 Dec-17 0 25 5500.00 0.00 0

101 Jan-17 1 1 2350.00 0.14 1

101 Feb-17 0 2 2350.00 0.51 1
...

...
...

...
...

...
...

200 Nov-17 0 19 800.00 0.33 1

200 Dec-17 1 20 800.00 1.00 1

Table 5.1: Real dataset structure.

Month
Frequency of values

0 1 (0,1)

Jan-17

Feb-17

Mar-17

Apr-17

May-17

Jun-17

Jul-17

Aug-17

Sep-17

Oct-17

Nov-17

Dec-17

33.5 %

31.0 %

34.0 %

35. %

25.5 %

25.0 %

26.5 %

31.0 %

29.0 %

27.5 %

28.0 %

29.5 %

9.5 %

9.5 %

6.5 %

8.5 %

7.5 %

9.5 %

11.0 %

9.5 %

6.0 %

8.5 %

11.5 %

8.5 %

57.0 %

59.5 %

59.5 %

56.5 %

67.5 %

65.5 %

62.5 %

59.5 %

65.0 %

64.0 %

60.5 %

62.0 %

Table 5.2: Frequency of zeros, ones and values in the open (0,1) interval of the real CCUR responses
by month.

In order to explore the variables in the dataset, a summary of the mean and median value

of each variable grouped by the default status of the clients is shown in Table 5.3. An early

interpretation of the variables can be made with the information provided by Table 5.3, for

example, a client that defaults has in average 2.5 times more months with cash advance than

a client that does not default, this is an expected behavior in banking because cash advance

is an expensive transaction and it is usually made by clients with need of liquidity; as for
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the number of months with CC, the clients that do not default have an ‘older’ credit card

because they must have a longer credit history being a good payer; as for the credit line, the

clients that do not default have a larger credit line because it is expected that a less risky

client can handle a higher debt, therefore the bank offers them a larger line and finally; for

the credit card utilization ratio, the clients that default have a greather CCUR because it is

expected for this clients to expend more of their credit lines as they start having financial

problems.

Variable
Default

0 1

Number of months with cash advance
Mean

Median

0.06

0.00

0.16

0.00

Number of months with CC
Mean

Median

55

40

42

35

Credit line (S/)
Mean

Median

10,373

5,850

7,345

3,300

CCUR
Mean

Median

0.30

0.11

0.35

0.18

Table 5.3: Mean and median of each independent variable grouped by default status.

It is expected that this relationship between dependent and independent variables shown

in Table 5.3 will be manifested in the regression fixed effects associated with each covariate

presented in the following sections.

5.2. Model Structure

For the fixed effects associated with the mixed fractional response CCUR, the credit card

utilization ratio, we consider the covariates time (j), j = 1, ..., 12, a binary variable that

indicates if the client had a cash advance in the month (1) or not (0) (cash adv month), the

mean number of years the client had its credit card (mean age cc) and the credit line of the

credit card (credit line) in thousands. The covariates (cash adv month) and (credit line)

can be obtained directly from Table 5.1 while the covariate (mean age cc) is computed by

client as the mean of the column Months with CC from Table 5.1 divided by 12 (to take it

to the dimension of years).

For the fixed effects associated with the default response D we consider the covaria-

te number of months with cash advances made during the twelve months of observation

(cash adv total), the mean number of years the client had its credit card (mean age cc) and

the credit line of the credit card (credit line) in thousands. The covariate (credit line) can

be obtained directly from Table 5.1, the covariate (mean age cc) is computed by client as

the mean of the column Months with CC from Table 5.1 divided by 12 (to take it to the

dimension of years) and the covariate (cash adv total) is calculated as the sum by client of

31



the column Cash Advance from Table 5.1.

The regression structure presented on (5.1) allows us to model the probability of de-

fault for each client (π) and the parameters associated with the credit card utilization ratio

(α0, α1, γ) for each client at each time.

logit(πwi
i ) =βwi

π0 + βwi
π1 · cash adv total

+ βwi
π2 ·mean age cc+ βwi

π3 · credit line

logit(αwi
0ij) =βwi

α00
+ βwi

α01
· j + βwi

α02
· cash adv month

+ βwi
α03
·mean age cc+ βwi

α04
· credit line

logit(αwi
1ij) =βwi

α10
+ βwi

α11
· j + βwi

α12
· cash adv month

+ βwi
α13
·mean age cc+ βwi

α14
· credit line

logit(γwi
ij ) =βwi

γ0 + βwi
γ1 · j + βwi

γ2 · cash adv month

+ βwi
γ3 ·mean age cc+ βwi

γ4 · credit line+ bi.

(5.1)

Considering just one cluster, without loss of generality, the regression structure (5.1)

assumes that CCUR mean (γ) can only rise (βγ1 > 0), fall (βγ1 < 0) or stay constant

(βγ1 = 0) in time, with an extra fluctuation given by βγ2 (expected to be positive). However,

this is not necessary the behavior of the clients, in Perú its common to have extra expenses

on February and March due to the beginning of the academic year and on December due to

Christmas celebration. This particular effects cannot be taken in consideration by (5.1), thus

two additional regression structures are considered: dummy variables for each time period

and polynomial spline basis covariates (spline basis) with 5 degrees of freedom, shown in

equations (5.2) and (5.3) respectively.

The incorporation of dummy variables act as a modifier of the intercept βγ0 at each time

j, allowing us to recover any situational effect to the mean γ in a specific month.
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logit(πwi
i ) =βwi

π0 + βwi
π1 · cash adv total

+ βwi
π2 ·mean age cc+ βwi

π3 · credit line

logit(αwi
0ij) =βwi

α00
+ βwi

α01
· I(j = 1) + βwi

α02
· I(j = 2)

+ βwi
α03
· I(j = 3) + βwi

α04
· I(j = 4) + βwi

α05
· I(j = 5)

+ βwi
α06
· I(j = 6) + βwi

α07
· I(j = 7) + βwi

α08
· I(j = 8)

+ βwi
α09
· I(j = 9) + βwi

α010
· I(j = 10) + βwi

α011
· I(j = 11)

+ βwi
α012
· cash adv month+ βwi

α013
·mean age cc

+ βwi
α014
· credit line

logit(αwi
1ij) =βwi

α10
+ βwi

α11
· I(j = 1) + βwi

α12
· I(j = 2)

+ βwi
α13
· I(j = 3) + βwi

α14
· I(j = 4) + βwi

α15
· I(j = 5)

+ βwi
α16
· I(j = 6) + βwi

α17
· I(j = 7) + βwi

α18
· I(j = 8)

+ βwi
α19
· I(j = 9) + βwi

α110
· I(j = 10) + βwi

α111
· I(j = 11)

+ βwi
α112
· cash adv month+ βwi

α113
·mean age cc

+ βwi
α114
· credit line

logit(γwi
ij ) =βwi

γ0 + βwi
γ1 · I(j = 1) + βwi

γ2 · I(j = 2)

+ βwi
γ3 · I(j = 3) + βwi

γ4 · I(j = 4) + βwi
γ5 · I(j = 5)

+ βwi
γ6 · I(j = 6) + βwi

γ7 · I(j = 7) + βwi
γ8 · I(j = 8)

+ βwi
γ9 · I(j = 9) + βwi

γ10 · I(j = 10) + βwi
γ11 · I(j = 11)

+ βwi
γ12 · cash adv month+ βwi

γ13 ·mean age cc

+ βwi
γ14 · credit line+ bi,

(5.2)

where

I(j = k) =

1, j = k

0, otherwise,

and j can take the values j = 1, ..., 12.

On the other hand, the incorporation of spline basis covariates replaces the time j variable

but adds a 5 degree polynomial flexibility to it, allowing the CCUR mean γ to have curvature

with up to 4 turning points.
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logit(πwi
i ) =βwi

π0 + βwi
π1 · cash adv total

+ βwi
π2 ·mean age cc+ βwi

π3 · credit line

logit(αwi
0ij) =βwi

α00
+ βwi

α01
· spline basis1j + βwi

α02
· spline basis2j

+ βwi
α03
· spline basis3j + βwi

α04
· spline basis4j

+ βwi
α05
· spline basis5j + βwi

α06
· cash adv month

+ βwi
α07
·mean age cc+ βwi

α08
· credit line

logit(αwi
1ij) =βwi

α10
+ βwi

α11
· spline basis1j + βwi

α12
· spline basis2j

+ βwi
α13
· spline basis3j + βwi

α14
· spline basis4j

+ βwi
α15
· spline basis5j + βwi

α16
· cash adv month

+ βwi
α17
·mean age cc+ βwi

α18
· credit line

logit(γwi
ij ) =βwi

γ0 + βwi
γ1 · spline basis1j + βwi

γ2 · spline basis2j
+ βwi

γ3 · spline basis3j + βwi
γ4 · spline basis4j

+ βwi
γ5 · spline basis5j + βwi

γ6 · cash adv month

+ βwi
γ7 ·mean age cc+ βwi

γ8 · credit line+ bi.

(5.3)

where j can take the values j = 1, ..., 12.

From now on we will refer to (5.1) as linear regression, (5.2) as dummy regression and

(5.3) as spline regression. These 3 regression structures are also replicated on the ZOIB model

for the parameters π, λ0, λ1 and µ. The complete regression structures for the ZOIB model

can be seen in Appendix B.

5.3. Results

We partition the real data into two 50/50 sets using stratified sampling based on the

default status to have a training and a test dataset with equal number of default subjects.

The BIm and ZOIB models presented in Chapter 3 are applied to the training dataset in

order to obtain the best fit by comparing the DIC of each model. Then, the trained models

are applied to the test dataset for making out-of-sample predictions in order to obtain the

best predictive power according to the AUC achieved by each model.

5.3.1. Training set

The BIm and ZOIB models are applied to the training dataset using JAGS software in R

through the package RJAGS, discarting the first 1000 iterations and sampling the next 2000

iterations considering a thinning interval equal to 5. Multiple values of cluster number (K)

and different regression structures (linear (5.1), dummy (5.2) and spline (5.3)) were used.

The number of clusters (K) was iterated up to 10 but just 5 or 6 clusters had a subject in

it, thus we set the maximum of clusters for this analysis to 6.

Tables 5.4 and 5.5 show the DIC obtained for each K and each regression structure of the

BIm and ZOIB models respectively. These results have been plotted in Figure 5.1 to facilitate

their interpretation. Figures 5.2, 5.3 and 5.4 show the estimated trajectories by cluster for

the best fit for every regression structure of the BIm model and Figures 5.5, 5.6 and 5.7
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for the ZOIB model. Tables 5.6 and 5.7 show the parameter estimation for the best model

and Figure 5.8 show the cluster belonging probability for each subject, assigned by the best

model.

K DIC (BIm linear) DIC (BIm dummy) DIC (BIm spline)

1 1957 1974 1956

2 1621 1652 1603

3 1914 2295 1993

4 1624 3167 2063

5 1900 3037 2317

6 1920 3262 2123

Table 5.4: DIC comparison between different number of clusters (K) and regression structures for the
BIm model. Bold numbers indicate the best fit for each type of regression.

K DIC (ZOIB linear) DIC (ZOIB dummy) DIC (ZOIB spline)

1 2026 2042 2022

2 1714 1796 1687

3 1995 2432 2533

4 1736 3372 2598

5 1820 2802 2180

6 2494 2428 2489

Table 5.5: DIC comparison between different number of clusters (K) and regression structures for the
ZOIB model. Bold numbers indicate the best fit for each type of regression.

As can be seen in Tables 5.4 and 5.5 the lowest DIC is obtained by the BIm model

using the spline regression structure (5.3) with 2 clusters, thus this gives the best fit for

the real dataset. When looking at Tables 5.4 and 5.5 and Figure 5.1 some inferences arise

directly, for example, considering K = 1 (no clusters) is not the best option in any model or

regression structure, indicating that considering a finite mixture was a correct choice; in all

regression structures considering K ≤ 4, the BIm model outperforms the ZOIB model; for

both models in every regression structure, considering K = 2 gives the best fit according to

DIC, indicating that the real dataset presents two groups quite different from each other.

These results does not mean that considering other values of K = 3, 4, 5, 6 are a wrong

choice, actually the result could have been for example 3 clusters, representing 3 different

trajectories, one with increasing CCUR, another with decreasing CCUR and the last one with

constant CCUR over time. However, according to DIC, this fit is not as good as considering

K = 2.

We can see in Figure 5.2 the trajectories obtained by the application of BIm linear

regression with 2 clusters. It is clearly seen that the signs of βγ are opposite between the

clusters, where βγ is negative in cluster 1 and positive in cluster 2. Both clusters present a

PD close to 0.50, therefore they can be labelled as medium risk trajectories, with cluster 1

representing slightly less risk than cluster 2 because clients that reduce their debt over time
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Figure 5.1: DIC comparison between different number of clusters (K) and regressions for the BIm
and ZOIB model.

are less likely to default.

In Figure 5.3 we can see the trajectories obtained by the application of BIm dummy

regression with 2 clusters. Due to the nature of this regression structure, we do not necessarily

see a monotonous increase or decrease of the CCUR mean γ. This happens to cluster 1, where

γ decreases every month from January to November but increases in December, inferring that

it is due to additional Christmas expenses. Cluster 1 presents a decreasing trend of γ and a

PD of 0.44, thus this cluster can be labelled as low risk trajectory. On the other hand, cluster

2 presents a stable trajectory the first 4 months but then the rise in CCUR begins and has

a PD of 0.56, thus this cluster can be labelled as high risk trajectory.

We can see in Figure 5.4 the trajectories obtained by the application of BIm spline

regression with 2 clusters. Cluster 1 presents a decreasing trend of γ and a PD of 0.42, thus

this cluster can be labelled as low risk trajectory. Cluster 2 presents an increasing trend of

γ and a PD of 0.58, thus this cluster can be labelled as high risk trajectory. This is the
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regression with the largest difference of PD between their clusters.

The interpretation of the trajectories generated by the ZOIB model, shown in Figures

5.5, 5.6 and 5.7, are very similar, where the Cluster 1 of each regression structure presents

a decreasing trend of µ and the Cluster 2 of each regression structure presents an increasing

trend of µ, leading to have low and high risk trajectories, respectively.

A fact is that all clusters presented in Figures 5.2, 5.3, 5.4, 5.5, 5.6 and 5.7 have similar

grouping of clients regardless of the regression structure or the model. Therefore, we can

infer that the nature of the data has a structure of two clusters. This cluster formation favors

the creation of groups of clients with different patterns in their CCUR and facilitates the

inference of possible default cases in spite of the regression structure or the model.
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Figure 5.2: Longitudinal trajectory by cluster using BIm linear regression on real training dataset.
The blue line is the real mean γ and the green line is its estimation. n is the number of clients in the
cluster, D is the number of default clients and PD is the ratio between default and total clients.
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Figure 5.3: Longitudinal trajectory by cluster using BIm dummy regression on real training dataset.
The blue line is the real mean γ and the green line is its estimation. n is the number of clients in the
cluster, D is the number of default clients and PD is the ratio between default and total clients.
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Figure 5.4: Longitudinal trajectory by cluster using BIm spline regression on real training dataset.
The blue line is the real mean γ and the green line is its estimation. n is the number of clients in the
cluster, D is the number of default clients and PD is the ratio between default and total clients.
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Figure 5.5: Longitudinal trajectory by cluster using ZOIB linear regression on real training dataset.
The blue line is the real mean γ and the green line is the conditional mean µ estimation. n is the
number of clients in the cluster, D is the number of default clients and PD is the ratio between default
and total clients.
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Figure 5.6: Longitudinal trajectory by cluster using ZOIB dummy regression on real training dataset.
The blue line is the real mean γ and the green line is the conditional mean µ estimation. n is the
number of clients in the cluster, D is the number of default clients and PD is the ratio between default
and total clients.
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Figure 5.7: Longitudinal trajectory by cluster using ZOIB spline regression on real training dataset.
The blue line is the real mean γ and the green line is the conditional mean µ estimation. n is the
number of clients in the cluster, D is the number of default clients and PD is the ratio between default
and total clients.

Regarding the interpretation of fixed effects for the BIm spline regression with 2 clusters

shown in Tables 5.6 and 5.7, results help us have a better understanding of the clients’

behavior from a bank perspective. In cluster 1, the low risk trajectory, fixed effect βγ8 =

-0.05136 related to the covariate credit line indicates that for each extra S/ 1,000 of credit

line, the odds of γ would decrease 5.01 % and; the fixed effect βπ1 = 0.31941 related to the

covariate cash adv total indicates that the odds of π, the default probability of a client, is

1.37632 times greater for every month that the client had a cash advance. In cluster 2, the

high risk trajectory, fixed effect βγ6 = 0.38196 related to covariate cash adv month indicates
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that the odds of the credit card utilization ratio would be 1.46515 times greater the months

the client had a cash advance; fixed effect βγ7 = -0.12429 related to covariate mean age cc

indicates that the odds of the mean CCUR would be 11.69 % less for every extra year the

credit card has; fixed effect βγ8 = -0.04865 related to the covariate credit line indicates that

for each extra S/ 1,000 of credit line the odds of γ would decrease 4.75 % and; fixed effect

βπ2 = -0.33823 related to covariate mean age cc indicates that the odds of π, the default

probability of a client, would be 28.70 % less for every extra year the credit card has.

The banking interpretation of these effects is somewhat expected, for βγ8 from both

clusters, the CCUR would decrease with more credit line because increasing the credit line of

a client does not means he will expend more, so the numerator would stay the same and the

denominator would increase, therefore γ will decrease, especially in lower risk trajectories;

for the fixed effect βγ7 related to mean age cc in cluster 2 (high risk trajectory), it indicates

that clients that ‘survived’ another year tend to reduce their expenses in order not to default;

for the fixed effects related to cash advance, βπ1 from cluster 1 and βγ6 from cluster 2, as it

was expected, having a cash advance will increase γ and since it is an expensive product and

it is taken by the clients in need of liquidity, it increases their PD and; for βπ2 from cluster

2, clients that have ‘survived’ longer with a credit card are expected to have a better credit

history, therefore less probability of default.

Fixed effects that contain the value of 0 in their credibility interval are considered not

significant.

Every MCMC considered for this analysis converged. The plots of the sampled chains for

the parameters interpreted before are shown in Appendix C.
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Cluster Parameter Mean SD P 2.5 % P 97.5 %

1

βα00 -0.32002 0.40713 -1.11080 0.46618

βα01 -0.14484 0.81040 -1.74932 1.45029

βα02 -0.23972 0.76397 -1.85995 1.25905

βα03 1.57724 0.78398 0.00780 3.09146

βα04 1.20899 0.65005 -0.09735 2.48987

βα05 1.30029 0.54273 0.25273 2.42177

βα06 -0.39945 0.40251 -1.17497 0.36580

βα07 -0.12390 0.04236 -0.20673 -0.04235

βα08 0.01571 0.01244 -0.01002 0.04011

βα10 0.83665 0.52749 -0.19611 1.81105

βα11 -3.70876 1.20795 -6.19746 -1.53007

βα12 -1.25200 1.12798 -3.38714 0.92021

βα13 -1.79139 1.23783 -4.19404 0.59789

βα14 -2.94768 1.58037 -6.41901 0.06058

βα15 -0.20309 0.75527 -1.60576 1.31421

βα16 -3.54251 1.38064 -6.82240 -1.32560

βα17 -0.04886 0.07908 -0.20565 0.09879

βα18 -0.01167 0.02646 -0.07049 0.03294

βγ0 -0.31355 0.39312 -1.05879 0.46270

βγ1 -0.31072 0.38815 -1.10491 0.42903

βγ2 -0.39955 0.38796 -1.15465 0.37164

βγ3 -1.61252 0.49156 -2.54813 -0.59761

βγ4 -3.02455 0.50462 -3.98798 -2.05014

βγ5 -1.43247 0.45450 -2.20696 -0.45790

βγ6 -0.04010 0.29566 -0.59399 0.56029

βγ7 0.10956 0.08233 -0.04762 0.27634

βγ8 -0.05136 0.02212 -0.09265 -0.00704

βπ0 -0.89510 0.59863 -2.10945 0.23702

βπ1 0.31941 0.16577 0.04006 0.67030

βπ2 0.10806 0.13945 -0.15523 0.40578

βπ3 -0.02350 0.04436 -0.11843 0.05496

σ2γ 1.49301 0.24604 1.09189 2.03902

φ 8.79251 0.25989 8.30086 9.28398

p 0.48228 0.05227 0.38100 0.58500

Table 5.6: Cluster 1 estimated posterior distribution of parameters from BIm spline regression with 2
clusters applied to training real dataset.
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Cluster Parameter Mean SD P 2.5 % P 97.5 %

2

βα00 0.90668 0.33978 0.23703 1.56249

βα01 0.67013 0.65031 -0.65322 1.90928

βα02 -1.48781 0.65369 -2.79686 -0.22800

βα03 -1.52614 0.89328 -3.28116 0.29069

βα04 -3.59298 1.17398 -6.10044 -1.52632

βα05 -1.97249 0.69692 -3.53480 -0.73355

βα06 -0.42760 0.29033 -1.00511 0.09860

βα07 -0.02214 0.03075 -0.08292 0.03627

βα08 -0.01202 0.01221 -0.03777 0.01184

βα10 -1.49633 0.99093 -3.79334 0.14332

βα11 1.40082 1.65537 -1.55733 5.01656

βα12 1.10775 1.19707 -1.02801 3.67774

βα13 1.38801 1.55572 -1.36584 4.60945

βα14 0.77707 1.16891 -1.36610 3.22134

βα15 1.20902 1.08745 -0.67417 3.63494

βα16 -0.52323 0.45723 -1.36978 0.42053

βα17 -0.18428 0.08873 -0.35041 0.00168

βα18 -0.02912 0.02645 -0.08499 0.01860

βγ0 -1.34257 0.41426 -2.21761 -0.49850

βγ1 0.07096 0.49007 -0.90617 1.00192

βγ2 0.29416 0.40348 -0.49455 1.08543

βγ3 2.99830 0.44714 2.12514 3.90884

βγ4 2.55073 0.34821 1.88222 3.20699

βγ5 2.92105 0.30829 2.33351 3.50310

βγ6 0.38196 0.17012 0.04857 0.71490

βγ7 -0.12429 0.05490 -0.23033 -0.00985

βγ8 -0.04865 0.01977 -0.08394 -0.00743

βπ0 1.93620 0.68767 0.70420 3.29830

βπ1 0.08794 0.12234 -0.11911 0.36781

βπ2 -0.33823 0.14898 -0.66040 -0.08390

βπ3 -0.06208 0.04039 -0.14796 0.00871

σ2γ 1.49301 0.24604 1.09189 2.03902

φ 8.79251 0.25989 8.30086 9.28398

p 0.51772 0.05227 0.41500 0.61900

Table 5.7: Cluster 2 estimated posterior distribution of parameters from BIm spline regression with 2
clusters applied to training real dataset.
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Figure 5.8: Probability of belonging to the different clusters for each client assigned by the BIm spline
regression with 2 clusters.

In Figure 5.8 we can see the proportion of times a subject was assigned to cluster 1 or

cluster 2 at each MCMC iteration. Clients 55 and 60 clearly stand out for their proximity to

the probability of 0.50, this means the model assigned these clients half of the time to cluster

1 and the other half to cluster 2. To verify if the model is properly assigning the cluster

respective cluster, we plotted the longitudinal trajectories of these two clients in Figure 5.9,

where we can see that there is not a clear cluster belonging for those clients and that it is

expected for the model to assign them almost randomly to clusters 1 or 2.
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Figure 5.9: Longitudinal trajectory of the clients with less precision in their cluster belonging proba-
bility.
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5.3.2. Test set

Since binary response variables are often modeled by a logistic regression (LR), it is also

included for the predictive power comparison. As stated in Chapter 1, the logistic regres-

sion model assumes that the observations are independent, but the longitudinal information

CCUR is not independent since it is related to the same subject.

Morrison (2010) shows that incorporating trends of longitudinal information or time-series

as covariates helps improving a classification model. Thus, in order to not lose information

about the longitudinal trajectory of the subjects in the application of the LR model, two

extra covariates related to CCUR have been included for modelling π. This covariates focus

on recovering the trend of the longitudinal fractional variable CCUR in just one number,

a simpler version of what Morrison (2010) proposed but with the same objective. The first

extra covariate ccur trend just considers the first (t = 1) and the final (t = 12) value of

CCUR and consists on assigning the value of 1 if the final value is larger than the first, if the

final value is equal to the first 0 is assigned and if the final value is lower than the first -1 is

assigned, as can be seen in (5.4).

ccur trendi =


1, CCURi,12 > CCURi,1.

0, CCURi,12 = CCURi,1.

−1, CCURi,12 < CCURi,1,

(5.4)

The second extra covariate ccur up down is the difference between the number of months

CCUR went up and the number months CCUR went down, this is, if a subject reduces its

CCUR value each month on the 12 periods, ccur up down will take -11 as the corresponding

value, as can be seen in (5.5).

ccur up downi =

11∑
j=1

I(CCURi,j+1 > CCURi,j)−
11∑
j=1

I(CCURi,j+1 < CCURi,j), (5.5)

where

I(CCURi,j+1 > CCURi,j) =

1, CCURi,j+1 > CCURi,j

0, otherwise

and

I(CCURi,j+1 < CCURi,j) =

1, CCURi,j+1 < CCURi,j

0, otherwise.

Finally, three logistic regressions are included, the first one does not considers the longi-

tudinal CCUR information and is labelled as LR (i), the second one considers the covariates

explained in (5.4) and (5.5) and is labelled as LR (ii) and the third one considers each lon-

gitudinal observation as a covariate and is labelled as LR (iii). The probability of default π

will be modelled by LR (i) as
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logit(πwi
i ) =βwi

π0 + βwi
π1 · cash adv total

+ βwi
π2 ·mean age cc+ βwi

π3 · credit line, (5.6)

by LR (ii) as

logit(πwi
i ) =βwi

π0 + βwi
π1 · cash adv total

+ βwi
π2 ·mean age cc+ βwi

π3 · credit line

+ βwi
π4 · ccur trend+ βwi

π5 · ccur up down,
(5.7)

and by LR (iii) as

logit(πwi
i ) =βwi

π0 + βwi
π1 · cash adv total

+ βwi
π2 ·mean age cc+ βwi

π3 · credit line

+ βwi
π4 · ccur1 + βwi

π5 · ccur2 + βwi
π6 · ccur3

+ βwi
π7 · ccur4 + βwi

π8 · ccur5 + βwi
π9 · ccur6

+ βwi
π10 · ccur7 + βwi

π11 · ccur8 + βwi
π12 · ccur9

+ βwi
π13 · ccur10 + βwi

π14 · ccur11 + βwi
π15 · ccur12.

(5.8)

For the BIm and ZOIB models the best fit of each regression structure is applied to the

test dataset using (3.11) in order to make out-of-sample predictions of default status. Results

are shown in Table 5.8 where the logistic regressions (5.6), (5.7) and (5.8) were included in

the estimation.
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Model Regression K
AUC

Within Sample Out of Sample

BIm

Linear 2 0.7112 0.6128

Dummy 2 0.7528 0.6036

Splines 2 0.7548 0.6272

ZOIB

Linear 2 0.7512 0.6224

Dummy 2 0.7856 0.6388

Splines 2 0.7832 0.6308

LR

(i)
1 0.6792 0.6032

2 0.5406 0.5280

(ii)
1 0.6900 0.6076

2 0.8270 0.5190

(iii)
1 0.7988 0.5448

2 0.5484 0.5784

Table 5.8: AUC comparison between BIm, ZOIB and LR models.

Table 5.8 shows that ZOIB dummy regression with 2 clusters is the model with the best

prediction power in the test set. Regarding the BIm model, the BIm spline regression with

2 clusters is the one that outperformed the other regression structures. LR (i) and LR (ii)

both with 1 cluster performed as well as BIm linear and dummy regression in terms of out-of-

sample AUC. BIm spline regression and all ZOIB regressions outperformed the LR models,

therefore the classic LR models might not be the best at predicting new clients probability

of default when dealing with this type of problem that includes longitudinal data.

Figure 5.10 shows the predicted probability of default assigned by the best model, sorted

in ascending order. This Figure shows that the predicted default probability for the subjects

that default is greater than for the ones that do not default, therefore the model can be used

to make predictions.
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Figure 5.10: Predicted probability of default in the real dataset by the ZOIB dummy regression with
2 clusters. Red dots represent clients that default, while black represents subjects that do not default.

5.3.3. Discussion

It seems contradictory that the best fit is achieved by the BIm spline model and the best

prediction power by the ZOIB dummy model. However, this may be due to the nature of the

comparison criterion, in this case the deviance information criterion (DIC).

The way the DIC is computed, according to (3.13), means that the likelihood is evaluated

with the same data with which the posterior distribution of the parameters was estimated.

Therefore, DIC tends to choose over-fitted models.

Since prediction power is measured in an out-of-sample dataset, an over-fitted model is

not expected to perform as well as a slightly more general (and therefore less over-fitted)

one. And so we end in the well-known bias-variance dilemma.

In this particular case, BIm models achieve better fits than ZOIB ones because, as stated

in Chapter 4, the distribution of the credit card training dataset must (without knowing

it beforehand) be BIm-like. This indicates that the discrete probabilities are related to the

conditional mean, thus modelling the marginal mean with the BIm parametrization allows λ0

and λ1 to have effects on µ and vice versa. However, as this distribution increases the over-fit

of the model, it causes its predictive power to decrease and, therefore, the ZOIB models gain

more relevance.

The final decision on which model to choose will depend mainly on the application it will

be given. For example, for a credit risk analyst, the model that will work best for him is the

one with the best predictive power because with it he could reduce the delinquency of the

portfolio. On the other hand, a sales analyst would be interested in the model with the best

fit because he would understand better the reasons why a customer uses more or less his

credit card line and could offer a more suitable product for him.

It is left for future studies to better understand this phenomenon and to test both models

on different datasets.
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Chapter 6

Conclusions

6.1. Conclusions

In this thesis we introduced the classification beta inflated mixed regression models with

cluster formation. In these models we used two distinct parametrizations, one of which has the

advantage of modelling directly the effects of covariates in the mean of a fractional response

variable (BIm) and the other for modelling the conditional mean and the inflation probabi-

lities separately (ZOIB). The objective was to jointly model fractional and binary response

variables using covariates and build different clusters with similar default probabilities and

trajectories of credit card utilization ratio. This cluster formation facilitates interpretation

of various client behavior profiles just by looking at the trajectories and favors the inference

of a default status.

A simulation study with synthetic data was conducted. This study showed that ignoring

the mixed nature of the fractional response variable using the BTran model induced bias

and loss of precision in the estimation of the true parameter value, making the usage of

zero-one inflated models more suitable for this type of variables. For goodness of fit on

various population sizes, the ZOIB model outperformed the BIm model in terms of DIC

when the simulated data was generated from a ZOIB model and vice versa, the BIm model

outperformed the ZOIB model in terms of DIC when the simulated data was generated from

a BIm model. Also, the ZOIB, BIm, BTran and LR models competed in the simulation study

in terms of prediction power where the results indicated that was no clear winner but ZOIB,

BIm and BTran models outperformed the LR model in out-of-sample prediction power.

An application to real data of BIm and ZOIB models was conducted. The real data

consisted on bank clients’ longitudinal credit card utilization ratio and default status within

the next 12 months of observation as response variables. In order to achieve the best fit

three types of regression structures were applied: linear, dummy and spline regression. The

application of the models to the training dataset showed that the best fit was achieved by the

BIm model with the spline regression structure considering 2 clusters, where the first cluster

represents a low risk trajectory and the second a high risk trajectory. Also, when comparing

the models goodness of fit, information criteria indicates that BIm model outperforms ZOIB

model in the three regression structures when the number of clusters is less than 5. The

best fit for both models in every regression structure is achieved when considering 2 clusters,

indicating that the nature of the data has a structure of two clusters, thus considering a finite

mixture was the right choice. The best fit of each structure and each model were applied to the
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test dataset in order to get out-of-sample predictions where the best model for prediction was

the ZOIB dummy regression model with 2 clusters. BIm and ZOIB regressions outperformed

the LR models in out-of-sample prediction power. All these results will be useful for banking

purposes in order to identify possible default clients earlier, take preventive actions and

understand their behavior.

6.2. Suggestions for future studies

For future studies it would be interesting to introduce a parametrization of the BIm

distribution that involves the dispersion parameter φ or to model it through covariates. Also,

testing the model against the flexible beta (FB) regression proposed by Migliorati et al.

(2018) which is robust for bi-modal fractional distributions. Other distributions The Tobit

model restricted to [0, 1] would be challenging to the BIm model in terms of goodness of

fit due to fewer parameter estimation. To reduce the number of dummy variables in the

dummy regression an effect fusion as proposed by Malsiner-Walli et al. (2018) can be used.

For business purposes, applying the model to a dataset that contains information of the whole

Peruvian financial system could help identifying possible new good clients.

49



Appendix A

Simulation Study results

The following Tables show the results of the simulation study for parameter recovery,

where the ZOIB and BIm models are compared against the BTran model.

Cluster Parameter True value Model Mean P2.5 % P97.5 %

1

β1µ1 -0.75
ZOIB -0.77995 -0.81403 -0.73010

BTran -0.41898 -0.46811 -0.35116

β1µ2 0.90
ZOIB 0.89809 0.88233 0.91739

BTran 0.77466 0.71837 0.86752

β1µ3 0.80
ZOIB 0.80057 0.77725 0.83262

BTran 0.40118 0.29424 0.46205

β1π1 -0.55
ZOIB -0.54008 -0.79316 -0.31414

BTran -0.53666 -0.80926 -0.32723

β1π2 2.00
ZOIB 2.03313 1.70657 2.33667

BTran 1.98287 1.58181 2.35490

2

β2µ1 -0.30
ZOIB -0.27768 -0.37340 -0.20813

BTran -0.23132 -0.33676 -0.10588

β2µ2 0.80
ZOIB -0.79808 -0.82637 -0.76526

BTran -1.21108 -1.41376 -1.00557

β2µ3 0.85
ZOIB 0.84585 0.80600 0.87268

BTran 0.79595 0.62980 0.93919

β2π1 -0.50
ZOIB -0.49866 -0.71633 -0.29507

BTran -0.49758 -0.70999 -0.29865

β2π2 1.00
ZOIB 1.04452 0.72449 1.37151

BTran 0.94214 0.56256 1.28802

Table A.1: Parameter estimation comparison between ZOIB model and Beta Transformed (BTran)
model for the ZOIB simulated datasets of population size n = 800 and 3 longitudinal observations.
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Cluster Parameter True value Model Mean P2.5 % P97.5 %

1

β1γ1 -0.75
BIm -0.77328 -0.81949 -0.73186

BTran -0.50042 -0.54727 -0.44967

β1γ2 1.00
BIm 0.98273 0.93262 1.03448

BTran 0.96754 0.89352 1.04003

β1γ3 0.60
BIm 0.59144 0.55879 0.63185

BTran 0.28882 0.22413 0.35665

β1π1 -0.50
BIm -0.49605 -0.73518 -0.20805

BTran -0.49748 -0.76345 -0.15940

β1π2 2.00
BIm 2.03781 1.77738 2.33268

BTran 2.13022 1.79256 2.46965

2

β2γ1 0.55
BIm 0.54021 0.46778 0.62992

BTran 0.24232 0.15460 0.30955

β2γ2 -1.00
BIm -0.99147 -1.03907 -0.94478

BTran -0.85981 -0.97740 -0.77866

β2γ3 0.90
BIm 0.88804 0.83720 0.93639

BTran 0.81775 0.74502 0.90851

β2π1 -0.50
BIm -0.51234 -0.70677 -0.32643

BTran -0.51864 -0.70494 -0.24220

β2π2 1.00
BIm 1.05931 0.82401 1.31543

BTran 1.03834 0.78517 1.30782

Table A.2: Parameter estimation comparison between BIm model and Beta Transformed (BTran)
model for the BIm simulated datasets of population size n = 800 and 3 longitudinal observations.
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Appendix B

Regression Structures

The ZOIB linear regression:

logit(πwi
i ) =βwi

π0 + βwi
π1 · cash adv total + βwi

π2 ·mean age cc+ βwi
π3 · credit line

logit(λwi
0ij) =βwi

λ00
+ βwi

λ01
· j + βwi

λ02
· cash adv month+ βwi

λ03
·mean age cc

+ βwi
λ04
· credit line

logit(λwi
1ij) =βwi

λ10
+ βwi

λ11
· j + βwi

λ12
· cash adv month+ βwi

λ13
·mean age cc

+ βwi
λ14
· credit line

logit(µwi
ij ) =βwi

µ0 + βwi
µ1 · j + βwi

µ2 · cash adv month+ βwi
µ3 ·mean age cc

+ βwi
µ4 · credit line+ bi.

The ZOIB dummy regression:

logit(πwi
i ) =βwi

π0 + βwi
π1 · cash adv total + βwi

π2 ·mean age cc+ βwi
π3 · credit line

logit(λwi
0ij) =βwi

λ00
+ βwi

λ01
· I(j = 1) + βwi

λ02
· I(j = 2) + βwi

λ03
· I(j = 3) + βwi

λ04
· I(j = 4)

+ βwi
λ05
· I(j = 5) + βwi

λ06
· I(j = 6) + βwi

λ07
· I(j = 7) + βwi

λ08
· I(j = 8)

+ βwi
λ09
· I(j = 9) + βwi

λ010
· I(j = 10) + βwi

λ011
· I(j = 11)

+ βwi
λ012
· cash adv month+ βwi

λ013
·mean age cc+ βwi

λ014
· credit line

logit(λwi
1ij) =βwi

λ10
+ βwi

λ11
· I(j = 1) + βwi

λ12
· I(j = 2) + βwi

λ13
· I(j = 3) + βwi

λ14
· I(j = 4)

+ βwi
λ15
· I(j = 5) + βwi

λ16
· I(j = 6) + βwi

λ17
· I(j = 7) + βwi

λ18
· I(j = 8)

+ βwi
λ19
· I(j = 9) + βwi

λ110
· I(j = 10) + βwi

λ111
· I(j = 11)

+ βwi
λ112
· cash adv month+ βwi

λ113
·mean age cc+ βwi

λ114
· credit line

logit(µwi
ij ) =βwi

µ0 + βwi
µ1 · I(j = 1) + βwi

µ2 · I(j = 2) + βwi
µ3 · I(j = 3) + βwi

µ4 · I(j = 4)

+ βwi
µ5 · I(j = 5) + βwi

µ6 · I(j = 6) + βwi
µ7 · I(j = 7) + βwi

µ8 · I(j = 8)

+ βwi
µ9 · I(j = 9) + βwi

µ10 · I(j = 10) + βwi
µ11 · I(j = 11)

+ βwi
µ12 · cash adv month+ βwi

µ13 ·mean age cc+ βwi
µ14 · credit line+ bi.

52



The ZOIB spline regression:

logit(πwi
i ) =βwi

π0 + βwi
π1 · cash adv total + βwi

π2 ·mean age cc+ βwi
π3 · credit line

logit(λwi
0ij) =βwi

λ00
+ βwi

λ01
· spline basis1j + βwi

λ02
· spline basis2j + βwi

λ03
· spline basis3j

+ βwi
λ04
· spline basis4j + βwi

λ05
· spline basis5j + βwi

λ06
· cash adv month

+ βwi
λ07
·mean age cc+ βwi

λ08
· credit line

logit(λwi
1ij) =βwi

λ10
+ βwi

λ11
· spline basis1j + βwi

λ12
· spline basis2j + βwi

λ13
· spline basis3j

+ βwi
λ14
· spline basis4j + βwi

λ15
· spline basis5j + βwi

λ16
· cash adv month

+ βwi
λ17
·mean age cc+ βwi

λ18
· credit line

logit(µwi
ij ) =βwi

µ0 + βwi
µ1 · spline basis1j + βwi

µ2 · spline basis2j + βwi
µ3 · spline basis3j

+ βwi
µ4 · spline basis4j + βwi

µ5 · spline basis5j + βwi
µ6 · cash adv month

+ βwi
µ7 ·mean age cc+ βwi

µ8 · credit line+ bi.
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Appendix C

Application to real data results

The following Figure shows the MCMC of the application to real data using BIm spline

model with two clusters.
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Figure C.1: The solid red line is the mean and the dashed red lines are the 5 % and 95 % respectively
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Appendix D

Model Implementation - RJAGS code

The JAGS code for the Beta Inflated mean mixed regression model (BIm), the Beta Trans-

formed mixed regression model (BTran) and the Zero One Inflated Beta mixed regression

model (ZOIB), all three with cluster formation and binary classification.

•BIm model:

model{

#Likelihood

for(i in 1:n){

#Latent

w[i] ~ dcat(p)

#Random intercept

b[i] ~ dnorm(0, omega_b)

#Probability of default

logit(pi[i]) <- betapi[ , w[i]] %* % Z[i, ]

d[i] ~ dbern(pi[i])

#Alpha0 and Alpha1

for(j in 1:t){

logit(alpha0[i, j]) <- beta0[ , w[i]] %* % X[i, j, ]

logit(alpha1[i, j]) <- beta1[ , w[i]] %* % X[i, j, ]

logit(gamma[i, j]) <- betag[ , w[i]] %* % X[i, j, ] + b[i]

d0[i, j] <- alpha0[i, j]*(1-gamma[i, j])

d1[i, j] <- alpha1[i, j]*gamma[i, j]

z[i, j] ~ dcat(c(d0[i, j], d1[i, j], 1-d0[i, j]-d1[i, j]))

}

#Gamma

for(j in ts[i, 1:open[i]]){

y[i, j] ~ dbeta(mu[i, j]*phi , (1-mu[i, j])*phi)

mu[i, j] <- gamma[i, j]*(1-alpha1[i, j])/

(1-alpha0[i, j]*(1-gamma[i, j])-alpha1[i, j]*gamma[i, j])

}

}

55



#Priori

p ~ ddirch(rep(1, k))

invphi ~ dgamma (0.0001 , 0.0001)

phi <- 1/invphi

omega_b ~ dgamma (0.0001 , 0.0001)

sigma_b <- 1/omega_b

for(j in 1:k){

for(i in 1:ncov){

beta0[i, j] ~ dnorm (0.0, 0.001)

beta1[i, j] ~ dnorm (0.0, 0.001)

betag[i, j] ~ dnorm (0.0, 0.001)

}

for(i in 1:(ncov -1)){ betapi[i, j] ~ dnorm (0.0, 0.001)}

}

}

•BTran model:

model{

#Likelihood

for(i in 1:n){

#Latent

w[i] ~ dcat(p)

#Random intercept

b[i] ~ dnorm(0, omega_b)

#Probability of default

logit(pi[i]) <- betapi[ , w[i]] %* % Z[i, ]

d[i] ~ dbern(pi[i])

#Mu

for(j in 1:t){

y[i, j] ~ dbeta(mu[i, j]*phi , (1-mu[i, j])*phi)

logit(mu[i, j]) <- betamu[ , w[i]] %* % X[i, j, ] + b[i]

}

}

#Priori

p ~ ddirch(rep(1, k))

invphi ~ dgamma (50, 2500)

phi <- 1/invphi

omega_b ~ dgamma (0.0001 , 0.0001)

sigma_b <- 1/omega_b

for(j in 1:k){

for(i in 1:ncov){ betamu[i, j] ~ dnorm (0.0, 0.001)}

for(i in 1:(ncov -1)){ betapi[i, j] ~ dnorm (0.0, 0.001)}

}

}
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•ZOIB model:

model{

#Likelihood

for(i in 1:n){

#Latent

w[i] ~ dcat(p)

#Random intercept

b[i] ~ dnorm(0, omega_b)

#Probability of default

logit(pi[i]) <- betapi[ , w[i]] %* % Z[i, ]

d[i] ~ dbern(pi[i])

#P and Q

for(j in 1:t){

logit(pb[i, j]) <- betapb[ , w[i]] %* % X[i, j, ]

logit(qb[i, j]) <- betaqb[ , w[i]] %* % X[i, j, ]

z[i, j] ~ dcat(c(pb[i, j], (1-pb[i, j])*qb[i, j],

(1-pb[i,j])*(1-qb[i, j])))

}

#Mu

for(j in ts[i, 1:open[i]]){

y[i, j] ~ dbeta(mu[i, j]*phi , (1-mu[i, j])*phi)

logit(mu[i, j]) <- betamu[ , w[i]] %* % X[i, j, ] + b[i]

}

}

#Priori

p ~ ddirch(rep(1, k))

invphi ~ dgamma (0.0001 , 0.0001)

phi <- 1/invphi

omega_b ~ dgamma (0.0001 , 0.0001)

sigma_b <- 1/omega_b

for(j in 1:k){

for(i in 1:ncov){

betapb[i, j] ~ dnorm (0.0, 0.001)

betaqb[i, j] ~ dnorm (0.0, 0.001)

betamu[i, j] ~ dnorm (0.0, 0.001)

}

for(i in 1:(ncov -1)){ betapi[i, j] ~ dnorm (0.0, 0.001)}

}

}

•LR model:

model{

#Likelihood
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for(i in 1:n){

#Latent

w[i] ~ dcat(p)

#Probability of default

logit(pi[i]) <- betapi[ , w[i]] %* % Z[i, ]

d[i] ~ dbern(pi[i])

}

#Priori

p ~ ddirch(rep(1, k))

for(j in 1:k){

for(i in 1:(ncov -1)){ betapi[i, j] ~ dnorm (0.0, 0.001)}

}

}
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