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Abstract

This master thesis is devoted to the design, analysis, and experimental validation of an

energy-based control strategy for the well-known benchmark cart-pole system in implicit

Port-Hamiltonian (PH) representation. The control scheme performs two tasks: swing-

up and (local) stabilization. The swing-up controller is carried out on the basis of a

generalized energy function and consists of bringing the pendulum trajectories from the

lower (stable) position to a limit cycle (homoclinic orbit), which passes by the upright

(unstable) position, as well as the cart trajectories to the desired point. The (local)

stabilizing controller is designed under a novel algebraic Interconnection and Damp-

ing Assignment Passivity-Based Control (IDA-PBC) technique and ensures the upright

(asymptotic) stabilization of the pendulum as well as the cart at a desired position. To

illustrate the effectiveness of the proposed control scheme, this work presents simula-

tions and real-time experiments considering physical damping, i.e., viscous friction. The

results are additionally contrasted with another energy-based control strategy for the

cart-pole system in explicit Euler-Lagrange (EL) representation.
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Abstract

This master thesis is devoted to the design, analysis and experimental validation of
an energy-based control strategy for the well-known benchmark cart-pole system in
implicit Port-Hamiltonian (PH) representation. The control scheme performs two tasks:
swing-up and (local) stabilization. The swing-up controller is carried out on the basis of
a generalized energy function and consists of bringing the pendulum trajectories from the
lower (stable) position to a limit cycle (homoclinic orbit), which passes by the upright
(unstable) position, as well as the cart trajectories to the desired point. The (local)
stabilizing controller is designed under a novel algebraic Interconnection and Damping
Assignment Passivity-Based Control (IDA-PBC) technique and ensures the upright
(asymptotic) stabilization of the pendulum as well as the cart at a desired position. To
illustrate the effectiveness of the proposed control scheme, this work presents simulations
and real-time experiments considering physical damping, i.e., viscous friction. The
results are additionally contrasted with another energy-based control strategy for the
cart-pole system in explicit Euler-Lagrange (EL) representation.
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Kurzfassung

Diese Masterarbeit widmet sich dem Entwurf, der Analyse und der experimentellen
Validierung einer energiebasierten Regelstrategie für das bekannte Benchmarksystem des
inversen Pendels auf einem Wagen in impliziter Port-Hamiltonscher (PH) Darstellung.
Das Regelungssystem erfüllt zwei Aufgaben: das Aufschwingen und (lokale) Stabilisie-
rung. Das Aufschwingen erfolgt auf Grundlage der generalisierten Energiefunktion und
besteht darin, sowohl die Trajektorien des Pendels von der unteren (stabilen) Position
in einen Grenzzyklus (homokliner Orbit) zu bringen, wobei die (instabile) aufrechte
Lage passiert wird, als auch den Wagen in einer gewünschten Position einzustellen. Die
(lokale) Regelung zur Stabilisierung ist nach einer neuartigen algebraischen Interconnec-
tion and Damping Assignment Passivity-Based Control (IDA-PBC) Methode konzipiert
und gewährleistet die aufrechte (asymptotische) Stabilisierung des Pendels sowie die
Positionierung des Wagens an einem gewünschten Referenzpunkt. Um die Funktionalität
des entworfenen Regelungssystems zu veranschaulichen, werden in dieser Masterar-
beit Simulationen und Echtzeit-Experimente unter Berücksichtigung der physikalischen
Dämpfung, d.h. der viskosen Reibung, vorgestellt. Die Ergebnisse werden zusätzlich mit
einem weiteren energiebasierten Regelungsansatz für das System des inversen Pendels
auf einem Wagen in expliziter Euler-Lagrange (EL) Darstellung verglichen.
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Chapter 1

Introduction

1.1 Motivation

The last decades have revealed an increasing interest in the control of a class of mechanical
systems, namely, Underactuated Mechanical Systems (UMSs). These systems are
characterized by the fact that they have fewer actuators than Degrees of Freedom (DOF).
UMSs are widely used in real-life scenarios, examples of such applications include
manufacturing, transportation, aerospace industry, military purposes, robotics, among
others, see e.g. [1, 2]. The typical and widely extended control approaches developed
for fully-actuated mechanical systems, e.g. [3,4], cannot be applied directly to UMSs.
Therefore, much research focuses on the development of new control techniques and the
feasibility of their real-time implementation.

Energy-based control methodology plays a central role in the development of algorithms
that exploit the passivity and energy properties of mechanical systems. Those (passivity
and energy) refer to the properties of dynamical systems that result useful for their
stability and robustness analysis. Here, two essential types of controllers have been
developed. The first is an approach similar to the classical Lyapunov-based design method
which defines a more general class of energy storage functions, see e.g. [5,6]. The second
is the so-called energy-shaping control approach, first introduced in [7], which shapes the
system’s energy (kinetic plus potential) through feedback providing a closed-loop system
that preserves the mechanical structure. Whereas shaping the potential energy (plus
damping injection) is enough to stabilize fully-actuated mechanical systems; shaping the
kinetic energy is (in most cases) absolutely necessary for the stabilization of UMSs, as
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1 Introduction

well as to improve their transient response. When dealing with UMSs, the applicability
of total energy-shaping is restricted by the so-called matching conditions, i.e., solution
of Partial Differential Equations (PDEs). This approach leads to the development of the
Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC) method.

In general, there are at least two different representations for Port-Hamiltonian (PH)
systems: (i) the explicit representation, where systems are described by Ordinary
Differential Equations (ODEs), and (ii) the implicit representation, where systems are
described by Differential Algebraic Equations (DAEs). The difference between those
representations relies on the consideration of (physical) constraints [8]. So far, there exist
many results on the control of UMSs in the explicit formulation and only a few in the
implicit representation, see e.g. [9, 10], with only one reported physical implementation,
see [11]. Since there are some aspects not yet implemented, the aim of this thesis is the
experimental validation of these algorithms in the cart-pole test-bench located at the
Control Engineering Group, TU-Ilmenau.

1.2 Literature Review

In order to place this thesis in the appropriate context, we present below a brief overview
of the cart-pole system and the control algorithms developed over the last few years.

The cart-pole, or inverted pendulum on a cart, is one of the most common and popular
problems in nonlinear control. It is widely used as a benchmark example for nonlinear
control, owing to its nonlinear, underactuated and non-minimum phase properties.
The motivation for controlling the cart-pole system is vast due to its wide range of
applications in balance problems, such as, the control of rockets and the anti-seismic
control of buildings [5]. The cart-pole system, as shown in Figure 1.1, consists of a
free pendulum (underactuated variable) mounted on a cart (actuated variable) that
can be moved linearly along the horizontal axis. In spite of its simple structure, this
system is considered, among others, one of the most fundamental benchmarks. The
inverted pendulum on a cart posses a stable equilibrium point when the pendulum is at
the downward position and an unstable equilibrium point when the pendulum is at the
upright vertical position. The main control task considered for the cart-pole system
is to swing-up the pendulum from the stable equilibrium to the unstable equilibrium
point and then to stabilize the pendulum at the upright vertical position with the cart
at some desired (or target) position.

2



1.2 Literature Review

downward (stable) position upright (unstable) position

pendulum

pendulum
cart

cart

Figure 1.1 – Equilibria of the cart-pole system

Although the cart-pole benchmark is a well-studied control problem; a lot of effort is
still put in the design of nonlinear controllers for the swing-up (trajectory tracking) and
the (local) stabilization. The solution to this control problem was first reported in [12]
and few years later in [13]. The cart-pole system has been taken as a case study in
many books to solve the linear optimal control problem, e.g. in [14], and the nonlinear
control problem, e.g. in [15]. In the literature, there are many control approaches
and those range from the classical linear state feedback [16,17] to robust control [18],
hybrid control [19–21], Sliding Mode Control (SMC) [22–24], backstepping [25], model
predictive control [26–28], PID adaptive control [29], feedforward control [30], singular
perturbation method [31], energy-shaping [32], immersion and invariance [33], fuzzy
logic [34,35], neural networks [36], among others.

One can address the tracking control problem of a given reference trajectory for the
actuated variable(s) of UMSs via the so-called Partial Feedback Linearization (PFL)
approach, see [37]. On that basis, a fundamental question arises: Can be further achieved
by controlling other variable(s) besides to the actuated variable? This question has been
answered by several authors using many different approaches, e.g. in [38–40], where
the total mechanical energy stands out as an important variable related to the motion
of UMSs, see [41,42]. The typical energy-based control approach provided by [42,43]
exploits the passivity properties of the system and has been widely applied to some
mechanical systems (in explicit representation) with underactuation degree one, among
them, the cart-pole benchmark. This approach consists in defining a generalized energy
function to stabilize a homoclinic orbit that contains the desired equilibrium, but the
equilibrium itself is not stabilized. That is to say, two essential tasks are solved: (i)
trajectory planning, i.e., finding a feasible trajectory which connects initial and final
states in a given finite time and (ii) trajectory tracking, i.e., finding a feedback control
law that drives the tracking error to zero. As far as the cart-pole system is concerned,

Master Thesis Alex Huaman 3



1 Introduction

several research works have been developed on the basis of this swing-up strategy, see
e.g. [44–47].

In the literature, there exist a large number of research papers related to the (local)
stabilization control problem using Passivity-Based Control (PBC). We focus on the
so-called IDA-PBC technique for (explicit) UMSs, first introduced in [48]. IDA-PBC
performs a total energy-shaping assigning a desired (or target) PH structure to the
closed-loop in order to regulate the dynamics of a given nonlinear system, e.g. the
cart-pole. However, there exists one fundamental limitation. The synthesis of the
control law (as well as the equivalent Controlled Lagrangian [49,50]) requires solving
the matching conditions as a result of the energy-shaping process. These matching
conditions yield a linear PDE with state-dependent coefficients for the potential energy
and a quasi-linear PDE for the kinetic energy. In the last few years, great effort has
been devoted to simplify or completely avoid the computation of these PDEs, whose
solution is a nontrivial task. Concerning total energy-shaping, several research works
with illustration for the cart-pole system have been reported. In [51], it has been proved
that the PDEs can be explicitly solved with the parameterization of the target dynamics.
In [52], the PDE associated with the kinetic energy can be reduced or eliminated under
a change of coordinates in the original system with modified target dynamics. In [53,54],
the computation of PDEs are completely avoided through a constructive procedure
using new passive outputs; however, it tends to lose the PH structure of the closed-loop.

Recently, the typical energy-based and PBC methodology have been extended to UMSs
in implicit PH representation allowing to perform two tasks for the cart-pole system
under the implicit framework. (i) Swing-Up: Castaños and Gromov in [9] reports an
alternative approach for UMSs in implicit PH representation and consists in defining
a generalized energy function to address the tracking control problem of homoclinic
orbits (limit cycles) thus leading to the formulation of swing-up strategies. Their results
are tested on the simple pendulum and the cart-pole system. (ii) (Local) Stabilization:
Cieza and Reger in [10] introduces a generalization of the IDA-PBC method for UMSs in
implicit PH representation and provides an algebraic solution to the IDA-PBC problem
(avoiding PDEs). Under this novel approach, they perform the total energy-shaping
for the (local) stabilization of the cart-pole system on a inclined plane avoiding the
computation of PDEs.

The control techniques mentioned throughout this section are summarized in Table 1.1.
It can be observed that there exist numerous control strategies for systems in explicit

4



1.3 Objectives

Representation Control strategy Research paper

Explicit

Bang-bang control [16,17]
Robust control [18]
Hybrid control [19–21]
Sliding mode control [22–24]
Backstepping [25]
Model predictive control [26–28]
PID adaptive control [29]
Feedforward control [30]
Singular perturbation [31]
Energy-shaping [32]
Immersion and invariance [33]
Fuzzy logic [34,35]
Neural networks [36]
Energy-based control [41–47]
Passivity-based control [51–54]

Implicit Energy-based control [9]
Passivity-based control [10]

Table 1.1 – List of some control strategies applied to the cart-pole

representation. However, the formulation of control techniques for systems in implicit
representation is, nowadays, an emerging field.

1.3 Objectives

Design an energy-based control scheme to swing-up and (local) stabilize the cart-pole
system modeled in implicit PH representation and perform analytical and experimental
validation.

The specific objectives of this work are:

• Design a swing-up controller on the basis of a generalized energy function for the
cart-pole system in implicit PH representation and perform the stability analysis.

• Design a (locally) asymptotically stabilizing IDA-PBC for the cart-pole system in
implicit PH representation that guarantees optimal (local) transient response.

• Perform simulations and real-time experiments in order to verify the closed-loop
performance.

Master Thesis Alex Huaman 5



1 Introduction

• Compare the results with another control scheme for the cart-pole system in
explicit Euler-Lagrange (EL) representation.

1.4 Outline

The content presented in this thesis is organized as follows.

Chapter 2 provides an overview of the theoretical background required for all upcoming
chapters. It includes the fundamentals of PBC and briefly recalls the typical IDA-PBC
methodology for UMSs in explicit PH representation.

Chapter 3 presents the so-called PID Passivity-Based Control (PID-PBC) technique
with total energy-shaping and the typical energy-based control approach using a gener-
alized energy function for UMSs in explicit EL representation.

Chapter 4 deals with the cart-pole system in explicit EL representation and performs
the design, analysis and experimental validation of the control algorithms discussed in
Chapter 3 with mild modifications to accomplish the tracking of a homoclinic orbit.

Chapter 5 provides a novel IDA-PBC method with total energy-shaping and an
alternative approach to the typical energy-based control using a (generalized) admissible
energy function for UMSs in implicit PH representation.

Chapter 6 addresses the cart-pole system in implicit PH representation and performs
the design, analysis and experimental validation of the control algorithms introduced in
Chapter 5 with slight modifications to accomplish the tracking of a homoclinic orbit.

Chapter 7 closes this manuscript with conclusions and future work.

6



Chapter 2

Theoretical Fundamentals

This chapter is devoted to recall some essential concepts and statements used throughout
this thesis. For a general introduction to nonlinear dynamical systems, the reader is
referred to the excellent books [15, 55–57]. The chapter is structured as follows. Section
2.1 presents statements about the stability analysis of nonlinear systems, most of
the content of this section relies on [5, 6, 15]. Section 2.2 provides definitions about
dissipativity and passivity as well as some related statements that are relevant to the
remaining sections, most of the content of this section is taken from [58–60]. Section 2.3
presents the theoretical background about PBC with emphasis on the fundamentals of
Interconnection and Damping Assignment (IDA), most of the content of this section is
based on [57,61–64]. Section 2.4 briefly discusses the stabilization control problem for
UMSs under the typical IDA-PBC approach, for a complete overview over the field the
reader is referred to [10,48,51,54], the survey paper [64] and the references within.

2.1 Stability of Nonlinear Systems

This section explores the stability analysis of equilibrium points in the sense of Lyapunov.
Lyapunov stability theory plays an important role in systems theory since it provides
sufficient conditions for stability and asymptotic stability. Furthermore, an extension of
the underlying theory is stated in order to analyze the stability of invariant sets based
on the well-known LaSalle’s invariance principle.

Master Thesis Alex Huaman 7



2 Theoretical Fundamentals

2.1.1 Preliminaries

Consider the autonomous system

ẋ = f(x), x0 = x(0), (2.1)

where x ∈ D and f : D → Rn is a locally Lipschitz1 map from a domain D ⊂ Rn into
Rn. The solution of (2.1) starting from x0 = x(0) ∈ D is denoted by x(t), ∀ t ≥ 0. Let
x? ∈ D be an equilibrium point of (2.1), which satisfies

f(x?) = 0.

Unless otherwise stated, it is assumed without loss of generality that the equilibrium
point is at the origin of Rn, i.e., x? = 0. For the nonzero case, the equilibrium point
can be shifted to the origin via a change of variables, e.g. x̃ = x− x?.

Definition 2.1 (Lyapunov stability [5]): The equilibrium point x? = 0 of (2.1) is

(1) stable if, for each ε > 0, there exists a δ = δ(ε) > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀ t ≥ 0;

(2) unstable if it is not stable;

(3) asymptotically stable if it is stable and δ can be chosen such that

‖x(0)‖ < δ ⇒ lim
t→∞

x(t) = 0;

(4) exponentially stable if there exist two strictly positive numbers α and λ independent
of time and initial conditions such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ ≤ α ‖x(0)‖ exp(−λt), ∀ t ≥ 0;

where ‖·‖ is the Euclidean norm. �

Under some abuse of notation, it can be said that the system (2.1) is stable (unstable)
if x? is a stable (unstable) equilibrium point of (2.1). It should be underscored that

1Locally Lipschitz means that ∃L > 0 such that ‖f(x)− f(y)‖ ≤ L ‖x− y‖, ∀x, y ∈ D.
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2.1 Stability of Nonlinear Systems

Definition 2.1 is a local statement since it describes the behavior of a system near an
equilibrium point.

2.1.2 Direct Method of Lyapunov

The direct method of Lyapunov, also called the second method of Lyapunov, allows
determining the stability of a system without knowing its analytical solution.

Definition 2.2 ((Semi-)Definiteness [5]): Let D ⊂ Rn be a domain containing x = 0.
A function V = V (x) with V : D → R is called positive (negative) definite, if

(1) V (0) = 0 and

(2) V (x) > 0
(
V (x) < 0

)
∀x ∈ D \ {0}.

Moreover, if instead of (2)

(3) V (x) ≥ 0
(
V (x) ≤ 0

)
∀x ∈ D \ {0},

then V is called positive (negative) semi-definite. If neither of the above cases applies to
V , then it is said to be indefinite. �

Definition 2.3 (Lyapunov function [6]): Let D ⊂ Rn be a domain containing x = 0.
Let V : D → R be a continuously differentiable function. V (x) is called a Lyapunov
function if it is positive definite and V̇ (x) is negative semi-definite in D. �

Theorem 2.1 (Lyapunov’s direct method [15]): Let x? = 0 be an equilibrium point for
(2.1) and D ⊂ Rn be a domain containing x? = 0. Let V : D → R be a continuously
differentiable function (w.r.t. x), such that, if

(1) V (x) is positive definite in D and

(2) V̇ (x) is negative semi-definite in D,

then x? = 0 is stable. Moreover, if instead of (2)

(3) V̇ (x) is negative definite in D,

then x? = 0 is asymptotically stable. �
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2 Theoretical Fundamentals

Regarding the case that V (x) is positive definite and V̇ (x) is negative semi-definite, the
following corollary is recalled.

Corollary 2.1 (Barbashin-LaSalle [15]): Let x? = 0 be an equilibrium point for (2.1).
Let V : D → R be a continuously differentiable positive definite function on a domain D
containing the origin x? = 0, such that V̇ (x) ≤ 0 in D. Let S =

{
x ∈ D | V̇ (x) = 0

}
and suppose that no solution can stay identically in S, other than the trivial solution
x(t) ≡ 0. Then, the origin is asymptotically stable. �

Corollary 2.1 is equivalent to Theorem 2.1 when V̇ (x) is negative definite, i.e., S = {0}.
Similar to Definition 2.1, Theorem 2.1 and Corollary 2.1 deal with local stability. Within
the scope of this work, global stability is not addressed.

2.1.3 LaSalle’s Invariance Principle

LaSalle’s theorem can also be used in cases where the system has an equilibrium set,
instead of an isolated equilibrium point [15]. Recall the following definitions.

Definition 2.4 (Invariant set [6]): A set M is said to be invariant set with respect to
(2.1) if

x(0) ∈M ⇒ x(t) ∈M, (2.2)

∀ t ∈ R. That is, if a solution x(t) belongs to M at some time instant, then it belongs
to M for all future and past time. A set M is said to be a positively invariant set with
respect to (2.1) if (2.2) holds ∀ t > 0. �

Theorem 2.2 (LaSalle’s invariance principle2 [15]): Let Ω ⊂ D be a compact set that is
positively invariant with respect to (2.1). Let V : D → R be a continuously differentiable
function such that V̇ (x) ≤ 0 in Ω. Let Γ be the set of all points in Ω where V̇ (x) = 0. Let
M be the largest invariant set in Γ. Then every solution x(t) starting in Ω approaches
M as t→∞. �

It is noteworthy here that Theorem 2.2 does not require V (x) to be positive definite.
For asymptotic stability analysis of an equilibrium point, one can utilize the invariance
principle by establishing that the largest invariant set M is the origin and suppose that
no solution can stay identically in M, other than the trivial solution x ≡ 0. For stability

2Also known as Barbashin-Krasovskii-LaSalle invariance principle.
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2.1 Stability of Nonlinear Systems

at an invariant set, define an ε-neighborhood of M by

Bε =
{
x ∈ Rn | dist(x,M) < ε

}
, (2.3)

where dist(x,M) is the minimum distance from x to a point p in M, that is,

dist(x,M) = inf
p∈M

∥∥x− p∥∥.
It is said that x(t) approaches a set M as t approaches infinity, if for each ε > 0 there
exists T > 0, such that

dist(x,M) < ε, ∀ t > T.

Definition 2.5 (Stability of an invariant set [6]): Let M be an invariant set of (2.1).
The invariant set M is

(1) stable if for each ε > 0 there exists a δ > 0 such that

x(0) ∈ Bδ ⇒ x(t) ∈ Bε, ∀ t ≥ 0;

(2) unstable if it is not stable;

(3) asymptotically stable if it is stable and δ > 0 can be chosen such that

x(0) ∈ Bδ ⇒ lim
t→∞

dist
(
x(t),M

)
= 0;

where Bε and Bδ are given by (2.3). �

2.1.4 Indirect Method of Lyapunov

The indirect method of Lyapunov, also called the first method of Lyapunov, uses the
linearization of a system to determine the local stability of the original system.

Theorem 2.3 (Lyapunov’s indirect method [15]): Let x? = 0 be an equilibrium point
of (2.1), where f : D → Rn is continuously differentiable and D is a neighborhood of
the origin. Let

A = ∂f(x)
∂x

∣∣∣∣
x=x?

,

then the equilibrium point is
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2 Theoretical Fundamentals

(1) asymptotically stable if all eigenvalues of A are in the open left-half plane or

(2) unstable if there exists at least one eigenvalue in the open right-half plane. �

2.2 Dissipativity and Passivity

Dissipativity is a fundamental property of physical systems closely related to the
phenomena of loss or dissipation of energy [58]. Dealing with the notion of dissipativity
requires the definition of the following functions.

• Supply rate, is the rate at which energy flows into the system.

• Storage function, is a function that measures the amount of energy that is stored
inside the system.

Consider the nonlinear system

ẋ = f(x, u), x ∈ X ⊆ Rn, u ∈ U ⊆ Rm,
y = h(x, u), y ∈ Y ⊆ Rp,

(2.4)

that under u = 0 has an equilibrium at x? = 0, that is, f(0, 0) = 0. For all initial
conditions x(0) = x0 and input functions u = u(t), the solution x(t) = ϕ(x0, u(t), t),
∀ t ≥ 0 is unique. Let s : U ×Y → R be the supply rate of (2.4), which satisfies ∀x0 ∈ X
and ∀u(t) ∈ U the following relationship

∫ t

0

∣∣s(u(τ), y(τ))
∣∣ dτ <∞, ∀ t ≥ 0.

Definition 2.6 (Dissipativity [59]): System (2.4) is said to be dissipative with respect to
the supply rate s, if there exists a non-negative storage function V (x) ≥ 0, V : X → R+,
such that ∀x0 ∈ X and ∀u(t) ∈ U the integral dissipation inequality

V (x(t))− V (x0) ≤
∫ t

0
s(u(τ), y(τ)) dτ (2.5)

holds. If the equality remains in (2.5), then (2.4) is called conservative or lossless. �

Remark: If V is continuously differentiable, then (2.5) can be rewritten as the differen-
tial dissipation inequality

∂V (x)
∂x

f(x, u) ≤ s
(
u(t), y(t)

)
, ∀ t ≥ 0.
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2.3 Passivity-Based Control

Definition 2.7 (Passivity [59]): System (2.4) with U = Y = Rm is said to be passive if
it is dissipative with respect to the supply rate s(u, y) = u>y, and the storage function
V (x) satisfies V (0) = 0. �

Definition 2.8 (Zero-state observability [60]): System (2.4) is said to be Zero-State
Observable (ZSO) if no solution of ẋ = f(x, 0) can stay identically in S =

{
x ∈ Rn |

h(x, 0) = 0
}
, other than the trivial solution x(t) ≡ 0. �

Definition 2.9 (Zero-state detectability [60]): System (2.4) is said to be Zero-State
Detectable (ZSD) if no solution of ẋ = f(x, 0) can stay identically in S =

{
x ∈ Rn |

h(x, 0) = 0
}
, other than x(t) = 0 when t→∞. �

Passivity is a structural property derived from the fact that energy is dissipated in
physical systems. In essence, a passive system cannot store more energy than is supplied
by the environment, i.e., there can be no internal creation of energy. In the context of
PBC, Definitions 2.8-2.9 are widely used to prove asymptotic stability.3

2.3 Passivity-Based Control

The basis of Passivity-Based Control (PBC) is motivated by recalling the following
theorem.

Theorem 2.4 (Passivity and stability [57]): Let the system (2.4) be passive with a
storage function V ∈ C1 and h(x, u) be C1 in u for all x. Then the following properties
hold:

(i) If V is positive definite, then the equilibrium x? = 0 of (2.4) with u = 0 is stable.

(ii) If (2.4) is ZSD, then the equilibrium x? = 0 of (2.4) with u = 0 is stable.

(iii) When there is no throughput, y = h(x), then the feedback u = −y achieves
asymptotic stability of x? = 0 if and only if (2.4) is ZSD.

When the storage function V is radially unbounded, these properties are global. �

3Clearly, for systems of the form (2.4), the ZSO property implies ZSD, i.e., ZSD is weaker than ZSO.
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2.3.1 Port-Hamiltonian Systems

In the literature, Port-Hamiltonian (PH) systems are also referred to as Port-Controlled
Hamiltonian with Dissipation (PCHD) systems, e.g. in [59], or Port-Controlled Hamilto-
nian (PCH) systems, e.g. in [65]. This section focuses on PH systems whose dynamics
is described by the standard input-state-output representation.

Consider the PH system of the form4

ẋ =
[
J(x)−R(x)

]
∂>x H + g(x)u, (2.6a)

y = g>(x)∂>x H, (2.6b)

where x ∈ Rn are the states variables. The input u ∈ Rm and the output y ∈ Rm are
conjugated variables, i.e., their product gives a power quantity. The interconnection
matrix J : Rn → Rn×n is skew-symmetric J(x) = −J>(x), ∀x ∈ Rn, and captures
the internal interconnection structure of the system; while the full rank input matrix
g : Rn → Rn×m represents the interconnection of the system with its environment. The
damping matrix R : Rn → Rn×n is symmetric positive semi-definite R(x) = R>(x) � 0,
∀x ∈ Rn and characterizes the energy dissipation. The continuously differentiable
Hamiltonian function H : Rn → R represents the total energy stored in the system.

Definition 2.10 (Underactuated system [58]): System (2.6) is said to be underactuated
if rank(g) < dim(x). �

Via the skew-symmetry of J(x), we obtain5

Ḣ(x) = ∂H

∂x

([
J(x)−R(x)

]
∂>x H + g(x)u

)
= −

(
∂H

∂x

)
R

(
∂H

∂x

)>
+ y>u ≤ y>u

(2.7)

for the rate of change of the system’s energy, where (2.7) is non-positive due to R(x) � 0.
As a consequence, if H(x) is bounded from below,6 then system (2.6) is passive with
non-negative storage function H(x) and the stability of the equilibrium point x? follows
from Theorem 2.1.

4We define the differential operator ∂xh = ∂h
∂x

and ∂>x h =
(
∂h
∂x

)> for any vector or scalar function h(x).
5Here, and throughout the rest of the document, the arguments of some functions that have been
previously defined will be omitted.

6Suppose H(x) is bounded from below, i.e., there exists a constant c > −∞ such that H(x) ≥ c or
H(x)− c ≥ 0. Hence, the storage function H(x) is non-negative by adding a constant.
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2.3 Passivity-Based Control

2.3.2 Interconnection and Damping Assignment

The control objective of IDA-PBC is to transform the nominal system (2.6) by means
of some state-feedback control law into a target (or desired) PH system7 with a stable
equilibrium point at x? ∈ Rn.

Consider the target PH system

ẋ =
[
Jd(x)−Rd(x)

]
∂>x Hd, (2.8)

where Jd(x) = −J>d (x) and Rd(x) = R>d (x) � 0, ∀x ∈ Rn.

The nominal system (2.6a), with g assumed to be full rank, can be transformed into
(2.8) whenever the following matching

g(x)u =
[
Jd(x)−Rd(x)

]
∂>x Hd −

[
J(x)−R(x)

]
∂>x H

is satisfied. The equilibrium point x? of the closed-loop system (2.8) is (asymptotically)
stable if

(i) the target damping matrix satisfies (Rd = R>d � 0) Rd = R>d � 0 and

(ii) the desired Hamiltonian Hd has an isolated minimum at x?.

For PH systems of the form (2.6), verifying Definition 2.10, the existence of the left-
inverse of g leads to one fundamental limitation, that is, the projected matching equation
must be satisfied. Recall the following lemma.

Lemma 2.1 (Existence of the pseudo-inverse [63]): Let g : Rn → Rn×m such that
rank(g) = m < n. Define g⊥ ∈ R(n−m)×n as the full rank left annihilator of g, i.e.,
g⊥g = 0. For any f ∈ Rn and u ∈ Rm, then

f + g(x)u = 0 ⇔

0 = g⊥f

u = −(g>g)−1g>f

where
[
g⊥ g>

]> is full rank. �

7In other words, the PH structure of the closed-loop is preserved.
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Proposition 2.1 (Standard IDA-PBC [64]): System (2.6a), with g assumed to be full
rank and rank(g) < dim(x), can be transformed into (2.8) whenever the following
matching condition

0 = g⊥
([
Jd −Rd

]
∂>x Hd −

[
J −R

]
∂>x H

)
(2.9)

is satisfied. As a consequence, the uniquely defined control law is given by

u =
(
g>g

)−1
g>
([
Jd −Rd

]
∂>x Hd −

[
J −R

]
∂>x H

)
, (2.10)

where g⊥(x) is the full rank left-annihilator of g(x). �

From Proposition 2.1 it follows that in the IDA-PBC design procedure the key step is
the solution of (2.9). Hence, to solve the matching condition there are, roughly speaking,
three ways to proceed.

(i) Non-Parameterized IDA-PBC: Consider Rd = R>d � 0 and Jd = −J>d both fixed
and solve the matching condition (2.9) as a PDE, whose solution defines the
admissible storage function Hd.

(ii) Algebraic IDA-PBC: Consider Hd fixed, with x? = arg minHd an isolated mini-
mum, and solve the algebraic equation (2.9) with respect to Rd, Jd and g⊥.

(iii) Parameterized IDA-PBC: The desired storage function Hd is restricted to a certain
class, e.g. in mechanical systems Hd equals the sum of kinetic and potential energy.
Fixing the structure of Hd yields a new matching condition, which is solved as a
PDE.

2.4 IDA-PBC for Explicit UMS

To make this thesis self–contained we briefly recall the typical IDA-PBC [48] for UMSs
with no natural damping described in explicit8 PH representation of the form9

[
q̇

ṗ

]
=
[

0 In

−In 0

] [
∂>q H

∂>p H

]
+
[

0
G(q)

]
u (2.11)

8Explicit systems are those modeled as ODEs. In the literature the term explicit is usually avoided.
9Let In be the n× n identity matrix and 0 be a matrix of zeros with appropriate dimension.
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2.4 IDA-PBC for Explicit UMS

with total stored energy10

H(q, p) = 1
2p
>M−1(q)p+ V (q),

where q ∈ Rn are the explicit generalized coordinates, p ∈ Rn are its associated
momenta, u ∈ Rm, with m ≤ n, are the inputs, G : Rn → Rn×m is the full rank
input matrix, M : Rn → Rn×n is the inertia matrix that satisfies M(q) = M>(q) � 0
and V : Rn → R is the potential energy assumed to be bounded from below. The
Hamiltonian H : Rn × Rn → R equals the energy of the systems, namely, kinetic plus
potential.

Definition 2.11 (Explicit UMS [58]): The (explicit) mechanical system (2.11) is said
to be underactuated if rank(G) < dim(q). �

The control objective is to transform the nominal system (2.11) by means of some
state-feedback control law into a target PH system with a stable equilibrium at the
desired point (q, q̇) = (q?, 0). Consider the target (or desired) PH system

[
q̇

ṗ

]
=
[

0 J(q)
−J>(q) −W (q, p)

] [
∂>q Hd

∂>p Hd

]
(2.12)

with target energy function

Hd(q, p) = 1
2p
>M−1

d (q)p+ Vd(q),

where Md : Rn → Rn×n is the target inertia matrix that satisfies Md(q) = M>d (q) � 0,
J = M−1(q)Md(q), Vd : Rn → R is the target potential energy, W : Rn ×Rn → Rn×n is
a matrix that extends the scope of the typical IDA-PBC and Hd : Rn × Rn → R is the
new shaped Hamiltonian.

Proposition 2.2 (Explicit IDA-PBC [10]): System (2.11) can be transformed into
(2.12) whenever the following kinetic and potential matching conditions

G⊥
(
∂>q (M−1p)− J>∂>q (M−1

d p)− 2WM−1
d

)
= 0, (2.13a)

G⊥
(
∂>q V − J>∂>q Vd

)
= 0, (2.13b)

10From now on, V (q) represents the system’s potential energy.
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are satisfied. As a consequence, the uniquely defined control law is given by

uE =
(
G>G

)−1
G>
(
∂>q H − J>∂>q Hd −W∂>p Hd

)
,

where G⊥ is the full rank left-annihilator of G and W (q, p) := 1
2W1(q, p) + W2(q) for

W1 affine in p. �

Proposition 2.3 (Explicit stability [10]): Assume that the conditions of Proposition
2.2 are satisfied. Then (q?, 0) ∈

{
(q, q̇) ∈ Rn×Rn | G⊥∂>q H = 0

}
is a stable equilibrium

of the closed-loop system (2.12) for any W2 +W>2 � 0 if q? = arg minVd is an isolated
minimum and

p>M−1
d W1M

−1
d p = 0.

Furthermore, if yE :=
(
W2 + W>2

) 1
2M−1

d p is a detectable output of (2.12), then the
equilibrium point (q?, 0) is asymptotically stable.11 �

Propositions 2.2-2.3 summarize the explicit IDA-PBC methodology for UMSs. The
success of IDA-PBC relies on the possibility of solving the matching conditions, where
the kinetic matching condition (2.13a) is a non-homogeneous, first order, quasi-linear
PDE and the potential matching condition (2.13b) is a linear PDE.

11Skew-symmetry of W1 is a sufficient, but not necessary, condition for p>M−1
d W1M

−1
d p = 0. We write

A
1
2
>
A

1
2 = A for any square positive definite matrix A.
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Chapter 3

Energy-Based Control for Explicit UMS

Energy-shaping for UMSs is a well-established robust design technique [53]. In the
typical IDA-PBC approach the feedback control law exists under certain requirements
called matching conditions, where the main drawback is to solve the set of nonlinear
PDEs. Recent research work has shown that for a class of UMSs the total energy-shaping
can be performed without solving PDEs, that is the case of the so-called PID-PBC
introduced in [53] and widely extended in [54, 66, 67]. Conversely, an energy-based
controller is derived using a generalized energy function and taking advantage of the
passivity properties of UMSs. The latter approach is often used for two specific tasks:
(i) the stabilization at an isolated equilibrium point and, more recently, (ii) the tracking
of homoclinic orbits (limit cycles). This chapter is organized as follows. Section 3.1
presents a truly constructive procedure for the total energy-shaping of a class of UMSs,
that does not require the solution of PDEs. The design in [53] proceeds in two steps.
First, we perform Partial Feedback Linearization (PFL) and if the Lagrangian structure
is preserved then two new passive outputs are immediately identified. Second, the
application of a Proportional–Integral–Derivative (PID) controller under a suitable
combination of these passive outputs completes the design procedure. Section 3.2
provides the typical energy-based control approach using a more general energy function
for UMSs with no class restriction. The latter approach is performed in two stages.
First, we analyze the passivity properties of the system and identify its passive output.
Second, we define a (generalized) admissible storage function for the stabilization at an
energy level-set.

Master Thesis Alex Huaman 19



3 Energy-Based Control for Explicit UMS

3.1 PID Passivity-Based Control

Consider the UMS whose dynamics is described by the Euler-Lagrange (EL) equations
of motion in matrix form

M(q)q̈ + C(q, q̇)q̇ + ∂>q V (q) = G(q)u, (3.1)

where q ∈ Rn are the (explicit) generalized coordinates, u ∈ Rm, with m ≤ n, are the
inputs, M : Rn → Rn×n is the inertia matrix that satisfies M(q) = M>(q) � 0, C(q, q̇)q̇
are the Coriolis and centrifugal forces, with C : Rn×Rn → Rn×n built via the Christoffel
symbols,12 V : Rn → R is the potential energy assumed to be bounded from below and
G : Rn → Rn×m is the full rank input matrix which verifies the following assumption.

Assumption 3.1: The input matrix is constant and of the form

G =
[
0s×m
Im

]
,

where s := n−m.

To delimit the class of UMSs supported in this approach, and in agreement with
Assumption 3.1, the generalized coordinates are partitioned into its underactuated and
actuated components as13 q = col(qu, qa), with qu ∈ Rs and qa ∈ Rm. Likewise, the
inertia matrix is partitioned as

M(q) =
[
muu(q) m>au(q)
mau(q) maa(q)

]
,

where muu : Rn → Rs×s, mau : Rn → Rm×s and maa : Rn → Rm×m. As done in [53],
the class of UMSs is identified imposing the following assumption.

Assumption 3.2:

(a) The inertia matrix depends only on the underactuated variables qu, i.e., M(q) =
M(qu).

(b) The sub-block matrix maa of the inertia matrix is constant.

12Also known as Christoffel symbols of the First Kind, see [68, p. 201]
13Given any scalars or column vectors a1, . . . , an, we write col(a1, . . . , an) =

[
a>1 . . . a>n

]>.
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3.1 PID Passivity-Based Control

(c) There exist functions Va : Rm → R and Vu : Rs → R such that the potential energy
can be written as

V (q) = Va(qa) + Vu(qu),

where Vu(qu) is assumed to be bounded from below.14

Problem Formulation: Find a mapping u : Rn×Rn → Rm such that the system (3.1)
in closed-loop with the state-feedback control law u has a stable equilibrium at the desired
point (q, q̇) = (q?, 0) with target (or desired) Lyapunov function

Hd(q, q̇) = 1
2 q̇
>Md(q)q̇ + Vd(q), (3.2)

where Md(q) = M>d (q) � 0 and q? = arg minVd(q) is an isolated minimum.

3.1.1 Partial Feedback Linearization

The first stage is the application of a collocated PFL that transforms the system (3.1)
into the so-called Spong’s Normal Form (SNF).15

Proposition 3.1 (Spong’s normal form [37]): System (3.1) under Assumption 3.1 is
feedback equivalent to

muu(q)q̈u +
[
Is 0s×m

]
C(q, q̇)q̇ + ∂>quV = −m>au(q) υ,

q̈a = υ.
(3.3)

That is, there exist two mappings û1, û2 : Rn × Rn → Rm such that the system (3.1) in
closed-loop with the state-feedback control law u = û1(q, q̇)υ + û2(q, q̇) takes the form
(3.3).16 �

The second stage is to verify if the Lagrangian structure is preserved even for UMSs in
SNF representation.

14The lower boundedness on Vu(qu) is introduced in order to deal only with passive outputs (instead of
cyclo-passive outputs), see Definition 3.1.

15Collocated PFL refers to the global linearization of the active (actuated) variables via an invertible
change of control inputs [37].

16See [37] for the explicit expression of û1 and û2.
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Proposition 3.2 (Preservation of the Lagrangian structure [53]): Consider the system
(3.3) fulfilling Assumption 3.2.

(i) The system satisfies the EL equations with Lagrangian function

L̃(q, q̇) = 1
2
[
q̇>u q̇>a

] [muu(qu) 0s×m
0m×s Im

] [
q̇u

q̇a

]
− Vu(qu)

and input matrix G̃(qu) =
[
−m>au(qu)

Im

]
.

(ii) The system may be rewritten as

muu(qu)q̈u + cu(qu, q̇u)q̇u + ∂>quV (qu) = −m>au(qu) υ

q̈a = υ,
(3.4)

where the skew-symmetry property ṁuu(qu) = cu(qu, q̇u) + c>u (qu, q̇u) is satisfied.

(iii) The operator υ 7→ q̇a −m>au(qu)q̇u is cyclo-passive with storage function

H̃(q, q̇) = 1
2
[
q̇>u q̇>a

] [muu(qu) 0s×m
0m×s Im

] [
q̇u

q̇a

]
+ Vu(qu).

However, the operator is passive if Vu(qu) is bounded from below. �

3.1.2 New (Cyclo) Passive Outputs

Definition 3.1 (Cyclo-passivity [59]): System (2.4) is said to be cyclo-passive if there
exists a differentiable function H : X → R+ (called storage function) that satisfies the
power balance inequality

Ḣ ≤ y>u,

when evaluated along the trajectories of (2.4). Moreover, if H(x) is bounded from below,
then (2.4) is said to be passive. �

The corollary below identifies two new (cyclo) passive outputs for the system (3.4).17

17From now on, we will consider passive outputs (instead of cyclo-passive) since we assume Vu(qu) is
bounded from below.
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3.1 PID Passivity-Based Control

Corollary 3.1 (New (cyclo) passive outputs [53]): Consider the UMS (3.4) verifying
Assumption 3.2. Define the (new) input υ and the (new) outputs

yu := −mau(qu)q̇u,

ya := q̇a.
(3.5)

The operators υ 7→ yu and υ 7→ ya are (cyclo) passive with storage functions

Hu(qu, q̇u) = 1
2 q̇
>
umuu(qu)q̇u + Vu(qu),

Ha(q̇a) = 1
2 q̇
>
a q̇a,

respectively. The time-derivatives of these functions along the trajectories of (3.4)
verifies Ḣu = υ>yu and Ḣa = υ>ya. �

3.1.3 PID Controller

The controller design is completed adding a PID structure with a suitable weighted sum
of the two passive outputs identified in Corollary 3.1. The PID-PBC state-feedback law
has the following well-known form

ke υ = −
(
KP yd +KI

∫ t

0
yd(τ) dτ +KD ẏd

)
, (3.6)

with
yd := kaya + kuyu, (3.7)

where ke, ka, ku ∈ R are nonzero constants with ka 6= ku and KP , KI , KD ∈ Rm×m

verifying KP � 0 and KI , KD � 0.

For practical implementation, and to avoid the computation of the integral and derivative
term, some lengthy but straightforward calculations shows that (3.6) is equivalent to

K(qu) υ = −KP yd −KI

∫ t

0
yd(τ) dτ − S(q, q̇), (3.8)

where the mapping K : Rs → Rm×m is given by

K(qu) := keIm + kaKD + kuKDmau(qu)m−1
uu (qu)m>au(qu), (3.9)
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3 Energy-Based Control for Explicit UMS

and S : Rn × Rn → Rm is the globally defined mapping

S(q, q̇) := kuKD

[
−ṁauq̇u +maum

−1
uu

(
cuq̇u + ∂quVu

)]
. (3.10)

To compute the integral term, we assume the following integrability assumption.

Assumption 3.3: There exists a mapping VN : Rs → Rm such that

V̇N := −mau(qu)q̇u. (3.11)

That is, VN (qu) =
∫ 0

1
mau(squ)qu ds+ VN (0).

Replacing (3.11) in (3.7) yields yd = kaq̇a + kuV̇N (qu, q̇u). Clearly, the integral term can
be expressed as ∫ t

0
yd(τ) dτ := kaqa + kuVN (qu) + κ, (3.12)

where κ is a constant defined as κ := −kaq?a − kuVN (q?u) with target values given by
q?u ∈ Rs and q?a ∈ Rm.

To ensure that the control law (3.8) is well-defined, the following assumption is imposed.

Assumption 3.4: Consider the controller tuning gains ke, ka, ku ∈ R \ {0} and KI ,
KD ∈ Rm×m verifying KI , KD � 0 such that the following hold.

(a) det
[
K(qu)

]
6= 0, ∀ qu ∈ Rs.

(b) The target inertia matrix

Md(qu) :=
[
kekumuu(qu) + k2

um
>
au(qu)KDmau(qu) −kakuKDmau(qu)

−kakum>au(qu)K>D kekaIm + k2
aKD

]
(3.13)

is symmetric positive definite; and the target potential energy

Vd(q) := kekuVu(qu) + 1
2
∥∥kaqa + kuVN (qu) + κ

∥∥2
KI

(3.14)

is proper and verifies q? = arg minVd(q) is an isolated minimum.

To analyze the stability of the system (3.4) in closed–loop with the PID-PBC state-
feedback law (3.8), and after some calculations, the target (closed-loop) Lyapunov

24



3.1 PID Passivity-Based Control

function (3.2) with (3.13) and (3.14) can be rewritten as follows

Hd(q, q̇) = ke
[
kaHa(q̇a) + kuHu(qu, q̇u)

]
+ 1

2
∥∥kaya + kuyu

∥∥2
KD

+ 1
2
∥∥kaqa + kuVN (qu) + κ

∥∥2
KI
.

(3.15)

The time-derivative of (3.15) along the trajectories of (3.4) yields

Ḣd =
(
kaya + kuyu

)>[
K(qu)υ +KI

(
kaqa + kuVN (qu) + κ

)
+ S(q, q̇)

]
.

Replacing (3.8), with (3.7) and (3.12), in the latter gives

Ḣd = −
∥∥kaya + kuyu

∥∥2
KP
.

Under the Assumption 3.4(b), the target storage function (3.2) is a proper Lyapunov
function and the stability is proved invoking Theorem 2.1. Furthermore, if (3.7) is
a detectable output of the closed-loop system, then the equilibrium point (q?, 0) is
asymptotically stable.

This section closes with a proposition that summarizes the development presented above
and whose proof also follows from above.

Proposition 3.3 (Explicit PID-PBC): Consider the UMS (3.1), satisfying Assumptions
3.1-3.2, in closed-loop with u = û1(q, q̇)υ + û2(q, q̇), where υ is given by (3.8), has a
stable equilibrium at the desired point (q, q̇) = (q?, 0) with (target) Lyapunov function
(3.2) satisfying Assumption 3.4. Furthermore, if (3.7) is a detectable output of the
closed-loop system, then the equilibrium point is asymptotically stable. �
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3 Energy-Based Control for Explicit UMS

3.2 Classical Energy-Based Control

This section provides the typical energy-based control approach using a more general
class of energy function for the control of UMSs in explicit EL representation. This
approach is performed in two steps. First, we analyze the passivity properties of the
system and identify its passive output. Second, we define a (generalized) admissible
storage function for the stabilization at an energy level-set.

3.2.1 Passivity

Consider the UMS (3.1) whose dynamics is described by the EL equations of motion in
matrix form. The total mechanical energy of (3.1) is given by

E(q, q̇) = 1
2 q̇
>M(q)q̇ + V (q). (3.16)

Taking the time-derivative of (3.16) along the trajectories of (3.1) yields

Ė(q, q̇) = q̇>G(q)u.

The operator u 7→ y := G>q̇ is passive with storage function (3.16).18

3.2.2 Controller Design

Since the UMS (3.1) is passive, with input u and output y, then the following assumption
is introduced.

Assumption 3.5: There exists a mapping z : Rn → Rm such that

(
∂ z(q)
∂q

)>
= G(q).

That is, there exists a function z such that ż := y.

18From now on, we will consider a passive system (instead of cyclo-passive) since we assume E(q, q̇) is
bounded from below.
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3.2 Classical Energy-Based Control

Problem Formulation: Find a mapping u : Rn×Rn → Rm such that the system (3.1)
in closed-loop with the state-feedback control law u achieves

lim
t→∞

E = E?, lim
t→∞

y = 0, lim
t→∞

f(z) = 0. (3.17)

The goal is to stabilize the passive output y and reach the desired (or target) mechanical
energy E? ∈ R which imposes a restriction on the underactuated variables.

We now recall the standard procedure of the classical energy-based control approach [5,6]
for UMSs of the form (3.1). Examine whether there exists a control law to achieve the
control objectives in (3.17) via the following (generalized) function19

U(q, q̇) = 1
2kE

(
E(q, q̇)− E?

)2 + f(z) + 1
2
∥∥ y ∥∥2

KV
, (3.18)

where kE ∈ R is a positive constant,KV ∈ Rm×m verifiesKV = K>V � 0 and f : Rm → R
such that f(z) ≥ 0.

Taking the time-derivative of (3.18) along the trajectories of (3.1) yields

U̇(q, q̇) = y>
[
kE
(
E(q, q̇)− E?

)
u+ ∂>z f +KV ẏ

]
.

Selecting
kE
(
E(q, q̇)− E?

)
u+ ∂>z f +KV ẏ = −K∆ y (3.19)

for some K∆ ∈ Rm×m, K∆ = K>∆ � 0, results in

U̇ = −
∥∥ y ∥∥2

K∆
≤ 0.

Now, it is discussed under what condition the controller u can be obtained from (3.19).

Taking the time-derivative of y = G>q̇ along the trajectories of (3.1) yields

ẏ =
[
G>(q)M−1(q)G(q)

]
u+N1(q, q̇), (3.20)

where N1(q, q̇) = Ġ>q̇ −G>M−1(Cq̇ + ∂>q V
)
. Replacing (3.20) into (3.19) gives

N2(q, q̇)u = −KVN1(q, q̇)−K∆ y − ∂>z f,

19According to Definition 2.3, the function U does not necessarily qualify as a Lyapunov candidate
function.

Master Thesis Alex Huaman 27



3 Energy-Based Control for Explicit UMS

such that
u = −N−1

2 (q, q̇)
[
KVN1(q, q̇) +K∆ y + ∂>z f

]
(3.21)

is free of singularities if ∣∣N2(q, q̇)
∣∣ 6= 0, ∀ (q, q̇), (3.22)

where N2(q, q̇) = kE
(
E − E?

)
Im +KV

(
G>M−1G

)
.

Lemma 3.1 (Global positive definite condition [43]): If the total mechanical energy E
of the system (3.1) is bounded from below, then there exists a positive parameter KV

such that N2 is globally positive definite. �

Subsequently, stability can be proved by invoking Theorem 2.2 to analyse the motion of
the system (3.1) under the control law (3.21) with the aim of investigating whether the
closed-loop solution satisfies the control objectives stated in the problem formulation.

Keep in mind that one application of this approach is to solve the swing-up control
problem for the cart-pole system in explicit EL representation.
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Chapter 4

Energy-Based Control for Explicit UMS:
The Cart-Pole Analysis

This chapter provides the design, stability analysis and experimental validation of the
control algorithms discussed in Chapter 3. The well-known benchmark cart-pole system
is taken as a case study owing to its nonlinear, underactuated and non-minimum phase
properties, which remain a topic of interest in the field of nonlinear control systems. The
design of the nonlinear control scheme has been carried out on the basis of the explicit
EL representation of the cart-pole system in SNF. This chapter is organized as follows.
Section 4.1 describes the test-bench used in this work. Section 4.2 presents the standard
EL equations of motion for the cart-pole system and its formulation in SNF. Section 4.3
performs the design of a swing-up controller based on the classical energy-based control
approach with mild modifications for the cart-pole system in SNF. The effectiveness of
the nonlinear controller is verified by simulations and real-time experiments. Section
4.4 performs the design of a (local) stabilizing controller under the so-called PID-PBC
methodology, as well as the formulation of a novel approach to ensure an optimal (local)
transient response. The effectiveness of the nonlinear controller is verified by simulations
and real-time experiments. Section 4.5 describes the overall (explicit) control strategy
for the cart-pole system in SNF. The chosen scheme is based on a two-stage control
strategy, such that one controller will swing-up the pendulum and another will (locally)
stabilize it. All numerical simulations presented in the following were performed using
MATLAB®/ Simulink (R2018a) platform.
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4 Energy-Based Control for Explicit UMS: The Cart-Pole Analysis

4.1 Physical Setup

The cart-pole system consist of a rotating single-arm pendulum whose pivot point is
mounted on a cart, which can move linearly along the horizontal axis. The pendulum is
free to swing about its pivot point and has no direct control actuation. The schematic
of the test-bench used to perform real-time experiments is depicted in Figure 4.1.

PC

DAC
Encoder I/F

dSPACE

DSP

DS1103

Control Desk

Simulink
User I/F

States

Velocity signal

Cart-Pole

Figure 4.1 – Schematic of the experimental control system

There exist two options to control the cart-pole system: (i) via an inner velocity loop
or (ii) via an inner current loop, which may be mapped to force control. Neverthe-
less, dealing with the inner current loop involves knowing the values of more system
parameters like masses, inertias, gear features, frictions, among others. To avoid these

(q, q̇)

Feedforward

Plant
u

ẋc

−

ῡ ∑∫
υ

Cart-Pole

4PID
∑

Figure 4.2 – Block diagram of the cart-pole with inner velocity loop
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4.1 Physical Setup

cumbersome parameters, which most likely involve an exhaustive (non-free of error)
system identification, we decided to use the inner velocity loop. This inner loop with an
integrator in the input can be approximated to the cart-pole system in SNF.

Figure 4.2 depicts the block diagram of the physical setup with the inner velocity loop.
The inner loop consists of the plant with a PID + Feedforward controller, where u is
the input of the plant and (q, q̇) are the outputs (states). The (real) input ῡ represents
the desired (or target) cart velocity and the outputs are measured by encoders allowing
full-state feedback. Note that the virtual input υ represents the desired cart acceleration
and the outputs denote the generalized coordinates in explicit representation.

Figure 4.3 displays the physical setup, located at laboratory of the Control Engineering
Group (Fachgebiet Regelungstechnik), Department of Computer Science and Automation,
TU Ilmenau.

Figure 4.3 – Cart-pole system at TU-Ilmenau

The parameter values of the cart-pole system are shown in Table 4.1.

Parameter Description Value

l Length of the pendulum 0.484m
gr Gravitational acceleration 9.81m/s2

r1 Viscous friction in the joint 0.0276Nms/rad

Table 4.1 – Cart-pole system parameter values
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4 Energy-Based Control for Explicit UMS: The Cart-Pole Analysis

4.2 Model Derivation

The mathematical (explicit) model of the cart-pole system as shown in Figure 4.4 is
derived via the Euler-Lagrange formulation. Consider the cart-pole system satisfying
the following ideal assumptions.

• The pendulum is a point mass located at the top of the pole.

• There exists no Coulomb friction.

xc

l

θ

mp

mc

u

gr

yp

xp

Figure 4.4 – Cart-pole system diagram

The parameters of the cart-pole system are shown in Table 4.2.

Parameter Description Units

θ Angle with respect to the vertical axis rad
xc Cart position m
u Force applied on the cart N
mp Mass of the pendulum kg
mc Mass of the cart kg
l Length of the pendulum m
gr Gravitational acceleration m/s2

r1 Viscous friction in the joint Nm s/rad
r2 Viscous friction in the rail N s/m

Table 4.2 – Cart-pole system parameters
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4.2 Model Derivation

For a complete overview of the model derivation, the reader is referred to [5, p. 25]. The
EL equations of motion for the cart-pole system can be written in the standard form as

mpl
2θ̈ +mpl cos θẍc −mpgrl sin θ = −r1θ̇, (4.1a)

(mc +mp) ẍc +mpl cos θθ̈ −mpl sin θθ̇2 = u− r2ẋc. (4.1b)

It is clear that the system (4.1) verifies Assumption 3.1 with input matrix Gu = col(0, 1).
Notice that equations (4.1a) and (4.1b) represent the standard dynamics of the cart-pole
system and require exact knowledge of the system parameters.

According to Section 4.1, it is required that the standard system takes the so-called
SNF. As stated in Proposition 3.1, we can transform (4.1) into

l2θ̈ − grl sin θ = −l cos θυ − r1θ̇, (4.2a)

ẍc = υ, (4.2b)

where q = col(θ, xc) ∈ R2, n = 2, are the generalized coordinates and υ ∈ R, m = 1,
is the new input which directly commands the cart acceleration. The inertia matrix,
potential energy and input vector are now given by

M(q) =
[
l2 0
0 1

]
, V (q) = grl(cos θ − 1) and G(q) =

[
−l cos θ

1

]
, (4.3)

respectively. The potential energy has been initially chosen to be zero at the origin, i.e.
V (0) = 0, and is clearly bounded from below. Due to PFL, the mass of the cart, the
mass of the pendulum and the viscous friction between the cart and the rail have no
effect on the new dynamics (4.2).

For unforced mechanical systems, that is υ = 0, the equilibrium points are found via

∂ V (q)
∂q

= 0 ⇒ −grl sin θ = 0.

System (4.2) has a subset of infinite equilibrium points, where

• θ = π (mod 2π), θ̇ = 0, xc = x?c and ẋc = 0 are the stable equilibrium points; and

• θ = 0 (mod 2π), θ̇ = 0, xc = x?c and ẋc = 0 are the unstable equilibrium points,

with x?c set as an arbitrary target value for the cart position.20

20For the problem to be well-posed, we establish later that θ ∈ [0, 2π[. See Section 4.3.3.
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4 Energy-Based Control for Explicit UMS: The Cart-Pole Analysis

4.3 Explicit Swing-Up Controller

This section deals with the tracking of homoclinic orbits (limit cycles) that contains
the desired (unstable) equilibrium of the system. Consider an ideal cart-pole system
(massless bar) in SNF given by (4.2) and assume there is no friction, i.e., r1 = 0.

Problem Formulation: Find a mapping υ : R2 × R2 → R such that the trajectories
of the pendulum can be brought into a homoclinic orbit (limit cycle) reaching the desired
energy level-set Ē → Ē? and holding the cart stable at the target position xc → x?c with
ẋc → 0.

Under the design procedure described in Section 3.2, we proceed to analyze the passivity
properties of the system. The mechanical energy E : R2 × R2 → R is built using (4.3)
and takes the form

E(q, q̇) = 1
2 q̇
>M(q)q̇ + V (q). (4.4)

Taking the time-derivative of (4.4) along the trajectories of the system (4.2) yields
Ė = q̇>Gυ. The operator υ 7→ y := G>q̇ is passive with storage function (4.4).

Following Section 3.2, we can synthesize a control law but the requirements of the
problem formulation are not met because the system (4.2) is passive with a combined
output of actuated and underactuated variables, i.e., y = −l cos θθ̇ + ẋc. Therefore, we
introduce a mild modification in order to stabilize the cart position xc instead of y.

4.3.1 New Energy Function

This section focuses on finding a new energy function Ē = E + Eµ, which allows to
fulfill the requirements of the problem formulation.21

Let Ē : R2 × R2 → R be the new (open-loop) energy function defined as

Ē(q, q̇) = 1
2 q̇
>M̄(q)q̇ + V (q), (4.5)

where

M̄(q) =
[

l2 l cos θ
l cos θ kc

]
, V (q) = grl (cos θ − 1)

21We define Eµ : R2 × R2 → R as Eµ(q, q̇) := l cos θθ̇ẋc + 1
2 (kc − 1)ẋ2

c .
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4.3 Explicit Swing-Up Controller

and kc ∈ R is a strictly positive constant. Clearly, M̄(q) = M̄>(q) � 0 if and only
if kc > 1. The new energy function Ē, which is slightly different from the original
mechanical energy E, takes similarly a constant value for each equilibrium point, i.e.,

• Ē(q, q̇) = 0 at the unstable equilibrium points and

• Ē(q, q̇) = −2grl at the stable equilibrium points.

4.3.2 Stabilization around the Homoclinic Orbit

Definition 4.1 (Homoclinic Orbit [5]): A homoclinic orbit is a single orbit where a
stable manifold and an unstable manifold intersect. This orbit leaves the saddle point in
one direction, and returns in another direction. Eventually, this orbit converges to the
same saddle point. �

Let us verify that the new energy (4.5) is a suitable function for the controller design.
In view of (4.5), if the system (4.2) reaches Ē = 0 and ẋc = 0, then

1
2 l

2θ̇2 = grl (1− cos θ) (4.6)

represents a particular trajectory that corresponds to a homoclinic orbit, where θ̇ = 0
only when θ = 0. In this particular case, the pendulum swings until it reaches its
unstable equilibrium point, i.e, (θ, θ̇) = (0, 0). In general, if the system can be brought
to the homoclinic orbit (4.6), then the task of swinging-up the pendulum has been solved.
This means that the pendulum will eventually get close to its unstable equilibrium point
if it follows the homoclinic orbit.

Remark: If Ē > 0 and ẋc = 0, then θ̇2 > 0 when θ = 0. In other words, when the
pendulum reaches θ = 0, it will do so with angular velocity θ̇ 6= 0.

Based on (4.5), a new controller is derived in order to approach the trajectories of the
pendulum into the homoclinic orbit (4.6). Define the target storage function as22

U(q, q̇) = 1
2kE

(
Ē − Ē?

)2 + 1
2kx

(
xc − x?c

)2 + 1
2KV ẋ

2
c , (4.7)

22Also known as (generalized) admissible energy function or (generalized) admissible storage function.
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4 Energy-Based Control for Explicit UMS: The Cart-Pole Analysis

where kE , kx, KV ∈ R are strictly positive constants, x?c ∈ R is the target cart position
and Ē? ∈ R is the non-negative target energy fixed as Ē? = 0.

Taking the time-derivative of (4.7) along the trajectories of (4.2) yields

U̇(q, q̇) = ẋc
[[
kE
(
Ē − Ē?

)
β +KV

]
υ + kE

(
Ē − Ē?

)
α+ kx

(
xc − x?c

)]
, (4.8)

where α(q, q̇) = sin θ
(
gr cos θ − lθ̇2) and β(q) = kc − (cos θ)2. Clearly, β(q) > 0 if and

only if kc > 1.

One can choose υ such that[
kE
(
Ē − Ē?

)
β +KV

]
υ + kE

(
Ē − Ē?

)
α+ kx

(
xc − x?c

)
= −K∆ẋc (4.9)

for some strictly positive constant K∆ ∈ R, which leads to

U̇(q, q̇) = −K∆ẋ
2
c . (4.10)

Moreover, the singularities in (4.9) are avoided provided that∣∣∣kE(Ē − Ē?)β +KV

∣∣∣ 6= 0, ∀ (q, q̇).

According to Lemma 3.1, the expression above holds if the following lower bound
constraint for KV is fulfilled

KV >
(
2grl + Ē?

)
kE max

θ
(β) ⇒ KV >

(
2grl + Ē?

)
kEkc. (4.11)

Now, the control law υ can be rewritten from (4.9) as

υ(q, q̇) = −
K∆ẋc + kE

(
Ē − Ē?

)
α+ kx

(
xc − x?c

)
kE
(
Ē − Ē?

)
β +KV

. (4.12)

4.3.3 Stability Analysis

In view of (4.10) is negative semi-definite and the homoclinic orbit is not an isolated
equilibrium point, the stability analysis will be performed based on LaSalle’s invariance
principle, see Theorem 2.2.23 Under some abuse of notation, we define θ ∈ S, i.e.,

23LaSalle’s invariance principle can be used when, instead of an isolated equilibrium point, the system
has an equilibrium set [15].
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4.3 Explicit Swing-Up Controller

θ ∈ [0, 2π[' S.24 Since U in (4.7) is a non-increasing function, see (4.10), every solution
of the system (4.2) in closed-loop with (4.12) starts in Ω and remains in Ω for all t ≥ 0.
The set Ω is defined as

Ω =
{

(q, q̇) ∈ S× R2 | U(q, q̇) ≤ c
}
,

where c is an appropriate positive constant, such that Ω is closed and bounded. Let Γ
be the set of all points in Ω such that U̇ = 0. The set Γ is defined as

Γ =
{

(q, q̇) ∈ Ω | U̇ = 0
}
.

Let M be the largest invariant set in Γ. Via LaSalle’s theorem every solution starting in
Ω approaches M as t→∞.

Since U̇ = 0 holds identically in Γ. From (4.10), if U̇ = 0, then ẋc = 0, U = const.,
xc = const. and ẍc = υ = 0 in Γ. Using (4.7), it is clear that Ē = const. in Γ. The
resulting constants can be summarized as

Ē = const., xc = const., ẋc = 0, υ = 0. (4.13)

From (4.12) and (4.13), it follows that the control law has been chosen such that

0 = kE
(
Ē − Ē?

)
α+ kx

(
xc − x?c

)
. (4.14)

Now, it is evident that
(
Ē − Ē?

)
α must be constant in Γ. Since Ē is also constant and

Ē? is fixed to be 0, two cases are discussed below.

• Ē = 0: This is the simplest case. Here, xc = x?c . Recall that Ē = 0 means that
the trajectories of the pendulum are in the homoclinic orbit (4.6).

• Ē 6= 0: In this case, the only solution for α is to be a constant in Γ. Besides, using
(4.5) we can rewrite α as α(θ) = sin θ

[
3gr cos θ − d̄

]
, where d̄ = 2

(
E + grl

)
/l.

Analyzing (4.2), shows that if υ = 0, then the cart-pole dynamics (4.2) is reduced
to a simple pendulum. Therefore, if and only if the pendulum gets stuck at the
equilibrium points, then α is constant and equal to 0. Hence, xc = x?c . Note that,
at the unstable equilibrium point it is implied that Ē = 0, which is a contradiction.
The other equilibrium point may be avoided by including the following assumption.

24We assume θ ∈ S instead of θ ∈ R, but strictly speaking θ /∈ S because S ⊂ R2 denotes the unit
circle. Indeed, we have S̄ = [0, 2π[ is homeomorphic (or diffeomorphic) to S so that θ ∈ S̄, i.e.,
θ ∈ [0, 2π[' S. For further details about the discontinuity problem, see [6].
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4 Energy-Based Control for Explicit UMS: The Cart-Pole Analysis

Assumption 4.1: To avoid the pendulum get stuck at the downward (stable) position,
it is imposed that the new energy Ē(q, q̇) > −2grl, for all (q, q̇).

Assumption 4.1 implies that a nonzero initial value must be assigned to the new kinetic
energy in (4.5), i.e., θ(0) = π (downward pendulum position) is admissible if and only
if θ̇(0) 6= 0. From the above, it is concluded that (4.14) is fulfilled only when Ē = 0,
xc = x?c and ẋc = 0. Finally, the largest invariant set M in Γ is given by

M =
{

(q, q̇) ∈ Ω | θ̇2 = 2gr
(
1− cos θ

)
/l, xc = x?c , ẋc = 0

}
.

From LaSalle’s invariance principle, it has been proved that the control law (4.12) bring
the system (4.2) for any (q, q̇) ∈ Ω to the invariant set M. Figure 4.5 depicts the level
set of U(θ.θ̇), the homoclinic reference for the set M is shown in red and the subset
θ ∈ S is restricted by dashed lines in black. Recall that, Theorem 2.2 refers to those sets
Ω that are compact (closed and bounded), nothing can be said for those sets Ω that are
not compact.

Figure 4.5 – Level set of U(θ, θ̇)
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4.3 Explicit Swing-Up Controller

4.3.4 Damping Injection

In order to improve convergence (physically motivated), with no compromising stability,
the well-known damping injection method can be used. The control input υ is set as

υ := υ + υ̂. (4.15)

To prove the passivity of the closed-loop it suffices to compute (4.8) with (4.15). Solving
for υ̂ yields

U̇(q, q̇) = ẋc
[
kE
(
Ē − Ē?

)
β +KV

]
υ̂,

Define the input υ̂ and the output ŷ := ẋc
[
kE
(
Ē − Ē?

)
β +KV

]
. The operator υ̂ 7→ ŷ is

passive with storage function (4.7).

Notice that ẋc ŷ ≥ 0, then the damping injection can be formulated as υ̂ = −ky ẋc,
where ky ∈ R is a strictly positive constant.

4.3.5 Simulation Results

Consider the parameters of the cart-pole system from Table 4.1, with no friction, i.e.,
r1 = 0. The tuning gains are chosen as shown in Table 4.3. These gains satisfy the
inequality in (4.11). The desired cart position is set to x?c = 0 with target energy
Ē? = 0. The objective is to swing-up the pendulum from the initial states θ(0) = π,
θ̇(0) = π/180, xc(0) = 0 and ẋc(0) = 0. These initial conditions satisfy Assumption 4.1.

kc kE kx KV K∆ ky

2 1 100 20 0 4

Table 4.3 – Parameters of the explicit swing-up controller

Figure 4.6 depicts the phase portrait of (θ, θ̇) and the time responses of θ, xc, ẋc, U
and Ē − Ē? under the swing-up control problem. Simulations show that the controller
(4.12) brings the trajectories of the pendulum into the homoclinic orbit (4.6) fulfilling
the requirements stated in the problem formulation, i.e., Ē → Ē?, xc → x?c and ẋc → 0.
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4 Energy-Based Control for Explicit UMS: The Cart-Pole Analysis

Figure 4.6 – Simulation results with no damping

4.3.6 Experimental Validation

Real-time experiments are contrasted with simulations including damping in the cart-
pole dynamics. Consider the parameters of the cart-pole system from Table 4.1, including
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4.3 Explicit Swing-Up Controller

friction, and the controller parameters from Table 4.3. The target values and initial
conditions are the same as in the previous section. The first row of Figure 4.7 depicts
the phase portrait of (θ, θ̇) for a given Ē? = 0, where unmodeled dynamics, e.g. friction,
impede the increase in amplitude of θ and θ̇. To reduce the effect of the friction and other

Figure 4.7 – Simulation (blue) and experimental (red) results with damping
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4 Energy-Based Control for Explicit UMS: The Cart-Pole Analysis

unmodeled dynamics, we study the effectiveness of positive energy Ē(q, q̇). According
to [6, 41], a good practical approach is to choose a target energy Ē? > 0 such that the
trajectories of the pendulum reach the homoclinic orbit (4.6).

Figure 4.8 – Simulation (blue) and experimental (red) results with damping
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4.4 PID-PBC

Now, consider the same controller parameters and set the target energy as Ē? = 1.44.
As shown in the second row of Figure 4.7, the controller (4.12) brings the trajectories
of the pendulum into the homoclinic orbit (4.6). Figure 4.8 depicts that xc, ẋc and Ē
remain bounded near their target values.

4.4 PID-PBC

This section deals with the (local) stabilization at the unstable equilibrium point of
the cart-pole system in explicit EL representation. The so-called PID-PBC approach is
performed for the cart-pole system in SNF.

4.4.1 Controller Design

Consider an ideal cart-pole system (massless bar) in SNF given by (4.2) and assume
there is no friction, i.e., r1 = 0 with generalized coordinates q = col(qu, qa) ∈ R2, n = 2,
where qu = θ and qa = xc. From (4.1) and (4.3), the sub-blocks of the inertia matrix
are given by

muu(θ) = l2, (4.16a)

mau(θ) = l cos θ, (4.16b)

and the sub-function of the potential energy is

Vu(θ) = grl (cos θ − 1) . (4.17)

Problem Formulation: Find a mapping υ : R2 × R2 → R such that it stabilizes the
upright vertical position of the pendulum and places the cart at any arbitrary position.
Consider the desired equilibrium q? = col(0, q?a) with q?a = x?c ∈ R, which is the only
constant assignable equilibrium point.

System (4.2) clearly satisfies Assumption 3.2. Applying Corollary 3.1, two new passive
outputs are identified as

yu = −l cos θθ̇,

ya = ẋc.
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4 Energy-Based Control for Explicit UMS: The Cart-Pole Analysis

The yd signal defined in (3.7) takes the form

yd = kaẋc − kul cos θθ̇. (4.18)

Assumption 3.3 is also satisfied with

VN (θ) = −l sin θ. (4.19)

The well-defined PID-PBC state-feedback law is given by (3.8) and is rewritten as
follows

υPID = −K(θ)−1
[
KP yd +KI

∫ t

0
yd(τ) dτ + S(θ, θ̇)

]
, (4.20)

where the integral term (3.12) takes the form
∫ t

0
yd(τ) dτ = ka(xc − x?c)− kul sin θ, (4.21)

and the mappings K and S result in

K(θ) = ke + kaKD + kuKD (cos θ)2 , (4.22)

S(θ, θ̇) = kuKD

(
l sin θθ̇2 − gr cos θ sin θ

)
. (4.23)

The target (or desired) inertia matrix and potential energy function are given by

Md(q) =
[
kekul

2 + k2
uKD (l cos θ)2 −kakuKDl cos θ

−kakuKDl cos θ keka + k2
aKD

]
, (4.24)

Vd(q) = kekugrl (cos θ − 1) + 1
2KI

[
ka(xc − x?c)− kul sin θ

]2
, (4.25)

respectively. Assumption 3.4(b) is verified with

keka + k2
aKD > 0

kekak
2
uKD (cos θ)2 > −keku

(
keka + k2

aKD

)} ⇒ Md(q) = M>d (q) � 0, (4.26)

where the necessary and sufficient conditions

∂ Vd
∂q

∣∣∣∣
q?

= 0 and ∂2Vd
∂q2

∣∣∣∣∣
q?

=
[
k2
uKI l

2 − kekugrl −kakuKI l

−kakuKI l k2
aKI

]
� 0 (4.27)

are satisfied with
keku < 0 ⇒ q? = arg minVd(q). (4.28)
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4.4 PID-PBC

From (4.27) and (4.28), we conclude that Vd(q) is proper and verifies q? = arg minVd(q)
is an isolated minimum.

4.4.2 Local Optimal Controller

Solving simultaneously the set of equations (4.2a) and (4.2b) for θ̈ and ẍc gives

θ̈ = gr
l

sin(θ)− 1
l

cos(θ)υ − r1
l2
θ̇, (4.29a)

ẍc = υ. (4.29b)

Defining the state vector x ∈ R4 as x = col(q, q̇) = col(θ, xc, θ̇, ẋc) and the control input
υ ∈ R. Makes clear that (4.29) can be represented by the following affine nonlinear
state-space equation ẋ = f(x) + g(x)υ, for some f : R4 → R4 and g : R4 → R4.

Consider the linearization of the cart-pole system (4.29) in closed-loop with (4.20)

˙̃x =
∂
[
f(x) + g(x)υPID(x)

]
∂x

∣∣∣∣∣
x=x?

x̃

= ∂ f(x)
∂x

∣∣∣∣
x=x?

x̃ + g(x)
∣∣∣
x=x?

∂ υPID(x)
∂x

∣∣∣∣
x=x?

x̃,
(4.30)

where x̃ = x− x? and the desired equilibrium x? = col(q?, 0) = col(0, x?c , 0, 0). Hence,
the state matrix and the input-to-state matrix are provided by

A = ∂f(x)
∂x

∣∣∣∣
x=x?

=


0 0 1 0
0 0 0 1
ḡ 0 −r̄ 0
0 0 0 0

 and B = g(x)
∣∣∣
x=x?

=


0
0
−ā
1

 , (4.31)

respectively, where ḡ = gr/l, r̄ = r1/l2 and ā = 1/l. The (linear) feedback gain vector is
computed as

KLIN = ∂ υPID(x)
∂x

∣∣∣∣
x=x?

= 1
γ

[
kuKDgr + kuKI l −kaKI kuKP l −kaKP

]
, (4.32)

where γ = ke + kaKD + kuKD.

The pair (A,B) is controllable and is verified computing the controllability matrix

det
([

B AB A2B A3B
])

= −g
2
r

l4
6= 0. (4.33)
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4 Energy-Based Control for Explicit UMS: The Cart-Pole Analysis

From linear systems theory, it is possible to design a state-feedback controller υ = −Kx̃
with K ∈ R1×4 such that the closed-loop system ˙̃x = (A − BK)x̃ is exponentially
(asymptotically) stable. For this purpose the optimal Linear Quadratic Regulator (LQR)
methodology is established.

Consider the following optimization problem

min
υ

J(υ) =
∫ ∞

0
x̃>Qx̃ + υ>Rυ dt, (4.34a)

subject to
˙̃x = Ax̃ + Bυ, x̃(0) = x0, (4.34b)

where Q = Q> � 0 and R = R> � 0 are weighting matrices. It is well-known that the
control law which minimizes the quadratic cost function (4.34a) subject to the system
dynamics (4.34b) is υ = −KLQR x̃, where KLQR is given by

KLQR = R−1B>P (4.35)

and P is a solution to the Algebraic Riccati Equation (ARE)

A>P + PA−PBR−1B>P + Q = 0. (4.36)

The goal is that around the equilibrium point x? = col(q?, 0) the behavior of the
cart-pole system (4.2) in feedback with (4.20) equals the local optimal behavior of
˙̃x = (A − BKLQR)x̃. As a consequence, the (unknown) tuning parameters of the
PID-PBC state-feedback law are found by solving

KLIN = −KLQR . (4.37)

4.4.3 Stability Analysis

Since, at the equilibrium point, the system (4.2) in feedback with (4.20) is (locally)
equivalent to ˙̃x = (A−BKLQR)x̃, then asymptotic stability can be verified invoking
Theorem 2.3.

For the stability analysis, we considered the linearized dynamics of the cart-pole system
(4.31) using the parameters from Table 4.1. The gain vector KLQR can be found by
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4.4 PID-PBC

choosing Q = diag(1, 60, 1, 12), R = 1 and solving P via (4.36).25 Here, two cases are
addressed.

• Negligible damping (r1 = 0): The optimal LQR feedback gain is

KLQR =
[
−50.2405 −7.7460 −11.2019 −8.7091

]
(4.38)

and the (closed-loop) eigenvalues are

Λ =
{
−3.2107 −5.8772 −2.6738± 1.0821ı

}
.

• With damping (r1 = 0.0276): The optimal LQR feedback gain is

KLQR =
[
−50.7416 −7.7460 −11.1672 −8.7544

]
(4.39)

and the (closed-loop) eigenvalues are

Λ =
{
−3.2099 −5.8788 −2.6737± 1.0821ı

}
.

Via Lyapunov’s indirect method, (local) asymptotic stability is guaranteed because in
both cases the eigenvalues of the closed-loop system are in the open left-half plane.

4.4.4 Simulation Results

Consider the parameters of the cart-pole system from Table 4.1, with no friction, i.e.,
r1 = 0. From (4.37), using (4.32) and (4.38), one solution gives us the following tuning
gains KP = 5.5799, KI = 4.9629, KD = 0.9899, ke = 1, ka = 1 and ku = −2.6575.
These gains satisfy the inequalities in (4.26) and (4.28). The desired cart position is set
to x?c = 0 m. The objective is to stabilize the cart-pole system from the initial states
θ(0) = π/9, θ̇(0) = 0, xc(0) = 0 and ẋc(0) = 0.

Figure 4.9 depicts the time responses of the states θ, θ̇, xc, ẋc, the control input υ and
the target Hamiltonian Hd under the stabilization control problem. Simulations show
that the controller (4.20) stabilizes the system (4.2) fulfilling the requirements stated in
the problem formulation, i.e., θ → 0, θ̇ → 0, xc → x?c = 0 and ẋc → 0. It can be seen
that the performance of the PID-PBC is almost the same as the LQR.
25We write diag(a1, . . . , an) for a diagonal matrix whose diagonal entries starting in the upper left

corner are a1, . . . , an.
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4 Energy-Based Control for Explicit UMS: The Cart-Pole Analysis

Figure 4.9 – Simulation results with no damping

4.4.5 Experimental Validation

Real-time experiments are contrasted with simulations including damping in the cart-
pole dynamics. Consider the parameters of the cart-pole system from Table 4.1, including
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4.4 PID-PBC

friction. From (4.37), using (4.32) and (4.39), one solution gives us the following tuning
gains as shown in Table 4.4. These gains satisfy the inequalities in (4.26) and (4.28).
The desired equilibrium is set to x?c = 0.5 m for t ∈ [0, 5[ s, x?c = −0.5 m for t ∈ [5, 10[ s
and x?c = 0 m for t ∈ [10, 15] s.

Figure 4.10 – Simulation and experimental results with damping
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4 Energy-Based Control for Explicit UMS: The Cart-Pole Analysis

The objective is to stabilize the cart-pole system from the initial states θ(0) = 0, θ̇(0) = 0,
xc(0) = 0 and ẋc(0) = 0.

KP KI KD ke ka ku

5.5239 4.8876 0.9972 1 1 −2.6356

Table 4.4 – PID-PBC parameters

Figure 4.10 depicts the time responses of the states θ, xc and the (real) control input ῡ
under the regulation control problem. Simulations and real-time experiments show that
the controller (4.20) stabilizes the system (4.2) fulfilling the requirements stated in the
problem formulation, i.e., θ → 0 and xc → x?c with continuous, smooth and bounded
(real) control input ῡ. It can be seen that simulations and real-time experiments show
almost the same performance.

4.5 Explicit Control Scheme

Figure 4.11 depicts an overview of the explicit control strategy which integrates both
controllers: (i) swing-up and (ii) PID-PBC. The swing-up controller brings the trajecto-
ries of the pendulum into the homoclinic orbit, i.e, the pendulum will remain swinging
while getting closer and closer to its upright (unstable) position. Once the system is
close enough, to its unstable equilibrium point, the stabilizing controller must keep the
pendulum at the upright vertical position and the cart at the target value.26

Stabilizing
controller

Swing-Up
controller

Selector Cart-Pole
∑ ∫

υ ῡ

(q?, 0)

(q?, 0)

(q, q̇)

Figure 4.11 – Overview of the explicit control system

26In this section, stabilizing controller refers to PID-PBC.
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Since the control scheme is initialized with the swing-up controller, then an algorithm
is required to decide when to switch to the stabilizing controller. The block named
Selector is an algorithm that decides which of the controllers must be active. To activate
the stabilizing controller, we propose the following conditions

∣∣ẋ∣∣ ≤ 0.2 m/s,
∣∣x∣∣ ≤ 0.1 m,∣∣θ̇∣∣ ≤ 0.4 rad/s and for

∣∣θ∣∣ we develop an algorithm based on Figure 4.12.27

θ ≤ 5°

θ ≥ 30°

θ > 5°
SwUp Stab

θ > 5°

θ < 30°

Figure 4.12 – State machine for θ

If at least one of these inequalities is not met, then the output of the swing-up controller
will be applied to the system. If all of them are satisfied, then the output of the
stabilizing controller will be applied to the cart-pole. Clearly, when one controller is
activated the other remains deactivated. This is computationally efficient since it avoids
computing both control algorithms simultaneously.

Real-time experiments are contrasted with simulations including damping in the cart-pole
dynamics. (i) For the swing-up controller, consider the system parameters from Table
4.1, the controller parameters from Table 4.3, the (new) target energy set as Ē? = 1.44
and the initial conditions from Section 4.3.6. (ii) For the stabilizing controller, consider
the system parameters from Table 4.1 and the controller parameters from Table 4.4.
For both controllers, the target cart position is set to x?c = 0 m.

Figure 4.13 – Simulation (blue) and experimental (red) results with damping

27In Figure 4.12, SwUp refers to the swing-up controller and Stab refers to the stabilizing controller.
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4 Energy-Based Control for Explicit UMS: The Cart-Pole Analysis

Figure 4.13 depicts the phase portrait of (θ, θ̇) and Figure 4.14 depicts the time responses
of the states θ, xc and the (real) control input ῡ under the (explicit) control scheme
provided by Figure 4.11. The switch occurs at t = 12.1 s in the simulations and at
t = 12.6 s in the real-time experiments. Note that the (real) control input ῡ is bounded.

Figure 4.14 – Simulation (blue) and experimental (red) results with damping
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Chapter 5

Energy-Based Control for Implicit UMS

In analytical mechanics, explicit systems are those modeled as ODEs and these rep-
resentations are widely used in the design of control systems. Frequently, complex
dynamical systems are modeled as simpler interconnected subsystems, where its dynam-
ics is described by ODEs subject to a set of algebraic equations describing constraints
(interconnections). The resulting implicit mechanical model becomes a system of DAEs.
In the standard IDA-PBC approach, the feedback control law exists if the so-called
matching conditions hold, where the main drawback is to solve a set of non-homogeneous,
first order and quasi-linear PDEs, see Section 2.4. Recent research work [10] has shown
that the total energy-shaping via IDA-PBC can be performed without solving PDEs
for a class of UMSs in implicit PH representation and still preserving the PH structure
of the closed-loop. Conversely, an energy-based controller is derived using a generalized
energy function and taking advantage of the passivity properties of UMSs. The latter
approach is often used for two specific tasks: (i) the stabilization at an isolated equi-
librium point and, more recently, (ii) the tracking of homoclinic orbits (limit cycles).
This chapter is organized as follows. Section 5.1 presents the IDA-PBC methodology
for UMSs in implicit PH representation, which under some easily verifiable conditions,
the computation of PDEs is avoided via algebraic equations. Section 5.2 provides the
typical energy-based control approach using a more general energy function for UMSs in
implicit PH representation with no class restriction. The latter approach is performed
in two stages. First, we analyze the passivity properties of the system and identify its
passive output. Second, we define a (generalized) admissible storage function for the
stabilization at an energy level-set.
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5.1 IDA-PBC for Implicit UMS

In this section it is presented the total energy-shaping via IDA-PBC for UMSs in
implicit PH representation.28 Based on [8,59], the constrained EL equations of motion
for mechanical systems with no natural damping can be rewritten as[

ṙ

ρ̇

]
=
[

0 Inr

−Inr 0

] [
∂>r H
∂>ρ H

]
+
[

0
b(r)

]
λ+

[
0
G(r)

]
u, (5.1a)

0 = b>(r)∂>ρ H, (5.1b)

with total (kinetic plus potential) stored energy

H(r, ρ) = 1
2ρ
>M−1(r)ρ+ V(r), (5.2)

where r ∈ Rnr are the implicit generalized coordinates (position), ρ ∈ Rnr are its
associated momenta, u ∈ Rnu , with nu ≤ nr, are the inputs, G : Rnr → Rnr×nu

is the implicit full rank input matrix, b(r)λ represents the constraint forces with
b : Rnr → Rnr×nλ , and λ ∈ Rnλ are the implicit variables. The implicit inertia
matrixM : Rnr → Rnr×nr satisfiesM(r) =M>(r) � 0, the implicit potential energy
V : Rnr → R and the implicit Hamiltonian H : Rnr × Rnr → R.

Definition 5.1 (Implicit UMS [9]): The (implicit) mechanical system (5.1) is said to
be underactuated if rank(S) < dim(r), where S(r) :=

[
G(r) b(r)

]
. �

Definition 5.2 (Holonomic system [5]): Constraints (5.1b) are called holonomic since
they can be integrated. If all constraints (5.1b) are integrable, then we say that the
system (5.1) is holonomic. Otherwise, (5.1) is called non-holonomic. �

Proposition 5.1 (Well-posedness [10]): Consider the implicit system (5.1) and define
the set

X :=
{
r ∈ Rnr | rank(∆) = nλ

}
,

where ∆(r) := b>M−1(r)b. Then, for all r ∈ X , the constrained state-space set

Xc =
{

(r, ρ) ∈ X × Rnr | b>∂>ρ H = 0, φi = 0
}

28Implicit systems are those modeled as DAEs, where constraints are described as algebraic equations.
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is a regular manifold embedded in Rnr×nr and the DAEs system (5.1) has differential
index 1 with unique solution for λ. Here,

φi(r) :=
∫ r

0
b>i (s) ds+ ci

are the integrated (holonomic) constraints (with ∂>r φi ≡ bi), ci is constant, bi is the
i-th column vector of b satisfying the integrability condition ∂rbi ≡ ∂>r bi and b>∂>ρ H is
differentiable. Otherwise, for non-integrable (non-holonomic) constraints the domain Xc
reduces to

Xc =
{

(r, ρ) ∈ X × Rnr | b>∂>ρ H = 0
}
. �

Problem Formulation: Find a mapping u : X × Rnr → Rnu such that it transforms
the nominal system (5.1) by means of some state-feedback control law into a target
PH system with a stable equilibrium at the desired point (r, ρ) = (r?, 0) with target (or
desired) Lyapunov function (Hamiltonian), whereMd(r) =M>d (r) is full rank, but not
necessarily positive definite, and r? = arg minVd(r) is an isolated minimum.

Consider the desired (or target) PH system in implicit representation

[
ṙ

ρ̇

]
=
[

0 J (r)
−J >(r) −W(r, ρ)

] [
∂>r Hd
∂>ρ Hd

]
+
[

0
bd(r)

]
λd, (5.3a)

0 = b>d (r)∂>ρ Hd, (5.3b)

with target energy function

Hd(r, ρ) = 1
2ρ
>M−1

d (r)ρ+ Vd(r),

where, similar to Proposition 5.1, we define ∆d(r) := b>dM
−1
d (r)bd and the set

Xd :=
{
r ∈ Rnr | rank(∆d) = nλ

}
,

such that the target system (5.3) is well-defined for all r ∈ Xd, bd(r)λd represents
the new constraint forces with bd : Xd → Rnr×nλ and λd ∈ Rnλ are the new implicit
variables, Md : Xd → Rnr×nr is the non-singular target inertia matrix that satisfies
Md = M>d , J : Xd → Rnr×nr is non-singular, Vd : Xd → R is the target potential
energy, W : Xd×Rnr → Rnr×nr and Hd : Xd×Rnr → R is the new shaped Hamiltonian.
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Proposition 5.2 (Implicit matching equations [10]): Assume S :=
[
G b

]
is full rank.

System (5.1) can be transformed into (5.3) for any r in X ∩ Xd whenever the following
kinetic (quadratic in ρ), potential (independent of ρ) and constraint matching equations

S⊥
(
∂>r (M−1ρ)− J >∂>r (M−1

d ρ)−W1M−1
d

)
ρ = 0, (5.4a)

S⊥
(
∂>r V − J >∂>r Vd

)
= 0, (5.4b)

S⊥J >b = 0, (5.4c)

are satisfied. As a consequence, the uniquely defined control law is given by

uI = S†
(
∂>r H−J >∂>r Hd −W∂>ρ Hd + J >bλd

)
, (5.5)

where S† =
[
Inu 0

] (
S>S

)−1
S>, J = M−1Md, bd = J >b, S⊥ is the full rank left

annihilator of S, W(r, ρ) := 1
2W1(r, ρ) + S(r)Ku(r)S>(r), W1(r, ρ) ∈ Rnr×nr is linear

in ρ and Ku(r) ∈ R(nu+nλ)×(nu+nλ). �

Proposition 5.3 (Implicit stability [10]): Assume that the conditions of Proposition
5.2 are satisfied and define the new domain29

XI :=
({

r ∈ Xd | b⊥MM−1
d Mb>⊥ � 0, φ = 0

}
× Rnr

)
∩ Xc.

Then x? = (r?, 0) ∈ Xa =
{
(r, ρ) ∈ XI | S⊥∂>r V = 0

}
is a stable equilibrium of the

closed-loop system (5.3) for any Ku + K>u � 0 if r? = arg min Vd|XI is an isolated
minimum30 and

ρ>M−1
d W1M−1

d ρ
∣∣∣
XI

= 0.

Furthermore, if yI :=
(
Ku + K>u

) 1
2S>M−1

d ρ is a detectable output of (5.3), then the
equilibrium point x? = (r?, 0) is asymptotically stable. �

Remark: The implicit variables λ and λd may be computed from the hidden (or
secondary) constraint

d b>∂>ρ H
dt = ∂r

(
b>∂>ρ H

)
∂>ρ H+ b>M−1ρ̇ = 0. (5.6)

29For non-integrable (non-holonomic) constraints XI =
({
r ∈ Xd | b⊥MM−1

d Mb>⊥ � 0
}
× Rnr

)
∩ Xc.

30Note that Hd|XI
is the restriction of Hd to XI .
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5.1 IDA-PBC for Implicit UMS

5.1.1 A Class of Holonomic Systems

The set of PDEs from the matching conditions (5.4) may be solved algebraically for a
class of UMSs in implicit PH representation with holonomic constraints. The following
assumption defines the system class.

Assumption 5.1:

(a) The inertia matrixM is constant.

(b) The potential energy function V is linear in r.

(c) The full rank input matrix-valued function G is polynomial.

(d) The constraints φ are polynomials.

Proposition 5.4 ((Implicit) Algebraic IDA-PBC [10]): Consider a holonomic (all
constraints (5.1b) are integrable) implicit PH system (5.1) fulfilling Assumption 5.1.
The implicit state-feedback control law (5.5) with r?−r = r̃, Ku+K>u � 0, target inertia
matrix

Md =MB?

[
A+ CDC> CD

DC> D

]
B?>M, where B?> =

[
b?⊥
b?>

]
,

and target potential energy function

Vd = 1
2ψ
>Kψψ + r̃>b?µ?, where ψ(r) =

∫ r

r?
S̄>(s)S>(s)M−1

d M ds,

stabilizes the closed-loop system (5.3) at x? = (r?, 0), if there exists a constant vector µ? ∈
Rnλ and matrices A ∈ R(nr−nλ)×(nr−nλ) that satisfies A = A> � 0, C ∈ R(nr−nλ)×nλ,
non-singular symmetric D ∈ Rnλ×nλ , and S̄(r) ∈ R(nu+nλ)×nψ , with nψ ≤ nu +nλ, such
that

S⊥
(
∂>r V +MZcDb

⊥>b?µ?
)

= 0, (5.7a)

S⊥M
(
b?⊥
>Ab?⊥ + ZcDZ

>
c

)
b = 0, (5.7b)

∂r(SS̄i)M−1Md −MdM−1∂>r (SS̄i) = 0, (5.7c)

Z⊥ZaZ
>
⊥ � 0, (5.7d)
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5 Energy-Based Control for Implicit UMS

where b? = b(r?), Zc = b?⊥
>C + b?, Z =

[
Inr−nλ −C

]
B?−1M−1S(r?)S̄(r?) has full

rank, Za = Ab?⊥ ∂r(bµ?)|r=r? b?⊥>A, S̄i is the i-th column of S̄,

[
S>⊥ M−1

d ρ
]>
W1 = 0, (5.8a)

Kψ � −Z+
(
Za − ZaZ>⊥ (Z⊥ZaZ>⊥ )−1Z⊥Za

)
Z+> , (5.8b)

where Kψ = K>ψ ∈ Rnψ×nψ and Z+ = (Z>Z)−1Z>. Furthermore, if yI is a detectable
output of (5.3), then the equilibrium point x? = (r?, 0) is asymptotically stable. �

The new algebraic matching conditions (5.7a) and (5.7b) are given by direct substitution
of Hd in (5.4) with (5.8a). The integrability condition (5.7c) guarantees the existence
of ψ, which implies the existence of Vd. The necessary and sufficient conditions for x?

to be an isolated minimum of Hd |Xc are given by (5.7d) and (5.8b), respectively. In
addition, (5.8a) is useful to compute W1 and (5.8b) set a lower bound in the choice
of Kψ. The procedure for the design of the implicit algebraic IDA-PBC approach is
summarized in the following algorithm.

Require: Holonomic system (5.1) fulfilling Assumption 5.1
1: Select r?, b?⊥ and S⊥
2: Find a numerical solution for C (if possible) and constraints for A, D and µ?

via (5.7a) and (5.7b)
3: Select S̄ via (5.7c) with full rank condition on Z, and pick Z⊥
4: Choose W1, A � 0, D (non-singular), µ?, Kψ, and Ku, from (5.7d), (5.8) and
Ku +K>u � 0

Algorithm 5.1 – Algorithm for the implicit algebraic IDA-PBC
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5.1 IDA-PBC for Implicit UMS

5.1.2 Reduction to Explicit Coordinates

The following proposition states a (local) coordinates reduction that removes the
constraints (5.3b) and constraint forces bd(r)λd.31

Proposition 5.5 (Implicit reduction [10]): Assume all constraints (5.3b) are integrable
(holonomic constraints) and the identity{

r | φ(r) = 0, ∂rφ = b>d J −1
}

=
{
q | r = h(q)

}
holds for all r and q in some subsets of Xd and Rnr−nλ , respectively. Then, system (5.3)
with r ∈ Xd, p = T>1 ρ ∈ Rnr−nλ and ρ ∈ Rnr can be reduced to

[
q̇

ṗ

]
=

 0 Jq(q)
−J>q (q) −T>1 ΓT1

∣∣∣
r=h(q)

[∂>q Hd

∂>p Hd

]
(5.9)

with

Hd(q, p) = 1
2p
>
(
T>1 MdT1

∣∣∣
r=h(q)

)−1
p+ Vd

(
h(q)

)
,

Γ = ∂r(T−>p)J − J >∂>r (T−>p) +W,

if there exists a diffeomorphism (r, ρ) 7→ (r, T>ρ) and q 7→ h(q) s.t. T =
[
T1 T2

]
,

T1 : Xd → Rnr×(nr−nλ), T2 : Xd → Rnr×nλ, J T1|r=h(q) = ∂qh(q)Jq(q), b>d T1 = 0 and
b>d T2 has full rank. �

Proposition 5.5 is carried out for closed-loop systems of the form (5.3). However, the
latter can be easily adapted for open-loop systems of the form (5.1), where Xd, J (r)
and Hd(r, ρ) are replaced by X , Inr and H(r, ρ), respectively. Moreover, the implicit
input matrix G is reduced to G = T>1 G. Indeed, for holonomic systems with Jq = Inr−nλ
the following is satisfied

T>1 ΓT1 = ∂>q (T>1 ρ)− (∂qT>1 ρ) =
nr∑
i=1

(
∂>q (∂>q hi)− ∂q(∂>q hi)

)
ρi = 0,

where the first equality is obtained by using the chain rule and the last one results from
the integrability condition of h (symmetric ∂q

(
∂>q hi

)
), with hi as the i-th element of

the column vector h.

31We perform the reduction from implicit to explicit coordinates.
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5 Energy-Based Control for Implicit UMS

5.2 Classical Energy-Based Control for Implicit UMS

This section provides an alternative approach to the typical energy-based control
using a more general class of energy function for the control of UMSs in implicit PH
representation. This approach is performed in two steps. First, we analyze the passivity
properties of the system and identify its passive output. Second, we define a (generalized)
admissible storage function for the stabilization at an energy level-set.

5.2.1 Passivity

Consider the constrained Hamiltonian equations (5.1) and its total mechanical energy
(5.2). Then, taking the time-derivative of (5.2) along the trajectories of (5.1) yields

Ḣ(r, ρ) =
(
∂ρH

)
G(r)u.

The operator u 7→ y := G>∂>ρ H is passive with storage function (5.2).32

5.2.2 Controller Design

Since the implicit UMS (5.1) is passive, with input u and output y, then the following
assumption is introduced.

Assumption 5.2: There exists a mapping η : Rnr → Rnu such that

(
∂ η(r)
∂r

)>
= G(r).

That is, there exists a function η such that η̇ := y.

Problem Formulation: Find a mapping u : X × Rnr → Rnu such that the system
(5.1) in closed-loop with the state-feedback control law u achieves

lim
t→∞
H = H?, lim

t→∞
y = 0, lim

t→∞
f(η) = 0. (5.10)

The goal is to stabilize the passive output y and reach the desired (or target) mechanical
energy H? ∈ R which imposes a restriction on the underactuated variables.
32From now on, we will consider a passive system (instead of cyclo-passive) since we assume H(r, ρ) is

bounded from below.
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5.2 Classical Energy-Based Control for Implicit UMS

We now recall the standard procedure of the classical energy-based control approach [6,9]
for implicit UMSs of the form (5.1). Examine whether there exists a control law to
achieve the control objectives in (5.10) via the following (generalized) function.33

U(r, ρ) = 1
2kH

(
H(r, ρ)−H?

)2 + f(η) + 1
2
∥∥ y ∥∥2

KΩ
, (5.11)

where kH ∈ R is a positive constant, KΩ ∈ Rnu×nu verifies KΩ = K>Ω � 0 and
f : Rnu → R such that f(η) ≥ 0.

Taking the time-derivative of (5.11) along the trajectories of (5.1) yields

U̇(r, ρ) = y>
[
kH
(
H(r, ρ)−H?

)
u+ ∂>η f +KΩ ẏ

]
.

Selecting
kH
(
H(r, ρ)−H?

)
u+ ∂>η f +KΩ ẏ = −K∇ y (5.12)

for some K∇ ∈ Rnu×nu , K∇ = K>∇ � 0, results in

U̇ = −
∥∥ y ∥∥2

K∇
≤ 0.

Now, it is discussed under what condition the controller u can be obtained from (5.12).

Taking the time-derivative of y = G>∂>ρ H along the trajectories of (5.1) yields

ẏ =
(
G>M−1G

)
u+

(
G>M−1b

)
λ+N1(r, ρ), (5.13)

where N1(r, ρ) = Ġ>∂>ρ H+G>Ṁ−1ρ−G>M−1∂>r H. Replacing (5.13) into (5.12) gives

N2(r, ρ)u+KΩ
(
G>M−1b

)
λ = −K∇ y − ∂>η f −KΩN1(r, ρ), (5.14)

where N2(r, ρ) = kH
(
H−H?

)
Inu +KΩ

(
G>M−1G

)
. From the hidden constraint (5.6),

we get (
b>M−1G

)
u+ ∆(r)λ+N3(r, ρ) = 0, (5.15)

where N3(r, ρ) = ∂r
(
b>∂>ρ H

)
∂>ρ H−b>M−1∂>r H. Now, we can rewrite (5.14) and (5.15)

in matrix notation as[
N2(r, ρ) KΩ

(
G>M−1b

)
b>M−1G ∆(r)

] [
u

λ

]
= −

[
K∇ y + ∂>η f +KΩN1(r, ρ)

N3(r, ρ)

]
,

33According to Definition 2.3, the function U does not necessarily qualify as a Lyapunov candidate
function.
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5 Energy-Based Control for Implicit UMS

such that

u = −
[
Inu 0

] [ N2(r, ρ) KΩ
(
G>M−1b

)
b>M−1G ∆(r)

]−1 [
K∇ y + ∂>η f +KΩN1(r, ρ)

N3(r, ρ)

]
(5.16)

is free of singularities if

det
([
N2(r, ρ) KΩ

(
G>M−1b

)
b>M−1G ∆(r)

])
6= 0, ∀ (r, ρ). (5.17)

Lemma 5.1 (Positive definite condition [9]): If the total mechanical energy H of the
system (5.1) is bounded from below, then there exists a positive parameter KΩ such that

[
N2(r, ρ) KΩ

(
G>M−1b

)
b>M−1G ∆(r)

]
� 0. �

Subsequently, stability can be proved by invoking Theorem 2.2 to analyse the motion of
the system (5.1) under the control law (5.16) with the aim of investigating whether the
closed-loop solution satisfies the control objectives stated in the problem formulation.

Keep in mind that one application of this approach is to solve the swing-up control
problem for the cart-pole system in implicit PH representation.
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Chapter 6

Energy-Based Control for Implicit UMS:
The Cart-Pole Analysis

This chapter provides the design, stability analysis and experimental validation of the
control algorithms discussed in Chapter 5. The well-known benchmark cart-pole system
is taken as a case study owing to its nonlinear, underactuated and non-minimum phase
properties, which remain a topic of interest in the field of nonlinear control systems. The
design of the nonlinear control scheme has been carried out on the basis of the implicit
PH representation of the cart-pole system in SNF. This chapter is organized as follows.
Section 6.1 provides the constrained PH representation for the cart-pole system and its
formulation in SNF. Section 6.2 performs the design of a swing-up controller based on
the classical energy-based control approach with mild modifications for the cart-pole
system in SNF. The effectiveness of the nonlinear controller is verified by simulations
and real-time experiments. Section 6.3 performs the design of a (local) stabilizing
controller under a novel algebraic IDA-PBC technique, as well as the formulation of a
novel approach to ensure an optimal (local) transient response. The effectiveness of
the nonlinear controller is verified by simulations and real-time experiments. Section
6.4 describes the overall (implicit) control strategy for the cart-pole system in SNF.
The chosen scheme is based on a two-stage control strategy, such that one controller
will swing-up the pendulum and another will (locally) stabilize it. Section 6.5 presents
comparative results, where the (implicit) control algorithms designed in this chapter are
contrasted with the (explicit) control algorithms discussed in Chapter 4. All numerical
simulations presented in the following were performed using MATLAB®/ Simulink
(R2018a) platform.

Master Thesis Alex Huaman 63



6 Energy-Based Control for Implicit UMS: The Cart-Pole Analysis

6.1 Model Derivation

Consider the cart-pole system as shown in Figure 4.4 satisfying the following ideal
assumptions.

• The pendulum is a point mass located at the top of the pole.

• There exists no Coulomb friction.

The parameters of the cart-pole system are shown in Table 4.2. Additionally, xp and
yp denotes the pendulum displacements relative to the cart. The implicit model has a
constraint φ = 1

2

(
x2
p + y2

p − l2
)
and (implicit) generalized coordinates r = col(xp, yp, xc).

To compute the Lagrangian function, we introduce the total kinetic and potential energy

K = 1
2(mc +mp)ẋ2

c +mpẋcẋp + 1
2mpẋ

2
p + 1

2mpẏ
2
p,

P = mpgr(yp − l),

respectively. We build the constrained EL equations of motion

d
dt

(
∂L
∂ṙ

)>
−
(
∂L
∂r

)>
= b(r)λ+ Ḡu− R̄ṙ, (6.1)

where L = K − P, b(r) = ∂>r φ, Ḡ = col(0, 0, 1) and R̄ = R̄> � 0 denotes natural
damping. We rewrite (6.1) in matrix form as follows

[
M11 M12

M>12 M22

] [
r̈p

r̈c

]
+
[
∂>rpP
∂>rcP

]
=
[
∂>rpφ

∂>rcφ

]
λ+

[
0
1

]
u−

[
r̄1 0
0 r̄2

] [
ṙp

ṙc

]
, (6.2)

where rp = col(xp, yp), rc = xc, M11 = diag(mp,mp), M12 = col(mp, 0), M22 = mc +mp

and r̄1 = diag(r1, r1). According to [37], we can transform (6.2) into

[
M11 0

0 1

] [
r̈p

r̈c

]
+
[
∂>rpP

0

]
=
[
∂>rpφ

0

]
λ+

[
−M12

1

]
υ −

[
r̄1 0
0 0

] [
ṙp

ṙc

]
. (6.3)

System (6.3) takes the so-called SNF and can be transformed into the constrained PH
representation, with no natural damping, as follows[

ṙ

ρ̇

]
=
[

0 I3

−I3 0

] [
∂>r H
∂>ρ H

]
+
[

0
b(r)

]
λ+

[
0
G

]
υ, (6.4a)

b>(r)∂>ρ H = 0, (6.4b)
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6.2 Implicit Swing-Up Controller

with total stored energy

H(r, ρ) = 1
2ρ
>M−1ρ+ V(r), (6.5)

where the inertia matrix, potential energy and input vector are now given by

M = I3, V(r) = gr(yp − l), G =
[
−1 0 1

]>
, (6.6)

respectively. The potential energy has been initially chosen to be zero at the origin, i.e.
V(0) = 0, and is clearly bounded from below.

System (6.4) has a subset of two equilibrium points, where

• r = col(0,−l, x?c) and ρ = 0 is the stable equilibrium point; and

• r = col(0, l, x?c) and ρ = 0 is the unstable equilibrium point,

with x?c set as an arbitrary target value for the cart position.

6.2 Implicit Swing-Up Controller

Note: For the sake of convenience, here and throughout the rest of this section, we will
use ṙ instead of ρ. Since ṙ =M−1ρ andM = I3 gives ṙ = ρ.

This section deals with the tracking of homoclinic orbits (limit cycles) that contains
the desired (unstable) equilibrium of the system.34 Consider an ideal cart-pole system
(massless bar) in SNF given by (6.4) and assume there is no friction, i.e. r1 = 0.

Problem Formulation: Find a mapping υ : X ×R3 → R such that the trajectories of
the pendulum can be brought into a homoclinic orbit (limit cycle) reaching the desired
energy level-set Ē → Ē? and holding the cart stable at the target position xc → x?c with
ẋc → 0.

34For the formal explanation of the homoclinic orbit, see Definition 4.1.
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6 Energy-Based Control for Implicit UMS: The Cart-Pole Analysis

Under the design procedure described in Section 5.2, we proceed to analyze the passivity
properties of the system. The mechanical energy from (6.5) can be rewritten as

E(r, ṙ) = 1
2 ṙ
>M(r)ṙ + V(r). (6.7)

Taking the time-derivative of (6.7) along the trajectories of the system (6.4) yields
Ė = ṙ>Gυ. The operator υ 7→ y := G>ṙ is passive with storage function (6.7).

Following Section 5.2, we can synthesize a control law but the requirements of the
problem formulation are not met because the system (6.4) is passive with a combined
output of actuated and underactuated variables, i.e., y = −ẋp + ẋc. Therefore, we
introduce a mild modification in order to stabilize the cart position xc instead of y.

6.2.1 New Energy Function

This section focuses on finding a new energy function Ē = E + Eµ, which allows to fulfill
the requirements of the problem formulation.35

Let Ē : X × R3 → R be the new (open-loop) energy function defined as

Ē(r, ṙ) = 1
2 ṙ
>M̄(r)ṙ + V(r), (6.8)

where

M̄(r) =


1 0 1
0 1 0
1 0 kc

 , V(r) = gr (yp − l)

and kc ∈ R is a strictly positive constant. Clearly, M̄(r) = M̄>(r) � 0 if and only
if kc > 1. The new energy function Ē , which is slightly different from the original
mechanical energy E , takes similarly a constant value for each equilibrium point, i.e.,

• Ē(r, ṙ) = 0 at the unstable equilibrium point and

• Ē(r, ṙ) = −2grl at the stable equilibrium point.

35We define Eµ : X × R3 → R as Eµ(r, ṙ) := ẋpẋc + 1
2 (kc − 1)ẋ2

c .
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6.2 Implicit Swing-Up Controller

6.2.2 Stabilization around the Homoclinic Orbit

Let us verify that the new energy (6.8) is a suitable function for the controller design.
In view of (6.8), if the system (6.4) reaches Ē = 0 and ẋc = 0, then

1
2
(
ẋ2
p + ẏ2

p

)
= gr (l − yp) (6.9)

represents a particular trajectory that corresponds to a homoclinic orbit.36 In general,
if the system can be brought to the homoclinic orbit (6.9), then the task of swinging-up
the pendulum has been solved. This means that the pendulum will eventually get close
to its unstable equilibrium point if it follows the homoclinic orbit.

Based on (6.8), a new controller is derived in order to approach the trajectories of the
pendulum into the homoclinic orbit (6.9). Define the target storage function as37

U(r, ṙ) = 1
2kE

(
Ē − Ē?

)2 + 1
2kφ

(
xc − x?c

)2 + 1
2KΩ ẋ

2
c , (6.10)

where kE , kφ, KΩ ∈ R are strictly positive constants, x?c ∈ R is the target cart position
and Ē? ∈ R is the non-negative target energy fixed as Ē? = 0.

Taking the time-derivative of (6.10) along the trajectories of (6.4) yields

U̇(r, ṙ) = ẋc
[[
kE
(
Ē − Ē?

)
β +KΩ

]
υ + kE

(
Ē − Ē?

)
α+ kφ

(
xc − x?c

)]
, (6.11)

where α(r, ṙ) = xp
(
gryp − ẋ2

p − ẏ2
p

)
/l2 and β(r) = kc − y2

p/l
2 . Clearly, β(r) > 0 if and

only if kc > 1.

One can choose υ such that[
kE
(
Ē − Ē?

)
β +KΩ

]
υ + kE

(
Ē − Ē?

)
α+ kφ

(
xc − x?c

)
= −K∇ ẋc (6.12)

for some strictly positive constant K∇ ∈ R, which leads to

U̇(r, ṙ) = −K∇ ẋ2
c . (6.13)

Moreover, the singularities in (6.12) are avoided provided that∣∣∣kE(Ē − Ē?)β +KΩ
∣∣∣ 6= 0, ∀ (r, ṙ).

36Via reduction to explicit coordinates, (6.9) is equivalent to (4.6).
37Also known as (generalized) admissible energy function or (generalized) admissible storage function.
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6 Energy-Based Control for Implicit UMS: The Cart-Pole Analysis

According to Lemma 3.1, the expression above holds if the following lower bound
constraint for KΩ is fulfilled

KΩ >
(
2grl + Ē?

)
kE max

r
(β) ⇒ KΩ >

(
2grl + Ē?

)
kEkc. (6.14)

Now, the control law υ can be rewritten from (6.12) as

υ(r, ṙ) = −
K∇ ẋc + kE

(
Ē − Ē?

)
α+ kφ

(
xc − x?c

)
kE
(
Ē − Ē?

)
β +KΩ

. (6.15)

6.2.3 Stability Analysis

In view of (6.13) is negative semi-definite and the homoclinic orbit is not an isolated
equilibrium point, the stability analysis will be performed based on LaSalle’s invariance
principle, see Theorem 2.2.38 Since U in (6.10) is a non-increasing function, see (6.13),
every solution of the system (6.4) in closed-loop with (6.15) starts in ΩI and remains in
ΩI for all t ≥ 0. The set ΩI is defined as

ΩI =
{

(r, ṙ) ∈ X × R3 | b>∂>ρ H = 0, φ = 0, U(r, ṙ) ≤ c
}
,

where c is an appropriate positive constant, such that ΩI is closed and bounded.39 Let
ΓI be the set of all points in ΩI such that U̇ = 0. The set ΓI is defined as

ΓI =
{

(r, ṙ) ∈ ΩI | U̇ = 0
}
.

Let MI be the largest invariant set in ΓI . Via LaSalle’s theorem every solution starting
in ΩI approaches MI as t→∞.

Since U̇ = 0 holds identically in ΓI . From (6.13), if U̇ = 0, then ẋc = 0, U = const.,
xc = const. and ẍc = υ = 0 in ΓI . Using (6.10), it is clear that Ē = const. in ΓI . The
resulting constants can be summarized as

Ē = const., xc = const., ẋc = 0, υ = 0. (6.16)

From (6.15) and (6.16), it follows that the control law has been chosen such that

0 = kE
(
Ē − Ē?

)
α+ kφ

(
xc − x?c

)
. (6.17)

38LaSalle’s invariance principle can be used when, instead of an isolated equilibrium point, the system
has an equilibrium set [15].

39The states of (6.4a) are bounded given the constraint (6.4b), see Proposition 5.1.
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6.2 Implicit Swing-Up Controller

Now, it is evident that
(
Ē − Ē?

)
α must be constant in ΓI . Since Ē is also constant and

Ē? is fixed to be 0, two cases are discussed below.

• Ē = 0: This is the simplest case. Here, xc = x?c . Recall that Ē = 0 means that the
trajectories of the pendulum are in the homoclinic orbit (6.9).

• Ē 6= 0: In this case, the only solution for α is to be a constant in ΓI . Besides, using
(6.8) we can rewrite α as α(xp, yp) = xp

[
3gryp − d̄

]
/l2, where d̄ = 2

(
E + grl

)
.

Analyzing (6.4), shows that if υ = 0, then the cart-pole dynamics (6.4) is reduced
to a simple pendulum. Therefore, if and only if the pendulum gets stuck at the
equilibrium points, then α is constant and equal to 0. Hence, xc = x?c . Note that,
at the unstable equilibrium point it is implied that Ē = 0, which is a contradiction.
The other equilibrium point may be avoided by including the following assumption.

Assumption 6.1: To avoid the pendulum get stuck at the downward (stable) position,
it is imposed that the new energy Ē(r, ṙ) > −2grl, for all (r, ṙ).

Assumption 6.1 implies that a nonzero initial value must be assigned to the new kinetic
energy in (6.8), i.e., xp(0) = 0 and yp(0) = −l (downward pendulum position) is
admissible if and only if ẋp(0) 6= 0 and ẏp(0) = 0. From the above, it is concluded that
(6.17) is fulfilled only when Ē = 0, xc = x?c and ẋc = 0.

Finally, the largest invariant set MI in ΓI is given by

MI =
{

(r, ṙ) ∈ ΩI | ẋ2
p + ẏ2

p = 2gr
(
l − yp

)
, xc = x?c , ẋc = 0

}
.

From LaSalle’s invariance principle, it has been proved that the control law (6.15) bring
the system (6.4) for any (r, ṙ) ∈ ΩI to the invariant set MI , starting and remaining
in ΩI . Recall that, Theorem 2.2 refers to those sets ΩI that are compact (closed and
bounded), nothing can be said for those sets ΩI that are not compact.
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6 Energy-Based Control for Implicit UMS: The Cart-Pole Analysis

6.2.4 Damping Injection

In order to improve convergence (physically motivated), with no compromising stability,
the well-known damping injection method can be used. The control input υ is set as

υ := υ + υ̂. (6.18)

To prove the passivity of the closed-loop it suffices to compute (6.11) with (6.18). Solving
for υ̂ yields

U̇(r, ṙ) = ẋc
[
kE
(
Ē − Ē?

)
β +KΩ

]
υ̂.

Define the input υ̂ and the output ŷ := ẋc
[
kE(Ē − Ē?)β +KΩ

]
. The operator υ̂ 7→ ŷ is

passive with storage function (6.10).

Notice that ẋcŷ ≥ 0, then the damping injection can be formulated as υ̂ = −ky ẋc,
where ky ∈ R is a strictly positive constant.

6.2.5 Simulation Results

Consider the parameters of the cart-pole system from Table 4.1, with no friction, i.e.,
r1 = 0. The tuning gains are chosen as shown in Table 6.1. These gains satisfy the
inequality in (6.14). The desired cart position is set to x?c = 0 with target energy Ē? = 0.
The objective is to swing-up the pendulum from the initial states xp(0) = 0, yp(0) = −l,
xc(0) = 0, ẋp(0) = −lπ/180, ẏp(0) = 0 and ẋc(0) = 0. These initial conditions satisfy
Assumption 6.1.

kc kE kφ KΩ K∇ ky

2 1 100 20 0 4

Table 6.1 – Parameters of the implicit swing-up controller

Figure 6.1 depicts the phase portraits of (xp, ẋp) and (yp, ẏp) and the time responses of
xc, ẋc, U and Ē − Ē? under the swing-up control problem. Simulations show that the
controller (6.15) brings the trajectories of the pendulum into the homoclinic orbit (6.9)
fulfilling the requirements stated in the problem formulation, i.e., Ē → Ē?, xc → x?c and
ẋc → 0.
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6.2 Implicit Swing-Up Controller

Figure 6.1 – Simulation results with no damping

6.2.6 Experimental Validation

Real-time experiments are contrasted with simulations including damping in the cart-
pole dynamics. Consider the parameters of the cart-pole system from Table 4.1, including
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6 Energy-Based Control for Implicit UMS: The Cart-Pole Analysis

friction, and the controller parameters from Table 6.1. The target values and initial
conditions are the same as in the previous section.

Figure 6.2 depicts the phase portraits of (xp, ẋp) and (yp, ẏp) for a given Ē? = 0, where
unmodeled dynamics, e.g. friction, impede the increase in amplitude of xp, ẋp, yp and
ẏp. To reduce the effect of the friction and other unmodeled dynamics, we study the
effectiveness of positive energy Ē(r, ṙ).

Figure 6.2 – Simulation (blue) and experimental (red) results with damping

According to [6, 41], a good practical approach is to choose a target energy Ē? > 0 such
that the trajectories of the pendulum reach the homoclinic orbit (6.9).

Now, consider the same controller parameters and set the target energy as Ē? = 1.44.
Figure 6.3 depicts that xc, ẋc and Ē remain bounded near to their target values.

As shown in Figure 6.4, the controller (6.15) brings the trajectories of the pendulum
into the homoclinic orbit (6.9).
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6.2 Implicit Swing-Up Controller

Figure 6.3 – Simulation (blue) and experimental (red) results with damping
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6 Energy-Based Control for Implicit UMS: The Cart-Pole Analysis

Figure 6.4 – Simulation (blue) and experimental (red) results with damping

6.3 Implicit IDA-PBC

This section deals with the (local) stabilization at the unstable equilibrium point of
the cart-pole system in implicit PH representation. A novel algebraic IDA-PBC [10]
technique is performed for the cart-pole system in SNF.

6.3.1 Controller Design

Consider an ideal cart-pole system (massless bar) in SNF given by (6.4) and assume
there is no friction, i.e., r1 = 0. We now select r? =

[
0 l x?c

]>
∈ Xa which denotes

the upright (unstable) position.
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6.3 Implicit IDA-PBC

Problem Formulation: Find a mapping υ : X × R3 → R such that it stabilizes the
upright vertical position of the pendulum and places the cart at any arbitrary position.
Consider the desired equilibrium r? ∈ Xa, where x?c ∈ R is the only constant assignable
equilibrium point.

We shall test Proposition 5.4. First, we compute b = ∂>r φ =
[
xp yp 0

]>
and b? =

b(r?) =
[
0 l 0

]>
, S is found via S =

[
G b

]
and the full rank left annihilator of S

and b? are given by

S⊥ =
[
yp −xp yp

]
, b?⊥ =

[
1 0 0
0 0 1

]
,

respectively. Second, collect and match the coefficients from (5.7a), we obtain

Dµ?l3 + gr = 0, (6.19a)

Dµ?l2
(
c1 + c2

)
= 0, (6.19b)

where ci is an element located in the i-th row of vector C ∈ R2, for i = {1, 2}. Clearly,
from (6.19b) we can choose c1 = 0 and c2 = 0, and from (6.19a) yields D = Dx

l2 and
µ? = − gr

Dxl
, for some constant Dx. Next, from (5.7b) we get

c1D l = 0, (6.20a)

c2
1D + c1c2D −D l2 + a11 + a12 = 0, (6.20b)

c1D l + c2D l = 0, (6.20c)

where aij is an element located in the i-th row and j-th column of matrix A ∈ R2×2,
for i, j = {1, 2}. Clearly, from (6.20b) yields a12 = Dx − a11. We define a1 := a11 and
a2 := a22. Thus, the resulting matrices are summarized as

A =
[

a1 Dx − a1

Dx − a1 a2

]
, C =

[
0
0

]
, D = Dx

l2
, µ? = − gr

Dxl

for some constants a1, a2 and Dx. Third, we compute B? =
[
b?⊥
> b?

]
and the target

inertia matrix is given by

Md =


a1 0 Dx − a1

0 Dx 0
Dx − a1 0 a2

 .
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6 Energy-Based Control for Implicit UMS: The Cart-Pole Analysis

Then, we pick SS̄ = G, which satisfies (5.7c) with full rank Z, and select Z⊥ =
[
1 1

]
.

Fourth, from (5.7d) and (5.8b) we realize that Dx < 0 and Kψ > 0, respectively. Then,
according to (5.8a) a suitable choice for W1 is W1 = 0. At this point, we compute
ψ = −S̄>S>M−1

d M r̃ and the target potential energy function is given by

Vd = 1
2Kψ

[
Dx
(
x?c − xc

)
+
(
Dx − a1 + a2

)
xp
]2[(

2Dx − a1 + a2
)
a1 −D2

x

]2 + 1
Dx

gr
(
yp − l

)
.

Finally, all conditions of Proposition 5.4 are satisfied and we can directly compute the
implicit state-feedback control law via (5.5), which is rewritten as follows

υ = S†
(
∂>r H−J >∂>r Hd −W∂>ρ Hd + J >bλd

)
, (6.21)

where S† =
[
1 0

] (
S>S

)−1
S>, W = 1

2W1 + SKuS
>, J =M−1Md and the implicit

variable λd is calculated via the hidden constraint (5.6). Stability in a neighborhood of
x? = (r?, 0) is guaranteed by selection of

A � 0, Dx < 0, Kψ > 0 and Ku +K>u � 0. (6.22)

6.3.2 Local Optimal Controller

Proposition 5.5 is easily adapted to systems of the form (6.4), where Xd, J and Hd
are replaced by X , I3 and H, respectively. Consider r = h(q) =

[
l sin θ l cos θ xc

]>
,

q =
[
θ xc

]>
, Jq = I2, T1 = I−1

3 ∂qh I2, M =
(
T>1 MT1

)∣∣∣
r=h(q)

, V = V
(
h(q)

)
and

G = T>1 G, we obtain40

M(q) =
[
l2 0
0 1

]
, V (q) = grl(cos θ − 1), G(q) =

[
−l cos θ

1

]
. (6.23)

From this result we can construct the nominal system in explicit PH representation[
q̇

ṗ

]
=
[

0 I2

−I2 0

] [
∂>q H

∂>p H

]
+
[

0
G(q)

]
υ, (6.24)

with total stored energy H(q, p) = 1
2p
>M−1(q)p+ V (q).

40Since Γ is not relevant for the open-loop reduction, we avoid T2.
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6.3 Implicit IDA-PBC

System (6.24) can be transformed into the explicit EL representation

M(q)q̈ + C(q, q̇)q̇ + ∂>q V = G(q)υ. (6.25)

Solving for q̈ and defining the state vector x ∈ R4 as x = col(q, q̇) = col(θ, xc, θ̇, ẋc) and
the control input υ ∈ R. Makes clear that (6.25) can be represented by the following
affine nonlinear state-space equation ẋ = f(x) + g(x)υ, for some f, g : R4 → R4.

Consider the linearization of the nominal system (6.25) in closed-loop with (6.21)

˙̃x =
∂
[
f(x) + g(x)υIDA(x)

]
∂x

∣∣∣∣∣
x=x?

x̃

= ∂ f(x)
∂x

∣∣∣∣
x=x?

x̃ + g(x)
∣∣∣
x=x?

∂ υIDA(x)
∂x

∣∣∣∣
x=x?

x̃,

where x̃ = x − x? and the desired equilibrium x? = col(q?, 0) = col(0, x?c , 0, 0). The
state matrix, input-to-state matrix and (linear) feedback gain vector are provided by

A = ∂f(x)
∂x

∣∣∣∣
x=x?

, B = g(x)
∣∣∣
x=x?

, KLIN = ∂ υIDA(x)
∂x

∣∣∣∣
x=x?

,

respectively.41 As discussed in Section 4.4.2, we can perform the optimal LQR method.
The procedure for calculating the unknown parameters of (6.21) with optimal (local)
transient response is summarised in the following algorithm.

Require: The linearization of the nominal system (6.25) in closed-loop with (6.21)
1: Determine A, B and KLIN

2: Check whether the pair (A,B) is controllable
3: Find KLQR for the linearized system ˙̃x = Ax̃ + Bυ via the LQR method with

suitable weighting matrices Q = Q> � 0 and R = R> � 0
4: Calculate the unknown parameters of υIDA using KLIN = −KLQR

Algorithm 6.1 – Algorithm for optimal local gains

6.3.3 Stability Analysis

Since, at the equilibrium point, the system (6.25) in feedback with (6.21) is (locally)
equivalent to ˙̃x = (A−BKLQR)x̃, then asymptotic stability can be verified invoking
Theorem 2.3.
41To find υIDA (x), we compute ṙ> = ḣ> = q̇>∂>q h and given ṙ =M−1ρ, then ρ =M ḣ. In general, we

have r = h(q) and ρ = h†(q, q̇), where h†(q, q̇) =M ḣ(q, q̇).

Master Thesis Alex Huaman 77



6 Energy-Based Control for Implicit UMS: The Cart-Pole Analysis

In view of (6.23), it can be observed that (6.25) is equivalent to (4.2) with negligible
damping, i.e., r1 = 0. For the stability analysis, we considered the linearized dynamics
of the (explicit) nominal system (4.31) using the parameters from Table 4.1. The gain
vector KLQR is computed following Algorithm 6.1. Here, two cases are addressed.

• Negligible damping (r1 = 0): The optimal LQR feedback gain is

KLQR =
[
−50.2405 −7.7460 −11.2019 −8.7091

]
(6.26)

and the (closed-loop) eigenvalues are

Λ =
{
−3.2107 −5.8772 −2.6738± 1.0821ı

}
. (6.27)

• With damping (r1 = 0.0276): The optimal LQR feedback gain is

KLQR =
[
−50.7416 −7.7460 −11.1672 −8.7544

]
(6.28)

and the (closed-loop) eigenvalues are

Λ =
{
−3.2099 −5.8788 −2.6737± 1.0821ı

}
. (6.29)

Via Lyapunov’s indirect method, (local) asymptotic stability is guaranteed because in
both cases the eigenvalues of the closed-loop system are in the open left-half plane.

6.3.4 Simulation Results

Consider the system parameters from Table 4.1, with no friction, i.e., r1 = 0. From
Algorithm 6.1, one solution gives us the following tuning gains a1 = 0.0967, a2 = 0.2105,
Dx = −0.0311, Kψ = 1 and Ku = 1.1243 I2. These gains satisfy the inequalities in
(6.22). The desired cart position is set to x?c = 0 m. The objective is to stabilize the
cart-pole system from the initial states xp(0) = 0.1655, yp(0) = 0.4548, xc(0) = 0 and
ρ(0) = 0. These initial conditions satisfy the constraint (6.4b).

Figure 6.5 depicts the time responses of the (position) states xp, yp, xc and the target
Hamiltonian Hd under the stabilization control problem. Simulations show that the
implicit controller (6.21) stabilizes the system (6.4) fulfilling the requirements stated in
the problem formulation, i.e., xp → 0, yp → l, xc → x?c = 0 and ρ→ 0.
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6.3 Implicit IDA-PBC

Figure 6.5 – Simulation results with no damping

6.3.5 Experimental Validation

Real-time experiments are contrasted with simulations including damping in the cart-
pole dynamics. Consider the parameters of the cart-pole system from Table 4.1, including
friction. From Algorithm 6.1, one solution gives us the following tuning gains as shown
in Table 6.2 These gains satisfy the inequalities in (6.22). The desired equilibrium is set
to x?c = 0.5 m for t ∈ [0, 5[ s, x?c = −0.5 m for t ∈ [5, 10[ s and x?c = 0 m for t ∈ [10, 15] s.
The objective is to stabilize the cart-pole system from the initial states xp(0) = 0,
yp(0) = 0, xc(0) = 0 and ρ(0) = 0. These initial conditions satisfy the constraint (6.4b).

a1 a2 Dx Kψ Ku

0.0978 0.2102 −0.0309 1 1.1302 I2

Table 6.2 – Implicit IDA-PBC parameters
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6 Energy-Based Control for Implicit UMS: The Cart-Pole Analysis

Figure 6.6 – Simulation and experimental results with damping

Figure 6.6 depicts the time responses of the (position) states xp, yp, xc and Figure 6.7
depicts the (real) control input ῡ under the regulation control problem. Simulations
and real-time experiments show that the implicit controller (6.21) stabilizes the system
(6.4) fulfilling the requirements stated in the problem formulation, i.e., xp → 0, yp → l
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6.4 Implicit Control Scheme

and xc → x?c with continuous, smooth and bounded (real) control input ῡ. It can be
seen that simulations and real-time experiments show almost the same performance.

Figure 6.7 – Simulation and experimental results with damping

6.4 Implicit Control Scheme

Figure 6.8 depicts an overview of the implicit control strategy which integrates both
controllers: (i) implicit swing-up and (ii) implicit IDA-PBC. The first controller will
swing-up the pendulum and the second will stabilize it.42

Stabilizing
controller

Swing-up
controller

Selector Cart-Pole
∑ ∫

(r, ρ) = f(q, q̇)

v v̄

(r?, ρ?)

(r?, ρ?)

(q, q̇)

(r, ρ)

Figure 6.8 – Overview of the implicit control system

Since the control scheme is initialized with the swing-up controller, then an algorithm is
required to decide when to switch to the stabilizing controller.
42In this section, stabilizing controller refers to the implicit IDA-PBC.
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6 Energy-Based Control for Implicit UMS: The Cart-Pole Analysis

The block named Selector is an algorithm that decides which of the controllers must be
active and operates on the basis of the conditions outlined in Section 4.5. Note that when-
ever one controller is activated, the other remains deactivated. This is computationally
efficient since it avoids computing both control algorithms simultaneously.

Figure 6.9 – Simulation (blue) and experimental (red) results with damping
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6.4 Implicit Control Scheme

Additionally, the block of coordinate transformation , namely (r, ρ) = f(q, q̇), is defined
as f> :=

[
h> h†>

]
, where h†> = q̇>∂>q hM.

Figure 6.10 – Simulation (blue) and experimental (red) results with damping

Real-time experiments are contrasted with simulations including damping in the cart-
pole dynamics. (i) For the swing-up controller, consider the system parameters from
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6 Energy-Based Control for Implicit UMS: The Cart-Pole Analysis

Table 4.1, the controller parameters from Table 6.1, the (new) target energy set as
Ē? = 1.44 and the initial states from Section 6.2.6. (ii) For the stabilizing controller,
consider the system parameters from Table 4.1 and the controller parameters from Table
6.2. For both controllers, the target cart position is set to x?c = 0 m.

The first and second row of Figure 6.9 depicts the phase portrait of (xp, ẋp) and (yp, ẏp,
respectively. The third row depicts the (real) control input ῡ under the (implicit) control
scheme provided by Figure 6.8. Figure 6.10 depicts the time responses of the (position)
states xp, yp and xc. The switch occurs at t = 12.1 s in the simulations and at t = 12.6 s
in the real-time experiments. Note that the (real) control input ῡ is bounded.

6.5 Comparative Results

6.5.1 Analytical Comparison

Stabilizing Controller Using Proposition 5.5 with (5.9), q =
[
θ xc

]>
, r = h(q) =[

l sin θ l cos θ xc
]>

, Jq = M−1(q)Md(q), T1 = J −1∂qhJq, Md =
(
T>1 Md T1

)∣∣∣
r=h(q)

and M(q) from (6.23), we obtain

M−1
d (q) = M−1(q) ∂>q hM(r)M−1

d (r)M(r) ∂qhM−1(q).

After some direct calculations, the (reduced) target inertia matrix takes the form

Md(q) =
[
kekul

2 + k2
uKD (l cos θ)2 −kakuKDl cos θ

−kakuKDl cos θ keka + k2
aKD

]
, (6.30)

where

ke = 1
ka(Dx − a1 + a2) , ku = 1

keDx
and KD = Dx − a1

kuka
[
a1a2 − (Dx − a1)2

] .
The (reduced) target potential energy function Vd(q) = Vd

(
h(q)

)
takes the form

Vd(q) = kekugrl
(

cos θ − 1
)

+ 1
2KI

[
ka(xc − x?c)− kul sin θ

]2
, (6.31)

where
KI = Kψ

k2
e k

2
u k

2
a

[
a1a2 − (Dx − a1)2

]2 .
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From this result we can see that the closed-loop system in explicit coordinates has the
same target inertia matrix Md(q) and potential energy function Vd(q) compared with
(4.24) and (4.25), respectively. In synthesis, both approaches (implicit IDA-PBC and
explicit PID-PBC) have the same target Hamiltonian Hd(q, q̇) for the closed-loop.

Swing-Up Controller Using Proposition 5.5 with (6.4), q =
[
θ xc

]>
, r = h(q) =[

l sin θ l cos θ xc
]>

, J = I3, Jq = I2, T1 = I−1
3 ∂qh I2, M =

(
T>1 MT1

)∣∣∣
r=h(q)

and

V = V
(
h(q)

)
, we obtain

M̄(q) =
[

l2 l cos θ
l cos θ kc

]
and V (q) = grl (cos θ − 1) .

The (reduced) new energy function takes the form

Ē(q, q̇) = 1
2 q̇
>M̄(q)q̇ + V (q). (6.32)

From this result we can see that the closed-loop system in explicit coordinates has the
same new energy function Ē(q, q̇) compared with (4.5). This fact also implies that the
closed-loop system in explicit coordinates has the same (target) storage function U(q, q̇)
compared with (4.7).

6.5.2 Experimental Comparison

Implicit Control Scheme (i) For the swing-up controller, consider the system
parameters from Table 4.1, the controller parameters from Table 6.1, the (new) target
energy set as Ē? = 2.54 and the initial states from Section 6.2.6. (ii) For the stabilizing
controller, consider the system parameters from Table 4.1 and the controller parameters
from Table 6.2.

Explicit Control Scheme (i) For the swing-up controller, consider the system
parameters from Table 4.1, the controller parameters from Table 4.3, the (new) target
energy set as Ē? = 2.54 and the initial states from Section 4.3.6. (ii) For the stabilizing
controller, consider the system parameters from Table 4.1 and the controller parameters
from Table 4.4.

For both control schemes, the target cart position is set to x?c = 0 m for t ∈ [0, 10[ s,
x?c = 0.5 m for t ∈ [10, 15[ s, x?c = −0.5 m for t ∈ [15, 20[ s and x?c = 0 m for t ∈ [20, 25] s.
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6 Energy-Based Control for Implicit UMS: The Cart-Pole Analysis

For comparative purposes, we have measured the generalized coordinates in explicit
representation, i.e., (q, q̇) instead of (r, ρ). Real-time experiments show that the trajec-
tories of the pendulum are brought into a homoclinic orbit. Evidently, we improve the
time of reachability by injecting more energy into the system.

Figure 6.11 depicts the phase portrait of (θ, θ̇). We can observe that the system promptly
converges into the homoclinic orbit ensuring that their trajectories enter the basin of
attraction of the (local) stabilizing controller.

Figure 6.11 – Experimental results

Figure 6.12 depicts the time responses of the states θ, xc and the (real) control input ῡ. In
both representations (implicit and explicit), the switch occurs at t = 4.6 s, approximately.
The main control task formulated at the beginning of the document has been fulfilled,
i.e., formulate a control strategy to swing-up the pendulum from the stable equilibrium
to the unstable equilibrium point and then to stabilize the pendulum at the upright
vertical position with the cart at some desired position.

This chapter closes by concluding that both control schemes (implicit and explicit)
exhibit almost the same performance. The difference is almost negligible, but it is
visible in the transient responses, specifically, after an aggressive change of reference.
This slight deviation can be appreciated in the graph corresponding to the transient
response of the (real) control input ῡ at t = 15 s. It is noteworthy here that we are
dealing with a physical system which is vulnerable to uncertainties and disturbances,
such as, unmodeled dynamics, friction, rail vibration, lack of accuracy in the sensors,
among others.
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6.5 Comparative Results

A video of the experiments can be watched at youtu.be/SRR5zJ6SHH4.

Figure 6.12 – Experimental results
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Chapter 7

Conclusions and Future Work

The swing-up and (local) stabilization control problem is formulated and solved for
the cart-pole system in implicit PH representation. Towards this end, an (implicit)
control scheme based on a two-stage control strategy is proposed so that one controller
will swing-up the pendulum and another will (locally) stabilize it. The effectiveness
of the control strategies has been verified by simulations and real-time experiments.
Moreover, the physical setup can be controlled via an inner velocity loop or via an inner
current loop. We decided on the inner velocity loop because dealing with the current
loop involves knowing the (exact) values of more system parameters, such as, masses,
inertias, gear features, frictions, among others. The velocity loop with an integrator in
the input can be approximated to the cart-pole system in SNF.

The swing-up controller is designed under an alternative approach that does not require
the closed-loop system to have a Hamiltonian form. It consists in defining a more general
class of target (or desired) energy function to drive the trajectories of the pendulum at a
homoclinic orbit (or limit cycle). However, slight modifications have been performed for
the cart-pole system in SNF since the typical approach does not permit stabilization of
the cart trajectories at a given reference point. This modification consists of: (i) finding
a new energy function for the open-loop dynamics and (ii) defining a (generalized)
admissible storage function for the closed loop. Simulations with no physical damping
revealed tracking of the homoclinic orbit. In real-time experiments, we observed that
increasing the target energy is a practical and straightforward solution to the unmodeled
dynamics (e.g. viscous friction) problem.
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7 Conclusions and Future Work

The (local) stabilizing controller is designed using a novel algebraic solution to the
IDA-PBC problem (avoiding the computation of PDEs) [10]. Additionally, another
novel approach is formulated to identify the controller parameters and ensure an optimal
(local) transient response. It is noteworthy here that no modifications were needed
because the design procedure in [10] works perfectly for the cart-pole system in SNF.
Simulations and real-time experiments reveal asymptotic stability, even in the presence
of unmodeled dynamics, i.e., unmodeled friction. Conclusively, the proposed (implicit)
control scheme guarantees the swing-up and asymptotic stabilization of the pendulum
at its upright vertical position holding the trajectories of the cart at the desired point.

For comparison purposes, an (explicit) control scheme is additionally implemented for
the cart-pole system in explicit EL representation. Experiments show that the behavior
is almost the same in both control schemes (implicit and explicit). This is proved
analytically via the reduction from implicit to explicit coordinates, where it can be
observed that: (i) both swing-up controllers (implicit and explicit) have the same target
storage function and (ii) both (local) stabilizing controllers (implicit IDA-PBC and
explicit PID-PBC) have the same target Hamiltonian. Concerning the (local) stabilizing
controllers, the IDA-PBC approach in [10] permits to control a wider class of UMSs
compared to the PID-PBC method. In addition, for a class of UMSs we can find an
algebraic solution to the IDA-PBC problem (avoiding PDEs). Regarding the swing-up
controllers, they have been designed under the same methodology. Therefore, they are
equivalent but in different representations (implicit and explicit).

A future research topic consists of analyzing whether the algebraic IDA-PBC approach
in [10] works for UMSs with higher degrees of underactuation, e.g. the double or triple
inverted pendulum on a cart. The swing-up control problem has been solved in [6]
for the double inverted pendulum on a cart in explicit EL representation using the
typical energy-based control method. However, no results have been reported for the
same system in implicit PH representation. Indeed, the most challenging task is the
formulation of the control strategy for those system in SNF. To the best of author’s
knowledge, there are no reported energy-based control strategies for the triple inverted
pendulum on a cart. Another research topic consists of studying the swing-up control
problem for UMSs with unmodeled frictions and parametric uncertainties.
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DOF Degrees of Freedom

EL Euler-Lagrange

IDA Interconnection and Damping Assignment

IDA-PBC Interconnection and Damping Assignment Passivity-Based Control

LQR Linear Quadratic Regulator

PBC Passivity-Based Control

PCH Port-Controlled Hamiltonian

PCHD Port-Controlled Hamiltonian with Dissipation

PDE Partial Differential Equation

PFL Partial Feedback Linearization

PH Port-Hamiltonian

PID Proportional–Integral–Derivative

PID-PBC PID Passivity-Based Control

ODE Ordinary Differential Equation

SMC Sliding Mode Control

Master Thesis Alex Huaman 91



7 Conclusions and Future Work
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