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Abstract

Let K be an algebraically closed field of characteristic zero. The Jacobian Conjecture

(JC) in dimension two stated by Keller in [8] says that any pair of polynomials

P,Q ∈ L := K[x, y] with [P,Q] := ∂xP∂yQ − ∂xQ∂yP ∈ K× (a Jacobian pair)

defines an automorphism of L via x 7→ P and y 7→ Q.

It turns out that the Newton polygons of such a pair of polynomials are closely

related, and by analyzing them, much information can be obtained on conditions

that a Jacobian pair must satisfy. Specifically, if there exists a Jacobian pair that

does not define an automorphism (a counterexample) then their Newton polygons

have to satisfy very restrictive geometric conditions.

Based mostly on the work in [1], we present an algorithm to give precise

geometrical descriptions of possible counterexamples. This means that, assuming

(P,Q) is a counterexample to the Jacobian Conjecture with gcd(deg(P ), deg(Q)) = k,

we can generate the possible shapes of the Newton Polygon of P and Q and how

it transforms under certain linear automorphisms. By analyzing the minimal

possible counterexamples, we sketch a path to increase the lower bound of

max(deg(P ), deg(Q)) to 125 for a minimal possible counterexample to the Jacobian

Conjecture.
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Resumen

Sea K un cuerpo algebraicamente cerrado de caracteŕıstica zero. La Conjetura del

Jacobiano en dimensión dos postulada por Keller en [8] dice que cualquier par de

polinomios P,Q ∈ L := K[x, y] con [P,Q] := ∂xP∂yQ − ∂xQ∂yP ∈ K× (un par

Jacobiano) define un automorfismo de L via x 7→ P , y 7→ Q.

Resulta que los poĺıgonos de Newton de tal par de polinomios están relacionados

ı́ntimamente, y al analizarlos, mucha información puede ser obtenida sobre condiciones

que un par Jacobiano debe satisfacer. Espećıficamente, si existe un par Jacobiano

que no define un automorfismo (un contraejemplo) entonces sus poĺıgonos de Newton

deben satisfacer condiciones geométricas bastante restrictivas.

Basado en gran parte en el trabajo en [1], presentamos un algoritmo para

dar una descripción geométrica precisa de posibles contraejemplos. Esto significa

que, asumiendo que (P,Q) es un contraejemplo a la Conjetura del Jacobiano con

gcd(deg(P ), deg(Q)) = k, podemos generar las posibles formas del Poĺıgono de

Newton de P y Q y cómo se transforman bajo ciertos automorfismos lineales.

Al analizar los posibles contraejemplos minimales, esbozamos un camino para

incrementar la cota inferior de max(deg(P ), deg(Q)) a 125 para un posible

contraejemplo minimal a la Conjetura del Jacobiano.
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Introduction

Let K be a characteristic zero field and let L := K[x, y] be the polynomial

algebra in two indeterminates. The Jacobian Conjecture (JC) in dimension

two stated by Keller in [8] says that any pair of polynomials P,Q ∈ L with

[P,Q] := ∂xP∂yQ−∂xQ∂yP ∈ K× defines an automorphism f of L via f(x) := P and

f(y) := Q. If this conjecture is false, then there exist P,Q ∈ L such that [P,Q] = K×,

and there exist m,n, a, b ∈ N, such that m,n > 1 are coprime, a < b, the support

of P is contained in the rectangle with vertices {(0, 0),m(a, 0),m(a, b),m(0, b)}, the

support of Q is contained in the rectangle with vertices {(0, 0), n(a, 0), n(a, b), n(0, b)},
the point m(a, b) is in the support of P and the point n(a, b) is in the support of Q.

Note that deg(P ) = m(a+ b) and deg(Q) = n(a+ b).

In [7] Heitmann establishes several restrictions on these possible corners (a, b)

and in [7, Theorem 2.24] he determines various of these possible corners (a, b).

Moreover in [7, Theorem 2.25], for some of these corners, he finds families

{(r + sj, t + uj) : j ∈ N} of admissible pairs (m,n). These corners were also

found in [1, Remark 7.14], using more elementary methods and discrete geometry on

the plane. In both articles the lists of possible corners where given without a formal

proof, referring to a computer program.

In [2] we found more conditions on the points (a, b), and in this article we present

an algorithm that generates the list of points satisfying all the conditions up to

a fixed upper bound for a + b. Naturally this list is included in the one found

in [1, Remark 7.14]. The algorithm also determines the families of admissible pairs

(m,n), for each of these corners.

In order to exploit the simple geometric ideas of our method we also present a

graphic interface of the program which includes all the filters and allows the user to

grasp in detail if and why a certain corner is admissible or not.

At the end we list all possible corners (a, b) with a+b<36, and their corresponding

(m,n)-families. Furthermore if (P,Q) is a counterexample to the Jacobian Conjecture

vii



that satisfy the inequality gcd(deg(P ), deg(Q)) < 36, then we give additional

information on the Newton polygons of P and Q. We also provide the same

information for the counterexamples that satisfy max{deg(P ), deg(Q)} ≤ 150.

Along this thesis we will freely use the notations of [1]. This work is almost

completely a transcription of the article [5], written with Jorge Alberto Guccione,

Juan José Guccione and Christian Valqui.
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Chapter 1

Restrictions on possible last lower

corners

The first step in our strategy is to construct a set of points in N0×N0, that includes

all the possible last lower corners (see [2, Definition 3.17]).

Definition 1.0.1. Let (a, b) ∈ N × N0 and (ρ, σ) ∈ V ∩ [(0,−1), (1,−1)[ (see

[1, Definition 1.5]). We say that ((a, b), (ρ, σ)) is a possible final pair if one of the

following conditions is fulfilled:

1. b = 0 and (ρ, σ) = (0,−1),

2. there exists an admissible chain of length k ∈ N (see [2, Definition 3.15])

C =
(
(Cj)j∈{0,...,k}, (Rj)j∈{1,...,k}, (ρj, σj)j∈{1,...,k}

)
,

with Ck = (a, b) and (ρk, σk) = (ρ, σ).

Remark 1.0.2. Recall from [2, Definition 3.17] that if ((a, b), (ρ, σ)) is a possible final

pair, then (a, b) is said to be a possible last lower corner.

Remark 1.0.3. By [2, Definition 3.15(6)], if ((a, b), (ρ, σ)) is a possible final pair, then

b < a.

Remark 1.0.4. By [2, Remark 3.19], we know that if a > 2b > 0, then ((a, b), (1,−2))

is a possible final pair.

Remark 1.0.5. By [2, Proposition 3.25], if (a, b) is a possible last lower corner, then b ≤
(a− b− 1)2, which, since a ≥ 1 and b < a, is equivalent to b ≤ 1

2

(
2a−

√
4a− 3− 1

)
.
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Proposition 1.0.6. If ((a, b), (ρ, σ)) is a possible final pair with b> 0 and a≤ 2b,

then vρ,σ(a, b)≥ρ and there exist a possible final pair ((r, s), (ρ′, σ′)) such that:

1. r < a, s < b and r − s < a− b,

2. vρ,σ(r, s) = vρ,σ(a, b),

3. ϑ ≤ gcd(a− r, b− s) or ϑ | gcd(r, s), where ϑ := ρa+σb
gcd(ρ+σ,ρa+σb)

.

Proof. By hypothesis there exists an admissible chain

C =
(
(Cj)j∈{0,...,k}, (Rj)j∈{1,...,k}, (ρj, σj)j∈{1,...,k}

)
with Ck = (a, b) and (ρk, σk) = (ρ, σ).

Note that k ≥ 1 and set

(r, s) := Ck−1 and (ρ′, σ′) :=

(ρk−1, σk−1) if k > 1,

(0,−1) if k = 1.

By [2, Definition 3.15(7)] we know that vρ,σ(a, b) ≥ ρ. We next prove the rest of

the proposition. Item (1) follows from [2, Remark 3.16], while item (2) follows

from items (4) and (5) of [2, Definition 3.15]. Moreover, by items (7) and (8)

of [2, Definition 3.15], the hypothesis of [2, Proposition 3.12] are satisfied with

R = Rk. Since a ≤ 2b, case (1) of that proposition is impossible. Let θ and t′ be as

in [2, Proposition 3.12]. By [2, Remark 3.13]

ϑ

t′
= −vρ,σ(R)

ρ+ σ
= −ρa+ σb

ρ+ σ
.

Hence ϑ | ϑ, and so item (3) follows from items (2) and (3) of [2, Proposition 3.12].

Based on the previous results in Algorithm 1 we present a method for the

generation of a set PLLC that includes all possible last lower corners (a, b) with

a ≤ xmax for a given xmax. In the algorithm we use an auxiliary list PFL.

2



Algorithm 1: GetPossibleLastLowerCorners

Input: Maximum x coordinate value xmax > 0.

Output: A list PLLC, that includes all the possible last lower corners (a, b)

with a ≤ xmax.

1 for a← 1 to xmax do

2 b← 0

3 while b ≤ 1
2

(
2a−

√
4a− 3− 1

)
do

4 if b = 0 then

5 (ρ, σ)a,b ← (0,−1), add ((a, b), (ρ, σ)a,b) to PFL and add (a, b) to

PLLC

6 else if a > 2b > 0 then

7 (ρ, σ)a,b ← (1,−2), add ((a, b), (ρ, σ)a,b) to PFL and add (a, b) to

PLLC

8 else

9 set (ρ, σ)a,b := (1,−1)

10 for
(
(r, s), (ρ, σ)r,s

)
in PFL such that r < a, s < b and

r − s < a− b do

11 N1 ← gcd(a− r, b− s)
12 N2 ← gcd(r, s)

13 (ρ, σ)← 1

N1

(b− s, r − a)

14 g ← gcd(ρ+ σ, ρa+ σb)

15 ϑ← ρa+ σb

g

16 if (ρ, σ)r,s < (ρ, σ) < (ρ, σ)a,b, vρ,σ(a, b) ≥ ρ and (ϑ ≤ N1 or

ϑ | N2) then

17 (ρ, σ)a,b ← (ρ, σ)

18 if (ρ, σ)a,b < (1,−1) then

19 add
(
(a, b), (ρ, σ)a,b

)
to PFL and add (a, b) to PLLC

20 b← b+ 1

21 return PLLC.
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Chapter 2

Construction of admissible

complete chains up to a certain

bound

Assume that the Jacobian Conjecture is false and define

B := min
{

gcd(v1,1(P ), v1,1(Q)) : where (P,Q) runs on the counterexamples of J.C.
}
.

(2.0.1)

Then, by [1, Corollary 5.21] there exists a counterexample (P,Q) and m,n ∈ N
coprime such that (P,Q) is a standard (m,n)-pair and a minimal pair (that is, the

greatest common divisor of v11(P ) and v11(Q) is B). Let A0 be as in Remark 2.3.4.

By [1, Proposition 5.2 and Corollary 5.21(3)]

A0 =
1

m
en10(P ) and gcd(v11(P ), v11(Q)) = v11(A0).

This point A0 corresponds to (a, b) in the introduction. In Theorem 2.3.2 below, we

obtain a chain

(C0, . . . ,Cj,Aj+1) =
(
(A0,A

′
0), . . . , (Aj,A

′
j),Aj+1

)
,

such that A0 is the geometric realization of A0 (see Definition 2.1.1), and that satisfies

(among others) certain geometric conditions, which are codified in Definition 2.3.1.

Then, we show that this chain also satisfies certain arithmetic conditions (see

the comment below Definition 2.4.2). The chains meeting the requirements of

4



Definitions 2.3.1 and 2.4.2 are called admissible complete chains. In Algorithm 8 we

construct all the admissible complete chains that satisfy v11(A0) ≤ M for a given

positive integer bound M .

By Theorem 2.3.2 and Remark 2.4.1 we know that A0 is the first coordinate

of C0 for one of the admissible complete chains (C0, . . . ,Cj,Aj+1) obtained running

Algorithm 8 with M ≥ B. For example we obtain immediately that the Jacobian

Conjecture is false, then B ≥ 16, since there are no admissible complete chains with

v11(A0) < 16 (this result was already obtained in [1]). More importantly, we will see

that many of the admissible complete chains obtained in Algorithm 6 can not come

from a standard (m,n)-pair as in Theorem 2.3.2.

2.1 Valid edges

In this subsection and in the next one we introduce the basic ingredients for the

definition and construction of the complete chains.

For each l ∈ N we let N(l) denote the set {(a, l) : a ∈ N}. In the sequel we will

write a o l instead of (a, l). Moreover we will use the notation I :=](1,−1), (1, 0)].

Definition 2.1.1. A corner is a pair (aol, b) with aol ∈ N(l) and b ∈ N0. For l = 1 we

will write (a, b) instead of (a o1, b). The geometric realization of a corner A = (a o l, b)
is the point A :=

(
a
l
, b
)
∈ 1

l
N×N0.

Let l ∈ N. In the rest of this section given A,A′ ∈ N(l) ×N0 with A 6= A′, we

write

A = (a o l, b), A′ = (a′ o l, b′), (ρ, σ) := dir(A− A′) and gap(ρ, l) :=
ρ

gcd(ρ, l)
.

Definition 2.1.2. Set d := gcd(a, b), a := a
d

and b := b
d
, The pair (A,A′) is called a

valid edge if

1. (ρ, σ) ∈ I,

2. v1,−1(A
′) 6= 0, v1,−1(A) < 0 and v1,−1(A) < v1,−1(A

′),

3. there exist enF ∈ N(l) ×N and µ ∈ N, with µ ≤ l(bl− a) + 1/b and d - µ, such

that

enF =
µ

d
A := µ(a o l, b), vρ,σ(enF) = ρ+ σ and if l = 1, then µ < d.

5



4. If l = 1 and v1,−1(A
′) > 0, then A′ is a possible last lower corner.

The valid edge (A,A′) is called simple if v01(enF)− 1 = gap(ρ, l) and (gap(ρ, l) > 1

or v01(A
′) > 0).

Remark 2.1.3. By item (1) the last inequality in item (2) is equivalent to v01(A−A′) >
0. Moreover d > 1 since d - µ. We can also replace condition (3) by

(3’) ∃ µ ∈ N, such that µ
d

= ρ+σ
vρ,σ(A)

, µ ≤ l(bl − a) + 1/b, d - µ and if l = 1, then

µ < d.

Moreover, such a µ univocally determines enF via the equality enF = µ
d
A. Write

enF = (f1 o l, f2). Since vρ,σ(enF) = ρ+ σ and f2 ≥ 1,

(ρ, σ) =
1

gcd(f1 − l, f2l − l)
(f2l − l, l − f1).

This equality implies f2 > 1, because by condition (1) we have ρ > 0. Thus,

by [2, Remark 3.9] we know that

gap(ρ, l) =
f2 − 1

gcd(f1 − l, f2 − 1)
.

Consequently v01(enF)− 1 = gap(ρ, l) if and only if gcd(f1 − l, f2 − 1) = 1.

Notation 2.1.4. Fixed l ∈ N and given A =
(
a
l
, b
)
∈ 1

l
N×N0 we set A := (aol, b) ∈

N(l) ×N0.

In Algorithm 2 we obtain a list StartingEdges consisting of all valid edges (A,A′)

starting with a given A ∈ N×N such that v1,−1(A) < 0. We use freely the results

of Remark 2.1.3. Before running this algorithm with input a corner A = (a, b) it

is necessary to run Algorithm 1 with input greater than or equal to a, in order to

obtain a list PLLC.

6



Algorithm 2: GetStartingEdges

Input: A corner A = (a, b) ∈ N×N with a < b, and a list PLLC.

Output: A list StartingEdges, consisting of all valid edges (A,A′).

1 d← gcd(a, b)

2 for µ = 1 to d− 1 do

3 enF← µ
d
(a, b)

4 (ρ, σ)← dir(enF−(1, 1))

5 for i = 1 to
⌊
b
ρ

⌋
do

6 A′ ← (a, b)− i(−σ, ρ)

7 if v1,−1(A
′) < 0 or ( v1,−1(A

′) > 0 and A′ ∈ PLLC) then

8 add (A,A′) to StartingEdges

9 RETURN StartingEdges

In the following proposition we show among other things how a regular corner of

an (m,n)-pair (P,Q) gives rise to a valid edge.

Proposition 2.1.5. Let l ≥ 1 and let (P,Q) be an (m,n)-pair in L(l). Assume

that if l = 1, then (P,Q) is a standard (m,n)-pair in L (see [1, Definition 4.3]).

Let (A, (ρ, σ)) be a regular corner of (P,Q) (see [1, Definition 5.5]) and let

A′ := 1
m

stρ,σ(P ). Write

`ρ,σ(P ) = xm
a′
l ymb

′
p(z) with z := x−

σ
ρ y, p ∈ K[z] and p(0) 6= 0.

The following facts hold:

1. If l = 1, then the regular corner (A, (ρ, σ)) is of type II.

2. If (A, (ρ, σ)) is of type II (see the comments above [1, Definition 5.9]), then

(A,A′) is a valid edge.

3. If λ ∈ K× is a root of p, then

mλ

m
≤ v01(A− A′)

gap(ρ, l)
, where mλ denotes the multiplicity of λ.

If moreover (A,A′) is simple, then mλ
m

= v01(A−A′)
gap(ρ,l)

.

7



4. If (A, (ρ, σ)) is of type II.b), then there exists a root λ ∈ K× of p such that

b′ <
ρa+ σbl

l(ρ+ σ)
≤ mλ

m
, (2.1.2)

where mλ denotes the multiplicity of λ in p.

Proof. 1) By [1, Remark 5.10 and Propositions 5.22 and 6.1].

2) First note that by [1, Remark 1.8] we have A ∈ 1
l
N × N(0). We now check

that the pair (A,A′) satisfies conditions (1)–(4) of Definition 2.1.2. The fact that

(ρ, σ) ∈ I and the inequality v1,−1(A) < 0 follow from [1, Definition 5.5]). Moreover,

v1,−1(A
′) 6= 0 by [1, Corollary 5.7(1) and Theorem 2.6(4)], while v1,−1(A) < v1,−1(A

′)

by Remark 2.1.3, because v01(A
′) < v01(A). So conditions (1) and (2) are true. Let

µ and F be as in [1, Proposition 5.14] and set enF := enρ,σ(F ). All the assertions

in condition (3), with the exception of the last one, follow from the definition of µ

and items (3) and (4) of that proposition. Assume now l = 1 (which by hypothesis

implies that P,Q ∈ L). By [12, Theorem 10.2.1 and Proposition 10.2.6] there exists

k ∈ N such that (km, 0) ∈ Supp(P ). So

vρ,σ(A) =
1

m
vρ,σ(P ) ≥ 1

m
vρ,σ(km, 0) = kρ ≥ ρ ≥ ρ+ σ = vρ,σ(enF).

Since µvρ,σ(A) = dvρ,σ(enF) and d - µ, this implies that µ < d. We finally prove

item (4). Since (A, (ρ, σ)) is of type II and v1,−1(A
′) > 0, it is of type II.b).

Consequently if l = 1 it follows from [1, Remark 6.3] that (A,A′, (ρ, σ)) is the starting

triple of (P,Q) (see [1, Definition 6.2]), and so condition (4) is true by [2, Remark 3.23],

because by hypothesis P,Q ∈ L.

3) Let F be as in [1, Theorem 2.6] and write

F = x
u
l yvf(z) with z := x−

σ
ρ y, f ∈ K[z] and f(0) 6= 0.

By [2, Remark 3.9] there exist p, f ∈ K[z] such that

p(z) = p(zk) and f(z) = f(zk), where k := gap(ρ, l).

So,

t := deg p =
deg p

k
=
v01(enρ,σ(P )− stρ,σ(P ))

k
= m

v01(A− A′)
k

.

By [2, Remark 3.8] we have mλ ≤ deg p, which yields mλ
m
≤ v01(A−A′)

gap(ρ,l)
. Assume now

8



that (A,A′) is simple. Since k = v01(enρ,σ(F ))− 1, we have

k + 1 = v01(enρ,σ(F )) = v01(F ) = v + deg(f) = v + k deg(f),

which implies deg(f) = v = 1 or k = 1, v = 0 and deg(f) = 2. But if v = 0, then

by [1, Theorem 2.6(2)] (u
l
, 0
)

= stρ,σ(F ) ∼ A′,

which is impossible since v01(A
′) > 0, since k = 0 and (A,A′) is simple. Hence,

deg(f) = 1 and so, by [1, Proposition 2.11(3)] we have p(zk) = (zk − c)t for some

constant c ∈ K×. Consequently, by [2, Remark 3.8], every linear factor of p has

multiplicity t. Thus mλ = t = mv01(A−A′)
gap(ρ,l)

, as desired.

4) By [1, Proposition 5.16] there exists λ ∈ K× such that the second inequality

in (2.1.2) is true. Since ρ > 0 and a′

l
− b′ > 0, we have

(
ρ
a′

l
+ σb′

)
− (ρ+ σ)b′ = ρ

(a′
l
− b′

)
> 0.

Since ρ+σ > 0 and vρ,σ(A) = vρ,σ(A′), this implies the first inequality in (2.1.2).

Remark 2.1.6. Let l ≥ 1 and let (P,Q) be an (m,n)-pair in L(l). Let (A, (ρ, σ)) be a

regular corner of (P,Q) and let A′ := 1
m

stρ,σ(P ). Write

`ρ,σ(P ) = xm
a′
l ymb

′
p(z) with z := x−

σ
ρ y, p ∈ K[z] and p(0) 6= 0,

If (A, (ρ, σ)) is of type I, then all the roots of p are simple. In fact if p(z) = (z−λ)2p̃(z),

then

[`ρ,σ(P ), `ρ,σ(Q)] = [xm
a′
l ymb

′
(z − λ)2p̃(z), `ρ,σ(Q)]

= 2(z − λ)xm
a′
l ymb

′
p̃(z)[(z − λ), `ρ,σ(Q)] + (z − λ)2[xm

a′
l ymb

′
p̃(z), `ρ,σ(Q)],

which contradicts the fact that [`ρ,σ(P ), `ρ,σ(Q)] ∈ K×.

Remark 2.1.7. Let l ≥ 1 and let (P,Q) be an (m,n)-pair in L(l). Let (A, (ρ, σ)) be a

regular corner of (P,Q) and let A′ := 1
m

stρ,σ(P ). Write

`ρ,σ(P ) = x
k
l p(z) where z := x−

σ
ρ y and p(z) ∈ K[z].

Let λ ∈ K× be a root of p of multiplicity mλ and let γ := mλ
m

(note that deg(p) = mb

9



and that since p = (x−σ/ρy)b
′
p, the multiplicity of λ as a root of p is also mλ). By

Proposition 2.1.5(3)

γ ≤ b− b′

gap(ρ, l)
≤ b.

Hence, if b = γ, then b′ = 0, gap(ρ, l) = 1 and p(z) = µ(z − λ)mb, and consequently

(A, (ρ, σ)) is not of type II. Since mb > 1 it follows from Remark 2.1.6 that it is

not of type I either, and so it is necessarily of type III. In line 7 of Algorithm 3 we

set gmax := min
{

b−b′
gap(ρ,l)

, b− 1
}

in order to avoid the regular corners of type III.

We can ignore these corners, since they do not appear in a complete chain of an

(m,n)-pair (see Proposition 2.3.2). Note that from b′ = 0 and gap(ρ, l) = 1 it follows

that (A,A′) is not simple.

2.2 The children of a valid edge

Let (P,Q) be an (m,n)-pair in L(l), let (A, (ρ, σ)) be a regular corner of

type II of (P,Q) and let A′ := 1
m

stρ,σ(P ). If (A, (ρ, σ)) is of type II.b), then

applying [1, Propositions 5.16 and 5.18(4)], we obtain a regular corner (A1, (ρ
′, σ′))

of an (m,n)-pair (P1, Q1). In the sequel we will call A1 the corner generated by

(A,A′). If moreover (A1, (ρ
′, σ′)) is of type II, then we say that (A1,A

′
1), where

A′1 := 1
m

stρ′,σ′(P1), is a child of (A,A′). On the other hand, if (A, (ρ, σ)) is of

type II.a), then we set A1 := A′ and A′1 := 1
m

stρ1,σ1(P ), where (ρ1, σ1) := PredP (ρ, σ)

(which is well defined by [1, Proposition 4.6(5)]). As before, in this case we also call

A1 the corner generated by (A,A′) and we say that (A1,A
′
1) is a child of (A,A′).

For a general valid edge (A,A′) we will construct all its possible children (A1,A
′
1)

(see Definition 2.2.8) in two steps:

- GenerateCorners (A,A′): We find the corners A1 generated by a valid edge

(A,A′) (see Definition 2.2.5).

- GetCornerChildren ((A,A′),A1): Given a corner A1 generated by a valid

edge (A,A′), we determine all possible A′1, such that (A1,A
′
1) is a child of

(A,A′).

In the rest of this subsection (A,A′) denotes a valid edge.

10



Definition 2.2.1. We set γmax := min
(

b−b′
gap(ρ,l)

, b − 1
)

and we define the set of

multiplicities

Γ = Γ(A,A′) :=

{γmax} if (A,A′) is simple

{b′, . . . , γmax} if (A,A′) is not simple.

Remark 2.2.2. Note that from the equality

γmax = min
(
gcd(a− a′, b− b′), b− 1

)
(see [2, equality (3.9)]) it follows that γmax ∈ N. Moreover if γmax <

b−b′
gap(ρ,l)

, then

gap(ρ, l) = 1 and b′ = 0, which, as we saw in Remark 2.1.7, excludes the case (A,A′)

simple.

Remark 2.2.3. The previous definition is motivated by the properties established in

Proposition 2.1.5(3) for the case of (m,n)-pairs.

For each γ such that b′ ≤ γ ≤ γmax, we let A(γ) denote (a1 o l1, b1
)
, where

l1 := lcm(l, ρ), b1 := γ and a1 :=
al1
l

+ (γ − b)−σl1
ρ

.

Note that vρ,σ(A(γ)) = vρ,σ(A). So A(γ) is in the line determined by A and A′.

Definition 2.2.4. We say that A(γ) is admissible if

1. v1,−1(A(γ)) < 0,

2. l1 − a1
b1
> 1 or gcd(a1, b1) > 1.

Definition 2.2.5. Let A,A′ ∈ N(l)×N0 be such that (A,A′) is a valid edge. We say

that an element A1 ∈ N(l1) ×N is a corner generated by (A,A′), if either A1 = A′

and v1,−1(A
′) < 0, or v1,−1(A

′) > 0 and there exists γ ∈ Γ(A,A′) such that A(γ) is

admissible and A1 = A(γ) (which implies A1 6= A′).

Proposition 2.2.6. Assume that (A,A′) is simple. Let

l1 := lcm(l, ρ), a1 :=
al1
l

+ (γmax − b)
−σl1
ρ

and b1 := γmax.

If v1,−1(A
′) < 0, then v1,−1(A1) > 0, where A1 :=

(
a1
l1
, b1
)
.
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Proof. By Definition 2.1.2 and Remark 2.2.2 we know that

f2 = gap(ρ, l) + 1 and gmax =
b− b′

gap(ρ, l)
. (2.2.3)

Let µ and d be as in Definition 2.1.2. By Definition 2.1.2 and item (3’) of Remark 2.1.3

we have

f2 =
µ

d
b and

µ

d
=

(ρ+ σ)l

ρa+ σbl
. (2.2.4)

Moreover combining vρ,σ(A) = vρ,σ(A′) with the fact that v1,−1(A
′) > 0, we obtain

b′ <
a′

l
= −b′σ

ρ
+
a

l
+ b

σ

ρ
.

Hence

b′
(
ρ+ σ

ρ

)
<
ρa+ σlb

lρ
,

which, by the second equality in (2.2.4), implies

b′ <
ρa+ σlb

l(ρ+ σ)
=
d

µ
.

But then, by the first equalities in (2.2.3) and (2.2.4),

b =
d

µ
f2 =

d

µ
(gap(ρ, l) + 1) >

d

µ
gap(ρ, l) + b′,

and so, by the second equality in (2.2.3),

gmax =
b− b′

gap(ρ, l)
>
d

µ
.

Consequently,

v1,−1(A1) =
aρ+ bσl

ρl
− gmax

ρ+ σ

ρ
<
aρ+ bσl

ρl
− d

µ

ρ+ σ

ρ
= 0,

where the last equality follows from the second equality in (2.2.4).

In Algorithm 3 we obtain a list GeneratedCorners consisting of all the corners

generated by a valid edge (A,A′).
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Algorithm 3: GetGeneratedCorners

Input: A valid edge (A,A′) = ((a o l, b), (a′ o l, b′)).
Output: A list GeneratedCorners, consisting of all generated corners by

(A,A′).

1 (ρ, σ)← dir(A− A′)
2 if v1,−1(A

′) < 0 then

3 add A′ to GeneratedCorners

4 else

5 l1 ← lcm(ρ, l)

6 gap← ρ
gcd(ρ,l)

7 gmax← min
{
b−b′
gap

, b− 1
}

8 if Simple(A,A′) = TRUE then

9 a1 ← al1
l

+ (gmax−b)−σl1
ρ

10 A1 ← (a1 o l1, gmax)

11 if l1 − a1/b1 > 1 or gcd(a1, b1) > 1 then

12 add A1 to GeneratedCorners

13 else

14 for b1 ← b′ + 1 to gmax do

15 a1 ← al1
l

+ (b1 − b)−σl1ρ
16 A1 ← (a1 o l1, b1)
17 if v1,−1(A1) < 0 and (l1 − a1/b1 > 1 or gcd(a1, b1) > 1) then

18 add A1 to GeneratedCorners

19 RETURN GeneratedCorners

Remark 2.2.7. Definitions 2.2.4 and 2.2.5 are motivated by the following fact: Let

(P,Q) be an (m,n)-pair in L(l) and let (A, (ρ, σ)) be a regular corner of type II.b)

of (P,Q). Let ϕ be the automorphism of L(l1) introduced in [1, Proposition 5.18],

where l1 := gcd(l, ρ). Let λ ∈ K× be as in Proposition 2.1.5(4) and set

A′ :=
1

m
stρ,σ(P ), A1 :=

1

m
stρ,σ(ϕ(P )), (ρ1, σ1) := Predϕ(P )(ρ, σ) and γ :=

mλ

m
.

Then,

1. by Proposition 2.1.5(2) the pair (A,A′) is a valid edge,
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2. since (A, (ρ, σ)) is of type II.b), we have v1,−1(A
′) > 0,

3. by [1, Proposition 5.18(4)] the corner A1 satisfies condition (1) of

Definition 2.2.4,

4. by items (3) and (4) of Proposition 2.1.5, and Remark 2.1.7, we have

b′ < γ ≤ γmax.

5. by [1, Proposition 5.18(3)] we have A(γ) = A1,

6. by [1, Proposition 5.19] the corner A1 satisfies condition (2) of Definition 2.2.4.

Thus A1 ∈ N(l1) × N is a corner generated by (A,A′), A1 6= A′ and there exists

b′ < γ ≤ γmax such that A1 = A(γ), which implies that v01(A
′) < v01(A1) < v01(A).

Definition 2.2.8. Let (A,A′) and (A1,A
′
1) be valid edges and let (ρ, σ) := dir(A−A′)

and (ρ1, σ1) := dir(A1 − A′1). We say that (A1,A
′
1) is a child of (A,A′) if

(ρ, σ) > (ρ1, σ1) in I and A1 is a corner generated by (A,A′).

The previous definition describes the main inductive construction that yields

complete chains, generalizing the case when the valid edges correspond to an (m,n)-

pair. This construction consists of the two steps mentioned above that are realized

through Algorithms 3 and 4.

Remark 2.2.9. Let (A,A′) be a valid edge, let (ρ, σ) := dir(A − A′) and let

A1 = (a1 o l1, b1) be a corned generated by (A,A′). By Definition 2.2.5 we know

that v1,−1(A1) < 0. In Algorithm 4 we obtain all the children of (A,A′) of the

form (A1,A
′
1). The lower bound lo in the algorithm comes from the fact that

(ρ1, σ1) < (ρ, σ) if and only if µ > d1(ρ+σ)
vρ,σ(A1)

, where d1 := gcd(a1, b1). The upper bound

hi in lines 4 and 6 and the conditions required in line 11 come from Definition 2.1.2.

By [2, Remark 3.9] we know that

A′1 =
(a1
l1
, b1

)
+ j
(

gap(ρ1, l1)
σ1
ρ1
,− gap(ρ1, l1)

)
for some 0 < j ≤

⌊ b1
gap(ρ1, l1)

⌋
.

Remark 2.2.10. Before running Algorithm 4 with input a corner A1 = (a1 ol1, b1) such

that l1 − a1
b1
≤ 1, and a valid edge(A,A′), it is necessary to run Algorithm 1 with

input greater than or equal to a1.
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Algorithm 4: GetCornerChildrenList

Input: A valid edge (A,A′) and a corner A1 = (a1 o l1, b1) generated by

(A,A′) with l1 − a1
b1
≤ 1.

Output: A list CornerChildrenList, consisting of all (A1,A
′
1) that are

children of (A,A′).

1 (ρ, σ)← dir(A− A′)
2 d1 ← gcd(a1, b1)

3 lo←
⌊
1 + d1(ρ+σ)

vρ,σ(A1)

⌋
4 hi← d1

5 if l1 > 1 then

6 hi←
⌊
l1(b1l1 − a1) + d1

b1

⌋
7 for µ← lo to hi do

8 enF← µ
d1

(
a1
l1
, b1

)
9 (ρ1, σ1)← dir(enF−(1, 1))

10 gap← ρ1
gcd(ρ1,l1)

11 if gap ≤ b1 and d1 - µ then

12 for j ← 1 to
⌊
b1
gap

⌋
do

13 A′1 ←
(
a1
l1
, b1
)

+ j
(
gap σ1

ρ1
,− gap

)
14 if ( l1 > 1 and v1,−1(A

′
1) 6= 0 ) or (l1 = 1 and v1,−1(A

′
1) < 0) or

15 (l1 = 1, v1,−1(A
′
1) > 0 and A′1 ∈ PLLC) then

16 add (A1,A
′
1) to CornerChildrenList

17 RETURN CornerChildrenList

Definition 2.2.11. A corner A = (a o l, b) is called a final corner if l − a
b
> 1.

In Algorithm 5 we combine Algorithms 3 and 4 in order to obtain a procedure

giving the children of a valid edge (A,A′) and the final corners generated by (A,A′).

In line 1 of Algorithm 5 we use the expression “GetGeneratedCorners(A,A′)”

as a notation for “run GetGeneratedCorners with input (A,A′)”. We use similar

notations in the following algorithms.
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Algorithm 5: GetChildrenAndFinalList

Input: A valid edge (A,A′).

Output: A list ChildrenList, consisting of all children of (A,A′).

A list FinalList, consisting of all final corners generated by (A,A′).

1 GeneratedCorners← GetGeneratedCorners(A,A′)

2 for A1 = (a1 o l1, b1) ∈ GeneratedCorners do

3 if l1 − a1
b1
> 1 then

4 add A1 to FinalList

5 CornerChildrenList← GetCornerChildrenList((A,A′),A1)

6 for (A1,A
′
1) ∈ CornerChildrenList do

7 add (A1,A
′
1) to ChildrenList

8 RETURN (ChildrenList,FinalList)

2.3 Main inductive step and complete chains

Now we are able to construct recursively a chain (C0, . . . ,Cj) of valid edges

Ci := (Ai,A
′
i), where each Ci a child of the previous (except the first one). In the

case of an standard (m,n)-pair (P,Q), this process terminates when the generated

corner

Aj+1 = (aj+1 o lj+1, bj+1)

is a regular corner of type I. In this case

lj+1 −
aj+1

bj+1 > 1
.

Definition 2.3.1. A chain (C0, . . . ,Cj,Aj+1) is called a complete chain of length j+1,

if

- Ci is a valid edge for i = 0, . . . , j,

- Ci+1 is a child of Ci for i = 0, . . . , j − 1,

- Aj+1 is generated by Cj,

- Aj+1 is a final corner,

- l0 = 1,
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where Ci = (Ai,A
′
i) and Ai = (ai o li, bi).

In Algorithm 6 we give a method for the generation of a list CompleteChains

consisting of all complete chains starting with a valid edge

C0 = (A,A′) = ((a, b), (a′, b′))

and having length less than or equal to NumberOfFactors
(
gcd(b, (b − b′)/ρ)

)
+ 1,

where (ρ, σ) denotes dir(A− A′) and NumberOfFactors
(
n) is an auxiliary function

which returns the number of prime factors of n, counted with its multiplicity.

We use auxiliary lists OpenChains and POpenChains and an auxiliary variable

Lmax. Moreover the expression C ]A1 denotes the chain obtained adding A1 at the

end of the chain C and similarly for C ] (A1,A
′
1).
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Algorithm 6: GetCompleteChains

Input: A valid edge C0 = (A,A′) = ((a, b), (a′, b′)).

Output: A list CompleteChains, consisting of all complete chains CH

starting in C0, with

length(CH) ≤ NumberOfFactors
(

gcd
(
b, b−b

′

ρ

))
+ 1, where

(ρ, σ) := dir(A− A′).
1 (ρ, σ)← dir(A− A′)

2 Lmax← NumberOfFactors
(

gcd
(
b, b−b

′

ρ

))
+ 1

3 OpenChains← (C0)

4 j ← 0

5 while j < Lmax do

6 POpenChains← ∅
7 for CH ∈ OpenChains do

8 Last← Last element in CH

9 (ChildrenList,FinalList)← GetChildrenAndFinalList(Last)

10 for A1 ∈ FinalList do

11 add CH ]A1 to CompleteChains

12 for (A1,A
′
1) ∈ ChildrenList do

13 add CH ] (A1,A
′
1) to POpenChains

14 OpenChains← POpenChains

15 j ← j + 1

16 RETURN CompleteChains

Theorem 2.3.2. For each standard (m,n)-pair (P,Q), there exist

(
(Pi, Qi), (Ai, A

′
i), (ρi, σi), li

)
0≤i≤j and

(
(Pj+1, Qj+1), Aj+1, (ρj+1, σj+1), lj+1

)
),

where j ∈ N, such that:

1. l0 ≤ · · · ≤ lj+1 ∈ N with l0 = 1,

2. (ρ0, σ0) > . . . > (ρj+1, σj+1) in I,

3. (Pi, Qi) is an (m,n)-pair in L(li) for each 1 ≤ i ≤ j + 1 and (P0, Q0) = (P,Q),

4. `ρh,σh(Pi) = `ρh,σh(Pi+1) for 0 ≤ h < i ≤ j,
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5. (Ah, (ρh, σh)) is a regular corner of type II.a) of (Pi, Qi) for 0 ≤ h < i ≤ j + 1.

Moreover
1

m
stρh,σh(Pi) = Ah+1.

6. A0 = 1
m

en10(P ) and (Ai, (ρi, σi)) is a regular corner of type II of (Pi, Qi) for

0 ≤ i ≤ j,

7. if (Ai, (ρi, σi)) is a regular corner of type II.a) of (Pi, Qi), then

li+1 = li, (Pi+1, Qi+1) = (Pi, Qi) and Ai+1 = A′i =
1

m
stρi,σi(Pi),

8. if (Ai, (ρi, σi)) is a regular corner of type II.b) of (Pi, Qi), then li+1 = lcm(ρi, li)

and there exists a root λ ∈ K× of the polynomial pi(z), defined by

`ρi,σi(Pi) = x
ki
li pi(z), where z := x−σi/ρiy,

such that m | mλ, where mλ is the multiplicity of z − λ in pi(z) and

1

m
stρi,σi(Pi+1) = Ai+1 =

( ki
mli

, 0
)

+
mλ

m

(
−σi
ρi
, 1
)
6= A′i =

1

m
stρi,σi(Pi).

(2.3.5)

Moreover `ρi,σi(Pi+1) = ϕ(`ρi,σi(Pi)), where ϕ ∈ Aut(L(li+1)) is defined by

ϕ(x
1

li+1 ) := x
1

li+1 and ϕ(y) := y + λx
σi
ρi ,

9. (Aj+1, (ρj+1, σj+1)) is a regular corner of type I of (Pj+1, Qj+1) in L(lj+1),

10. (Ai+1,A
′
i+1) is a child of (Ai,A

′
i) for 0 ≤ i < j,

11. v01(Ai+1) < v01(Ai) for 0 ≤ i ≤ j,

12. the chain (
(A0,A

′
0), . . . , (Aj,A

′
j),Aj+1

)
, (2.3.6)

is complete,

13. if t is the greatest index such that lt = 1, then

-
{

(Ai, (ρi, σi)) : 0 ≤ i ≤ t
}

is the set of regular corners of (P,Q),
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- (Ai, (ρi, σi)) is a regular corner of type IIa) of (P,Q) for 0 ≤ i < t and

(At, (ρt, σt)) is a regular corner of type IIb) of (P,Q),

- A′t is the last lower corner of (P,Q) (see [2, Definition 3.21]),

- (Pi, Qi) = (P,Q) for all i ≤ t,

14. The set of regular corners of (Pj+1, Qj+1) is {(Ai, (ρi, σi)) : 0 ≤ i ≤ j + 1}.

Proof. Take the set

{(A0, (ρ0, σ0)), . . . , (At, (ρt, σt))},

of regular corners of (P,Q), with (ρi, σi) > (ρi+1, σi+1) for all i (note that we are

using the opposed enumeration of [1, Theorem 7.6]). By [1, Remark 5.12] we know

that A0 = 1
m

en10(P ). Setting A′i := 1
m

stρi,σi(P ), we obtain a chain

((A0, A
′
0), . . . , (At, A

′
t)),

where Ai, A
′
i ∈ N×N0 by [1, Remark 5.8]. By [1, Theorem 7.6(1)],

{(ρ0, σ0), . . . , (ρt−1, σt−1)} = A(P )

and the 3-uple (At, A
′
t, (ρt, σt)) is the starting triple of (P,Q). Hence, by

[1, Remark 5.10] we know that (Ai, (ρi, σi)) is a regular corner of type II.a) of

(P,Q) for 0 ≤ i < t. Therefore v1,−1(A
′
i) < 0 for 0 ≤ i < t. Furthermore, by items (1)

and (2) of Proposition 2.1.5 each one of the pairs (Ai,A
′
i), with 0 ≤ i ≤ t, is a valid

edge. Moreover,

Ai+1 = A′i and v01(Ai+1) < v01(Ai) for 0 ≤ i < t.

Consequently Ai+1 is a corner generated by (Ai,A
′
i) for 0 ≤ i < t. Therefore

(Ai+1,A
′
i+1) is a child of (Ai,A

′
i) for 0 ≤ i < t. Moreover, A′t is the last lower corner

of (P,Q). For i ≤ t, set li := 1 and (Pi, Qi) := (P,Q). By [1, Remark 6.3] we know

that (At, (ρt, σt)) is a regular corner of type II.b), and so v1,−1(stρt,σt(P )) > 0. This

implies that (ρt, σt) 6= (1, 0), because (P,Q) is standard (see [1, Definition 4.3]).

Since (ρt, σt) ∈ I we obtain that ρt > 0. Let λ ∈ K× be as in Proposition 2.1.5(4)

and let lt+1 := ρt. Applying [1, Proposition 5.18 and Remark 3.9] to (Pt, Qt) and

(At, (ρt, σt)), we obtain an (m,n)-pair (Pt+1, Qt+1) in L(lt+1), such that

- enρt,σt(Pt+1) = enρt,σt(Pt) and `ρh,σh(Pt+1) = `ρh,σh(Pt) for 0 ≤ h < t,
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- (At+1, (ρt+1, σt+1)) is a regular corner of (Pt+1, Qt+1), where

(ρt+1, σt+1) := PredPt+1(ρt, σt) and At+1 :=
1

m
stρt,σt(Pt+1),

- There exists λ ∈ K× such that m divides the multiplicity mλ of z − λ in pt(z)

and

At+1 =
( kt
mlt

, 0
)

+
mλ

m

(
−σt
ρt
, 1
)
,

Moreover `ρt,σt(Pt+1) = ϕ(`ρt,σt(Pt)), where ϕ ∈ Aut(L(lt+1)) is defined by

ϕ(x
1

lt+1 ) := x
1

lt+1 and ϕ(y) := y + λx
σt
ρt ,

- A(Pt+1) = A(Pt) ∪ {(ρt, σt)} ∪ {(ρ, σ) ∈ A(Pt+1) : (ρ, σ) < (ρt, σt) in I}, where

A(Pt) and A(Pt+1) are as in the discussion above [1, Proposition 5.2].

By Remark 2.2.7 we know that At+1 is a corner generated by (At,A
′
t), that At+1 6= A′t

and that v01(At+1) < v01(At). We claim that we can assume that (At+1, (ρt+1, σt+1))

is of type I or II. In fact, suppose that it is a regular corner of type III and write

`ρt+1,σt+1(Pt+1) = x
κt+1
lt+1 µ0(z − λ0)r0 where z := x

−σt+1
ρt+1 y, µ0, λ0 ∈ K× and r0 ∈ N.

Then, by [1, Theorem 7.6(1) and Remark 5.10],

A(Pt+1) = A(Pt) ∪ {(ρt, σt)}

while, by [1, Proposition 5.17], we have ρt+1 | lt+1 and there exists an (m,n)-pair

(Pt+1,1, Qt+1,1) in L(lt+1) such that,

- enρt+1,σt+1(Pt+1,1) = enρt+1,σt+1(Pt+1) = At+1 = 1
m

stρt+1,σt+1(Pt+1,1),

- `ρh,σh(Pt+1,1) = `ρh,σh(Pt+1) for 0 ≤ h ≤ t,

- (At+1, (ρt+1,1, σt+1,1)) is a regular corner of (Pt+1,1, Qt+1,1), where

(ρt+1,1, σt+1,1) := PredPt+1,1(ρt+1, σt+1),

- A(Pt+1,1) = A(Pt+1) ∪ {(ρ, σ) ∈ A(Pt+1,1) : (ρ, σ) < (ρt+1, σt+1) in I}.
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Note that (ρt+1,1, σt+1,1) = PredPt+1,1(ρt, σt). As long as Case III occurs, we can find

(ρt+1,1, σt+1,1) > . . . > (ρt+1,u, σt+1,u) > . . . ,

and (m,n)-pairs (Pt+1,u, Qt+1,u) in L(lt+1) such that for all u ≥ 1

- ρt+1,u | lt+1 ,

- enρt+1,u,σt+1,u(Pt+1,u+1) = enρt+1,u,σt+1,u(Pt+1,u) = At+1 =
1
m

stρt+1,u,σt+1,u(Pt+1,u+1),

- (At+1, (ρt+1,u+1, σt+1,u+1)) is a regular corner of (Pt+1,u+1, Qt+1,u+1), where

(ρt+1,u+1, σt+1,u+1) := PredPt+1,u+1(ρt+1,u, σt+1,u) = PredPt+1,u+1(ρt, σt),

- `ρh,σh(Pt+1,u+1) = `ρh,σh(Pt+1,u) for 0 ≤ h ≤ t,

- A(Pt+1,u+1) = A(Pt+1) ∪ {(ρ, σ) ∈ A(Pt+1,u+1) : (ρ, σ) < (ρt+1, σt+1) in I}.

But there are only finitely many ρt+1,u’s with ρt+1,u | lt+1. Moreover,

0 < −σt+1,u < ρt+1,u,

since (1,−1) < (ρt+1,u, σt+1,u) < (1, 0), and so there are only finitely many

(ρt+1,u, σt+1,u) possible. Thus, eventually cases I or II must occur, proving the

claim. Note that by [1, Theorem 7.6(1) and Remarks 5.10 and 5.11]

(At+1, (ρt+1, σt+1)) is of type II.a)⇔ (ρt+1, σt+1) ∈ A(Pt+1)⇔ A(Pt)∪{(ρt, σt)} ( A(Pt+1).

Assume that (At+1, (ρt+1, σt+1)) is a regular corner of type II and set A′t+1 :=
1
m

stρt+1,σt+1(Pt+1). By Proposition 2.1.5(2) we know that (At+1,A
′
t+1) is a child of

(At,A
′
t). If (At+1, (ρt+1, σt+1)) is a regular corner of type II.a), then by [1, Remark

5.11], the pair

(
At+2, (ρt+2, σt+2)

)
:=
(
A′t+1,PredPt+1(ρt+1, σt+1)

)
is a regular corner of (Pt+2, Qt+2) := (Pt+1, Qt+1). Moreover, by definition At+2

is generated by (At+1,A
′
t+1) and v01(At+2) < v01(At+1). On the other hand, if
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(At+1, (ρt+1, σt+1)) is a corner of type II.b), then, arguing as above we obtain a root

λ of pt+1(z) and an (m,n)-pair (Pt+2, Qt+2) in L(lt+2), where lt+2 := lcm(lt+1, ρt+1),

such that

- enρt+1,σt+1(Pt+2) = enρt+1,σt+1(Pt+1) and `ρh,σh(Pt+2) = `ρh,σh(Pt+1) for 0 ≤ h <

t+ 1,

- (At+2, (ρt+2, σt+2)) is a regular corner of type I or II of (Pt+2, Qt+2), where

(ρt+2, σt+2) := PredPt+2(ρt+1, σt+1) and At+2 :=
1

m
stρt+1,σt+1(Pt+2),

- At+2 6= A′t+1, the pair (At+1,A
′
t+1) generates At+2, and v01(At+2) < v01(At+1),

- there exists λ ∈ K× such that m divides the multiplicity mλ of z− λ in pt+1(z)

and

At+2 =
( kt+1

mlt+1

, 0
)

+
mλ

m

(
−σt+1

ρt+1

, 1
)
.

Moreover `ρt+1,σt+1(Pt+2) = ϕ(`ρt+1,σt+1(Pt+1)), where ϕ ∈ Aut(L(lt+2)) is defined

by

ϕ(x
1

lt+2 ) := x
1

lt+2 and ϕ(y) := y + λx
σt+1
ρt+1 ,

- A(Pt+2) = A(Pt+1)∪{(ρt+1, σt+1)}∪{(ρ, σ) in A(Pt+1) : (ρ, σ) < (ρt+1, σt+1) ∈
I}.

While regular corners of type II occurs we continue with this process. Eventually

a regular corner (Aj+1, (ρj+1, σj+1)) of type I must occur. Finally, by

[1, Proposition 5.13], the chain (2.3.6) is complete.

Remark 2.3.3. By Theorem 3.1.1 below, if (Aj+1, (ρj+1, σj+1)) is a regular corner of

type I.a) of (Pj+1, Qj+1) in L(lj+1), then we can modify (Pj+1, Qj+1) in such a way

that (Aj+1, (ρj+1, σj+1)) becomes of type I.b).

Remark 2.3.4. Let (P,Q) be a standard (m,n)-pair, let j ∈ N and let

(
(Pi, Qi), (Ai, A

′
i), (ρi, σi), li

)
0≤i≤j and

(
(Pj+1, Qj+1), Aj+1, (ρj+1, σj+1), lj+1

)
satisfying items (1)–(14) of Theorem 2.3.2. Let h and i be integers with 0 ≤ h ≤ i ≤ j.

By items (3), (5) and (6), and [1, Theorem 7.6(2)], there exists d
(i)
h maximum such
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that

`ρh,σh(Pi) = R
md

(i)
h

hi for some (ρh, σh)-homogeneous Rhi ∈ L(li). (2.3.7)

By item (8) of [1, Theorem 7.6] we know that

# Primefactors(d
(i)
h ) ≥ i− h. (2.3.8)

Write Ah = (ah/lh, bh), Ah+1 = (ah+1/lh+1, bh+1) and A′h = (a′h/lh, b
′
h). We assert

that

d
(i)
h

∣∣∣D(i)
h := gcd

(
bh − b′h

gap(ρh, lh)
, bh, bh+1,

ahli
lh
,
a′hli
lh

)
. (2.3.9)

First note that by Theorem 2.3.2(5)

(ah+1/lh+1, bh+1) = Ah+1 =
1

m
stρh,σh(Pi) = d

(i)
h stρh,σh(Rhi),

and consequently d
(i)
h |bh+1. By items (4), (7) and (8) of Theorem 2.3.2 there exists

λ ∈ K such that

`ρh,σh(Pi) = `ρh,σh(Ph+1) = ϕ(`ρh,σh(Ph)),

where ϕ ∈ Aut(L(lh+1)) is defined by

ϕ(x
1

lh+1 ) := x
1

lh+1 and ϕ(y) := y + λx
σh
ρh .

Write R̃hi := ϕ−1(Rhi). Then

`ρh,σh(Ph) = ϕ−1(`ρh,σh(Pi)) = R̃
md

(i)
h

hi ,

and so

(Ah, A
′
h) = ((ah/lh, bh), (a

′
h/lh, b

′
h)) =

(
enρh,σh

(
R̃
d
(i)
h
hi

)
, stρh,σh

(
R̃
d
(i)
h
hi

))
.

(Note that λ = 0 if and only if (Ah, (ρh, σh)) is a regular corner of type II.a) of

(Ph, Qh)). Set z := x
−σh
ρh y and write

R̃
d
(i)
h
hi = x

a′h
lh yb

′
hfhi(z) and R̃hi = x

u′h
li yv

′
hghi(z),
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where fhi and ghi are polynomials such that fhi(0) 6= 0 and ghi(0) 6= 0. Clearly

d
(i)
h

∣∣∣b′h, d
(i)
h

∣∣∣bh, d
(i)
h

∣∣∣a′hli
lh
, d

(i)
h

∣∣∣ahli
lh

and fhi = g
d
(i)
h
hi . (2.3.10)

Thus d
(i)
h divides bh − b′h. We next prove that

d
(i)
h

∣∣∣ bh − b′h
gap(ρh, lh)

. (2.3.11)

Assume for a moment that gap(ρh, lh) | thi where thi := deg ghi and write

thi = gap(ρh, lh)t
′
hi. From

x
ah−a

′
h

lh ybh−b
′
h = zthid

(i)
h = x

−
thid

(i)
h
σh

ρh ygap(ρh,lh)t
′
hid

(i)
h ,

we obtain that

gap(ρh, lh)d
(i)
h | bh − b

′
h,

from which (2.3.11) follows. Consequently, we are reduced to prove that gap(ρh, lh) |
thi. Suppose this is false and write

ghi =

thi∑
u=0

auz
u

Let v be the minimum u such that au 6= 0 and gap(ρh, lh) - u. A direct computation

using that gap(ρh, lh) - v and that gap(ρh, lh) | u for all u < v such that au 6= 0, shows

that the coefficient of zv in g
md

(i)
h

hi (z) is md
(i)
h a

md
(i)
h −1

0 av 6= 0. But this is impossible,

since

x
ma′h
lh ymb

′
hg

md
(i)
h

hi (z) = R̃
md

(i)
h

hi = `ρh,σh(Ph) ∈ L(lh) and zv = x
−σhv

ρh yv /∈ L(lh).

This proves (2.3.11) and thus finishes the proof of (2.3.9).

Remark 2.3.5. From inequality (2.3.8) and condition (2.3.9) (both with h = 0 and

i = j), we obtain that j ≤ # Primefactors(D), where D := gcd(b0, (b0 − b′0)/ρ0).
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2.4 Divisibility conditions and admissible

complete chains

In this subsection we first prove that if a complete chain C = (C0, . . . ,Cj,Aj+1) is

constructed from a standard (m,n)-pair (P,Q) as in Theorem 2.3.2, then C satisfies

certain arithmetic conditions. In Definition 2.4.2 we name arbitrary complete

chains that satisfy these properties “admissible complete chains”. Then we obtain a

procedure in order to determine if a given complete chain is admissible.

Let (P,Q) be an standard (m,n)-pair, let j ∈ N and let

(
(Pi, Qi), (Ai, A

′
i), (ρi, σi), li

)
0≤i≤j and

(
(Pj+1, Qj+1), Aj+1, (ρj+1, σj+1), lj+1

)
),

be as in Remark 2.3.4. By items (3), (5) and (6) of Theorem 2.3.2 and [1, The-

orem 7.6(3)] (which applies since vρh,σh(Ph) > 0 by [1, Corollary 5.7(1)]) for h ≤ j

there exist ph, qh ∈ N coprime and a (ρh, σh)-homogeneous element Fh ∈ L(lh) such

that,

vρh,σh(Fh) = ρh+σh, [Fh, `ρh,σh(Ph)] = `ρh,σh(Ph) and enρ,σ(Fh) =
ph
qh

1

m
enρh,σh(Ph).

Let ϕ ∈ Aut(L(lh+1)) be as in Remark 2.3.4. Since ϕ is (ρh, σh)-homogeneous,

vρh,σh(ϕ(Fh)) = ρh + σh.

Moreover, by [1, Remark 3.10] and items (7) and (8) of Theorem 2.3.2,

[ϕ(Fh), `ρh,σh(Ph+1)] = [ϕ(Fh), ϕ(`ρh,σh(Ph))] = ϕ(`ρh,σh(Ph)) = `ρh,σh(Ph+1).

Thus, by item (4) of Theorem 2.3.2

[ϕ(Fh), `ρh,σh(Pi)] = `ρh,σh(Pi) for h < i ≤ j. (2.4.12)

Since ρh > 0, the end point of each (ρh, σh)-homogeneous element F of L(li) is the

support of the monomial of greatest degree in y of F . Consequently

enρh,σh(Fh) = enρh,σh(ϕ(Fh)),
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because the monomials of greatest degree in y of Fh and ϕ(Fh) coincide. Note

that since (Ah, (ρh, σh)) is a regular corner of type II) of Pi the hypothesis of

[1, Proposition 2.11(5)] are fulfilled, and so ϕ(Fh) is the unique (ρh, σh)-homogeneous

element of L(li) that satisfies equality (2.4.12).

Remark 2.4.1. By items (4), (5), (6) and (8) of [1, Theorem 7.6] the following

conditions hold:

- qh - d(i)h for all 0 ≤ h ≤ i ≤ j.

- qk | d(i)h for all 0 ≤ h < k ≤ i ≤ j.

- qh - qk for all 0 ≤ h < k ≤ j.

Note that since

gcd(ph, qh) = 1 and
ph
qh

=
ρh + σh
vρh,σh(Ah)

,

we have

ph =
ρh + σh

gcd(ρh + σh, vρh,σh(Ah))
and qh =

vρh,σh(Ah)

gcd(ρh + σh, vρh,σh(Ah))
. (2.4.13)

Let (C0, . . . ,Cj,Aj+1) be a complete chain (see Definition 2.3.1). For 0 ≤ i ≤ j,

write

Ci = (Ai,A
′
i), Ai = (ai o li, bi), A′i = (a′i o li, b′i) and (ρi, σi) := dir(Ai − A′i),

and write

Aj+1 = (aj+1 o lj+1, bj+1).

Now for 0 ≤ h ≤ j, we can define ph and qh by equalities (2.4.13), and we do it.

Moreover, as in Remark 2.3.4, we set

D
(i)
h := gcd

(
bh − b′h

gap(ρh, lh)
, bh, bh+1,

ahli
lh
,
a′hli
lh

)
.

Definition 2.4.2. A complete chain is called an admissible complete chain if for all

0 ≤ h < i ≤ j it satisfies

qi | D(i)
h , qh - qi and # Primefactors(D

(i)
h ) ≥ i− h.
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By Remark 2.4.1, inequality (2.3.8) and condition (2.3.9) every complete chains

arising from a standard (m,n)-pair (P,Q) is admissible. In Algorithm 7 we give a

procedure to verify if an arbitrary complete chain is admissible.

Algorithm 7: GetIsAdmissible

Input: A complete chain C = (C0, . . . ,Cj,Aj+1) with

Ci = (Ai,A
′
i) =

(
(ai o li, bi), (a′i o li, b′i)

)
.

Output: A boolean variable IsAdmissible.

1 h← 0

2 i← 1

3 IsAdmissible← TRUE

4 while h < j and IsAdmissible = TRUE do

5 (ρ, σ)← dir(Ah − A′h)
6 gap← ρ

gcd(ρ,lh)

7 q ← vρ,σ(Ah)

gcd(ρ+σ,vρ,σ(Ah))

8 while i ≤ j and IsAdmissible = TRUE do

9 (ρ′, σ′)← dir(Ai − A′i)
10 q′ ← vρ′,σ′ (Ai)

gcd(ρ′+σ′,vρ′,σ′ (Ai))

11 D ← gcd
(
bh−b′h
gap

, bh, bh+1,
ahli
lh
,
a′hli
lh

)
12 if # Primefactors(D) ≥ i− h and q′ | D and q - q′ then

13 i← i+ 1

14 else

15 IsAdmissible← FALSE

16 h← h+ 1

17 i← h+ 1

18 RETURN IsAdmissible

In Algorithm 8 we obtain all admissible complete chains starting from a valid

edge (A,A′) with v11(A) ≤M for a given upper bound M . Due to all the previous

algorithms, this main procedure is short.
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Algorithm 8: Main algorithm

Input: A positive integer M .

Output: A list AdmissibleCompleteChains of all admissible complete chains

(C0, . . . ,Cj,Aj+1), with v11(A0) ≤M , where A0 is the first

coordinate of C0.

1 PLLC← GetPossibleLastLowerCorners
(⌊

M
2

⌋)
2 for a = 2 to

⌊
M
2

⌋
do

3 for b = a+ 1 to M − a do

4 StartingEdges← GetStartingEdges((a, b),PLLC)

5 for (A,A′) ∈ StartingEdges do

6 CompleteChains← GetCompleteChains(A,A′)

7 for CH ∈ CompleteChains do

8 IsAdmissible← GetIsAdmissible(CH)

9 if IsAdmissible = TRUE then

10 add CH to AdmissibleCompleteChains

11 RETURN AdmissibleCompleteChains

We want to apply Algorithm 8 in order to obtain limitations on the possible

counterexamples to the Jacobian Conjecture. Assume then that this conjecture

is false. By [1, Corollary 5.21] we know there exists a counterexample (P,Q) and

m,n ∈ N coprime such that (P,Q) is a standard (m,n)-pair and a minimal pair,

which means that gcd(v1,1(P ), v1,1(Q)) = B, where B is as in (2.0.1).

Let A0 be as in Remark 2.3.4. By [1, Proposition 5.2 and Corollary 5.21(3)]

A0 =
1

m
en10(P ) and gcd(v11(P ), v11(Q)) = v11(A0).

By Theorem 2.3.2 and Remark 2.4.1 we know that A0 is the first coordinate of C0 for

one of the admissible complete chains obtained running Algorithm 8 with M ≥ B.
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Chapter 3

Generation of (m,n)-families

parameterized by N0

3.1 (m,n)-families

In this section, for a complete chain C := (C0, . . . ,Cj,Aj+1), we obtain restrictions

on all the possible m and n such that there could exist an (m,n)-pair (P,Q) that

generates C as in Theorem 2.3.2.

Proposition 3.1.1. If an (m,n)-pair (P,Q) in L(l) has a regular corner (A, (ρ, σ))

of type I.a), then ρ | l and there exists ϕ ∈ Aut(L(l)), such that (ϕ(P ), ϕ(Q)) is an

(m,n)-pair and (A, (ρ, σ)) is a regular corner of type I.b) of (ϕ(P ), ϕ(Q)). Moreover,

the regular corners of (P,Q) and the regular corners of (ϕ(P ), ϕ(Q)), coincide.

Proof. Let A′ := 1
m

stρ,σ(P ) and write A = (a/l, b) and A′ = (a′/l, b′).

By [1, Proposition 5.13a)] we know that b′ = 0. Write

`ρ,σ(P ) = x
ma′
l p(z) with z := x−

σ
ρ y, p(z) =

∑
aiz

i ∈ K[z] and a0 6= 0,

and

`ρ,σ(Q) = x
na′
l q(z) with z := x−

σ
ρ y, q(z) =

∑
biz

i ∈ K[z] and b0 6= 0.

A direct computation shows that there exists S ∈ L(l), such that

[`ρ,σ(P ), `ρ,σ(Q)] =
a′

l
(ma0b1 − na1b0)x

ma′+na′
l

−σ
ρ
−1 + yS.
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Since (A, (ρ, σ)) of type I, we have [`ρ,σ(P ), `ρ,σ(Q)] 6= 0. So, by [1, Proposition 1.13]

[`ρ,σ(P ), `ρ,σ(Q)] = `ρ,σ([P,Q]) ∈ K×. (3.1.1)

Thus, necessarily (m+n)a′

l
− σ

ρ
= 1 and a1 6= 0 or b1 6= 0. If a1 6= 0, then

(ma′
l
− σ

ρ
, 1
)
∈ Supp(`ρ,σ(P )) ⊆ 1

l
Z×N0.

Since
(
ma′

l
, 0
)

also is in Supp(`ρ,σ(P )) ⊆ 1
l
Z×N0, we conclude that σ

ρ
∈ 1

l
Z, which

implies ρ | l. Similarly, if b1 6= 0, then we also obtain ρ | l, as desired. Now let z − λ
be a linear factor of p(z). Define ϕ ∈ Aut(L(l)) by

ϕ(x1/l) := x1/l and ϕ(y) := y + λxσ/ρ.

Then

ϕ(`ρ,σ(P )) = x
ma′
l p(z + λ) = x

ma′
l p(z) and ϕ(`ρ,σ(Q)) = x

na′
l q(z + λ) = x

na′
l q(z),

where p(z) = p(z + λ) and q(z) = q(z + λ). By [1, Proposition 3.9] we know that,

for all H ∈ L(l),

`ρ,σ(ϕ(H)) = ϕ(`ρ,σ(H)), enρ,σ(ϕ(H)) = enρ,σ(H)

and

`ρ1,σ1(ϕ(H)) = `ρ1,σ1(H) for all (ρ, σ) < (ρ1, σ1) ≤ (1, 1). (3.1.2)

Using this with H = P and H = Q, we obtain that

v11(ϕ(P ))

v11(ϕ(Q))
=
v10(ϕ(P ))

v10(ϕ(Q))
=
m

n
and v1,−1(en10(ϕ(P ))) < 0.

Hence (ϕ(P ), ϕ(Q)) is an (m,n)-pair, since [ϕ(P ), ϕ(Q)] = [P,Q] ∈ K×,

by [1, Proposition 3.10]. We claim that (ρ, σ) ∈ Dir(ϕ(P )). In fact since

`ρ,σ(ϕ(P )) = ϕ(`ρ,σ(P )) = x
ma′
l p(z),

in order to see this it suffices to show that p is not a monomial, which follows easily

from the fact that deg(p) = m(b−b′) > 1 and λ is a simple root of p by Remark 2.1.6.
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Write p(z) =
∑

i aiz
i and q(z) =

∑
i biz

i. By [1, Proposition 3.10] and (3.1.1), we

have

[`ρ,σ(ϕ(P )), `ρ,σ(ϕ(Q))] = [ϕ(`ρ,σ(P )), ϕ(`ρ,σ(Q))] = ϕ([`ρ,σ(P ), `ρ,σ(Q)]) ∈ K×.

Using this and the fact that a0 = p(λ) = 0 we obtain

−na
′

l
a1b0 = [`ρ,σ(ϕ(P )), `ρ,σ(ϕ(Q))] ∈ K×.

Hence

stρ,σ(ϕ(P )) =
(ma′

l
− σ

ρ
, 1
)

and stρ,σ(ϕ(Q)) =
(na′
l
, 0
)
,

and so (A, (ρ, σ)) is a regular corner of type I.b) of (ϕ(P ), ϕ(Q)). Using this, that

(A, (ρ, σ)) is a regular corner of type I) of (P,Q), equalities (3.1.2) with H = P ,

and [1, Remark 5.10 and Theorem 7.6(1)], we obtain that (P,Q) and (ϕ(P ), ϕ(Q))

have the same regular corners.

Let ((a/l, b), (ρ, σ)) be a regular corner of type I.b) of an (m,n)-pair (P,Q) in

L(l). According to [1, Proposition 5.13b)] there exists k ∈ N, with k < l − a
b

such

that

{stρ,σ(P ), stρ,σ(Q)} =

{(
k

l
, 0

)
,

(
1− k

l
, 1

)}
, (3.1.3)

Proposition 3.1.2. Let ek := gcd(k, bl − a). If stρ,σ(Q) = (k/l, 0), then k
ek
| n and

(m+ n)b− nek
k

bl − a
ek

= 1, (3.1.4)

while if stρ,σ(P ) = (k/l, 0), then k
ek
| m and

(m+ n)b− mek
k

bl − a
ek

= 1. (3.1.5)

Proof. Assume first that stρ,σ(Q) = (k/l, 0). Since, by [1, Corollary 5.7(2)],

enρ,σ(P ) = m
(a
l
, b
)

and enρ,σ(Q) = n
(a
l
, b
)
,

we have

ρ− ρk

l
+ σ = vρ,σ(stρ,σ(P )) = vρ,σ(enρ,σ(P )) = m

(aρ
l

+ bσ
)
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and
ρk

l
= vρ,σ(stρ,σ(Q)) = vρ,σ(enρ,σ(Q)) = n

(aρ
l

+ bσ
)
,

which leads to

1− k

l
+
σ

ρ
=
ma

l
+mb

σ

ρ
and

σ

ρ
=
k − na
nlb

. (3.1.6)

Hence,
ma

l
+mb

k − na
nlb

= 1− k

l
+
k − na
nlb

,

which gives

(m+ n)bk − n(bl − a) = k.

Therefore k | n(bl − a). Since k
ek

and bl−a
ek

are coprime, necessarily k
ek
| n. So,

equality (3.1.4) is true. The case stρ,σ(P ) = (k/l, 0) is similar.

Let A := (aol, b) ∈ N(l)×N0 be a final corner and let k ∈ N be such that k < l− a
b
.

We want to find all the (m,n) ∈ N2 such that one of the equalities (3.1.4) or (3.1.5)

is satisfied. By symmetry it suffices to find the set of all those (m,n) ∈ N2 such

that equality (3.1.4) is satisfied and then to add to this set the pairs obtained by

swapping m with n. For the first task we proceed as follows: we first check that

gcd

(
b,
bl − a
ek

)
= 1, where ek := gcd(k, bl − a).

If this is the case we determine the Bezout coefficients M,N with N ≥ 1 in

Mb−N bl − a
ek

= 1.

For each solution (M,N) we set n := Nk
ek

and m := M − n. Since b < bl−a
k

, we have

mb = Mb− Nk

ek
b > Mb− Nk

ek

bl − a
k

= 1,

which implies that m ≥ 1 as desired. Then we keep all the pairs (m,n) that also

satisfy m > 1, n > 1 and gcd(m,n) = 1.

Definition 3.1.3. Let A := (a o l, b) ∈ N(l) ×N0 be a final corner and let

I(A) :=

{
k ∈ N : 1 ≤ k < l − a

b
and gcd

(
b,

bl − a
gcd(k, bl − a)

)
= 1

}
.
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For each k ∈ I(A) we set

MNk(A) :=
{

(m,n) ∈ N2 : m,n > 1, gcd(m,n) = 1 and (m+ n)bk − n(bl − a) = k
}
,

and we define the set MN(A), of possible (m,n) for A, by

MN(A) :=
⋃

k∈I(A)

MNk(A).

Next we describe these values as unions of infinite families of (m,n)’s,

parameterized by N0.

Let k ∈ N be such that 1 ≤ k < l − a
b

and set ek := gcd(k, bl − a). Assume

gcd
(
b, bl−a

ek

)
= 1 and let Mk and Nk with Nk ∈ N minimum satisfying

Mkb−Nk
bl − a
ek

= 1.

Then{
(M,N) ∈ Z×N : Mb−N bl − a

ek
= 1

}
=

{(
Mk + j

bl − a
ek

, Nk + jb

)
: j ∈ Nk

}
.

Set

m′kj := Mk + j
bl − a
ek
− (Nk + jb)k

ek
and n′kj :=

(Nk + jb)k

ek
.

Thus

m′kj = m′k0+j∆
(1)
k and n′kj = n′k0+j∆

(2)
k , where ∆

(1)
k :=

bl − bk − a
ek

and ∆
(2)
k :=

bk

ek
.

So,

m′k,j+1 > m′kj and n′k,j+1 > n′kj for all j ∈ N0.

Hence, by the comments above Definition 3.1.3, we have 1 ≤ m′k0, n
′
k0. Since we only

want consider the m′kj’s and n′kj’s greater than 1, we set

mkj :=

m′kj if n′k0 > 1 and m′k0 > 1,

m′k,j+1 otherwise,
and nkj :=

n′kj if n′k0 > 1 and m′k0 > 1,

n′k,j+1 otherwise.
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Clearly

mkj = mk0 + j∆
(1)
k and nkj = nk0 + j∆

(2)
k . (3.1.7)

With these notations,

S(A, k) :=
{

(m,n) ∈ N2 : m,n > 1 and (m+ n)bk − n(bl − a) = k
}

= {(mkj, nkj) : j ∈ N0}.

Since

MNk(A) = {(m,n) ∈ S(A, k) : gcd(m,n) = 1} ,

we must choose the (m,n)’s in S(A, k) such that gcd(m,n) = 1. Note that

mb
k

ek
+ n
(
b
k

ek
− bl − a

ek

)
=

k

ek
,

and so gcd(m,n) | k
ek

. For i ∈
{

0, . . . , k
ek
− 1
}

we define

MNki(A) :=
{(
mk,i+j k

ek

, nk,i+j k
ek

)
: j ∈ N0

}
=

{(
mki + j

k

ek
∆

(1)
k , nki + j

k

ek
∆

(2)
k

)
: j ∈ N0

}
.

Lemma 3.1.4. For all i ∈
{

0, . . . , k
ek
− 1
}

and all (m,n) ∈ MNki(A), we have

gcd(m,n) = gcd(mki, nki).

Moreover, there exists i such that gcd(mki, nki) = 1.

Proof. Clearly MNki(A) ⊆ S(A, k) and so, if (m,n) ∈ MNki(A), then gcd(m,n) | k
ek

.

Consequently, for dki := gcd(mki, nki) we have

dki | mki + j
k

ek
∆

(1)
k and dki | nki + j

k

ek
∆

(2)
k for all j,

and hence dki | gcd(m,n) for all (m,n) ∈ MNki(A). Similarly one shows gcd(m,n) |
dki, which proves the first assertion. On the other hand, since gcd

(
∆

(1)
k ,

k
ek

)
= 1,

the class
[
∆

(1)
k

]
of ∆

(1)
k in Z/ k

ek
Z is invertible, and so

{
[mki] : i = 0, . . . ,

k

ek
− 1

}
=

Z
k
ek
Z
,

where [mki] denotes the class of mki = mk0 + i∆
(1)
k in Z/ k

ek
Z. It follows that there

exists an i such that mki ≡ 1 (mod k
ek

). Since dki | mki and dki | k
ek

, we obtain
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dki = 1, as desired.

For each k ∈ I(A) we let Jk(A) denote
{

0 ≤ i < k
ek

: gcd(mki, nki) = 1
}

, where

mki and nki are as in (3.1.7). Using the previous results we obtain the following

description of the set MN(A),

MN(A) =
⋃

k∈I(A)

MNk(A) and MNk(A) =
⋃

i∈Jk(A)

MNki(A).

Remark 3.1.5. Note that for a final corner A the set I(A) can be empty (for example

take A = (16 o 3, 10)). However, if k ∈ I(A), then by Lemma 3.1.4 there exists at

least one (m,n)-family associated to A. It follows that a final corner A = (a o l, b)
has at least one (m,n)-family attached to it, if and only if there exists k ∈ N with

l − a/b > k ≥ 1, such that

gcd

(
b,

bl − a
gcd(k, bl − a)

)
= 1.

In Algorithm 9 we obtain the set MN(A). To achieve this we use the auxiliary

function BezoutCoefficients(x, y) which, for coprime positive integers x and y, returns

the ordered pair (M,N) of positive integers such that Mx−Ny = 1 and N is minimal.
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Algorithm 9: GetmnFamilies

Input: A final corner A = (a o l, b).
Output: A list mnFamilies of triples

(
(k, i), (mki, nki), (∆

(1),∆(2))
)

such that

k ∈ I(A), i ∈ Jk(A) and

MN(A) =
⋃
k,i

{
(mki + j∆(1), nki + j∆(2)) : j ∈ N0

}
.

1 for k = 1 to dl − a
b
e − 1 do

2 e← gcd(k, bl − a)

3 if gcd(b, bl−a
e

) = 1 then

4 (M,N)← BezoutCoefficients
(
b, bl−a

e

)
5 n← Nk

e

6 m←M − n
7 ∆(1) ← bl−a−bk

e

8 ∆(2) ← bk
e

9 if m = 1 or n = 1 then

10 (m,n)← (m,n) + (∆(1),∆(2))

11 k ← k
e

12 if k = 1 then

13 add
(
(k, 0), (m,n), (∆(1),∆(2))

)
to mnFamilies

14 else

15 for i = 0 to k − 1 do

16 mi ← m+ i∆(1)

17 ni ← n+ i∆(2)

18 if gcd(mi, ni) = 1 then

19 add
(
(k, i), (mi, ni), (k∆(1), k∆(1))

)
to mnFamilies

20 RETURN mnFamilies

3.2 Program and graphic display

A website based on these algorithms is

available at https://ituvox.github.io/jacobianshape/, making it possible to visualize

the construction of chains starting from points below a given upper bound.

The infrastructure for it consists of three parts:
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1. A C++ implementation of the described pseudocode, along with additional

routines to export the information (corners, edges, open and complete chains)

to text files formatted for input into an SQL database.

2. An SQL database instance, implemented in PostgreSQL, which organizes the

data generated by the C++ program in order to enable easy access by SQL

queries.

3. A website mainly developed in the JavaScript language, using the D3.js library

for the graphical interface, along with PHP scripts to query the database.

This structure allows a clear separation of responsibilities: the JavaScript code is only

concerned with showing the information, assuming it is already suitably formatted,

while the C++ program is only concerned with generating the information. It also

allows for fast updates to any part of the infrastructure, since each part only depends

on the output generated by the others and not on their implementation. The website

consists of a single widget, which contains the following controls:

1. An options bar, near the top and below the title. This includes a button to

load all points (x, y) with v11(x, y) < deg, for some specified value of deg, and

checkboxes for options.

2. A numbered two-dimensional grid, with the ability to zoom and pan, which

displays the current items (a collection of corners and edges). A corner A can

be clicked to display an edge (A,A′), and the bottom point A′ of an edge can

be clicked to display the corners generated by it.

3. A collection of filters in a right hand panel. These are checkboxes that can be

used to only show specific corners. For example, only corners of Type I and

Type II, or only corners leading to admissible complete chains.

3.3 Admissible complete chains with

v11(A0) ≤ 35

Applying Algorithm 8 with M = 35 we obtain the admissible complete chains

(C0, . . . ,Cj,Aj+1) with v11(A0) ≤ 35, where A0 is the first coordinate of C0. This

procedure yields 14 admissible complete chains of length 1 and 2 admissible complete
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chains of length 2. Applying now Algorithm 9 with input the final corner Aj+1 of

any of these chains we obtain the corresponding (m,n)-families MNk(Aj+1) (see

Definition 3.1.3). We obtain a two tables. The first consists of 17 families of length 1,

and the second one, of 7 families of length 2. We only list the cases satisfying

equality (3.1.4). The other cases (satisfying (3.1.5)) can be obtained by swapping m

with n.

Family A0 A′0 A1 k m n

F1 (4, 12) (1, 0) (7 o 4, 3) 1 2j + 3 3j + 4

F2 (5, 20) (1, 0) (7 o 5, 2) 1 j + 2 2j + 3

F3 (5, 20) (1, 0) (8 o 5, 3) 1 4j + 3 3j + 2

F4 (5, 20) (1, 0) (8 o 5, 3) 2 2j + 3 12j + 16

F5 (5, 20) (1, 0) (9 o 5, 4) 1 7j + 9 4j + 5

F6 (5, 20) (1, 0) (9 o 5, 4) 2 3j + 4 8j + 10

F7 (6, 15) (1, 0) (7 o 3, 4) 1 j + 2 4j + 7

F8 (6, 15) (1, 0) (8 o 3, 5) 1 2j + 3 5j + 7

F9 (7, 21) (1, 0) (11 o 7, 2) 1 j + 2 2j + 3

F10 (7, 21) (1, 0) (13 o 7, 3) 1 5j + 7 3j + 4

F11 (7, 21) (1, 0) (13 o 7, 3) 2 j + 2 3j + 5

F12 (8, 24) (2, 0) (13 o 4, 5) 1 2j + 3 5j + 7

F13 (9, 21) (2, 0) (13 o 3, 7) 1 j + 2 7j + 13

F14 (9, 24) (1, 0) (7 o 3, 4) 1 j + 2 4j + 7

F15 (9, 24) (1, 0) (8 o 3, 5) 1 2j + 3 5j + 7

F16 (9, 24) (1, 0) (10 o 3, 7) 1 4j + 3 7j + 5

F17 (9, 24) (1, 0) (11 o 3, 8) 1 5j + 2 8j + 3

and
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Family A0 A′0 A1 A′1 A2 k m n

F18 (6, 18) (6, 15) (6, 15) (1, 0) (7 o 3, 4) 1 j + 2 4j + 7

F19 (6, 18) (6, 15) (6, 15) (1, 0) (8 o 3, 5) 1 2j + 3 5j + 7

F20 (6, 24) (6, 15) (6, 15) (1, 0) (7 o 3, 4) 1 j + 2 4j + 7

F21 (6, 24) (6, 15) (6, 15) (1, 0) (8 o 3, 5) 1 2j + 3 5j + 7

F22 (8, 24) (2, 0) (14 o 4, 6) (5 o 4, 2) (5 o 4, 2) 1 j + 2 2j + 3

F23 (8, 24) (2, 0) (14 o 4, 6) (11 o 4, 4) (11 o 4, 4) 1 j + 2 4j + 7

F24 (8, 24) (2, 0) (14 o 4, 6) (5 o 4, 0) (19 o 8, 3) 1 2j + 3 3j + 4

For each one of these chains let (aol, b) be its final corner and let ek = gcd(k, bl−a).

In all the cases except F4, we have k/ek = 1. In case F4 we have k/ek = 2 and

Jk(8 o 5, 3) = {1}.

We claim that the families F18, F19, F20 and F21 can not be obtained from a

standard (m,n)-pair (P,Q) as in Theorem 2.3.2. Note that with the notations used

in that theorem for the four families we have

(ρ0, σ0) = dir(A0 − A′0) = (1, 0) and (ρ1, σ1) = dir(A1 − A′1) = (3,−1).

Hence, by the second equality in (2.4.13) we have q1 = 3. If there were an (m,n)-pair

(P,Q) for one the families, then by equality (2.3.7) and Remark 2.4.1 with h = 0

and i = k = 1 there exists R ∈ L such that `10(P ) = R3m. Let (a, b) = A0 and

(a′, b′) = A′0. Since

`10(P ) = xa
′myb

′mp(y) where p(0) 6= 0 and deg(p) = mb−mb′,

in the first two cases there exist λP , λ ∈ K× such that

`10(P ) = λp(x
2y5(y − λ))3m,

while in the last two cases there exist λP , λ, λ
′, λ′′ ∈ K× such that

`10(P ) = λp(x
2y5(y − λ)(y − λ′)(y − λ′′))3m and λ /∈ {λ′, λ′′} or λ = λ′ = λ′′.

40



Define ϕ ∈ Aut(L) by

ϕ(x) := x and ϕ(y) := y + λ.

By [1, Proposition 3.9] we know that, for all H ∈ L,

`10(ϕ(H)) = ϕ(`10(H)), en10(ϕ(H)) = en10(H)

and

`ρ1,σ1(ϕ(H)) = `ρ1,σ1(H) for all (1, 0) < (ρ1, σ1) < (−1, 0).

Using this with H = P and H = Q, we obtain that

v11(ϕ(P ))

v11(ϕ(Q))
=
v10(ϕ(P ))

v10(ϕ(Q))
=
m

n
and v1,−1(en10(ϕ(P ))) < 0.

Hence (ϕ(P ), ϕ(Q)) is an (m,n)-pair, since, by [1, Proposition 3.10],

[ϕ(P ), ϕ(Q)] = [P,Q] ∈ K×.

Moreover

`10(ϕ(P )) = ϕ(`10(P )) = λp(x
2(y + λ)5y)3m = λpx

6my3m(y + λ)15m

in the first two cases, and

`10(ϕ(P )) = ϕ(`10(P )) = λpx
6my3m(y + λ− λ′)3m(y + λ− λ′′)3m(y + λ)15m

in the last two cases. So, in the first two cases

1

m
st10(ϕ(P )) = (6, 3),

and the same occurs in the last two cases if λ /∈ {λ′, λ′′}. Hence, by [2, Remark 3.2]

the point (6, 3) is a last lower corner. But this is impossible by [2, Remark 3.29]. On

the other hand if in the last two cases λ = λ′ = λ′′, then

1

m
st10(ϕ(P )) = (6, 9),

and so (ϕ(P ), ϕ(Q)) is a standard (m,n)-pair. Let (A,A′, (ρ, σ)) be the starting
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triple of (ϕ(P ), ϕ(Q)). Since

(1,−1) < (ρ, σ) ≤ Predϕ(P )(1, 0),

arguing as in the proof of [1, Proposition 6.1(9)] we obtain that

v11(A) ≤ v11(6, 9) = 15.

But this is impossible by [1, Proposition 6.5].

Remark 3.3.1. The possible counterexample in F13 with j = 1 was analyzed

extensively by Orevkov in [11] (see [11, Lemma 4.1(a)]).

3.4 Possible counterexamples with

max(deg (P ),deg (Q)) ≤ 150

In [10] there are listed four cases (which correspond to six cases in our terminology)

of possible counterexamples with max(deg(P ), deg(Q)) ≤ 100. They are discarded

by hand. Here we describe the shape of the 34 possible counterexamples with

max(deg(P ), deg(Q)) ≤ 150. We only list the cases satisfying equality (3.1.4). The

other cases (satisfying (3.1.5)) can be obtained by swapping m with n. Thirteen of

them correspond to a choice of (m,n) in some of the families listed in the previous

section, as can be seen in the following table, where the red pairs correspond to

possible counterexamples with max(deg(P ), deg(Q)) ≤ 100.
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Family (m,n) max{deg(P ), deg(Q)}

F1 (3,4) 64

F1 (5,7) 112

F2 (2,3) 75

F2 (3,5) 125

F3 (3,2) 75

F7 (2,7) 147

F8 (3,7) 147

F9 (2,3) 84

F9 (3,5) 140

F11 (2,5) 140

F17 (2,3) 99

F22 (2,3)* 96

F24 (3,4) 128

Five of them correspond to the six cases found by Moh, one of the cases of Moh

was discarded by the algorithm because it featured (A0, A
′
0) = ((7, 21), (2, 1)), and

(2, 1) /∈ PLLC. The sixth red case, marked with a star, corresponds to F22. This

case was probably discarded as a possible counterexample by Heitmann (with no

mention to it) by symmetry reasons. This case corresponds to the first case listed

in [9, pag. 426] with δ3 = 1/4, δ2 = 9/16 and δ1 = 7/12. In Proposition 3.4.1 we

show that we can discard it.

There are 9 other possible pairs with a complete chain of length 1, which we list

in the following table:
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A0 A1 (m,n) max{deg(P ), deg(Q)}

(7,35) (19/7,5) (2,3) 126

(7,42) (13/7,6) (3,2) 147

(7,42) (13/7,6) (2,3) 147

(8,28) (7/4,3) (3,4) 144

(8,28) (11/4,7) (3,2) 108

(9,36) (17/9,4) (3,2) 135

(9,36) (17/9,4) (2,3) 135

(11,33) (19/4,8) (2,3) 132

(12,33) (11/3,8) (2,3) 135

There are also 11 other possible pairs with a complete chain of length 2, which

we list in the following table:

A0 A1 A2 (m,n) max{deg(P ), deg(Q)}

(8,32) (8,28) (11/4,7) (3,2) 120

(8,40) (8,28) (11/4,7) (3,2) 144

(9,27) (9,24) (11/3,8) (2,3) 108

(9,36) (9,24) (11/3,8) (2,3) 135

(10,40) (16/5,6) (23/10,3) (3,2) 150

(10,40) (18/5,8) (8/5,3) (3,2) 150

(12,30) (16/3,10) (11/6,3) (3,2) 126

(12,36) (12,33) (11/3,8) (2,3) 144

(12,36) (9,24) (11/3,8) (2,3) 144

(12,36) (21/4,9) (19/4,8) (2,3) 144

(12,36) (21/4,9) (12/4,5) (2,3) 144

Finally there is another possible pair with a complete chain of length 3:
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A0 A1 A2 A3 (m,n) max{deg(P ), deg(Q)}

(12,36) (12,30) (16/3,10) (11/6,3) (3,2) 144

Proposition 3.4.1. The example corresponding to F22 with (m,n) = (2, 3) can not

be obtained from a standard (m,n)-pair (P,Q) as in Theorem 2.3.2.

Proof. With the notations used in Theorem 2.3.2, we have

A1 = (14o4, 6), A′1 = A2 = (5o4, 2) and (ρ1, σ1) = dir(A1−A′1) = (16,−9).

Consequently,

`16,−9(P1) = x
5m
4 y2mp(z) with z := x

9
16y, p ∈ K[z] and p(0) 6= 0.

Combining this with equality (2.3.7) and the fact that gap(16, 4) = 4 we obtain that

`16,−9(P1) = λpx
5m
4 y2m(z4 − λ′)m where λ′, λp ∈ K×.

Hence

`16,−9(P1) = λpx
5m
4 y2m(z4 − λ4)m = λpx

5m
4 y2m(z − λ)m(z3 + z2λ+ zλ2 + λ3)m

where λ ∈ K× is such that λ4 = λ′. Thus the multiplicity mλ of λ as a root

of p(z) equals m. Define ϕ ∈ Aut(L(16)) by ϕ(x) := x and ϕ(y) := y + λx−9/16.

By [1, Proposition 3.9] we know that,

`16,−9(ϕ(H)) = ϕ(`16,−9(H)), en16,−9(ϕ(H)) = en16,−9(H)

and

`ρ1,σ1(ϕ(H)) = `ρ1,σ1(H) for all (16,−9) < (ρ1, σ1) < (−16, 9),

for all H ∈ L(16). Using this with H = P1 and H = Q1, we obtain that

v11(ϕ(P1))

v11(ϕ(Q1))
=
v10(ϕ(P1))

v10(ϕ(Q1))
=
m

n
and v1,−1(en16,−9(ϕ(P1))) < 0.

Hence (ϕ(P1), ϕ(Q1)) is an (m,n)-pair, since [ϕ(P1), ϕ(Q1)] = [P1, Q1] ∈ K×,
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by [1, Proposition 3.10]. Moreover

`16,−9(ϕ(P1)) = ϕ(`16,−9(P1))

= λpx
5m
4 (y + λx

−9
16 )2m((z + λ)4 − λ4))m

= λpx
11m
16 ym(z + λ)2m(z3 + 4z2λ+ 6zλ2 + 4λ3)m,

and so
(
11
16
, 1
)

= 1
m

st16,−9(ϕ(P1)). Now note that the inequality (5.9) in

[1, Proposition 5.18] is satisfied for a = 20, b = 6, l = 16, ρ = 16 and σ = −9.

Consequently, by that proposition, the (m,n)-pair (ϕ(P1), ϕ(Q1)) has a regular corner

at (11/16, 1). Since gcd(11, 1) = 1, by [1, Proposition 5.19] there exists a (possibly

different) (m,n)-pair (P ′, Q′) in L(16) such that (11/16, 1) is the first entry of a

regular corner of type I of (P ′, Q′). By Proposition 3.1 we can assume that (11/16, 1)

is the first entry of a regular corner of type I.b) of (P ′, Q′). Then a = 11, b = 1,

l = 16, k ∈ {1, 2, 3, 4}, ek = 1 and {m,n} = {2, 3} in the setting of Proposition 3.1.2.

Hence

1 = (m+ n)b− mek
k

bl − a
ek

= 5− m

k
5 = 5

k −m
k

or

1 = (m+ n)b− nek
k

bl − a
ek

= 5− n

k
5 = 5

k − n
k

.

But both equalities are evidently false for n,m ∈ {2, 3} and k ∈ {1, 2, 3, 4}, since

5 - k.

3.5 Increasing the lower bound

Based on the tables obtained in the last sections, we begin with the study of the

cases with max{deg(P ), deg(Q)} < 125. The aim is to prove the following result:

Conjecture 3.5.1. If (P,Q) is a counterexample to the Jacobian Conjecture, then

max{deg(P ), deg(Q)} ≥ 125.

The following table presents all the cases under consideration. All but 3 of them

have been shown to be impossible in various cited works:
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A0 (m,n) max{deg(P ), deg(Q)} Discarded?

(4, 12) (3,4) 64 [4]

(4, 12) (5,7) 112 [4]

(5, 20) (2,3) 75 [3, section 5]

(5, 20) (3,2) 75 [3, section 5]

(7, 21) (2,3) 84 [6]

(8, 24) (2,3) 96 Section 3.4.

(8, 28) (3,2) 108 -

(8, 32) (3,2) 120 [1]

(9, 24) (2,3) 99 -

(9, 27) (2,3) 108 -

Let us analyze the three remaining cases. We can apply some automorphisms

reminiscent of the procedure in [1, Section 8] to their Newton Polygons in order to

greatly reduce their sizes.

Proposition 3.5.2 (Case (9,27)). If there is a counterexample to the Jacobian

Conjecture in the case (9, 27), then there exist P,Q ∈ L(1) with [P,Q] = x and

N(P ) = {(0, 0), (1, 1), (6, 16), (6, 18), (0, 18)}

N(Q) = {(0, 0), (1, 0), (9, 24), (9, 27), (0, 27)}

Proof. The corners of the polygons of P and Q are {(0, 0), (1, 0), (9, 24), (9, 27), (0, 9)}
multiplied by (m,n) = (2, 3) respectively. The edge {(9, 27), (0, 9)} is given by

y9(xy2 − α1)
9, because enF = 1

9
(9, 27) when looking at its corresponding direction.

After applying the automorphism φ1 with φ1(x) = y and φ1(y) = x and then the

automorphism φ2 with φ2(x) = x and φ2(y) = y + α1x
−2 we transform the corners

of the polygons to {(0, 0), (27, 9), (24, 9), (0, 1), (−2, 0)}, again multiplied by (2, 3)

respectively.

The edge {(24, 9), (0, 1)} is given by y(yx3 − α2)
8 by some α2 (this corresponds

to the edge {(1, 0), (9, 24)} in the original polygon which is of this form). Apply the
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automorphism φ3 given by φ3(x) = x and φ3(y) = y + α2x
−3 to reduce this edge to

{(24, 9), (21, 8)}. Let us analyze the possibilities for the opposite vertex in the other

edge containing (21, 8).

To do this, set (ρ2, σ2) = min{SuccP (−1, 3), SuccQ(−1, 3)} Then if enρ2,σ2(P ) ∼
enρ2,σ2(Q), the point (a′, b′) = 1

2
enρ2,σ2(P ) = 1

3
enρ2,σ2(Q) could be at any of

{(−2, 0), (−1, 0), (1, 1), (2, 1), (4, 2), (5, 2), (7, 3), (10, 4), (13, 5)}. To discard all but

(5, 2) and (13, 5), it is enough to check that there cannot exist an element F

in the other cases. The corner of F which is not (1, 1) must be of the form

(1, 1) + c(21− a′, 8− b′)/ gcd(21− a′, 8− b′) for some positive integer c, so that

(1, 1) + c
(21− a′, 8− b′)

gcd(21− a′, 8− b′)
=
p

q
(21, 8).

Taking v−8,21 of this equality gives 13 gcd(21− a′, 8− b′) + c(8a′ − 21b′) = 0 which

implies that 21b′ − 8a′|13 gcd(21− a′, 8− b′). For each of the possibilities for (a′, b′)

above, we can discard (1, 1) as (a′, b′) cannot lie in the diagonal, and for the rest,

only (5, 2) and (13, 5 satisfy this divisibility condition, as can be seen in the table

below.

(a′, b′) 21b′ − 8a′ 13 gcd(21− a′, 8− b′)

(−2, 0) 16 13

(−1, 0) 8 26

(2, 1) 5 13

(4, 2) 10 13

(5, 2) 2 26

(7, 3) 7 13

(10, 4) 4 13

(13, 5) 1 13

Whether we continue assuming (a′, b′) ∈ {(5, 2), (13, 5)} or we consider instead the

case enρ2,σ2(P ) 6∼ enρ2,σ2(Q), we can apply [1, Proposition 8.2] and get the existence
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of k ∈ N with

(k + 1)b < a and {enρ,σ(P ), enρ,σ(Q)} = {(−k, 0), (k + 1, 1)}.

where (a, b) is one of {(21, 8), (13, 5), (5, 2)} and (ρ, σ) is the direction corresponding

to the edge in question. In all cases this gives k = 1 and so {enρ,σ(P ), enρ,σ(Q)}
= {(−1, 0), (2, 1)}, with the same direction (ρ, σ) = (−3, 8). (Note that if we

started assuming (a′, b′) ∈ {(5, 2), (13, 5)} then we have reached a contradiction,

as we have a different end for direction (−3, 8).) Since st−3,8(P ) = (42, 16) and

st−3,8(Q) = (63, 24), we get that en−3,8(P ) = (2, 1) and en−3,8(Q) = (−1, 0). In fact,

(−3, 8)× ((42, 16)− (−1, 0)) 6= 0.

For convenience, we now apply the morphism ϕ such that ϕ(x) = x−1 and

ϕ(y) = x3y. Note that this is not an automorphism, and by the chain rule we have

[ϕ(P ), ϕ(Q)] = ϕ[P,Q][ϕ(x), ϕ(y)] = −[P,Q]x. This transforms the polygons of P

and Q into

N(P ) = {(0, 0), (1, 1), (6, 16), (6, 18), (0, 18)}

N(Q) = {(0, 0), (1, 0), (9, 24), (9, 27), (0, 27)}

as desired.

Proposition 3.5.3 (Case (9,24)). If there is a counterexample to the Jacobian

Conjecture in the case (9, 24), then there exist P,Q ∈ L(1) with [P,Q] = x and

N(P ) = {(0, 0), (1, 1), (6, 16), (6, 18), (0, 12)}

N(Q) = {(0, 0), (1, 0), (9, 24), (9, 27), (0, 18)}

Proof. The corners of the polygons of P and Q are {(0, 0), (1, 0), (9, 24), (9, 27), (0, h)}
multiplied by (m,n) = (2, 3) respectively, where h ∈ {3, 6, 9, 12} (in fact, enF =
2
3
(9, 24) for the relevant direction). To discard 9 and 12 as possibilities, let us

apply the automorphism φ1 with φ1(x) = y, φ1(y) = x and then apply Proposition

1.0.6, with (a, b) = (24, 9), (ρ, σ) ∼ (9, h − 24) and (r, s) = (h, 0). The values for

(ϑ, gcd(a− r, b− s), gcd(r, s)) for h = 12, h = 9 and h = 6 are (36, 3, 12), (27, 3, 9)

and (6, 9, 6) respectively, showing that h ≤ 6 and we may assume h = 6.
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The edge {(6, 0), (24, 9)} is of the form x6(x2y−α1)
3(x2y−α2)

3(x2y−α3)
3. Apply

an automorphism φ2 with φ2(x) = x and φ2(y) = y + α1x
−2 and we transform the

corners of the polygons to {(0, 0), (18, 6), (24, 9), (0, 1), (−2, 0)}, again multiplied

by (2, 3) respectively. In fact, the edge ending at (18, 6) cannot begin at (3, 0) by

Proposition 1.0.6, and we can also assume that α2 = α3. To see this, if the three

roots were different, then set (c, d) = (12, 3), (a, b) = (24, 9) and s = ϑ = N1 = 6

and N2 = 3 in [2, Proposition 3.12]. By [2, Proposition 3.12 (2)], there is a linear

factor in the edge with multiplicity s = ϑ = 6, showing that two roots must have

been equal.

After doing the transformations on the edge {(24, 9), (0, 1)} exactly as in the case

(9, 27), one obtains the desired form:

N(P ) = {(0, 0), (1, 1), (6, 16), (6, 18), (0, 12)}

N(Q) = {(0, 0), (1, 0), (9, 24), (9, 27), (0, 18)}

Proposition 3.5.4 (Case (8,28)). If there is a counterexample to the Jacobian

Conjecture in the case (8, 28), then there exist P,Q ∈ L(1) with [P,Q] = x2 and

N(P ) = {(0, 0), (1, 0), (8, 14), (8, 16)}

N(Q) = {(0, 0), (2, 1), (12, 21), (12, 24)}

Proof. The corners of the polygons of P and Q in this case are

{(0, 0), (1, 0), (8, 28), (0, h)} multiplied by (m,n) = (3, 2) respectively, where h ∈
{4, 8, 12, 16} (this time, enF = 3

4
(8, 28) for the relevant direction). Applying

Proposition 1.0.6 as in 3.5.3, we obtain that h = 4. After the automorphism

φ1 with φ1(x) = y and φ1(y) = x, we have the polygon {(0, 0), (4, 0), (28, 8), (0, 1)}.

The edge (4, 0)− (28, 8) is of the form x4(x3y−α1)
4(x3y−α2)

4. Let us apply the

automorphism φ2 with φ2(x) = x and φ2(y) = y+α1x
−3. If α1 6= α2, then this would

give edges (0, 0)−(16, 4)−(28, 8) which is not possible. We then must have α1 = α2 so

that the polygon is reduced to {(0, 0), (28, 8), (0, 1), (−3, 0)}. The edge {(28, 8), (1, 0)}
must be of the form y(x4y−α)7, corresponding to its form before the transformations.

Apply then the automorphism φ3 given by φ3(x) = x, φ3(y) = y + α2x
−3, reducing
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the edge {(8, 28), (0, 1)} to {(7, 24), (8, 28)}. As in Proposition 3.5.2, one can analyze

the possibilities for the opposite vertex (a, b) in the other edge containing (7, 24) and

obtain that SuccP (−1, 4) = SuccQ(−1, 4) = (−2, 7). We can apply [1, Proposition

8.2] and get the existence of k ∈ N with

(k + 1)b < a and {enρ,σ(P ), enρ,σ(Q)} = {(−k, 0), (k + 1, 1)}.

where (a, b) is one of {(24, 7), (17, 5), (10, 3), (3, 1)} and (ρ, σ) is the direction

corresponding to the edge in question, obtaining k ∈ {1, 2}. The case k = 2 is

impossible, as the edges of P and Q would have no way of being parallel. In

the case k = 1, we can set (enρ,σ(Q), enρ,σ(P )) = ((2, 1), (−1, 0)). Apply the the

morphism ϕ with ϕ(x) = x−1 and ϕ(y) = x4y. As in Proposition 3.5.2, this is not

an automorphism and the chain rule gives [ϕ(P ), ϕ(Q)] = −[P,Q]x2. The Newton

Polygons of P and Q become, respectively

N(P ) = {(0, 0), (1, 0), (8, 14), (8, 16)}

N(Q) = {(0, 0), (2, 1), (12, 21), (12, 24)}

as desired.

This simple form for the three cases allows them to be attacked with the

techniques developed in [3]. For example, consider the cases (9, 24) and (9, 27).

Using the notation and arguments of [3, Section 1], we can write P = C2 and

Q = C3 + α2C
2 + α1C + α0 + λC−1 + F , where C,F ∈ K((y))((x−1)) with

degx(F ) = −4. We may set P := P − β and Q := Q− α2P − α0 as desired without

altering the support of Q or the value of [P,Q], and by using such manipulations we

may assume α2 = α1 = α0 = 0 so that Q = C3 + λC−1 + F .

One could analyze these conditions more closely, or assume the field to be C and

use a computer algebra system, in order to verify that such a system cannot have a

solution, as it is well known that no loss of generality is incurred by assuming the

field to be C.
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