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Abstract

Convolutional sparse representations and convolutional dictionary learning are mathematical models
that consist in representing a whole signal or image as a sum of convolutions between dictionary fil-
ters and coefficient maps. Unlike the patch-based counterparts, these convolutional forms are receiving
an increase attention in multiple image processing tasks, since they do not present the usual patch-
wise drawbacks such as redundancy, multi-evaluations and non-translational invariant. Particularly, the
convolutional dictionary learning (CDL) problem is addressed as an alternating minimization between
coefficient update and dictionary update stages. A wide number of different algorithms based on FISTA
(Fast Iterative Shrinkage-Thresholding Algorithm), ADMM (Alternating Direction Method of Multi-
pliers) and ADMM consensus frameworks have been proposed to efficiently solve the most expensive
steps of the CDL problem in the frequency domain. However, the use of the existing methods on large
sets of images is computationally restricted by the dictionary update stage.

The present thesis report is strategically organized in three parts. On the first part, we introduce
the general topic of the CDL problem and the state-of-the-art methods used to deal with each stage.
On the second part, we propose our first computationally efficient method to solve the entire CDL
problem using the Accelerated Proximal Gradient (APG) framework in both updates. Additionally, a
novel update model reminiscent of the Block Gauss-Seidel (BGS) method is incorporated to reduce the
number of estimated components during the coefficient update. On the final part, we propose another
alternative method to address the dictionary update stage based on APG consensus approach. This last
method considers particular strategies of the ADMM consensus and our first APG framework to develop
a less complex solution decoupled across the training images. In general, due to the lower number of
operations, our first approach is a better serial option while our last approach has as advantage its
independent and highly parallelizable structure.

Finally, in our first set of experimental results, which is composed of serial implementations, we
show that our first APG approach provides significant speedup with respect to the standard methods by a
factor of 1.6∼ 5.3. A complementary improvement by a factor of 2 is achieved by using the reminiscent
BGS model. On the other hand, we also report that the second APG approach is the fastest method
compared to the state-of-the-art consensus algorithm implemented in serial and parallel. Both proposed
methods maintain comparable performance as the other ones in terms of reconstruction metrics, such
as PSNR, SSIM and sparsity, in denoising and inpainting tasks.

Keywords
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Chapter 1

Introduction

Sparse representations (SR) [1],[2] are widely used techniques, yielding effective results in the field of
signal/image processing and computer vision. Although the patch-based structure performs very well
in a broad range of applications such as object recognition, machine learning, etc. [1], the resulting
representations are usually multi-valued and not optimized for the whole image due to the independent
estimation among overlapping image patches. In particular, the convolutional scheme of SR [3],[4]
overcomes the aforementioned issues by modeling an entire image as convolutions with dictionaries
instead of modeling individual patches as linear operations. The most frequent formulation of this
convolutional approach is an extension of the Convotutional Basis Pursuit Denoising (CBPDN), also
known as Convolution Dictionary Learning (CDL) problem

argmin
{xk,m}{dm}

1
2 ∑

k

∥∥∥∑
m

dm ∗xk,m− sk

∥∥∥2

2
+λ∑

k
∑
m

∥∥∥xk,m

∥∥∥
1

s.t. ‖dm‖2 = 1 ∀m , (1)

where {dm} represents the set of M, L1×L2 dictionary filters, {xk,m} the K sets of M coefficient maps
(each one with N1×N2 samples), {sk} the K training images of size N1×N2, λ the regularization
parameter and ∗ denotes the convolution operator. The norm constraint is required to avoid scaling
ambiguities between coefficient maps and dictionary filters.

CDL is a non-convex problem when being jointly evaluated in both variables {xk,m} and {dm}; how-
ever, by fixing either one, it can be recast as an alternating optimization [5] of two convex problems:
coefficient update (sparse coding or SC) and dictionary update (dictionary learning or DL). Among the
methods that efficiently handle these updates, works such as [4] and [6] have shown that the ADMM
model [7, Ch. 3] computed in the frequency domain provides superior runtime performance in compa-
rison to earlier spatial domain based methods [8],[9]. Moreover, the ADMM consensus approach [10]
is considered as one of the fastest methods implemented in parallel due to its separable structure.

Most of these aforementioned ADMM-based algorithms have basically been proposed to deal with
the most computationally demanding linear systems of the CDL problem in the frequency domain.
Although these systems have closed-form solutions that can directly be tackled via either matrix inver-
sion techniques or conjugate gradient methods [11], they can also be computationally expensive if the
training set size becomes larger.

Considering that this stream of research aims to process large sets of images in real world appli-
cations, any significant improvement in the processing time would have a compelling effect. In the
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Introduction

present report, for solving the CDL problem, we present two efficient algorithms based on the Acce-
lerated Proximal Gradient framework [12, Ch. 4] that substantially outperform the existing serial and
parallel ADMM implementations.

• In our first approach published in [13], we propose a novel algorithm that has two complementary
contributions with respect to the standard CDL approaches. We first extend the use of an efficient
APG-based solution partially computed in the frequency domain, previously introduced in [14]
only for the sparse coding problem (9) to both CDL updates. We also describe an update model
inspired on the Block Gauss-Seidel method [15]. It enables the computation of partial sets of
coefficient maps during each sparse coding stage.

• In our second approach published in [16], we introduce an APG consensus based algorithm that
enables to have a decoupled solution of the dictionary update across the training images. This
method is particularly characterized by combining the parallelizable structure of the consensus
model, the low complexity of the APG solution, as well as the convenience of computing most of
the steps in the frequency domain.

Although we are working on the common CDL framework, in which the estimated filters are not
separable, the APG approach is easy to extrapolate to a separable filter learning framework. In a related
work published in [17], we have proved this last statement by proposing an efficient separable CDL
algorithm based on our first APG approach plus a rank-1 constraint.

The rest of this work is organized as follows: Chapter 2 reviews the existing methods for the CDL
problem and some technical details. In Chapter 3 and Chapter 4, we present a thorough description of
our proposed methods with their corresponding experiments. In Chapter 5, we give our final remarks.

6



Chapter 2

Convolutional Sparse Representation

2.1 Preliminaries

2.1.1 Alternating Direction Method of Multiplier

ADMM [7, Ch. 3] is a distributed optimization algorithm that strategically blends the decomposability
of dual ascent method and the good convergence properties of Augmented Lagrangian method (ALM)
[7]. This algorithm can be applied to solve problems of the form

minimize
{x},{y}

f (x)+g(y) s.t. Ax+By = c, (2)

where the functions f and g must be convex, and the two primal variables, x and y, are related by a
linear equation. An ALM formulation of (2), which is not separable (joint minimization), implies to
estimate the primal variables simultaneously; however, an ADMM formulation, which is like a single
Gauss-Seidel pass over x and y, performs the estimation in sequential fashion. Considering the ADMM
iterations in scaled form, the derivation is given by

x(i+1) = minimize
{x}

f (x)+
ρ

2

∥∥∥Ax+By(i)− c+u(i)
∥∥∥2

2
(3)

y(i+1) = minimize
{y}

g(y)+
ρ

2

∥∥∥Ax(i+1)+By− c+u(i)
∥∥∥2

2
(4)

u(i+1) = u(i)+Ax(i+1)+By(i+1)− c, (5)

where ρ > 0 is the penalty parameter, a.k.a. Augmented Lagrangian parameter, for the step size. In
general, ADMM achieves a relatively accurate solution in a few tens of iterations, but requires many
iterations for a highly accurate solution. Its convergence rate [7] is O(1/ε) and its behavior is more like
a first-order method (gradient descent, accelerated gradient descent, etc.) than a second-order method
(Newton’s method, conjugate gradient descent, etc.).
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Convolutional Sparse Representation

2.1.2 Proximal Gradient Descent

Proximal gradient descent (PGD) and its accelerated version (APG) [12, Ch. 4] are first-order me-
thods that iteratively minimize differentiable or non-differentiable convex optimization problems via
generalized form of projection (a gradient descent followed by a proximal operator). Let an objective
function that can be expressed as the sum of two function:

minimize
{x}

f (x)+g(x), (6)

where f and g are convex, but f must also be differentiable in IRn. From these assumptions, their
convergence rates can be identical to corresponding gradient descent counterpart even when optimi-
zing non-differentiable objective functions. The convergence rates of PGD and APG are O(1/ε) and
O(1/ε2), respectively. The main difference among them is that APG algorithm employs an additional
linear combination among the previous estimations in order to accelerate the convergence. The corres-
ponding proximal gradient method is defined as

xi+1 = proxαig(x
i−α

i
∇ f (xi)), (7)

where α is a step size (0 < α≤ 1/L) and L is the constant Lipschitz that guarantee convergence. If L is
not known, the step size can be estimated by a line search in each descent step. The proximal operator
[12] of a convex function g is of the form

proxg(z) = argmin
x

1
2
‖x− z‖2

2 +g(x). (8)

2.2 Coefficient Update (sparse coding or SC)

Considering a linear system of equations Dx = s, the sparse coding and its convolutional form (CSC)
are inverse problems that intend to find an sparse representation x (few non-zero elements) of a certain
observed data s from the pre-trained dictionary filters D. Particularly, the standard CBPDN extension
of the CSC problem is posed as

arg min
{xm}

1
2
‖∑

m
dm ∗xm− s‖2

2 +λ∑
m
‖xm‖1 . (9)

For mathematical convenience, we can define Dm as a linear operator such that dm ∗ xm = Dmxm.
Using this linear operator, the notation of the problem (9) can be simplified by

arg min
{X}

1
2
‖Dx− s‖2

2 +λ‖x‖1 , (10)

where D = (D1 D2 · · ·) and x = (x1 x2 · · ·)T .
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Convolutional Sparse Representation

2.2.1 ADMM with Sherman-Morrison method

ADMM with Sherman Morrison method [4] is a mixed approach between the spatial and the frequency
domain solutions, being the latter applied to efficiently solve the `2 fidelity term sub-problem using
Sherman-Morrison formula. The optimization problem (10) can be expressed in ADMM form by
adding a constraint term, in which the primary variable x must be equal to the auxiliary variable y.

argmin
{x},{y}

1
2
‖Dx− s‖2

2 +λ∑
m
‖y‖1 s.t. x−y = 0, (11)

The associated ADMM updates are

x(i+1) = argmin
{x}

1
2
‖Dx− s‖2

2 +
ρ

2

∥∥∥x−y(i)+u(i)
∥∥∥2

2
(12)

y(i+1) = argmin
{y}

λ‖y‖1 +
ρ

2

∥∥∥x(i+1)−y+u(i)
∥∥∥2

2
(13)

u(i+1) = u(i)+x(i+1)−y(i+1). (14)

The auxiliary variable update (13), which has a closed-form solution, is solved via soft thresholding
function Sλ/ρ.

y(i+1) = Sλ/ρ

(
x(i+1)+u(i)

)
, (15)

where Sγ(x) = sign(x)�max(0, |x| − γ). Switching the spatial domain problem (12) to the frequency
domain by means of the convolution theorem [18], the resulting minimizer is

(D̂HD̂+ρI)x̂ = D̂H ŝ+ρ(ŷ− û), (16)

where the hat symbol (·̂) is used to denote variables in the frequency domain.

As the matrix D̂ has a block structure of M concatenated N×M diagonal matrices, the operation
D̂HD̂, which has products among zeros, results in a large matrix of size MN×MN. However, [14] noted
that it is only necessary to solve N independent linear system of M×M since the resulting elements of
products between zeros are not part of the final solution. Each independent system consists of a single
sum between a rank-one tern and diagonal term, which inversion can easily be performed by applying
the Sherman-Morrison formula on its rearranged form of non-zero elements.

2.2.2 Fast Iterative Shrinkage-Thresholding Algorithm

Iterative Shrinkage-Thresholding Algorithm (ISTA) and its accelerated variant Fast ISTA (FISTA)
[19],[4] are particular PGD algorithms that have been used as an alternative to the ALM methods for the
CSC problem. Due to the associated convolution operations of both methods, their computational com-
plexity is high. However, research [4], which main topic is the frequency domain ADMM-based method
for the CDL updates, explored the idea of reducing the complexity of the classic FISTA approach by
computing the gradient in the frequency domain instead the spatial domain. As proposed in [4], the
gradient of the `2 fidelity term can be rewritten in the frequency domain as

∇F(
1
2

∥∥∥X̂d̂− ŝ
∥∥∥2

2
) = X̂H(X̂d̂− ŝ) , (17)

9



Convolutional Sparse Representation

where X̂, d̂ and ŝ denote the DFT transform of X, d and s, respectively. The steps of the classic FISTA
is depicted in the next algorithm 2.1.

Algorithm 2.1: FISTA applied to (9)
Inputs: λ (regularization parameter), L (Lipschitz constant)
Step 0 : Set Y1 = X0 (initial guess), δ1 = 1
Step i : (i≥ 1) Compute

1: Xi = shrink(Xi−1 + 1
L ∇F(X)|X=Y i , λ

L)

2: δi+1 = (1+
√

1+4(δi+1)2)

3: Yi+1 = Xi+1 + δi−1
δi+1 (Xi+1

k −Xi)

A brief summary of complexity of the reported CSC methods is presented in Table 2.1.

Operations Complexity per operation Dominant Term/(N1 ·N2 ·M ·K)

ADMM+SM FFT + IFFT 2 · log(N1 ·N2) ·N1 ·N2 ·M ·K 2 · log(N1 ·N2)+10 · τ
Inv. Problem (SM) τ · (10 ·N1 ·N2 ·M ·K)

FISTA ∇F(x) (4 ·L1 ·L2 +1) ·N1 ·N2 ·M ·K 6 ·L1 ·L2+2
Step Size (2 ·L1 ·L2 +1) ·N1 ·N2 ·M ·K

DFT-FISTA
FFT + IFFT 2 · log(N1 ·N2) ·N1 ·N2 ·M ·K

2 · log(N1 ·N2)+2 ·L1 ·L2 +5 · τ+1
∇F(x) τ · (3 ·N1 ·N2 ·M ·K)

Step Size (2 ·L1 ·L2 +1) ·N1 ·N2 ·M ·K

Table 2.1: Analysis of the computational complexity on the reported CSC methods. SM denotes the
Sherman-Morrison algorithm, and τ is a constant used to represent the cost of complex operations
(2≤ τ≤ 4).

2.3 Dictionary update (dictionary learning or DL)

The dictionary learning problem partially addressed in the frequency domain requires solving a cons-
trained convolutional variant of the Method of Optimal Directions (MOD) [20], namely:

argmin
{dm}

1
2 ∑

k

∥∥∥∑
m

xk,m ∗dm− sk

∥∥∥2

2
s.t dm ∈CPN . (18)

CPN is the constraint set for an adequate spatial support and normalized dictionary filters given by

CPN = {x ∈ RN : (I−PPT )x = 0,‖x‖2 = 1}, (19)

where P represents the zero-padding projection operator. Denoting the indicator function of the set CPN

as ιCPN , (18) can be rewritten in unconstrained form as

argmin
{dm}

1
2 ∑

k

∥∥∥∑
m

xk,m ∗dm− sk

∥∥∥2

2
+∑

m
ιCPN (dm) . (20)

10



Convolutional Sparse Representation

2.3.1 ADMM with iterated inversion techniques

This ADMM algorithm [4] is an extension of [14] for the DL update, in which the expensive linear
system associated to `2 fidelity term sub-problem can be approached via a recursive variant of Sherman-
Morrison formula or conjugate gradient method. The problem (20) is rewritten in suitable ADMM form
using an auxiliary variable gm

argmin
{dm}{gm}

1
2 ∑

k

∥∥∥∑
m

xk,m ∗dm− sk

∥∥∥2

2
+∑

m
ιCPN (gm) s.t dm−gm = 0 ∀m , (21)

where corresponding ADMM updates are

d(i+1)
m = argmin

{dm}

1
2 ∑

k

∥∥∥∑
m

xk,m ∗dm− sk

∥∥∥2

2
+

β

2 ∑
m

∥∥∥dm−g(i)m +h(i)
m

∥∥∥2

2
(22)

g(i+1)
m = argmin

{gm}
∑
m

ιCPN (gm)+
β

2 ∑
m

∥∥∥d(i+1)
m −gm +h(i)

m

∥∥∥2

2
(23)

h(i+1)
m = h(i)

m +d(i+1)
m −g(i+1)

m . (24)

Like its counterpart for SC update, the estimation of the auxiliary variable is obtained by a proximal
operator and the estimation of the primary variable is performed in the frequency domain. However,
the inversion of the resulting frequency domain system, which consists of a sum between K rank-one
terms and a diagonal term, is much more complicated and expensive. Due to this fact, the authors of [4]
proposed two different alternative for the inverse problem.

I Iterated Sherman-Morrison (ISM): Due to the particular structure of the aforementioned linear
systems, it is feasible to iteratively apply the Sherman-Morrison formula in order to get a solution.
According to [4], this approach is often computational effective for small to moderate training set
size since its complexity is given by a quadratic term corresponding to the training set size.

II Conjugate Gradient (CG): Iterative approach that is used to solve (22) without having to ex-
plicitly construct the matrix X̂H X̂ +βI of the system. In comparison to ISM, this method depend
of certain relative residual value (tolerance) to obtain a more accurate solution in the DL update.
Experimental results of [4] have shown that a relative residual tolerance equals to 10−3 or higher
is sufficient to reliably converge in the CDL algorithm as the ISM method. This method is recom-
mended when the training set size is large.

2.3.2 ADMM consensus

The consensus approach [7, Ch.7] consists in defining a constraint of equality to decouple an opti-
mization problem through independent local variables. This framework was first proposed for the DL
problem by [6], but then [21] introduced a more complete ADMM consensus approach to improve
the convergence rate by finding the best coupling variables that are passed between the SC and DL
problems. As proposed in [21], the DL problem (20) can be expressed in ADMM consensus form as

argmin
{dk,m}{gm}

1
2 ∑

k

∥∥∥∑
m

xk,m ∗dk,m− sk

∥∥∥2

2
+∑

m
ιCPN (gm) s.t d0,m = d2,m = . . .= gm ∀m , (25)
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Convolutional Sparse Representation

where {dk,m} are the M local dictionary filters for each training image and {gm} is the global consensus
variable of M filters. The associated ADMM updates are

d(i+1)
k,m = argmin

{dk,m}

1
2 ∑

k

∥∥∥∑
m

xk,m ∗dk,m− sk

∥∥∥2

2
+

β

2 ∑
k

∑
m

∥∥∥dk,m−g(i)m +h(i)
k,m

∥∥∥2

2
(26)

g(i+1)
m = argmin

{gm}
∑
m

ιCPN (gm)+
β

2 ∑
k

∑
m

∥∥∥d(i+1)
k,m −gm +h(i)

k,m

∥∥∥2

2
(27)

h(i+1)
k,m = h(i)

k,m +d(i+1)
k,m −g(i+1)

m . (28)

The {dk,m} update (26), which is the most computationally demanding step, consists of K indepen-
dent linear systems that can be efficiently solved via the DFT domain Sherman Morrison method used
in [14] (described in Section 2.2.1). The {gm} update (27) has a closed-form solution given by

g(i+1)
m = proxιCPN

( 1
K ∑

k
(d(i+1)

k,m +h(i)
k,m)
)

. (29)

It is easy to note that the ADMM consensus approach has as a benefit its independent separable
structure, which is highly parallelizable. However, separability [10] has recently been exploited by
a parallel algorithm running in multiple cores. This parallel implementation is the fastest algorithm
compared to the existing ones.

A brief summary of complexity of the reported DL methods is presented in Table 2.2.

Operations Complexity per operation Dominant Term/(N1 ·N2 ·M ·K)

ADMM + ISM
FFT + IFFT 2 · log(N1 ·N2) ·N1 ·N2 ·M
Complex Inv.

(τ · (9+5·K)
2 ) ·N1 ·N2 ·M ·K

τ·(9+5·K)
2

Problems (ISM)

ADMM consensus FFT + IFFT 2 · log(N1 ·N2) ·N1 ·N2 ·M ·K 2 · log(N1 ·N2)+10 · τ
Inv. Problem (SM) τ · (10 ·N1 ·N2 ·M ·K)

Table 2.2: Analysis of the computational complexity of the reported DL methods. SM denotes the
Sherman-Morrison algorithm, ISM the iterated version, and τ is a constant used to represent the cost of
complex operations (2≤ τ≤ 4).

2.4 Separable filter Learning

Separable filter learning is a relatively new research branch in which is trying to address optimization
problems via separable filter formulations instead of non-separable ones. The convenience of using
separable filters was firstly approached for Convolutional Neural Network (CNN) applications in [22].
As the synthesis structure of CNNs is formed of a large amount of non-separable filters, this afore-
mentioned work proposed to approximate the non-separable filters as a linear combination of a smaller
number of separable ones. They reported that this approximation considerably reduced the execution
time with no loss in performance for classification and denoising tasks.

12



Convolutional Sparse Representation

Other obvious application is on the Convolution Sparse Coding topic, [23] proposed a FISTA-based
algorithm to perform the minimization through convolutions with separable filters. The corresponding
experiments also shown that a small combination of separable filters provides better results in terms of
runtime performance than a large set of non-separable filters.
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Chapter 3

Proposed Method 1 : Partial Update APG
approach

3.1 Frequency domain APG

An accelerated proximal gradient (APG) algorithm is mainly composed by four steps: a gradient esti-
mation, a step size estimation, a proximal operator, and a Nesterov’s accelerated gradient calculation.
Most of them could be computationally demanding if they are addressed in the spatial domain. Due to
this fact, we propose to perform most of these steps in the frequency domain, keeping only the proxi-
mal operator in the spatial domain, to avoid unnecessary convolutions or transformations between both
domains.

Iterations
200 400 600 800 1000

T
im

e 
(s

)

10 2

10 3

ADMM-APG CDL
ADMM SC
APG-APG CDL
APG SC

(a) Runtime performance

Iterations
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6200
ADMM-APG CDL
APG-APG CDL

(b) Convergence performance

Figure 3.1: Comparison of the CDL algorithm using APG and ADMM frameworks for solving the SC
update. Note: These preliminary experiments were simulated using a training set of 40 images. CDL =
convolutional dictionary learning and SC = sparse coding

It worth nothing that we have heuristically observed that the most suitable way to handle both up-
dates of the problem (1) is using the APG approach in both cases. In the Figure 3.1, we show evidences
that this strategy delivers better runtime performance (1.25 times faster) with similar convergence rate
in compassion to an ADMM-APG combination. On the other hand, all details of our proposed APG
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method for solving the DL problem (20) are explained in Section 3.1.1 as well as our extension of the
FISTA algorithm for the SC update in Section 3.1.2.

3.1.1 Dictionary update

To perform the gradient estimation of the `2 fidelity term (20), labeled ∇F , in the frequency domain,
we define a linear operator of Xk,m such that xk,m ∗dm = Xk,mdm. We also denote the variables Xk,m,
dm and sk in the frequency domain as X̂k,m (diagonal matrix), d̂m and ŝk (column vectors), respectively.
Accordingly, the fidelity term can be arranged as follows:

1
2 ∑

k

∥∥∥∑
m

X̂k,md̂m− ŝk

∥∥∥2

2
=

1
2 ∑

k

∥∥∥X̂kD̂− ŝk

∥∥∥2

2
=

1
2

∥∥∥X̂D̂− Ŝ
∥∥∥2

2
, (30)

where

X̂k = (X̂k,1 X̂k,2 · · ·), X̂ =

X̂1

X̂2
...

 D̂ =

d̂1

d̂2
...

 and Ŝ =

ŝ1
ŝ2
...


The inexact line search as back-tracking [24],[25] is a customary option since the exact counterpart

[26],[27] could be computationally prohibitive. However, in the frequency domain, an exact line search
can be effectively perform via (31).

arg min
{α}

1
2

∥∥∥X̂(D̂−α∇F(D̂))− Ŝ
∥∥∥2

2
(31)

The derivation of this exact line search problem results in a single step size given by

([X̂∇F(D̂)]T [X̂∇F(D̂)])α = [∇F(D̂)T
∇F(D̂)] . (32)

Algorithm 3.1: DL algorithm using Frequency domain APG
1: Compute gradient in the frequency domain

∇F(Ĝi) = X̂H(X̂Ĝi− Ŝ)
2: Compute step size in the frequency domain

α = ‖∇F(Ĝi)‖2
2/‖X̂∇F(Ĝi)‖2

2
3: Compute dictionary

Hi+1 = IFFT 2{Ĝi−α ·∇F(Ĝi)}
Di+1 = proxιCPN

(Hi+1)

D̂i+1 = FFT 2{Di+1}
4: Compute auxiliary dictionary Ĝi+1 (Nesterov accelerated method) in the frequency domain

γi+1 = (1+
√

1+4(γi+1)2)

Ĝi+1 = D̂i+1 + γi−1
γi+1 (D̂i+1− D̂i)

5: Compute normalization of auxiliary dictionary
Ĝi+1 =

√
N · Ĝi+1/‖Ĝi+1‖2
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The last step of our algorithm is a normalization of the auxiliary dictionary which is required to
avoid the scaling ambiguities when it is passed to the other sub-problem. Using Parseval’s theorem
[18], we extend this normalization to the frequency domain as ‖D̂‖2/

√
N = 1, where N is the number

of pixels.

3.1.2 Coefficient update

This coefficient update is an extension of the FISTA approach (more generally known as APG approach)
presented in Section 2.2.2, in which now most steps of the solution are posed in the frequency domain.
Similar to the previous APG approach for the DL update (Section 3.1.1), we define the linear operator
Dm, such that dm ∗xk,m = Dmxk,m, and denote Dm, xk,m and sk in the frequency domain as D̂m, x̂k,m and
ŝk. The fidelity term of the full SC problem (9) is rearranged as

1
2 ∑

k

∥∥∥∑
m

D̂mx̂k,m− ŝk

∥∥∥2

2
=

1
2 ∑

k

∥∥∥D̂X̂k− ŝk

∥∥∥2

2
, (33)

where D̂ = (D̂1 D̂2 · · ·) and X̂k = (x̂k,1 x̂k,2 · · ·)T . For computational convenience justified in the
previous Section 3.1.1, we also compute the step size in the frequency domain from the exact line
search, namely:

arg min
{αk}

1
2

∥∥∥D̂(X̂k−αk∇F(X̂k))− ŝk

∥∥∥2

2
. (34)

The completed mathematical description of our APG approach is presented in the algorithm 3.1 and
algorithm 3.2.

Algorithm 3.2: SC algorithm using Frequency domain APG
1: Compute gradient in the frequency domain

∇Fk(Ŷi+1
k ) = ĜH(ĜŶi

k− ŝk)
2: Compute step size in the frequency domain

αk = ‖∇Fk(Ŷi+1
k )‖2

2/‖Ĝ∇Fk(Ŷi+1
k )‖2

2
3: Compute Coef. Maps

Ui+1
k = IFFT 2{Ŷi

k−αk ·∇Fk(Ŷi+1
k )}

Xi+1
k = Shrinkλαk(U

i+1
k )

X̂i+1
k = FFT 2{Xi+1

k }
4: Compute auxiliary coef. map Ŷi+1

k (Nesterov accelerated method) in the frequency domain
δi+1 = (1+

√
1+4(δi+1)2)

Ŷi+1
k = X̂i+1

k + δi−1
δi+1 (X̂i+1

k − X̂i
k)

3.2 Partial update model

Given an efficient dictionary update implementation (as proposed in Section 3.1), we noted that the
coefficient update becomes the dominant part of the whole CDL problem. With this in mind, we explore
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a new update model inspired by BGS method [15] (a.k.a. Alternating Optimization [5]) which raises
the optimization problem for a given function f (x) as

xi+1
r = arg min

y∈xr

f (xi+1
1 , · · · , xi+1

r−1, y, xi+1
r+1, · · · , xi+1

R ) . (35)

From this approach (35), the minimization is established for a single partition of the interest variable
while keeping the other partitions fixed.

Adapting this model to the CDL problem, the coefficient update (9) can be written as

x(i+1,r)
k,m = arg min

{xk,m}

1
2

Pr

∑
k=1

∥∥∥∑
m

dm ∗xk,m− s(r)k

∥∥∥2

2
+λ

Pr

∑
k=1

∑
m
‖xk,m‖1 (36)

where the dataset {sk} is divided into R partitions (sk = {s
(1)
k , s(2)k , . . . ,s(R)k } ) and Pr represents the

partition size. A single partition of coefficient maps {x(i,r)k,m } is estimated in each outer-loop of the CDL
problem.

The complete variable of coefficient maps {xk,m} is composed from the current estimated partition
and its previous values of the other partitions.

x(i+1)
k,m = [x(i,1)k,m , . . . , x(i+1,r)

k,m , . . . , x(i,R)k,m ] (37)

This complete set of coefficient maps is used to estimate the current dictionary given by (20), re-
produced here for convenience:

d(i+1)
m = arg min

{dm}

1
2 ∑

k

∥∥∥∑
m

x(i+1)
k,m ∗d(i)

m − sk

∥∥∥2

2
+∑

m
ιCPN (d

(i)
m ).

At the end of each outer-loop the variable r is reassigned as {(r+1) mod R} to periodically switch
from the first to the last partition.

As this model is a generic structure, graph presented in Figure 3.2 for illustrative purposes, it could
be applied to any CDL framework to solve each subproblem. However, we choose to merge this model
with our APG-based solution since in the Section 3.3, we will show that our APG algorithm is compu-
tationally more efficient than the other approaches.

... ...s1 s2 sRsr

... ...x1 x2 xRxr

d

Figure 3.2: Partial Update model of the CDL problem.
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3.3 Experimental Results

Two distinct set of experiments were carried out on a desktop computer equipped with an Intel i7-7700K
CPU (4.20 GHz, 8MB Cache, 32GB RAM).

• Learning stage: The convergence and computational runtime of the CDL algorithms listed in Section
3.3.1 are compared. The training sets used for this first experiment consist of 5, 10, 20 and 40 gray-
scale images of size 256× 256 pixels, cropped and rescaled from a set of images obtained from the
MIRFFLICKR-IM dataset [28]. Furthermore, for each training set, 32 dictionary filters of size 12×12
were learned using a sparsity parameter λ = 0.2 and 1000 iterations.

• Testing stage: As second set of experiments, the performance of the learned dictionaries from 40
training images is evaluated in terms of PSNR, SSIM, and sparsity metrics1 for the denoising and
inpainting CSC tasks presented in [14] and [29], respectively. Both test algorithms (denoising and
inpainting) correspond to the ADMM-based MATLAB code of the SPORCO library available on [30].
For the simulations, we used eight standard test images that were corrupted with AWGN σ = 0.2 for
the denoising task and dropped 20 % of pixels for the inpainting task.

Since the test algorithms have an adjustable parameter λ, in order to ensure a fair comparison, a
search grid over λ ∈ [0.001 - 0.95] was used to find the optimal value that provides the best PSNR for
each learned dictionary.

3.3.1 Details of the evaluated methods

We compared the following CDL algorithms:

◦ Iterated Sherman-Morrison (ISM) and Conjugate Gradient (CG): The CDL algorithms as pro-
posed in [4].

◦ ADMM Consensus (ADMM-C): The CDL algorithm proposed in [21].

◦ PU-APG: Our proposed APG-based algorithm with partial update structure (code available on [31]).
It is worth noting that PU-APG solution with a single partition is equivalent to the APG-based method
proposed in Section 3.1 without any partial update model.

3.3.2 Simulations of the learning stage

Since in each outer-loop, the PU-APG algorithm updates a single partition of the coefficient maps,
this directly affects the l1-term when computing the functional value (FV) of the training set, making
it an unsuitable convergence reference. A fair comparison of the functional value would be with the
validation set whereas more than one partition is used.

We show in Figure 3.3, the performance of the existing CDL methods (ISM, CG and ADMM-
C) along with our proposed method in terms of functional values of (1) with respect to the learning
runtime, using 5, 10, and 20 training images. We observe that all methods converge to similar values
with distinct run-times and behaviors. Our proposed method outperforms the rest by achieving the same

1Sparsity measure (L0 %) is defined as 100 · ‖x‖0/N, where x is the coefficient maps and N is the number of pixel in a
test image.
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functional value in less time, but for small training images, ISM has a relatively better convergence at
the beginning.

We report in Figure 3.4 the same comparisons as in the Figure 3.3, but for a larger training set
size (40 training images). It also includes the progress of the functional value in the validation set (5
validation images) in order to observe the generalization of the estimated dictionaries with respect to the
training runtime. We note that while the number of training images becomes larger our APG algorithm
consistently outperforms the other ones in terms of runtime and functional value. Furthermore, it can
be seen in Figure 3.4.b that our method provides a similar generalization as the other ones.
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Figure 3.3: Comparison of the functional value decay with respect to execution time on the learning
process of 5, 10 and 20 training images.
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Figure 3.4: Comparison of the value decay of the training and validation functional with respect to
execution time on the learning process of 40 training images.

In Figure 3.5, we present the comparison of our APG-based algorithm with the partial update struc-
ture for 1, 2 and 5 partitions. As can be observed the PU-APG with a single partition achieves a lower
point of convergence, which means that its learned dictionaries must be better at generalizing the test
set. Although PU-APG with 2 partitions achieves a slightly higher point of convergence, it is reached
in less execution time. On the other hand, PU-APG with 5 partitions is faster, but it also needs more
iterations to converge while the image set becomes larger.
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In Figure 3.6, we present the average execution time per iteration of the CDL methods during
the learning with respect to the training set size and filter set size. Our proposed method provides
better runtime per iteration in comparison to the other ones. As additional information, we report the
exact values of runtime during the training in Table 3.1. In this table, we note that our proposed APG
algorithm (PU-APG-1P), when using 5 to 40 training images, is about 1.5 to 5.3 times faster than
ISM, about 2.5 times faster than the CG, and about 1.5 times faster than ADMM-C. The proposed
update model applied in our algorithm provides an additional improvement of 1.6 and 2.5 times in the
computational performance using 2 and 5 partitions, respectively.
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Figure 3.5: Comparison of the value decay of validation functional with respect to execution time
using our proposed method with 1, 2 and 5 partitions on the learning process of 5, 20 and 40 training
images.
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Figure 3.6: Average time per iteration of the CDL methods with respect to (a) training set size and (b)
filter set size.

ISM CG ADMM-C PU-APG 1p PU-APG 2p PU-APG 5p
Training
set size

5 991 1333 843 682 444 274
40 21051 9343 5866 4003 2504 1668

Filter
set size

18 3255 2053 1576 1286 824 526
144 28709 24636 12623 10101 6565 4280

Table 3.1: Execution time (seconds) during the learning process of the evaluated CDL methods.
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3.3.3 Simulations of the testing stage

Table 3.2 and Table 3.3 present the performance of the learned dictionaries in terms of PSNR, SSIM
and sparsity metrics for the denoising and inpainting task, respectively. In both tables, we observe that
the dictionaries learned by our proposed algorithm yield equivalent results as the existing methods,
since the maximum differences in terms of PSNR, SSIM and sparsity between the worst metrics of
our methods and the best metrics of the other methods are only equal to 0.16 dB, 0.0231 and 1.21%,
respectively. These maximum differences are negligible.

A visual representation of the denoising process is presented in Figure 3.7.

(a) Corrupted image (PSNR = 13.52) (b) ISM (PSNR = 21.08)

(c) CG (PSNR = 21.08) (d) ADMM-C (PSNR = 21.09)

(e) PU-APG 1p (PSNR = 21.08) (f) PU-APG 2p (PSNR = 21.08) (g) PU-APG 5p (PSNR = 21.08)

Figure 3.7: Denoising of the corrupted Mandrill image using the learned dictionaries by the reported
CDL methods.
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Mandrill Barbara Peppers Boats House Gold hill Monarch Airplane

PSNR
(dB)

ISM 21.08 23.15 25.17 25.36 24.90 24.70 24.95 24.28
GC 21.08 23.15 25.17 25.35 24.90 24.70 24.94 24.28

ADMM-C 21.09 23.14 25.15 25.34 24.89 24.69 24.94 24.30
PU-APG 1p 21.08 23.15 25.17 25.36 24.95 24.71 24.98 24.29
PU-APG 2p 21.08 23.11 25.17 25.37 24.99 24.71 24.96 24.29
PU-APG 5p 21.08 23.08 25.15 25.34 24.91 24.70 24.90 24.27

SSIM

ISM 0.5286 0.6091 0.6741 0.6818 0.6553 0.6308 0.7009 0.7162
GC 0.5282 0.6091 0.6739 0.6816 0.6735 0.6307 0.7255 0.7161

ADMM-C 0.5293 0.6082 0.6738 0.6805 0.6731 0.6303 0.7255 0.7172
PU-APG 1p 0.5293 0.6093 0.6745 0.6829 0.6587 0.6310 0.7029 0.7174
PU-APG 2p 0.5293 0.6084 0.6749 0.6834 0.6589 0.6315 0.7030 0.7177
PU-APG 5p 0.5280 0.6076 0.6746 0.6825 0.6571 0.6311 0.7024 0.7182

L0 %

ISM 7.46 5.68 1.52 1.58 3.23 1.40 3.29 2.71
GC 7.48 5.69 1.51 1.60 2.02 1.40 2.09 2.70

ADMM-C 7.63 5.73 1.51 1.58 2.15 1.43 2.13 2.74
PU-APG 1p 7.43 5.61 1.49 1.55 3.21 1.40 3.25 2.67
PU-APG 2p 7.38 5.56 1.46 1.53 3.14 1.38 3.24 2.67
PU-APG 5p 7.38 5.57 1.48 1.57 3.23 1.36 3.30 2.69

Table 3.2: Denoising results for a standard set of test images, considering dictionary sets of size 12×
12×32 learned using a set of 40 training images.

Mandrill Barbara Peppers Boats House Gold hill Monarch Airplane

PSNR
(dB)

ISM 29,86 40,14 37,33 44,89 43,56 38,94 41,62 42,42
GC 29,86 40,16 37,34 44,89 43,57 38,94 41,63 42,42

ADMM-C 29,70 40,24 37,26 44,84 43,45 38,87 41,61 42,41
PU-APG 1p 29,83 40,22 37,30 44,87 43,63 38,95 41,54 42,49
PU-APG 2p 29,80 40,18 37,29 44,87 43,50 38,94 41,47 42,44
PU-APG 5p 29,84 40,13 37,30 44,83 43,64 38,92 41,63 42,44

SSIM

ISM 0.9467 0.9855 0.9400 0.9909 0.9875 0.9743 0.9917 0.9901
GC 0.9468 0.9856 0.9400 0.9909 0.9876 0.9743 0.9917 0.9901

ADMM-C 0.9451 0.9855 0.9382 0.9907 0.9874 0.9737 0.9916 0.9900
PU-APG 1p 0.9459 0.9854 0.9392 0.9908 0.9877 0.9742 0.9915 0.9901
PU-APG 2p 0.9446 0.9850 0.9391 0.9908 0.9873 0.9742 0.9915 0.9900
PU-APG 5p 0.9461 0.9840 0.9397 0.9908 0.9876 0.9741 0.9916 0.9900

L0 %

ISM 82.27 86.76 70.45 90.57 91.24 82.63 89.95 90.83
GC 82.40 86.88 70.60 90.71 91.30 82.75 89.98 90.95

ADMM-C 81.58 86.10 66.39 89.91 90.46 81.79 89.39 90.15
PU-APG 1p 81.77 86.04 69.84 89.97 90.42 81.90 89.57 90.26
PU-APG 2p 80.09 86.32 69.69 90.09 81.09 81.99 89.61 90.28
PU-APG 5p 81.67 96.95 69.79 90.14 90.63 82.11 89.38 90.40

Table 3.3: Inpainting results for a standard set of test images, considering dictionary sets of size 12×
12×32 learned using a set of 40 training images.
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Chapter 4

Proposed Method 2 : APG consensus
approach

A general global consensus problem [12, Ch. 5] has the form

minimize
{y}

N

∑
j=1

f j(y j) s.t y1 = y2 = · · ·= yN , (38)

where the common global variable is not part of this problem as in the case of the ADMM consensus
formulation (25). Via the definition of the constraint set

C = {(y1, · · · ,yN)|y1 = · · ·= yN} , (39)

The optimization problem (38) can be switched to a special consensus form, resulting in the uncons-
trained problem given by

minimize
{y}

N

∑
j=1

f j(y j)+ IC(y1, · · · ,yN) , (40)

where this type of formulation allows performing a proximal-based solution [12]. In comparison to in-
dependent linear systems solved via inversion techniques (26), a proximal solution would entail simple
independent steps in direction opposite to each gradient.

4.1 Frequency domain APG Consensus

Rewriting the unconstrained DL problem (20) in form of the particular consensus model presented in
(40), it becomes

argmin
{dk,m}

1
2 ∑

k

∥∥∥∑
m

xk,m ∗dk,m− sk

∥∥∥2

2
+∑

k
∑
m

ιCPN(dk,m)+∑
m

ιCC(d1,m,d2,m, · · · ,dK,m) , (41)

where CC represents the constraint set of equality among the local dictionaries.

Cc = {(d1,m,d2,m, · · · ,dK,m)|d1,m = d2,m = · · ·= dK,m} (42)
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Proposed Method 2 : APG consensus approach

Applying the Proximal Gradient Descent approach on this consensus problem (41), the solution
mainly consists of the gradient descent step (44) and proximal step (47). To simplify the notation, we
define a linear operator Xk,m such that xk,m ∗dk,m = Xk,mdk,m and

Xk = (Xk,1 Xk,2 · · ·) , Dk = (dk,1 dk,2 · · ·)T ,

so that the problem can be expressed as

argmin
{Dk}

1
2 ∑

k

∥∥∥XkDk− sk

∥∥∥2

2
+∑

k
ιCPN(Dk)+ ιCC(D1,D2, · · · ,DK) . (43)

The corresponding gradient step is

Hk = Dk−
1
Lk

∇Fk(Dk) , (44)

where Lk is the Lipschitz constant to satisfy the convergence. The proximal step of the problem (43) is
of form

argmin
{Dk}

1
2 ∑

k

∥∥∥Dk−Hk

∥∥∥2

2
+∑

k
ιCPN(Dk)+ ιCC(D1,D2, · · · ,DK) ; (45)

however, we consider the equivalent formulation

argmin
{G}

1
2 ∑

k

∥∥∥G−Hk

∥∥∥2

2
+∑

k
ιCPN(G) , (46)

where G is the global consensus dictionary. The minimizer of this problem (46) is given by

G = ProxιCPN

( 1
K ∑

k
Hk

)
. (47)

Analogous to the Section 3.1.1, the computation of the gradient and other components are performed
in the frequency domain by switching the spatial domain variables Xk,Dk and sk to the frequency do-
main variables X̂k (block with M diagonal matrix), D̂k and ŝk, where X̂k denotes the DFT transform of
Xk. All the details of our implementation including the gradient derivation are shown in Algorithm 4.1.

Algorithm 4.1: DL algorithm using Frequency domain APG consensus
1: Compute gradient in the frequency domain

∇Fk(R̂i+1) = X̂H
k (X̂kR̂i− ŝk)

2: Compute dictionary
Hi+1

k = IFFT2{R̂i− 1
Lk

∇Fk(R̂i)}

Gi+1 = proxιCPN
( 1

K ∑
k

Hi+1
k )

Ĝi+1 = FFT2{Gi+1}
3: Compute auxiliary dictionary R̂i+1 (Nesterov accelerated method) in the frequency domain

γi+1 = (1+
√

1+4(γi+1)2)

R̂i+1 = Ĝi+1 + γi−1
γi+1 (Ĝi+1− Ĝi)
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Proposed Method 2 : APG consensus approach

We noted that the step 2 of Algorithm 4.1 can be efficiently implemented, due to the linearity
property of the DFT, as

Hi+1 = IFFT2{ R̂i− 1
K ∑

k
(

1
Lk

∇Fk(R̂i) ) }

Gi+1 = proxιCPN
(Hi+1) ,

with this consideration, the K inverse DFT operations are reduced to a single one.

4.2 General Remarks

The CDL algorithm is implemented by combining our proposed DL update with the ADMM-based
SC update proposed in [14]. It is worth mentioning that all the steps of the SC update as well as the
gradient step of the DL update are completely parallelizable in the training image index K, the only
synchronization point is on the average of the gradients, along other simple operations.

In order to provide the best serial implementation of our method for environments such as MATLAB
and Python, the gradient is calculated from a vectorized form (48) instead of loop-based form.

1
2 ∑

k

∥∥∥X̂kD̂k− ŝk

∥∥∥2

2
=

1
2

∥∥∥X̂D̂− Ŝ
∥∥∥2

2
(48)

where

X̂ =

X̂1 0 · · ·
0 X̂2 · · ·
...

...
. . .

 D̂ =

D̂1

D̂2
...

 Ŝ =

ŝ1
ŝ2
...

 .

The step size ( 1
Lk

) used on our algorithm consists of a single fixed Lipschitz constant, which was
heuristically selected via a grid search over L ∈ [101 - 103]. We also used the optimal parameters re-
ported in [10] for the ADMM consensus method.

Table 4.1: Optimal parameters found by grid search, where ρ and β are the penalty parameters of the
ADMM-based SC and DL problems, respectively.

Parameter Parameter
Method K ρ L Method ρ β

Proposed
APG

Consensus

5 5.00 100
ADMM

Consensus

3.59 1.29
10 3.59 50 3.59 1.29
20 3.59 67 3.59 2.15
40 3.59 100 3.59 1.08

4.3 Experimental Results

The experimental setup is analogous to the previous experimental framework described in Section 3.3,
in which the performance is reported in terms of learning runtime, denoising and inpainting results.
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The only difference is that for each training set, 64 dictionary filters of size 8×8 were learned using a
sparsity parameter λ = 0.1 and 1000 iterations.

For the computational performance comparisons, we evaluate our APG consensus implementations
against to the ADMM consensus (methods listed in Section 4.3.1) by varying training set size and filter
set size. Then, the performance of learned dictionaries (of size 64×8×8) from 40 training images are
evaluated in terms of PSNR, SSIM and sparsity1 metrics. These experiments were also carried out on a
desktop computer equipped with an Intel i7-7700K CPU (4.20 GHz, 8MB Cache, 32GB RAM) and a
Nvidia GTX1080 Ti graphic card.

4.3.1 Details of the evaluated methods

We compared the following CDL implementations:

◦ ADMM-C: The ADMM consensus algorithm as proposed in [21].

◦ ADMM-CP1: The parallel version of the ADMM-C proposed in [10], which consists in a Python
code running on multi-core. Only included in our experiments for illustrative purposes.

◦ ADMM-CV: The vectorized form of the loop-based ADMM consensus algorithm (ADMM-C).

◦ ADMM-CP2: The parallel implementation of the vectorized algorithm ADMM-CV using CUDA-
enabled MATLAB code2.

◦ APG-C: Our proposed APG consensus based method, which is also vectorized implementation, and
its parallel version APG-CP, which consists in a CUDA-enabled MATLAB code2.

The algorithms listed here are MATLAB codes, with the exception of ADMM-CP1, which is
python-based. Our MATLAB library, which can be downloaded from [31], includes our own imple-
mentation of ADMM-CV, ADMM-CP2, APG-C and APG-CP, whereas ADMM-C and ADMM-CP1
can be downloaded from [30].

4.3.2 Simulations of the learning stage

We primarily focus on the execution time of the DL update for this first set of experiments since all the
presented CDL methods use the same ADMM-based solution [14] for the SC update.

In Figure 4.1, we illustrate the functional behavior and computational performance comparisons in
the learning process of 8×8×64 from 5 to 40 training images for the state-of-the-art consensus method
with respect to our APG consensus method. Average runtime of all implementations for different train-
ing set and filter set sizes are shown in Figure 4.2. As can be observed in the Figures 4.1 (a)-(d), the
APG and ADMM consensus methods converge to a relatively similar functional value in distinct time
periods. Considering only serial implementations, it can be corroborated that a vectorized algorithm as
ADMM-CV has better computational behavior than its loop-based counterpart (ADMM-C). However,
our proposed algorithm (APG-C) outperforms both of them in terms of runtime by a factor of 2 ∼ 6.

On the other hand, since ADMM-CP1 exploits the separable structure of the consensus approach via
a multi-core implementation, we can see in the Figure 4.2 that this algorithm is more competitive than

2MATLAB implementation that exploits the convenience of the gpuArrays and high-level GPU operations.
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Proposed Method 2 : APG consensus approach

the serial implementations. But it is not faster than the other parallel ADMM consensus implementation
that uses GPU (ADMM-CP2). Moreover, the parallel version of our approach (APG-CP), that also uses
high-level GPU functions, is overall the fastest method considering the other two parallel algorithms.
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Figure 4.1: Comparison of the functional value decay with respect to execution time on the learning
process of 5, 10, 20 and 40 training images.
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Figure 4.2: Average time per iteration of the CDL methods with respect to (a) training set size and (b)
filter set size.
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As additional information of the Figure 4.2, we present in Table 4.2 the exact values of runtime. In
this table, we note that our proposed APG consensus method is approximately 2 to 6 times faster than
the ADMM consensus method when comparing either serial or parallel implementations. A constant
increase in the computational performance associated to the increase of training set and filter set sizes
can also be observed.

ADMM-C ADMM-CV ADMM-CP1 ADMM-CP2 APG-C APG-CP
Training
set size

5 1024 557 112 30 262 16
40 7967 4274 855 378 1324 129

Filter
set size

18 1167 618 124 35 175 14
144 8248 4958 992 555 1358 204

Table 4.2: Execution time (seconds) during the learning process of the evaluated CDL methods.

4.3.3 Simulations of the testing stage

As the parallel implementations of the ADMM consensus and APG consensus methods do not affect
the accuracy of the estimated dictionaries, only the performance of the dictionaries learned from the
serial implementations are compared.

Mandrill Barbara Peppers Boats House Gold hill Monarch Airplane
PSNR
(dB)

ADMM-C 20.99 22.94 24.88 23.77 24.42 24.54 24.53 23.82
APG-C 21.00 22.97 24.90 23.79 24.42 24.54 24.54 23.84

SSIM
ADMM-C 0.5214 0.6175 0.6654 0.6192 0.6446 0.6266 0.6939 0.7086

APG-C 0.5210 0.6180 0.6656 0.6199 0.6450 0.6269 0.6958 0.7097

L0 %
ADMM-C 9.12 4.39 1.70 3.67 3.71 1.42 3.76 3.02

APG-C 8.82 4.26 1.68 3.61 3.85 1.40 3.75 2.99

Table 4.3: Denoising results for a standard set of test images, considering dictionary sets of size 8×8×
64 learned using a set of 40 training images.

Mandrill Barbara Peppers Boats House Gold hill Monarch Airplane
PSNR
(dB)

ADMM-C 30.80 39.64 37.83 43.98 43.10 39.32 41.76 41.70
APG-C 30.76 39.93 37.78 44.10 43.90 39.39 41.63 41.75

SSIM
ADMM-C 0.9590 0.9880 0.9503 0.9918 0.9888 0.9780 0.9930 0.9908

APG-C 0.9610 0.9880 0.9521 0.9920 0.9888 0.9787 0.9930 0.9907

L0 %
ADMM-C 94.45 95.15 76.29 90.36 98.81 91.43 88.02 89.46

APG-C 92.55 94.71 75.57 89.88 91.20 93.52 88.35 89.75

Table 4.4: Inpainting results for a standard set of test images, considering dictionary sets of size 8×8×
64 learned using a set of 40 training images.

In Table 4.3 and Table 4.4, we report the denoising and inpainting comparisons between both evalua-
ted dictionaries in terms of the PSNR, SSIM and sparsity metrics. It can be observed that the dictionary
learned by our proposed method (APG-C) provides matching performance to the base line dictionary
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(ADMM-C). The maximum differences in terms of PSNR, SSIM and sparsity between the worst metrics
of our method and the best metrics of the other one are only equal to 0.13 dB, 0.0004 and 2.09%.

Visual representations of the denoising process is illustrated in Figure 4.3 and Figure 4.4.

(a) Corrupted image (PSNR = 13.52 ) (b) ADMM-C (PSNR = 20.99) (c) APG-C (PSNR = 21.00)

Figure 4.3: Denoising of the corrupted Mandrill image using the learned dictionaries by the reported
CDL methods.

(a) Corrupted image (PSNR = 13.93 ) (b) ADMM-C (PSNR = 22.94) (c) APG-C (PSNR = 22.97)

Figure 4.4: Denoising of the corrupted Barbara image using the learned dictionaries by the reported
CDL methods.
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Chapter 5

Conclusions

We have proposed two computationally efficient algorithms for solving the convolutional dictionary
learning problem. Compared to the standard ADMM framework, we have proved that an APG based
formulation provides less use of computational resources.

As a first approach, we have presented a novel CDL algorithm that consists of two particular ideas:
the DFT domain APG method and the reminisced BGS model. Our APG-based solution used in both
CDL updates has shown to outperform the standard ADMM methods by a speedup factor of 1.5∼ 5.3.
Additionally, the BGS model has enabled to reduce number of estimated coefficient in our sparse coding
update, providing a complementary speedup improvement by a factor of 2.

We have also shown that our second approach implemented in parallel, whose main contribution
is the APG consensus approach for solving the DL update, is the fastest method including parallel
implementations of the ADMM consensus method. The reported improvements in the training time by
our both proposed methods do not negatively affect the quality of the resulting dictionaries when they
are evaluated in the denoising and inpainting tasks.

Finally, it is worth noting that both APG methods have successfully been published as conference
papers at the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
[13] and at the IEEE International Conference on Image Processing (ICIP) [16]. Additionally, this
thesis report has allowed to produce a subsequent method on efficiently learning separable filters, which
has also been published as another conference paper at the IEEE International Workshop on Machine
Learning for Signal Processing (MLSP) [17].
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Recommendations

• Even though our parallel algorithm has shown to be the fastest implementation with respect to
the existing parallel ones, its separable structure across training image could not be completely
exploited due to the high-level nature of the MATLAB programming framework. In order to
achieve the best performance, it is recommended to develop a CUDA C algorithm running on
multiple GPUs.

• As in the CDL topic, a good computational performance is highly required, we suggest to develop
our methods on more flexible languages such as C, C++, or Fortran.

• Although this thesis work has been focused on CDL algorithms for learning non-separable filters,
it would be interesting to explore the benefits of learning separable filters by taking as basis APG
algorithms such as APG consensus.

31



References
[1] Julien Mairal, Francis Bach, and Jean Ponce, “Sparse modeling for image and vision processing,”

Foundations and Trends R© in Computer Graphics and Vision, vol. 8, no. 2-3, pp. 85–283, 2014.

[2] Michael Elad and Michal Aharon, “Image denoising via sparse and redundant representations over
learned dictionaries,” IEEE Transactions on Image processing, vol. 15, no. 12, pp. 3736–3745,
2006.

[3] Matthew Zeiler, Dilip Krishnan, Graham Taylor, and Rob Fergus, “Deconvolutional networks,” in
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2010, pp. 2528–
2535.

[4] Brendt Wohlberg, “Efficient algorithms for convolutional sparse representations,” IEEE Transac-
tions on Image Processing, vol. 25, no. 1, pp. 301–315, Jan. 2016.

[5] James Bezdek and Richard Hathaway, “Some notes on alternating optimization,” in AFSS Inter-
national Conference on Fuzzy Systems. Springer, 2002, pp. 288–300.
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