PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ FACULTAD DE CIENCIAS E INGENIERÍA

IMPLEMENTACIÓN DE LA CERTIFICACIÓN LEED A NIVEL CERTIFICADO EN UN EDIFICIO MULTIFAMILIAR DE CUATRO PISOS EN EL DISTRITO DE CHORRILLOS

Trabajo de investigación para la obtención del grado académico de BACHILLER EN CIENCIAS CON MENCIÓN EN INGENIERÍA CIVIL

AUTORES

Ronald Víctor Cárdenas Rojas

Isaac Moisés Kokuba García

Jhon Alexander Morales Agustín

Smith Gerardo Zea Quispe

Luis Enrique Mendoza Chávez

ASESOR:

Guillermo José Zavala Rosell

RESUMEN

Durante los últimos años, surge la necesidad de establecer un cambio de las prácticas convencionales de la industria de la construcción para evitar generar impactos negativos en la salud humana, medio ambiente y economía. Según el IPCC, se informó que los edificios del mundo representan el 32% del consumo mundial de energía y 19% de las emisiones de gases de efecto invernadero, lo que provocaría cambios perjudiciales en nuestro ambiente. A partir de ello, actualmente se busca reducir estos impactos para bienestar de la población. Por consiguiente, para el presente proyecto, el principal objetivo fue convertir una edificación convencional a una sostenible a través de la implementación Leed a nivel certificado durante la etapa de diseño. Este sistema integra la dimensión social, ambiental y económica en un proyecto de vivienda. Asimismo, para la construcción y diseño, se tuvo que aplicar de manera firme los lineamientos y recomendaciones estipuladas por el reglamento nacional de edificaciones y normativa peruana para cada partida del proyecto (geotecnia, estructuras, arquitectura e instalaciones). De la misma forma, se estableció una buena comunicación entre cada especialista durante todo el proceso del proyecto con la finalidad de evitar cometer errores de diseño, reducir los costos y minimizar el tiempo de duración del proyecto. En efecto, el presente proyecto de viviendas multifamiliares tuvo una duración de 7 meses desde su inicio hasta su entrega al cliente, con un costo total de S/. 1,443,974.9, aplicando la certificación Leed, que garantizará que la edificación genere ahorros en consumo de energía y agua, costos de mantenimiento y ofrecerá un ambiente cómodo y de calidad para los ocupantes. A modo de conclusión, el presente trabajo plantea mejorar el enfoque de edificación convencional a una edificación con características de sostenibilidad respetando las exigencias de la normatividad peruana para edificaciones para bienestar de la ciudadanía.

ÍNDICE

1. GENERALIDADES	1
1.1. Introducción	1
1.2. Justificación	2
1.3. Alcance	2
1.4. Objetivos	2
1.5. Metodología	4
2. REVISIÓN DE LITERATURA	4
2.1. Impactos de la construcción de edificaciones en el mundo y en el Perú	4
2.2. Concepto de construcción sostenible	5
2.3. Edificios verdes	6
2.3.1. Certificaciones ambientales	7
2.3.2. La certificación Leed	8
2.3.3. Costos de la certificación Leed	14
2.3.4. Beneficios de la implementación de la certificación Leed	14
2.4. Caso de estudio: Edificación multifamiliar de Chorrillos	15
2.4.1. Actividades a realizar para lograr la certificación Leed certificado	15
2.4.2. Precio de la implementación Leed certificado	22
3. ARQUITECTURA	23
3.1. Descripción general del proyecto	23
3.2. Normatividad	24
3.3. Información del terreno	24
3.4. Descripción del proyecto	26
3.5. Cuadro de acabados	28
4. GEOTECNIA	28
4.1. Memoria descriptiva	29
4.1.1. Resumen de las condiciones de cimentación	29
4.1.2. Información previa	29

4.1.3. Exploración de campo	30
4.1.4. Ensayos de laboratorio	31
4.1.5. Perfil del suelo.	31
4.1.6. Nivel de la napa freática	33
4.1.7. Análisis de cimentación	33
4.1.8. Efecto del sismo.	38
4.2. Planos de los puntos investigados	39
4.2.1. Planos de ubicación de los puntos de exploración	39
5. ESTRUCTURAS	39
5.1. Aspectos generales de la estructura	39
5.2. Análisis sísmico	40
5.3. Diseño de la losa maciza	44
5.4. Diseño del aligerado	46
5.5 Diseño de la viga chata	48
5.6. Diseño de las vigas	49
5.7. Diseño de las columnas	52
5.8. Diseño de los muros estructurales	54
5.9. Diseño de cimentaciones	56
6. INSTALACIONES.	59
6.1. Sanitarias	59
6.2. Desagües	59
6.3. Ventilación.	60
6.4. Eléctricas	60
6.4.1. Potencia a contratar	61
6.4.2. Tableros de distribución.	62
7. COSTOS Y PRESUPUESTOS	65
7.1. Introducción	65
7.2. Resultados	65
7.3. Factores que influyen negativamente en el presupuesto de la obra	67

7.3.1. Complejidad del proyecto	67
7.3.2. Sistema constructivo.	68
7.3.3. Experiencia del profesional en la elaboración del presupuesto	68
7.3.4. Las condiciones del mercado.	68
7.3.5. Incompatibilidades de las especialidades	68
7.4. Recomendaciones para generar ahorros en la fase de construcción	69
7.4.1. Uso de nuevas tecnologías de información (BIM)	69
7.4.2. Uso de herramientas para el proceso de diseño	69
	70
7.4.4. Recomendaciones para la fase de construcción	70
8. DISCUSIÓN Y CONCLUSIONES	71
	71
8.2. Conclusiones.	75
REFERENCIAS	78
ANEXOS	80

ÍNDICE DE TABLAS

		Pág.
Tabla 1	Certificaciones ambientales con mayor presencia en el mercado internacional	9
Tabla 2	Prerrequisitos obligatorios y requisitos para cada categoría establecida por Leed	11
Tabla 3	Créditos a lograr en la categoría Localización y transporte	17
Tabla 4	Créditos a lograr en la categoría Entornos sostenibles	18
Tabla 5	Créditos a lograr en la categoría Uso eficiente del agua	19
Tabla 6	Créditos a lograr en la categoría Materiales y recursos	20
Tabla 7	Créditos a lograr en la categoría Energía y atmósfera	21
Tabla 8	Créditos a lograr en la categoría Calidad del aire interior	22
Tabla 9	Precio adicional de implementar la certificación Leed certificado	24
Tabla 10	Cuadro de áreas por cada piso	28
Tabla 11	Resumen de las condiciones de cimentación	30
Tabla 12	Tabla de número de puntos de exploración según el tipo de edificación según la E.050	31
Tabla 13	Aplicación y limitaciones de los ensayos según la E.050	32
Tabla 14	Ensayos de laboratorio a aplicar en el proyecto según la E.050	32
Tabla 15	Descripción del tipo de suelo a cada profundidad	33
Tabla 16	Cálculo del factor de seguridad para cada columna	36
Tabla 17	Cálculo del factor de seguridad para cada muro	36
Tabla 18	Cálculo del asentamiento total máximo	37
Tabla 19	Presión admisible para cada columna	38
Tabla 20	Presión admisible para muro	38
Tabla 21	Cuadro de desplazamientos y derivas para cada piso de la edificación en dirección "x" e "y"	43
Tabla 22	Fuerzas cortantes basales en el edificio	43
Tabla 23	Momentos volcantes y factores de seguridad en cada dirección	44
Tabla 24	Verificación por torsión en las direcciones "x" e "y"	44

Tabla 25	Diseño por flexión en losa maciza	46
Tabla 26	Diseño por flexión en la vigueta	48
Tabla 27	Diseño por flexión en la viga chata	49
Tabla 28	Diseño por flexión de la viga del eje F	51
Tabla 29	Fuerzas resultantes de las combinaciones en la columna	52
Tabla 30	Fuerzas resultantes de las combinaciones en la placa en forma de "C"	54
Tabla 31	Cuadro de dotación de agua para la edificación	59
Tabla 32	Unidades de descarga para cada elemento sanitario	60
Tabla 33	Cuadro de áreas para la edificación	61
Tabla 34	Cuadros de carga instalada para el primer nivel y los departamentos típicos	62
Tabla 35	Circuitos para el primer nivel	63
Tabla 36	Circuitos para los departamentos típicos	64
Tabla 37	Cuadro resumen del presupuesto total	65
Tabla 38	Metrado de encofrado y concreto para la sectorización propuesta	66
Tabla 39	Causas de los desperdicios de construcción	73
Tabla 40	Parámetros de evaluación del plan de calidad de aire durante la construcción	74

ÍNDICE DE FIGURAS

		Pag
Figura 1	Las tres escalas de la sostenibilidad	7
Figura 2	Niveles de certificación y puntajes respectivos	10
Figura 3	Niveles de certificación y puntajes respectivos	10
Figura 4	Categorías a evaluar en la certificación Leed	11
Figura 5	Tarifa de certificación Leed	15
Figura 6	Ubicación geográfica del proyecto	26
Figura 7	Zonificación del distrito de Chorrillos	26
Figura 8	Distribución de ambientes en piso típico	28
Figura 9	Gráfica de plasticidad del USCS para la muestra M2	33
Figura 10	Gráfica de plasticidad del USCS para la muestra M3	34
Figura 11	Distribución de las cargas de servicio en planta	35
Figura 12	Distribución de cargas de sismo en planta	35
Figura 13	Zonificación de los tipos de zona sísmica	39
Figura 14	Ubicación de los puntos de exploración	40
Figura 15	Espectro de aceleraciones para cada periodo	42
Figura 16	Paño de losa maciza a diseñar	45
Figura 17	Diagrama de momentos en las direcciones "x" (izquierda) e "y" (derecha)	46
Figura 18	Paño de la losa aligerada a diseñar	47
Figura 19	Diagramas de momento flector (superior) y fuerza cortante (inferior) para la vigueta	
	a diseñar	47
Figura 20	Distribución de aceros resultantes del diseño	48
Figura 21	Ubicación de la viga chata a diseñar	49
Figura 22	Diagrama de momento flector (superior) y fuerza cortante (inferior) en la viga	
	chata	49
Figura 23	Ubicación de las vigas a diseñar	50
Figura 24	Envolvente del diagrama de momentos flectores (superior) y fuerzas cortantes (inferior) en la viga del eje F	

		51
Figura 25	Distribución de aceros resultantes del diseño de la viga del eje F	52
Figura 26	Distribución de aceros en la columna y diagramas de interacción en las direcciones	
	"x" (izquierda) e "y" (derecha)	53
Figura 27	Ubicación de la placa a diseñar en forma de "C" para la escalera	54
Figura 28	Distribución de aceros en la placa "C" y diagramas de interacción en la dirección	
	en "x" (izquierda) e "y" (derecha)	55
Figura 29	Distribución del acero resultante para el diseño de la placa en forma de "C"	56
Figura 30	Presiones en el suelo para los casos CM+CV (izquierda), CM+CV+0.8SDX	
	(centro) y CM+CV+0.8SDY (derecha)	56
Figura 31	Diagrama de momentos flectores en ton-m (derecha) y fuerzas cortantes en ton/m	
	(izquierda) en zonas críticas	57
Figura 32	Distribución de aceros resultantes del diseño en la losa de cimentación	58
Figura 33	Esquema del tablero de distribución para el primer nivel	63
Figura 34	Esquema del tablero de distribución para los departamentos típicos	64
Figura 35	Sectorización aplicada a todos los niveles del proyecto	66
Figura 36	Consumo mínimo de aparatos sanitarios para lograr ahorros mayores a 20%	72

1. GENERALIDADES

1.1. Introducción

El trabajo del proyecto integrador resume los resultados de las especialidades de arquitectura, estructuras, instalaciones y costos y presupuestos del proyecto de edificación "Los Huertos de Villa" ubicado en el distrito de Chorrillos. El presupuesto total del proyecto es de S/. 1 421 243.7 soles y se estima una duración de 7 meses aproximadamente para su construcción. Las principales características del proyecto son: el estrato de suelo de apoyo es arcilla de baja plasticidad con presión admisible de 1.25 kg/cm², sistema estructural de muros estructurales con losas aligeradas convencionales de concreto armado para todos los techos y losas macizas en las zonas de baños a petición del cliente, cerramientos con albañilería confinada y contará con un ascensor que recorre los cuatro pisos.

Para realizar el pre dimensionamiento y diseño de elementos estructurales se consideran las normas técnicas peruanas del RNE (E.020, E.030 y la E.060), el diseño de los elementos estructurales se desarrolla con el metrado completo del elemento estructural más representativo. El diseño de las instalaciones sanitarias y eléctricas es compatibilizado con la arquitectura y estructura del proyecto. Por último, se toma como referencia diferentes revistas especializadas en construcción para elaborar el presupuesto de obra, así como la sectorización y programación del proyecto.

Con respecto al tema de la investigación, se aborda los conceptos de construcción sostenible y edificios verdes. Además, se describe la manera de implementar una certificación LEED a nivel certificado y se determina el presupuesto adicional para el proyecto.

A nivel internacional existen diferentes certificaciones que califican los edificios en términos de sostenibilidad. Sin embargo, observando el acceso a la información de cada certificación, su uso, el tipo de edificación a la cual va dirigida, se ha elegido la certificación Leadership in Energy & Environmental Desing (LEED) como eje principal de la investigación. LEED es una certificación que se implementa en más de 120 países y es la que tiene más acogida en nuestro país. Los criterios de evaluación se rigen en ocho aspectos: localización y transporte, entornos sostenibles, uso

eficiencia del agua, energía y atmósfera, materiales y recursos, calidad del aire interior, innovación en el diseño, y prioridad regional.

De acuerdo a lo expuesto, el presente trabajo mostrará los resultados de cada especialidad, el procedimiento de convertir un edificio convencional a uno verde con los parámetros establecidos por LEED y las conclusiones de la entrega final del proyecto.

1.2. Justificación

La razón por la cual se realiza este trabajo de investigación es debido a la necesidad de integrar los criterios de sostenibilidad a la construcción de edificaciones de nuestro país. Existe una necesidad de cambio de las prácticas convencionales de la industria de la construcción ya que generan impactos para la salud humana, el medio ambiente y la economía. Por ello, es necesario integrar y lograr un equilibrio de las tres dimensiones de la sostenibilidad (ambiente, economía y social) en las actividades de construcción para lograr un desarrollo sostenible del sector. En otros palabras, debemos minimizar los impactos que se generan durante todo el ciclo de vida de un proyecto de construcción, crear viviendas que sean accesibles a la población y que generen ahorros durante la etapa de operación y mejorar la calidad de vida de las personas ofreciendo un entorno que fomente la actividad física y la interacción entre las personas.

1.3. Alcance

En la actualidad, existe un fuerte interés de las empresas por construir de manera mas respetuosa con el medio ambiente reduciendo los impactos que genera un proyecto de edificación en todas sus fases (diseño, construcción y operación). Por lo que, la investigación realizada da a conocer los impactos que generan la construcción de edificaciones a nivel mundial y en el Perú hasta la implementación de la certificación LEED a nivel certificado en el proyecto "Los Huertos de Villa".

Por otro lado, el desarrollo del proyecto integrador incluye el estudio de mecánica de suelos, el diseño de los elementos y sistemas de las especialidades de estructuras e instalaciones sanitarias y eléctricas, y la propuesta de acabados en todo el edificio, el cual debe ser aprobado por el cliente con posibles modificaciones de estas durante la etapa de ejecución del proyecto. También, se realiza el presupuesto y plazo del proyecto con sus respectivos costos unitarios y sectorización de las actividades.

1.4. Objetivos

1.4.1. Objetivos generales

- Convertir el proyecto "Los Huertos de Villa" en un edificio verde a través de la implementación de la certificación LEED.
- Realizar el diseño de las especialidades del proyecto cumpliendo los lineamientos y recomendaciones del Reglamento Nacional de Edificaciones.
- Determinar el presupuesto y el plazo de la ejecución del proyecto.

1.4.2. Objetivos específicos

- Conocer las diferentes certificaciones internacionales ambientales que integran los criterios de sostenibilidad para la construcción de edificios.
- Dar a conocer el concepto de construcción sostenible y edificios verdes en el sector construcción del país, mediante la implementación de la certificación LEED.
- Proponer la certificación LEED a nivel certificado para el proyecto "Los Huertos de Villa" con el fin de crear un edificio verde.
- Estimar un presupuesto para obtener la certificación LEED a nivel certificado para el objeto de estudio.
- Realizar un estudio de suelos para conocer la capacidad de carga del suelo donde se construirá la edificación "Los Huertos de Villa".
- Realizar el diseño estructural del edificio cumpliendo con las Normas E.030 y E.060 del código peruano para proporcionar un adecuado comportamiento de la estructura frente a eventos sísmicos y resguardar la vida de los ocupantes.
- Realizar el diseño de las instalaciones eléctricas, de agua y desagüe para garantizar el adecuado funcionamiento, el óptimo uso de energía y agua, y la correcta eliminación de las aguas negras.

- Realizar la propuesta de acabados teniendo en cuenta la el uso de los espacios que se habitarán, la vanguardia y los requerimientos del cliente.
- Elaborar los costos unitarios de cada partida que se tendrá en cuenta en el proyecto.
- Realizar el metrado de todos los elementos y partidas del proyecto.
- Discutir acercar de las acciones a realizar para conseguir un proyecto sostenible.

1.5. Metodología

La metodología empleada para el desarrollo del proyecto fue realizar avances progresivos de cada especialidad (geotecnia, estructuras, instalaciones y costos) durante cada semana. Estos avances fueron revisados y corregidos por especialistas en cada materia para su posterior mejora.

En el área de geotecnia, se tomaron muestras del terreno en el que se va a construir el edificio para que sean ensayadas en el laboratorio y, con los resultados, obtener los datos necesarios para el diseño de la cimentación y los parámetros sísmicos del terreno. Se usó la norma E.050 Suelos y cimentaciones para calcular los parámetros requeridos para la etapa de diseño de la estructura del edificio.

En el diseño de la estructura, se realizó el diseño de los elementos mediante el enfoque de diseño por factores de carga y resistencia o LRFD por sus siglas en ingles. Lo anterior consiste en amplificar las cargas y reducir la resistencia de los elementos y cumplir con los factores de seguridad que exige la norma E.060 Concreto armado.

Para el diseño de las instalaciones sanitarias, se procedió a realizar el trazado inicial de abastecimiento de agua caliente y fría, además de la recolección de aguas residuales con sus respectivos elementos que permitirán la conexión más óptima posible. Posteriormente, se evaluaron las unidades de gasto obtenidas por el trazado inicial mediante el método de Hunter, que nos brindará la dotación diaria y, de la misma forma, las dimensiones de la cisterna que abastecerá a toda la edificación. Finalmente, se determinó las pérdidas de energía y presiones de agua en las salidas más desfavorables del diseño planteado.

En el diseño de instalaciones eléctricas, se procedió a realizar el trazado inicial de abastecimiento de alumbrado, tomacorrientes y servicios de comunicación para toda la edificación. De manera seguida, se separaron por ambientes todas las partes de la edificación, para que el cálculo sea más

ordenado, con la finalidad de obtener la potencia eléctrica a contratar para el abastecimiento de la misma. Posteriormente, se calcularon los tipos de circuito, los números de cables y las dimensiones del entubado para cada salida de luz. Finalmente, se realizó el diseño de los tableros de distribución necesario para cada ambiente de la edificación.

Se realizó la compatibilización de cada uno de los diseño con el objetivo de minimizar los requerimientos de información o RFI, por sus siglas en inglés, durante la etapa de ejecución del proyecto.

Para la elaboración del presupuesto y cronograma del proyecto, se realizó el análisis de costos unitarios teniendo en cuenta los precios actuales de la mano de obra y los materiales que intervienen en cada una de las partidas a ejecutar. En adición, se calcularon los gastos generales para obtener el costo total del proyecto. Para la elaboración del cronograma de obra, se propone una sectorización tal que las cargas de trabajo sean lo más equitativas posibles con el objetivo de generar trenes de trabajo.

En cuanto al desarrollo de la investigación, se realizó una revisión íntegra de la literatura relacionada a edificios verdes, así como de las diferentes certificaciones ambientales. Además, se realiza una breve descripción de los impactos que generan las construcciones de edificaciones y se realiza una introducción al concepto de construcción sostenible. Para el objeto de estudio se tomó como referencia la guía propuesta por el U.S. Green Building Council, "Guía LEED v4.1 para diseño y construcción de edificios" para nueva construcción. Esta guía nos proporciona las directrices necesarias para poder implementar la certificación LEED a nivel certificado en el proyecto. Se siguieron los parámetros establecidos por LEED y se propuso una alternativa para cada uno de los parámetros.

2. REVISIÓN DE LITERATURA

Investigación realizada a partir de un caso de estudio acerca de la implementación de la certificación LEED en un proyecto de vivienda.

2.1. Impactos de la construcción de edificaciones en el mundo y en el Perú

En la actualidad, un desafío importante para el sector construcción es la reducción de sus impactos ambientales de sus actividades y/o procesos. Según el Panel Intergubernamental sobre Cambio Climático (IPCC) establecido por la ONU, existe evidencia que los edificios del mundo representan el 32% del consumo mundial de energía y el 19% de las emisiones de gases de efecto invernadero. Además, se estima que el consumo de energía de los edificios a nivel mundial podría duplicarse o incluso triplicarse para el año 2050 (Intergovernmental Panel on Climate Change, 2014).

De la misma forma, la construcción de edificaciones en el Perú genera impactos negativos al medio ambiente. El Ministerio de Energía y Minas reportó, el sector construcción representó el 25% del consumo total de energía y el 21.8% de consumo de energía eléctrica (MINEM, 2017). Además, el informe de gestión de residuos no municipales presentado por el Ministerio de Ambiente revela que las actividades de construcción generan una gran cantidad de residuos. Durante el año 2012, los residuos generados por las actividades de construcción ascendieron 166 182 ton (MINAM, 2014).

Por lo descrito anteriormente, las actividades de construcción que se realizan en el Perú y en diferentes partes del mundo son perjudiciales para el medio ambiente, sino se toma en cuenta criterios de sostenibilidad. Por lo que, debemos enfocar nuestros esfuerzos para lograr un desarrollo sostenible del sector construcción.

2.2. Construcción sostenible

Podemos entender la construcción sostenible como la manera de construir respetando el entorno y al medio ambiente. Du Plessis (2002) define la construcción sostenible como el proceso que busca restaurar y mantener la armonía entre el ambiente natural y el sistema construido, y crear ciudades que afirman la dignidad humana y fortalecen la economía con equidad. Este concepto está relacionado con la definición de desarrollo sostenible. El desarrollo sostenible, mencionado por

primera vez en el Informe Brundtland 10 de 1987, se definió como aquel que satisface las necesidades del presente sin comprometer las necesidades de las futuras generaciones (Miranda et al., 2014). Sin embargo, el desarrollo del sector construcción no ha sido sostenible, lo que ha generado diversos problemas. Para Acosta (2009), una gran parte de los problemas actuales: la pobreza, el decaimiento de las ciudades, los asentamientos marginales, son resultado de decisiones y acciones emprendidas por generaciones anteriores para resolver los problemas de aquel momento sin pensar demasiado en un futuro próximo.

Durante los últimos años, el efecto acumulado de las prácticas convencionales en la industria de la construcción presenta impactos para la salud humana, el medio ambiente y la economía (U.S. Green Building Council, 2017). Según Herrería (2017), la mejora de los impactos de la construcción se puede lograr integrando los criterios de sostenibilidad en todas las fases de un proyecto. Por ello, la construcción sostenible debe incluir los tres criterios de la sostenibilidad: medio ambiente, economía y sociedad. Además, debe lograr un equilibrio de los criterios para conseguir un verdadero desarrollo sostenible (Herrería, 2017). A continuación, la figura 1 muestra las tres escalas de la sostenibilidad.

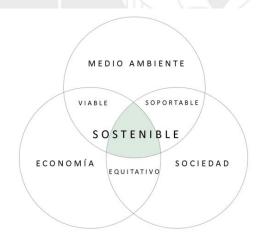


Figura 1. Las tres escalas de la sostenibilidad

Tomado de: Criterios para la sostenibilidad del proyecto de estructuras: Análisis del ciclo de vida con BIM por Esther Herrería, 2017.

2.3. Edificios verdes

En la actualidad, el concepto de edificaciones verdes ayuda a cumplir los objetivos de sostenibilidad. El nivel de aplicación de este concepto dependerá de la implementación de las

prácticas sostenibles en la edificación, tales como: generación eléctrica fotovoltaica, ventilación natural, iluminación natural, tratamiento de aguas grises y techos verdes, entre otras (Pinto & Plata, 2010). Para Bilec et al., (2006), un edificio verde es un lugar que es ambientalmente responsable y promueve un medio ambiente saludable. Además, los edificios verdes contribuyen a mejorar la salud, el confort y la productividad de las personas al utilizar recursos clave como la energía, el agua, los materiales y la tierra de manera más eficiente que los edificios convencionales (Kats, 2003).

Antes del año 2000, las compañías generalmente consideraban los edificios verdes como experimentos interesantes pero proyectos inviables en el mundo real de los negocios (Lockwood, 2006). El mayor costo inicial percibido por los propietarios de edificios e inversionistas es la principal barrera para una adopción general de edificios verdes (Dwaikat & Ali, 2016). En los últimos años, la idea de que los edificios verdes son excesivamente costosos y no valen el costo adicional ha ido cambiando. Los estudios realizados por Kats (2003) revelan, una inversión inicial menor del 2% en el diseño de edificios verdes, en promedio, resulta en un ahorro del ciclo de vida del 20% de los costos totales de construcción. Esto se debe a que los edificios verdes ahorran energía, usan menos agua y generan menos desechos (USGBC, 2009).

2.4. Certificaciones ambientales

La globalización y el auge de las empresas transnacionales han tomado un fuerte interés por demostrar su compromiso de construir de una manera más respetuosa con el medio ambiente. Esto ha generado una demanda de sistemas "internacionales" para medir el desempeño ambiental de materiales, edificios y el entorno construido (Saunders, 2008). Debido a la necesidad por calificar los edificios en términos de sostenibilidad, surgen los sistemas de certificación de edificios en diversas partes del mundo. La mayoría califican el desempeño de los sistemas del edificio en términos de eficiencia energética, uso de agua, localización, materiales utilizados y la calidad del aire interior (Rocha, 2011). Existen diversos programas de certificación reconocidos por el Consejo Mundial de Construcciones Sostenibles (WGBC). A continuación, se muestra la tabla 1 que reúne las certificaciones con mayor presencia en el mercado internacional.

Tabla 1

Certificaciones ambientales con mayor presencia en el mercado internacional

Nombre	Por sus siglas en español	País	Concepto
LEED	Líder en Eficiencia Energética y Diseño sostenible	ESTADOS UNIDOS	Disponible para prácticamente todos los tipos de proyectos de edificios, comunidades y viviendas, LEED proporciona un marco para crear edificios verdes saludables, altamente eficientes y económicos. La certificación LEED es un símbolo mundialmente reconocido de logros de sostenibilidad.
EDGE	Excelencia en Diceño para Mayores Eficiencias	III	Creada por el Internacional Finance Corporation (IFC), miembro del Banco Mundial. EDGE otorga un certificado a los proyectos y edificios que implementan estrategias ambientales y alcanzan al menos el 20% de ahorro en consumo de agua, energíáa y materiales.
CASBEE	Sistema de evaluación integral para la eficiencia del entorno construido	JAPÓN	Es un método para evaluar y calificar el desempeño ambiental de los edificios y el entorno construido. CASBEE ha sido diseñado para mejorar la calidad de vida de las personas y para reducir el uso de recursos del ciclo de vida y las cargas ambientales asociadas con el entorno construido, desde una sola casa a una ciudad entera.
SITES	Iniciativa de sitios sostenibles	٠	SITES es utilizado por arquitectos paisajistas, diseñadores, ingenieros, planificadores, ecologistas, arquitectos, desarrolladores, diseñadores de políticas y otros para alinear el desarrollo y la gestión del suelo con un diseño innovador y sostenible.
BREEAM	Metodología de evaluación de investigación de edificios	REINO UNIDO	BREEAM es el método de evaluación de sostenibilidad para proyectos de infraestructura y edificios. Evalúa el desempeño de sostenibilidad ambiental, social y económica de un activo, utilizando estándares desarrollados por BRE. BREEAM garantiza entornos más sostenibles que mejoran el bienestar de las personas que viven y trabajan en ellos y ayuda a proteger los recursos naturales
GREEN STAR	Estrella verde	AUSTRALIA	Una calificación certificada Green Star proporciona herramientas para que un edificio o proyecto comunitario sea sostenible. Green Star es la marca de calidad de Australia para el diseño, la construcción y las operaciones de edificios, instalaciones y comunidades sostenibles.

Nota: Adaptado de https://www.worldgbc.org/rating-tools

Existen más herramientas de certificación reconocidas por el WGBC como: Verde, Peer, GreenSL, IGBC, entre otras. Solo se ha dado a conocer las certificaciones más difundidas a nivel internacional. Sin embargo, la presente investigación se centrará en el concepto LEED.

2.4.1 La certificación LEED

En la actualidad, el Green Building Council (USGBC) certifica edificios que cumplen con los criterios establecidos por sus directrices de Liderazgo en Energía y Diseño Ambiental (LEED) (Bilec et al., 2006). En otras palabras, la certificación LEED garantiza que el diseño, el proceso de construcción y posterior operación de un edificio cumpla con los estándares establecidos por USGBC y pueda ser llamado un "edificio verde" (Londoño, 2009). LEED se adapta a cada proyecto por medio de cinco sistemas de calificación (U.S. Green Building Council, 2017). A continuación, la figura 2 muestra los cincos sistemas de calificación.



Figura 2. Niveles de certificación y puntajes respectivos

Fuente: Adaptado de "Guía de conceptos básicos de edificios verdes y Leed" por U.S. Green Building Council, 2017 La presente investigación solo abordará el sistema de calificación LEED para nueva construcción por ser el tema de estudio. Por lo que, usaremos la guía propuesta por el U.S. Green Building Council, "Guía Leed v4.1 para diseño y construcción de edificios" para nueva construcción. LEDD V4.1 nos da a conocer los diferentes tipos de niveles de certificación, los cuales, consideran un sistema de puntuación. El sistema de puntuación tiene escala de 110 puntos posibles, y, dependiendo del puntaje obtenido, se obtienen diferentes niveles de certificación. A continuación, la figura 3 detalla los niveles de certificaciones con los respectivos puntajes a lograr.

Figura 3. Niveles de certificación y puntajes respectivos

Fuente: Adaptado de "Guía LEED v4.1 para diseño y construcción de edificios" por U.S. Green Building Council, 2019

Dichos puntos se distribuyen en diferentes categorías a evaluar, que constituyen el núcleo de la certificación. A continuación, la figura 4 muestra las categorías de la certificación LEED.

Figura 4. Categorías a evaluar en la certificación Leed

Fuente: Adaptado de "Guía LEED v4.1 para diseño y construcción de edificios" por U.S. Green Building Council, 2019

Estas categorías y los créditos asociados tienen puntajes máximos asignados. Para lograr una certificación LEED se debe prestar atención a los prerrequisitos y requisitos que establece. A continuación, la tabla 2 detalla cada categoría con el puntaje máximo a obtener en cada uno de sus requisitos y los prerrequisitos obligatorios.

Tabla 2

Prerrequisitos obligatorios y requisitos para cada categoría establecida por Leed

Localización y transporte			
UBICACIÓN PARA EL DESARROLLO DE BARRIOS LEED	16		
PROTECCIÓN DE TIERRAS SUSCEPTIBLES	1		
SITIO DE ALTA PRIORIDAD	2		
DENSIDAD DE LOS ALREDEDORES Y DIVERSIDAD DE USOS	5		
ACCESO A TRANSPORTE DE CALIDAD	5		
INSTALACIONES PARA BICICLETAS	1		
HUELLA REDUCIDA DE ESTACIONAMIENTOS	1		
VEHÍCULOS EFICIENTES	1		
	UBICACIÓN PARA EL DESARROLLO DE BARRIOS LEED PROTECCIÓN DE TIERRAS SUSCEPTIBLES SITIO DE ALTA PRIORIDAD DENSIDAD DE LOS ALREDEDORES Y DIVERSIDAD DE USOS ACCESO A TRANSPORTE DE CALIDAD INSTALACIONES PARA BICICLETAS HUELLA REDUCIDA DE ESTACIONAMIENTOS		

Entornos sostenibles		10
Prereq SSp1	PREVENCIÓN DE LA CONTAMINACIÓN EN LA CONSTRUCCIÓN	Requerido
Credit SSc1	EVALUACIÓN AMBIENTAL DEL SITIO	1
Credit SSc2	DESARROLLO DEL SITIO - PROTECCIÓN O RESTAURACIÓN DEL HÁBITAT	2
Credit SSc3	ESPACIOS ABIERTOS	1
Credit SSc4	MANEJO DE LAS AGUAS PLUVIALES	3
Credit SSc5	REDUCCIÓN DEL EFECTO ISLA DE CALOR	2
Credit SSc6	REDUCCIÓN DE LA CONTAMINACIÓN LUMÍNICA	1

Uso eficient	11	
Prereq WEp1	REDUCCIÓN DEL CONSUMO DE AGUA EN EL EXTERIOR	Requerido
Prereq WEp2	REDUCCIÓN DEL CONSUMO DE AGUA EN EL INTERIOR	Requerido
Prereq WEp3	MEDICIÓN DE CONSUMO DE AGUA POR EDIFICIO	Requerido
Credit WEc1	REDUCCIÓN DEL CONSUMO DE AGUA EN EL EXTERIOR	2
Credit WEc2	REDUCCIÓN DEL CONSUMO DE AGUA EN EL INTERIOR	6
Credit WEc3	CONSUMO DE AGUA DE LA TORRE DE ENFRIAMIENTO	2
Credit WEc4	MEDICIÓN DEL CONSUMO DE AGUA	1

Energía y atmosfera 33		
Prereq EAp1	COMISIONAMIENTO Y VERIFICACIÓN BÁSICOS	Requerido
Prereq EAp2	DESEMPEÑO ENERGÉTICO MÍNIMO	Requerido
Prereq EAp3	MEDICIÓN DEL CONSUMO DE ENERGÍA POR EDIFICIO	Requerido
Prereq EAp4	GESTIÓN BÁSICA DE REFRIGERANTES	Requerido
Credit EAc1	COMISIONAMIENTO AVANZADO	6
Credit EAc2	OPTIMIZACIÓN DEL DESEMPEÑO ENERGÉTICO	18
Credit EAc3	MEDICIÓN DE ENERGÍA AVANZADA	1
Credit EAc4	ARMONIZACION EN LA RED	2
Credit EAc5	ENERGÍA RENOVABLE	5
Credit EAc6	MANEJO AVANZADO DE REFRIGERANTES	1

Materia	les y recursos	13
Prerea	Almacenamiento y Recolección de Reciclables	Requerido

Prereq MRp2	PLANIFICACIÓN DE LA GESTIÓN DE LOS DESECHOS DE CONSTRUCCIÓN Y DEMOLICIÓN	Requerido
Credit MRc1	Reducción del Impacto del Ciclo de Vida del Edificio	5
Credit MRc2	Transparencia y Optimización de los Productos de Construcción - Declaración Ambiental de Productos	2
Credit MRc3	Transparencia y Optimización de los Productos de Construcción - Fuentes de Materias Primas	2
Credit MRc4	Transparencia y Optimización de los Productos de Construcción - Ingredientes de los Materiales	2
Credit MRc5	GESTIÓN DE LOS DESECHOS DE CONSTRUCCIÓN Y DEMOLICIÓN	2

Calidad de	el aire interior	16
Prereq EQp1	DESEMPEÑO MÍNIMO DE LA CALIDAD DEL AIRE INTERIOR	Requerido
Prereq EQp2	CONTROL DEL HUMO AMBIENTAL DEL TABACO	Requerido
Credit EQc1	ESTRATEGIAS AVANZADAS DE CALIDAD DEL AIRE INTERIOR	2
Credit EQc2	MATERIALES DE BAJA EMISIÓN	3
Credit EQc3	PLAN DE GESTIÓN DE LA CALIDAD DEL AIRE INTERIOR EN LA CONSTRUCCIÓN	1
Credit EQc4	EVALUACIÓN DE LA CALIDAD DEL AIRE INTERIOR	2
Credit EQc5	CONFORT TÉRMICO	1
Credit EQc6	ILUMINACIÓN INTERIOR	2
Credit EQc7	ILUMINACIÓN NATURAL	3
Credit EQc8	VISTAS DE CALIDAD	1
Credit EQc9	DESEMPEÑO ACÚSTICO	1
Innovaciór	1	6
Credit INc1	INNOVACION	5
Credit INc2	PROFESIONAL LEED ACREDITADO	1
Prioridad 1	regional	4
Credit RPc1.1	PRIORIDAD REGIONAL	4
PUNTAJE T	OTAL	110

Nota: Adaptado de "Guía LEED v4.1 para diseño y construcción de edificios" por U.S. Green Building Council, 2019

Como se ha mencionado, los prerrequisitos son obligatorios y no otorgan puntaje, los requisitos otorgan los puntos para obtener una certificación. El puntaje de cada requisito puede variar a criterio del evaluador. A continuación, se detalla el proceso de certificación.

A) Registro del proyecto: El equipo del proyecto debe enviar un formulario de registro y pagar una tarifa al GBCI. Toda la actividad del proyecto, incluido el registro y la documentación de cumplimiento para el crédito, se completa en LEED en línea www.usgbc.org.

- B) Preparación para la solicitud: Cada crédito y prerrequisito de LEED tiene requisitos de documentación que se deben completar. Cuando se ha reunido la documentación necesaria, lo que incluye la información y los cálculos exigidos, el equipo del proyecto debe cargar el material en LEED en línea.
- C) Envío: El envío de la documentación para su revisión se puede realizar en una o dos etapas. El equipo puede esperar para enviar la documentación hasta que se haya finalizado el proyecto de construcción, o bien puede solicitar la revisión de sus prerrequisitos y créditos relacionados con el diseño antes de la finalización del proyecto y luego solicitar los créditos relacionados con la construcción una vez que el proyecto esté completo.
- D) Revisión de la solicitud: Se realiza una revisión preliminar. El revisor del GBCI puede solicitar información adicional o aclaraciones. Después de la revisión final, el equipo puede apelar cualquier decisión adversa sobre los créditos individuales ante el GBCI por una tarifa adicional.
- E) Certificación: Una vez que se completa la revisión final de la solicitud, el equipo del proyecto puede aceptarla o apelar la decisión final. Los proyectos certificados por LEED reciben certificados formales de reconocimiento. A continuación, la figura 5 muestra la tarifa de certificación LEED.

TARIFAS BD+C	Nivel Organizativo o No Miembros	Miembros de nivel Plata, Oro y Platino	Ahorro por Miembro
REGISTRO			
	1.200 \$	900 \$	300 \$
REVISIÓN DE PRECERTIFICACIÓN (OPCION	AL, SOLO LEED CS)		
Tarifa plana (por edificio)	4.250 \$	3.250 \$	1.000 \$
Revisión Acelerada		+ 10.000 \$	
REVISIÓN COMBINADA: DISEÑO & CONSTR	UCCIÓN		
Superficie bruta construida (excluyendo aparcamiento): menos de 4.650 m²	2.750 \$	2.250 \$	500 \$
Superficie bruta construida (excluyendo aparcamiento): 4.650 m² - 46.500 m²	0,61 \$/m²	0,50 \$/m ²	0,11 \$/m²
Superficie bruta construida (excluyendo aparcamiento): más de 46.500 m²	27.500 \$	22.500 \$	5.000 \$
Revisión Acelerada		+ 5.000 \$	
APELACIONES			
Créditos Complejos	800 \$ por crédito)	
Todos los Demás Créditos	500 \$ por crédito)	
Revisión Acelerada	+500 \$ por crédito)	

Figura 5. Tarifa de certificación Leed

Fuente: Tomado de http://www.spaingbc.org/files/LEED%20Certification%20Fees%20ESP.pdf

2.4.2. Costos de la certificación LEED

La certificación agrega valor al proyecto pero también incurre en costos adicionales y desafíos de implementación para los contratistas generales y otras partes interesadas (Pham et al., 2019). Sin embargo, diversas investigaciones muestran que, analizando todo el ciclo de vida del edificio, los beneficios de la construcción sostenible superan en diez veces sus costes. En este sentido, una certificación de sostenibilidad debería garantizar que, efectivamente, los ahorros futuros, compensarán el sobrecoste que tiene el construir un edificio sostenible frente a uno que no lo es (Grupo de Trabajo de Conama, 2012).

Según el presidente de Turner Construcción, Thomas C. Leppert, cuatro estudios de la industria de más de 150 edificios sostenibles en los Estados Unidos muestran que, en promedio, cuesta solo un 0,8% del presupuesto lograr la certificación LEED a nivel certificado (Lockwood, 2006). Otros estudios realizados revelan, el costo adicional de certificación LEED de un edificio a nivel Silver representa entre el 3% y un 2.5% del presupuesto (Grupo de Trabajo de Conama, 2012). El trabajo realizado por Kats (2003) da a conocer, para alcanzar una certificación LEED a nivel certificado el costo adicional es de 0.66% y para obtener el nivel Platinum es 6.50% del presupuesto. Por lo que, lograr certificar un edificio a nivel LEED certificado representa un costo adicional menor al 1% del presupuesto.

2.4.3. Beneficios de la implementación de la certificación LEED

Diversos autores han dado a conocer los beneficios de implementar LEED en los proyectos de construcción. En su primer año de operación, la sede de 12 pisos LEED-Platinum de Genzyme Corporation en Cambridge, Massachusetts, usó 42% menos energía y 34% menos agua que los edificios convencionales de tamaño comparable. Además, el entorno construido aumentó la productividad de los empleados en aproximadamente un 15%, ya que está constituido por materiales de construcción alternativos de baja emisividad (Lockwood, 2006). La Administración de Servicios Generales de EE. UU. realizó una encuesta con 12 edificios verdes y reportaron, un 26% de ahorro de energía y un 33% de emisiones más bajas de dióxido de carbono (U.S. Green Building Council, 2017). Entonces, se puede afirmar que el uso de programas de certificación, como LEED, no solo genera beneficios de sostenibilidad debido al gran ahorro en el consumo de

agua y energía eléctrica, sino que también disminuye los costos operativos durante el ciclo de vida del edificio (Ribero et al., 2016).

2.5. Caso de estudio: Edificación multifamiliar "Los Huertos de Villa"

El objetivo principal de la presente investigación responde a la pregunta ¿Cómo convertir el caso de estudio a un edificio verde? Por lo que, el equipo de trabajo decidió seguir las directrices de la certificación LEED para cumplir con el objetivo. Se propone lograr un una certificación a nivel LEED certificado. Para ello, utilizaremos como referencia la "Guía de conceptos básicos de edificios verdes y LEED" por (U.S. Green Building Council, 2017) y la "Guía LEED v4.1 para diseño y construcción de edificios" por (U.S. Green Building Council, 2019), ambas para construcciones nuevas.

2.5.1. Actividades a realizar para lograr la certificación LEED certificado

Para obtener la certificación LEED certificado, debemos ganar puntos en las diferentes categorías, a cada práctica sostenible se le asigna un valor de punto. El número de puntos de la calificación obtenida va determinar el nivel de certificación alcanzado que para nuestro caso será 40 puntos. Para ello debemos definir los créditos que nos ayudarán a lograr ese puntaje. En tal sentido, proponemos, para cada categoría, una alternativa para obtener puntos y cumplir con los prerrequisitos obligatorios.

1. Categoría: Localización y transporte

Fomenta la creación de barrios dignos para las personas y la interacción de personas con el medio ambiente. La tabla 3 detalla los requisitos a lograr y como lo vamos a lograr para obtener puntos en esta categoría. Para ello se propone una alternativa.

Tabla 3

Créditos a lograr en la categoría Localización y transporte

Crédito	Localización y transporte	Puntaje m á ximo	Justificación	Puntaje
LTc1	UBICACIÓN PARA EL DESARROLLO DE BARRIOS LEED	16	El área no cuenta con una certificaciónn referida al desarrollo de barrios LEED	0
LTc2	PROTECCIÓN DE TIERRAS SUSCEPTIBLES	1	El terreno no ha sido previamente desarrollado. No se tiene datos sobre la huella ecológica del terreno.	0
LTc3	SITIO DE ALTA PRIORIDAD	2	El proyecto no se encuentra en áreas con limitaciones de desarrollo	0
LTc4	DENSIDAD DE LOS ALREDEDORES Y DIVERSIDAD DE USOS	5	La guíá otorga 2 puntos para un mínimo de 5085 metros cuadrados de densidad combinada. La edificación no se encuentra ubicada en una zona con una diversidad de 4 usos distintos en el área próxima.	0
LTc5	ACCESO A TRANSPORTE DE CALIDAD	5	El edificio cuenta con buena accesibilidad en sus entradas, además de contar con la cercanía necesaria para el acceso del transporte. La guía establece para este puntaje un mínimo de 100 viajes diarios entre semana y 70 los fines de semana.	2
LTc6	INSTALACIONES PARA BICICLETAS	1	El edificio está situado y diceñado del tal manera que no favorece el uso y aparcamiento para las bicicletas.	0
LTc7	HUELLA REDUCIDA DE ESTACIONAMIENTOS		Los estacionamientos están diseñados según la RNE. Además se venderá los estacionamientos separados de los departamentos	1
LTc8	VEHÍCULOS EFICIENTES	1	El diseño no contempla una zona de carga para vehículos eléctricos.	0
			Puntaje obtenido	3

2. Categoría: Entornos sostenibles

La ubicación de un edificio es tan importante como la manera en que este se construye. La tabla 4 detalla los requisitos a lograr y como lo vamos a lograr. Para ello se propone una alternativa.

Tabla 4
Créditos a lograr en la categoría Entornos sostenibles

Crédito	Entornos sostenibles	Puntaje Máximo	Justificaci ó n	Puntaje
Prereq SSp1	PREVENCIÓN DE LA CONTAMINACIÓN EN LA CONSTRUCCIÓN	Requerido	Realizar un plan para el control del polvo de acuerdo a las normativas y códigos locales.	
SSc1	EVALUACIÓN AMBIENTAL DEL SITIO	1	La guía establece realizar un estudio del lugar con informaciónn referente a la topografia, hidrología, clima con el fin de conocer a detalle el lugar y tomar medidas correctas para el diseño y construcción de la edificación.	1
SSc2	DESARROLLO DEL SITIO - PROTECCIÓN O RESTAURACIÓN DEL HÁBITAT	2	No aplica	0
SSc3	ESPACIOS ABIERTOS	1	No cuenta con espacios con entorno al ambienta ni para la interacción entre personas. No fomenta la actividad fisica, etc.	0
SSc4	MANEJO DE LAS AGUAS PLUVIALES	3	No aplica ya que en Lima no se generan grandes lluvias.	0
SSc5	REDUCCIÓN DEL EFECTO ISLA DE CALOR	2	Minimizar los efectos de islas de calor mediante un techo vegetado de manera completa. Instalar un techo con vegetación utilizando especies de plantas nativas o adaptadas.	2
SSc6	REDUCCIÓN DE LA CONTAMINACIÓN LUMÍNICA	1	Para aumentar el acceso al cielo nocturno, mejorar la visibilidad nocturna y reducir las consecuencias del desarrollo para la vida silvestre y las personas.	0
	Laborit 1		Puntaje Obtenido	3

3. Categoría: Uso eficiente del agua

A medida que se expande el desarrollo residencial, también lo hace el uso del suministro limitado de agua potable. El propósito de la presente categoría es reducir el consumo de agua interior y exterior de un edificio a través del uso de sistemas más eficientes que nos permitan tener ahorros significativos de este recurso. A continuación, la tabla 5 detalla los requisitos a lograr y como lo vamos a lograr para obtener puntos en esta categoría. Para ello se propone una alternativa.

Tabla 5 Créditos a lograr en la categoría uso eficiente del agua

Crédito	Uso eficiente del agua	Puntaje m á ximo	Justificaci ó n	Puntaje
Prereq WEp 1	REDUCCIÓN DEL CONSUMO DE AGUA EN EL EXTERIOR	Requerido	La guía establece que para obtener el prerrequisito se debe tener un ahorro de al menos 30% de agua en el exterior.	
Prereq WEp2	REDUCCIÓN DEL CONSUMO DE AGUA EN EL INTERIOR	Requerido	Se requiere la regulación de agua para los usos internos del edificio, según la guía, para obtener el prerrequisito se debe tener un ahorro de al menos 20% de agua mediante el uso de equipamiento adecuado.	
Prereq WEp3	MEDICIÓN DE CONSUMO DE AGUA POR EDIFICIO	Requerido	LEED evalúa que se tenga una medición del consumo de agua para todo el edificio que deben ser mensuales y anuales, además se compartirá estas mediciones con el USGBC.	
Credit WEc1	REDUCCIÓN DEL CONSUMO DE AGUA EN EL EXTERIOR	2	No se cuenta con jardines en los exteriores del proyecto. No existe requisitos de agua al paisaje exterior.	0
Credit WEc2	REDUCCIÓN DEL CONSUMO DE AGUA EN EL INTERIOR	6	La guia otorga puntos de acuerdo al porcentaje de reduccion de consumo de agua en el interior. Debemos utilizar sistemas de inodoros, y griferias que permitan reducir el consumo de agua. Para las lavadoras exite un límite de 7lts/0.45kg	3
Credit WEc3	CONSUMO DE AGUA DE LA TORRE DE ENFRIAMIENTO	2	No se cuenta con un sistema de enfriamiento	0
Credit WEc4	MEDICIÓN DEL CONSUMO DE AGUA	1	Instalar medidores de agua permanentes para dar seguimiento al consumo de agua según corresponda al proyecto. Los medidores de agua deben controlar al menos al 80% de los accesorios interiores.	1
			Puntaje obtenido	4

4. Categoría: Materiales y recursos

Los materiales y recursos son la base de los edificios en los que vivimos y trabajamos. La presente categoría fomenta el uso de materiales de construcción sostenible y la gestión de residuos que se generan de las actividades de construcción. En un sistema convencional, los materiales se compran, consumen y descartan, a menudo en un vertedero. Cada uno de los pasos de este proceso de producción, consumo y desecho tiene consecuencias significativas ambientales, sociales y económicas. LEED propone diversos requisitos para minimizar los impactos generados por los materiales empleados, así como el uso eficiente de los recursos. La tabla 6 detalla los requisitos a lograr y como lo vamos a lograr para obtener puntos en esta categoría. Para ello se propone una alternativa.

Tabla 6 Créditos a lograr en la categoría Materiales y recursos

Crédito	Materiales y recursos	Puntaje máximo	Justificaci ó n	Puntaje
Prereq	Almacenamiento y Recolección de Reciclables	Requerido	Proporcionar áreas dedicadas accesibles para los transportistas de residuos y los ocupantes del edificio para la recolección y almacenamiento de materiales reciclables para todo el edificio	
Prereq MRp2	PLANIFICACIÓN DE LA GESTIÓN DE LOS DESECHOS DE CONSTRUCCIÓN Y DEMOLICIÓN	Requerido	Reducir los desechos de construcción y demolición dispuestos en vertederos e instalaciones de incineración mediante la recuperación, reutilización y reciclaje de materiales.	
Credit MRc1	Reducción del Impacto del Ciclo de Vida del Edificio	5	Realizar una evaluación del ciclo de vida de la estructura y conseguir una reducción del impacto ambiental de 5% en al menos dos categorías de impacto	2
Credit MRc2	Transparencia y Optimización de los Productos de Construcción - Declaración Ambiental de Productos	2	Utilizar al menos 20 productos diferentes instalados de forma permanente procedentes de al menos cinco fabricantes diferentes que cumplan con la ISO 14044 y declarada al público	2
Credit MRc3	Transparencia y Optimización de los Productos de Construcción - Fuentes de Materias Primas	2	Utilizar productos provenientes de al menos tres fabricantes diferentes que cumplan con al menos uno de los criterios de abastecimiento y extracción por al menos 20% del valor total de productos de construcción instalados de por vida en el Usar al menos 20 productos diferentes instalados	2
Credit MRc4	Transparencia y Optimización de los Productos de Construcción - Ingredientes de los Materiales	2	permanentemente de al menos cinco fabricantes diferentes que demuestre un inventario químico del producto a al menos 0.1% (1000 ppm).	2
Credit MRc5	GESTIÓN DE LOS DESECHOS DE CONSTRUCCIÓN Y DEMOLICIÓN	2	Establecer un plan de manejo de residuos de construcción para no generar más de 7.5 libras de desechos de construcción por pie cuadrado (36.6 kilogramos de desechos por metro cuadrado)	2
			Punta je Obtenido	10

5. Categoría: Energía y atmosfera

En la actualidad, la mayoría de profesionales del diseño de edificaciones no usan criterios de eficiencia energética en sus proyectos. Para Trebilcock (2011), el problema se debe el costo de inversión inicial, carencia de suficientes políticas públicas e incentivos económicos, hasta el desconocimiento y la falta de competencias profesionales en estos temas. Los edificios tienen alto

consumo energético sino se incorporan sistemas parar lograr ahorros de energía. Los requisitos de la presente categoría nos permiten asegurar que tendremos ahorros energéticos, así como reducir los gases de efecto invernadero de nuestro proyecto. La tabla 7 detalla los requisitos a lograr y como lo vamos a lograr para obtener puntos en esta categoría. Para ello se propone una alternativa.

Tabla 7

Créditos a lograr en la categoría energía y atmósfera

Crédito	Energia y atmosfera	Puntaje M á ximo	Justificaci ó n	Puntaje
Prereq EAp1	COMISIONAMIENTO Y VERIFICACIÓN BÁSICOS	Requerido	Asegurar que el diseño, construcción y puesta en marcha del proyecto, cumpla con los requerimientos del cliente, tanto en energía como agua, calidad ambiental interior y durabilidad. Los documentos deben seguir lo estipulado por ASHRAE	
Prereq EAp2	DESEMPEÑO ENERGÉTICO MÍNIMO	Requerido	Verificar que el proyecto tenga como objetivo la reducción del impacto ambiental y económico debido al uso excesivo de energía. Se debe sustentar las reducciones en costo y emisión de GEI como consecuencia de un uso eficiente de la energía.	
Prereq EAp3	MEDICIÓN DEL CONSUMO DE ENERGÍA POR EDIFICIO	Requerido	LEED evalúa que se tenga una medición del consumo de energia para todo el edificio que deben ser mensuales y anuales, además se compartirá estas mediciones con el USGBC.	
Prereq EAp4	GESTIÓN BÁSICA DE REFRIGERANTES	Requerido	Los equipos HVAC que se instalarán en el proyecto, para controlar la temperatura interior, no deben ser refrigerantes basados en clorofluorocarbonos (CFC).	
Credit EAc1	COMISIONAMIENTO AVANZADO	6	Contactar un consultor que complete las actividades del proceso de puesta en marcha para sistemas y conjuntos mecánicos, eléctricos, de plomería y de energía renovable de acuerdo con la directriz ASHRAE en lo que se refiere a energía, Realizar una simulación energética del proyecto durante el	4
Credit EAc2	OPTIMIZACIÓN DEL DESEMPEÑO ENERGÉTICO	18	diseño y demostrar un Índice de costo de rendimiento (PCI) 1 por debajo del Objetivo del índice de costo de rendimiento (PCI t) calculado de acuerdo con la Sección 4.2.1.1 ASHRAE. Instalar medidores de energía para lo siguiente: todas las	9
Credit EAc3	MEDICIÓN DE ENERGÍA AVANZADA	ı	fuentes de energía de todo el edificio utilizadas por el edificio; y cualquier uso final de energía individual que represente el 10% o más del consumo anual total del edificio	0
Credit EAc4	ARMONIZACION EN LA RED	2	Diseñar un sistema con la capacidad de recuperación ante desastres totalmente automatizada en tiempo real basada en la iniciación externa de un proveedor de programas de recuperación ante desastres.	0
Credit EAc5	ENERGÍA RENOVABLE	5	Utilizar sistemas de energía renovable en el sitio, obtener energía renovable de fuentes externas o compensar las emisiones de gases de efecto invernadero de todo o una parte del uso de energía anual del edificio.	0
Credit EAc6	MANEJO AVANZADO DE REFRIGERANTES	1	No se utiliza sistemas de refrigerantes	0
			Punta je obtenido	13

Fuente: Elaboración propia

6. Categoría: Calidad del aire interior

La calidad ambiental interior abarca las condiciones en el interior del edificio y los efectos que producen en los ocupantes. Los objetivos se centran en proporcionar estimulación y ambientes confortables para los ocupantes, además de minimizar el riesgo de sufrir problemas de salud relacionados con el edificio. Por lo que, la categoría promueve una mejor calidad ambiental interior, mediante el control de sustancias contaminantes, el acceso a la luz natural y vistas acceso del control a los ocupantes y el confort térmico y acústico. A continuación, la tabla 8 detalla los requisitos a lograr y como lo vamos a lograr para obtener puntos en la presente categoría. Para ello se propone una alternativa.

Tabla 8
Créditos a lograr en la categoría calidad del aire interior

Crédito	Calidad del aire interior	Puntaje Máximo	Justificaci ó n	Puntaje
Prereq EQp1	DESEMPEÑO MÍNIMO DE LA CALIDAD DEL AIRE INTERIOR	Requerido	El proyecto debe cumplir estándares mínimos para la calidad del aire interior. Puede cumplir los requisitos de la Norma ISO 17772-1: 2017, Sección 6.3, utilizando el Método 1 o Norma ASHRAE 62.1–2016	
Prereq EQp2	CONTROL DEL HUMO AMBIENTAL DEL TABACO	Requerido	Prohibir fumar dentro del edificio, excepto en áreas designadas para fumar ubicadas al menos 7,5 metros (o la extensión máxima permitida por los códigos locales) de todas las entradas, entradas de aire exterior y ventanas operables.	
Credit EQc1	ESTRATEGIAS AVANZADAS DE CALIDAD DEL AIRE INTERIOR	2	Diseñe el proyecto para minimizar y controlar la entrada de contaminantes en el edificio.	0
Credit EQc2	MATERIALES DE BAJA EMISIÓN	3	Usar materiales en el interior del edificio que cumplan con los criterios de baja emisión de VOC. Al menos del 75% del material por metro cuadrada debe cumplir con dicha condición. Pinturas, adhesivos, pisos, etc.	3
Credit EQc3	PLAN DE GESTIÓN DE LA CALIDAD DEL AIRE INTERIOR EN LA CONSTRUCCIÓN	Ι	Desarrollar e implementar un plan de gestión de calidad del aire interior para las fase de construcción. Durante la construcción, se debe cumplir todas las medidas de control recomendadas aplicables por SMACNA.	1
Credit EQc4	EVALUACIÓN DE LA CALIDAD DEL AIRE INTERIOR	2	Ventilar el edificio antes y durante la ocupacion de los propietarios según los parámetros establecidos por LEED	0
Credit EQc5	CONFORT TÉRMICO	1	No se aplica diseño de sistemas de calefacción, ventilación y aire acondicionado	0
Credit EQc6	ILUMINACIÓN INTERIOR	2	Para al menos el 90% de los espacios individuales de los ocupantes, proporcionar controles de iluminación individuales que permitan a los ocupantes ajustar la iluminación para adaptarse a sus tareas y preferencias	2
Credit EQc7	ILUMINACIÓN NATURAL	3	Diseñar de tal manera que se reduzca el uso de la energia eléctrica y se utilize la luz del día en el ambiente. Realizar simulaciones de iluminancia y debe superar los 300 lux como mínimo.	3
Credit EQc8	VISTAS DE CALIDAD	1	Lograr una línea de visión directa hacia el exterior a través del acristalamiento visual para el 75% de toda el área del piso ocupada regularmente. Debe mostrar una imagen clara del exterior.	1
Credit EQc9	DESEMPEÑO ACÚSTICO	1	Lograr niveles máximos de ruido de fondo de los sistemas de calefacción, ventilación y aire acondicionado (HVAC) según el Manual ASHRAE 2015. Para nuestro proyecto no aplica	0
		σ/N	Puntaje Obtenido	10

7. Categoría: Innovación

La intención de la categoría es fomentar proyectos con un desempeño excepcional o innovador. Lograr un desempeño ambiental significativo y medible utilizando una estrategia no abordada en el sistema de clasificación de edificios ecológicos LEED es una de las opciones para ganar puntos en esta categoría. Para el caso de estudio, no se perseguirá puntos por este crédito. Sin embargo, se

propone tener un profesional acreditado LEED para que guie al proyecto en el proceso de certificación. Por lo que, se obtendrá un punto en esta categoría.

8. Categoría: Prioridad regional

Los puntos otorgados por esta categoría se deben a la implementación de estrategias de construcción sostenible que aborden problemas ambientales importantes que se enfrenten en una región específica. Una base de datos de créditos de Prioridad Regional y su aplicabilidad geográfica está disponible en el sitio web del USGBC (http://www.usgbc.org). Se otorga un punto por cada crédito de Prioridad Regional alcanzado, hasta un máximo de cuatro. No aplica para el caso de estudio.

Las alternativas propuestas logran un puntaje de 44 puntos en total. El puntaje obtenido puede variar de acuerdo al evaluador designado. Sin embargo, estamos logrando la certificación LEED a nivel certificado.

2.5.2. Precio de la implementación LEED certificado

Para estimar el precio de implementar una certificación a nivel LEED certificado, utilizaremos los valores obtenidos por (Kats, 2003) ya que realiza su investigación en diversos números de edificios y fue respaldado por diferentes instituciones internacionales. A continuación, la tabla 9 detalla los precios adicionales al presupuesto del proyecto que se deben incluir para lograr la certificación LEED certificado.

Tabla 9

Precio adicional de implementar la certificación Leed certificado

Nivel	Katss (2003)	Presupuesto de obra	Precio de implementar	Tarifa de certificación	Presupuesto adicional
Certificado	0.66%	S/1,421,243.67	S/9,380.21	S/13,351.00	S/22,731.21

Silver	2.11%	S/1,421,243.67	S/29,988.24	S/13,351.00	S/43,339.24
Gold	1.82%	S/1,421,243.67	S/25,866.63	S/13,351.00	S/39,217.63
Platinum	6.50%	S/1,421,243.67	S/92,380.84	S/13,351.00	S/105,731.84

Según Geof et al., (2003), aunque los beneficios de la operación y mantenimiento del proyecto verde pueden superar con creces el aumento de los costos iniciales, la mayoría de los proyectos LEED incurrirán en algún nivel de "prima ecológica" por encima del presupuesto inicial. Como se puede observar en la tabla 9, obtener una certificación LEED para los distintos niveles genera un costo adicional. Para el proyecto multifamiliar "Los Huertos de Villa", se necesitará un presupuesto adicional aproximado de S/.22,731.21 para lograr una certificación LEED certificado. Para alcanzar una certificación a nivel Silver, el costo adicional aproximado será de S/. 43,339.21. Sin embargo, el costo adicional puede variar de acuerdo a la experiencia de certificación del equipo de trabajo.

3. ARQUITECTURA

3.1. Descripción general del proyecto

El proyecto "HUERTOS DE VILLA" comprende la construcción de un edificio multifamiliar de 4 pisos de los cuales en el primero se encontrará los estacionamientos, patio, cisterna, sala de recepción; y los tres siguientes pisos son de vivienda, con 2 departamentos por piso.

Nombre del proyecto: MULTIFAMILIAR HUERTOS DE VILLA

Uso: Edificio de viviendas

Ubicación:

Dirección : CALLE ALAMEDA SAN JUAN DE BUENA VISTA 153, URB.

HUERTOS DE VILLA, CHORRILLOS

Urbanización : HUERTOS DE VILLA

Departamento. : LIMA

Provincia : LIMA

Distrito : CHORRILLOS

Propietario: PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

Zonificación: RDMB

Área del terreno: 665.88 m²

Área techada: 342.2 m²

Área libre: $323.68 \text{ m}^2 (48.61\%)$

3.2. Normatividad

Para el proyecto arquitectónico se han utilizado las Normas A.010 y A.020 del Reglamento Nacional de Edificaciones. Además, se tuvo en consideración las normas A.120 y A.130 en el diseño de accesos en el edificio.

3.3. Información del terreno

El terreno cuenta con un área total de 665.88 m² con un frente de 15.53 m y fondo de 39.70 m.

Este se ubica en el distrito de Chorrillos. A continuación, se muestra un mapa con la ubicación geográfica del proyecto.

Figura 6. Ubicación geográfica del proyecto

Fuente: Google Maps

Además, según la zonificación del proyecto, el terreno se encuentra en la zona RDMB (Residencial de Densidad Muy Baja). El plano de zonificación se muestra en la siguiente imagen.

Figura 7. Zonificación del distrito de Chorrillos

Fuente: Municipalidad de Chorrillos

Con esto, se obtiene que se pude construir hasta cuatro pisos, por lo que el proyecto cumple con dicho requisito.

3.4. Descripción del proyecto

El proyecto es un edificio multifamiliar de cuatro pisos que cuenta con estacionamientos en la parte posterior del edificio y jardines a los costados y en la parte frontal. El primer piso es de recepción, estacionamientos y áreas comunes y los pisos superiores son de vivienda, con dos departamentos por piso.

En el primer piso se encuentran 8 estacionamientos ubicados en la parte posterior del terreno, 2 depósitos cercanos a la escalera los cuales estarán a la venta, un baño en el lobby, área de recepción y sala de uso común. Además, en la zona de estacionamientos, se encuentra la cisterna. Para acceder a los departamentos se debe usar el ascensor o la escalera los cuales inician sus recorridos en el primer piso.

En el segundo, tercer y cuarto piso se encuentran los departamentos, con dos departamentos por piso y cada uno cuenta con 148.74 m² de área. Cada departamento cuenta con un dormitorio principal, que incluye un walking closet y un baño completo; un dormitorio pequeño; área de estudio, un baño principal completo y dos baños de visitas ubicados en el pasillo y lavandería; cocina; lavandería; y sala comedor, la cual se ubica en la parte frontal del edificio. Además, cada departamento, cuenta con acceso directo al ascensor y la escalera.

El ascensor recorre los cuatro pisos y tiene puertas que dan acceso a los dos departamentos que hay por piso, hacia ambos lados del ascensor. Cabe mencionar que el ascensor permite la movilización de personas con movilidad limitada.

La escalera da acceso a los cuatro pisos, tiene pasos de 0.25 m, contrapasos de 0.17 m y ancho de 1.20 m. también, cuenta con barandas metálicas a ambos lados del recorrido de la escalera.

Los planos de arquitectura del primer piso y los pisos típicos, así como los cortes y elevaciones se muestran en los anexos A2, A3 y A4

A continuación, se muestra la distribución de los ambientes en el piso típico.

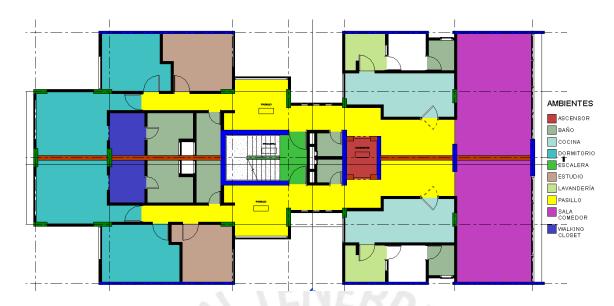


Figura 8. Distribución de ambientes en piso típico

Fuente: Propia

Las áreas comunes en los pisos típicos son el área de escalera (verde) y el ascensor (rojo). Las demás áreas pertenecen a cada uno de los departamentos.

También, se muestra un cuadro con las áreas que cuenta cada piso típico.

Tabla 10

Cuadro de áreas por cada piso

CU	CUADRO DE ÁREAS POR PISO						
NIVEL	DEPARTAMENTO	ÁREA					
	LOBBY	91.1 m2					
1	DEPÓSITO 1	6.75 m2					
1	DEPÓSITO 2	5.68 m2					
-	ESCALERA	10.85 m2					
114	ASCENSOR	3.22 m2					
4	BAÑO	2.19 m2					
	201	148.74 m2					
2	202	148.74 m2					
2	ESCALERA	10.85 m2					
	ASCENSOR	3.22 m2					
	301	148.74 m2					
3	302	148.74 m2					
3	ESCALERA	10.85 m2					
	ASCENSOR	3.22 m2					
	401	148.74 m2					
4	402	148.74 m2					
4	ESCALERA	10.85 m2					
	ASCENSOR	3.22 m2					

3.5. Cuadro de acabados

Los baños, lavanderías y cocinas tendrán pisos y zócalos de porcelanato, puertas contraplacadas y cielorraso pintado. También, se instalarán los lavatorios, inodoros y duchas.

Los dormitorios, pasillos interiores, walking closet, estudio y sala-comedor tendrán piso laminado, contra zócalos de madera; y pintura en paredes y cielorrasos. Además, las puertas serán contraplacadas. Por otro lado, la parte de la sala-comedor que da a la calle, será de vidrio templado de 6 mm.

El lobby y los pasadizos tendrán piso de porcelanato, contra zócalos de porcelanato y paredes y cielorrasos con pintura. La entrada al edificio será una mampara corrediza de 8 mm.

Se colocará puertas cortafuegos en la zona de la escalera y una puerta elevadiza para la entrada al estacionamiento.

Las ventanas llevaran carpintería metálica de aluminio y vidrios traslucidos de 4mm.

También, se usarán focos dicroicos en la entrada al edificio, fluorescentes en el estacionamiento y focos Led en el resto de ambientes del edificio.

Finalmente, se equipará al Lobby con sillones, macetas ornamentales y las cocinas serán equipadas con muebles bajos y altos.

El cuadro de vanos completo y detallado se muestra en el Anexo A1

4. GEOTECNIA

4.1. Memoria descriptiva

Para el área de Geotecnia se aplicó la Norma E. 050 referente a suelos y cimentaciones, y los conocimientos adquiridos en los cursos pertenecientes a esta área.

Inicialmente, se efectuó un estudio de mecánica de suelos (EMS). De esta forma, se desarrolló un programa de exploración con la finalidad de obtener los datos necesarios para el diseño. Posteriormente, una vez obtenidos los datos de campo y laboratorio, se procedió al diseño de cimentaciones del proyecto.

4.1.1. Resumen de las condiciones de cimentación

Tabla 11

Resumen de las condiciones de cimentación

TIPO DE CIMENTACIÓN	ALTERNATIVA 1: Zapatas aisladas o continuas de
	concreto Armado
	ALTERNATIVA 2: Platea de cimentación (para el
	muro del ascensor)
ESTRATO DE APOYO DE LA	Arcilla de baja plasticidad, compacta, húmeda,
CIMENTACIÓN	marrón amarillento (CL)
PARÁMETROS DE DISEÑO DE	DF: 1.5 m
LA CIMENTACIÓN	Presión admisible: 1.25 Kg/cm2
	Factor de seguridad por corte (Dinámico): 2.5
M	Asentamiento total: 0.75 cm
AGRESIVIDAD DEL SUELO A	No detectada
LA CIMENTACIÓN	
RECOMENDACIONES	En caso se detecte Zonas de relleno artificial deberá
ADICIONALES	eliminar dichos rellenos en su totalidad ya que
	pueden sufrir mayores asentamientos.

4.1.2. Información previa

Se cuenta con los planos de plantas y cortes donde se visualiza los niveles de piso terminado y cualquier tipo de estructura enterrada. También se cuenta con el permiso para el ingreso al terreno del proyecto, el cual se encuentra libre para poder efectuar la exploración de campo.

La edificación a cimentar está estructurada por pórticos y muros de concreto armado con un área aproximada de 330 m². El proyecto está destinado para uso de vivienda multifamiliar sin sótanos.

Según la tabla 1 de la Norma E.050 suelos y cimentaciones, el número de puntos a explorar fueron 3.

Tabla 12

Tabla de número de puntos de exploración según el tipo de edificación según la E.050

	TABLA 1 TIPO DE EDIFICACIÓN U OBRA EL NÚMERO DE PUNTOS DE EXF	PARA DETERMINAR LORACIÓN (TABLA 6)			
DESCRIPCIÓN	DISTANCIA MAYOR ENTRE		NÚMERO DE PIS Incluidos los sóta		
	APOYOS • (m)	≤ 3	4 a 8	9 a 12	> 12
APORTICADA DE ACERO	< 12	III	III	III	II.
PÓRTICOS Y/O MUROS DE CONCRETO	< 10	III	Ш	II .	- 1
MUROS PORTANTES DE ALBAÑILERÍA	< 12	II	1		
BASES DE MÁQUINAS Y SIMILARES	Cualquiera	ı		-	
ESTRUCTURAS ESPECIALES	Cualquiera	1	ı	1	- 1
OTRAS ESTRUCTURAS	Cualquiera	II	ı	1	1
- Cuando la distancia sobrepasa la indicada, se clasifio	cará en el tipo de edificación inmed	ato superior.			
TANQUES ELEVADOS Y SIM	III ADEC	≤ 9 m de altura	9 m de altura > 9 m de altura		
IANQUES ELEVADOS Y SIM	ILARES	II	I		
PLANTAS DE TRATAMIENTO	DE AGUA	III			
INSTALACIONES SANITARIAS DE AGUA Y ALC URBANAS.	ANTARILLADO EN OBRAS	IV			

Por otro lado, no se tiene información de las edificaciones colindantes. Solo se sabe que el proyecto está cerca a los pantanos de villa.

4.1.3. Exploración de campo

De la información previa, se espera encontrar en el terreno una capa de 0.5 a 1 metro de arena suelta seguida por arcilla compacta hasta una profundidad de más de 10 m. La exploración de campo se realiza respetando las cantidades, valores mínimos y limitaciones que se indican en esta Norma E.050.

Tabla 13

Aplicación y limitaciones de los ensayos según la E.050

		APLICACIÓN Y	TABLA 3 LIMITACIONES DE LOS EI	NSAYOS		
			Permitida		No P	ermitida
Ensayos In Situ	Norma Aplicable	Técnica de Exploración	Tipo de Suelo(1)	Parámetro a obtener(2)	Técnica de Exploración	Tipo de Suelo(1)
SPT	NTP 339.133	Perforación	Todos excepto gravas	N	Calicata	Gravas
CPT	NTP 339.148	Auscultación	Todos excepto gravas	qc, fc	Calicata	Gravas
DPSH	UNE 103 801:1994	Auscultación	Todos excepto gravas	N20	Calicata	Gravas
CTP	ANEXO III	Auscultación	Todos excepto gravas	Cn	Calicata	Gravas
DPL	NTP 339.159	Auscultación	SP, SW, SM (con limos no plásticos)	n	Calicata	Lo restante
Veleta de Campo(3)	NTP 339.155	Perforación/ Calicata	CL, ML, CH, MH. Para todos los casos con IP > 0 y saturados	Cu, St		Lo restante
Prueba de carga	NTP 339.153		Rocas blandas y todo tipo de suelo excepto gravas	Asentamiento vs. Presión		Gravas

4.1.4. Ensayos de laboratorio

Para nuestro caso se aplicaron los métodos de ensayo para determinar el límite líquido y el límite plástico e índice de plasticidad en los suelos, el cual corresponde a la NTP 339.129. Además, se usó el método de ensayo para el análisis granulométrico que corresponde a la NTP 339.128. Estos resultados se muestran en el Anexo B4.

Tabla 14

Ensayos de laboratorio a aplicar en el proyecto según la E.050

Ensayos de Laboratorio	
Descripción	Norma
YTCMXV	Aplicable
SUELOS. Métodos de ensayo para determinar el contenido de humedad de un suelo	NTP 339.127
SUELOS. Método de ensayo para el análisis granulométrico	NTP 339.128
SUELOS. Método de ensayo para determinar el límite líquido, límite plástico e índice de plasticidad de suelos	NTP 339.129
SUELOS. Método de ensayo para determinar el peso específico relativo de las partículas sólidas de un suelo	NTP 339.131

4.1.5. Perfil de suelo

Según el registro de perforación para las 3 muestras se obtuvo los siguientes perfiles de suelo. Ademas, se muestra el perfil del suelo para una de las perforaciones en el Anexo B2.

Tabla 15

Descripción del tipo de suelo a cada profundidad

PROFUNDIDAD	DESCRIPCIÓN DEL SUELO (SUCS)	GRÁFICO
0-0.8 m	Arena suelta mal gradada, ligeramente arcillosa, marrón rosáceo,	
	ligeramente húmeda (SP-SC)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.8 – 2.2 m	Arcilla de baja plasticidad, compacta, húmeda, marón amarillento (CL)	
2.2 – 3.8 m	Arcilla de baja plasticidad compacta saturada, marrón amarillento (CL)	
3.8 – 6.1 m	Arcilla de alta plasticidad, compacta saturada, marrón claro (CH)	

Fuente: Propia

Además, de acuerdo al ensayo de Límites de Atterberg para 2 muestras (M-2, M-3) se puede verificar que los perfiles del suelo son correctos.

Para la muestra M2 (Profundidad 3.5 m a 4.1 m) se obtuvo LL = 33, LP = 20 e IP = 13. Lo cual, según la carta de plasticidad de Atterberg corresponde a una arcilla de baja plasticidad.

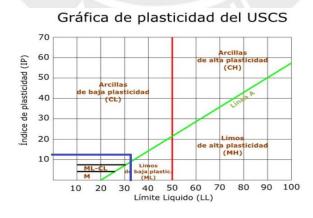


Figura 9. Gráfica de plasticidad del USCS para la muestra M2

Para la muestra M3 (Profundidad 5.5 m a 6.1 m) se obtuvo LL = 51, LP = 24 e IP = 27, Lo cual, según la carta de plasticidad, corresponde a una arcilla de alta plasticidad.



Figura 10. Gráfica de plasticidad del USCS para la muestra M3

Fuente: Propia

4.1.6. Nivel de la napa freática

De acuerdo al registro de perforación realizado el día 2 de setiembre del 2019 se encontró que el nivel de la napa freática se ubica a 2.2 m de profundidad. El documento en el que se muestra el resultado de encuentra en el Anexo B1.

4.1.7. Análisis de cimentación

1. Memoria de cálculo.

Memoria de cálculo de las dimensiones de la cimentación: Zapatas aisladas.

Según la Norma E 0.50 el diseño de las zapatas se realiza para las cargas de servicio actuantes en la base de las estructuras verticales, en este caso muros y columnas.

Las condiciones que se asume para el perfil de suelo por debajo de la cimentación es el caso más desfavorable, Arcilla de baja plasticidad, compacta y saturada.

Según la Norma E 0.50, el factor de seguridad en condiciones estáticas es FS= 3 y en condiciones sísmicas es FS= 2.5

Distribución de las cargas de servicio en planta:

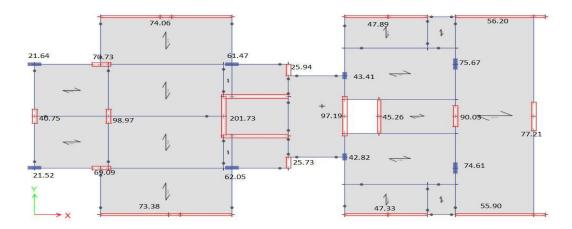


Figura 11. Distribución de las cargas de servicio en planta

Fuente: Propia

Distribución de las cargas de sismo:

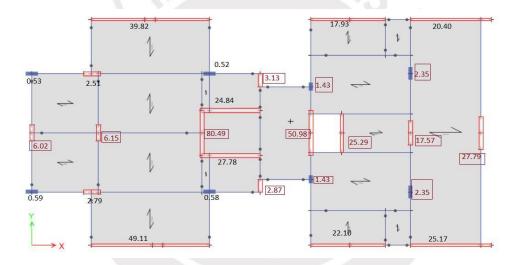


Figura 12. Distribución de cargas de sismo en planta

Fuente: Propia

2. Tipo de cimentación y otras soluciones si las hubiera.

Los tipos de cimentaciones a aplicar serán: zapata aislada, zapata corrida y zapata combinada

3. Profundidad de cimentación (Df).

La profundidad de cimentación es Df = 1.5m.

4. Cálculo de la carga de rotura por corte y cálculo del factor de seguridad (FS).

Empleando el método de corte de capacidad de carga de zapatas se obtuvo lo siguiente para cada zapata y muro de la edificación:

- Zapatas.

Tabla 16

Cálculo del factor de seguridad para cada columna

COLUMNAS						
ZAPATA	Base	Longitud	ESFUERZO ADMISIBLE	Fs (Norma)	FS	¿Cumple?
	B (m)	L (m)	qap (Kg/ cm2)			
Z-1	1.3	1.6	1.150	2.5	2.811	SI
Z-2	2.3	2.9	0.978	2.5	2.703	SI
Z-3	1.3	1.6	1.160	2.5	2.772	SI
Z-4	2.3	2.9	1.174	2.5	2.723	SI
Z-5	2.8	3.5	1.158	2.5	2.651	SI
Z-6	2.3	2.9	1.162	2.5	2.728	SI
Z-7	2	2.5	1.260	2.5	2.651	SI
Z-8	2	2.5	1.275	2.5	2.614	SI
Z-9	1.8	2.3	1.044	2.5	2.619	SI
Z-10	1.8	2.3	0.988	2.5	2.816	SI
Z-11	1.8	2.3	1.198	2.5	2.669	SI
Z-12	1.8	2.3	1.184	2.5	2.701	SI
Z-13	2.3	2.9	1.240	2.5	2.596	SI
Z-14	2.3	2.9	1.225	2.5	2.625	SI
Z-15	3.4	4.3	0.931	2.5	2.673	SI
Z-16	4.1	5.1	0.744	2.5	2.578	SI

Fuente: Propia

- Muros.

Tabla 17

Cálculo del factor de seguridad para cada muro

Muros	Base	Longitud	ESFUERZO ADMISIBLE	Fs (Norma)	FS	¿Cumple?
	B (m)	L (m)	qap (Kg/ cm2)			
Z-17	5.1	6.4	0.580	2.5	2.519	SI
Z-18	6	7.5	0.456	2.5	2.641	SI
Z-19	6	7.5	0.727	2.5	2.539	SI
Z-20	5.5	6.9	0.570	2.5	2.631	SI
Z-21	4.7	5.9	0.520	2.5	2.693	SI
Z-22	3.6	4.5	0.737	2.5	2.512	SI
Z-23	4.2	5.3	0.597	2.5	2.695	SI
Z-24	3.7	4.6	0.755	2.5	2.507	SI
Z-25	4.3	5.4	0.610	2.5	2.719	SI

5. Estimación de los asentamientos que sufriría la estructura con la carga aplicada.

Para el cálculo de los asentamientos, se consideró la zapata más grande Z-19 como la más crítica.

Además de tener valores iniciales del terreno como los siguientes:

$$Qu = 1.42 \text{ kg/cm}$$
 $Cc = 0.148$ $Cr = 0.0152$ $Gs = 2.72$ $\sigma \hat{p} = 2.02 \text{ kg/cm}$

Seguidamente se realizaron los cálculos para el asentamiento en suelo cohesivo considerando 3 sub-estratos de 70 cm cada uno por debajo de la profundidad de cimentación, a continuación se muestran los resultados finales para dicho cálculo.

Tabla 18

Cálculo del asentamiento total máximo

	B (m)	6	L(m)	7.5	e	1.15	a (m)
# de estratos	Profundidad (m)	σ'_{o} (kg/cm2)	σ´p (kg/cm2)	z (m)	m	n	K
1	1.85	0.3256	1.413	0.35	1.25	0.12	0.249
2	2.55	0.4138	1.325	1.05	1.25	0.35	0.24
3	3.25	0.467	1.271	1.75	1.25	0.58	0.212

3.75	b (m)	3	qap (kg/cm2)	0.727		
Δσ' (kg/cm2)	$\sigma'_{o} + \Delta \sigma' (kg/cm2)$	caso	Cr log((σ´₀+Δσ´)/σ´₀)	$Cr \log(\sigma' p / \sigma'_0)$	$Cc \log((\sigma_0^+ \Delta \sigma^*)/\sigma^* p)$	Δhi
0.724092	1.050	В	0.00773	-	-	0.294
0.69792	1.112	В	0.00652	-	-	0.248
0.616496	1.083	В	0.00556	-	-	0.211
					H total (cm.)	0.754

Fuente: Propia

Finalmente, se obtuvo la profundidad de asentamiento para la zapata más grande de la edificación y, por ende, el mayor asentamiento de toda la edificación con un valor de 0.75 cm.

6. Presión admisible del terreno.

Zapatas.

Tabla 19
Presión admisible para cada columna

ZAPATA	Base	Longitud	CAPACIDAD DE CARGA
	B (m)	L (m)	qd (kg/ cm2)
Z-1	1.3	1.6	3.336
Z-2	2.3	2.9	3.214
Z-3	1.3	1.6	3.330
Z-4	2.3	2.9	3.345
Z-5	2.8	3.5	3.327
Z-6	2.3	2.9	3.340
Z-7	2	2.5	3.375
Z-8	2	2.5	3.374
Z-9	1.8	2.3	3.206
Z-10	1.8	2.3	3.220
Z-11	1.8	2.3	3.337
Z-12	1.8	2.3	3.337
Z-13	2.3	2.9	3.350
Z-14	2.3	2.9	3.350
Z-15	3.4	4.3	3.232
Z-16	4.1	5.1	3.150

Fuente: Propia

Muros.

Tabla 20 Presión admisible para muro

MUROS	Base	Longitud	CAPACIDAD DE CARGA
	B (m)	L (m)	qd (kg/ cm2)
Z-17	5.1	6.4	3.103
Z-18	6	7.5	3.087
Z-19	6	7.5	3.208
Z-20	5.5	6.9	3.130
Z-21	4.7	5.9	3.067
Z-22	3.6	4.5	3.107
Z-23	4.2	5.3	3.087
Z-24	3.7	4.6	3.123
Z-25	4.3	5.4	3.105

4.1.8. Efecto del sismo

En concordancia con la NTE E.030 Diseño Sismorresistente, el EMS o el PM, proporcionan de acuerdo al perfil encontrado lo siguiente:

1. Zona sísmica.

El terreno a trabajar se encuentra ubicado en la ciudad de Lima que pertenece a la zona número 4 (Z4) según la norma de diseño sismorresistente.

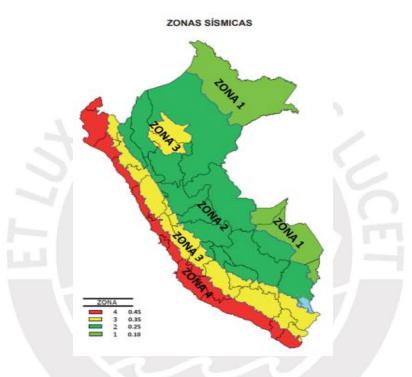


Figura 13. Zonificación de los tipos de zona sísmica

Fuente: Norma E.030

2. Tipo de perfil de suelo.

Huertos de Villa, comprende la Urb. Los Huertos de Villa y parte oeste de la Urb. La Encantada de Villa, el suelo en este sector, se caracteriza por la presencia de limos arenosos de plasticidad media, medianamente compactos seguido por estratos de arenas limosas y arenas mal gradadas, medianamente densas y en estado saturado. En el área norte, adyacente a los pantanos se encuentran estratos de arcillas limosas de baja plasticidad (CL), a continuación, le siguen arcillas OH y arcillas limosas CH de alta plasticidad, de consistencia blanda y saturada.

3. Factor de suelo (S).

Se considerará suelo muy rígido tipo S_2 debido a que se trata de un suelo cohesivo compacto, con una resistencia de corte de $0.71~{\rm Kg/cm^2}$ que se encuentra dentro del rango de $0.5~{\rm kg/cm^2}$ y $1~{\rm kg/cm^2}$ establecido en la norma E.030.

4. Periodo T_p.

En relación a la tabla número 4 de la norma de diseño sismorresistente. De acuerdo con un perfil de suelo S_2 corresponde un periodo TP igual a 0.6 segundos.

5. Periodo T₁.

En relación a la tabla número 4 de la norma de diseño sismorresistente. De acuerdo con un perfil de suelo S_2 corresponde un periodo T_L igual a 2 segundos.

4.2. Planos de los puntos investigados

4.2.1. Planos de ubicación de los puntos de exploración

Figura 14. Ubicación de los puntos de exploración

5. ESTRUCTURAS

5.1. Aspectos generales de la estructura

Respecto a lo que concierne a la parte de estructuras, los aspectos generales que se tienen en cuenta son los materiales y la normativa que se debe cumplir en el proceso de diseño.

Materiales

Concreto: Se utilizó como resistencia nominal f'c=210 kg/cm2 cuyo valor de módulo de eslasticidad, según la fórmula presentada en la norma E.060, resulta Ec=217370.7 kg/cm2 y, además, se consideró como módulo de Poisson v=0.15

Acero: Se usó como esfuerzo de fluencia fy=4200kg/cm2 y módulo de elasticidad Es=2 000 000 kg/cm2. Cabe resaltar que estos valores corresponden a un modelo elastoplactico perfecto de las propiedades mecánicas del acero.

Normas

Se respetó el Reglamento Nacional de Edificaciones (RNE) en cuyo contenido se presenta normas para el diseño en diversos materiales. En particular, se utilizó las normas que se muestran a continuación.

Norma E.020 Cargas

Norma E.030 Diseño sismorresistente

Norma E.050 Suelos y cimentaciones

Norma E.060 Concreto armado

5.2. Análisis sísmico

Parámetros sísmicos

Los parámetros usados y sus valores, según la norma E.030, son los siguientes.

Z=0.45	U=1.00
S=1.10	Ip=0.90
Tp=0.60	Ia=1.00

Periodos de vibración fundamentales

Se presenta los periodos de vibración fundamentales resultantes del análisis dinámico considerando los 12 grados de libertad.

$$Tx=0.157 \text{ seg}$$
 $Ty=0.270 \text{ seg}$

Espectro de Pseudo aceleraciones

Se procedió a obtener el espectro según la norma E.030. Este se muestra a continuación mediante un gráfico y una tabla de datos.

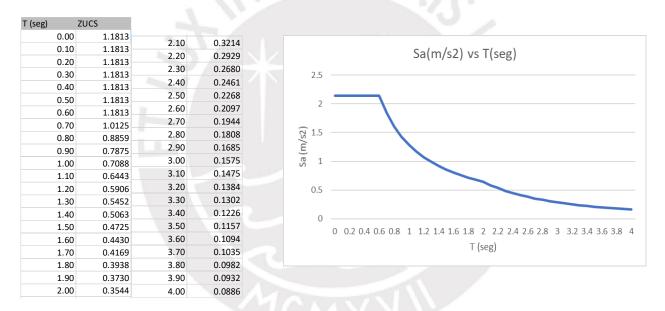


Figura 15. Espectro de aceleraciones para cada periodo

Fuente: Propia

Con estos datos, se procede a realizar el análisis dinámico mediante el uso del programa ETABS. Los resultados para el análisis se mostrarán en los siguientes acápites.

Desplazamientos y derivas

Tabla 21

Cuadro de desplazamientos y derivas para cada piso de la edificación en dirección "x" e "y"

PISO	h piso (m)	Desp. Elástico (m)	Derivas Elasticas (‰)	Factor Inelástico	Derivas Inelásticas (‰)	Limite (‰)
4	2.70	0.00215	0.234		1.08	7.000
3	2.70	0.00152	0.234	0.05 5.4	1.07	7.000
2	2.70	0.00089	0.201	0.85 x 5.4	0.92	7.000
1	3.30	0.00034	0.104		0.48	7.000
	,	T 10.	FIVE	BA	<i>y</i>	-

PISO	h piso (m)	Desp. Elástico (m)	Derivas Elasticas (‰)	Factor Inelástico	Derivas Inelásticas (‰)	Limite (‰)
4	2.70	0.00730	0.741	7	3.40	7.000
3	2.70	0.00530	0.788	0.05 5.4	3.62	7.000
2	2.70	0.00317	0.727	0.85 x 5.4	3.34	7.000
1	3.30	0.00121	0.365		1.68	7.000

Fuente: Propia

Se puede observar que las derivas, en ambas direcciones, no sobrepasa el límite de la norma, por lo que la estructura del edificio cumple con la norma.

Cortante de diseño

El cortante de diseño debe ser por lo menos 90% del cortante calculado por el método estático. Para llegar a dicho mínimo, se debe multiplicar a las fuerzas calculadas por el método dinámico por un factor de escalamiento. Los resultados del análisis se muestran a continuación.

Tabla 22

Fuerzas cortantes basales en el edificio

V ESTÁTICO		90% DEL V ES	TÁTICO	V DINÁMICO	
V XX (TON)	V YY (TON)	90%V XX (TON)	90%V YY (TON)	V XX (TON)	V YY (TON)
304.4	304.4	273.9	273.9	229.2	232.4

Los factores de escalamiento son los siguientes:

Momento volcante

Los valores de los factores de seguridad por momento volcante deben ser mayores a 1.20. Estos se muestran a continuación.

Tabla 23

Momentos volcantes y factores de seguridad en cada dirección

ANALISIS	ANALISIS DINÁMICO								
Dirección	Momento volcante (ton-m)	Peso del edificio (ton)	Distancia (m)	Momento Estabilizador (ton-m)	Factor de seguridad				
XX	1855.2	1201.5	11.95	8529.59	4.60				
YY	1881.8	1391.5	6.13	16627.83	8.84				

Fuente: Propia

Verificación por torsión

Los resultados del análisis estructural muestran que no se tendrá problemas de torsión, ya que las derivas inelásticas no superan el 50% de la deriva máxima. Los resultados se muestran a continuación.

Tabla 24

Verificación por torsión en las direcciones "x" e "y"

DIRECCION XX									
PISO	DERIVAS MAXIMAS (‰)	DERIVAS PROMEDIO (%)	RATIO DE GIRO	DERIVAS INELASTICAS (‰)	DERIVA LIMITE (‰)				
PISO 4	0.234	0.213	1.097	1.08	7.000				
PISO 3	0.234	0.213	1.098	1.07	7.000				
PISO 2	0.201	0.183	1.101	0.92	7.000				
PISO 1	0.104	0.094	1.101	0.48	7.000				

DIRECCION YY								
PISO	DERIVAS MAXIMAS (%)	DERIVAS PROMEDIO (%)	RATIO DE GIRO	DERIVAS INELASTICAS (‰)	DERIVA LIMITE (‰)			
PISO 4	0.741	0.533	1.391	3.40	7.000			
PISO 3	0.788	0.580	1.359	3.62	7.000			
PISO 2	0.727	0.551	1.319	3.34	7.000			
PISO 1	0.365	0.288	1.268	1.68	7.000			

Fuente: Propia

5.3. Diseño de la loza maciza

Se procedió a diseñar el paño de losa seleccionado en la imagen siguiente. El espesor usado es 0.20m.

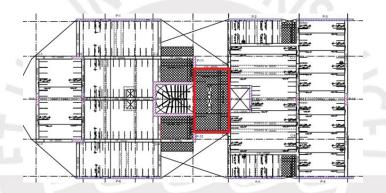


Figura 16. Paño de losa maciza a diseñar

Fuente: Propia

El diseño de este elemento se realizó mediante cargas últimas de gravedad. Las cargas obtenidas son las siguientes.

CM=0.85 ton/m2

CV=0.20 ton/m2

Wu=1.4CM+1.7CV=1.53 ton/m2

Con estos datos, se realizó el análisis del paño mostrado.

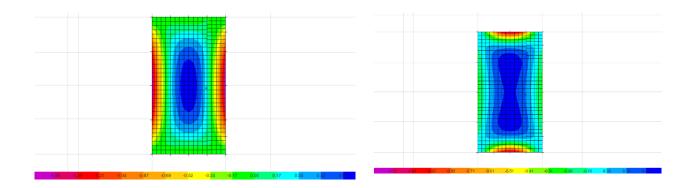


Figura 17. Diagrama de momentos en las direcciones "x" (izquierda) e "y" (derecha)

Fuente: Propia

De los gráficos anteriores se obtuvieron los momentos de diseño para ambas direcciones y la fuerza cortante máxima. Estos valores son los siguientes.

$$Mx=0.69 \text{ ton-m}$$
 $My=0.20 \text{ ton-m}$ $Vm\acute{a}x=3.45 \text{ ton}$

Para el diseño por flexión, primero se calculó el acero mínimo que exige la norma E.060 y se verifico si los momentos aplicados requerían más aceros que el mínimo. Por otro lado, se realizó la verificación por fuerza cortante. En este caso, se verifico que la fuerza aplicada no sea mayor a la resistencia del concreto. A continuación, se mostrarán los resultados del diseño de la losa.

Diseño por flexión

Tabla 25

Diseño por flexión en losa maciza

	Momento (ton-m)	As requerido (cm2)	As instalado
MXX	0.69	1.12	3/8"@ 20 cm
MYY	0.20	0.36	3/8"@ 20 cm

Fuente: Propia

Verificación por fuerza cortante

$$\emptyset Vc = 11.10 ton$$

Vumáx = 3.45 ton

Entonces como ØVc>Vu, la losa resistirá la fuerza cortante aplicada.

5.4. Diseño del aligerado

Se realizó el diseño de los paños señalados en la siguiente imagen y se tomó una de las viguetas que atraviesa dichos paños.

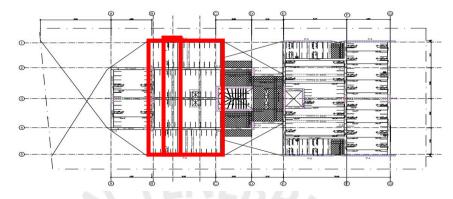


Figura 18. Paño de la losa aligerada a diseñar

Fuente: Propia

El diseño se realizó por cargas últimas de gravedad. Las cargas resultantes se mostrarán a continuación.

CM=0.16 ton/m CV=0.08 ton/m Wu=1.4CM+1.7CV=0.36 ton/m Pu tabiquería=0.38 ton Los resultados del análisis son los siguientes.

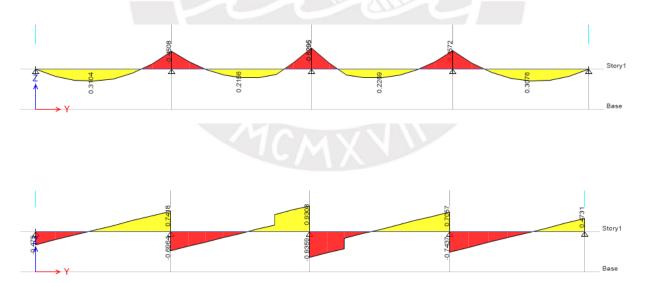


Figura 19. Diagramas de momento flector (superior) y fuerza cortante (inferior) para la vigueta a diseñar

Diseño por flexión

Tabla 26

Diseño por flexión en la vigueta

Mu (ton-m)	bf (cm)	bw (cm)	As requer (cm2)	As inst	ØMn inst (ton-m)
-0.45	40	10	0.738	1Ø1/2"	0.750
-0.51	40	10	0.843	1Ø1/2"	0.750
+0.31	10	40	0.471	1Ø3/8"	0.450

Fuente: Propia

Diseño por fuerza cortante

$$\emptyset Vc = 1.22 ton$$

Vumáx = 0.93 ton

Entonces como ØVc>Vu, la vigueta resistirá la fuerza cortante aplicada y no se requerirán ensanches.

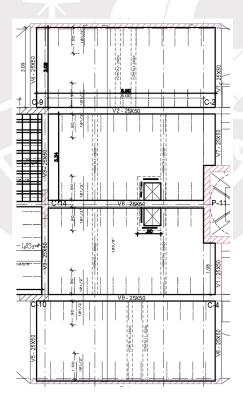


Figura 20. Distribución de aceros resultantes del diseño

5.5. Diseño de la viga chata

Se realizó el diseño de la viga chata señalada en la siguiente imagen.

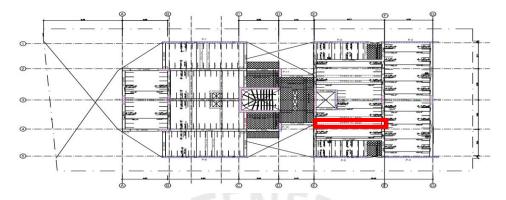


Figura 21. Ubicación de la viga chata a diseñar

Fuente: Propia

El diseño se realizó por cargas últimas de gravedad. Las cargas resultantes se mostrarán a continuación.

Los resultados del análisis son los siguientes.

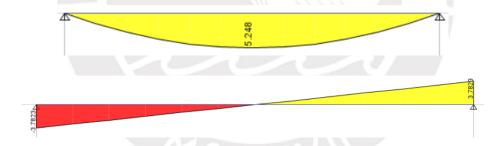


Figura 22. Diagrama de momento flector (superior) y fuerza cortante (inferior) en la viga chata

Fuente: Propia

Diseño por flexión

Tabla 27

Diseño por flexión en la viga chata

Mu (ton-m)	As mín (cm2)	As requer (cm2)	As inst
5.25	2.38	6.88	5Ø1/2"

Diseño por fuerza cortante

$$\emptyset Vc = 5.75 ton$$

$$Vumáx = 3.78 ton$$

Entonces como ØVc>Vu, la viga chata resistirá las fuerzas aplicadas. Entonces, se requerirá solo estribos de montaje.

Los planos de encofrado del techo típico y la azotea se muestran en los anexos C1 y C2.

5.6. Diseño de las vigas

Se mostrará el diseño de la viga del eje F. La viga mencionada es la que se muestra en la siguiente imagen. Cabe resaltar que la viga de la azotea se diseñarán con cargas menores, por lo que tendrán otro diseño.

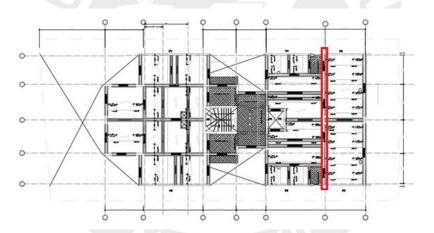


Figura 23. Ubicación de las vigas a diseñar

Fuente: Propia

Viga del eje F

El diseño se realizó considerando las cargas sísmicas y las combinaciones de carga de la norma E.060 con ayuda del programa ETABS con lel cual, se obtuvo ala envolvente que se muestra a continuación.

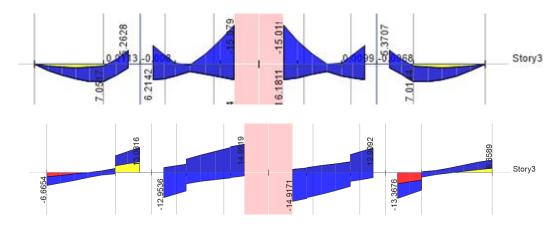


Figura 24. Envolvente del diagrama de momentos flectores (superior) y fuerzas cortantes (inferior) en la viga del eje F

Fuente: Propia

Diseño por flexión

A continuación, se muestran los resultados del diseño.

Tabla 28

Diseño por flexión de la viga del eje F

Mu (ton-m)	d (cm)	As mín (cm2)	Asb (cm2)	As máx (cm2)	a (cm)	As (cm2)	Acero Instalado	AI (cm2)	фМп Insta.
7.01	44	2.66	23.37	17.53	4.16	4.42	1Ф5/8"+1Ф3/4"	4.84	7.63
6.22	44	2.66	23.37	17.53	3.67	3.93	1Ф5/8"+1Ф1/2"	3.29	5.28
6.55	44	2.66	23.37	17.53	3.88	4.13	1Ф5/8"+1Ф3/4"	4.84	7.63
6.45	44	2.66	23.37	17.53	3.82	4.07	1Ф5/8"+1Ф3/4"	4.84	7.63
15.71	44	2.66	23.37	17.53	10.03	9.91	1Ф5/8"+3Ф3/4"	10.52	15.53

Fuente: Propia

Diseño por fuerza cortante

La resistencia a cortante del concreto en la sección es ØVc=7.11 ton por lo que los valores mayores requerirán estribos de refuerzo. A continuación, se muestra el diseño por fuerza cortante de la viga.

TRAMO 1-3

1Ø**3**/**8**" @ **0**. **10** *m*, **6** @ **0**. **20** *m*, resto @ **0**. **20** *m* desde cada extremo TRAMO 3-5

103/8" @ 0.10 m, 6 @ 0.20 m, resto @ 0.20 m desde cada extremo

TRAMO 7-9

1Ø**3**/**8**" @ **0**. **10** *m*, **6** @ **0**. **20** *m*, resto @ **0**. **20** *m* desde cada extremo TRAMO 9-11

1Ø3/8" @ 0.10 m, 6 @ 0.20 m, resto @ 0.20 m desde cada extremo

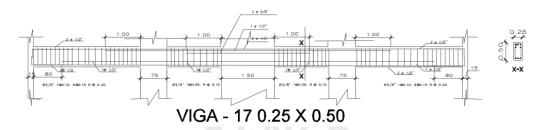


Figura 25. Distribución de aceros resultantes del diseño de la viga del eje F

Fuente: Propia

Los planos de vigas se muestran el los anexos C4 y C5.

5.7. Diseño de las columnas

El diseño de las columnas se realizó considerando fuerzas sísmicas por lo que las fuerzas ultimas considerarán dicho caso. A continuación, se muestran las fuerzas resultantes de las combinaciones.

Tabla 29

Fuerzas resultantes de las combinaciones en la columna

COMBINACION	Pu(ton)	Vu22 (ton)	Vu33 (ton)	Mu22(ton)	Mu33(ton)
1.4CM+1.7CV	95.80	0.00	0.65	0.68	0.01
1.25(CM+CV)+SDXX	84.67	0.05	0.68	0.96	0.22
1.25(CM+CV)-SDXX	80.25	-0.05	0.44	0.21	-0.20
1.25(CM+CV)+SDYY	102.48	0.01	3.68	8.72	0.04
1.25(CM+CV)-SDYY	62.44	0.00	-2.55	-7.54	-0.02
0.9CM+SDXX	51.25	0.05	0.46	0.73	0.21
0.9CM-SDXX	46.83	-0.05	0.22	-0.02	-0.20
0.9CM+SDYY	69.06	0.01	3.45	8.49	0.04
0.9CM-SDYY	29.02	0.00	-2.77	-7.77	-0.03

Se colocó el acero mínimo requerido por norma y se comprobó si resistiría a las solicitaciones mediante los diagramas de interacción en ambas direcciones. Esto se muestra a continuación.

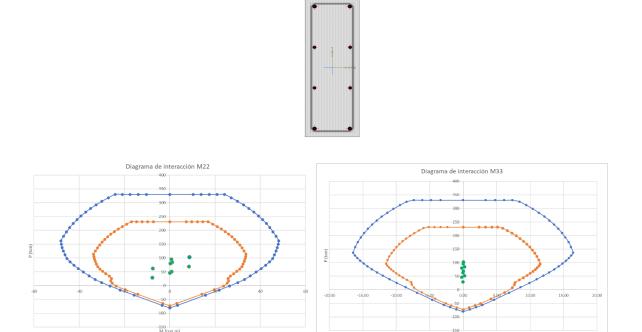


Figura 26. Distribución de aceros en la columna y diagramas de interacción en las direcciones "x" (izquierda) e "y" (derecha)

Fuente: Propia

Los puntos de las fuerzas aplicadas quedan dentro del diagrama de interacción por lo que el diseño es correcto.

Diseño por fuerza cortante

Se realizó el diseño por capacidad y, posteriormente, se verificó con las especificaciones de la norma E.060. Los resultados se muestran a continuación.

1@.05,8@.10, Rto.@.25m desde cada extremo

El cuadro de columnas se muestra en el Anexo C7.

5.8. Diseño de los muros estructurales

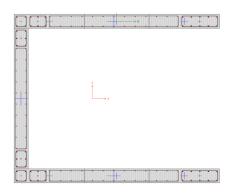
Se mostrará el diseño de la placa señalada a continuación.

Figura 27. Ubicación de la placa a diseñar en forma de "C" para la escalera

Fuente: Propia

Se muestra los resultados de las fuerzas aplicadas en el muro señalado.

Tabla 30


Fuerzas resultantes de las combinaciones en la placa en forma de "C"

COMBINACION	Pu(ton)	Vu22 (ton)	Vu33 (ton)	Mu22(ton)	Mu33(ton)
1.4CM+1.7CV	288.84	0.32	0.05	1.17	28.54
1.25(CM+CV) +SDXX	252.79	49.93	9.44	87.76	421.82
1.25(CM+CV)-SDXX	250.05	-49.40	-9.35	-85.77	-372.99
1.25(CM+CV) +SDYY	251.50	2.39	94.63	845.35	41.87
1.25(CM+CV)-SDYY	251.34	-1.86	-94.53	-843.36	6.96
0.9CM+SDXX	160.64	49.77	9.42	87.32	411.41
0.9CM-SDXX	157.91	-49.55	-9.37	-86.20	-383.41
0.9CM+SDYY	159.35	2.23	94.61	844.92	31.45
0.9CM-SDYY	159.19	-2.01	-94.55	-843.80	-3.45

Fuente: Propia

Diseño por flexo compresión

Se calculó el acero requerido por norma para fuerza cortante en el alma lo cual resulto en 3/8"@0.20m. Además, se tuvo que colocar acero en los extremos y en las esquinas para cumplir con la demanda de fuerzas. Los resultados se muestran en las siguientes imágenes.

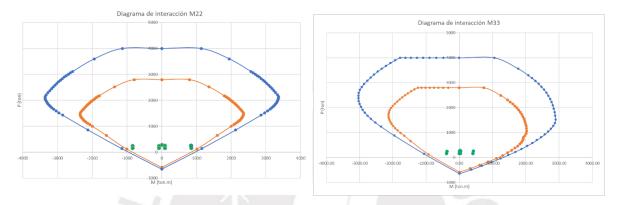


Figura 28. Distribución de aceros en la placa "C" y diagramas de interacción en la dirección en "x" (izquierda) e "y" (derecha)

Fuente: Propia

Se observa que el acero seleccionado resistirá a las solicitaciones

Diseño por fuerza cortante

Se realizó el diseño por capacidad en los dos primeros pisos y, para los siguientes dos, solo diseño por resistencia. A continuación, solo se mostrará el diseño por capacidad.

Para el diseño por capacidad, se amplificó la fuerza cortante por el factor definido en la norma E .060 el cual se mostrará.

$$Vu \ge Vua\left(\frac{Mn}{Mua}\right)$$

De la aplicación de la formula, las cuantías resultantes para el refuerzo horizontal son los siguientes.

phx=0.0022 3/8"@0.20m

phy=0.0083 1/2"@0.12m

Figura 29. Distribución del acero resultante para el diseño de la placa en forma de "C"

Fuente: Propia

Los planos de placas se muestra en el Anexo C6.

5.9. Diseño de cimentaciones

Se mostrará el diseño de la platea de cimentación considerada para el muro en "C" antes diseñado. Para el análisis, se utilizó el programa SAFE y se consideró 0.60m de espesor para la losa.

Presiones en el suelo

La carga admisible en el suelo es de 1.25kg/cm2 y 1.62kg/cm2 para los casos en que se consideran sismo. Se analizaron cargas en servicio de gravedad y sismo. Para este último, se aplicó el factor 0.80 para considerarlo como carga de servicio.

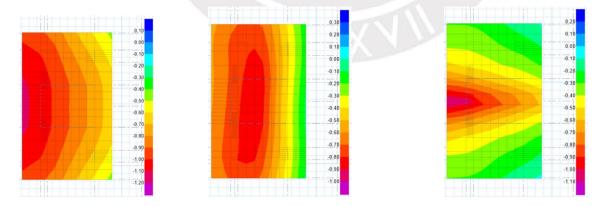


Figura 30. Presiones en el suelo para los casos CM+CV (izquierda), CM+CV+0.8SDX (centro) y CM+CV+0.8SDY (derecha)

Las presiones en el suelo no superan a las cargas admisibles mencionadas, por lo que el suelo soportará las solicitaciones aplicadas a la losa.

Diseño de losa de cimentación

Para obtener las cargas de diseño, se introdujo la combinación por carga última de gravedad al programa para que sean calculadas. Luego se colocaron franjas (strips) de 1.00m de ancho en zonas críticas para obtener las fuerzas de diseño. Estas se muestran a continuación

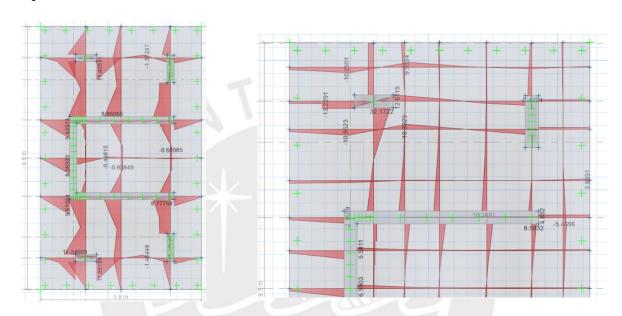


Figura 31. Diagrama de momentos flectores en ton-m (derecha) y fuerzas cortantes en ton/m (izquierda) en zonas críticas

Fuente: Propia

Diseño por flexión

Se calculó la cuantía mínima por norma la cual resulto en una distribución de Ø5/8"@0.25m (Inf.) + Ø1.2"@0.25 (Sup.). Con este acero distribuido, se calculó ØMn tanto para el acero superior como para el inferior. Los resultados fueron los siguientes.

$$\emptyset$$
Mn(Inf.)=15.28 ton-m/m \emptyset Mn(Sup.)=9.89 ton-m/m

Los valores hallados superan a los valores de momentos últimos. Por lo que la distribución de acero es suficiente.

Verificación por fuerza cortante

La resistencia de la losa a fuerza cortante es ØVc=33.95 ton. Este valor es mucho mayor a los hallados en el análisis se la losa (Vu<ØVc), por lo que la losa no tendrá problemas por fuerza cortante.

Verificación por punzonamiento

Se comprobó si existe punzonamiento en la zona de la columna C-2. Para esto, el valor de ØVc de punzonamiento es 277.0 ton y Vu en la zona de la columna es 32.2ton. Con ellos, se comprueba que Vu<ØVc por lo cual, el diseño realizado es correcto.

Figura 32. Distribución de aceros resultantes del diseño en la losa de cimentación

Fuente: Propia

El plano de la cimentación se muestra en el Anexo C3.

6. INSTALACIONES

6.1. Sanitarias

Para el cálculo de la dotación diaria de la edificación, según lo propuesto por la norma IS.010, con parámetros a controlar como el número de dormitorios por departamento, dotación requerida para las áreas verdes y características del primer nivel que resulta atípico, se obtuvo la dotación para toda la edificación, la cual se muestra a continuación.

Tabla 31

Cuadro de dotación de agua para la edificación

Nivel	Descripción	Dotación(L/d)
1	Sala de mantenimiento + baño de recepción	200
1er piso	Áreas de riego	237
2do piso	Dos departamentos de tres dormitorios	2400
3er piso	Dos departamentos de tres dormitorios	2400
4to piso	Dos departamentos de tres dormitorios	2400
	Total	7637

Fuente: Propia

Asimismo, a partir de la dotación encontrada, se procedió a calcular el valor máximo de la sección de la cisterna, la cual es de 11.9 m². Además, la cisterna tendrá una altura de 2 metros, para que finalmente la cisterna tenga un volumen de 12.5 m³.

En cuanto al diseño de las dimensiones de las tuberías, se propuso realizar el diseño por cada departamento, ya que en los 3 niveles resultan típicos. Como resultados, se obtuvo un diámetro máximo de 2 pulgadas para la acometida de agua y un diámetro mínimo de ½ pulgada para el punto de salida más alejado. Los cálculos para cada nivel se encontrarán en los anexos.

Para el cálculo de la pérdida se consideró la aplicación de una tabla de la IS.010 que desarrolla la conversión de las componentes de la red de tuberías de fierro galvanizado a una longitud equivalente para PVC. En ese sentido, finalmente se obtuvo una pérdida de 20.25 m.c.a.

6.2. Desagües

El sistema de desagües se realizó a través de montantes que descargan a tuberías colgadas del techo del primer nivel de la edificación para que luego, por gravedad, se entregue a la caja de registro respectiva, antes de su entrega final a la conexión domiciliaria.

Para el cálculo del número máximo de unidades de descarga, se aplicó el método de Hunter que se encuentra en el Reglamento Nacional de Edificaciones. A continuación se muestran los resultados encontrados para cada elemento.

Tabla 32
Unidades de descarga para cada elemento sanitario

Elementos	Unidades de descarga (UD)
Inodoros	4
Lavatorios	1
Duchas	2
Lavaderos	2
Sumideros	2
Lavadora	2

Fuente: Propia

Para el diseño de las cajas de registro se consideró una pendiente de 1% del material de concreto. Asimismo, cada baño contará con un sumidero y un registro con diámetros de 2 pulgadas.

Una vez obtenida la unidad de descarga de cada ramal, se procedió a encontrar el diámetro de la tubería del colector. Finalmente se obtuvo que las tuberías de los colectores son de 2 pulgadas para las duchas y lavaderos y de 4 pulgadas para los inodoro.

6.3. Ventilación

El diámetro de la tubería principal de ventilación se determinó mediante su longitud total, el diámetro del montante correspondiente y la cantidad de "UD" a ventilar.

La edificación cuenta con 4 pisos; por ello, solo requerirá de ventilación individual. Para este caso la norma recomienda que el diámetro de ventilación sea la mitad de la tubería de desagüe del aparato a ventilar. Por lo que, las tuberías de ventilación serán de 2 pulgadas.

6.4. Eléctricas

Para el diseño de las instalaciones eléctricas, se propuso dividir las distintas áreas que presenta la edificación para obtener un mejor detalle para la posterior colocación de tableros eléctricos por departamento. Asimismo, cada departamento contará con servicios de TV cable,

intercomunicadores, teléfono y conexión a internet. La tabla 34 muestra el cuadro de áreas de la edificación.

Tabla 33

Cuadro de áreas para la edificación

PISOS	Areas	ÁREA TECHADA (m2)	ÁREA LIBRE (m2)	ÁREA DEL TERRENO (m2)
	Area libre y jardines	0	175	628
	Cuarto de controles	7	0	
	Oficinas	45	0	
1er Piso	Sala de espera	52	0	
1er PISO	Cuarto de bombas	8.5	ō	
	Estacionamiento	322	0	
	Ascensor	4.5	0	
	Escaleras	14	0	
	Departamento 1	140	0	
ade Dies	Departamento 2	140	0	
2do Piso	Ascensor	4.5	0	
	Escaleras	14	0	
	Departamento 3	140	0	
Ser Piso	Departamento 4	140	0	
	Ascensor	4.5	0	
	Escaleras	14	0	
	Departamento 5	140	0	
At- Di	Departamento 6	140	0	
4to Piso	Ascensor	4.5	0	
	Escaleras	14	0	

Fuente: Propia

6.4.1. Potencia a contratar

Para poder obtener la potencia a contratar de la concesionaria que proporcionará la electricidad a la edificación se procedió a realizar el cuadro de cargas para el primer nivel y para cada departamento típico.

Asimismo, se asignaron para el intercomunicador, electrobomba de 2 HP, ascensor, puerta levadiza, terma, lavadora y cocina las siguientes cargas de 1000, 1470, 5000, 500, 1500, 5500 y 8000 watts respectivamente.

Tabla 34

Cuadros de carga instalada para el primer nivel y los departamentos típicos

Primer piso				
Circuitos	Carga instalada (CI)		Factor de	Demanda
Circuitos	Parcial	Total	demanda	maxima
Alumbrado y	10862.5	2000	1	2000
aplicaciones menores	(10862.5-2000)	8862.5	0.35	3101.875
Cargas moviles		2000	0.3	600
Cargas Especiales				
Intercomunicador		1000	0.75	750
Electrobomba		1470	1	1470
Ascensor		5000	1	5000
Puerta levadiza		500	0.75	375
	Total:	20832.5	Total:	13296.875

Departamentos típicos				
Circuitos	Carga instalada (CI)		Factor de	Demanda
Circuitos	Parcial	Total	demanda	maxima
Alumbrado y	3500	2000	1	2000
aplicaciones menores	(3500-2000)	1500	0.35	525
Cargas moviles		2000	0.3	600
Cargas Especiales				
Therma		1500	0.5	750
Lavadora		5500	1	5500
Cocina		8000	0.8	6400
	Total:	20500	Total:	15775

Fuente: Propia

Finalmente, se obtuvo una potencia a contratar de 14 kilowatts para el primer nivel y 16 kilowatts para cada departamento típico. Posteriormente, debido a los 6 departamentos que presenta la edificación, la potencia total a contratar será de 110 kilowatts.

6.4.2. Tableros de distribución

Por otro lado, se decidió colocar los tableros de distribución de cada departamento al lado de las puertas de ingreso de los mismos para su fácil acceso; además, para el primer nivel se colocó el tablero en la parte posterior del ascensor.

Para el diseño de los tableros se consideró la cantidad de circuitos que contendrían.

1. Para el primer nivel

Se obtuvo un total de 3 circuitos trifásicos y 7 monofásicos, lo que resulta en un tablero de 24 polos. La tabla 36, detalla los circuitos del primer nivel del proyecto.

Tabla 35

Circuitos para el primer nivel

Primer piso			
Ambiente	Circuito	Tipo	n°
Alimentación general	C-AG	3р	1
Alumbrado	C-1, C-2, C-3, C-4	1 p	4
Intercomunicador	C-15	1p	1
Electrobomba	C-16	3р	1
Ascensor	C-17	3р	1
Puerta levadiza	C-18	1p	1
Tomacorrientes	C-19	1p	1

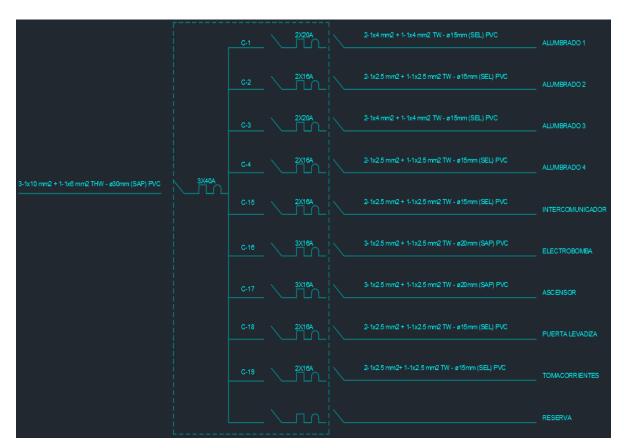


Figura 33. Esquema del tablero de distribución para el primer nivel

Fuente: Propia

2. Por departamentos típicos

Se obtuvo un total de 2 circuitos trifásicos y 6 monofásicos, lo que resulta en un tablero de 18 polos por cada departamento.

Tabla 36

Circuitos para los departamentos típicos

Por departamentos			
Ambiente	Circuito	Tipo	n°
Alimentación general	C-AG	3р	1
Alumbrado	C-5, C-6	1p	2
Tomacorrientes	C-20, C-21	1p	2
Therma	C-22	1p	1
Lavadora	C-23	1p	1
Cocina	C-24	3р	1

Figura 34. Esquema del tablero de distribución para los departamentos típicos

Fuente: Propia

En los anexos del presente documento, se podrán encontrar los cálculos para el diseño de entubado con PVC para cada salida y los planos de distribución de cada circuito.

Finalmente, se logró diseñar los tableros respectivos para el primer nivel y para cada departamento que tendrán como punto final de encuentro el banco de medidores que se encontrará en el exterior de la edificación.

Los planos de las instalaciones de agua, desagüe y eléctricas se muestran en el Anexo D.

7. COSTOS Y PRESUPUESTOS

7.1. Introducción

La especialidad de costos y presupuestos busca optimizar el costo directo e indirecto del proyecto para tener así una mayor rentabilidad y, a la par, ofrecer un producto de calidad al cliente. Se pueden identificar diferentes grupos que participan en los costos básicos de una obra: materiales, mano de obra, equipos y herramientas, gastos generales e impuestos. Las tres primeras corresponden al costo directo y las dos últimas al costo indirecto de una obra. La mayor incidencia en el costo de una obra se encuentra en el costo directo ya que abarca diversas especialidades (arquitectura, estructuras, instalaciones, etc.), siendo los materiales los que representan un mayor costo unitario en una especialidad, cuando se realiza un ACU.

Para el caso de estudio "Los Huertos de villa", notamos que la mayor incidencia se encuentra en los costos de la especialidad de estructuras, la cual asciende a S/412.610,34. Por lo que, en la presente sección se mostrará los resultados obtenidos de la especialidad y se identificará estrategias para generar ahorros en la etapa de construcción del proyecto.

7.2. Resultados

Una correcta elaboración de los costos y presupuestos de una obra nos permitirá tener una estimación inicial de la rentabilidad del proyecto. El presupuesto total del proyecto "Los Huertos de Villa" asciende a la suma de S/ 1,421,243.67 teniendo un precio total por metro cuadrado de S/ 1,110.35. Los costos detallados por partida se muestran en el Anexo F. A continuación, se presentará el resumen de costos de las partidas de estructuras, arquitectura, instalaciones sanitarias e instalaciones eléctricas.

Tabla 37

Cuadro resumen del presupuesto total

ITEM	ESPECIALIDAD	PARCIAL	SOLES / m2
OE.02	ESTRUCTURAS	S/412,610.34	S/322.55
OE.03	ARQUITECTURA	S/361,701.82	S/282.76
OE.04	INSTALACIONES SANITARIAS	S/74,917.12	S/58.57
OE.05	INSTALACONES ELÉCTRICAS	S/45,964.52	S/35.93
	TOTAL COSTO DIRECTO	S/895,193.80	S/699.81
	GASTOS GENERALES	S/264,490.30	
	UTILIDAD (5%)	S/44,759.69	
	TOTAL CONSTRUCCIÓN SIN IGV (S/)	S/1,204,443.78	
	IGV (18%)	S/216,799.88	
	TOTAL DE CONSTRUCCIÓN CON IGV (S/)	S/1,421,243.67	

Fuente: Propia

Además, se realizó la sectorización del proyecto. Se propone cinco sectores con áreas muy semejantes para distribuir el trabajo de las partidas lo más equitativo posible de manera que se pueda realizar en un día. A continuación, la figura 37 muestra la sectorización del proyecto.

Figura 35. Sectorización aplicada a todos los niveles del proyecto

Fuente: Propia

La tabla 38, detalla los metrados de los sectores de las partidas de concreto y encofrado de los elementos horizontales y verticales de la estructura.

Tabla 38

Metrado de encofrado y concreto para la sectorización propuesta

Elementos	Partidas	Und.	Sector 1	Sector 2	Sector 3	Sector 4	Sector 5
Verticales	Encofrado	m2	62.31	61.97	48.75	68.64	66.33
verticales	Concreto	m3	5.64	5.61	4.41	6.21	6.00
II:	Encofrado	m2	75.32	74.91	58.93	82.97	80.19
Horizontales	Concreto	m3	9.92	9.86	7.76	10.92	10.56

Fuente: Propia

Con los resultados obtenidos, se procede a estimar el tiempo de construcción de la obra. La programación de obra se obtiene dividiendo los metrados de las partidas entre los rendimientos de las cuadrillas. El tiempo aproximado de ejecución del proyecto es de aproximadamente ocho meses. El cronograma de obra se muestra en el Anexo E.

7.3. Factores que influyen negativamente en el presupuesto de la obra

Al inicio de un proyecto de edificación, los especialistas responsables realizan una estimación del presupuesto de obra. Usualmente, el presupuesto se refiere al costo directo (materiales, mano de obra y herramientas) e indirecto (gastos generales e impuestos) de la obra. Existen diversos factores que pueden influenciar negativamente el presupuesto de obra durante su ejecución. En base al desarrollo del presupuesto del objeto de estudio, se identificaron los siguientes factores: complejidad del proyecto, elección del sistema constructivo, la experiencia del profesional en la elaboración del presupuesto, las condiciones del mercado y las incompatibilidades de las especialidades. A continuación, se realiza una breve descripción de cada uno de los factores encontrados.

7.3.1. Complejidad del proyecto

La complejidad del proyecto es uno de los factores más importantes que influyen en el presupuesto de obra. Esto se debe al diseño arquitectónico, estructural o de instalaciones, los cuales pueden aumentar el costo de construcción. Por ejemplo, diseñar un edificio de forma cuadrada con uno con formas curvas; mientras el primero se puede resolver con sistemas de construcción tradicional, el segundo va a requerir de mayores recursos.

7.3.2. Sistema constructivo

En la actualidad, existen diversos tipos de sistemas constructivos. Entre ellos, tenemos los sistemas prefabricados, los cuales son más económicos ya que el tiempo de construcción es menor y, cuando están bien elaborados, generan menos desperdicios. La elección del sistema constructivo correcto es un factor importante para el desarrollo del proyecto. Por ejemplo, el uso del concreto premezclado y de viguetas prefabricadas que puede ayudar a obtener ahorros.

7.3.3. Experiencia del profesional en la elaboración del presupuesto

Cuando se comienza un proceso de diseño, los profesionales estiman un presupuesto en base a las necesidades del cliente para el proyecto. Como se mencionó anteriormente, los materiales influyen significativamente en el costo unitario de una especialidad. Por ejemplo: los precios de los materiales, usados para los acabados, pueden variar significativamente de acuerdo a lo establecido por los distribuidores, aun cuando se trate del mismo material. En ese sentido, resulta importante contar con profesionales capacitados en la elaboración de presupuestos que integren y dominen cada una de las especialidades involucradas. Coticen diferentes alternativas y realicen un análisis de costo - beneficio, para de esta forma, optimizar el proyecto al máximo y se evite un gasto mucho mayor al inicialmente planteado.

7.3.4. Las condiciones del mercado

Este factor depende de las demandas existentes en el mercado. Si la demanda es muy superior a la oferta tendremos un presupuesto más elevado que si la oferta es notablemente superior a la demanda.

7.3.5. Incompatibilidades de las especialidades

Ocurre cuando no se ha realizado la compatibilización de las especialidades durante la etapa de diseño provocando retrabajos, atrasos y desperdicios en la etapa de construcción del proyecto. Por lo que, es un factor muy importante que puede generar costos adicionales al presupuesto de obra.

Los cinco factores mencionados pueden aumentar los costos de la construcción. Por lo que, en la siguiente sección se propondrá estrategias que minimicen la influencia de dichos factores en el presupuesto de obra.

7.4. Recomendaciones para generar ahorros en la fase de construcción

El objetivo del presente capitulo responde a la pregunta ¿Cómo hacer algunas modificaciones en la fase de diseño para generar ahorros en la fase de construcción?. Una vez conocido los factores que pueden influir significativamente en el costo de la construcción, proponemos las siguientes estrategias para dar respuesta a la pregunta planteada.

7.4.1. Uso de nuevas tecnologías de información (BIM)

Durante el presente trabajo, se presentaron obstáculos que ocasionaban variabilidades en el proceso de diseño, como las incompatibilidades en las especialidades (arquitectura, estructuras, instalaciones eléctricas, instalaciones sanitarias), las cuales generaran incrementos de costos y plazos en la etapa de construcción. Por ello, para mejorar el proceso de diseño y construcción, se propone el uso de nuevas tecnologías como es BIM (Building Information Modeling). BIM mejora enormemente la coordinación entre las partes interesadas, aumenta la productividad y genera mayores ganancias (Sun, Jiang, Skibniewski, Man, & Shen, 2017). Además, nos permite obtener los metrados de las partidas de forma rápida y con resultados más confiables. Por lo tanto, el uso de BIM en el proceso de diseño nos permitirá generar ahorros en la etapa de construcción.

7.4.2. Uso de herramientas para el proceso del diseño

Un factor importante que puede aumentar los costos de la construcción es la experiencia en el trabajo de las especialidades de los profesionales. La selección del equipo de diseño es un proceso importante para obtener mejores resultados. Por ello, proponemos el trabajo realizado por Orihuela & Ulloa (2009) donde explica que la filosofía LEAN aconseja evaluar diferentes opciones antes de tomar una decisión en el diseño, con el fin de reducir las futuras perdidas que se pueden generar en la construcción e incluso en el mismo diseño, a esto se le conoce como Ingeniería Basada en Múltiples Alternativas.

Orihuela & Ulloa (2009) proponen una herramienta de evaluación multicriterio para elegir al equipo de diseño. La herramienta, además de considerar las pretensiones salariales profesionales, considera criterios cualitativos. Dichos criterios son: conocimiento de la especialidad, disponibilidad, experiencia, flexibilidad, imagen, entre otras. Esta herramienta nos permitirá evaluar mejor a los profesionales que participaran en la etapa de diseño del proyecto.

7.4.3. Estrategias diversas

Diseño de la estructura: Los diseñadores son los responsables directos de las características del proyecto. Para este tipo de proyecto de edificación de baja altura, debemos evaluar el sistema estructural correcto tanto en costo como en efectividad ante sismos. En el proyecto "Los Huertos de Villa" obtuvimos un alto costo en la partida de columnas y placas de la especialidad de estructuras. La suma de la partida asciende a S/165,007.62, siendo el encofrado el que genera mayor costo con S/79,334.36. Para poder generar ahorros en la etapa de construcción, proponemos

el uso de estructuras de Drywall que puede ser utilizado como muros divisorios, en vez usar la tabiquería convencional.

Sistema constructivo: Elegir el sistema constructivo correcto nos ayudará a tener mayores ahorros y generar menos desperdicios. Durante la etapa de construcción, se propone el uso de concreto premezclado y de viguetas prefabricadas.

Recursos e insumos: Generar una alianza con proveedores y sub contratistas puede ayudarnos a generar ahorros en la etapa de construcción. Comentar e informar a los proveedores de futuros proyectos puede ser una estrategia que nos proporcione mejores resultados en cuanto a costos de construcción.

7.4.4. Recomendaciones para la fase de construcción

Adicionalmente, proponemos incorporar las herramientas que nos brinda el Lean Construcción para generar ahorros en la etapa de construcción. Por ejemplo: el uso de Last Planner System para reducir la incertidumbre de las actividades de la planificación.

El sistema Last Planner, es una herramienta que ayuda a mejorar el flujo de las actividades programadas, reduciendo la variabilidad que existen en proyectos de construcción, por tanto, mejora el cumplimiento de las actividades (Brioso, 2011). Existes diferentes estudios sobre la implementación de Last Planner System en obras de construcción. Botero & Alvarez (2005) realizaron una investigación en Colombia sobre el uso de Last Planner System, obteniendo los siguientes resultados:

- Mejora la comunicación de los participantes de obra, ya que la planificación intermedia y del día a día (plan de trabajo semanal) se realiza conjuntamente en la obra.
- Aumenta el compromiso de los participantes que intervienen directamente en el desarrollo de la obra.
- El papel del profesional encargado de obra se vuelve más proactivo, ya que es necesario analizar y levantar las restricciones de las actividades para definir las asignaciones de trabajo.
- El análisis de las causas de no cumplimiento de lo planificado ofrece valiosa información, la cual se utiliza para evitar situaciones que generen atrasos y baja productividad en la obra.

8. DISCUSIÓN Y CONCLUSIONES

8.1. Discusión

La responsabilidad de la construcción sostenible recae principalmente sobre el diseño urbano, arquitectónico y paisajístico. Tanto los diseñadores como el cliente juegan un rol importante para lograr una construcción sostenible, ya que los diseñadores deciden que materiales se van utilizar y el trabajo de diseño debe responder a las condiciones del lugar y al cliente (Rocha, 2011). En nuestro país, los clientes no valoran la incorporación de prácticas sostenibles de construcción en sus proyectos debido a los costos adicionales iniciales (Alvarado, Juárez, Vidal, & Zarate, 2016). Sin embargo, la investigación realizada por Kats (2003) revela, si se incorporan las características de construcción sostenible en el proceso de diseño, menores serán los costos.

La revisión de la literatura nos permitió entender la importancia de la construcción sostenible y conocer las diversas herramientas para calificar una edificación como verde. Una de ellas, es la certificación LEED. En el capítulo 2 de la investigación, se explicó para cada categoría establecida por LEED, una propuesta parar lograr puntos y obtener así el certificado. En esta sección, hablaremos más a fondo de las alternativas propuestas para las siguientes categorías.

Entornos sostenibles: Se propone instalar techos verdes en el proyecto para reducir el efecto de la isla de calor. Los beneficios que conlleva la implementación de los techos verdes están la disminución de las superficies pavimentadas. Además, las plantas tienen el beneficio de captar el CO2, también pueden filtrar el polvo, partículas de suciedad y partículas nocivas.

Uso eficiente de agua: Para lograr puntos en la presente categoría, planteamos utilizar sistemas eficientes para el consumo interior de agua del edificio. Debemos lograr un ahorro mayor a 25 % del consumo de agua. Para ello, proponemos los accesorios que tenga una certificación Wastersense, lo que garantiza que tendremos menor consumo de agua. Por ejemplo, en el Perú se cuenta con la presencia de la empresa Rain Bird que proporciona accesorios con dicha certificación. En caso, la empresa no cuenta con dicha certificación, debemos instalar accesorios con las siguientes especificaciones.

Instalaciones, accesorios y electrodomésticos residenciales	Línea Base
Sanitarios HET (High Efficiency Toilet)	1.28 gpf
Sanitarios HET, Single-flush pressure assist	1.0 gpf
Sanitarios HET, Dual-flush (full flush)	1.6 gpf
Sanitarios HET, Dual-flush (low flush)	1.1 gpf
Sanitarios HET, Foam flush	1.1 gpf
Lavamanos	1.5 gpm
Lava platos	1.8 gpm
Duchas	1.8 gpm

Figura 36. Consumo mínimo de aparatos sanitarios para lograr ahorros mayores a 20%

Fuente: Rain Bird

Materiales y recursos: La generación de residuos no puede detenerse por completo, pero puede controlarse hasta cierto punto. Todos los materiales utilizados en la construcción producen desechos, ya sea concreto o acero, pero pocos materiales pueden reciclarse. Montoya (2014) propone prácticas sostenibles durante la construcción en el Perú. En el trabajo mostrado se fomenta el uso del reciclaje de materiales, así como utilizar materiales alternativos de baja emisión de CO2. Se propone lo siguiente:

- 1. Fomentar el reciclaje de los desperdicios de acero: Una las aplicaciones más empleadas de la construcción peruana es el denominado "chatarreo", donde los recicladores recopilan residuos de acero para entregarlos a las fábricas como Aceros Arequipa. Este procedimiento debería ser impulsado para promover el reciclaje del acero.
- 2. Ladrillos ecológicos: Utilizar como alternativa ladrillo ecológicos. Entre las ventajas que posee es su capacidad de aislar el frío y el calor, lo que conlleva a una reducción de energía durante la etapa de operación, lo cual se puede compensar en el caso que la fabricación del ladrillo sea más costosa.
- 3. Plan de manejo de residuos de construcción: Antes de iniciar la construcción del proyecto, debemos establecer un plan de manejo de residuos. Incluyendo el reuso y reciclaje de los desechos. Para ello debemos elaborar estrategias de minimización y conocer los materiales que se desperdician más en las obras. En la investigación realizada por Nagapan, Rahman, Azis, Memon, & Zin (2012), establecen diferentes causas que generan los desperdicios de construcción. A continuación, la tabla 39 muestra las causas de los desperdicios de construcción.

Tabla 39

Causas de los desperdicios de construcción

Ranking	Causas de desperdicios de construcción
1	Mala gestión y supervisión del sitio
2	Falta de experiencia
3	Planificación y programación inadecuadas.
4	Errores en el diseño
5	Errores durante la construcción.
6	Subcontratistas incompetentes
7	Re trabajos
8	Cambios de diseño frecuentes
9	Productividad laboral
10	Monitoreo y control inadecuados
11	Despegue de cantidad inexacta
12	Escasez de trabajadores del sitio
13	Falta de coordinación entre las partes.
14	Flujo lento de información entre las partes.
15	Escasez de personal técnico (mano de obra calificada)
16	Cambios en la especificacion y tipo de material
17	Disponibilidad y falla del equipo
18	Efecto del clima

Nota: Adaptado de "Identifying Causes of Construction Waste - Case of Central Region of Peninsula Malaysia", de Sasitharan Nagapan, Ismail Abdul Rahman, Ade Asmi, Aftab Hameed Memon, Rosli Mohammad Zin, 2012, International Journal of Integrated Engineering, 4(2), p. 22-28.

Por lo mostrado en la tabla 39, las estrategias que se planteen en el plan de manejo de residuos deben contrarrestar dichas causas.

Calidad del aire interior: Para la presente categoría se propone lo siguiente:

Vistas de calidad: Ofrecer una vista de calidad es uno de los requisitos de la categoría. El acristalamiento visual (ventanas) debe ser mayor a 75% del área del piso. El acristalamiento cumple dos funciones esenciales: un permitir la iluminación natural y evitar pérdidas térmicas. Para ello, podemos utilizar los vidrios de baja emisividad que impiden las pérdidas de calor, también los vidrios laminares aportan un mejor comportamiento acústico.

Calidad del aire interior durante la construcción: Las actividades de construcción generan gran cantidad de polvo y olores. Se propone realizar un plan de calidad de aire durante la construcción. Para ello, debemos identificar las actividades que producen polvo y olor, y establecer estrategias de minimización pertinentes. A continuación, la tabla 40 muestra los parámetros a evaluar para minimizar el olor y polvo producido por las actividades de construcción.

Tabla 40

Parámetros de evaluación del plan de calidad de aire durante la construcción

IDENTIF	CACION		CONCEPTO			REVISION		Fecha:	
N	0.	Concepto	Clave	Elementos a Controlar	Cuando y Donde	Controlado S/N	Tipo de medida de control	Foto Nro.	OBSERVACIONES
1			A.1	Definir el area de deposito del equipo nuevo	Antes de la llegada de los equipos, dentro de la obra.		Ubicación de los almacenes		
2			A.2	Envolver con plástico el nuevo equipo	Llegada a la obra		Reporte fotografico y checklist		
3	Α	Proteccion de Ventilacion	A.3	Verificar que el área de instalación está limpia	Antes de la instalación		Limpieza regular. Reporte fotografico y checklist		
4			A.4	Cubrir y sellar los conductos con plástico	Después de la instalación		Reporte fotografico y checklist		
5			A.5	Evitar el uso de los equipos	Después de la instalación		Mantener el equipo desconectado y señalar la prohibición para ser		
6			B.1	Verificar los vehículos	Llegada a la obra		Inspeccion visual y checklist		
7	В	Control de Fuentes de Contaminantes y	B.2	Verificar los materiales utilizados en la obra	Llegada a la obra		Lista de materiales. Reporte fotografico y checklist		
8	-	Prevencion de interrupcion de vias	B.3	Área ventilada para materiales tóxicos.	Antes de entrar en el área		Ubicación de estas areas. Reporte fotografico y checklist		
9			B.4	Ventilar el área donde están instalados los materiales tóxicos.	Después del uso de materiales tóxicos.		Reporte fotografico y checklist		
		Protección en Aberturas	C.1	Colocar barreras plasticas entre ambientes de trabajo	Antes de obras de generacion de polvo y emisiones		Reporte fotografico y checklist		
	С		C.2	Despresurizar areas de trabajos contaminantes	Una vez terminados		Reporte fotografico y checklist		
10			D.1	Herramientas de limpieza	Diferentes áreas de trabajo		Reporte fotografico y checklist		
11			D.2	Limpieza general	Diferentes áreas de trabajo		Reporte fotografico y checklist		
12	D	Limpieza al interior de la	D.3	Evite levantar polvo esparciendo agua.	Diferentes áreas de trabajo		Reporte fotografico y checklist		
13		Construcción	D.4	Depósitos de la basura	Un lugar de facil acceso		Ubicación de los depositos. Reporte fotografico		
14			D.5	Almacenamiento de materiales porosos	Ubicación libre de polvo. Antes de la instalación		Ubicación de los depositos. Reporte fotografico		
15			D.6	Envolver con plástico los materiales porosos	Durante el almacenamiento, la instalación y el resto del proceso		Reporte fotografico y checklist		
16		Duamanua (fu	E.1	Desarrollo de un Cronograma de Trabajo General del Proyecto	Antes de comenzar la construcción de nuevos elementos		Cronograma de construccion		
17	E	Programación y secuencia de actividades en la construcción	E.2	Instalación del equipo de acondicionamiento	Después de la construcción		Cronograma de construccion. Reporte fotografico		
18			E.3	Ocupación del edificio	2 semanas tras el final de la construcción		Fecha de ocupacion. Reporte fotografico.		

Fuente: Propia

Materiales para los acabados del proyecto: Se propone utilizar materiales de bajo contenido de VOC. La guía Leed establece utilizar al menos 75% del material por metro cuadrado. Proponemos utilizar pinturas ecológicas ya que no contienen disolventes orgánicos volátiles tóxicos. Están hechas a base de aceites vegetales, sobre todo de lino, resinas naturales, caseína o de cítricos o silicatos cuando son para exteriores.

Energía y atmosfera: Para lograr un ahorro energético el edificio "Los Huertos de Villa" proponemos instalar paneles solares que aporten a la demanda de energía de las áreas comunes. Además, proporcionar una total iluminación con focos led, a los departamentos y áreas comunes y

colocar sensores de movimiento para el control de iluminación, de escaleras y pasadizos con el fin de minimizar el consumo de energía.

El objetivo de la investigación responde a la pregunta ¿Cómo convertir el caso de estudio a un edificio verde? Con las alternativas propuestas podremos obtener una certificación LEED a nivel certificado. De esta forma, cumplimos con el objetivo de la investigación.

8.2. Conclusiones

Geotecnia

Se ha determinado la capacidad admisible del suelo dentro los límites del proyecto que es qa = 1.25 kg/cm². De acuerdo al estudio de mecánica de suelos. Es importante, corroborar los parámetros obtenidos en el campo con los parámetros obtenidos en los ensayos de laboratorio. Además, en el diseño de zapatas se ha obtenido áreas superpuestas por lo cual se deciden realizar zapatas combinadas.

Estructuras

Los muros de concreto aportan gran rigidez a la estructura y ayudan a controlar las derivas en el edificio. Esto de observa en las derivas en la dirección X cuyo máximo es 1.08‰ a comparación de la dirección Y, con deriva máxima 3.62‰.

Los periodos dependen de la rigidez que exista en cada dirección; tienen menor valor cuando existe mayor rigidez. La rigidez que portan los muros en la dirección X produce que el periodo en dicha dirección sea menor, 0.157 seg, que en la dirección Y, 0.270 seg.

Las placas reciben la mayor parte de las fuerzas cortantes del edificio. Esto debido a la gran rigidez que aporta y ya que las fuerzas se reparten de acuerdo a la rigidez del elemento. En el caso de este edificio, las placas se llevan el 98% de la cortante basal en el edificio. Además, debido a lo anterior, las columnas llevaran la cuantía mínima exigida por la norma E.060.

Costos y presupuestos

Es posible reducir los costos propuestos y el tiempo de construcción, realizando una buena planificación que implique mejoras en cuanto a productividad de manera permanente incrementando la rapidez del trabajo productivo, contributorio y reduciendo las demoras y trabajos

rehechos. Una de las herramientas para dicho fin es el uso de Last Planner System durante la construcción del proyecto. Además, hemos identificado diversos factores que pueden aumentar los costos de construcción sino se resuelven en etapas tempranas del proyecto.

Instalaciones

En muchas ocasiones se suelen cometer errores en cuanto a la colocación de las instalaciones sanitarias, eléctricas y ventilación o equivocaciones en cuanto a la interpretación y aplicación de los planos. Estos errores surgen cuando no existe una adecuada comunicación por parte de los especialistas designados para cada labor. Es por ello que ante tal dificultad que se encuentra latente durante cada avance progresivo de la obra, se proponen reuniones (sesiones ICE) en las que acudan los especialistas correspondientes a cada etapa del proyecto en que se encuentre, para poder trabajar en conjunto de manera que se propongan soluciones a los posibles problemas en el menor tiempo demandado, eviten problemas de constructabilidad y, de ser factible, se reduzca el presupuesto.

Sostenibilidad

Los hallazgos encontrados en la revisión de la literatura nos permiten conocer los impactos negativos que se producen debido a los procesos de construcción, sino se toma en cuenta criterios de sostenibilidad en todas las fases de un proyecto. El IPCC informó que el consumo de energía de los edificios a nivel mundial podría duplicarse o incluso triplicarse para el año 2050, lo que provocaría cambios perjudiciales en nuestro ambiente. El Perú no es ajeno a los efectos del cambio climático, por lo que debemos cambiar el paradigma actual de la construcción peruana y enfocar nuestros esfuerzos hacia un desarrollo sostenible de la construcción.

En el trabajo mostrado por Miranda et al.(2014), la política de vivienda en el Perú no integra criterios de sostenibilidad. Eso está relacionado con las pocas empresas que contribuyen con difundir y desarrollar capacidades para utilizar recursos y alternativas tecnológicas constructivas coherentes con los principios de la sostenibilidad. Además, no se han identificado esfuerzos significativos por promover el uso de materiales y procesos constructivos ecoeficientes, ni ambiental ni socialmente más ventajosos. Por lo que, los profesionales de la construcción y el gobierno del Perú deben sistematizar, difundir y establecer estrategias para incorporar los criterios de sostenibilidad en la construcción. Actualmente, el Gobierno del Perú promueve la construcción

de edificios verdes a través del programa Mi vivienda verde que promociona e impulsa el acceso a viviendas verdes.

El sector construcción genera una cantidad importante de impactos ambientales, que están relacionados durante todo el ciclo de vida de un proyecto y abarca desde el diseño hasta la puesta en marcha y mantenimiento. Para mitigar dichos efectos negativos, se han creado herramientas para evaluar el comportamiento ambiental de los proyectos. Las diferentes certificaciones ambientales promueven el desarrollo sostenible de la construcción integrando los criterios de sostenibilidad. Existen diversas certificaciones a nivel mundial. La presente investigación abordó la certificación LEED (Leadership in Energy and Environmental Design) para convertir el proyecto "Edificación Multifamiliar Chorrillos en un edificio verde. Se observó que para la categoría de prioridades regionales no aplicó para el caso de estudio. Esto se debe a las diferencias de clima, cultura y entorno entre EEUU, país donde se origina LEED, y Lima. Sin embargo, podemos lograr la certificación LEED ganando puntos en las demás categorías.

La certificación LEED garantiza que el edificio de vivienda tenga ahorros en el consumo de energía y agua, costos de mantenimiento y ofrecer un ambiente de calidad a los ocupantes. Sin embargo, todos los beneficios mencionados requieren un costo adicional inicial que, para el caso de estudio, será tomado por el propietario. Se estimó un presupuesto adicional aproximado de S/. 22,731.21 para lograr una certificación LEED certificado (40 puntos) y para lograr un certificado nivel Silver, un aproximado de S/. 43,339.21. Como se mencionó en la revisión de la literatura, los beneficios lo perciben los ocupantes del edificio y no el propietario. Por lo que, una de la principales barreras de implementar una certificación ambiental es la prima adicional inicial.

Finalmente, los diseñadores tienen una gran responsabilidad para lograr construcciones sostenibles en nuestro país. Ellos son los responsables directos de crear entornos que sean amigables con el medio ambiente. Pero, paralelamente, los clientes deben impulsar proyectos verdes con la ayuda de políticas de gobierno.

REFERENCIAS

- Acosta, D. (2009). *Arquitectura y construcción sostenibles: Conceptos, problemas y estrategias*. 14–24. https://doi.org/https://doi.org/10.18389/dearq4.2009.02
- Alvarado, Z., Juárez, J., Vidal, F., & Zarate, A. (2016). Situación del uso de criterios de construcción sostenible en el sector vivienda en Lima Metropolitana. Retrieved from http://tesis.pucp.edu.pe/repositorio/handle/123456789/7428
- Bilec, R., Gokhan, M. M., Needy, N. M., & Lascola, K. (2006). The economic benefits of green buildings a comprehensive case study. *Engineering Economist*, (1998), 1–27.
- Botero, L., & Alvarez, M. (2005). Last planner, un avance en la planificación y control de proyectos de construcción: Estudio del caso de la ciudad de Medellín. Ingeniería y Desarrollo: Revista de La División de Ingeniería de La Universidad Del Norte, (17), 148–159.
- Du Plessis, C. (2002). Agenda 21 for Sustainable Construction in Developing Countries.
- Brioso, X. (2011). Aplicando Control De Pérdidas y LEAN CONSTRUCTION. Lean Construction.
- Dwaikat, L. N., & Ali, K. N. (2016). Green buildings cost premium: A review of empirical evidence. *Energy and Buildings*, 110, 396–403. https://doi.org/10.1016/j.enbuild.2015.11.021
- Geof, S., Arnold, M. S., Ann, L., & Amanda, E. (2003). Managing the Cost of Green Buildings. *USBGC*, 1–88. Retrieved from http://www.usgbc.org/Docs/Archive/General/Docs5049.pdf
- Grupo de Trabajo de Conama. (2012). *GT 11: Eficiencia energética en edificios. Implicaciones de la nueva Directiva Europea*. Retrieved from www.conama2012.org
- Herrería, E. (2017). Criterios para la sostenibilidad del proyecto de estructuras: análisis del ciclo de vida con BIM.
- Intergovernmental Panel on Climate Change. (2014). *Climate Change 2014 Mitigation of Climate Change*. https://doi.org/10.1017/CBO9781107415416
- Kats, G. H. (2003). Green Building Costs and Financial Benefits. *Massachusetts Technology Collaborative*, 2–5. https://doi.org/10.1089/jop.2006.22.291
- Lockwood, C. (2006). Building the Green Way. Harvard Business Review, 84(6), 129–137.
- Londoño, J. (2009). Un edificio verde es un edificio inteligente.
- MINAM. (2014). Sólidos de la gestión del ámbito municipal y no municipal 2013. Retrieved from http://redrrss.minam.gob.pe/material/20160328155703.pdf
- MINEM Peru. (2017). Dirección General de Eficiencia Energética. *Ministerio de Energía y Minas* (Gobierno de Perú).
- Miranda, L., Neira, E., Torres, R., & Valdivia, R. (2014). Perú hacia la construcción sostenible en escenarios de cambio climatico. *Ministerio de Vivienda, Construcción y Saneamiento*, 219. Retrieved from http://cies.org.pe/sites/default/files/investigaciones/edicion_final_estudio_construccion_sostenible.p

- Montoya, E. (2014). Prácticas sostenibles en la construcción de edificaciones. Retrieved from http://tesis.pucp.edu.pe/repositorio/handle/123456789/5976
- Nagapan, S., Rahman, I. A., Azis, A. A. A., Memon, A. H., & Zin, R. M. (2012). Identifying Causes of Construction Waste Case of Central Region of Peninsula Malaysia. *International Journal of Integrated Engineering, Issue on Civil and Environmental Engineering*, 4(2), 22–28.
- Orihuela, P., & Ulloa, K. (2009). Metodología para promover la ingeniería basada en múltiples alternativas. Proceedings of the 3rd ELAGEC, 1–11.
- Pham, D. H., Lee, J., & Ahn, Y. (2019). Implementing LEED v4 BD+C projects in Vietnam: Contributions and challenges for general contractor. *Sustainability (Switzerland)*, 11(19), 1–17. https://doi.org/10.3390/su11195449
- Pinto, G. A. O., & Plata, G. O. (2010). Desarrollo sostenible en edificaciones. *Revista UIS Ingenierías*, 9(1), 103–121.
- Ribero, O., Garzon, D., Alvarado, Y., & Gasch, I. (2016). Economic benefits of LEED certification: a case study of the Centro Ático building.pdf. *Revista Ingenieria de Construccion*, 31(2), 139–146. https://doi.org/10.4067/s0718-50732016000200007
- Rocha, E. (2011). Construcciones sostenibles: materiales, certificaciones y LCA. *Nodo: Arquitectura. Ciudad. Medio Ambiente*, 6(11), 99–116.
- RNE, M. (2016). Reglamento Nacional de Edificaciones. Lima, Perú: Ministerio de Vivienda.
- Saunders, T. (2008). A discussion document comparing international environmental assessment methods for buildings. *Bre*, 46. https://doi.org/01-03-2008
- Sun, C., Jiang, S., Skibniewski, M. J., Man, Q., & Shen, L. (2017). A literature review of the factors limiting the application of BIM in the construction industry. Technological and Economic Development of Economy, 23(5), 764–779. https://doi.org/10.3846/20294913.2015.1087071
- Trebilcock, M. (2011). Percepción de barreras a la incorporación de criterios de eficiencia energética en las edificaciones. *Revista de La Construccion*, 10(1), 4–14. https://doi.org/10.4067/s0718-915x2011000100002
- U.S. Green Building Council. (2017). Guía de C onceptos B ásicos de Edificios verdes y LEED (Core Concepts and LEED Guide) SEGUNDA EDICIÓN (SECOND EDITION) (Vol. 2). Retrieved from http://www.spaingbc.org/files/Core Concepts Guide_ES.pdf
- U.S. Green Building Council. (2019). Leed v4.1 Building design and construction. (April).
- USGBC. (2009). Green Building and Leed Core Concepts.

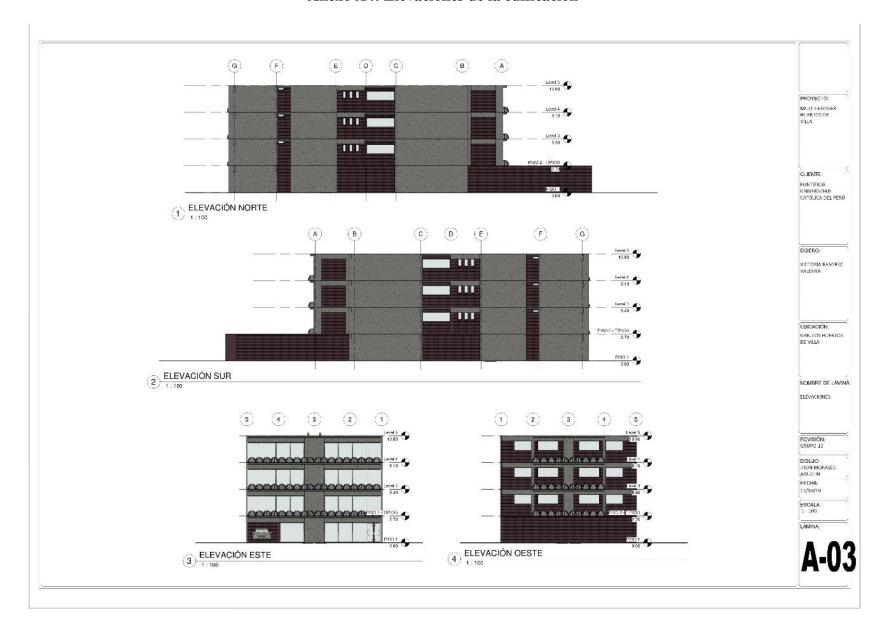
ARQUITECTURA

Anexo A1: Cuadro de vanos

	PROYECTO "HUERTO	S DE VILLA" - CUADRO DE VANOS
AMBIENTE	ACABADO	DESCRIPCIÓN
	ESCALERA	Baranda metálica de 1.20m de perfil circular en ambos lados de la escalera.
	ASCENSORES	Ascensor de doble entrada para ocho seis personas marca Thyssen
	ENTRADA PRINCIPAL	Mampara de vidrio templado de 8mm con cerradura electrica
	PUERTA VEHICULAR	Puerta metalica con apertura mediante control remoto
AREAS COMUNES	FACHADA DE LOBBY	Ventanas de vidrio de 6mm con perfilse metalicos de aluminio
THE TO COMOTES	MUEBLES	Juego de sla definino por el cliente
	PISO DE SALA DE LOBBY Y PASADIZO	Porcelanato 60x60cm Celima, color mate plata o similar. Contrazócalos de 10cm con mismas características
	PAREDES Y CIELORASO	Empastado y pintado con pintura latex color blanco humo o similar
	ESTACIONAMIENTO	Piso de concreto frotachado
	PUERTA DE ESCALERA	Metalica roper - cortafuego con RF= 90 min
	PISO	Piso de concreto frotachado
DEPÓSITOS	PUERTA	Contraplacada con madera MDF, pintura color blanco, cerradura de sobreponer marca Forte modelo C-240
	PAREDES Y CIELORASO	Empastado y pintado con pintura latex color blanco humo o similar
	PISO	Laminado color roble oscuro de 7mm
SALA COMEDOR Y	CONTRAZÓCALO	Listones de madera 4"x 1/2"
PASILLOS	PAREDES Y CIELORASO	Empastado y pintado con pintura latex color blanco humo o similar
	VENTANA	Ventanas de vidrio de 6mm con perfilse metalicos de aluminio
	PISO	Laminado color roble oscuro de 7mm
	CONTRAZÓCALO	Listones de madera 4"x 1/2"
DORMITORIOS	PAREDES Y CIELORASO	Empastado y pintado con pintura latex color blanco humo o similar
	PUERTA	Contraplacada con madera MDF cubierto con laca y color natural, cerradura de pomo marca Forte modelo PD-Bq
	PISO	Laminado color roble oscuro de 7mm
WALKING CLOSET	CONTRAZÓCALO	Listones de madera 4"x 1/2"
	PAREDES Y CIELORASO	Empastado y pintado con pintura latex color blanco humo o similar
	PISO	Laminado color roble oscuro de 7mm
Strager Management	CONTRAZÓCALO	Listones de madera 4"x 1/2"
ESTUDIO	PAREDES Y CIELORASO	Empastado y pintado con pintura latex color blanco humo o similar
		1

	PUERTA	Contraplacada con madera MDF cubierto con laca y color natural, cerradura de pomo marca Forte modelo PD-Bq
	PISO	Porcelanato 45x45cm Celima Atenas gris
	ZÓCALO	Cerámico 30x60cm Celima Fresia grafito. Enchapar zonas entre muebles bajos y altos, detrás de la cocina y comedor.
	PAREDES Y CIELORASO	Zonas sin enchape, empastar y pintar con con latex antihongos color blanco
	PUERTA	Contraplacada con madera MDF pntadas al duco color blanco con vaiven
COCINA	MUEBLE	Mueble alto y bajo en melamine. Estructura en melamine color blanco. Puertas de mueble bajo en melamine color Moccachino. Puertas de mueble alto en melamine color Blanco. Todas las puertas con tapacanto grueso. Tiradores corridos de aluminio embutido. Sistema de accesorios Blum en bisagras. Muebles altos hasta nivel de fondo de techo.
	TABLERO DE COCINA	Acabado en granito color blanco de 2cm de espesor
	LAVADERO	Poza de empotrar de acero inoxidable de 50x40x21 marca Tramontina ó similar con llave marca Vainsa monocomando
	PISO	Porcelanato 45x45cm Celima Atenas gris
	ZÓCALO	Cerámico 30x60cm. Enchapar sólo en lado de aparatos y lavadero de ropa hasta altura 1.20m. El resto de paredes empastadas y pintadas en latex antihongos color blanco
LAVANDERIA	PAREDES Y CIELORASO	Zonas sin enchape, empastar y pintar con con latex antihongos color blanco
	PUERTA	Contraplacada con madera MDF cubierto con laca y color natural, cerradura de pomo marca Forte modelo PD-Bq
	LAVADERO	Lavarropa de dos posas marca Jorss de 1.00m de longitud con mezcladora Italgrif modelo Cancun a la pared
	PISO	Porcelanato 60x60cm color gris o similar
	ZÓCALO	Porcelanato 60x60cm Celima Mate blanco o similar. Enchape de toda la pared
	INODORO	Inodoro One piece advance plus blanco marca trebol con sistema ahorrador de agua
BAÑO DE DORMITORIO	LAVATORIO	Lavatorio Minbell blanco de forma ovalada para empotrar. Mezcladora Italgrif Cancún de 8"
PRINCIPAL	TINA	Tina Trancy blanco y negro 170x75x55 cm D'acqua
[DUCHA	Mezcladora de Ducha Tina 3 Llaves Buzios marca Italgrif
[TABLERO	Acabado en Cuarzo color blanco de 1cm de espesor
	MUEBLE BAJO	Mueble de melamine color gris oscuro
	PUERTA	Contraplacada con madera MDF pintadas al duco color blanco, cerradura de pomo marca Forte modelo PD-Bq
	PISO	Porcelanato 60x60cm Smoke Grafito Holztek o similar

	ZÓCALO	Porcelanato 60x60cm Smoke Grafito Holztek o similar. Enchape de toda la pared
	INODORO	Inodoro One piece advance plus blanco marca trebol con sistema ahorrador de agua
BAÑO SECUNDARIO	LAVATORIO	Lavatorio Minbell blanco de forma ovalada para empotrar. Mezcladora Italgrif Cancún de 8"
	DUCHA	Mezcladora de Ducha Tina 3 Llaves Buzios marca Italgrif
	TABLERO	Acabado en Cuarzo color blanco de 1cm de espesor
	MUEBLE BAJO	Mueble de melamine color gris oscuro
	PUERTA	Contraplacada con madera MDF pintadas al duco color blanco, cerradura de pomo marca Forte modelo PD-Bq
	PISO	Porcelanato 60x60cm Cementi Holztek o similar
	ZÓCALO	Porcelanato 60x60cm Cementi Holztek o similar. Enchape de toda la pared
	INODORO	Inodoro One piece advance plus blanco marca trebol con sistema ahorrador de agua
BAÑO DE VISITAS	LAVATORIO	Lavatorio Minbell blanco de forma ovalada para empotrar. Mezcladora Italgrif Cancún de 8"
	TABLERO	Acabado en Cuarzo color blanco de 1cm de espesor
	MUEBLE BAJO	Mueble de melamine color gris oscuro
	PUERTA	Contraplacada con madera MDF pintadas al duco color blanco, cerradura de pomo marca Forte modelo PD-Bq
ENTRADA A DEPARTAMENTOS	PUERTA	Contraplacada con madera HDF cubierto con laca y color natural, cerradura de embutir marca Forte modelo EMB-OND
VENTANAS	MARCO	Corrediza, carpinteria metalica en aluminio en toda las ventanas según dimensiones indicadas en cuadro de vanos.
	VIDRIO	Templado con espesor de 4mm
ENTRADA PRINCIPAL	LUMINARIA	Dicroicos de 3"
ESTACIONAMIENTOS	LUMINARIA	Tubos fluorescentes
RESTO DE AMBIENTES	LUMINARIA	Foco Inteligente Smart KL120 Blanco Regulable Tp-Link


Anexo A2: Planta del primer nivel y pisos típicos

Anexo A3: Cortes para toda la edificación

Anexo A4: Elevaciones de la edificación

GEOTECNIA

Anexo B1: Nivel de napa freática

****	PU					Prof. Total:	P-1 6.10 m
royed	cto:	Edif. M	ultif. Chorrillos	Ciudad:	Chorrillos	Fecha de Inicio:	2/09/2019
Cliente	ж		Grupo 10	Prov/ Dpto:	Lima/Lima	Fecha de Fin:	2/09/2019
xped	iente:	PI	2019-2-G10	Altura (msnm):	N/A	Perforista:	G. Zavala
Comentarios:		N/A		Napa Freática: 2.20 m	Tipo de Perf:	Barreno manua	
Muestra		Prof		Descripción del	Suelo (SUCS)		
No.	Prof (m)	Tipo	(m)				
			-	Arena suelta	s mal gradada, ligeram ligeramente hún	nente arcillosa, marrón rosác neda (SP-SC)	0,
			1.0	Arcilla de baia	plasticidad compacta	húmeda, mamón amarillent	o (CL)

Anexo B2: Perfil de suelo en el punto de exploración

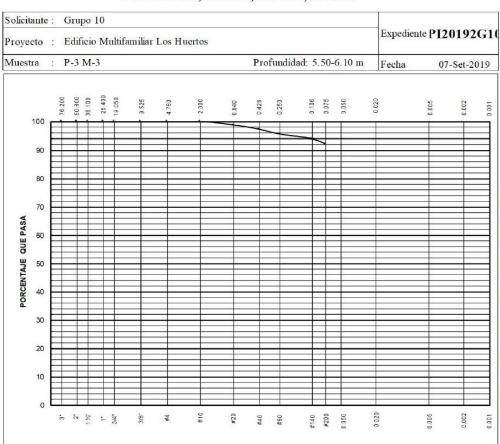
PUCP Perforación:	P-1
Prof. Total:	6.10 m
Proyecto: Edif. Multif. Chorrillos Ciudad: Chorrillos Fecha de Inicio:	2/09/2019
Cliente: Grupo 10 Prov/ Dpto: Lima/Lima Fecha de Fin:	2/09/2019
Expediente: PI2019-2-G10 Altura (msnm): N/A Perforista:	G. Zavala

Expea		F 12	2019-2-G10	Aitura (msnm): _	N/A	— Periorista:	G. Zavaia	
Comenta	arios:		N/A	Napa Freática:	2.20 m	Tipo de Perf:	Barreno manual	
			Prof					
No.	Prof (m)	Tipo	(m)					
			- - - - -	Arena suelta i	nal gradada, ligera ligeramente hú	mente arcillosa, marrón rosa meda (SP-SC)	iceo,	
1	1.50-2.10	Mit		Arcilla de baja pl	asticidad, compact	a, húmeda, marrón amariller	nto (CL)	
			_		N	F.		
2	3.50-4.10	Mit				sticidad, compacta n amarillento (CL)		
			-			sticidad, compacta ron claro (CH)		
3	5.50-6.10	Mit	5.0 					
			_					

Anexo B3: Resultados de los ensayos de laboratorio

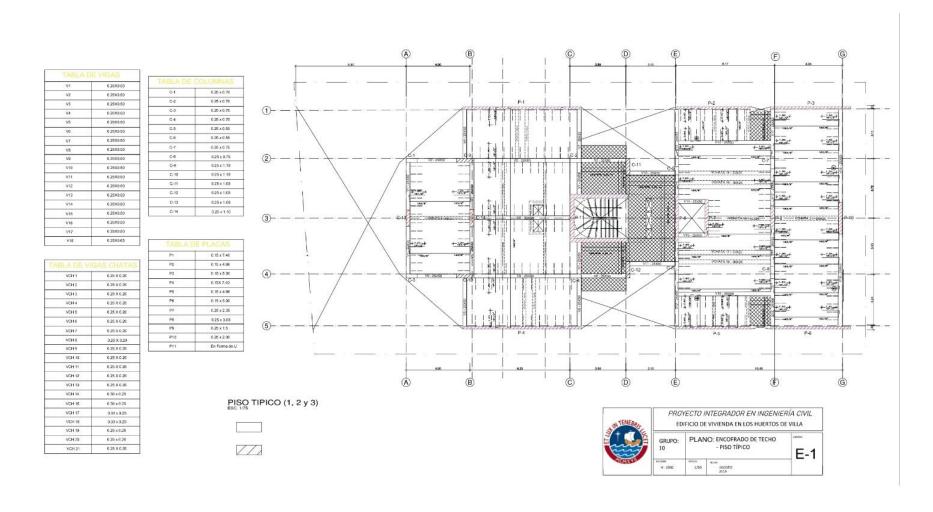
ENSAYOS DE CLASIFICACIÓN NTP 339.127, 339.128, 339.129, 339.131

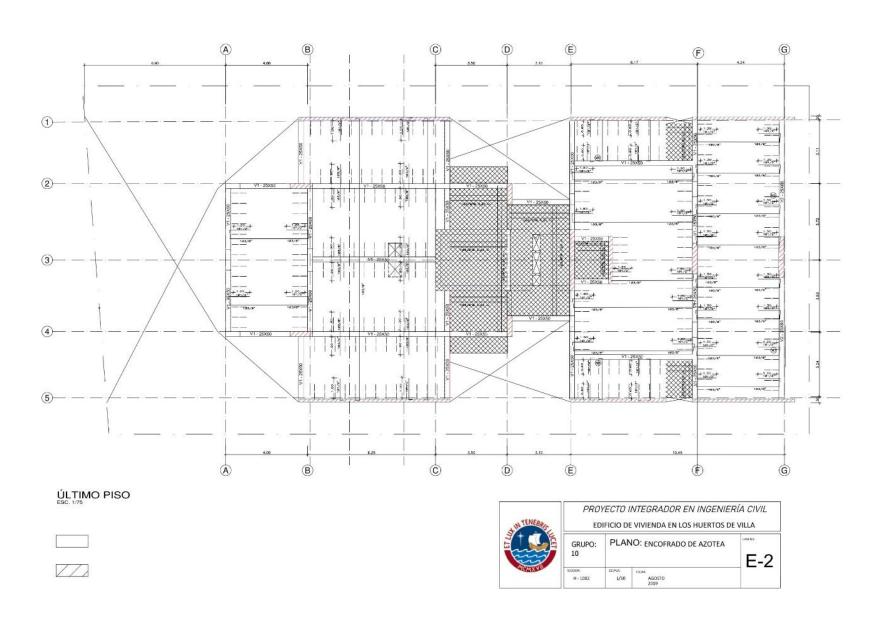
Solicitant GRUPO 10 e: Proyecto Edificio Multifamiliar Los Huertos :							Expedient PI20192-G10		
Muestra	P2 N	И1		Profundida	ad: 1.50-	2.10 m	Fecha	Fecha 07-Set- : 2019	
	Profun (m)				PU w%	n	olidació Cr	Sales	
	Desd e	Hast a	LL	LP	W70	Сс	u	mg/ kg	
P2 M1	1.50	2.1			19.6	-		751	
	Guillermo Zavala Rosell Lab. de Mecánica de Suelos Proyecto Integrador								e Suelos


PI20192G10/2/GM/1 de 1

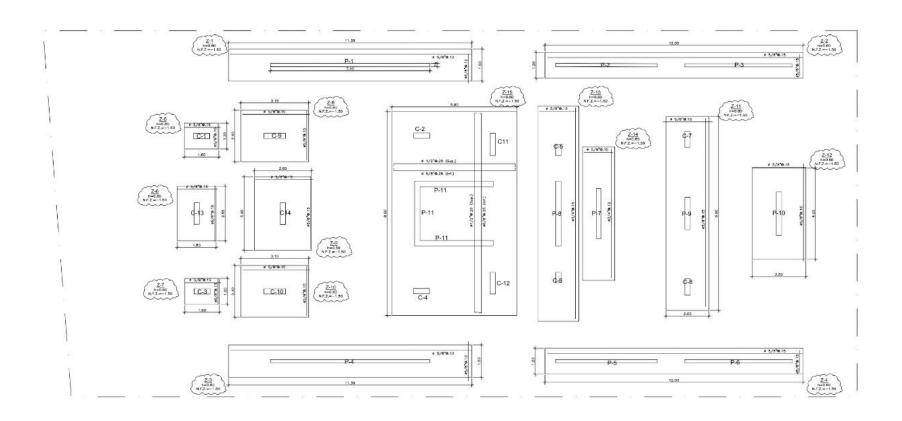
Anexo B4: Ensayos de clasificación

DEPARTAMENTO
DE INGENIERIA
LABORATORIO DE MECANICA DE SUELOS

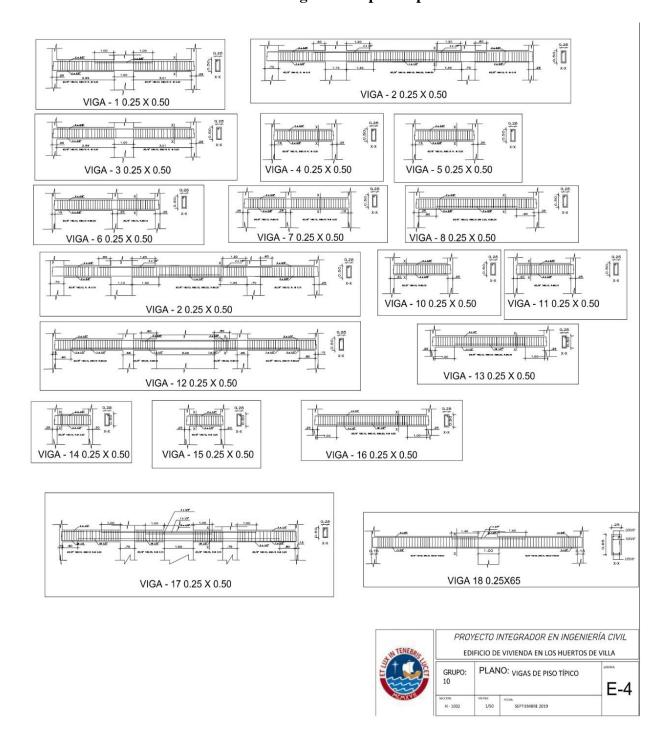

ENSAYOS DE CLASIFICACIÓN NTP 339.127, 339.128, 339.129, 339.131


Tamiz	Porcentaje	Diámetro	Porcentaje	LL = 51		20
ASTM	que pasa	en mm	que pasa	LP = 24		
3"	100.0			IP = 27		
2"	100.0					
1 1/2"	100.0					
1"	100.0					
3/4"	100.0					
3/8"	100.0		42000			
#4	100.0					
#10	100.0					
#20	98.7					
#40	97.2					_
#60	95.5			1.5%	Guillermo Zavala Rosell	23
#140	93.9				Lab. de Mecánica de Suelos	
#200	92.2				Proyecto Integrador	

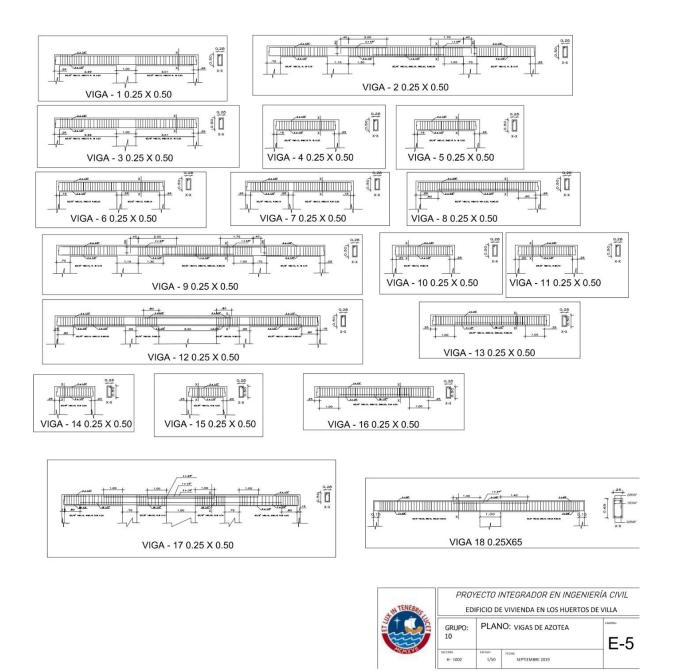
ESTRUCTURAS

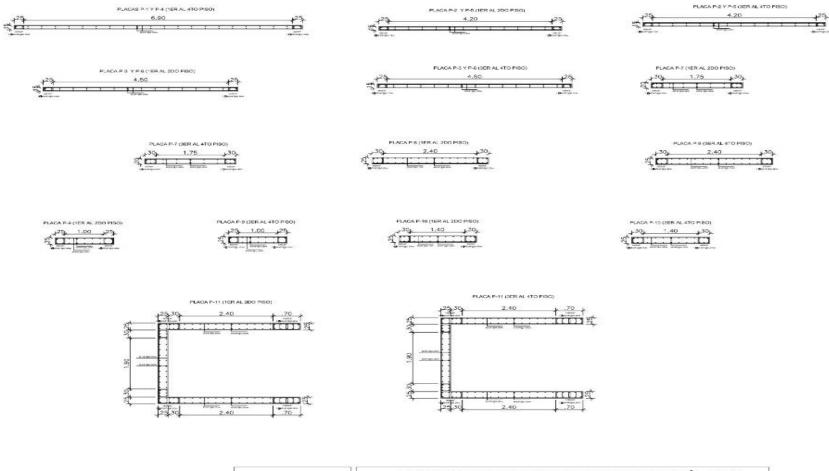

Anexo C1: Encofrado del techo para los pisos típicos

Anexo C2: Encofrado de la azotea



Anexo C3: Cimentaciones



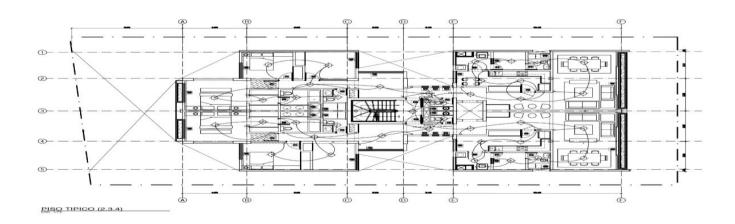

Anexo C4: Vigas de los pisos típicos

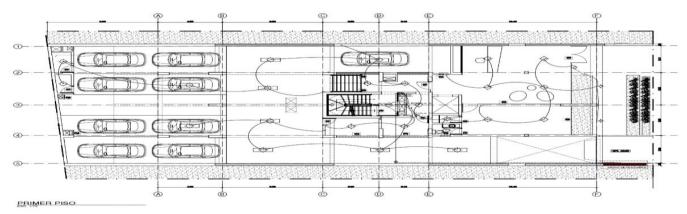
Anexo C5: Vigas de la azotea

Anexo C6: Placas

Anexo C7: Columnas

C-1	0.25 x 0.70
C-2	0.25 x 0.70
C-3	0.25 x 0.70
C-4	0.25 x 0.70
C-5	0.25 x 0.55
C-6	0.25 x 0.55
C-7	0.25 x 0.75
C-8	0.25 x 0.75
C-9	0.25 x 1.10
C-10	0.25 x 1.10
C-11	0.25 x 1.00
C-12	0.25 x 1.00
C-13	0.25 x 1.00
C-14	0.25 x 1.10

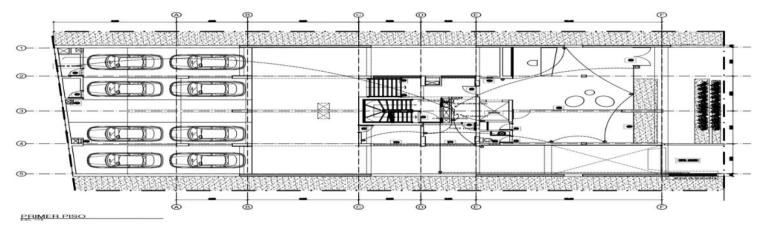



PROYECTO INTEGRADOR EN INGENIERÍA CIVIL EDIFICIO DE VIVIENDA EN LOS HUERTOS DE VILLA

GRUPO: 10	PLAN	O: columnas	F-7
SECCION:	ESCALA:	FECHA:	
H - 1002	1/50	SEPTIEMBRE 2019	

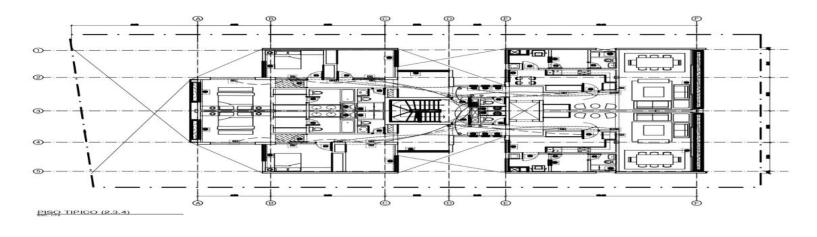
Anexo D: Planos de instalaciones

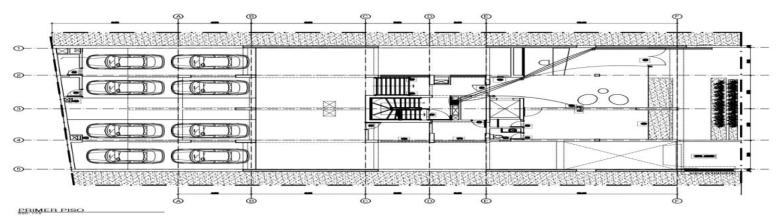
Alumbrado



PROY	ECTO INTEGRADOR EN INGENIE	RIA CIVIL
GRUPO: 10	PLANO: ALUMBRADO	LAMINA
H - 1002	FECHA: DICIEMBRE 2019	

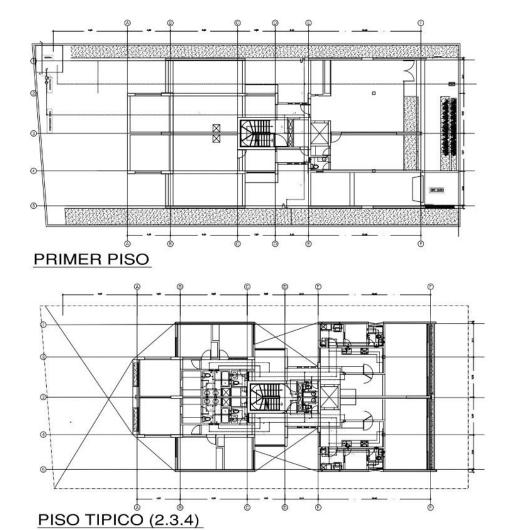
Tomacorrientes

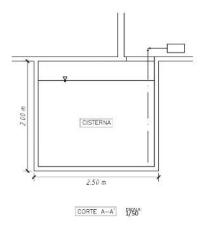




PROY	ECTO INTEGRADOR EN INGENIEI	RIA CIVIL
GRUPO:	PLANO:	LAMINA:
10	TOMA CORRIENTES	E 2
H - 1002	FECHA: DICIEMBRE 2019	E-2

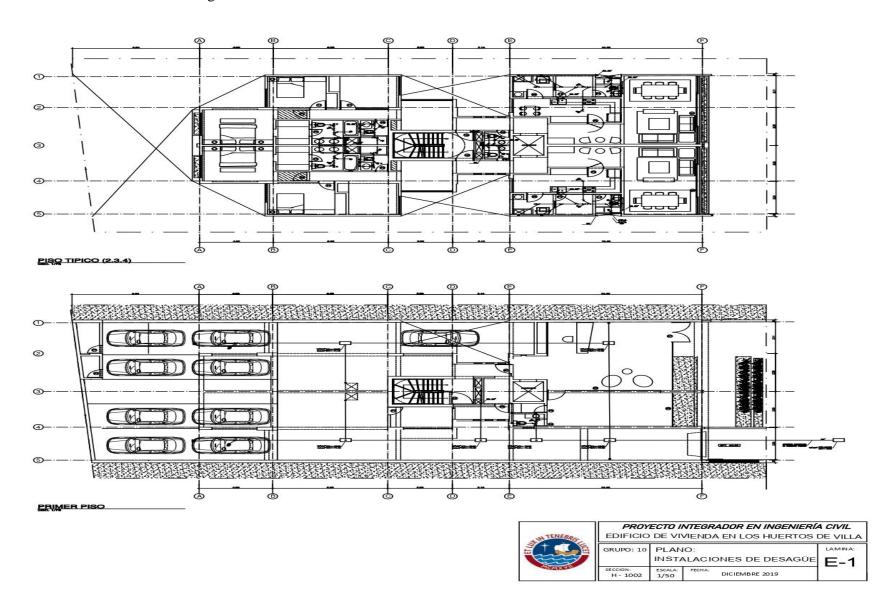
Servicios de comunicación

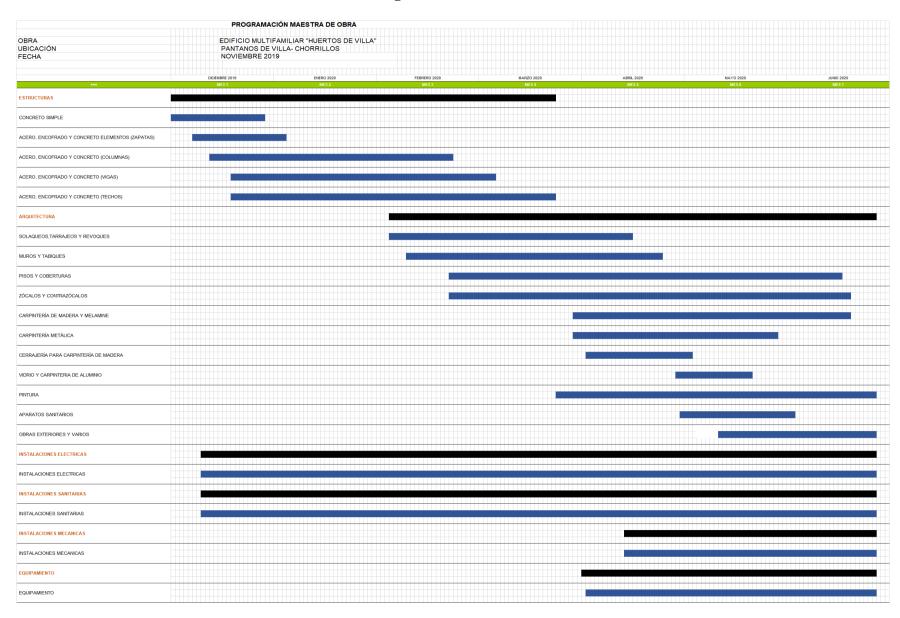




PROY	ÆCTO INTEGRADOR EN INGENIEI	RÍA CIVIL
GRUPO:	PLANO:	LAMINA:
10	SERVICIOS	E-3
H - 1002	FECHA: DICIEMBRE 2019	

Planos de instalaciones de agua fría y caliente




LEYENDA DE AF Y AC								
MBOLOGIA DESCRIPCION		SIMBOLOGIA	DESCRIPCION					
e ::	TUBERIA DE AGUA FRIA	—	CODD DE 9IP BAJA					
_,1	CODO DE 90º	,±,	TEE					
—-•⊙	CODO DE 901 SUBE		VALV. DE COMPUERTA EN VERTICAL					
/	0000 DE 48°	Ī	VAL DE COMPUERTA EN HORIZONTA					
-TOT-	MEDIDOR DE AGUA	+⊕+-	VAL. DE RETENCIÓN (CHECK)					
一口。	VAL. FLOTAGOR	ñ.	GRIFO DE RIEGO					

Planos de instalaciones de desagüe

Anexo E: Programación maestra de la obra

Anexo F: Costos por partida

Costo de estructuras de concreto simple

ESPECIFICACIONES	Und	Metrado	P. Unitario	P. Parcial	Sub total	Total
CONCRETO SIMPLE						S/5,947.15
OBRAS DE CONCRETO SIMPLE						
Solado para cimentación	m2	207.29	S/28.69	S/5,947.15	S/5,947.15	

Costo de estructuras de concreto armado

CONCRETO ARMADO		1146	OP)			S/406,663.19
OBRAS DE CONCRETO ARMADO				5		
CISTERNA Y CUARTO DE MAQUINAS					S/4,644.94	
Concreto 280 kg/cm² para cisterna	m3	6.18	S/325.11	S/2,009.18		
Encofrado y Desencofrado	m2	28.25	S/49.07	S/1,386.23		
Acero grado 60	kg	296.80	S/4.21	S/1,249.53		
CIMIENTOS ARMADO			1111		S/54,488.12	
Concreto 210 kg/cm² para zapata	m3	124.37	S/295.14	S/36,706.56		
Encofrado y Desencofrado zapatas	m2	158.10	S/56.55	S/8,940.56		
Acero grado 60	kg	2100.00	S/4.21	S/8,841.00		
COLUMNAS Y PLACAS		7	7		S/165,007.82	
Concreto 210 kg/cm² para columnas y placas	m3	122.87	S/283.91	S/34,884.02		
Encofrado y Desencofrado de columnas	m2	1358.00	S/58.42	S/79,334.36		
Acero grado 60	kg	12064.00	S/4.21	S/50,789.44		
VIGAS					S/77,271.54	
Concreto 210 kg/cm² para vigas	m3	56.25	S/348.65	S/19,611.56		
Encofrado y Desencofrado de vigas	m2	384.57	S/65.85	S/25,323.93		
Acero grado 60	kg	7680.77	S/4.21	S/32,336.04		
LOSAS ALIGERADAS (1 DIRECCION)					S/78,717.14	
Concreto 210 kg/cm² para aligerado en una dirección	m3	98.72	S/347.17	S/34,272.62		
Encofrado y Desencofrado de losa aligerada	m2	910.18	S/13.90	S/12,651.50		

Ladrillo de techo (15x30x30)	und	8072.00	S/3.02	S/24,377.44		
Acero grado 60	kg	1761.42	S/4.21	S/7,415.58		
LOSAS MACIZAS (SOTANO 05, 04, 03, 02 Y 01)					\$/21,790.01	
Concreto 210 kg/cm² para losa maciza	m3	33.21	S/347.17	S/11,529.52		
Encofrado y Desencofrado de losa maciza	m2	166.04	S/51.07	S/8,479.66		
Acero grado 60	kg	423.00	S/4.21	S/1,780.83		
ESCALERA Y SUS DESCANSOS					S/4,743.62	
Concreto 210 kg/cm² para escaleras	m3	4.72	S/311.38	S/1,469.71		
Encofrado y Desencofrado para escaleras	m2	30.56	S/87.10	S/2,661.78		
Acero grado 60	kg	145.40	S/4.21	S/612.13		
VARIOS		INE	BO			
Eliminación de desmonte durante etapa constructiva del casco	m3		Y	5		

Costo de arquitectura

ESPECIFICACIONES	Und	Metrado	P. Unitario	P. Parcial	Sub total	Total
ARQUITECTURA			3////			
TABIQUES Y MUROS DE ALBAÑILERIA					S/152,665.91	S/312,957.17
Muro de cabeza (e=25 cm)	m2	191.35	S/71.35	S/13,652.82		
Muro de soga (e=15 cm)	m2	2009.15	S/69.19	S/139,013.09		
TARRAJEOS Y REVOQUES					S/110,900.61	
Tarrajeo de Muros de Tabiquería (Interior)	m2	3637.00	S/5.89	S/21,421.92		
Tarrajeo de Muros de Tabiquería (exterior)	m2	381.30	S/25.87	S/9,864.26		
Tarrajeo de Derrames	m2	916.08	S/29.89	S/27,380.72		
Tarrajeo de vigas	m2	335.17	S/50.19	S/16,822.08		
Tarrajeo de columnas y placas	m2	1237.30	S/28.62	S/35,411.63		
ZÓCALOS Y CONTRAZÓCALOS	ml				S/29,317.36	
Zócalos	ml	432.25	S/62.74	S/27,119.37		
Contrazócalos	ml	85.96	S/25.57	S/2,198.00		
PUERTAS					S/11,471.13	

P2 0.90X2.50M	und	24.00	S/160.83	S/3,859.92		
P3_0.70X2.50M	und	20.00	S/150.83	S/3,016.60		
P5_0.80X2.50M	und	14.00	S/160.83	S/2,251.62		
P6A 1.00X2.5M	und	13.00	S/180.23	S/2,342.99		
VENTANAS					S/8,602.16	
V1 2.90MX1.00M	und	6.00	S/105.00	S/630.00		
V2 2.20MX1.00M	und	6.00	S/100.00	S/600.00		
V3 1.80MX1.00M	und	12.00	S/115.00	S/1,380.00		
V4 1.365MX1.00M	und	6.00	S/125.00	S/750.00		
V5 0.60X1.00M	und	6.00	S/90.67	S/544.02		
V6 0.75X0.50M	und	12.00	S/90.67	S/1,088.04		
V7 0.30X0.20M	und	8.00	S/85.00	S/680.00		
V8 0.65X0.30M	und	6.00	S/90.67	S/544.02		
V9 0.40X0.80M	und	24.00	S/90.67	S/2,176.08		
V10 1.30X2.80M	und	2.00	\$/105.00	S/210.00		
PISOS Y COBERTURAS (Suministro)						
CONTRAPISO (mortero autonivelante de cemento)					1	S/17,003.14
PRIMER NIVEL	7		97777		S/6,463.96	
Cuarto de bombas	m2	4.87	S/14.50	S/70.62		
Estacionamientos	m2	236.69	S/14.50	S/3,432.01		
Tránsito de autos	m2	61.96	S/14.50	S/898.42		
Oficinas	m2	13.25	S/14.50	S/192.13		
Cuarto de controles	m2	3.73	S/14.50	S/54.09		
Escalera	m2	4.27	S/14.50	S/61.92		
Desnivel de espera	m2	12.59	S/14.50	S/182.56		
Hall	m2	78.16	S/14.50	S/1,133.32		
Baño	m2	2.22	S/14.50	S/32.19		
Frontis	m2	26.46	S/14.50	S/383.67		
Cuarto de limpieza	m2	1.59	S/14.50	S/23.06		
					5/10 520 10	
2do, 3ro y 4to nivel					S/10,539.18	

Dormitorios	m2	33.4	S/14.50	S/484.30		
Closet de dormitorio	m2	2.19	S/14.50	S/31.76		
Baños	m2	10.09	S/14.50	S/146.31		
Pasadizos cuartos	m2	6.22	S/14.50	S/90.19		
Zona de espera	m2	23.26	S/14.50	S/337.27		
Cocina	m2	9.76	S/14.50	S/141.52		
Lavanderia	m2	3.65	S/14.50	S/52.93		
Cuarto	m2	4.27	S/14.50	S/61.92		
Sala	m2	26.17	S/14.50	S/379.47		
Porcion escalera	m2	2.13	S/14.50	S/30.89		
PISOS		LIVE	180	1		S/18,163.70
PRIMER NIVEL	1/2			(C	S/7,485.89	
Cuarto de bombas	m2	4.87	S/15.90	S/77.43		
Estacionamientos	m2	236.69	S/15.90	S/3,763.37		
Tránsito de autos	m2	61.96	S/15.90	S/985.16		
Oficinas	m2	13.25	S/19.60	S/259.70		
Cuarto de controles	m2	3.73	S/19.60	S/73.11		
Escalera	m2	4.27	S/15.90	S/67.89		
Desnivel de espera	m2	12.59	S/19.60	S/246.76		
Hall	m2	78.16	S/19.60	S/1,531.94		
Baño	m2	2.22	S/12.90	S/28.64		
Frontis	m2	26.46	S/15.90	S/420.71		
Cuarto de limpieza	m2	1.59	S/19.60	S/31.16		
2do, 3ro y 4to nivel		$\sim M \times$			S/10,677.82	
Departamento tipico					S/1,779.64	
Dormitorios	m2	33.4	S/14.90	S/497.66		
Closet de dormitorio	m2	2.19	S/14.90	S/32.63		
Baños	m2	10.09	S/12.90	S/130.16		
Pasadizos cuartos	m2	6.22	S/14.90	S/92.68		
Zona de espera	m2	23.26	S/14.90	S/346.57		
Cocina	m2	9.76	S/14.90	S/145.42		

Lavandería	m2	3.65	S/12.90	S/47.09		
Cuarto	m2	4.27	S/14.90	S/63.62		
Sala	m2	26.17	S/14.90	S/389.93		
Porción escalera	m2	2.13	S/15.90	S/33.87		
CIELO RASO						S/13,577.8
Primer nivel					S/8,513.44	
Cuarto de bombas	m2	4.87	S/5.90	S/28.73		
Estacionamientos	m2	233.95	S/5.90	S/1,380.31		
Tránsito de autos	m2	51.83	S/5.90	S/305.80		
Oficinas	m2	13.36	S/66.40	S/887.10		
Cuarto de controles	m2	3.71	S/5.90	S/21.89		
Escalera	m2	3.91	S/5.90	S/23.07		
Desnivel de espera	m2	12.12	S/66.40	S/804.77		
Hall	m2	75.87	S/66.40	S/5,037.77		
Baño	m2	2.12	S/6.90	S/14.63		
Cuarto de limpieza	m2	1.59	s/5.90	S/9.38		
2do, 3ro y 4to nivel			1		S/5,064.37	
Departamento tipico			11111	S/844.06	5,5,55	
	12		51177			
Dormitorios	m2	32.97	S/5.90	S/194.52	/	
Closet de dormitorio	m2	3.97	S/6.90	S/27.39		
Baños	m2	12.84	S/6.90	S/88.60		
Pasadizos cuartos	m2	5.96	S/6.90	S/41.12		
Zona de espera	m2	22.63	S/6.90	S/156.15		
Cocina	m2	12.4	S/6.90	S/85.56		
Lavandería	m2	4.39	S/6.90	S/30.29		
Cuarto	m2	4.1	S/6.90	S/28.29		
Sala	m2	26.17	S/6.90	S/180.57		
Porción escalera	m2	1.96	S/5.90	S/11.56		

Costo de instalaciones sanitarias

ESPECIFICACIONES	Und	Metrado	P. Unitario	P. Parcial	Sub total	Total
INSTALACIONES SANITARIAS						S/53,460.15
APARATOS SANITARIOS					S/18,281.96	
LAVATORIO DE BAÑO	Und.	31.00	S/188.14	S/5,832.34		
LAVADERO DE COCINA	Und.	6.00	S/363.27	S/2,179.62		
LAVADERO DE LAVANDERÍA	Und.	6.00	S/450.00	S/2,700.00		
DUCHA	Und.	12.00	S/154.00	S/1,848.00		
INODORO	Und.	25.00	S/184.24	S/4,606.00		
TINA	Und.	6.00	S/186.00	S/1,116.00		
SALIDA DE AGUA FRÍA	7 11	· V	OR,	-	S/6,593.84	
SALIDA DE AGUA FRÍA TUBERÍA PVC Ø 1/2"	Pto.	88.00	S/74.93	S/6,593.84		
REDES DE ALIMENTACIÓN DE AGUA FRÍA					S/642.00	
TUBERÍA PVC Ø 1"	m	37.50	S/17.12	S/642.00		
REDES DE DISTRIBUCIÓN DE AGUA FRÍA	1				S/7,108.75	
TUBERÍA PVC Ø 1/2"	m	184.58	S/12.91	S/2,382.93		
TUBERÍA PVC Ø 3/4"	m	190.23	S/16.29	S/3,098.85	-	
TUBERÍA PVC Ø 1"	m	67.38	S/16.60	S/1,118.51		
TUBERÍA PVC Ø 2"	m	29.70	S/17.12	S/508.46	1	
ACCESORIOS DE REDES	6				S/3,129.93	
TEE PVC Ø 3/4"	Und.	18.00	S/11.84	S/213.12		
TEE PVC Ø 1/2" - Ø 3/4"	Und.	38.00	S/10.36	S/393.68		
TEE PVC Ø 3/4" - Ø 1"	Und.	6.00	S/11.84	S/71.04		
TEE PVC Ø 1/2"	Und.	19.00	S/11.69	S/222.11		
CODO DE 90° PVC Ø 1/2"	Und.	150.00	S/9.19	S/1,378.50		
CODO DE 90° PVC Ø 3/4"	Und.	48.00	S/10.24	S/491.52		
CODO DE 90° PVC Ø 1"	Und.	30.00	S/10.54	S/316.20		
CODO DE 90° PVC Ø 2"	Und.	4.00	S/10.94	S/43.76		
VÁLVULAS					S/5,433.30	
VÁLVULA DE COMPUERTA Ø 3/4"	Und.	19.00	S/110.00	S/2,090.00		
VÁLVULA DE COMPUERTA Ø 1/2"	Und.	6.00	S/106.91	S/641.46		

VÁLVULA DE COMPUERTA EN VERTICAL Ø 1/2"	Und.	24.00	S/106.91	S/2,565.84		
GRIFO DE RIEGO Ø 1/2"	Und.	2.00	S/68.00	S/136.00		
EQUIPOS Y OTRAS INSTALACIONES					S/500.00	
EQUIPO HIDRONEUMÁTICO	Und.	1.00	S/500.00	S/500.00		
SISTEMA DE AGUA CALIENTE					S/619.68	
SALIDA DE AGUA CALIENTE TUBERÍA CPVC Ø 1/2"	Pto.	48.00	S/12.91	S/619.68		
REDES DE DISTRIBUCION DE AGUA CALIENTE					S/5,330.75	
TUBERÍA CPVC Ø 1/2"	m	131.40	S/15.35	S/2,016.99		
TUBERÍA CPVC Ø 3/4"	m	163.32	S/20.29	S/3,313.76		
ACCESORIOS DE REDES	-	ME			S/1,019.94	
TEE CPVC Ø 1/2"	Und.	30.00	S/10.19	S/305.70		
CODO DE 90° CPVC Ø 3/4"	Und.	24.00	S/11.84	S/284.16		
CODO DE 90° CPVC Ø 1/2"	Und.	42.00	S/10.24	S/430.08		
EQUIPOS Y OTRAS INSTALACIONES	1		. /		S/4,800.00	
BOMBA DE IMPULSIÓN	Und.	1.00	\$/3,000.00	\$/3,000.00		
CALENTADOR	Und	3.00	S/600.00	S/1,800.00		
		R				
DESAGUE Y VENTILACIÓN			1111		-	S/21,456.97
Salidas De Desagüe					S/18,398.77	
Salida de desagüe PVC-SAL 2"	Pto.	112.00	S/118.04	S/13,220.26		
Salida de desagüe PVC-SAL 4"	Pto.	42.00	S/123.30	S/5,178.52		
Redes De Derivación						
Tuberia PVC-SAL p/desagüe D=2"	ml					
Tuberia PVC-SAL p/desagüe D=4"	ml	Y				
Accesorios de Redes de Derivación					\$/3,058.20	
Equipo Hidroneumatico 1 HP	Und.					
Sumideros de bronce de 2"	Und.	36.00	S/50.97	S/1,834.92		
Sumideros de bronce de 4"	Und.	24.00	S/50.97	S/1,223.28		
Registros roscados de bronce de 4"	Und.					
Codo 2"x90	Und.					
Codo 4"x90	Und.					

Codo 2"x45	Und.			
YEE PVC 2"	Und.			
YEE PVC 4"	Und.			
TEE PVC 4"	Und.			
Cámaras De Inspección				
Cajas de registro con tapa de 12"x24"	Und.			
Prueba hidráulica del sistema de agua y desagüe	glb			

Costo de instalaciones eléctricas

ESPECIFICACIONES	Und	Metrad o	P. Unitario	P. Parcial	Sub total	Total
INSTALACIONES ELECTRICAS Y MECANICAS					p	S/45,964.5 2
27		- /	7		S/43,305.6 1	
Conexión A La Red Externa De Medidores					. 1	
Instalación de la alimentación eléctrica	Und.	1.00	/		- 1	
Salidas Para Alumbrado, Tomacorrientes, Fuerza y Señales Debiles						
Salidas					S/0.00	
Salida para art. Empot. en techo con lampara incand. De 50W.	Und.	9.00		y	7	
Salida para adosado en pared (braquete)	Und.	7.00				
Salida de control de nivel cisterna	Und.	1.00	SAV.			
Salida para luz por piso	Und.	133.00	XX			
Salida para tomacorriente bipolar	Und.	122.00				
Salida para tomacorriente trifasico	Und.	13.00				
Salida para Interruptor eléctrico simple	Und.	82.00				
Salida para Interruptor eléctrico doble	Und.	23.00				
Salida para Interruptor eléctrico triple	Und.	2.00				
Canalizaciones, Conductos o Tuberías					S/2,459.90	
Tuberia eléctrica PVC-L 15 MM (SEL) alumbrado	m.	759.17	S/1.00	S/759.17		

Tuberia eléctrica PVC-L 15 MM (SEL) intercomunicador	m.	68.30	S/1.00	S/68.30	
Tuberia eléctrica PVC-L 15 MM (SEL) puerta levadiza	m.	18.05	S/1.00	S/18.05	
Tuberia eléctrica PVC-L 15 MM (SEL) tomacorrientes	m.	399.60	S/1.00	S/399.60	
Tuberia eléctrica PVC-L 15 MM (SEL) servicios	m.	407.40	S/1.00	S/407.40	
Tuberia eléctrica PVC-L 20 MM (SAP) electrobomba	m.	23.00	S/2.50	S/57.50	
Tuberia eléctrica PVC-L 20 MM (SAP) ascensor	m.	9.85	S/2.50	S/24.63	
Tuberia eléctrica PVC-L 20 MM (SAP) therma	m.	30.00	S/2.50	S/75.00	
Tuberia eléctrica PVC-L 25 MM (SAP) lavadora	m.	42.75	S/3.00	S/128.25	
Tubería eléctrica PVC-L 25 MM (SAP) cocina	m.	45.60	S/3.00	S/136.80	
Tubería eléctrica PVC-L 35 MM (SAP) tableros	m.	64.20	S/6.00	S/385.20	
Conductores y Cables De Energía En Tuberías			7		S/282.00
Cable 2x#16 TW	m.	100.00	S/0.70	S/70.00	
Cable 2x#10 THW	m.	100.00	S/2.12	S/212.00	
Tablero De Distribución	-	T)(T			S/609.30
Tablero eléctrico RIEL DIN - Trifásico 100A, 18 polos	Und.	6.00	S/84.90	S/509.40	
Tablero eléctrico RIEL DIN - Trifásico 100A, 24 polos	Und.	1.00	S/99.90	S/99.90	
Dispositivos De Maniobra Y Protección					S/2,294.20
Interuptores termomagnèticos monofásico de 2x16A	Und.	35.00	S/24.90	S/871.50	
Interuptores termomagnèticos monofásico de 2x20A	Und.	2.00	S/24.90	S/49.80	
Interuptores termomagnèticos monofásico de 2x32A	Und.	6.00	S/19.90	S/119.40	
Interuptores termomagnèticos trifásico de 3x16A	Und.	2.00	S/84.90	S/169.80	
Interuptores termomagnèticos trifásico de 3x25A	Und.	6.00	S/79.90	S/479.40	
Interuptores termomagnèticos trifásico de 3x40A	Und.	1.00	S/124.90	S/124.90	
Interuptores termomagnèticos trifásico de 3x50A	Und.	6.00	S/79.90	S/479.40	
Instalación Del Sistema De Puesta A Tierra	-				S/2,592.81
Pozo a tierra	Und.	1.00	S/2,592.8 1	S/2,592.81	

14					C/2 CEC 40
Lámparas					S/2,656.10
Salida de equipo fluorescente 20w adosable	Und.	9.00	S/29.90	S/269.10	
Salida para adosado en pared (braquete led <9W)	Und.	7.00	S/19.90	S/139.30	
Salida foco led globo 15w E27	Unid.	133.00	S/16.90	S/2,247.70	
Tomacorrientes					S/719.80
Tomacorriente doble universal	Unid.	122.00	S/5.90	S/719.80	
Interruptores eléctricos					S/632.30
Interruptor eléctrico simple life blanco	Unid.	82.00	S/4.90	S/401.80	
Interruptor eléctrico doble life blanco	Unid.	23.00	S/8.90	S/204.70	
Interruptor eléctrico triple	Unid.	2.00	S/12.90	S/25.80	
Caja de pase					S/318.50
Caja de pase octogonal metalica pesada	Und.	9.00	S/3.90	S/35.10	
Caja de paso pesada 6x6x4	Und.	26.00	S/10.90	S/283.40	
Banco de medidores					S/90.80
Caja Portamedidor 26x16.3x9 cm	Unid.	1.00	S/15.90	S/15.90	
Medidor Electrónico Monofásico 60A TKL	Unid.	1.00	S/74.90	S/74.90	
Equipos Electricos y Mecanicos			311	9	S/30,649.9 0
Electrobomba centrífuga de 1HP	Und.	1.00	S/649.90	S/649.90	
Ascensor	Und.	1.00	30000.00	S/30,000.0 0	

Costos de instalación de comunicaciones

ESPECIFICACIONES	Und	Metrado	P. Unitario	P. Parcial	Sub total	Total
INSTALACIONES DE COMUNICACIONES					S/2,658.91	
Salida de comunicaciones					S/0.00	
Salida de TV - Cable	und	24.00				
Salida telefono	und	12.00				
Salida para internet	und	12.00				
Salida para timbre y/o intercomunicador empotrado en pared	und	13.00				
Interruptores	-T	NIC			S/34.90	
Interruptor de timbre	und	1.00	S/34.90	S/34.90		
Caja de pase					S/31.20	
Caja de pase octogonal metálica pesada	und	8.00	S/3.90	S/31.20		
Instalación Del Sistema De Puesta A Tierra	_	, ,			S/2,592.81	
Pozo a tierra	und	1.00	S/2,592.81	S/2,592.81		