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KURZFÄSSUNG 

Die vorliegende Arbeit hat ihren Ursprung in den Algorithmen und Ansätzen zur 

Analyse eines Roboters mit variabler Geometrie, der an der TU Ilmenau entwickelt 

wurde. Ein solcher Roboter hat einen anfangs zylindrischen Roboter in eine 

kegelstumpfförmige Geometrie umgewandelt, um um die vertikale Achse drehen zu 

können, die sich am Erzeugungspunkt eines solchen Kegels befindet. Die vorliegende 

Arbeit beginnt mit einer Einführung der Grundlagen für das Studium von Tensegrity-

Strukturen; Später werden aus den variablen Parametern der geometrischen 

Beschreibung des Roboters die kinematischen Gleichungen von Position, 

Geschwindigkeit und Beschleunigung für jeden Punkt der Geometrie des Roboters 

ausgewertet. In demselben Kapitel wird eine Alternative zum Vorhersagen der Bahn des 

Roboters unter Verwendung einer Klothoide vorgeschlagen. Diese Kurve hat den 

Zweck, Gleichungen der Bewegungsbahn des geometrischen Mittelpunkts des Roboters 

zu geben. In einem folgenden Kapitel werden die Steuerungsalgorithmen für die 

Abrollbewegung des Roboters sowie eine mögliche konstruktive Form vorgestellt, die 

zuvor für eine ähnliche Anwendung verwendet wurde. Im letzten Kapitel werden 

verschiedene Alternative von Materialien für die Herstellung des Roboterkörpers sowie 

die Grundlagen eines Ansatzes zur Bewertung gekrümmter Zugstrukturen vorgestellt. 

Darüber hinaus wird eine Berechnungsform für die spätere Entwicklung der endgültigen 

Geometrie des Roboters vorgeschlagen. 

 



 
 
   

 

ABSTRACT 

The present work has its origin in the algorithms and approaches for the analysis of a 

robot of variable geometry developed in the TU Ilmenau. Such robot hat an initially 

cylindrical robot changes to a truncated conical geometry, in order to be able to rotate 

around the vertical axis located at the generating point of such a cone. The present thesis 

begins with a basic explanation of the foundations for the study of tensegrity structures; 

later, from the variable parameters of the geometric description of the robot, the 

kinematic equations of position, velocity and acceleration are evaluated for every point 

of the geometry of the robot. In the same chapter an alternative of predicting the path of 

the robot using a clothoid curve is proposed, this curve has the purpose of giving 

equations of the trajectory of the geometric center of the robot. In a following chapter, 

the control algorithms for the rolling movement of the robot are presented, as well as a 

possible constructive form previously used for a similar application. Finally, the last 

chapter presents alternative materials for manufacturing the body of the robot, as well as 

the bases of an approach for the evaluation of curved tensile structures; additionally, it 

proposes a form of calculation for later development of the final geometry of the robot. 

 



 
 
   

 

RESUMEN 

El presente trabajo tiene su origen en los algoritmos y planteamientos para el análisis de 

un robot rodante de geometría variable desarrollados en la TU Ilmenau. Tal robot 

inicialmente cilíndrico, cambia a una geometría cónica trunca, a fin de poder rotar 

alrededor del eje vertical situado en el punto generatriz de tal cono. La presente tesis 

inicia con una explicación básica de los fundamentos para el estudio de las estructuras 

tenségritas; posteriormente, a partir de los parámetros variables de la descripción 

geométrica del robot, se evalúan las ecuaciones cinemáticas de posición, velocidad y 

aceleración para todo punto del cono. En el mismo capítulo se propone una alternativa 

de predicción de la trayectoria del robot haciendo uso de una curva clotoide, tal curva 

tiene por finalidad dar ecuaciones de la trayectoria del centro geométrico del robot. En 

un siguiente capítulo, se presenta los algoritmos de control para el movimiento rodante 

del robot, así como una posible forma constructiva ya usada anteriormente para una 

aplicación similar. Finalmente, el último capítulo presente alternativas de materiales de 

fabricación del cuerpo del robot, así como las bases de un enfoque para la evaluación de 

estructuras tenségritas curvas; adicionalmente, propone una forma de cálculo para 

desarrollo posterior de la geometría final del robot. 
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CHAPTER 1 BASIC CONCEPTS OF TENSEGRITY STRUCTURES 
 
 

1.1 Introduction  

Is a fact that we almost nothing have discovered, we just have found our knowledge in 

the nature, the tensegrity structures are not an exception; we can have turn our sight 

wherever to find such structures even inside our bodies.  

Tensegrity is a word coined by Richard Buckminster Fuller as the joint of the words 

‘tensional’ and ‘integrity’, which makes referent to the integrity of a stable structured in 

equilibrium  by continuous structural member in tension and discontinuous structural 

members in compression. Such structures are present in many topics of the nature; some 

of them are, even, inside of us such our shoulder joints or the structures of our legs. The 

nature has developed this knowledge in its path to its continuous improvement, called 

by us as evolution; we take advantage of this technology for our purposes in fields as 

Art, Beauty, Architecture and Engineering.  

This kind of structures offers to the engineering field the possibility to develop 

machines which can support highest load with a light structure, also the possibility to 

change the geometry of a machine to perform different task according our convenience. 

In this field, this work is a contribution to developing of rolling robot based on these 

structures. Some further application for this kind of robot or mechanism could be a new 

technology for the direction control of vehicles or robots in general. 

The fundamentals principles for the calculus of this kind of structures are presented in 

the first chapter, all those concepts can be found in different books specialized on this 
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study field, but this is a recompilation of some concepts, even from the graph theory 

used as a mathematical basis for the description of this structures in lineal cases. 

The main contribution is the developing of the kinematic of the robot, which is 

subjected to rotations along three different axis and internal geometrical changes which 

add a complexity to the final expression, a new approach for the prediction of the 

trajectory, taking advantages of the variation of the curvature radius, is presented; this 

prediction procedure uses the equation of a curved known as clothoid.  

Not less important is the control algorithm used for the rolling movements; some ideas 

for the developing of a control system are presented. 

Finally, owing to the large deformation which must be exerted to the robot, the material 

selection for the body of the robot has an important role, due to depending on its 

mechanical behavior we can obtain different effects for certain direction over we apply 

the force which makes the geometrical transformation of the robot.  

This work is a step for the final developing of this kind of machines, a large amount of 

additional work is required to arrive to a final design. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-1 Tensegrity structure model of a human knee. Source: [Pinterest] 
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About the last one, these structures take a big advantage due their low force density and 

their multiple equilibrium configurations that allow them to achieve multiple tasks; also 

those structures can be controlled by sensors and actuators. 

In this chapter, the basic definitions about tensegrity structures, static and stability 

analysis will be briefly treaded.  

1.2 Definitions 

The following definitions are terms which are going to be used in the following sections 

of this chapter.  

 Bodies: these are elements, which are only subjected to compression forces or 

bending moments. These elements can be modeled as discontinuous rigid or 

deformable bodies depending on the desirable movement to achieve.  

 String: These elements only support traction forces. These components are 

continuous and flexible. Sometimes, these elements are modeled as springs 

which can be subjected to compression forces, but by definition, they are 

considered only as traction members.  

 Configuration and connectivity: The positions and orientation of all rigid 

bodies is called configuration and the connections between rigid bodies by 

strings are called as connectivity. 

 Stability: It is a condition, in which, there is not relative displacement between 

the members of a structure by action of its inner forces.  

 Tensegrity configuration: It is a configuration of bodies for which exists string 

connectivity able to stabilize the configuration in absence of external forces. 

 Tensegrity system: It is composed of a set of string connected to a tensegrity 

configuration. Also, it must be prestressable in absence of external forces. 

 Class of tensegrity system: It a way to classify tensegrity systems. To know 

which class is a system there is only a simple rule: “The class number is equal to 

the maximum number of bodies in contact on at a node. The main reason for this 



 
 
Chapter 1 Basic Concepts of Tensegrity Structures Pag. 4 

 

definition is when there are not bodies in contact, system class 1, these only 

works axially; otherwise there is bending loads. The mathematical treatment 

when bending is present is much complex as when there are only axial forces. 

 Stable equilibrium: A Tensegrity system is a stable equilibrium, if the structure 

returns to the original given configuration after the application of arbitrarily 

small perturbations anywhere within the configuration. 

1.2.1 Fundamentals of Tensegrity Structures 

On basis of the definition of tensegrity system we can define the following fundamental 

tensegrity structure. On the first level, the simplest tensegrity is a single body and a 

string [a) Figure 1-2]; additionally, the simplest nontrivial tensegrity structure is 

composed of two bars and four strings [b) Figure 1-2]. 

 

 

 

 

 

 

Finally these structures are projected in three dimensions, so they are called as 

tensegrity prism. 

 

 

 

 

 

 

)a )b

 

Figure 1-2 Fundamental tensegrity structures  

 

Figure 1-3 Basic tensegrity prism 
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1.3 Static Analysis 

This analysis begins with developing mathematical algorithms to model stable 

equilibrium, stiffness properties, mass and the relationships between force and 

configuration of tensegrity systems. To begin, we have to define the geometry structure 

mathematically, which translated to tensegrity language, means describe nodes, 

members and the connectivity as a vectors and matrixes. Most cases the members are 

considered or assumed as straight, therefore the structure can be modeled using Graph 

theory as directed graph. 

1.3.1 Fundamentals of Graph Theory 

A graph is composed of vertices and edges. It can represent many real situations as an 

electric circuit or a road map, etc.  An example is showed in the following figure: 

 

 

 

 

 

 

 

 

 

Let Ve  be a set containing all the coordinates of the nodes and Ed  be a set containing 

the pairs of nodes whose compose an edge. According with this definition and the 

example depicted at the previous figure, we have: 

 1 2 3 4 5Ve v v v v v  

                1 2 2 3 3 4 4 5 1 5 1 4 2 5 2 4Ed v v v v v v v v v v v v v v v v

 

1v

2v

3v

4v

5v

1e
2e

3e

4e

5e

6e

7e

8e

 

Figure 1-4 Graph structure 
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Where 

 Ve  Set of vertex 

 Ed  Set of Edges 

Also a Graph can have a curved edges or unconnected nodes. It is also necessary add 

the concept of vertex degree which defined by the number of edges which are connected 

at the vertex. Additionally with this definition, we have the set G  as function of Ve  

and Ed , this set contains the degree of all the vertex of the graph. From the previous 

example: 

    Ve,Ed 3 4 2 4 3G    

Where 

 G  Set of degrees of each vertex 

Additionally we define  G  as the minimum degree and  G  as the maximum 

degree of the vertex respectively. Finally, walks are defined as the way of getting from 

one vertex to another; it is a sequence of edges. 

Another kind of graphs is the so-called directed graph which is used in tensegrity 

structures. These graphs have a sense of connection such that there is an initial vertex 

and a final vertex.  

 

 

 

 

 

 

 

The application of this theory on tensegrity structures is the matrix representation of the 

directed graph. We define the adjacency matrix and the incidence matrix to achieve it. 

1v

2v

3v

4v

1e 2e

3e
4e

5e

6e

 

Figure 1-5 Directed graph 
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The adjacency matrix can be defined as a matrix n n  where n  is the number of 

vertices of the graph  Ve,EdG  ; each thij   entry is the number of edges connecting 

the vertex i  and vertex j ; additionally, this matrix is symmetric TA A . From the 

example of the Figure 1-4, its adjacency matrix is defined as follow: 

 

0 1 0 1 1
1 0 1 1 1
0 1 0 1 0
1 1 1 0 1
1 1 0 1 0

 
 
 
 
 
 
  

A  

Where 

 A  Adjacency matrix 

For directed matrix, the thij   entry is the number of edges which come out of vertex i  

and go into vertex j . The adjacency matrix of the Figure 1-5 is as follow: 

 

0 1 0 1
0 0 0 1
1 1 0 1
0 0 0 0

 
 
 
 
 
 

A  

The other matrix which can represent a graph is the incidence matrix, it can be defined 

as a matrix n m  where n  is the number of vertices and m  is the number of edges. For 

a non – directed graph each thij   entry is determinated through the following rule: 

 
1  if  is an end vertex of 
0 otherwise

i j
ij

v e
a 

 


 (1.1) 

From the example of the Figure 1-4, its incidence matrix is defined as follow: 

 

1 0 0 0 1 1 0 0
1 1 0 0 0 0 1 1
0 1 1 0 0 0 0 0
0 0 1 1 0 1 0 1
0 0 0 1 1 0 1 0

 
 
 
 
 
 
  

In  
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Where 

 In  Incidence matrix 

For directed graph, the incidence matrix which in which is based the connectivity 

matrix of tensegrity structures is defined by the following rules: 

 
1  if  is the initial vertex of 
1  if  is an terminal vertex of 

0 otherwise

i j

ij i j

v e
a v e




 



 (1.2) 

The incidence matrix of the Figure 1-5 is as follow: 

 

1 0 0 1 1 0
1 1 0 0 0 1

0 0 1 1 0 1
0 1 1 0 1 0

 
 
 
 
 
 

   

In  

1.3.2 Geometry Description 

Once the incidence matrix for a directed graph is defined, we can deal with this concept, 

in order to build a set of matrix which can describe more precisely the position and 

orientation of the elements of the structure. 

To explain this idea, we take the following example – structure taken from [2]: 

 

 

 

 

 

 

 

 

1e

2e
3e4e

5e 6e

2

13

4
 

Figure 1-6 Example Structure. Source: [2] 
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Again, in this introduction, we only deal with linear elements, that means, we do not 

work with curved element. This treatment for curved tensegrity will be introduced in 

further chapters. 

The first element highlighted is the node; this element defines the spatial position and 

length of the members of the structure. Each node has a position on the space which is 

defined by its Cartesian coordinates. If we gather all the nodes and build a matrix with 

their coordinates, we can define the matrix of nodes: 

 
T

N N N Nn x y z  

 1 2 Nn n nN  

Where 

 Nn  Spatial coordinates of the n – th node 

 N  Matrix of nodes 

In the same way, we can define a matrix of elements, each of them are defined by a pair 

of nodes. 

  
T

M M M Mm x y z  

  1 2 Mm m mM  

Where 

 Mm  Vector of the m –th element 

 M  Matrix of elements 

The relationship between those matrixes is the connectivity matrix; such matrix defines 

which node connects with what node, in order to establish the complete structure.  

The incidence matrix, assuming a directed graph to replace the structure, is related with 

the connectivity matrix by the following mathematical expression: 

 T C In   (1.3) 

Where: 
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 C  Connectivity matrix 

This matrix, as the incidence matrix, is only made of ones, zeros and minus ones. 

Then, we can set the relationship between nodes and member: 

 TM NC   (1.4) 

From the example of the Figure 1-6, we have the following node matrix: 

 
1 0 -1 0
0 1 0 -1
 

  
 

N  

Then, we set the connectivity matrix, distinguish between bar elements and string 

elements, such matrix is the transpose of the incidence matrix: 

 

1

2

3

4

5

6

-1 0 1 0
0 -1 0 1
-1 1 0 0
0 -1 1 0
0 0 -1 1
1 0 0 -1

B

S

c
c
c
c
c
c

  
  
  
   

      
    

  
  
    

C
C

C
 

Where: 

 BC  Connectivity matrix of bars 

 SC  Connectivity matrix of strings 

Using the expression (1.4): 

 

-1 0 -1 0 0 1
1 0 -1 0 0 -1 1 -1 0 0
0 1 0 -1 1 0 0 1 -1 0

0 1 0 0 1 -1

 
 

        
 
 

M  

 
-2 0 -1 -1 1 1
0 -2 1 -1 -1 1

 
  
 

M  
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1.3.3 Equilibrium Matrix 

From this section, we begin to work with coordinate differences using the following 

notation: 

 k i ju x x   (1.5) 

 k i jv y y   (1.6) 

 k i jw z z   (1.7) 

The coordinate difference vector in each direction is given by the connectivity matrix as 

follow: 

 nu x C  (1.8) 

 nv y C  (1.9) 

 nw zC  (1.10) 

Where 

 nx  Coordinate vector of the nodes on the x  axis  

 ny  Coordinate vector of the nodes on the y  axis  

 nz  Coordinate vector of the nodes on the z  axis  

They can be expressed as matrix using a diagonal matrix for each of them: 

  diag uU  (1.11) 

  diag vV  (1.12) 

  diag wW  (1.13) 

Where 

 U  Coordinate difference matrix on the x  axis  

 V  Coordinate difference matrix on the y  axis  
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 W  Coordinate difference matrix on the z  axis  

In terms of matrix, we can get the length matrix using the following operation: 

 2 2 2 2  L U V W  (1.14) 

Where 

 L  Element length matrix 

We can express the element matrix as a composition of the difference vectors: 

 
u
v
w

 
 


 
  

M   (1.15) 

In order to determine de equilibrium within the structure, we have isolated the node 1 

from the Figure 1-6. 

 

 

 

 

 

 

 

On each member of the structure, there is an internal force due to the prestress. Since 

the nature of the elements; for example, the element 4 and 5 are strings; this element 

only can support tensile forces. Additionally, for optimization reasons, the element 1, 

which is a bar, only can carry compression forces. 

The internal forces within the elements are going to be assigned in a vector: 

  1 2 3 4 5 6s s s s s s s    

The forces of the element 1 and 2 have an opposite sign, because those elements are 

bars; it means that the forces along the bars are compressive. 

1e

4e

5e
1

 

Figure 1-7 Node Analysis 
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Where 

 s  Internal force vector 

From the Figure 1-7: 

 

-2 0 0 0 0 0
0 0 0 0 0 0
0 0 -1 0 0 0
0 0 0 -1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 
 
 
 

  
 
 
 
 

U  

0 0 0 0 0 0
0 -2 0 0 0 0
0 0 1 0 0 0
0 0 0 -1 0 0
0 0 0 0 -1 0
0 0 0 0 0 1

 
 
 
 

  
 
 
 
 

V  

A systematic decomposition over each axis can be made using the geometrical relation 

of the elements; for example, in the element 1 for the analysis on the node 1: 

  
2 1

1 1,1
1

x xs C
l


   (1.16) 

Where: 

 kl  Actual length of the member 

For all the elements connected to the node 1, it can be simplified using the following 

product: 

  
T 1
:,1 0Ts C UL   (1.17) 

For the example, the internal forces over the axis x  in the node 1 have the following 

equilibrium equation: 

 3 6
1 0 0 0

2 2
s ss 

  
 

 

 3 6
1 0

2 2
s ss     

And over axis y  

 3 6 0
2 2

s s
    
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This result can be proven making the free body diagram of the node 1: 

 

 

 

 

 

 

Overall the structure, the matrix product over each axis: 

 T 1
x

D C UL   (1.18) 

 T 1
y

D C VL   (1.19) 

Finally we can express de equilibrium matrix as composition of xD  and yD  

 x

y

 
  
 

D
D

D
 

Expressing as a matricial equation: 

 
T

T
0

s
s
 

 
 

D   (1.20) 

Where 

 D  Equilibrium matrix 

1.3.4 Force Density Matrix 

The force density of a member can be expressed as the liner density of force along the 

element: 

 k
k

k

sq
l

   (1.21) 

Also, we can define a force density vector, which gather the density in all the elements. 

3F

6F
1F

 

Figure 1-8 Free body diagram of a node 
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 1q s L   (1.22) 

As the previous vectors, the force density vector can be expressed as a diagonal matrix: 

 

1

M

2

3

4

5

6

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

q
q

q
q

q
q

 
 
 
 

  
 
 
 
  

q  

Where 

 q  Force density vector 

 Mq  Force density matrix version 

From the equilibrium equation (1.20), we can rewrite the equation using density forces; 

For example, along the x  axis: 

 T 1 T
xs s q D C UL C U    

 T
Mxs uD C q  

 T
Mx ns xD C q C   (1.23) 

The matricial product in the equation (1.23): 

 T
MQ C q C   (1.24) 

The result of this product is called density force matrix. For the example of the Figure 

1-7: 

 

1 3 6 3 1 6

3 2 3 4 4 2

1 4 1 4 5 5

6 2 5 2 5 6

q q q q q q
q q q q q q
q q q q q q
q q q q q q

     
 

    
 
     
 

     

Q  

Where: 

 Q  Density force matrix 
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Therefore, we can simplify the equilibrium equation as follow: 

 0nx Q   (1.25) 

 0ny Q   (1.26) 

Although these expressions can be used, also, for fixed structure as well free standing 

structures, there is a different treatment for each of them; in this particular case, we are 

dealing with free standing structures, which do not have fixed nodes. 

1.4 Stability 

In this section, the principles of potential energy and stability will be treated. These 

concepts are fundamental, in order to find a self – standing structure which can be stable 

under prestress conditions. 

A tensegrity structure is subjected to large deformation, due its flexibility. Finally, the 

energy functions are going to be applied in the further dynamic analysis. 

1.4.1 Relation between Potential and Force 

The entire structural member are subjected to internal force due the prestress, each of 

this member has an internal energy, which is able to be described by the coming 

relation: 

    
2

,0
1
2m m m m mV k l l F l    (1.27) 

Where: 

 ,0ml  Rest length of the member 

 mk  Stiffness of the member 

 mV  Potential energy function of the member 
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Energy is a function of the length of the member and, also, this function is called 

potential function. If we derivate this function on each direction of the coordinate 

system in which we defined our structure, we can find the force at each node.  

  k x y zf V f f f       (1.28) 

Where: 

 kf  Force Field vector  

Taking the partial derivate over the x  axis and applying the chain rule: 

  k k
x

k

dV l lf
dl dx

     

In all directions, we obtain: 

      
k

dV l dV l dV ldl dl dlf
dl dx dl dy dl dz

 
  

 
  

Factorizing and simplifying: 

  
 k

k k k k
k

V l
f x y z

l


   (1.29) 

The derivate of the potential energy of a member respect of its length is the force result 

of the prestress of the structure. 

  
   ,0k m m m

dV l
s V l k l l

dl
     (1.30) 

Replacing (1.21) and (1.30) in (1.29): 

 k k kf q m    (1.31) 

In order to know, the action of this force in the nodes, it necessary to make a 

mathematical arrangement: 

  T
nk k k kf q c m   (1.32) 

Where: 
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 nf  Vector of forces 

This operation is called Kronecker product and also is denoted by the symbol  . This 

operation gives a column matrix which is the vectored form of the following expression: 

  1k k kq m c  F  (1.33) 

Over all the nodes, considering that action of the force in the nodes where the element is 

connected, we obtain 

 MF Mq C   (1.34) 

Where: 

 kF  Force matrix of a member 

 F  Force matrix of the structure 

In equilibrium  

 M Mq C 0   (1.35) 

1.4.2 Potential Energy 

In a hypothetical case, we add an infinitesimal displacement as a result of the external 

load applied over the structure, we can define two kinds of energy which vary due this 

displacement. 

For any instant of time, the total amount of potential energy along all the structure is 

defined by: 

 S W       

Where: 

   Total potential energy 

 S  Strain Energy 

 W  External work done by the external loads 
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Mathematically, we can define the strain Energy in the structure as the sum of all the 

energy stored in all the member of the structures: 

  
1

m

S k k
k

V l


    (1.36) 

We can express the potential energy as a function of the nodes. So this can be intended 

as the coordinates of the nodes define the member, which have lengths, those define the 

potential energy inside each of them.  

The external work done by the external loads, it is useful to deal with the following 

mathematical arrangement: 

  vecn  N   (1.37) 

Where: 

 n  Vector of nodes 

The displacement of the nodes means the variations of the coordinates of them. Due the 

loads are assumed applied in the nodes, the work on each direction can be calculated 

using the following equation: 

    
Tvec vecW   P N  (1.38) 

Where: 

 P  Matrix of external load on each node 

1.4.3 Stiffness Matrix 

All the potential energy in the structure can be defined as a function of the nodes and if 

we add an infinitesimal displacement of the nodes, in consequence, the total energy will 

vary. This can be approximated by Taylor Series as follow: 

          
 

   
2

3vec
2

n n
n n n n n n n O n n


  


        F P K  (1.39) 

If the last expression is showed in term of the differential and truncate the expression in 

the third term: 
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      
 

 
2

vec
2
n

n n n


    F P K  (1.40) 

Where: 

 K  Stiffness Matrix 

The Stiffness matrix can be intended as the second derivative of the potential function 

as follow: 

     n V n  K  

Or 

     n nn V n  K  (1.41) 

In the same way 

    T
,k n k n kf n c V n   (1.42) 

Also  

  , vecn k kf  F   (1.43) 

If we only derivate the force field produced by the potential energy of each element: 

  k k
n k n k

k

V l
f m

l
 

    
 

 (1.44) 

Applying the chain rule: 

    k k k k
n k n k n k

k k

V l V l
f m m

l l
    

      
   

 

    
2

n k k k k n k
n k n k k

k

V l V l l
f q m

l
    

    
 

I  

     2
k

n k n k k k k k
k k

mmf q V l m V l
l l

 
     

 
I  
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  
T

2
k k

k n k n k k k
k

m mL f q k q
l

    I  (1.45) 

The expression (1.45) is a matrix, which is the singular stiffness of each element.The 

connection between nodes is made using the following mathematical arrangement: 

 T
k k k kc c L K   (1.46) 

This can be watched in the following figure: 

 

 

 

 

 

 

 

 

According with [2], we can deal the expression (1.46) as follow: 

      T
3 M 3n   K C I l C I  (1.47) 

Where: 

  M 1diag , , ml L LK  

Also the equation can be separated in two terms: 

      qn n n K K K  (1.48) 

Where: 

 T
Mq n K C q C I  (1.49) 

    T
3 3   K C I Φ C I  (1.50) 

node1
node1

node2
node3
node4

node 2
node3
node 4

node n

noden

 

Figure 1-9 Arrangement of the Stiffness matrix 
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    
TT

1 1
1 1 2 2

1

diag , , m m
m m

m

m mm mk q k q
l l

 
   

 
Φ

r rr r
K  (1.51) 

The component qK  is related to the prestress which the structure is subjected and the 

second component K  is referred from the material. 

For the example of the Figure 1-6, we have the following stiffness matrix: 

1
1

0
0
Bk

q
 

  
 

L  2
2

0
0 b

q
k

 
  
 

L  
 

 
3 3

3
3 3

1
2

s s

s s

k q k q
k q k q
   

  
   

L  

4 4
4

4 4

1
2

s s

s s

k q k q
k q k q
  

  
  

L  
 

 
5 5

5
5 5

1
2

s s

s s

k q k q
k q k q
   

  
   

L   

6 6
6

6 6

1
2

s s

s s

k q k q
k q k q
  

  
  

L  
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Equation Chapter (Next) Section 1 
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CHAPTER 2 ROLLING ROBOT – KINEMATIC BEHAVIOR DESCRIPTION 

 
 

2.1 Introduction  

The present section describes the kinematic behavior of the rolling robot. The first step 

is describing the geometry in terms of parameters which can be modified in order to set 

different geometry configurations. The equations of movement, velocity and 

acceleration will be obtained and also the trajectory of the robot will be predicted using 

a mathematical equations and known curves which fit with the geometrical 

transformations that the robot makes. 

2.2 Basic Geometry Rolling Robot Description  

The basic structure of the robot is based on large and width deformed bars, which shape 

spirals. These spirals are, in themselves, the body the structure, due they are the only 

component which are intended to support compression forces. In the following figure, 

we can observe the two general geometric characteristic of a spiral 

 

 

 

 

 

L
0r

 

Figure 2-1 Basic Geometric Characteristic 
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These two geometric characteristic are invariables for any case of deformations rotation 

and movements. They are called as follow: 

 L  Robot length  m  

 0r  Basic central radius  m  

We can defined the robot length as the length between the two extremes of the robot, 

this dimension is invariable because, as we can see later, both extremes are limited by 

thin prestressed wires which acting as a tensile element inside the tensegrity structure. 

Additionally, the basic central radius make reference to the imaginary radius in the 

middle of the robot, this dimension is present along the robot when this roll in a straight 

line, otherwise, in order to make curved movement over a plane, the structure must 

change its geometry, which implies, in this particular case, a variation on the radius 

along the length of the robot, making this a cone shape. 

The basic structure of the bar members is a spiral, which shape a cylinder along its 

length. If we fix system of reference in the middle of the robot and at its left side, we 

can describe the geometry of the basic spiral.   

 

 

 

 

0
1

1
1

1
0

cos

;

sin

x

s y

z

rs
Lr s

s
r




  





 
   
      
   
    

  

 (2.1) 

Where: 

 1 1 1, ,x y zs s s  Spiral shape equations. 

 1
sr  Position vector of the spirals in the system 1O  

 1 1 1 1O x y z  Basic system of coordinates for the robot 

   Angle in the plane 0 0x z  respect the axis 0x   rad  

The system 1 1 1 1O x y z  is the basic system from which the basic geometry of the robot is 

described, also it is necessary to create an additional coordinate system attached to the 
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origin of the system 1 1 1 1O x y z ; around which the basic system of the robot rotates. This 

will be the system 0 0 0 0O x y z  and it is coincident with 1O . The system 1O  is allow to 

rotate to rotate around the axis 0x  and 0y . 

 0 0 0 0O x y z  Referential coordinate system of the robot 

In order to depict these equations over the plane 1 1x z , also the angle  , the following 

figure shows the basic shape of the cross section of the robot: 

 

 

 

 

 

This is the basic spiral, which will be replicated in order to get a rigid structure joined 

by wires. 

Also in the plane 1 1y z , the frontal view is depicted: 

 

 

 

 

 

 

2.3 Shape Robot Parameters  

From the basic spiral the complete shape of the robot is generate. The complete 

geometry depends of some parameters, which determine the exact geometry. Each of 

the will be treated on the following sections: 



1z

1x
1O

 

Figure 2-2 Cross section of the robot and system of reference 

1z

1y
1O

 

Figure 2-3 Frontal view of the robot and system of reference 
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2.3.1 Number of Spiral 

The complete structure is a set of spirals which are rotated each other a fixed angle. This 

angle can be observed on the plane 0ox z . The number of spiral means the number of 

equal parts, in which, the circular cross section of the basic spiral is divided. 

Mathematically, we can define this as follow: 

 2

Sn


    (2.2) 

Where 

 Sn  Number of spirals of the robot 

   Angular gap between spirals  rad  

An example, when the number of spiral is four, can be observed in the following figure: 

 

 

 

 

 

 

 

In order to describe the geometry in term of equations, it is useful to apply Eulerian 

rotation matrix. Each of these spirals is exactly as the base spiral with the only 

difference that they are rotated around the 1y  axis an angle   already defined and also 

and initial angle 0  which is an starting value for the rotation around 0y . Referring the 

entire spirals to the system 1 1 1 1O x y z , the following equation is valid for all the cases of 

number of spiral minors that 360 spirals. 

1z

1x



sp
ira

l 1

spiral 2

sp
ira

l 3

spiral 4

4Sn 

 

Figure 2-4 Distribution of spirals according with the number of them 
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     

     

1 1
0 0 1

1
1

1
0 0 1

cos 1 0 sin 1

0 1 0
sin 1 0 cos 1

sm x m

sm y m

sm z m

m mx s
y s
z m m s

   

   

       
    

     
              

  1, Sm n  (2.3) 

Where: 

 1 1 1, ,sm sm smx y z  Coordinates equations of the m – spiral in the system 1O  

 0  Initial rotate angle around 1y  axis  rad  

The super index in the left indicates the reference system which the element is related.  

The following figure is the generated geometry for 3Sn   and 0 0  . The other 

parameters are 0 1 mr  , 145 / 50 mL   

 

 

 

 

 

 

 

 

2.3.2 Developing angle 

In the Figure 2-5, the spirals have developed a completed revolution, it means the angle 

  in their geometrical equations is in the range between   and  . The maximum 

value of this range is called as developing angle. Despite this value does not interferes 

directly in the kinematic equations, it determines the length of the bar curved element 

and also the distributions of the masses along the y  axis due the length is invariable and 

the beginning and end plane of the spiral muss be contained in this dimension. As 

consequence of this, the moment of inertia is affected due the distribution of masses 

3Sn 

 

Figure 2-5 Robot non – deformed geometry 
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changes. The following figure shows a generated geometries for 3Sn  , 0 0  , 

0 0,1 mr  , and 145 / 500 mL   with different developing angle and their principal 

mass inertial moment along the three axis respect their center of gravity: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example Material: Aluminium 3
Al 2700 kg/m 

max 

2

0,0609 0,0005 0
0,0005 0,0198 0,0002 kg m

0 0,0002 0,0609
G

 
 

   
 
  

I

max 0,5 

2

0,0291 0,0004 0,0001
0,0004 0,0149 0,0001 kg m
0,0001 0,0001 0,0288

G

 
 

  
 
  

I

max 0 

2

0,0113 0,0003 0
0,0003 0,0099 0,0001 kg m

0 0,0001 0,0113
G

 
 

  
 
  

I

ROBOT STRUCTURE VARIATIONS

 

Figure 2-6 Variations of the developing angle on the robot structure 
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Where: 

 GI  Tensor of mass moment of inertia respect center of gravity 

2kg m    

 max  Developing angle of the spiral  rad  

The equations of the mass moment of inertia will be treated in further chapter, but in 

this case, it is useful to notice that it vary according the developing angle of the spiral 

structure. 

2.4 Movement Equations 

Once the robot geometry is complete defined, the movement can be described, but, in 

fact, when we refer to the movement we have to make reference to a specific point of 

the robot and also point the system of reference from which the movement is described. 

Due the robot has a unknown trajectory, it could be impossible to set all the movement 

equations if we do not fix some parameters in order to know the path the robot is going 

to follow. For this reason, we start this section explaining the geometrical change on the 

robot structure and the effects it has in the movement of it; once it is clear and with the 

help of the auxiliary coordinate systems, the movement equation will be described. 

2.4.1 Geometrical Change of the Robot 

The robot would describe a straight path if it does not change it geometry due it is a 

cylinder and it only rolls around its axis of symmetry. The challenge of this new 

approach of structure is obtain a curved trajectory transforming the cylinder geometry 

into a conical geometry through variations in the internal stress of the element of the 

structure. 

In an interval of the path, the structure begins to transform from a cylindrical into a 

conical form; the conical form has a parameter called conicity, this geometrical 

parameter is a relationship between difference of the internal and external radius and the 

length of the robot. In the following figure the concept is explained:  
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Where: 

 yr 
 Radius located on 1y  in the robot  m  

 yr 
 Radius located on 1y  in the robot  m  

Also the conicity will be considered as follow: 

 2 y y
R

r r
C

L
 

   (2.4) 

Where: 

 RC  Conicity of the robot 

According with this definition, the positive values of conicity are which the small radius 

is in the right face pointing out of the center of curvature of the trajectory. 

Following with this idea, in a determined interval of time, the robot become from a null 

or from a known value of conicity to another desired value of conicity, it means the 

conicity has a rate of change. To use this geometrical parameter, it is better referring it 

as an angle: 

 arctan arctan
2

y yR
r rC

L


   
    

   
 (2.5) 

Where: 

yr 

yr 

L

 

Figure 2-7 Conicity 
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   Conicity angle  rad  

Due this conicity, the radius varies along the length of the robot; this variation will be 

treated as a lineal relation which can be watched in the following figure: 

 

 

 

 

If the value of the angle   is in the range from  0;2  the equation which gives the 

value of the radius on each point of the robot is the following: 

   0
0

1
4

R
R

LCr t r
r




 
  

 
 (2.6) 

With this relation, the equation (2.1) becomes: 
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
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 
   
      
   
    

  

 (2.7) 

  1
smr t  Position vector of each point over the spirals in the system 

1O   m  

Further in this section, we will refer again to this angle, but, in this point, it is useful to 

highlight that this conicity angle describes a curvature radius: 

 
 
0

sinK
rR


   (2.8) 

 KR  Radius of curvature of the cone  m  

In order to have a refer point in the robot, we refer the curvature radius from the center 

of the robot to the surface of the basic central circumference, which is a circle with 

center contained in the 0y  axis. This idea is depicted in the following figure: 

0x maxx
minx

L
 

Figure 2-8 Robot’s radius variation 
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Where: 

 K K K KO x y z  Coordinate system attached to the center of curvature 

The system K K K KO x y z  is rotational only around axis Kz ; also, the center of curvature is 

moving constantly, it is not fixed to a specific to point. For this reason, it is difficult to 

set equation which can predict the trajectory of the center of the robot, and we have to 

appeal to known mathematical relations which relate the curvature radius with another 

parameter. The control of the function and the prediction of the trajectory will be 

treaded in further in this chapter, after the equation of the movement and its parameter 

are described. 

2.4.2 Movement Parameter 

As it is expressed in the equations (2.3) and (2.1), all the spirals are rotated copies of a 

basic spiral, the range of the angle which describes this basic spiral defines the position 

of the system from we start to describe the movement. Due the movement is a rotation 

not only when the robot has a cylindrical shape, but also when it has a conical shape; we 

will control the change of geometry and the length of travel the robot will make, 

through the number of revolutions that the robot performs. This parameter is easy to 

control and measure, but it will give us a way to predict the trajectory due we can know, 

previously, the length of the curved path segment which is used to determine the 

clothoid parameter. 

To refer to this parameter we are going to use an accumulated variable with save the 

total value of the rotated angle. In the following figure there is an explanation of this 

idea 

 0r
KR

KO

Kz

Ky

Kx
0y

 

Figure 2-9 Description of the center of curvature of the center of the robot 
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Where: 

   Accumulated rotated angle    rad  

According with the figure, from 0 to 6  there is a decreasing angular speed, from 6  

to 7  there is a constant angular speed and from 7  to 10  the angular speed is 

increasing. It means, the description of the movement is piecewise and the limits 

between the segments is the value of the accumulated rotated angle  .Also, it works for 

the conicity; the segments with increasing, decreasing and keeping conicity value are 

limited also for the variable  . The way that the conicity varies is constant, it means, 

there is a lineal correspondence between the conicity and the accumulated rotated angle. 

This can be observed in the following figure 

 

 

 

 

 

 

 

Although, it does not work for the conicity angle  , due the relation between the 

conicity value and its conicity is a non – linear function; however, due the small values 

of the conicity, it can be approximated to a lineal behavior. 

6

0

 rad

 st
0

1t

7

10

2t 3t
 

Figure 2-10 Schematic graphic rotated angle vs. time 

6

0,8

RC

0
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Figure 2-11 Schematic graphic rotated angle vs. theta 
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The approximation of the conicity angle to a lineal function it is useful to avoid to have 

an angular acceleration for the conicity angle, which will difficult the equations 

movement unnecessarily. The proximity of the lineal approximation and the real 

behavior of the conicity angle, when the conicity value starts from 0 and end in 0.7, can 

be watched in the following figure: 

 

 

 

 

 

 

It is also important the evaluation of the residuals of the fit, in the following figure  

 

 

 

 

 

 

2.4.3 Rotations of the robot 

The robot, due the geometrical changes it suffer, has a rotations around the three axis 

related to the system 0 0 0 0O x y z , which is rotational system, only around axis 0z ,attached 

to the center of the robot. We will denominate the rotations angles as follow: 

  t  Roll angle, rotation around 0x   rad  

  t  Pitch angle, rotation around 1y   rad  

  t  Yaw angle, rotation around Kz  or parallel axis  rad  

 

Figure 2-12 Real curve vs. Lineal fit for the conicity angle 

 
Figure 2-13  Residuals of the fit for the conicity angle 
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The value of the pitch angle is equal to the value of the accumulated rotated angle 

described previously. In the following figure this angles will be described: 

 

 

 

 

 

 

 

The axis 0x  remains oriented to the travel direction of the robot, the axis 0y  transversal 

to the travel directions and as a symmetry axis, and the axis 0z  to the vertical direction 

of the plane; additionally, we have to establish an inertial system from which the 

displacement will be described; this system F F F FO X Y Z  is establish as origin of the 

plane over the robot rolls. 

 F F F FO X Y Z  Inertial system of reference fix in the origin 

The transformation matrix from 0O  to 1O  is the product of two transformation matrix 

due the three rotations the robot performs: 

 Rotation around axis 1y  

This rotation produces the rolling movement of the robot; it is defined by the following 

matrix, also it is intended that all the angles a function of the time, so the indication 

 t will be retired in order to simplify the expressions: 

  

   

   

01

cos 0 sin
0 1 0

sin 0 cos
y t

 

 

 
 
 




 

T  (2.9) 

  01
y tT  Transformation matrix from 0O  to 1O  for turn around 1y  

Vertical

Longitudinal

Transversal



0x

1y

0z

0O





0z
Kz

 

Figure 2-14 Rotation Angles 
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In this case, the rotation is around the axis of symmetry of the robot, which is always 

the 1y  axis. We keep the same system, but this rotation also varies the orientation of 1x  

and 1z . 

 Rotation around axis 0x  

This rotation is explained in the following figure: 

 

 

 

 

 

 

According with the figure, the conicity angle is equal to the roll angle for geometry 

numerically: 

     t t     (2.10) 

Finally, the rotation is calculated by the following matrix: 

      

   

01

1 0 0
0 cos sin
0 sin cos

x t  

 

 
 

  
 
 

T  (2.11) 

  01
x tT  Transformation matrix from 0O  to 1O  for turn around 0x  

The definition of the system 0O  is not located over the plane; also the result of this 

transformation requires a vertical displacement in order to locate the robot over the 

plane. The rolling plane is given by the FX  and FY . This displacement can be watched 

in the following figure: 

 

 

0y

0z0x

Non - Rotated Rotated




0y

0z
0x

 

Figure 2-15 Rotation around axis x0 
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The vertical displacement is given for the following relation: 

    0 coszd t r    (2.12) 

Where: 

 zd  Vertical displacement  m  

 Rotation around axis Kz  

The angle   is also responsible for the curved movement that the robot describes; this 

angle is the orientation of the axis 0x  and 0y  respect the system XYZ . Due the axis 0z , 

Kz  and FZ  remains always parallel, the value of   is also valid for the rotation of the 

system K K K KO x y z  around Kz . In the following figure, we can appreciate that the robot 

turn around the Kz  axis which is located in the center of curvature of the conical shape. 

 

 

 

 

 

 

KZ

KY

KX

Kz

KO
10,x  0r

10,y 

20,x 

20,y 
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0z
KR
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
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Figure 2-17 Rotation around zK  
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0 cosr  0r



 

Figure 2-16 Vertical displacement for planning position of the robot 
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The value of the angle   is just the angle that form the arc created by the two curvature 

radius separated a distance which is the basic radius of the robot multiplied by the 

change of the angle   which is the turning which moves the robot. 

Due it depends on the change of the angle   between intervals of time, the value of the 

angle   will be calculated as an accumulated variable 

    
 

01
K

rt t
R t


 


    (2.13) 

Where: 

   Variation of the angle    rad  

According with the Figure 2-17, the rotation center of the robot is the center of 

curvature; also, in each instant, the direction of the axis 0x  and 0y  are changing. 

Finally, the rotation is calculated by the following matrix: 

  

   

   0

cos sin 0
sin cos 0

0 0 1

F
Z t

 

 

 
 

  
 
 

T  (2.14) 

  0F
Z tT  Transformation matrix turning around Kz  

This matrix transforms the coordinates into a system, which is parallel to the system 

F F F FO X Y Z . 

2.4.4 Displacement of the robot 

The upper part of the equation (2.13) is the displacement of the robot over the plane. 

This displacement must be discomposed on the axis FX  and FY  in order to determine 

the movement of the variation of the coordinates of the robot over the plane. In the 

following figure it can be watched: 
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For the equations of this displacement, it is necessary to pay attention to the direction of 

the turning around the vertical axis, from the equation (2.14), to generate a rotation in 

the direction depicted in the Figure 2-18, which is a positive sense for turning around it 

axis, the sign of the angle   must be negative, due the transformation are in inverse 

way, it means, it comes from the rotated system to the non – rotated system fixed in the 

origin of the plane. 

Due the displacement is calculated for the arc developed of the robot described for its 

rotation at each interval of time, it means, it depends on the change of the angle  ,the 

value of the displacement along the axis on the plane will be calculated as an 

accumulated variable 

Then: 

      01 sin
2xd t d t r t

 
 

     
 

 (2.15) 

      01 cos
2yd t d t r t

 
 

     
 

 (2.16) 

Where: 

 xd  Displacement along FX  axis  m  



2




xd
yd

 

Figure 2-18 Displacement of the robot over the plane 
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 yd  Displacement along FY  axis  m  

These relationships are originated due the cosines for values higher than / 2  are 

negative and the sinus is positives. Also the angle  / 2   is the angle present 

between the arc displaced at that interval of time and a vertical line parallel to the axis 

FY  

2.4.5 Gathering of equations 

With all the turnings and displacement declared, the following equivalence can be 

established in order to determine the position of each node of each spiral of the robot 

during it movement. In order to describe the equations in a sequential way, they will be 

described as a transformation between systems: 

 Transformation from 1O  to 0O  

Developing the equation (2.7): 

  

   

   

 
1

1
1

1

cos

;

sin

R
x

sm y

z
R

r ts
Lr t s

s
r t




  





 
   
      
   
    

  

 (2.17) 

Also,(2.3), (2.9),(2.11) and introducing (2.17), we have 

          

0

0 0 01 01 1

0

1,
sm

sm sm x y sm S

sm

x
r t y t t r t m n

z

 
 

   
 
 

T T  (2.18) 

 0 0 0, ,sm sm smx y z  Coordinates equations of the m – spiral in the system 0O  

  0
smr t  Position vector of each point over the spirals in system 0O  

 m  

 Transformation from 0O  to FO  
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First, we have to displace the system 0O  to the same level of the system FO  and then 

rotate it and finally displace it another time. Taking the equations (2.12), (2.14), (2.15) 

and (2.16), we find the coordinates of each point of the robot referred to the system 

F F F FO X Y Z  

 
 

 

 

   

0

0 0

0

1,

F
sm x sm

F F
sm y Z sm S

F
sm z sm

X d t x
Y d t t y m n
Z d t z

    
    

      
    

    

T  (2.19) 

The equations (2.17), (2.18),(2.19) are a resume of the movements of the robot for all 

conditions of change of geometry and considering an entire number of spirals. The 

following section will apply the clothoid to determine the trajectory of the robot, which 

can be used for control purposes. 

2.5 Prediction of the trajectory of the robot in variable curvature radius 

The parameter used to the movement of the robot described in the section 2.4.2, can be 

used, also, to predict the trajectory for all cases of conicity. 

When the conicity constant is, the trajectory is a circle around the center of curvature; in 

other cases, the trajectory describes another figure over the plane due the large range of 

the curvature radius and variable position of the center of curvature. For this reason, the 

task to find a geometrical relation becomes impossible if we do not assume something 

or we have the capability to control something in the movement of the robot. 

The first important thing to notice that the conicity angle and the curvature radius have a 

limit value given by: 

 
 
0

0lim
sin

r



    (2.20) 

 
 
0

0
2

lim
sin

r r
 

  (2.21) 
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It means that when the robot describes a straight path, the curvature radius tends to 

infinity; also, as this grows the radius becomes smaller with a limit in 0r  as we can see 

in the following figure. 

 

 

 

 

 

 

 

 

At this point, it is necessary to introduce a relationship between the radius of curvature 

and another dimension of the curve, which could be the traveled distance on the 

trajectory. These both dimensions are related for the well – known curve Clothoid 

which is known in the world of railway path design as a transition curve. 

This curve is defined mathematically with the following equation: 

   2
KR s s A    (2.22) 

Where: 

 A  Coefficient of the Clothoid 

 s  Traveled distance over the curve  m  

The Clothoid set a lineal relationship between the radius of curvature and the traveled 

distance. An example of this curved is drawn in the following figure:  

 

 

 

 

Figure 2-19 Conicity angle vs. Curvature radius 
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The equation (2.22) can be parameterized through mathematical deductions which can 

be found in [4], the final results of these operations are the equations for the coordinates 

x  and y  as a function of the traveled distance over the curve: 

  









s

s
ds

A
ssxsx

0

 
2

cos)()( 2

2

0  (2.23) 

  









s

s
ds

A
ssysy

0

 
2

sin)()( 2

2

0  (2.24) 

If we substitute 00 s  and ]0;0[])(;)([ 00 sysx  in (2.23) and (2.24): 

    
0 0

2 2

2 2cos sin
2 2

s s

s s

s sr x s y s ds ds
A A

    
        

    
   (2.25) 

Finally, solving the integrals of the relation (2.25), we obtain:  

   Fre( s) nelC ;Fresnel); ) S( (r s x s s s sy A
A A


 

   
   

 
   

    
 (2.26) 

Fresnel cosine and Fresnel sinus are complex mathematical function which can be 

solved only through numerical integration. Sometimes both functions of Fresnel are 

approximated through Taylor’s series, but which implies an approximation mistakes 

 

Figure 2-20 Clothoid with A = 700 
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which we must take in account for predict trajectories. For the scopes of this work, these 

functions will be treated numerically. 

For the application of this curve, it must be necessary to know the initial and final 

values of conicity, therefore, conicity angle; sometimes these values can start on a 

positive value and end in a negative value or start on zero. The principal task is 

determining the value of the parameter A  of the clothoid. We start calculating the 

derivate of the equation (2.25): 

  :
d r s

ds
    

2 2

2 2
ˆ cos ; sin

2 2C
s sT s t s
A A

    
      

    
 (2.27) 

Where: 

 Ĉt  Unitary tangent vector of the clothoid 

  T s  Tangent vector of the clothoid 

For definition of derivative, the equation (2.27) gives the tangent vector at each point of 

the clothoid; following, we obtain the normal vector calculating the derivate another 

time: 

  :
d T s

ds
  

2 2

2 2 2sin ; cos
2 2

s s sN s
A A A

    
     

    
 (2.28) 

And its unitary vector 

  
 

 

2 2

2 2
ˆ sin ; cos

2 2
N s s sn s

A AN s

    
      

    
 (2.29) 

Where: 

  n̂ s  Unitary normal vector of the clothoid 

  N s  Normal vector of the clothoid 

Additionally, we have to control the way the conicity angle varies with an angular speed 

which will be considered constant In order to relate the conicity value at the starting or 

final point with the traveled distance over the curve, we can use the following rule: 
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  

 

 

negative  if sin
sign positive  if si

0
0n

0 otherwise
s












 



 (2.30) 

It means that if the conicity is negative, the value of the traveled distance over the curve 

has a negative sign, otherwise it is positive or zero if there is not conicity. This 

definition is useful to avoid mistakes at the moment to define the sense of the curve, due 

as we can see in the Figure 2-20, the clothoid is defined in both directions of the 

horizontal axis, even it can be reflected along the vertical axis only varying the sign 

inside the Fresnel functions. The reflected clothoid is described by the following 

equations: 

   FresnelC( ; FresnelS); ( ) sx
A

y s ss A
A


 

   
   

 

 
  

  
 (2.31) 

Graphically: 

 

 

 

 

 

 

 

 

 

The application of this curve to the predictions of trajectories in conditions of variable 

conicity will be made with an example. For an trajectory composed by two intervals in 

terms of  from 0 to 1,5 and 1,5  to 9 , the conicity varies from 0 to 0.5 and from 

0,5 to 0,7  respectively. With the results that the equations (2.17), (2.18) and (2.19), 

the trajectory obtained for the given condition is depicted in the following figure: 

 

Figure 2-21 Inverted Clothoid  
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In order to apply a non – inverted clothoid, we will determine the parameters of the 

second segment of the trajectory. The first step is knowing the length of the curve that 

the middle of the robot will travel, as it is calculated in the previous calculus for the 

displacement of the system 0O , we will use the basic radius to get this measure: 

   09 1,5s r    

So, we can express it in a general way as follow: 

  0 0fs r      (2.32) 

Where: 

 s  Variation of the values of length of traveled curve inside 

the fitting clothoid  m  

 0  Starting value of   in the clothoid  rad  

 f  Final value of   in the clothoid  rad  

With 0 1 mr  , we get: 

 23,5619 ms   

 

Figure 2-22 Example trajectory 
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The relation (2.32) expresses the absolute value of the difference between traveling 

distance over the clothoid. The exactly value is given by: 

 0fs s s    

Where: 

 0s  Starting value of traveling distance over the clothoid in the 

clothoid  m  

 fs  Final value of traveling distance over the clothoid in the 

clothoid  m  

According with the rule given in the equation (2.30), the traveled distance over the 

clothoid can be positive or negative depending on the sign of the conicity. 

The following step is find the clothoid parameter and the starting value of traveled curve 

inside the clothoid; then, we have to calculate the initial and final conicity angle and the 

curvature radius using the equations (2.5) and (2.8) 

 0 0,244979 rad   

 0,358771 radf    

Where: 

 0  Starting value of conicity angle in the clothoid  rad  

 f  Final value of conicity angle in the clothoid  rad  

Then, we get the curvature radius: 

 0 4,12311 mKR   

 2,848 mKfR    

Where: 

 0KR  Starting value of curvature radius in the clothoid  m  
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 KfR  Final value of curvature radius in the clothoid  m  

Using the basic definition of the clothoid, equation (2.22), we find the parameter of the 

clothoid: 

 2
04,12311 s A    (2.33) 

 22,848 fs A     (2.34) 

As a logical result, in the equation (2.34) the value of fs  must be negative, it proofs the 

rule expressed in (2.30). Dividing (2.33) by (2.34), we find a relation between the end 

value and the starting value of the traveling distance over the clothoid: 

 0 0,69074
f

s
s

   

Then, we have: 

 0,690 23,5619f fs s   

Following the rule of the equation (2.30), fs  is negative: 

 13,93585 mfs    

 0 9,62605 ms   

Finally, we find the coefficient of the clothoid: 

 6,2999A   

The trajectory obtained through this procedure for this segment is depicted in the 

following figure: 

 

 

 

 

 

 

Figure 2-23 Resulting clothoid for movement prediction 
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This result must be connected with a circular segment or straight segment or another 

clothoid, this operation involves displacements and turnings which must be calculated 

using the information from the previous segment to which the obtained clothoid will be 

attached. Following with this idea, we have to determine the parameter for the first 

segment of the trajectory, but this segment has a significant different with the segment 

calculated previously, in which, the conicity decrease from 0,5  to 0,7 , but in the first 

segment it varies in opposite way,  the conicity comes from 0 to 0,5, there is a change in 

the direction of the way that the sign of the radius of curvature changes, in consequence, 

it makes that the clothoid change its directions. Taking the previous example, if we 

calculate the clothoid for an interval of   between 0 to 1,5 , the conicity varies from 0 

to 0,5. 

Applying the calculus procedure explained before: 

 1,5  ms    

 0 0 rad   

 0,24498 radf   

 0KR    

 4,12311 mKfR   

 0 0 ms   

 1,5  mfs   

 4,407913126A   

The obtained clothoid with these parameters is showed in the following figure: 

 

 

 

  

Figure 2-24 Resulting clothoid for the first segment example 
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This result, which is an inverted clothoid, fits with the result obtained using the 

equations (2.17), (2.18) and (2.19) depicted in the following figure: 

 

 

 

 

 

 

 

Comparing the Figure 2-25 and Figure 2-21, it fits with the inverted clothoid.  

For convenience we will calculate the normal unitary vector for the starting and last 

interval and of the first segment: 

So, it is useful to show, that the unitary vector equation for the inverted clothoid is the 

following: 

  
2 2

2 2
ˆ sin ; cos

2 2I
s sn s
A A

    
      

    
 (2.35) 

 ˆIn  Unitary normal vector for inverted clothoid 

Using the equation (2.35), we obtain: 

  
   

2 2

0 2 2
0 0ˆ sin ; cos

2 4,40791 2 4,40791
n s

    
      

        

 

    0ˆ 0,00997; 0,999n s     

  
 

 

 

 

2 2

2 2

1,5 1,5
ˆ sin ; cos

2 4,40791 2 4,40791
fn s

     
      

        

 

    ˆ 0,540861; 0,841112fn s     

 

Figure 2-25 Movement for conicity variation from 0 to 0,5 
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Where: 

 0n̂  Unitary normal vector at the starting point 

 ˆ fn  Unitary normal vector at the final point 

Also the direction of the normal vector of the clothoid is almost coincident with the 

value of the cosines and sinus of the angle   at the final point of this segment 

    ˆ sin cosn        (2.36) 

Where: 

 n̂  Unitary normal vector obtained by   angle  

With: 0,58075   

  ˆ 0,54865 0,83605n     

The percentage of error is: 

  1,42% 0,605%  

These percentages allow us to say the clothoid fits the results obtained with the 

equations developed previously for the movement of the robot.  

Finally to connect the two segments, so we have to transform the equations of the 

second segment in order to be added. For this purpose, we calculate the unitary 

tangential vector of the last point of the first segment and the first point of the second 

segment. Also for the inverted clothoid the unitary tangential vector is expressed as 

follow 

  
2 2

2 2
ˆ cos ; sin

2 2CI
s st s
A A

    
     

    
 (2.37) 

  ĈIt s  Tangential unitary vector for inverted clothoid 

Then we have: 

  1 0,84111 0,5ˆ 4086ft   
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  02 0,39263 0,ˆ 91970t   

Where: 

 1ft  Tangential unitary vector of the last point of the first 

segment 

 02t  Tangential unitary vector of the first point of the second 

segment 

And the tangency angles: 

 1
0,54086arctan 0,57146 rad
0,84111


 

   
 

 

 2
0,91970arctan 1,16731 rad
0,39263


 

  
 

 

Where: 

 1ft  Tangential unitary vector of the last point of the first 

segment 

 02t  Tangential unitary vector of the first point of the second 

segment 

To ensure the continuity of the curves, both tangency angles must be equal, in 

consequence, the equations of the second segment will be rotated and then translated, in 

order to be connected to the first segment. 

 2 1       (2.38) 

Where 

   Rotation angle for the clothoid 

Finally, the displacement is calculated, for this, the coordinate of the last point of the 

first segment must be equal to the first point of the rotated second segment: 
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   

   

1 02

1 2
1 2

1 02

1 2

FresnelC FresnelC
cos sin

  
sin cos

FresnelS FresnelS

f

f

s s
A A

A A
s s

A A

x
y

  
 

 

 

      
         

        
                        



 


     

 
 

 (2.39) 

Finally we obtain the following trajectory: 

 

 

 

 

 

 

 

 

Making a comparison between the Figure 2-22 and Figure 2-26, it is highlighted that 

there is mistakes in the clothoidal fitting. First, at the connection point between 

clothoids there is a mismatch in the tangential vector at these points; it can be solved 

finding a better determination process of the coefficient of the connecting clothoids. In 

the middle of the second segment, there is an underslope in both sides of the clothoid 

originated by the approximation process. Again, improving determination process of the 

coefficient of the connecting clothoids, but also, the mistakes could be reduced making 

the traveling distance over the curve shorter, it means reduce the value of s . Finally 

all the previous mistakes described are traduced in coordinate errors.  

As a resume, we show the equations obtained for the trajectory using the clothoidal 

fitting in terms of  : 

 

 

 

Connection error
Underslope in both side of 

the curve

Coordinates error

 

Figure 2-26 Clothoidal fitting and mistakes 
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For  0;1,5   

 1
1

1

1

1

FresnelC

   [0,1,5 ]

FresnelS

C

C

s
A

A s
s

A

x
y


 



  
   
  

 
     

 
 



 


  

 

For  1,5 ; 9    

   

   2

2

2 2
2

FresnelC
cos sin

  [ 13,93585; 9,62605]
sin cos

FresnelS

C

C

x x
s

y
A

y
A

s
s

A

 


 



  
   

     
               

   
   








 

 

But the real advantage of this approach is the capability to have an equation or a 

piecewise equation which gives the position of the center of the robot, and in 

consequence of all the nodes within, as a function of the accumulated rotated angle  , 

which can be translated in terms of time. Despite the approximation mistakes, which 

can be solved in further works, this approach offers a way to program the total trajectory 

of the robot; additionally, another principal difference between the results of this 

approach and the equations (2.17), (2.18) and (2.19) the lasts only give points, but not 

equations. 

2.6 Velocity Equations 

From the equations (2.17), (2.18) and (2.19), the velocity equations can be obtained 

through derivation process, but it means, taking in account all the behaviors we 

establish for the rotation angles. 

We will divided the derivation process in two parts, from 1O  to 0O  and from 0O  to FO  

2.6.1 Derivation from O1 to O0 

We start with the equation (2.18), so we can express the derivate as follow: 
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        
 

0 01 01 10

1,x y smsm
S

d t t r td r t
m n

dt dt

  
 

T T
 (2.40) 

Also we can simplify the equation (2.18) and (2.40) making a unique transformation 

matrix: 

    01 01 01
x yt tT T T  (2.41) 

 
   

         

         

01

cos 0 sin
sin sin cos cos sin
cos sin sin cos cos

 

    

    

 
 

 

 


 
 

T  (2.42) 

Where: 

 01T  Transformation matrix from 0O  to 1O  

Also using the equation of Poisson: 

      0 01 01 T
10 t t tω T T  (2.43) 

Also: 

      1 01 T 01
10 t t tω T T  (2.44) 

Where: 

  0
10 tω  Angular speed skew symmetric matrix of 1O  respect 0O  in 

system 0O   rad/s  

  1
10 tω  Angular speed skew symmetric matrix of 1O  respect 0O  in 

system 1O   rad/s  

  01 tT  First derivate of the transformation matrix from 0O  to 1O  

Making the mathematical operation, we obtain: 

 

   

                 

                 

01

sin cos
cos sin cos sin sin sin sin cos cos
cos cos sin sin cos cos sin

0

cos sin
t

   

             

             



  

   

 
 

  
 
 

T  (2.45) 

Replacing in (2.44): 
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  

   

 

 

0
10

0 sin cos
sin 0
cos 0

t
   

  

  

 
 

  










ω  (2.46) 

  

 

0
10 cos

sin



 

 



 
 

  
 
 

 (2.47) 

Finally 

      
0

0 0 0 1
10 1,sm sm sm Sv t t r r m n   

 
ω  (2.48) 

Where: 

  0
smv t  Velocity vector of each point of the spiral in system 0O  

 m/s  

 
0

1
smr 

 
 Velocity of the points over the spirals in system 1O  

transformed into system 0O   m/s  

 0
10   Angular velocity vector of 1O  respect 0O  in system 0O  

 rad/s  

Also, derivate the equation (2.7) and multiplying by the transforming matrix form 1O  to 

0O , we obtain: 

 

 

   
 

   
 

     
 

     
 

     
 

     
 

0
1

cos cos sin sin

4 4

cos sin sin cos sin sin

4 4

cos cos sin cos cos sin

4 4

R

sm

R

R R

R R

dC dC
L L

d d

dC dC
L L

d d

dC dC
L L

d d

r t

 
       

 
 

 
         

 
 

 
         

 
 

 
 
 
 
 
 

   
   

 
 
 
 


 






 



 (2.49) 
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2.6.2 Derivation from O0 to OF 

From the equation (2.19) we make the following transformation 

 
 

 

 

   

0

0 0

0

1,

F
sm x sm

F F
sm y Z sm S

F
sm z sm

x d t x
y d t t y m n
z d t z

    
    

      
    

    

T  (2.19) 

Equivalent to 

          0 0
0 1,F F

sm F Z sm SR t r t t r t m n  T  (2.19) 

Or 

        0 1,F F
sm F sm SR t r t r t m n    

Where: 

  F
smR t  Position vector of each point of the spiral in system FO  

 m  

 0Fr  Position vector of the system 0O  respect the system FO  

 m  

  F
smr t  Position vector of each point of the spiral in system 

0O transformed into system FO   m  

The relative velocity vector between systems is can be direct derivate because it is 

expressed in the system FO ; but we need to make a new expression for  : 

    1t t        (2.50) 

The equation is also expressed two times but in different terms in order to notice the 

new notation, also to simplify the derivation process and the subsequence equation we 

will obtain, we will work without the matrix sT  which gives the rotation product of the 

number of spirals and their distribution; but, first, we need to find expression to 

determine   and   from the geometric changes 
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 Derivation of   

Also in the apart 2.4.4, the angle   equal to   numerically, also in the Figure 2-10, this 

angle is a function of  , so we can make the following derivate operation: 

 
     

 
 

R RdC t dC t
t

dt d t
 




  (2.51) 

Also 

  
     

 
 

d t d t
t t

dt d t
   

 


   (2.52) 

Where: 

  t  Derivate in the time of the angle    rad/s  

Also we assume that the conicity has a lineal variation as function of theta, it means: 

 
  

 

2

2 0Rd C t

d t




   (2.53) 

Consequently: 

 
  

 

2

2 0
d t

d t

 


   (2.54) 

And also its final and initial value is evaluated using the input data for the segment of 

the trajectory which is analyzed: 

 
   , ,0

0

R R f R

f

d C t C C
d


  





 (2.55) 

Where 

 ,fRC  Final value of conicity in the segment 

 ,0RC  Initial value of conicity in the segment 
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In the same way, as we considered the lineal behavior for the conicity angle, we will 

only calculated the value at the extremes of the interval an the division by the angle will 

be the value of the  

 
  

, ,0

0

arctan arctan
2 2
R f R

f

C C
d t

d
 

  

   
   

  


 (2.56) 

Replacing (2.56) in (2.52): 

  
  

 

, ,0

0

arctan arctan
2 2
R f R

f

C C
d t

t t
dt

 
 

 

    
    

    
 
 
 

 (2.57) 

 Derivation of   

From the equation (2.13) and, also, replacing indeed the equation (2.50) we obtain the 

following expression: 

    
   

 
0 1

1
K

r t t
t t

R t
 

 
 

    (2.58) 

Derivate the equation (2.58): 

  
 

 

   

 
0 0

2
k k

Kt t t
t t

r r R
t

R R
 

    (2.59) 

Where 

  t  Derivate in the time of the angle    rad/s  

From the definition of the KR  in the equation (2.8) : 

  
         

  

   

0

0

2cos

1 co

s n

2s

i
K

r d td t tt dtt
dt t

r
R

 
   

 
 

 
 (2.60) 

Replacing the equation (2.57) in (2.60) 
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  
     

   

, ,0
2

0

0
arctan2 arctcos

cos 1

an
2 2

2

R f R

K
f

C C
t t

R t
r

t

  

  

    
    

   
 
 







 (2.61) 

Introducing (2.61) in (2.59), and using the : 

  
 

   
     

2
00

2

2 cos

cos 2 1k k

t

t

rrt
tR R t

  

 


  


 (2.62) 

Using also the relation (2.10) in (2.62): 

    
 

    

    
 

0
0 2

2 cos

cos 1
1

2k k

t tr
t t

tR t
r

R
t

t







 

 
  
  

 (2.63) 

The expressions (2.57) and (2.63) will not be replaced in the further matricial equation 

due that will complicate the expressions unnecessarily; however, these equations must 

be considered when the algorithm for the calculus is developed as a related variables. 

 Calculus of the velocity equations 

Calculating the derivate, both sides of (2.19) 

    
    0 0

0

F
Z smF

sm F

d t r t
R t r t

dt
 

T
 (2.64) 

    
    0 0

0

F
Z smF

sm F

d t r t
v t v t

dt
 

T
 

Where: 

  F
smv t  Velocity vector of each point of the spiral in system FO  

 m/s  

  0Fv t  Velocity vector of the system 0O  respect the system FO  

 m/s  

Replacing (2.50) in (2.15) and (2.16); and calculating the derivate of the relative 

position, we obtain: 
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    

   

   

 

0 0

0 0

0

0F 1F

cos sin
sin cos

sin

r r
rv rv t

r
t

   

   

 

 
 

 
  

   (2.65) 

Due the system 0O  and 1O  are coincident, and in order to simplify the further derivation 

process we will change the equation (2.19): 

          F1 1
1 1,F

sm F sm Sr t r t t r t m n  T  (2.66) 

Where 

  1Fv t  Velocity vector of the system 1O  respect the system FO  

 m/s  

Also the transformation matrix between this two system: 

      F1 0 01F
Zt t tT T T  (2.67) 

  F1 tT  Transformation matrix from FO  to 1O  

We can apply the equation of Poisson to obtain the angular velocity of the system 1O  

respect FO  in the system FO  

      F F1 F1 T
1F t t tω T T  (2.68) 

Where: 

  F
1F tω  Angular speed skew symmetric matrix of 1O  respect FO  

in system FO   rad/s  

  F1 tT  Derivate in the time of the transformation matrix from FO  

to 1O  

  F0
Z tT  Derivate in the time of the transformation matrix from FO  

to 0O  

Also  
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          F1 F0 01 F0 01
Z Zt t t t t T T T T T  (2.69) 

And we can apply this property of the tensors: 

           
TF1 T F0 01 F0 T 01 T

Z Zt t t t t T T T T T  (2.70) 

Replacing (2.70) and (2.69) in (2.68) 

                 F F0 01 01 T F0 T F0 01 01 T F0 T
1F Z Z Z Zt t t t t t t t t ω T T T T T T T T  (2.71) 

          F F F0 0 F0 T
1F 0F 10Z Zt t t t t ω ω T ω T  (2.72) 

There is the following tensor property: 

        F F0 0 F0 T
10 10Z Zt t t tω T ω T  (2.73) 

Replacing (2.73) in (2.72): 

      F F F
1F 0F 10t t t ω ω ω  (2.74) 

Where: 

  F
0F tω  Angular speed skew symmetric matrix of 0O  respect FO  

in system FO   rad/s  

To evaluate  F
10 tω , we use the equations (2.14) and (2.46): 

 

       

       

           

F
10

sin cos cos sin
sin cos sin cos

cos cos sin cos sin c
0

0os

0
t

      

      

         

 

 

 

 
 

  
 
 

ω  (2.75) 

Derivate the equation (2.14) and calculating  F
0F tω  

  

 

 F
0F

0 0
0 0

0 0 0

t
tt





 
 
 
 
 

ω  (2.76) 

Adding (2.75) and (2.76), we obtain: 
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 

       

       

           

F
1F
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sin cos sin cos

cos cos sin cos si
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n cos
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0
t

       

       

         

 
 

  


  

  

   
 

ω  (2.77) 

This is the angular velocity of the system 1 respect the system attached at the origin of 

the plane, over the robot rolls.  

Finally, the velocity of each point of the spiral is defined by the equations (2.65) and 

(2.48) in the following equation: 

          F F F0 T 0
0 0F

F
R F sm Z smv v t t r t t v t ω T  (2.78) 

This last equation expresses the velocity for each point over the spirals at each instant of 

time. Due the length of this equation it only will be expressed symbolically; however, 

replacing all the members of its, it can be implemented in a computational calculus 

software. 

2.7 Acceleration Equations 

The process used to obtain the velocity equation is repeated in the obtaining of the 

acceleration equation, we will derive the equation from 0O  to 1O  and from FO  to 0O ; 

but, it is necessary to derivate   and  : 

 Derivation of   

From the equation (2.52) we obtain a second derivate of  : 

           

 

22 2

22

d t d t d t d t
dt dt dt d t

       




 
   

 
 

 (2.79) 

Replacing (2.54) and (2.57) 

 

, ,0

0

arctan arctan
2 2
R f R

f

C C

 
 

    
    

   
 
 
 

 (2.80) 
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 Derivation of   

From the equation (2.59): 

 
 

 

 

   

 

 

2
0 0 00

2 3 2

2 2K K

KK K K

kr R r R r Rrt t t
t

tR t RR Rt t
 

      (2.81) 

To obtain KR , we derive the equation (2.60) and simplifying: 

 
 

 

 

 

   
0

2 2

2
2 1 1

tan tansin sin
K
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drR t d

d

 
   

   

 
     

         


    
 

 (2.82) 

2.7.1 Derivation from O1 to O0  

The expression (2.48) can be directed derivate to obtain the expression of the 

acceleration between these two systems: 

               
0 000 0 0 0 0 0 1 1

10 10 10 102 1,sm sm sm sm sm Sa t t r t t t r t t r r m n       
   

α ω ω ω  (2.83) 

Where: 

  0
sma t  Acceleration vector of each point of the spiral in system 

0O  2m/s    

  0
10 tα  Angular acceleration skew symmetric matrix of 1O  respect 

0O  in system 0O  2rad/s    

 
0

1
smr 

 
 Acceleration of the points over the spirals in system 1O  

transformed into system 0O  2m/s    

The angular acceleration of 1O  from 0O  in system 0O  is directly derivate from (2.46): 
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 

α  (2.84) 

Additionally, the expression for 
0

1
smr 

 
 is showed reduced: 
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

 

 (2.85) 

The equation (2.83) is showed symbolically due to its length 

2.7.2 Derivation from O0 to OF  

The equation (2.78) will be directed derivate to obtain the acceleration: 

                   
FF F F F F0 T 0 F 0

0 0F 0F 0F 0F2F F
sm F sm sm Z sm sma a t t r t t t r t t a t t v t      α ω ω T ω  (2.86) 

Where: 

  F
sma t  Acceleration vector of each point of the spiral in system 

FO  2m/s    

  F
0F tα  Angular acceleration skew symmetric matrix of 0O  

respect FO  in system FO  2rad/s    

  0Fa t  Acceleration vector of the system 0O  respect the system 

FO  2m/s    

The acceleration of the system 0O  respect FO  is directed derivate from the equation 

(2.76): 
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α  (2.87) 

Finally the acceleration the system 0O  respect the system FO : 
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 (2.88) 

To close this chapter, all the expression showed here are necessary to analyze and 

control the movement of the robot. The following chapter will offer a briefly summaries 

for some algorithm and ideas to the performing of these movements and geometrical 

changes. 

Equation Chapter (Next) Section 1 
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CHAPTER 3 ROBOT ROLLING MOVEMENT CONTROL STRATEGIES  
 
 

3.1 Introduction  

Within the robot, there are only two kinematic independent variables, the conicity angle 

or roll angle  , which is performed by the geometrical change of the robot and, in 

consequence, the movement angle   is developed. 

The pitch angle   is performed by the rolling movement of the robot, about the 

generation of this angle and its control will treat this chapter. The physical principle, 

which this movement is generated, is the unbalanced torque around the 0y  axis of the 

robot; also technological alternatives will be proposed in this chapter. 

3.2 Movement Impulse – Traveling Masses over a Spiral  

We will suppose there is only a spiral over which a punctual mass is traveling, also the 

movements of this mass are able to be controlled. If we reply this mass and its spiral 

many times, we will have built a system in which, the condition the torque exerted 

around 0y  of the robot depends of the positions of all the mases and the value of the 

angle  . This idea is depicted in the following figure: 
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Where: 

 m  Position angle of the impulsive m – mass   rad  

The value of m  comes from   to  , this angle is measured for each spiral when this 

is not rotated; even, we can define the position of each mass in the system 1O  using the 

equations (2.1) and (2.3), only changing the angle   for the angle m . 

We will suppose that the number of impulsive masses is equal as the number of external 

spirals; additionally, due to the complex deformation the robot supports, all the 

impulsive masses are not traveling over the external spiral, also a rigid internal core is 

proposed, around which these masses will travel. The principal reason to develop this 

core is the caring of the mechanism which moves and controls the position of the 

masses; large deformations as the external spirals suffer, might damage or produce 

malfunctions in the mechanism of the robot. 

Therefore, we will suppose there is an internal basis radius for these spirals and, in 

consequence, it defines the position of the impulsive masses. We rewrite the equations 

as follow: 
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 

 
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 
 
    
 
 
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 (3.1) 
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Figure 3-1 Masses over the spirals and their positions angles 
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Where: 

 Imr  Position vector of the impulsive m – mass over its spiral  m  

 0ir  Internal basis radius for the traveling spirals of the impulsive 

masses  m  

As the case of the external spirals, these internal spirals also are distributed around a 

circle of radius 0ir  and also could have an initial rotation similar as it is expressed in the 

equation (2.3). For simplifying reason we will assume these angles equal as the used for 

the external spirals: 

     

     

1
0 0Im

1 1
Im

1
Im 0 0

cos 1 0 sin 1

0 1 0
sin 1 0 cos 1

Im Im

m mx
r y r

z m m

   

   

      
  

    
          

 (3.2) 

Where: 

 1 1 1
Im Im Im, ,x y z  Coordinates of the impulsive m – mass in system 1O   m  

 1
Imr  Position vector of the impulsive m – mass in system 1O  

 m  

If we observe the masses in the plane 1 1x z , as it is depicted in the following figure, we 

will determine easily the exerted moment around the 1y  axis, which is determined by 

the weight force multiplied by the position over the 1x  axis. This system has been 

chosen because this system is turned by the angles  t  and  t ; therefore, the 

kinematic equations must be calculated around this axis.  

For the special case when 0   and it remains always in that way, the torque around 1y  

is directly calculated by the multiplication of the weight force and its distance to the 

rotation axis; otherwise, when this system is oriented in different way, when 0  , the 

calculation form is different and it will treated in further works. The position system 

showed in the following figure is valid for both cases: 
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The previous figure shows the position angle in the impulsive masses, also due to the 

rotation around 1y , the final expression which give us the position vector is the 

resulting product of the equation (3.2) and (2.9): 
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   
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 
 

 
 
 

     

 (3.3) 

This physic principle is a proposal for the generation of the rolling movement of the 

robot. The key of the control technics is the variation of the angle m  which is an 

independent variable for each mass, and the way to find the best position to produce the 

desired effect is the focus further in this chapter. 

Without considering the kinematic effects of the accelerations to which the system 1O  is 

subjected, we cannot build a differential equation to calculate the value of   at each 

instant of time; although, we can calculate the torque around 1y  transforming the weight 

vector force of each mass to the system 1O , considering only that the only 

transformation which affect the system 1O  is the rotation around 0x  given by the 

equation (2.11): 

3 0 2   

1 0 

2 0   

1x

1z

0ir

 

Figure 3-2 Position angles of the impulsive masses in system O1  
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 (3.4) 

Where: 

 1
WmF  Force exerted by the m – mass in system 1O   N  

 Imm  Mass of the impulsive m – mass  kg  

 g  Gravity acceleration 2m/s    

Finally the torque around 1O  exerted by 1
WmF  is given by the following equation: 

 1 1 1
Im WmT r F    (3.5) 

Where: 

 1T  Torque in system 1O   N m  

3.3 Technologies for Masses Movement 

In this section, some constructive alternatives will be presented in order to obtain a 

system of masses which can be controlled and moved as according with the needing of 

the system in order to arrive to a desired value of produced torque or keep a constant 

value of angular velocity for the rolling  . 

3.3.1 Internal Gear Displacement  

According with this concept, the internal path of the internal spirals has gear profile 

acting as a ring gear and the impulsive masses are planet gear which travels around the 

curved profile of the internal spiral. This idea was developed in [8] and also the 

following figure was taken for that work: 
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The principal advantage for this mechanism is the capability to control the position of 

the masses, which allow us to implement a control algorithm basis on the analysis of 

several options. The principal disadvantage of this mechanism is the possibility to be 

blocked by dirtiness or some bigger particles, also by the friction present between gears, 

some lubrication may be required, therefore a cover should be implemented. 

3.4 Strategies for Masses Movement Control 

3.4.1 Prediction for Option Analysis 

This strategy is based in the combination analysis, where there are a several number of 

possibilities for movement of the impulsive masses. Each mass, at each interval of time, 

has the capability to be displaced a determined angle or value of m ; moreover, this 

angle could be positive, negative or zero.  

Owing to these three possibilities for each mass, the number of different results is given 

by the following formula: 

 3 sn
Pn    (3.6) 

An example case, for 4sn   is showed in the following figure: 

 

 

 

Figure 3-3 Mechanism for the internal gear displacement. Source: [8] 
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Also, not all the cases showed on the previous figure are possibly. An elimination 

process must be established to determine which cases are impossible due to the masses 

would be out of the spiral.  

In the following equation, an elimination criterion is expressed: 

  

 

 

 

1  Impossible
1  Possible

1 >  Impossible

m Pm

m m Pm

m Pm

t
t t

t

  

    

  

  


     
  

 (3.7) 

Where: 

 Pm  Possible incremental value of m  for the impulsive m – 

mass  rad  

Once the impossible cases are eliminated from all the cases, we have to choose which of 

them is close to the desired value of torque around 1y  which is the symmetry axis. 

The following figures shows the results of this algorithm for 3sn   and 0 0, 2 mir  . For 

this simulation, we have taken a constant value of 0  , it means, 0y is parallel and 
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Figure 3-4 Possible cases for ns = 4 
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coincident with 1y  and the masses have a weight of 0,1 kg . The objective torque to 

reach is 0 N m  

 

 

 

 

 

 

 

 

To obtain this result, the step of Pm  was 0,05 rad; this value can be added or 

subtracted, but this is not a function of time, but else it is a function of  . So, for each 

increment of  , the value of  t  is modified. The derivatives of  t  respect the 

time are limited by the capabilities of the mechanism for masses movement. For this 

reason, we only will work with an stable increment of  . 

Finally, the position of the masses over its spirals along the displacement from we have 

obtained the previous figure, is depicted in the following image: 

 

 

 

 

 

 

 

 

 

Figure 3-5 Resulting torque through the prediction algorithm of option analysis 

3

1

2

 

Figure 3-6 Position angles of the impulsive masses 
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3.4.2 Minimum Distance to the Desired Position 

This algorithm is basis on the Lagrange multipliers and it works moving the impulsive 

masses to the position which is more close to the desired value of torque. 

Neglecting the influence of the inclination of the 1y  axis, we depend on the value of the 

distant given by the coordinate 1x  of the impulsive masses, this coordinate is 

mathematically a function cosine. So we can express the torque as a sum of cosines as 

follow: 

          1
1 2 3 1 2 3, , , , cos cos cos cos

s sn n yg T            L L  (3.8) 

For 3sn   in order to obtain a tridimensional surface: 

       
1

1 2 3 1 2 3
Im

, , cos cos cos yT
g

m g
           

Also: 

      0 1m mm t t          (3.9) 

Where: 

 1
yT  Torque exerted around 1y   N m  

 m  Value of the angle turned by the impulsive mass  rad  

If we see the values of the angles as a coordinates in the spaces, these three angles 

defines a point in the space. 

    1 2 3, ,P P Px y z      

As it is expressed in the equation (3.8), the desired value of torque is given by a similar 

expression: 

       1 2 3 1 2 3
Im

, , cos cos cos D
P P P P P P

Tf
m g

           (3.10) 

 mP  Objective angle to reach by the impulsive masses  rad  
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 DT  Torque to reach by the system  N m  

From the equation (3.10) we can define a surface which is the possible solutions to 

reach the desired torque. So, this can be expressed: 

    3 1 2
Im

arccos cos cos D
P P P

T
m g

 
       

 
 (3.11) 

This surface for 0DT   is showed in the following figure: 

 

 

 

 

 

 

 

 

 

Due to the domain that the function arc cosine has, there are zones where there is any 

solution.  

 

 

 

 

 

 

 

 

Figure 3-7 Surface of solutions 
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Figure 3-8 Solution areas 
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The objective of this algorithm is finding the minimum distance between the point given 

by    1 2 3, ,P P Px y z      and the solution surface. This optimization calculus is 

performed using the Lagrange multipliers:  

              
2

1 2 3 1 1 2 2 3 3 1 2
2

3
2, , , cos cos cos 0P P P P P P P P P                         (3.12) 

The non-lineal system to be solved is the gradient of the lagrangian function expressed 

in the following equation: 

     
 

     
 

     
 

     

2 2 2

2 2 2

1 1
1

1 1 2 2 3 3

2 2
2

1 1 2 2 3 3

3 3
3

1 1 2 2 3 3

1 2

2 2

3

2

0
0

sin

sin

sin

cos cos cos

0
0

P
P

P P P

P
P

P P P

P
P

P P P

P P P







  
 

      
    
   
   

           
   

      
      
 
    

 


       

 


       

 


       

  

 (3.13) 

The solutions of this system are the values of  1 2 3, ,P P P    and   which gives the 

minimum distance from the point to the solution surface. Finally the new values of m  

are determined by the different between the results and    1 2 3, ,P P Px y z     . 

Equation Chapter (Next) Section 1 
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CHAPTER 4  GEOMETRY VARIATIONS 
 
 

4.1 Introduction  

The transformation from cylindrical to conical shape implies large deformations along 

the compressed member of the tensegrity robot, the forces which perform such 

deformations must be located in that way that the principal effect should be the radial 

displacement of the nodes over the spirals. Also, the material plays and important paper 

over the capability of the robot to change its geometry without affecting its rolling 

movement capability. In this chapter, some composite materials are proposed to be used 

for the spirals; additionally, a basis of procedure of calculus of the internal forces 

produced by radial forces is presented and a modification of the theory presented in 

chapter 1 for its application in cylindrical bodies. 

4.2 Materials for the Spirals 

The main idea to use composite material is taking advantage of the large deformation 

that some polymer can support and the tensile properties of the fibers in order to avoid 

the excessive longitudinal deformations. 

The following figure shows the orientation searched for the composed material for the 

spirals: 
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The elastic modulus on the radial and tangential direction, due to the orientation of the 

fiber is given by the following relations: 

Tangential: 

 tc f f m mE E V E V   (4.1) 

Where: 

 tcE  Elastic modulus on the tangential direction of the 

composite material 2N/mm    

 fE  Elastic modulus of the fiber material 2N/mm    

 mE  Elastic modulus of the matrix material 2N/mm    

 fV  Volume fraction of the fiber material over the total volume 

 mV  Volume fraction of the matrix material over the total 

volume 

Radial: 

 1 f m

rc f m

V V
E E E

    (4.2) 

Where: 

Matrix MaterialMatrix Material
Fiber Material

 

Figure 4-1 Structure of the composed material for the spirals 
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 rcE  Elastic modulus on the radial direction of the composite 

material 2N/mm    

This kind of material presents a highest anisotropic behavior, due to this characteristic, 

is important notice that each direction will show different deformation when they are 

subjected to the same load. Following, an alternative of composite material are 

presented. 

4.2.1 Kevlar® Fiber and Elastomer Matrix 

The mechanical properties of each of them are presented in the following table: 

Table 4-1 Mechanical properties of Kevlar and Rubber Source: [16] 
Material Density   

3kg/m    
Tensile 

strength B  

 MPa  

Elongation at 
failure %  

Elastic 
Modulus 
 GPa  

Kevlar 1450 134 3.5 120 

Polyisoprene 930 20,68 800 0.02 

Butadiene -

Styrene 

1000 20,68 400 0.03 

 

Additionally, it must be considered that the elasticity modulus for this polymers have 

changes depending on the orientation of the applied load. For the scopes of this work, 

only we present the results of the elasticity modulus according to the equations (4.1) and 

(4.2) for different values of volume fraction of fiber material. 

The following figure shows the set of values for a range from 10% to 70% of volume 

fraction of fiber material (Kevlar) on the radial and tangential direction. Further, in this 

chapter, we only will refer in, a symbolic way, to these mechanical properties, leaving 

the optimization of this material to a future works. 
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The principal influence is viewed in the radial elastic modulus; however, over the 

tangential elastic modulus, the matrix material has any effect.  

Butadiene - Styrene Matrix

Polyisoprene Matrix

 

Figure 4-2 Radial elastic modulus for different matrix material 

Butadiene - Styrene Matrix

Polyisoprene Matrix

 

Figure 4-3 Tangential elastic modulus for different matrix material 
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4.3 Tensegrity Description for Rotational Geometries 

All the concepts explained in the chapter 1, could be reoriented using another coordinate 

system. This is, also, based on the same principles, but with the difference that this 

concept should be transformed into a cylindrical coordinate system.  

In the specific case of this robot, there is a spiral geometry given by the equation (2.7) 

and also rotated and distributed around the 1y  axis. In the next subchapter, the process 

to determine the best configuration is presented.  

4.3.1 Transformation of the matrix of nodes 

The vector of nodes n  and the matrix of nodes are expressed in Cartesian coordinates; 

therefore, the transformation must be made considering which is the longitudinal 

coordinate and which are the transversal coordinates; it is given using the following 

relations for robot focus of this work: 

 

2 2 2 2
1 1

1

1

1

arctan arctan

n n
Sn

n
Sn

n
Sn

n

x z x z
r

zz
x x

l
y y

 

  
  
    

      
        

 

N  (4.3) 

Where: 

 N  Matrix of nodes expressed in cylindrical coordinates 

 Snr  Radial coordinate of a node 

 Sn  Angular coordinate of a node 

 Snl  Polar longitudinal coordinate of a node 

The matrix of nodes could be expressed, also, in conical coordinates, but owing to the 

complicated expressions and the fact that the system can be expressed in cylindrical 

system, this idea was not considered for the present work. In the other hand, the 

transformation and expression of in that system could be used in further applications.  
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4.3.2 Transformation of the Matrix of element 

The matrix of elements can be expressed in the same way, as it is expressed for 

Cartesian coordinates, as a difference of the node coordinates of the nodes which 

composed the element, but with the differences that there is a relation between S  and 

Sr ,it means that Sr  is a function of S ; this idea will be used further to determine the 

length of the elements. This relation, for the conical case, is a lineal correspondence. 

The matrix of elements is expressed as follow: 

 
11 10 1 0

11 10 1 0

11 10 1 0

Sm S S Sm Sm

Sm S S Sm Sm

Sm S S Sm Sm

r r r r r

l l l l l
     

    
   

   
   
       

M  (4.4) 

 M  Matrix of elements expressed in cylindrical coordinates 

 Smr  Radial coordinate of a member 

 Sm  Angular coordinate of a member 

 Sml  Longitudinal coordinate of a member 

The subindices 1 and 0 indicate the final node and the initial node respectively. Using 

the same idea, we can obtain the connectivity matrix for this coordinate system in the 

same way as the used for Cartesian coordinates. This expression is equal as the equation 

(1.4), only with the differences that a subindices is used to express that the connection 

matrix correspond a cylindrical system:  

 T
  M N C   (4.5) 

 T
C  Connectivity matrix in cylindrical coordinates 
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4.3.3 Matrix of length 

As it is expressed before, Sr  is a function of S , due to the conical shape that the robot 

could be adopted, there is a lineal correspondence between this coordinates, so we can 

express in an interval the following relation: 

    1 0
0 0

1 0

Sm Sm
S S Sm S Sm

Sm Sm

r rr r  
 


  


 (4.6) 

Also the length of each element expressed in this coordinate system is given as follow 

  
1

0

2 2
2Sm

Sm

S S
m S

dl drL r d
d d







 

   
     

   
  (4.7) 

Where 

 mL  Length of a member 

4.3.4 Loads in curved elements 

A curved member is subjected, mainly, to compression forces and bending moments. In 

the following figure, we can visualize the case of this load in a cylindrical element: 

 

 

 

 

 

 

 

For a generic angle Sm  we have the following free body diagram: 

 

 

60 F



 

Figure 4-4 Example case of curved element 
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From the free body diagram, we obtain the forces over each direction: 

 cosR SF F    (4.8) 

 sinT SF F    (4.9) 

Also the bending moment around the longitudinal symmetrical axis: 

 sinl SM FR    (4.10) 

Due there is an internal moment along the element, it is impossible to define a density 

force, instead an energy density must be determined to calculated the equilibrium of the 

structure. Also, from these equations applied for the geometry, we can determine the 

total energy produced by flection, and compression. A further evaluation using elasticity 

theory or finite elements will give the final results for the deformation for different 

points of load application.  

The loads applied over the spiral are exerted by the tensile elements; these elements are 

pre stressed in order to keep the structure of the spiral together during its working and 

performing the deformation for the geometrical changes. 

Equation Chapter (Next) Section 1 

F

FN
fM 

3


 

Figure 4-5 Free body diagram for a generic section at generic angle value 
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FUTURE WORKS AND RECOMMENDATIONS 

 
 Some new techniques for the moving of the impulsive masses should be 

developed, in order to get a better control and fast moving of these masses to the 

desired position over the inner spirals. 

 A kinetic analysis is required for the knowing of the inertial forces and torques 

produced by the accelerations.  

 From a kinetic analysis, control algorithm should be developed to implement the 

control system of the robot 

 A specialized study in materials is highly required in order to determine the best 

material configuration for the spirals which are subjected to large deformation. 

 A further developing of equilibrium and stability equation must be developed 

using another coordinates system in order to find the best way to describe the 

different geometries finding in the spirals. This work, also open the possibility to 

develop a new way to see the analysis of tensegrity structures 

 A study for finding the best location of the tensile element along the spiral must 

be developed. 

 A contact mechanic analysis between the robot and the rolling surface is 

necessary in order to guarantee the turning around a vertical axis and the rolling 

movement. 
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CONCLUSIONS 

 Due all the geometric variations of the robot are already programed along the 

rolling movement, the programmer of the robot determines many of the kinematic 

effects calculated through the equations given in the chapter 2.  

 The approximation of the trajectory using a clothoidal fitting is not at all reliable 

due it requires an improvement of the mathematical process. Also the using of 

shorter segment will be help to reduce the fitting mistakes found during the 

analysis. 

 The clothoidal fitting could be used to set equations which fit the displacement of 

the center of the robot. 

 Due to the requirements of radial large deformation and almost inexistent 

longitudinal and tangential deformation, a highly anisotropic material must be 

chosen for the robot manufacturing. The material found for this purposes could 

be, with highly certainty, a composed material. 

 Curved geometries require an energy analysis in order to find the equilibrium due 

to the complex load state to which they are subjected. 
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