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Abstract

Kuramoto-Sivashinsky equation in a two dimensional slab with infinite

walls and advection by external flow is considered. Stationary front solu-

tions were then found using the shooting method with simple Euler method

and oscillatory front solutions were solved with simple Euler method. Nu-

merical results for both were analyzed, finding the solutions for station-

ary fronts including external flow, Couette and Poiseuille. A modified

Kuramoto-Sivashinsky equation, similar to the equation used to described

solitary waves was also considered and the effect it had on stationary fronts

with and without external flow was also explored. For oscillatory solutions,

the front profiles and the phase space diagrams were calculated, a bifur-

cation diagram was also analyzed for no external flow as well as for fronts

advected by Poiseuille and Couette external flow, and good agreement

with Feigenbaum’s number was found in all cases.
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Chapter 1

Introduction

The Kuramoto-Sivashinsky equation appeared in the late 1970s, derived

from the instabilities in laminar flames [2, 3], as a simplification of the

reaction-diffusion equation. The reaction-diffusion equation has uses in

several areas of research, such as chemistry, to model reaction-diffusion ex-

periments and in combustion theory, biology [4], and several other fields.

It has been thoroughly studied in these different fields since the early

20th century. As mentioned before, the Kuramoto-Sivashinsky equation

emerged as a simplified version of the reaction-diffusion equation, and ever

since it has been focused on by research extensively, with new information

[5] being found now, and with applications to fields such as chemical re-

actions [6]. Variations of the Kuramoto-Sivashinsky equation have also

been thoroughly studied, with periodic boundary conditions [7], Neumann

boundary conditions [8], or other [9], even adding in new terms [10], using

a modified Kuramoto-Sivashinsky equation [11, 12], as well as its similar-

ities to the spatial behavior of other types of systems, such as the one

dimensional non-linear maps [13], have been studied.
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2 Chapter 1. Introduction

However, there is another equation that results in the Kuramoto-Sivashinsky

equation. In the early 19th century, John Scott Russell proposed a model

for a traveling wave in water[14]. This can be easily observed in nature,

a drop of water on a larger body of water will create waves that travel

with polar symmetry. Over a century later, when the use of computers to

analyze more complex systems was becoming more prevalent, more and

more research on solitary waves, or solitons, was being done. A 1978 arti-

cle [15] used an equation similar to the Kuramoto-Sivashinsky equation to

describe the behavior of long nonlinear waves traveling down an inclined

plane on a viscous fluid. The difference is a term with β as a constant,

if β = 0 then it becomes the Kuramoto-Sivashinsky equation. This term

describes the linear dispersion [16] of the wave in the medium, meaning

it describes the phase velocity or the spreading of the wave. Considering

the case of water waves, linear dispersion describes how waves of different

wavelengths travel at different propagation speeds, and in shallow-waters,

the propagation speed is solely related on the amplitude of the wave. This

linear dispersion term would also have an effect on the stability of the

waves depending on the wave amplitude and the wavelength [10]. Soli-

tons are heavily studied now, with applications in several fields, including

optics [17], as they work extensively with waves, and biology [18].

In this work we will explore the behavior exhibited by reaction fronts con-

fined between two parallel plates described by the Kuramoto-Sivashinsky

equation with boundary conditions derived by Margolis et al. [9], solved

with simple Euler method. We will consider two different types of external
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flow, Poiseuille and Couette flow, as well as no external flow and the results

will be compared to each other to see the effects each of these have on the

spatiotemporal behavior. To start off, we analyze the stationary solutions

for the Kuramoto-Sivashinsky equation using the shooting method. For

Poiseuille and Couette external flow, the equation will also be solved using

the shooting method. For stationary front solutions, we will also consider

the term that describes solitary waves, which depends on a constant β ,

which we solve with shooting method for small values of the constant.

Following that, the regions where there are oscillatory and chaotic solu-

tions will be examined, then we explore these regions further by defining

a phase space and showing the diagrams that the system presents, as well

as calculating the Feigenbaum’s constant for the bifurcation diagram ob-

tained with the value for the separation of the plates and the minimum

and maximum velocity that the system allows. Feigenbaum’s constant is

then compared to the original results of [19] to verify if the results for our

system hold up.



Chapter 2

Equations of motion

Reaction-diffusion dynamical systems are mathematical models, which are

now mainly used in the fields of chemistry to see the evolution of reaction-

diffusion phenomena. This model exhibits very rich spatio-temporal be-

havior and has become popular in dynamical system study. When used

in chemistry, it describes the change of concentration of different chemical

substances. Could be reactants, which are used up in a chemical reaction,

forming products that then spread over the space. Reaction-diffusion sys-

tems are described by the general equation, which in this case we will only

consider in one dimension,

∂z
∂ t

= F(z)+D∆z, (2.1)

where z is a vector, that has the concentrations of the different substances

as its components, F is a vector function that corresponds to the type of

reaction the system undergoes and D is the diffusion matrix which is as-

sumed to be diagonal [1]. After a series of simplifications and assumptions

4



2.1. Fronts described by Kuramoto-Sivashinsky equation 5

[1, 20] we arrive at the Kuramoto-Sivashinsky equation

∂H
∂T

= v
∂ 2H
∂X2 +

V0

2

(
∂H
∂X

)2

−κ
∂ 4H
∂X4 , (2.2)

where the variables H and T describe the position of the front at time T ,

v and κ are related to the diffusivities of the different reactants [21]. V0 is

the propagation speed of the front that the system allows.

2.1 Fronts described by Kuramoto-Sivashinsky equation

The Kuramoto-Sivashinsky equation, eq. 2.2 describes the front profile in

a chemical reaction. In this work we will consider our system, the reactants

and products, confined in a two dimensional (x and z axis) slab, confined

by two infinite parallel plates, placed in X = 0 and X = L̃ as shown in fig.

2.1 . To be able to further analyze this equation and its behavior, a change

to dimensionless units is necessary. We make this change by making use

of the substitution of X ,H and T : X = Lxx, H = Lhh and T = Ltt, where

x,h and t are dimensionless units, the x we are using corresponds to the

reference system we place the parallel plates in. We assume that v,κ are

non-zero, we define Lx =
√

κ/|v|, Lt = κ/v2, and Lh = |v|/V0. Replacing all

these substitutions in eq. 2.2, we obtain

∂h
∂ t

=
|v|
v

∂ 2h
∂x2 +

1
2

(
∂h
∂x

)2

− ∂ 4h
∂x4 , (2.3)

where h describes the height of the front in the z-axis, at a time t. The

coefficient of ∂ 2h
∂x2 , |v|

v , can only have 2 values, -1 or 1. We will only consider
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Figure 2.1: Graphic showing the front, reactants and products in our system [1].

it to be -1 seeing as Eq. 2.3 allows for flat front instabilities only when this

coefficient is equal to -1 [21]. We will also consider boundary conditions

set by Margolis et al. [9], ∂h
∂x = 0 and ∂ 3h

∂ 3x = 0 at our boundaries x = 0 and

x = L.

2.1.1 Stationary fronts

We take eq. 2.3 and define a reference frame that moves together with

the front described by the equation. This allows us to observe the front

as if it is stationary. We impose that the solutions we are seeking have

constant front velocity in the z-axis, and define the front height as a linear

function of time, h = h0 − ct where h0 is our stationary front profile, our

constant front velocity, as well as the velocity of the reference frame, is c.

Substituting our function for h in eq. 2.3 results in

−c =−∂ 2h0

∂x2 +
1
2

(
∂h0

∂x

)2

− ∂ 4h0

∂x4 , (2.4)

where h0, x are the described above.
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To solve eq. 2.4, in which our only unknowns are the constant front velocity

c and the values of ∂ 2h0
∂x2 , we will make use of the shooting method [22]. To

make use of this, we first split eq. 2.11 into four differential equations

where each derivative will become a new variable:

u = dho
x

v = du
dx

w = dv
dx

dw
dx = c− v+ 1

2u2.

(2.5)

This system of equations contains two free parameters, which are the un-

known values we have mentioned above, c and v at x = 0. Giving guess-

ing values to these parameters, the system was solved using simple Euler

method in order to reach the boundary at x = L, and following this our

guessing values are adjusted to be able to fulfill the boundary conditions

imposed at x = L. No significant difference between using simple Euler

method and fourth order Runge-Kutta method to solve eq. 2.5. This

method was implemented using a grid of 10000 points in x.

Linear dispersion

We will also add in another term to eq. 2.3 [10] for a more robust equation

to test. This term turns the Kuramoto-Sivashinsky equation into an equa-

tion that describes the movement of long waves along a particular medium

[10]. The effect this term has is describe the linear dispersion as the wave
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is traveling along a medium at constant speed. The wave that travels

maintains its form and is called a soliton [16]. We apply it in this case

seeing as the propagating front that is being examined has constant speed.

We plug in the term β
∂ 3h0
∂x3 in eq. 2.4 and applying the same procedure of

splitting the equation into a system of equations with new variables results

in: 

u = dho
x

v = du
dx

w = dv
dx

dw
dx = c− v+ 1

2u2 +βw.

(2.6)

This system of equations is solved using the shooting method with simple

Euler like described before. The process is the same except that this time

we first start off with β = 0 and from there we gradually begin increasing

the value of β by small amounts and adjusting our guesses for c and v at

x = 0 to fulfill the boundary conditions, this is done until we reach the

desired value of β .

2.1.2 Oscillatory fronts

The other type of fronts we will study are oscillatory fronts. As their

name implies, and, different from stationary fronts, these are fronts that

oscillate between different solutions. Systems that exhibit this behavior

also exhibit period doubling bifurcations, which is what we are interested

in. There must be a parameter for which our setup shows this type of



2.1. Fronts described by Kuramoto-Sivashinsky equation 9

behavior. Similar to the work of Smyrlis and Papageorgiou [13], we will

be examining the average front velocity.

Contrary to stationary fronts, we expand h into a Fourier cosine series, we

do this as the cosine series will easily fulfill the boundary conditions at

x = 0 and x = L,

h(x, t) = ∑
n=0

Hn(t)cos(nqx), (2.7)

where x is the position along the space between the parallel plates, the pa-

rameter q is given by q = π/L. Replacing our cosine series into eq. 2.3 and

separating the different cosine coefficients, we obtain a set of differential

equations for the evolution of our Fourier coefficients Hn. For n>0:

∂Hn

∂ t
= (nq)2Hn − (nq)4Hn +

q2

4 ∑
l=1

∑
p=1

l pHlHp(δn,|l−p|−δn,l+p) (2.8)

and for H0:
∂H0

∂ t
=

q2

4 ∑
l=1

l2H2
l . (2.9)

The coefficient H0 corresponds to the average front height along the domain

0 ≤ x ≤ L, the derivative described in eq. 2.9 becomes the average front

velocity.

Eqs. 2.8 and 2.9 are solved with simple Euler, with a spatial grid of 100

points in x and time step size of 0.001 [20], and considering the cosine

series expansion with n = 8. There were no significant differences in using

simple Euler or fourth order Runge-Kutta method, as well as no significant

difference between using n = 25 and n = 8 for the cosine Fourier expan-

sion. To be able to find higher period oscillatory solutions, the system was
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evolved from period-one solutions to the desired period.

Feigenbaum’s constant

The Feigenbaum’s constant is a number that predicts the universal non-

linear behavior and it could be applied to not only non-linear maps but

other complex nonlinear systems [13]. Feigenbaum first presented this

while studying the behavior of recursive system, the logistic map. The

logistic map is a very simple system that exhibits rich behavior as its pa-

rameters vary. The one dimensional logistic map for population x is defined

as:

xn+1 = rxn(1− xn), (2.10)

where xn is the population at step n, xn+1 is the population at step n+1,

and r is the growth parameter. The population x can vary in an interval

of [0,1], r can vary in an interval of [0,4]. This simple equation shows

different behavior depending on the value of the growth parameter, such

as multiple period doubling bifurcations into chaotic behavior [23] as we

can see in fig. 2.2. Feigenbaum’s constant for a one dimensional linear

map is defined by

δ = lim
n→∞

rn − rn−1

rn+1 − rn
= 4.6692016... (2.11)

Each rn being the earliest value of r that the system exhibits n-solutions.

As we can see in fig. 2.2 there are different intervals of r for which we

have n-solutions. This means that rn − rn−1 is equal to the length of the
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Figure 2.2: Bifurcation diagram of 2.10 for r ranging from 0 to 4.

interval for which there are n-solutions, and rn+1−rn is equal to the length

of the interval where there are n+1-solutions. For example, for period-two

solutions, our length of interval rn will be r2 − r1 and so on. Feigenbaum

found that the nonlinear map presents a limit on the constant defined

by eq. 2.11, which is 4.6692016 [19]. Since the Kuramoto-Sivashinsky

equation also represents a complex nonlinear system, and exhibits period

doublings, the Feigenbaum’s constant should apply to it as well.

2.2 Fronts advected by external Poiseuille flow

First, when an external flow is considered in the system, we must add in

a new term to eq. 2.3, which will correspond to the velocity profile of the

external flow [24],

∂h
∂ t

=
|v|
v

∂ 2h
∂x2 +

1
2

(
∂h
∂x

)2

− ∂ 4h
∂x4 +Vz

∣∣∣
z=h

, (2.12)

vz is the profile of the external flow, which we will consider a Poiseuille

flow. Considering the same setup as before, this flow is laminar, meaning
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that the velocity at the plates less than the velocity in the halfway point

of our x axis. The velocity profile of this flow is given by [20]:

Vz =
6v̄
L2 (L− x)x, (2.13)

where v̄ is the average velocity of the flow. As we are working with bound-

ary conditions, the flow velocity profile also has to fulfill them. To do this,

in a similar fashion to the steps taken for oscillatory fronts, eq. 2.13 is

expanded into a Fourier cosine series, resulting in

Vz(x) = ∑
n=0

Vn cos(nqx), (2.14)

with q previously defined as q = π/L, and Vn as the Fourier coefficients.

The Fourier coefficients for the Poiseuille flow are given by

Vn =


−24v̄/(n2π2), for n even.

0, for n odd.
(2.15)

The difference between eq. 2.13 and eq. 2.14 is shown in fig. 2.3. The

difference between using n = 8 and n = 10 was not significant up to 8

decimal places.

2.2.1 Stationary fronts advected by external Poiseuille flow

We add a new term to eq. 2.4 that corresponds to external Poiseuille flow.

As discussed earlier, the velocity profile that describes this flow is eq. 2.13.

Plugging in this term in eq. 2.4 results in:
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−c =−∂ 2h0

∂x2 +
1
2

(
∂h0

∂x

)2

− ∂ 4h0

∂x4 +
6v̄
L2 (L− x)x, (2.16)

where v̄ is the average velocity of the external flow, Poiseuille, in this case.

Similarly to how we examined stationary profiles with no external flow,

eq. 2.16 is split into a system of equations:

u = dho
x

v = du
dx

w = dv
dx

dw
dx = c− v+ 1

2u2 + 6v̄
L2 (L− x)x,

(2.17)

which is solved with the shooting method with c and v at x = 0 as free

parameters. Giving guessing values to these parameters, the system was

solved using simple Euler method in order to reach the boundary at x = L,

and following this, our guessing values are adjusted to be able to fulfill the

boundary conditions imposed at x = L. No significant difference between

using simple Euler method and fourth order Runge-Kutta method to solve

eq. 2.17 was found. This method was implemented using a grid of 10000

points in x.

Linear dispersion

We will also add in the solitary wave term to eq. 2.3. We plug in the

term β
∂ 3h0
∂x3 in eq. 2.16 and applying the same procedure of splitting the
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equation into a system of equations with new variables results in:

u = dho
x

v = du
dx

w = dv
dx

dw
dx = c− v+ 1

2u2 +βw+ 6v̄
L2 (L− x)x.

(2.18)

This system of equations is solved using the shooting method with simple

Euler. No significant difference between simple Euler and fourth order

Runge-Kutta was found. The process is the same except that this time we

first start off with β = 0 and from there we gradually begin increasing the

value of β by small amounts and adjusting our guesses for c and v at x = 0

to fulfill the boundary conditions, this is done until we reach the desired

value of β .

2.2.2 Oscillatory fronts advected by external Poiseuille flow

For this we also work with the Fourier series expansion described in eq. 2.7.

Including both our series expansion for Vz and the Fourier series expansion

of h in in eq. 2.12 and grouping similar coefficients we arrive at

∂Hn

∂ t
= (nq)2Hn − (nq)4Hn +

q2

4 ∑
l=1

∑
p=1

l pHlHp(δn,|l−p|−δn,l+p)+Vn (2.19)

and
∂H0

∂ t
=

q2

4 ∑
l=1

l2H2
l + v̄. (2.20)
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The coefficients Hn correspond to the different Fourier coefficients, v̄ is the

average flow velocity. In a similar manner to oscillatory fronts without

external flow, eq. 2.20 corresponds to the average front velocity.

Eqs. 2.19 and 2.20 are solved using simple Euler, with a spatial grid of 100

points in x and time step size of 0.001, and a cosine expansion of n = 8.

There were no significant differences in using simple Euler or fourth order

Runge-Kutta method, as well as no significant difference between using

n = 25 and n = 8 for the cosine Fourier expansion. To be able to find

higher period oscillatory solutions, the system was evolved from period-

one solutions to the desired period. What applies to oscillatory fronts with

no external flow also apply to oscillatory fronts advected by external flow,

thus we can find the Feigenbaum constant for this case.

2.3 Fronts advected by external Couette flow

The other type of flow we will explore is Couette flow. This type of flow

consists of having one of the parallel plates moving at a constant speed,

this could be in the same direction of the propagation of the front or in

the opposite direction, while the other one remains stationary. This causes

the substance between them to be advected by the difference in velocity

of the parallel plates. The velocity profile for this type of flow is defined

by

Vz =
2v̄
L
(L− x), (2.21)
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or

Vz =
2v̄
L

x, (2.22)

where v̄ is, likewise, the average flow velocity. We have not found significant

differences when using either eq. 2.21 or 2.22 so we will only consider eq.

2.22 to be the velocity profile for the Couette flow. The same boundary

conditions, derived by Margolis et al. [9] are imposed for Couette flow.

A Fourier cosine expansion of eq. 2.22 is done to fulfill the boundary

conditions, resulting in eq. 2.14, but with coefficients that follow

Vn =


−8v̄/(n2π2), for n odd.

0, for n even.
(2.23)

The difference between eq. 2.21 and the Fourier expansion with n = 8 is

shown in fig. 2.4. We did not find significant differences between using

n = 8 and n = 10 up to decimal places, so we will only consider n = 8.

2.3.1 Stationary fronts advected by Couette flow

A new term is added to eq. 2.4, that will describe external Couette flow.

We plug in eq. 2.22, as no noticeable difference was found compared to

using eq. 2.21,

−c =−∂ 2h0

∂x2 +
1
2

(
∂h0

∂x

)2

− ∂ 4h0

∂x4 +
2v̄
L

x, (2.24)

where v̄ is the average velocity of the external Couette flow. We split

this into a system of first order differential equations, in the exact same
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(a) (b)

Figure 2.3: Comparison between (a) eq. 2.13 and (b) eq. 2.14 with n = 8.

(a) (b)

Figure 2.4: Comparison between (a) eq. 2.21 and (b) eq. 2.14 with n = 8 for Couette
flow considering eq. 2.23
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manner as we have treated stationary solutions with no external flow and

with external Poiseuille flow:

u = dho
x

v = du
dx

w = dv
dx

dw
dx = c− v+ 1

2u2 + 2v̄
L x,

(2.25)

which is solved with the shooting method with c and v at x = 0 as free

parameters. With guessing values given to these parameters, the system

was solved using simple Euler method in order to reach the boundary at

x = L, and following this our guessing values are adjusted to be able to

fulfill the boundary conditions imposed at x = L. No significant difference

between using simple Euler method and fourth order Runge-Kutta method

to solve eq. 2.17. This method was implemented using a grid of 10000

points in x.

Linear dispersion

We plug in the term β
∂ 3h0
∂x3 in eq. 2.24 and applying the same procedure of

splitting the equation into a system of equations with new variables results
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in: 

u = dho
x

v = du
dx

w = dv
dx

dw
dx = c− v+ 1

2u2 +βw+ 2v̄
L x.

(2.26)

This system of equations is solved using the shooting method with simple

Euler using v and c as free parameters. No significant difference between

simple Euler and fourth order Runge-Kutta was found. We first start off

with β = 0 and from there we gradually begin increasing the value of β by

small amounts and adjusting our guesses for c and v at x = 0 to fulfill the

boundary conditions, until we reach the desired value of β .

2.3.2 Oscillatory fronts advected by Couette flow

The cosine series expansion for h and the expansion for Couette flow, eq.

2.14 but considering eq. 2.23, are both plugged into eq. 2.12 resulting in

∂Hn

∂ t
= (nq)2Hn − (nq)4Hn +

q2

4 ∑
l=1

∑
p=1

l pHlHp(δn,|l−p|−δn,l+p)+Vn (2.27)

and
∂H0

∂ t
=

q2

4 ∑
l=1

l2H2
l + v̄. (2.28)

The coefficients Hn correspond to the different Fourier coefficients, v̄ is

the average flow velocity. In a similar manner to oscillatory fronts under

external Poiseuille flow, eq. 2.28 corresponds to the average front velocity.
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Eqs. 2.27 and 2.28 are solved using simple Euler, with a spatial grid of 100

points in x and time step size of 0.001, and a cosine expansion of n = 8.

There were no significant differences in using simple Euler or fourth order

Runge-Kutta method, as well as no significant difference between using

n = 25 and n = 8 for the cosine Fourier expansion. To be able to find

higher period oscillatory solutions, the system was evolved from period-

one solutions to the desired period. We can also calculate the Feigenbaum

constant for this case as the average front velocity causes the system to

exhibit a behavior similar to the logistic map.



Chapter 3

Results

3.1 Stationary front solutions

3.1.1 Front height profiles

In this subsection we will only focus on the two branches, one of stable so-

lutions and the other of unstable solutions. The front height profiles found

for stationary solutions were similar to those found in oscillatory solutions,

this is valid for no external flow and with external flow, both Poiseuille

and Couette. The main effects of external Poiseuille flow and Couette

flow are easily observed comparing the solid lines in figures 3.1 and 3.2.

External Poiseuille flow tends to maintain the symmetry, or lack thereof,

of the profile. If the profile is non-axisymmetric, as we can observe in

fig. 3.1 (a), external Poiseuille flow tends to retain this non-axisymmetric

behavior. When the profile is axisymmetric, external Poiseuille flow keeps

it axisymmetric. External Couette flow, on the other hand, changes sym-

metric profiles to non-axisymmetric. The effect this type of external flow

has on non-axisymmetric front height profiles is negligible, as the results

21



22 Chapter 3. Results

are also non-axisymmetric. As mentioned before, as we increase L and

arrive at axisymmetric front height profiles and having those be advected

by Couette flow results in non-axisymmetric front profiles. An explanation

for this might be because of the symmetry the velocity profiles for each

of the external flows we have tested, Poiseuille and Couette flow, present.

Poiseuille flow presents an axisymmetric velocity profile, as shown in fig.

2.3, and Couette flow shows a non-axisymmetric velocity profile, shown in

fig. 2.4, which correspond to the effects they have on axisymmetric front

profiles.

We will only be considering positive values of β . The effects the term β has

on front profiles is similar for no external flow and with external flow, be it

Poiseuille or Couette. It changes the symmetry of the solutions, transforms

axisymmetric fronts into non-axisymmetric fronts by increasing the front

height in the right side of the profile and decreasing the front height in the

left side, as we can observe in fig. 3.1. The same happens in the case of

external flow, be it Poiseuille or Couette.

Linear dispersion

In fig. 3.3 only 2 branches are shown, these are the only ones we will

consider for this part. As we can see, both branches overlap in the interval

of 6.3< x< 7.5. As we begin to increase the value of β we can see how both

branches start to diverge, the same effect as Poiseuille and Couette flow

have on the branches. This is clearly observed in fig. 3.4. This behavior

with β is also exhibited for the system under external flow, both Poiseuille
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(a)

(b)

(c)

Figure 3.1: Front profiles, without external flow, for (a) L= 4.0 stable solution, (b) L= 8.0
stable solution, (c) L = 8.0 unstable solution. The solid line corresponds to β = 0, the
dashed line is for β = 0.1 and the other dashed line with points corresponds to β = 0.2
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(a)

(b)

Figure 3.2: Front profiles, at L = 8.0, for (a) external Poiseuille flow with v̄ = 0.2, (b)
external Couette flow with v̄ = 0.2.The solid line corresponds to β = 0, the dashed line is
for β = 0.1 and the other dashed line with points corresponds to β = 0.2

Figure 3.3: Values of c corresponding to each L. Both branches shown for no external
flow. The solid line represents the stable solutions and the dashed line is for unstable
solutions.
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and Couette flow. In the case of no external flow, we can also observe how

the β term tends to increase the maximum value for the branch of stable

solutions and decrease the maximum value for the unstable solutions, this

was also present for external flow, both Poiseuille and Couette. The main

difference is that Couette flow reduces the unstable solutions to 0, which

is not present in the system under no external flow or under Poiseuille

external flow.

3.2 Oscillatory front solutions

3.2.1 Front height profiles

The front height profiles obtained change according to L. As we can see in

fig. 3.5, for L < 6 the solutions are asymmetric. To further examine this

behavior, we have increased the time we let the system evolve until t =

1000000 as compared to t = 300 shown in figs. 3.5, 3.6 and 3.7, for example,

and noticed no significant difference, the behavior was the same. As we

increase L the solutions become axisymmetric, as shown by the solutions

for L = 8 in fig. 3.6. Increasing L further lets us arrive at asymmetric

solutions once again, as shown in fig. 3.7 and oscillate between them.

As we keep increasing L, we can observe, solutions become less and less

symmetric and organized, we then arrive at a value of L where the front

height exhibits more erratic behavior, as we can see in fig. 3.8, where the

solutions shows four points of inflection. The behavior of the oscillating

solutions can be seen in further depth on fig. 3.9, where we can clearly see
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(a)

(b)

(c)

Figure 3.4: Values of c corresponding to each value of L. The solid lines correspond to
stable solutions and dashed lines correspond to unstable front solutions. The thin line is
for β = 0 and the thicker line is for β = 0.2. (a) corresponds to no external flow, (b) is
for external Poiseuille flow and (c) is for external Couette flow.
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that it oscillates between two solutions with a period of around T = 25.

We can also observe that the same pattern of solutions are shown when

the system is under external Couette flow and Poiseuille flow.

3.2.2 Average front velocity

We will not focus on L < 8.65 as the solutions have average velocity of

period-one. The average front velocity, which is the characteristic mainly

affected by external flow, exhibits a similar behavior to the front height,

and it changes over time. As for no external flow, v̄ = 0, we can observe

how the average front velocity, from eq. 2.8 we can build a formula for our

average front velocity, vavg at certain time t with simple Euler method

vavg =
dH0

dt
. (3.1)

We can observe that the relationship between the average front velocity

and time t is that of a sinusoidal curve as shown in fig. 3.10. As we further

increase the value of L we can see several period doubling. The first one

occurs at L = 9.004, in fig. 3.11 we can see that there are two sinusoidal

curves with different amplitude, this is what we mean by period doubling

here, there are new maxima and minima that appear. Period-8 at L= 9.02,

and as we can observe in fig. 3.12, there are four local maxima and four

local minima. As L becomes greater than 9.022 the system exhibits chaotic

behavior. As we can see in fig. 3.13, there are several values of the local

maxima and minima, which show little relation to the local maxima and
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minima for the maxima and minima of previous values L. In the case of

Poiseuille flow, v̄ could be positive or negative and that determines part of

the behavior of the average velocity of the front. As we can see in fig. 3.14,

when v̄ =−0.3 the values of L for the period 4, 8 and chaotic behavior are

L = 9.38, L = 9.4 and L = 9.405 respectively. When v̄ > 0, as shown in fig.

3.15, in this case v̄ = 0.2 the region where the period doubling occurs has

become much smaller, L = 8.989, L = 9.004 and L = 9.006 for period 2, 4

and chaotic behavior. For Couette flow, we found no difference between

positive and negative values of the flow velocity. For small values of the

flow velocity, for example v̄ = 0.2, as shown in fig. 3.16, we observe that

the upper branch of bifurcation diagram has been flattened. The values of

L for period 4, period 8 and chaotic behavior are L = 9.004, L = 9.02 and

L = 9.022 respectively.

Feigenbaum’s constant

By using the definition of Feigenbaum’s constant from eq. 2.11, we can

calculate it for our system. First we do it with no external flow. Shown

in table 3.1, we can see how the ratio of lengths trends towards 4,66. We

can’t calculate the rest as the system exhibits chaotic behavior making it

impossible to know the exact period it is in. We can see how the values

for the ratio trend towards 4.66 or close to it, if we were able to calculate

more periods and more accurately these would certainly result in values

close to the Feigenbaum’s constant. This is in good agreement to other re-

search involving Kuramoto-Sivashinsky equation [13], even in the presence
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Interval length Period Ratio of lengths
0.3542 2 -
0.0153 4 23.150327
0.00251 8 6.095618
0.00052 16 4.826923
0.0025 Chaotic -

Table 3.1: Feigenbaum’s constant, ratio of interval lengths between solutions of different
periods, calculation for no external flow.

Interval length Period Ratio of lengths
0.4844 2 -
0.02591 4 18.6955
0.0046 8 5.63261
0.00091 16 5.05494
0.00815 Chaotic -

Table 3.2: Feigenbaum’s constant, ratio of interval lengths between solutions of different
periods, calculation for external Poiseuille flow with v̄ =−0.3.

of external flow as we can observe in tables 3.2 and 3.3.

3.2.3 Phase space

We define our phase space by fixing a point in the 100 grid on the x axis,

observing the value of the front height at said point and the average front

velocity. The results for the different periods with no external flow are

shown in fig. 3.17. The other values of x and their respective phase space

graphs have not been included as their behavior is similar to the other

graphs. The phase space graphs for Poiseuille flow and Couette flow can

Interval length Period Ratio of lengths
0.46458 2 -
0.02156 4 21.54839
0.00381 8 5.65879
0.00086 16 4.43023
0.01112 Chaotic -

Table 3.3: Feigenbaum’s constant, ratio of interval lengths between solutions of different
periods, calculation for external Couette flow with v̄ = 0.2.
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be found at fig. 3.18 and 3.19 respectively. All of these were checked

by letting the system evolve to t = 1000000 and we found that the same

behavior was exhibited.

We can observe how the attractor in the phase space changes as the system

exhibits chaotic behavior in both no external flow and in the presence of

external flow, be it Poiseuille and Couette. As for no external flow, we

found that the symmetry of the system could be observed in the phase

space. The attractors corresponding to the points 0 and 100, 20 and 80,

40 and 60, were very similar. This started to change as the system kept

undergoing more period doubling, and no symmetry after the system was

under chaotic behavior. Similar behavior was found for positive and neg-

ative Poiseuille external flow, and in a similar manner, the symmetry was

lost after undergoing continuous period doubling into chaotic behavior.

This was not the case for external Couette flow, the symmetry was not as

pronounced as for no external flow or Poiseuille flow, it was only noticed

in some cases and only during period-2 solutions. After those, no such

symmetry was able to be observed. This might be due to how the ve-

locity profile for the different flows are, symmetric for Poiseuille flow and

asymmetric for Couette flow. We can also observe how the no external

flow attractors seem less erratic than those with external flow, especially

Poiseuille flow.
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Figure 3.5: Front height profile for v̄ = 0, L = 4.0 at t = 300.

Figure 3.6: Front height profile for v̄ = 0, L = 8.0 at t = 300.
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(a)

(b)

Figure 3.7: Front height profile for v̄ = 0, L = 9.0 at (a) t = 300 and (b) t = 312.

Figure 3.8: Front height profile for v̄ = 0, L = 14.0 at t = 300.
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Figure 3.9: Front height at each point in x compared to the average height for v̄ = 0 at
time t, L = 9.0.

Figure 3.10: Average front velocity for v̄ = 0 and L = 9.0 at time t.

Figure 3.11: Average front velocity for v̄ = 0 and L = 9.01 at time t.
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Figure 3.12: Average front velocity for v̄ = 0 and L = 9.021 at time t.

Figure 3.13: Maxima and minima for the average front velocity.

Figure 3.14: Maxima and minima for the average front velocity for external Poiseuille
flow with v̄ =−0.3.
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Figure 3.15: Maxima and minima for the average front velocity for external Poiseuille
flow with v̄ = 0.2.

Figure 3.16: Maxima and minima for the average front velocity for external Couette flow
with v̄ = 0.2.
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(a)

(b)

Figure 3.17: Phase space graph when v̄= 0 and point 20 out of the 100 grid for (a) L = 9.0
and (b) L = 9.025.
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(a)

(b)

Figure 3.18: Phase space graph when Poiseuille flow has v̄ = −0.3 and point 20 out of
the 100 grid for (a) L = 9.4 and (b) L = 9.42.
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(a)

(b)

Figure 3.19: Phase space graph when Couette flow has v̄ =−0.2 and point 20 out of the
100 grid for (a) L = 9.0 and (b) L = 9.025.
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Conclusions and discussion

As for stationary solutions, we found that external flow tends to separate

the branches that overlapped when there was no external flow present.

The new term we added also separated these branches. Our results found

that the β term always had the same effect, for all three cases of external

flow. In all of these it tended to increase the values for the front height

for values of x close to L and decrease the front height for values of x

closer to 0. An immediate effect of this is that it will change the sym-

metry of the front, turning axisymmetric solutions into non-axisymmetric.

Non-axisymmetric solutions underwent no change, as they all kept their

non-axisymmetric characteristic. As mentioned before, this extra term

added to the Kuramoto-Sivashisnky equations changes it to describe the

movement of solitary waves, or solitons, and some of these solitons have

a very defined shape. One of them, as we can observe in [10], has some

similarities with the non axisymmetric front solution that belongs to L= 4,

as we can see in fig. 3.1 (a). Coincidentally, out of all the front profiles ex-

amined with a small β term, this was the only one that maintains and will

39
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maintain its form as we further increase the value of β . We can observe in

the front profiles for L = 8 how, since one end is decreasing in h and the

other is increasing in h this will make them seem similar to the front for

L = 4. We can say that the solitary wave term is changing the form of our

solutions to the form of a common one. The change in the front speed c

and β can also be observed, with different effects on stable and unstable

fronts, increasing c for stable fronts while decreasing it for unstable fronts.

Further research of the effect of the solitary wave equation including ex-

ternal flow and its relationship to the stationary fronts can be done with

bigger values of β as well as front solutions with different stability, seeing

as we only analyzed two branches of solutions.

As we have mentioned before, we checked the results for no external

flow and for Poiseuille external flow with results obtained by [20] with

favourable results, from this we can determine that the algorithm is accu-

rate enough for our different tests. The results we obtained for the front

height profile for the different values of L, compare favorably to results for

front height profiles obtained by Vilela [1] even if we are examining oscil-

lating fronts, while [20] explores stationary fronts. We can also observe

that external Couette flow had an effect on the upper branch shown in

fig. 3.16 only, the values of L where the period doubling occurs stay the

same as the results we obtained for no external flow, while when we have

external Poiseuille flow, it has an effect on the length of the interval where

we have period-two, four, and so on, solutions. We have also observed that

when v̄ > 0.3 for Couette flow, the period doubling disappears altogether,
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then it possibly has an effect on the lower branch as well. We have also

found that the Feigenbaum’s constant also held up for our tests, even after

adding in a term corresponding to external flow. Meaning that even an

equation as complex as the Kuramoto-Sivashinsky has similarities to the

one dimensional linear map, which is one of the most simple equations that

present chaotic behavior. For the phase space diagrams, we can observe

how for no external flow and non chaotic solutions the height and velocity

values accepted by the system follows only a particular set of values, as

compared to chaotic solutions which accept a wide range of values. How-

ever, for the chaotic solution, we can see that there are some values that

are close together. This we can see in all but the external Poiseuille flow

of the chaotic phase space diagrams. It is better shown in fig. 3.19(b), in

the upper side of the curve. So even if we can observe erratic behavior, it

is also easily seen that it still follows some type of pattern, as shown from

the phase space diagrams. The other bifurcations, that happens in regions

where L is greater than the interval we have considered can also be further

analyzed, as well as the phase diagrams for those, to see if every interval

presents the same pattern, where Couette and Poiseuille external flow will

present a more complex attractor than the solutions for no external flow.
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Appendix A

Code used

A.1 Stationary fronts

Shooting method for v and c free parameters

program shoo t ing

r e a l ∗8 xc , xv , f1 , f2 , f1v , f2v , f1c , f 2 c

r e a l ∗8 de l t ac , de l tav , J11 , J12 , J21 , J22

r e a l ∗8 xcd , xvd , L , vm, dL , Li , Lf

r e a l ∗8 xxc , xxv , d i f c , d i f v , b , bi , db

i n t e g e r i t e r s , cont , i , N, N1 ,M

c h a r a c t e r l e t t e r ∗1

b=0.50d0

Li =8.0d0

Lf =5.0d0

vm=0.d0

xv = −0.45513573401674406

xc= 0.92320409606497866

47
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dL=0.0010 d0

db=0.0010 d0

N=abs ( Lf−Li )/dL

M=b/db

p r i n t ∗ , M

L=Li

! a jus tando para beta

do i =0, M

bi=db∗ i

900 i t e r s = 0

de l t av = 1 . 0E−04

d e l t a c = 1 . 0E−04

xcd = xc+d e l t a c

xvd = xv+de l t av

c a l l shoot ( xc , xv , f1 , f2 , L , vm, b i )

c a l l shoot ( xcd , xv , f1c , f2c , L , vm, b i )

c a l l shoot ( xc , xvd , f1v , f2v , L , vm, b i )

300 i t e r s = i t e r s + 1

J11 = ( f1v−f 1 )/ de l t av

J12 = ( f1c−f 1 )/ d e l t a c

J21 = ( f2v−f 2 )/ de l t av

J22 = ( f2c−f 2 )/ d e l t a c

c a l l NRG( f1 , f2 , J11 , J12 , J21 , J22 , xv , xc , de l tav , d e l t a c )
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xcd = xc+d e l t a c

xvd = xv+de l t av

c a l l shoot ( xc , xv , f1 , f2 , L , vm, b i )

c a l l shoot ( xcd , xv , f1c , f2c , L , vm, b i )

c a l l shoot ( xc , xvd , f1v , f2v , L , vm, b i )

d i f c = abs ( d e l t a c )

d i f v = abs ( d e l t av )

i f ( ( d i f c .GT. 1 . 0 E−09).AND. ( d i f v .GT. 1 . 0 E−09)) go to 300

end do

p r i n t ∗ , bi , xc , xv

! para L

open ( un i t =1, f i l e =’8 a 1 0 i n e s t a b l e b e t a 0 5 p a r t e 2 . dat ’ )

! forward

do i =0, N

L=Li−dL∗ i

800 i t e r s = 0

de l t av = 1 . 0E−04

d e l t a c = 1 . 0E−04

xcd = xc+d e l t a c

xvd = xv+de l t av

c a l l shoot ( xc , xv , f1 , f2 , L , vm, b )

c a l l shoot ( xcd , xv , f1c , f2c , L , vm, b )

c a l l shoot ( xc , xvd , f1v , f2v , L , vm, b )
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500 i t e r s = i t e r s + 1

J11 = ( f1v−f 1 )/ de l t av

J12 = ( f1c−f 1 )/ d e l t a c

J21 = ( f2v−f 2 )/ de l t av

J22 = ( f2c−f 2 )/ d e l t a c

c a l l NRG( f1 , f2 , J11 , J12 , J21 , J22 , xv , xc , de l tav , d e l t a c )

xcd = xc+d e l t a c

xvd = xv+de l t av

c a l l shoot ( xc , xv , f1 , f2 , L , vm, b )

c a l l shoot ( xcd , xv , f1c , f2c , L , vm, b )

c a l l shoot ( xc , xvd , f1v , f2v , L , vm, b )

d i f c = abs ( d e l t a c )

d i f v = abs ( d e l t av )

i f ( ( d i f c .GT. 1 . 0 E−09).AND. ( d i f v .GT. 1 . 0 E−09)) go to 500

wr i t e ( 1 , ∗ ) L , xc , xv , f1 , f 2

end do

c l o s e ( un i t =1)

end program

subrou t in e shoot ( cc , v , u , w, xL , vmf , b )

r e a l ∗8 cc , v , u , w, h , dx , hp , up , vp , wp , v0 , b

r e a l ∗8 xx , vmf , xL , vz

i n t e g e r i

h=1.0
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u=0.

w=0.

v0 = v

dx = xL /10000 .

do 100 i =1 ,10000

xx = d f l o a t ( i )∗ dx

hp=h+dx∗u

up=u+dx∗v

vp=v+dx∗w

wp=w+dx∗(−v+(u∗∗2)/2.− cc+b∗w)

u=up

h=hp

v=vp

w=wp

100 cont inue

v =v0

end

subrou t in e NRG( f , g , dfdx , dfdy , dgdx , dgdy , x , y , de l tax , d e l t ay )

r e a l ∗8 f , g , dfdx , dfdy , dgdx , dgdy , x , y , de l tax , de l tay , um

r e a l ∗8 xn , yn

um = −1./( dfdx ∗dgdy−dfdy ∗dgdx )

de l t ax = um∗( dgdy∗ f−dfdy ∗g )

de l t ay = um∗( dfdx ∗g−dgdx∗ f )
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xn = x + de l t ax

yn = y + de l t ay

x = xn

y = yn

end program

Similar to the one used considering external flow.

A.2 Oscillatory fronts

Velocity vs time

program ksht i empove loc idad

i m p l i c i t none

i n t e g e r , parameter : : n=8, time =1000 , x=100

d o u b l e p r e c i s i o n , parameter : : dt =0.001 , L=9.0210 d0

d o u b l e p r e c i s i o n , d imens ion ( 0 : n ) : : Hn , Hi

d o u b l e p r e c i s i o n , d imens ion ( 0 : x ) : : Hx

d o u b l e p r e c i s i o n , d imens ion ( 0 : 5 0 0 0 0 , 0 : 1 ) : : Vt

i n t e g e r : : i , j , k , m, o , p , b , l a

d o u b l e p r e c i s i o n : : dx , q , rndm , de l ta , prom=0

m=time / dt

dx=L/x

q=3.141592/L

Hx=0.0d0

Hn=0.0d0
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Hi =0.0d0

l a=0

Hn(0)=12670.888715342826

Hn(1)=1.4492858461081681

Hn(2)=1.3564814802453244

Hn(3)=−1.2872635106138322

Hn(4)=7.3254558795586677E−002

Hn(5)=9.6451824504625472E−002

Hn(6)=−3.6753866019227782E−002

Hn(7)=3.6249267654035440E−004

Hn(8)=2.7852048907584265E−003

do i =1, 500000

Hi =0.0d0

do k=0, n

Hi (0)= Hi (0)+( k∗Hn( k ) )∗∗2

end do

Hi (0)= dt ∗( Hi ( 0 ) ∗ ( q ∗∗2)∗0 .25)+Hn(0 )

do j =1,n

do o=1, n

do p=1, n

d e l t a =0.

i f ( j .EQ. abs ( o−p ) ) then

d e l t a =1.
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end i f

i f ( j .EQ. ( o+p ) ) then

d e l t a =−1.

end i f

Hi ( j )=Hi ( j )+o∗Hn( o )∗Hn(p )∗p∗ d e l t a

end do

end do

Hi ( j )=q∗∗2∗ Hi ( j )∗0 .25+( q∗ j )∗∗2∗Hn( j )−( j ∗q )∗∗4∗Hn( j )

Hi ( j )=Hi ( j )∗ dt+Hn( j )

end do

Hn=Hi

end do

do i =1, 500000

Hi =0.0d0

do k=0, n

Hi (0)= Hi (0)+( k∗Hn( k ) )∗∗2

end do

Hi (0)= dt ∗( Hi ( 0 ) ∗ ( q ∗∗2)∗0 .25)+Hn(0 )

do j =1,n

do o=1, n

do p=1, n

d e l t a =0.

i f ( j .EQ. abs ( o−p ) ) then
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d e l t a =1.

end i f

i f ( j .EQ. ( o+p ) ) then

d e l t a =−1.

end i f

Hi ( j )=Hi ( j )+o∗Hn( o )∗Hn(p )∗p∗ d e l t a

end do

end do

Hi ( j )=q∗∗2∗ Hi ( j )∗0 .25+( q∗ j )∗∗2∗Hn( j )−( j ∗q )∗∗4∗Hn( j )

Hi ( j )=Hi ( j )∗ dt+Hn( j )

end do

i f (MOD( i , 1 0 ) .EQ. 0 ) then

Vt ( la ,0)= i ∗ dt

Vt ( la ,1)=( Hi (0)−Hn( 0 ) ) / dt

l a=l a+1

end i f

Hn=Hi

end do

open ( un i t =1, f i l e =’ datos1 . dat ’ )

do i =0, la −1

wr i t e ( 1 , ∗ ) Vt ( i , 0 ) , Vt ( i , 1 )

end do

end program
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Calculating maximum and minimum velocity for an interval of L

program ksht i empove loc idad

i m p l i c i t none

i n t e g e r , parameter : : n=8, time =1000 , x=100 , nm=650

d o u b l e p r e c i s i o n , parameter : : dt =0.0010d0 , dL=0.010d0 , Li =9.50d0

d o u b l e p r e c i s i o n , d imens ion ( 0 : n ) : : Hn , Hi

d o u b l e p r e c i s i o n , d imens ion ( 0 : x ) : : Hx

d o u b l e p r e c i s i o n , d imens ion ( 0 : 3 0 0 0 0 ) : : Vt

d o u b l e p r e c i s i o n , d imens ion ( 0 :nm, 0 : 1 , 0 : 1 0 0 0 0 ) : : Vmm

d o u b l e p r e c i s i o n , d imens ion ( 0 :nm, 0 : n ) : : Hts

i n t e g e r : : i , j , k , m, o , p , b , la , i j

i n t e g e r , d imension ( 0 : 5 0 0 0 0 0 ) : : contador

d o u b l e p r e c i s i o n : : dx , q , rndm , de l ta , L

m=time / dt

Vmm=0

Hn=0

contador=0

c a l l srand (1000000)

do i =0, n

rndm=rand ( )

Hn( i )=rndm ∗0 .1

end do
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do i j =0, nm

L=Li+i j ∗dL

dx=L/x

q=3.141592/L

Hx=0.0d0

Hi =0.0d0

Vt=0

l a=0

do i =1, 300000

Hi =0.0d0

do k=0, n

Hi (0)= Hi (0)+( k∗Hn( k ) )∗∗2

end do

Hi (0)= dt ∗( Hi ( 0 ) ∗ ( q ∗∗2)∗0 .25)+Hn(0 )

do j =1,n

do o=1, n

do p=1, n

d e l t a =0.

i f ( j .EQ. abs ( o−p ) ) then

d e l t a =1.

end i f

i f ( j .EQ. ( o+p ) ) then

d e l t a =−1.
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end i f

Hi ( j )=Hi ( j )+o∗Hn( o )∗Hn(p )∗p∗ d e l t a

end do

end do

Hi ( j )=q∗∗2∗ Hi ( j )∗0 .25+( q∗ j )∗∗2∗Hn( j )−( j ∗q )∗∗4∗Hn( j )

Hi ( j )=Hi ( j )∗ dt+Hn( j )

end do

Hn=Hi

end do

do i =0,n

Hts ( i j , i )=Hn( i )

end do

p r i n t ∗ , ”a”

do i =1, 300000

Hi =0.0d0

do k=0, n

Hi (0)= Hi (0)+( k∗Hn( k ) )∗∗2

end do

Hi (0)= dt ∗( Hi ( 0 ) ∗ ( q ∗∗2)∗0 .25)+Hn(0 )

do j =1,n

do o=1, n

do p=1, n
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d e l t a =0.

i f ( j .EQ. abs ( o−p ) ) then

d e l t a =1.

end i f

i f ( j .EQ. ( o+p ) ) then

d e l t a =−1.

end i f

Hi ( j )=Hi ( j )+o∗Hn( o )∗Hn(p )∗p∗ d e l t a

end do

end do

Hi ( j )=q∗∗2∗ Hi ( j )∗0 .25+( q∗ j )∗∗2∗Hn( j )−( j ∗q )∗∗4∗Hn( j )

Hi ( j )=Hi ( j )∗ dt+Hn( j )

end do

i f (MOD( i , 1 0 ) .EQ. 0 ) then

Vt ( l a )=(Hi (0)−Hn( 0 ) ) / dt

l a=l a+1

end i f

Hn=Hi

end do

p r i n t ∗ , i j , l a

Vmm( i j ,0 ,0)= L

do i =1, la −2

i f ( ( Vt ( i ) .GE. Vt ( i +1)) .AND. ( Vt ( i ) .GE. Vt ( i −1))) then
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Vmm( i j , 1 , contador ( i j ))=Vt ( i )

contador ( i j )=contador ( i j )+1

end i f

i f ( ( Vt ( i ) . LE . Vt ( i +1)) .AND. ( Vt ( i ) . LE . Vt ( i −1))) then

Vmm( i j , 1 , contador ( i j ))=Vt ( i )

contador ( i j )=contador ( i j )+1

end i f

i f ( ( Vt ( i ) .EQ. Vt ( i +1)) .AND. ( Vt ( i ) .EQ. Vt ( i −1))) then

go to 140

end i f

end do

140 cont inue

end do

open ( un i t =1, f i l e =’ datosL95 . dat ’ )

do i =0, nm

do j =0, contador ( i )−1

wr i t e ( 1 , ∗ ) Vmm( i , 0 , 0 ) , Vmm( i , 1 , j )

end do

end do

c l o s e ( un i t =1)

open ( un i t =3, f i l e =’ c o e f f o u r i e r L 9 5 . dat ’ )

do i =0, nm
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do j =0,n

wr i t e ( 3 , ∗ ) Li+i ∗dL , j , Hts ( i , j )

end do

end do

c l o s e ( un i t =3)

end program

The programs used for external flow were similar.
Phase space diagrams

program e s p a c i o f a s e s a t r a c t o r

i m p l i c i t none

i n t e g e r , parameter : : n=8, x=100 , p o s i =100

d o u b l e p r e c i s i o n , parameter : : L=9.010d0 , dt =0.001

d o u b l e p r e c i s i o n , d imens ion ( 0 : n ) : : Hn

d o u b l e p r e c i s i o n , d imens ion ( 0 : n ) : : Hi

d o u b l e p r e c i s i o n , d imens ion ( 0 : x ) : : Hx

d o u b l e p r e c i s i o n , d imens ion ( 0 : 3 0 0 0 0 , 0 : 1 ) : : Vt

d o u b l e p r e c i s i o n : : dx , q , de l ta , prom=0

i n t e g e r : : la , i , j , o , p , b , k

Hn=0

q=3.141592/L

dx=L/x
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l a=0

Hx=0

Hn(0)=58549.738354858324

Hn(1)=−0.91057914253127992

Hn(2)=2.0126480954039532

Hn(3)=−0.32803968252857102

Hn(4)=−0.25533357944337931

Hn(5)=3.4446796999484448E−002

Hn(6)=1.4832733945615141E−002

Hn(7)=−3.4273270457926136E−003

Hn(8)=−8.2309486696979870E−004

Hi=0

Vt=0

do i =0, 300000

Hi =0.0d0

do k=0, n

Hi (0)= Hi (0)+( k∗Hn( k ) )∗∗2

end do

Hi (0)= dt ∗( Hi ( 0 ) ∗ ( q ∗∗2)∗0 .25)+Hn(0 )

do j =1,n

do o=1, n

do p=1, n

d e l t a =0.
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i f ( j .EQ. abs ( o−p ) ) then

d e l t a =1.

end i f

i f ( j .EQ. ( o+p ) ) then

d e l t a =−1.

end i f

Hi ( j )=Hi ( j )+o∗Hn( o )∗Hn(p )∗p∗ d e l t a

end do

end do

Hi ( j )=q∗∗2∗ Hi ( j )∗0 .25+( q∗ j )∗∗2∗Hn( j )−( j ∗q )∗∗4∗Hn( j )

Hi ( j )=Hi ( j )∗ dt+Hn( j )

end do

i f (MOD( i , 1 0 ) .EQ. 0 ) then

Vt ( la ,1)=( Hi (0)−Hn( 0 ) ) / dt

prom=0

do b=0, x

do j =0, n

Hx(b)=Hx(b)+Hn( j )∗ cos ( j ∗q∗b∗dx )

end do

prom=prom+Hx(b )

end do

do j =1 ,10

prom=prom/x



64 Chapter A. Code used

do b=0, x

Hx(b)=Hx(b)−prom

end do

prom=0.0d0

do b=0, x

prom=prom+Hx(b )

end do

end do

Vt ( la ,0)=Hx( p o s i )

p r i n t ∗ , la , Vt ( la , 0 ) , Vt ( la , 1 )

l a=l a+1

end i f

Hx=0

Hn=Hi

end do

open ( un i t =1, f i l e =’ e s p a c i o f a s e s L 9 0 1 s i n f l u j x 1 0 0 . dat ’ )

do i =0, la −2



A.2. Oscillatory fronts 65

wr i t e ( 1 , ∗ ) Vt ( i , 0 ) , Vt ( i , 1 )

end do

c l o s e ( un i t =1)

end program

The code used for the phase space diagrams, the code including external

flow is similar.


