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Abstract 

In modern industrial applications, sensors are an expensive part of installed 

systems. Nevertheless, many system variables cannot be measured suffi- 

ciently frequently or accurately. Thus, soft sensors have been developed to 

estimate those variables without the expense of additional hardware. The  

use of a soft sensor with a bias update term has shown to perform well for 

disturbed systems with time delays and multirate sampling times. In indus- 

trial application, the time delay and sampling times often vary. Yet, the case 

of variation of  the time delay and sampling time in the bias update term   

has not been considered in previous publications. This thesis tests a soft 

sensor with bias update term in simulation and gives a modification yielding 

better performance. It is shown that the tested method gives unstable re- 

sults. Hence, a more general method with a bias update term that considers 

all possible sampling times  in each step  is proposed, giving stable results  in 

simulation. Furthermore, the stability of the general method is proven 

mathematically by building a state space representation and applying the 

Bauer-Premaratne-Durán theorem to the stability of switching systems. 
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Resumen 

En aplicaciones industrialesmodernas, sensoressonunapartecostosadesis- 

temas instaladas. De todas maneras, las medidas de muchas variables no son 

suficientemente frequente o preciso. Por lo tanto, sensores virtuales fueron de- 

sarolladosparaestimarestosvariablessinelgastoensensoresadicionales. El 

usodeunsensorvirtualconuncomponentedeactualizacindesesgofunciona 

bien  para sistemas  con  retardo de  tiempo  y múltiples  tiempos  de  muestreo. 

En aplicaciones industriales, es común que el retardo del tiempo y el tiempo 

demuestreosonvariables. Sinembargo, elcasoderetraso detiempovariable 

y tiempo de muestreo variable no fue considerado en publicaciones previas. 

Esta tesis testa un sensor virtual con componente de actualizacin de sesgo en 

simulación y desarolla una modificación que da mejores resultados.  Se mues- 

tra que el método anterior resulta  en una estimación inestable.   Por eso, un 

método más general con un bias update term es presentado que considera to- 

dos los tiempos de muestreo posibles en todos los instantes de tiempo, que da 

resultados estables.  Se prueba la estabilidad matemáticamente, construiendo 

una representación de matrices para cada tiempo de muestreo y aplicando el 

teorema de Bauer-Premaratne-Durán estabilidad de sistemas cambiantes. 
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Zusammenfassung 

In modernen industriellen Anwendungen sind Sensoren ein kostenintensiver 

Teil  von  Installationen.   Dennoch  können  viele  Variablen  nicht  ausreichend 

häufig oder präzise gemessen  werden.  Daher wurden virtuelle  Sensoren  en- 

twickelt,  um  diese  Variablen  ohne  den  Aufwand  zusätzlicher  Sensoren  zu 

schätzen.  Die Nutzung von virtuellen Sensoren mit einer Bias-Update- 

Komponente  hat  sich  für  Systeme  mit  Totzeit  und  unterschiedlichen  Ab- 

tastzeiten  bewährt.   In  industriellen  Anwendungen  kommt  es  oft  vor,  dass 

sowohl Totzeiten als auch Abtastzeiten variieren. Dennoch wurde der Fall 

von  variablen  Totzeiten  und  Abtastzeiten  in  vorherigen  Veröffentlichungen 

nicht  berücksichtigt.   Diese  Arbeit  testet  einen  viruellen  Sensor  mit  einer 

Bias-Update-Komponente in dieser Situation und schlägt eine Modifikation 

des Algorithmus vor, die bessere Ergebnisse erzielt. In den Tests zeigt der alte 

Ansatz ein instabiles Verhalten der Schätzung.  Daher wird ein allgemeinerer 

Ansatz vorgeschlagen, der in jedem Zeitschritt alle möglichen Schrittlängen 

der Abtastzeit berücksichtigt.  Dieser Ansatz führt in Simulationen zu guten 

Ergebnissen.  Darüber hinaus kann über eine Zustandsraumdarstellung und 

den Satz von Bauer-Premaratne-Durán über schaltende Systeme ein mathe- 

matischer Beweis gegeben werden, dass gesuchte Variablen korrekt geschätzt 

werden. 
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Notation 
 

R Field of the real numbers 

|a| Absolute value if a is a number 
cardinality if a is a set 

ẋ ∈ Rn A column vector with n real entries 

||ẋ|| The Euclidian norm of a vector 

a11 . . . a1n 

A = . 
.. . . 

am1 .............. amn 

Rm×n A matrix with m rows and n columns 

AT Transpose of the matrix A ∈ Rm×n
 

A−1 Inverse of a square matrix A ∈ Rn×n
 

||A||∞ Maximum norm of the matrix A 

G(z−1) Transfer function 

z−d Time delay of d steps 

V ar(x) = σ2 Variance of the random variable x 

[a,b] The set of all integer values in the range 

between a and b, including a and b 

â 

lim 
z−1→1 

 

Σb 

The estimated value of the variable a 

(G) The limit of the transfer function G(z−1) 

as z−1 approaches 1 

 

i=a 

Yb 

 
i=a 

Ai The sum of all Ai ∈ Rm×n for i ∈ [a, b] 

 

Ai The product of all Ai ∈ Rn×n for i ∈ [a, b] 

x ∼ N (µ, σ2) A random variable with normal distribution, 
with mean µ and variance σ2

 

x ∼ χ2 A random variable with χ2distribution, 

where the degree of freedom is m 

p(x|y) The probability of the event x given the event y 

E(x|y) The expected value of the random variable x 

given the event y 

∈ 
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1 Introduction 

Knowledge about the states of industrial systems is key for effective con- 

trol or supervision. However, in many applications, high sampling times or 

measurement delays cause bad measurement performance or the need of ex- 

pensive sensors. A method to deal with those problems in the estimation of 

the states is soft sensors. Soft sensors use the data of some of the available 

sensors combined with mathematical models to estimate variables which are 

hard to measure. 

Soft sensors are described in Fortuna et al. (2007); Kadlec et al. (2009) 

and general information is provided about their different structures and ap- 

plication. Soft sensors require a model whose construction will be explained. 

Some of the possible model structures used in soft sensor development are 

presented in Shardt (2015). To determine the parameters for the model of  

the soft sensor correctly,  several steps are required.  First,   the data must   

be aquired. This can be done by a design of experiment (Shardt, 2015; 

Montgomery, 2009). The data is then processed. For the detection of out- 

liers, the 3σ rule and the Hampel identifier are given as simple detection 

methods (Fortuna et al., 2007; Kadlec et al., 2009; Lin et al., 2006). The 

principal component analysis (PCA) (Fortuna et al., 2007; Mu Zhu, 2006)  

as well as the Q-statistic and T 2-statistic (Zhang et al., 2016; Ding, 2014) are 

more powerful, but require more computational effort. Several strategies for 

dealing with missing values are presented. Some simple strategies are given 

in Khatibisepehr and Huang (2008). The nonlinear iterative partial least 

squares algorithm (NIPALS) (Geladi and Kowalski, 1985; Miyashita et al., 

1990; Nelson et al., 1996) and the expectation maximisation algorithm (EM) 

(Dempster et al., 1977; Chen and Gupta, 2010; Borman, 2004) are more in- 

volved and generally lead to better results. With both model structure and 

data given, the parameters are determined using regression (Shardt, 2015). 

The model is then validated to ensure that it represents the data adequatly 

(Shardt, 2015). In addition to the system model, the soft sensor’s bias up- 

date term that corrects its estimate is considered (Shardt and Huang, 2012a). 

In this context, an introduction of tracking is given Shardt (2015). Further- 
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more, three performance metrics are presented. The metrics are the absolute 

error (Shardt and Huang, 2012a), the sum of squares error (Jin et al., 2012) 

and Pearson’s coefficient of regression (Shardt, 2015). 

The aim of Shardt and Huang (2012a,b) is the design of a soft sensor 

in the presence of time delay and multirate sampling time. The results are 

reviewed and extended, considering variation in the sampling time and time 

delay of the measurements. Therefore, a new approach is proposed and 

its  adequacy  shown  using  the  Bauer-Premaratne-Durán  theorem  about  the 

stability of switching systems (Lin and Antsaklis, 2009; Bauer et al., 1993). 

Both approaches are tested on a continuous stirred tank reactor (CSTR) 

presented in Morningred et al. (1990) and used as a benchmark in several 

other publications (Shardt and Huang, 2012a,b; Huang et al., 2000; Zhang 

et al., 2016). 

This thesis focuses on the application of soft sensors in the presence of 

variable time delay and variable sampling time. In the course of working on 

this topic, 4 objectives are considered: 

1. The soft sensor method applicable in the presence of multirate sampling 

and time delay presented in Shardt and Huang (2012a,b) is reviewed. 

2. The method is tested in simulation. 

 

3. An alternative approach is proposed which is designed to perform better 

for variable sampling times and variable time delays. 

4. Mathematical proof for the adequacy of the modified method is given. 

 

5. The convergence of the method is shown in simulation. 

 
 

2 Soft Sensors 
 

2.1 Properties of Soft Sensors 

Soft sensors are a method to determine the unknown values of systems. They 

use the measurements of sensors and knowledge about the given system to 
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give an estimate of unknown values (Kadlec et al., 2009; Fortuna et al., 2007; 

Jin et al., 2012). 

Numerous applications of soft sensors exist. They can be used as a backup 

for given sensors. In some cases, they can replace some sensors completely. 

Furthermore, it is possible to use soft sensors to detect faults like parameter 

changes or hardware malfunctions. 

Soft sensors can be distinguished between model-driven soft sensors and 

data-driven soft sensors. In model-driven soft sensors the system informa- 

tion is given as a first principle model, i.e. the system model is built from 

the theoretical information about the system. Data-driven methods obtain 

their system information from measurements on the system in observation, 

historical data or experiments and construct a model that fits the data. This 

thesis has its emphasis on data-driven methods. 

The soft sensors defined in this thesis follow a structure given in Shardt 

and Huang (2012a,b). The methods described is applied to an open loop 

process as given in Figure 1. 

et 
 

 

 
ut 

 

 
 

Figure 1: Open-loop process 

 

The variable ut is the input of the system, yt an output and et an error 

term. The block Gp describes the transfer function of the system, Gl is the 

transfer function of the error.  Transfer functions will be described in section 

2.2.1. In order to give an estimate of the output  yt,  the transfer function  Gp 

is modelled.  The resulting transfer function is Ĝp.  Since models always differ 

from the system they model, a feedback is used to correct estimation errors. 

The transfer function in the feedback is called bias update term and given 

by GB  (Shardt and Huang, 2012a,b).  The system is built as shown in Figure 

+ 
+ 

yt 
Gp 

Gl 
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ŷ t 

Ĝp
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2.  Note that the transfer functions Gl, GB, Gp and Ĝp  may be nonlinear in 

general. 

et 
 

 
 

ut 

   

 
Figure 2: Open-loop soft sensor with bias update term 

 
The soft sensor model presented in Figure 2 has several components. The 

quality  of  its  estimation  is  determined  by  the  model  of  the  system  Ĝp  and 

by the choice of the bias update term GB. 

The model of the system Ĝp gives a simulation of the systems behaviour in 

the soft sensor. Therefore, its output yα,t reflects the behaviour of the system 

well and gives an estimate of the real output yt. However, due to errors in the 

model and the error term et, an estimation purely based on simulation does 

not perform well. Since the errors in the estimate of the inner state of the 

system are passed on to future estimates, the estimation error can increase 

over time. If a linear model is used for a nonlinear system, as it is common 

practice in many applications, the estimate is likely to become biased even 

for steady state estimations. 

Therefore,   the bias update term  GB  is used  to compare the estimate  ŷt 

with the available measurements yt and correct it using a feedback loop. For 

the use of the bias update term, it is assumed that some measurement of 

yβ,t 

yα,t + + 

GB 
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the true output is given. Often, the measurement is not easily available, for 

example, if it is delayed in time or sampled infrequently. Thus, measuring 

alone does not provide a good estimate. Therefore, a soft sensor is used. 

 
2.2 Construction of the System Model 

The construction of   Ĝp  is  done  using  basic  system  identification  methods. 

An overview sufficient for the construction of simple models is given in this 

section. 

 
2.2.1 Model Structure 

In the application of soft sensors, numerous different model structures are 

used. Some models for data-driven methods are presented in this section 

(Shardt, 2015). 

The most common model type for the considered process are discrete 

models. They are used frequently, since they are designed to work on digitally 

sampled data, which is commonly used for soft sensors. Two different model 

types are considered. Models based on transfer functions and models based 

on the impulse response. 

The models based on the transfer function are derived from the prediction 

error model. It is given by 

A(z−1 B(z−1) C(z−1) 
  

)yt = 
F (z−1) 

ut + 
D(z−1) 

et
 

where A(z−1), B(z−1), C(z−1), D(z−1) and F (z−1) are polynomials in z−1. 

The polynomials have the form 
 

Σn 

θ0 + θiz−i
 

i=1 

 

where n is the maximal order of the polynomials, θi are the parameters and 

θ0 = 0 for B(z−1), θ0 = 1 for the other polynomials. 

The most popular models are the Box-Jenkins model, the ARMAX model. 
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In the Box-Jenkins model, the parameters θi for i > 0 in A(z−1) are set to 0, 

leading to A(z−1) = 1. In the ARMAX model, F (z−1) = D(z−1) = 1 holds. 

A different, but in many cases effective approach is the impulse response 

model. It uses the impulse response of the process h and considers both the 

input and disturbance as a series of impulses. It is described by the equation 

 
yt = 

∞
Σ 

∞
Σ

 

hiut−i + 

 
hjet−j. 

i=0 j=0 
 

The sum in this equation goes to infinity. In case of a finite impulse response 

all summands are 0 for sufficiently high i, j. 

 
2.2.2 Design of Experiment 

Experiments are one of the best ways to obtain the necessary data for regres- 

sion. The planning and analysis  of the experiments can impact the  quality 

of the estimations and the cost of the experiments  greatly.  In this section,  

an overview of how experiments are planned and analysed is given (Shardt, 

2015; Montgomery, 2009). 

In any experiment, variables are measured that are to be used in regres- 

sion. Generally, the system is assumed to be of the form 

 

f (ẋ, ̇θ) = ẏ 

 

where θ̇ are the parameters of the system, ẏ is the output, ẋ are the regressors 

and f (·) a function, describing the system behaviour.  Typically, the regres- 
sors ẋ are fixed at a desired value to perform the experiment and the outputs 

ẏ are measured.  The parameters are calculated using regression as described 

in section 2.2.5. However, to get a good estimate of the parameters, a good 

choice of regressors and parameters must be taken. An analysis of this choice 

is given in section 2.2.6.2. 

Given a model with several parameters and their respective regressor, the 

regressors are only adjusted at some discrete levels in planning the experi- 

ments. In the simplest case, two levels are considered for the level of the 
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regressors. Hence, each regressor can be applied using its low value or using 

its high level. The fact that the ith  regressor is given at the low level is 

denoted as xi = −1, the high level is denoted as xi = +1. It is possible to 
consider more levels for the regressors. However, more levels require more ex- 

periments to be covered adequately. Assume that each regressor corresponds 

to one parameter. 

When planning the experiments, it is important to be able  to consider  

the influence of each parameter separately. The simplest approach to do this 

is the  one-factor-at-a-time  approach. In the  one-factor-at-a-time  approach, 

all regressors are fixed on a baseline.  Assume that the lower  level −1 is   

the baseline. After making the baseline experiment, an experiment is done 

where one regressor is +1 and all other regressors are −1. This is done for 

each regressor. With this approach, all individual influences of the regressors 

on the outputs are considered. However, interactions between the regressors 

cannot be identified with this experiment. 

A way that does consider the interactions between the regressors is the 

factorial design. Even though more levels of the regressors are possible, a 

two level design is assumed. Then, all possible combinations of regressor 

values are considered. Since these are 2m combinations, where m is the 

number of regressors, and since the full set of combinations is considered, 

this is called a 2m full factorial design. With this preparation, not only first 

order interactions like β1x1 can be considered. Second order interactions  

like β12x1x2 and interactions up to the order m like β12...mx1x2 . . . xm can be 

considered. 

 
2.2.3 Outlier Detection 

In order to build an effective soft sensor,  process  data  is needed.  In order 

to maximise the usability of the data and thus the performance of the soft 

sensor, preprocessing, such as the elimination or replacement of outliers and 

missing values is necessary. If outliers are present in the soft sensor design, 

the sensor does not only predict the process behaviour, it also predicts the 

behaviour of the outliers given in the data set. One distinguishes between 
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obvious and nonobvious outliers (Kadlec et al., 2009). Obvious outliers can 

easily be detected, since they consist of measurements that are impossible to 

occur or to be measured. 

Nonobvious outliers can be detected with several techniques. Some of 

them are presented in this section. 

Some simple rules for the detection of outliers are the 3σ rule and the 

Hampel identifier (Fortuna et al., 2007; Kadlec et al., 2009; Lin et al., 2006). 

These rules detect outliers based on the univariate distribution of the vari- 

ables. 

The 3σ rule uses the mean value µ and the standard deviation σ to 

identify outliers. Values within µ ± 3σ are considered normal, whereas values 
not included are interpreted as outliers. 

As the mean, the median intents to give an   estimate for the centre of 

data (Lin et al., 2006; Shardt, 2015). Assume a data set X ∈ Rm consisting  

of m measurements of a variable. The median is defined in a way that half 

the values in the data set are bigger than the median and half the values are 

smaller. If the cardinality of the data set is odd, the median is the middle 

value of the ordered data set. If it is even, the median is the mean between 

the two middle values. 

The MAD describes the spread of data. It is calculated as 

 

MAD = 1.4826 median{|xi −median(X)|} 

where the values of the data set are given as xi and the absolute value 

of (xi − median(X)) is calculated. It is used analogously to the standard 
deviation. 

Since the mean and standard deviation can be strongly influenced by the 

outliers, the Hampel identifier is proposed in Lin et al. (2006).  Instead of  

the mean and the variance, it uses the robust median and MAD. Any value 

xj fulfilling |xj − xy| > 3MAD is considered an outlier. 

 
A more elaborate approach for outlier detection is given with help of a 

principal component analysis (PCA). It is applied to multidimensional data. 
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Since some covariance matrices must be calculated, a short introduction to 

the covariance matrix is given. 

The covariance matrix is the generalisation of the variance for the mul- 
tidimensional case (Shardt, 2015).  Given multidimensional data of m mea- 
sureme.nts for n differenΣt variamb×lens. The data is described.by the  matrix Σ 

X  = ẋ1 ẋ2 . . .   ̇xn ∈ R with  the  mean  x̄  = x̄1 x̄2 . . .   x̄n   
T 

. 
 

The notation (. . .)T is the transpose of the respective matrix. The covari- 

ance matrix is defined as 

 

C = 

 
(ẋ1 − x̄1)T (ẋ1 − x̄1) (ẋ1 − x̄1)T (ẋ2 − x̄2) . . . (ẋ1 − x̄1)T (ẋn − x̄n) 
(ẋ1 − x̄1)T (ẋ2 − x̄2) (ẋ2 − x̄2)T (ẋ2 − x̄2) . . . (ẋ2 − x̄2)T (ẋn − x̄n) 

.
 

. . .. . 
. 

(ẋ1 − x̄1)T (ẋn − x̄n) (ẋ2 − x̄2)T (ẋn − x̄n) . . . (ẋn − x̄n)T (ẋn − x̄n) 

The covariance matrix is a symmetric matrix in Rn×n. 

For outlier detection with PCA, a T 2-statistic or Q-statistic must be used. 

Therefore, a short introduction to the statistics is given. The Q-statistic and  

T 2-statistic determine, if a value belongs to a distribution of values  or if it  

is an outlier (Zhang et al., 2016; Ding,  2014).  Therefore,  these  statistics 

are used for outlier detection in combination with algorithms such as the 

principal component analysis. The T 2-distribution generally yields better 

results than the Q-distribution.  The  Q-distribution has the advantage,   that 

a matrix inversion is necessary using the T 2-distribution and unnecessary 

using the Q-distribution. In case of an ill-conditioned matrix, the inversion 

necessary for the T 2-statistic would lead to inaccurate results. 

The values of the test statistics for all data points are defined by two 

equations 

 

JQ = Y T Y JT 

2   = Y T Σ̂−1Y 
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1,α 

n,α 

 
 
 

where Y is the data taken from Rm×n with n data points of dimension m, 

(·)−1  the matrix inverse and Σ̂Y  the estimated covariance matrix of the data. 

Note that calculating the inverse of the covariance of the data does lead       

to some additional complexity, but usually improves the statistic, since the 

spread of the data is considered in the prominent directions only. 

To use the values of the statistics, thresholds are calculated.  For  both 

the Q-statistic and T 2-statistic, one way to calculate the threshold is shown: 

 
Jth,T 2  = χn,α, 

Jth,Q = trace(Σ̂Y )χ2
 

 
where n is the dimension of the data points and χ2 the χ2-distribution 

with degree of freedom n satisfying p(χ2 
n 

2 
n,α ) = α. Note that the χ2 - n 

distribution is used, since it gives the distribution of a random variable given 

by 

 

(x2
1  + x2  + . . . + nx2  ) ∼nχ2

 

where xi ∼ N (0, 1) is normally distributed. Assuming that the data points 
are normally distributed, the χ2 

n-distribution gives an accurate threshold. 

 
Using this information, outlier detection using PCA can be explained  

and illustrated (Fortuna et al., 2007; Ding, 2014). Assume that the data 

considered consists of m measurements of n variables and can be written 

as  X  ∈ Rm×n. First, the main directions of the distribution of the data, 

called principal components, are identified. In order to calculate the prin- 

cipal components, the  covariance  matrix of the data is calculated.  Then,  

the eigenvectors of the covariance matrix are determined, being the principal 

components. If only few outliers are present, they will give a good representa- 

tion of the distribution of the normal values. In many cases, not all principal 

components are needed. The components can be reduced by discarding the 

eigenvectors with small eigenvalues. 

An overview of methods to choose how many principal components are 

> χ 
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part of the PCA is given in Mu Zhu (2006). Here, a method called scree plot 

is presented. To use the scree plot, all eigenvalues are ordered starting with 

the largest eigenvalue and then plotted. Observing the plot, there usually is 

some eigenvalue after which the eigenvalues are much smaller. This leads to 

some ’big gap’ in the sizes of the eigenvalues. The proposed method then 

chooses all eigenvectors with eigenvalues before the ’big gap’ as principal 

components. Such a scree plot is illustrated in Figure 3. 

 

Figure 3: Scree plot 

 

The data X can be transformed to a linear combination of the principal 

components. In orde.r  to achieve thisΣ,  the principal components are used to 

form a matrix V  = v̇1 v̇2 . . . v̇n  .  For sake of simplicity, the algorithm 

is given for the case that no principal components were discarded. Then, the 

data X is multiplied with the inverse of that matrix, yielding the transformed 
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data Y = XV −1. 

Other than the deviation of the normal values, the deviation of the outliers 

does not follow the principal components. This leads to an unusually high 

value in Y . Therefore, it is possible to apply a Q-statistic or T 2-statistic to 

the data Y to determine, which data points are outliers (Zhang et al., 2016). 

A cost value is given to every measurement. The further the variables are 

away from the mean of the data, the higher the cost is. If the value deviates  

in a direction which is typical for the data present, the cost rises less than 

when the value deviates in an atypical direction. 

To evaluate the cost values, a threshold is set. This can be done using the 

χ2 distribution with a confidence interval α. Data points whose cost exceed 

the threshold are considered outliers. All other values are considered normal 

values. The method can be visualised by a multidimensional ellipsis which 

center is the mean of the considered data. All values inside the ellipsis are 

considered normal, all values outside are considered outliers. 

Figure 4 shows the algorithm, which is summarised as: 

 

1. Calculate the mean and use it to make the data zero-mean. 

 

2. Calculate the covariance matrix of the data. 

 

3. Calculate the eigenvectors. Use the eigenvectors with of the covariance 

matrix chosen with the help of a Scree plot as principal components. 

4. Transfo
.
rm  the  data  usin

Σ
g−the  principal  components  with  the  formula 

Y = X v̇1    v̇2 . . .   ̇vn , where v̇  are the principal components. 
1 

i 

 

5. Calculate threshold using a χ2 distribution where the degree of freedom 

is the number of variables per data point n 

6. Calculate the T 2-statistic of data points and compare it to the threshold 

 

7. Mark every data point whose deviation exceeds the threshold as outlier, 

otherwise mark it as normal values. 
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Figure 4: Principal component analysis 

 
An alternative to PCA is using the T 2 statistic directly on the data. Using 

the covariance of the data to directly apply the statistic yields similar results 

as the method including PCA. However, other benefits of PCA such as the 

possible reduction in the data dimension are missed out if the detection is 

done with the T 2-statistic only. 

A similar method to the PCA is the nonlinear iterative partial least 

 

Compare to threshold 

and mark outliers 

Calculate principal components 

Calculate threshold 

Calculate T 2-statistics 

START 

Create zero-mean data 

Calculate covariance matrix 

STOP 
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squares (NIPALS) method. Since it determines the principal components as 

well, it can be used for outlier detection, as the PCA. Furthermore, it can be 

used to estimate missing values. 

 
2.2.4 Missing Values 

Missing values are values of variables that are not available (Khatibisepehr 

and Huang, 2008). If outliers are detected, they are considered like missing 

values. There are three categories of missing values. First there are values 

which are missing completely at random. In this category, the probability of a 

value to miss is absolutely independent of both the observed and unobserved 

values. If values are missing at random, the probability of a value to miss 

depends on the observed values. If the values are not missing at random, the 

probability of a value to miss depends on observed and missing values. The 

right choice of how to deal with the missing values often depends on their 

category. 

For efficient use of data, several strategies are used to deal with missing 

values. Some of the most common approaches to deal with missing values 

are presented. 

One way to deal with missing data is the deletion of the missing or dam- 

aged values. Even though the deleted values are unknown, this method still 

leads to a loss of information, since the other process values at the time of 

measurement are deleted, as well. However, in case of completely randomly 

missing data, unbiased estimates are still possible on the given data. 

A straight forward method to replace missing values is the mean substitu- 

tion. All missing values of a variable are replaced by the mean of the variable. 

Thus, the size of the data is preserved, even though some estimations based 

on the data become biased. 

The last observation carried f orward method (LOCF) replaces missing 

values with the last known value. 

To use regression imputation a model of the process is built via regression. 

Missing values are then replaced by applying the model to the preceding 

measurements. 
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The nonlinear iterative partial least squares (NIPALS) method is similar 

to the PCA described in section 2.2.3 (Nelson et al., 1996; Geladi and Kowal- 

ski, 1985; Miyashita et al., 1990). Unlike PCA, the principal components are 

not identified at once. Instead, they are identified iteratively. The NIPALS 

method is implemented on data X ∈ Rm×n. The data consists of m samples, 
each including n variables. 

Dealing with missing values with NIPALS requires a model to be built. 

The model consist of the loadings ṗi  ∈ R1×n,  which  act  analogously  to  the 

principal components in PCA and the scores ̇ti  ∈ Rm×1.  If both the scores and 

lΣoadings are determined sufficiently well,  the complete data X  ∈ Rm×n  can  be 

estimated as the sum X = k 
i=1 ṫiṗi, where k is the number of components. 

The algorithm works as follows. 

In the initial step of the algorithm, an iteration variable i = 1 is defined. 

In each step, the residual of the data Ei is used to extract remaining infor- 

mation about the data. Initially, the residual consists of the complete data 

E1 = X. 

In each iteration, one loading ṗi  is determined.  It is determined in a way 

that minimises Ei − ̇tiṗi. 

To find a good combination of score and loading, a loop is implemented 

in each iteration. Usually, a column of the data matrix is used as the ini- 

tial score. It is used to calculate the initial estimate of the loading using 

least square estimation as described in section 2.2.5. The formula for the 

calculation is ṗd,i  = (̇tiT ṫi)−1ṫiT Ei.  The loading is changed to a loading with 
the length 1 by calculating ṗ =   ṗd,i    , where is the Euclidian norm for 

 
i 

||ṗd,i || || · || 
vectors. Since the score is not adequate for the new loading, another least 

square estimation for the score is done.  The new score is ṫi  = Eiṗi T (ṗiṗi T )−1. 

If the new score is unequal to the old score, the inner loop is started anew 

to calculate another loading and score until the score remains close enough 

to its last value. 

When this happens, the loading and score that describe the actual resid- 

ual are found. The loading is used as a principal component. To find the 

next component, the residual is updated using the current loading and score. 

Therefore,  the new residual is given by Ei+1  = Ei  − ̇tiṗi.  If this residual is 
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sufficiently small using a matrix norm of choice, the algorithm terminates. 

If it is not, the algorithm goes on with the next iteration as described in the 

previous paragraph. For  the next iteration, the iteration variable is set to  

i = i + 1. 

The algorithm is summed up in the following enumeration. An illustration 

of the algorithm is given in Figure 5. 

 

1. Set E1 = X. 

2. Choose a score ṫi  from the columns of Ei. 

3. Calculate the loading direction ṗd,i:  ṗd,i = (̇ti 
T ̇ti)−1ṫi 

T Ei 

(using a least squares estimation as described in section 2.2.5). 

4. Normalise ṗd,i , giving a unit vector ṗi   =  
  ṗd,i     . 

d,i 

 

5. Recalculate the score due to change in ṗi:  ̇ti  = Eiṗi
T (ṗiṗi

T )−1. 

(using a least squares estimation as described in section 2.2.5). 

6. If ṫi  changed in step 4, go to step 3.  If not, go to the next step. 

7. Set  i  =  i + 1. Calculate the residual to be minimised in the next 

iteration Ei  = Ei−1 − ̇ti−1ṗi−1. 

8. If the residual is small enough, terminate the algorithm. Else, go to 

step 2. 
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Calculate loading direction ṗd,i: 

ṗd,i  = (̇tiT ṫi)−1ṫiT Ei 

Recalculate the score ṫi: 

ṫi  = Eiṗi
T (ṗiṗi

T )−1
 

YES 

NO 

Check if ṫi  changed 

i = i + 1 

Ei  = Ei−1 − ̇ti−1ṗi−1 

||ṗd,i || 
Normalise ṗi:  ṗi =    ṗ

d,i 

 

 

 

 

 

 
 

 
 

 Set E1 = X  

  

Choose score ṫi  from Ei 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Check stopping criterium 
NO 

 
YES 

 

 

Figure 5: NIPALS algorithm 

 

The algorithm gives the principal components of the data X. With the 

help of these principal components the missing values are chosen in a way 

that they fit the distribution of the data. 

START 

STOP 
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Another common algorithm to estimate missing data is the expectation- 

maximisation (EM) algorithm (Dempster et al., 1977; Borman, 2004; Chen 

and Gupta, 2010). The algorithm uses the principle of likelihood to find the 

best possible distribution of missing values. The principle of likelihood is 

explained at hand of the likelihood function. 

The likelihood describes, how probable a set of parameters is if the output 

of an experiment is known (North, 1968). It is a common situation in system 

identification that measurements of a system are given, but the parameters 

causing this outcome are unknown. In such a situation, it is desirable to find 

the parameters which are most likely to give the observed outcome. 

Assuming the outcome of the experiment is the data X and the parame- 

ters of the system of interest are described by the vector θ̇.  Given the correct 

parameters θ̇∗  exist, the probability distribution function of the outcomes of 

experiments is described by the conditional probabilities p(X |θ̇∗).  However, 
the case of a system identification, the  data is  given and the  parameters are 

to be determined.  Thus,  the function  p(X |θ̇) is considered  as a function  in 

the  parameters  ̇θ  with  a  fixed  X .   It  is  called  the  likelihood  function  and 

defined as L(θ̇) = p(X |θ̇). 

In estimation it is common to seek the parameters that maximise the 

likelihood function. An estimation fulfilling this criterion is called maximum 

likelihood estimation. 

The algorithm assumes complete data to exist and describes it as a real 

valued vector ẋ.  The data is divided into the observed data ẏ and the missing 

data  ̇z.   Furthermore,  a  function  T (ẋ)  =  ̇y  is  defined.   The  function  T  is 

deterministic and depends on parameters θ̇. 

The algorithm has its name since it consists of two alternating steps which 

iterate until a stationary solution is found. They are called the expectation 

step and the maximisation step. In the expectation step, given parameters  are 

used to estimate the missing values. In the maximisation step, the esti- mated 

missing values and the observed values are used to give a parameter set for 

the next iteration.   Each step is explained in more detail and Figure   6 is 

presented to illustrate the algorithm. 

The observed values ẏ and the current parameters θ̇i  are given, as well as 
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the structure of T (·).  It is assumed that the densities p(ẏ|θ̇) and p(ẋ|θ̇) are 

known.  In the expectation step, it is necessary to find a distribution p(ẋ|ẏ, θ̇) 

for the current iteration. It is needed for the construction of the Q-function 

Q(θ̇|θ̇i).  The Q-function serves to maximise the likelihood of the parameters 

for the next iteration. Therefore, it is defined as 

 

Q(θ̇|θ̇i) = E(log(p(ẋ|θ̇i))|ẏ, θ̇i) 

where E(·|·) is the conditional expectation and log(·) the natural logarithm. 

Note that the logarithm is included  rather  for  mathematical  simplicity  than 

due to  necessity.  It does not affect the monotonicity of the Q-function. 

The value of the Q-function is non-decreasing for an increasing number of 

iterations. Furthermore, an increase in the Q-function implies an increase of 

the likelihood of the parameters in a way that 

 

Q(θ̇i+1|θ̇i) > Q(θ̇i|θ̇i)  =⇒  L(θ̇i+1) > L(θ̇i). 

In the application of the algorithm for the determination of missing values, 

the Q-function is written as 

Q(θ̇|θ̇i) = 

∫ 

log(p(ẏ, ̇z|θ̇))p(ż|ẏ, ̇θi)dz 
Z 

 

(Chen and Gupta, 2010). The maximisation step then maximises the Q- 

function with respect to θ̇.  This  maximum  is  used  as  θ̇i+1.  The  algorithm 

terminates,  if both the Q-function and p(ẋ|ẏ, θ̇) have not changed since the 
last iteration. The next iteration of the algorithm is started using the esti- 

mate θ̇i+1. 

The algorithm leads to non-decreasing likelihood of the parameters in 

each iteration. With more accurate parameters, the estimate of the missing 

values  improves.  Furthermore,  the algorithm  only terminates  in stationary 

points  of  the  likelihood  function  L(θ̇).   These  points  can  be  local  maxima, 

global maxima, saddle points or, in unlikely cases, minima. 

1. Make an initial estimation of the parameters θ̇0.  Set i = 0. 
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2. Expectation step: 

 

(a) Estimate the distribution of all values p(ẋ|ẏ, ̇θ) 

(Assuming ẋ, ̇y, ̇θi, p(ẏ|θ̇) and p(ẋ|θ̇ are known). 

(b) Construct the Q-function: 
Q(θ̇|θ̇ ) = 

∫  
log(p(ẏ, ̇z|θ̇))p(ż|ẏ, ̇θ )dz. 

i Z i 
 

3. Maximisation step: 

Use a maximisation algorithm to find the parameters θ̇ that maximise 

Q(θ̇|θ̇i). 

4. Check  stopping  criterium. If  Q(θ̇|θ̇i)  ƒ=  Q(θ̇|θ̇i−1)  or  if  p(ẋ|ẏ, θ̇i)  ƒ= 

p(ẋ|ẏ, θ̇i−1), set i = i + 1 and go to the expectation step. 

5. Declare θ̇i  as  the  parameters  found  by  the  algorithm. Assume  the 

missing values to have the distribution p(ẋ|ẏ, θ̇i). 
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Figure 6: Expectation-maximisation algorithm 

 

2.2.5 Regression 

After choosing a model for a soft sensor, the parameters of the model are 

determined. This is done using regression methods (Montgomery et al., 2012; 

Shardt, 2015). 

 
2.2.5.1 Sum of Squares estimation 

The sum of squares estimation is the most popular regression method (Shardt, 

2015). It has its name, since it minimises the sum of squares of the error 

STOP 

START 

Expectation 

YES 

NO 

Has Q(θ̇|θ̇i) or p(ẋ|ẏ, θ̇) changed 

in the current iteration? 
Set i = i + 1 

Maximisation 

Find θ̇i+1 maximising Q(θ̇|θ̇i) 

i Z 
Q(θ̇|θ̇ ) = 

∫  
log(p(ẏ, ̇z|θ̇))p(ż|ẏ, ̇θ )dz 

i 

i = 0; Initial estimation θ̇0 

Estimate p(ẋ|ẏ, θ̇i) 
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between the model output and the process output. The equation is 
 

ΣN 

 
i=1 

(ŷi − yi)2 (1) 

 

where yi  is the process output and ŷi  is the model output.  Assume the given 

model is linear in the parameters. This is the case if the model can be written 

in the form 
 

ẏ = Aβ̇ + ε̇ 

 

where ẏ is  the  process  output,  ε̇ an error  term,  β̇  the parameters and A  is 

the regressor matrix. The regressor matrix includes inputs or states of the 

process.   They  are  known  during  the  model  build.   One  assumes  that  ε̇ is 

zero-mean,  normally  distributed  and  its  variance  is  V ar(ε̇)  =  σ2I .   Some 

examples of models whose parameters may be determined by the sum of 

squares estimation are given: 

• y = x1β1 + ε1 

. Σ . 
y1 x2 x1 

Σ . Σ . Σ 
β1 ε1 

• 
y2 

= 
x2    

x
x1 

β2 
+ ε2 

Note that the models m
2  

ay include nonlinear behaviour, as long as they are 

linear in the parameters. As shown in Montgomery et al. (2012), the param- 

eters that minimise the sum of squares described in equation (1) are given  

by 
 

(AT A)−1AT ̇y = β̇̂. 
 

The sum of squares estimator has several useful properties. 
 

• It is unbiased, so the expected values of the parameters are the param- 
eters minimising the sum of squares described in equation (1). 

 

• Its covariance matrix is easily obtained using the covariance of ẏ.  It is 

σ2(AT A)−1. 
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• It estimates the parameters with a minimum variance. 

• It is a maximum likelihood estimation. 

2.2.6 Validation 

After regression, the model is validated to ensure it represents the process 

correctly (Shardt, 2015). If the analysis of the model gives unsatisfying 

results, the model is modified. The modelling procedure is illustrated in 

Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 
  Yes 
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Figure 7: Modelling procedure (after Shardt (2015)) 

 

2.2.6.1 Residual Analysis 

A validation method to test the general model quality is residual analysis. 

The residual is the difference between the process output and the model 
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Good 

Data? 

Stop 
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output. If the process is modelled perfectly, the residual is zero-mean, white 

noise. Furthermore, the residuals of different outputs are independent. The 

mean of the residual is easily determined and compared to zero. To evaluate 

whether the residual is normally distributed and whether its variables are 

independent a residual analysis can be done by creating scatter plots and 

evaluating them (Shardt, 2015). This procedure requires some experience in 

residual analysis. 

 
2.2.6.2 Parameter and Regressor Analysis 

Beside residual analysis, the analysis of the parameters and regressors can 

show, which regressors contribute to the model quality. Furthermore, such 

analyses give a deeper insight into the model behaviour and hence help to 

find adequate corrections to the model. 

Possible inadequate properties of the model may be a model overfitting. 

In case of a model overfitting some of the model parameters are redundant. 

Therefore, they are 0. Overfitting can be detected by calculating the confi- 

dence interval of the parameters. If any confidence interval includes 0, the 

parameter is fixed to 0, this way the model is simplified. 

Another situation in which the model should be simplified is the case in 

which some of the parameters are equal. An equality of two coefficients is 

shown or discarded via a hypothesis test (Shardt, 2015). 

Conversely, the model can also be too simple to perform adequately. This 

results in a big value of the residuals. There are several methods that indicate 

a lack of complexity. Pearson’s coefficient of regression described in 2.3.2.3 

serves this purpose. It compares the variation of the output with the variation 

of the model output. A value  of R2  << 1 indicates that the model can still  

be improved. If the model is too simple, additional regressors can be taken 

into account. In some situations a change of model structure can improve  

the model quality, as well. It requires expert knowledge to correctly predict, 

which steps lead to a better model. 

An obvious model error is a wrong sign of a parameter. Such an error  

can occur if a relevant regressor is missed out. A high parameter variance 
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for a relatively small parameter can have the same effect. Another possible 

reason are computer errors. Multicollinearity, also known as near linear de- 

pendence, can lead to wrong signs. Multicollinearity occurs when two highly 

correlated regressors  are  used to build a  model.   Assume that   the  param- 
ˆ 

eters  are  calculated  via  the  formula  (AT A)−1AT ̇y = β, the sum of squares 

estimation described in section 2.2.5. Two nearly linear dependent columns 

in A lead to a very small eigenvalue in AT A and thus a very big eigenvalue 

in (AT A)−1. This big eigenvalue implies that small changes in y have a big 

impact on the estimate of β̇. 

 
2.3 Choice of the Bias Update Term 

The bias update term GB is essential for a the estimation of the output to  

stay close to the true value(Shardt and Huang, 2012a,b). To illustrate how  

the bias update term is used in the soft sensor, the graphic of the soft sensor 

presented in the beginning of section 2 is shown again. 

et 
 

 

 
ut 

   

 
Figure 8: Open-loop soft sensor with bias update term 

yβ,t 

yα,t + + 

GB 
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If no time delay or multirate sampling is present, GB is a transfer function 

ĜB   as described in section 2.2.1.   If a time  delay and multirate sampling is 

present in the measurements, GB is modelled as shown in Figure 9. 

 

  ŷt − yt yβ,t 

 

 

Figure 9: GB if time delay is present 

 
z−d  is a time delay block,   ĜB   is a transfer function and ZOH is a zero 

order hold, sampling every N steps. This structure remains the same if the 

values of d and N are not constant in time. 

Before  determining  the  bias  update  ĜB ,  some  preliminaries  are  set.   In 

most real systems, the time delay present is relatively small. Thus, it is rea- 

sonable to assume that d < N , where d is the time delay and a measurement 

is taken every N samples. The purpose of the bias update term is to ensure 

that the soft sensor provides good tracking. 

 
2.3.1 Tracking 

The better the estimation of a soft sensor is, the better is the tracking it 

provides. Some measures for the quality of the tracking are presented in this 

section. 

A straight-forward method of analysing the quality of the tracking of 

some soft sensor is plotting the correct values against the estimated values 

(Shardt, 2015). In such a plot, the real values form the x-axis and their 

respective estimation the y-axis. Therefore, the soft sensor provides good 

tracking if the plot is close to the x = y line. This plot can identify problems 

such as single outliers or clusters of outliers. Such phenomena usually occur 

due to bad data quality. In some applications, the majority of the estimates  

of a soft sensor is inaccurate. This can be indicated by an incorrect slope 

of the plot. In this case, the plot lies around the ax = y line, where a ƒ= 1. 
Sometimes, the estimates differ from the true value by a fixed bias. In that 

case, the plot lies around x + b = y, where b ƒ= 0. If an error in slope or 
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bias occurs, the model is inadequately chosen or its parameters were not 

determined correctly. The method that was presented only gives qualitative 

results about the tracking performance. 

Some more quantitative knowledge about a soft sensor can be made us- 

ing a performance metric on the soft sensor and some other method and 

comparing the performance of their estimation. 

 
2.3.2 Performance Metrics 

Three different performance metrics are considered. The absolute error, the 

sum of squared error and Pearson’s coefficient of regression. 

 
2.3.2.1 Absolute Error 

 

The absolute error is calculated using the absolute value of the difference 

between  measured  value  ẏ and  the  estimated  value  ẏ̂.   If  N  measurements 

are taken, it is calculated as 
 

 1 Σ
N

 

e = 
N

 

 

|y î  − yi  |. 
i=1 

 

Note that this is the averaged absolute error, due to the division by N . In 

Shardt and Huang (2012a), this error is called the average forecast error. 

 
2.3.2.2 Sum of Squares Error 

The sum of squares error is calculated using the measured value and the 

estimated value. There are several versions of the sum of squares error. They 

are multiplied with different scalars, but give the same quality of comparison 

in application. Here, the mean square error (MSE) is presented (Jin et al., 

2012). If N measurements are taken, it is calculated as 

 1  Σ
N

 

e = 
N

  
i=1 

(ŷi − yi)2. 
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2.3.2.3 Pearson’s Coefficient of Regression 

Pearson’s coefficient of regression, also known as R2 (Shardt, 2015). To 

calculate that  coefficient,  one needs the  total sum of  squares  (TSS), given  

by 
 

ΣN 

T SS = (yi − ȳ)2 
i=1 

 

where N is the number of measurements and ȳ  the mean of the estimated 

variable  ẏ̂. Furthermore,  the  sum  of  squares  due  to  regression  (SSR)  is 

needed to calculate the coefficient: 

ΣN 

SSR = (ŷi − ȳ)2 
i=1 

 

Pearson’s coefficient of regression is then calculated by the formula 
 

R2  = 
SSR

.
 

TSS 

Since the TSS and SSR are both calculated in comparison to the mean of ŷ, 

TSS must equal or bigger than SSR. Equality is only given if the estimated 

value is the same as the measurement. Thus, the coefficient takes values 

between 0 and 1, where a higher value implies a better estimation. 

 
2.3.3 State of the Art 

In Shardt and Huang (2012a), open-loop soft sensors are considered. The 

paper was published together with Shardt and Huang (2012b), a paper that 

deals with soft sensors applied to a closed loop system. Since this thesis  

only deals with open-loop soft sensors, only Shardt and Huang (2012a) is 

presented. 

Using equations based on the structure of Figure 8, a choice of the bias 
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update term can be made that provides good tracking. The equations are 

 
yt = Gput + Glet, 

yα,t  = Ĝput, 

yβ,t  = GB (ŷt − yt), 

ŷt  = yα,t + yβ,t. 

 
They may be used to form the equation 

 

ŷ   =  
Ĝp − GBGp 

u  + 
 −GBGl 

e .
 

1 − GB 1 − GB 

The assumption of a bias update term without time delay or multirate sam- 

pling time is considered, yielding GB =  ĜB .   Under  that  assumption,  the 

bias  update  term  can  be  chosen  as  a  constant  ĜB  =  KB  and  the  equation 

ŷt  = yt  holds, if KB  → ±∞.  This can be shown evaluating: 

 
ŷt 

 
= lim 

KB→±∞ 

. 
Ĝp − GBGp 

u
 

1 − G 
t
 

Σ 

+ −GBeGl 

1 − GB t 

. Σ . Σ 

= lim Ĝp − KBGp 
u
 

 
 

+ lim  −KBGl 
e
 

t t 

KB→±∞ 1 − KB KB→±∞ 1 − KB 

= Gput + Glet = yt 

 

Perfect tracking is provided for KB → ±∞. Therefore, in application, the 

bias update term must be chosen as big as possible, if no time delay and 

multirate sampling time is present. 

The paper states that this choice of bias update term does not provide 

good  tracking  in  the  presence  of time  delay.   In  case  of  delay,  GB  = z−dĜB 

holds. Therefore, the  bias  update  shows  unstable  behaviour  for  KB  → ∞ 
and does not converge to the desired limit. 

 

GB 
 

 

1 − GB 

= 
KBz−d 

 

1 − KBz−d
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Σ 

βi 

i=0 

n 

 
 

 
1 

Analysing the denominator of the function it can be shown that K d 
B= z 

yields 1 − KBz−d = 0. Thus, it is a root which is outside the unit circle for 

KB → ∞. This implies that the transfer function and hence the soft sensor 

estimate is unstable. Therefore, another structure of the bias update term 

must be found. 

Such a structure was proposed in Shardt and Huang (2012a). First, some 

conditions to the structure of the bias update term are stated. It is assumed 

that the term is a transfer function of the form 
Σna   αiz−i 

ΣGB =i=0 

β z 
.  

 

nb 

i=0 i 
−i 

 

To ensure that the estimation ŷt  converges to yt, the steady state behaviour is 

considered. It is assumed that all variables converge and the values from past 

time steps become equal to current values. This assumption yields z−1 → 1. 

For t → ∞, the equation 

   GB  

1 − GB 

 

= −1 

must  hold  for  the  error  transfer  function  of  ŷ  being  the  same  as  the  error 

transfer function of y. This implies, that 

. Σ n
i=a0 αi  Σn 

a 

 

 
Σ 

GB b
 

Σ = i=0 

 

 

= Σna
 

i=0 αi 
α

 

Σna 

 
 

lim 

 
1 − GB 

1 − Σna  αβ i 
nb 
i=0 i 

 
 

i=0 

 
i=0  

βi − 

i=0 i  

= −1. (2) 

 

 

z−1→1 

This equation implies, that 
Σna βi = 0. Any bias update term must fulfil 
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this equation to provide good tracking. Furthermore, another condition was 

 

 

 

 
stated to minimise the effort to find the roots. It is 

 

 

 

 

 

 

 

 

 

 

αk − βk 0 ∃ k such that 0 < k < max(na, nb), 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
αl  − βl = 0 ∀l ƒ= k. (3) 
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Using the results from equation (2) and (3), a bias update term stabilising 
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G e 

 

 

 
 

a system with time delay is given. It is 
 

z−d 

GB = 
1 − z−d . 

Another bias update term is proposed that provides good tracking for mul- 

tirate sampling times. It is 

1 

GB = 
1 − z−N . 

Both the soft sensor with time delay and the soft sensor with multirate sam- 

pling time were tested in simulation. The simulation shows good performance 

of both soft sensors. This performance is evaluated mathematically.  Proof  

is given that the two soft sensors perform well in their respective case. The 

proof for multirate sampling times provided in the paper was extended and 

explained in detail in section 3. Regarding the proof of a case with a time 

delay and no multirate sampling time, Shardt and Huang (2012a) stated that 

 
lim  (ŷ ) =   lim 

. 
Ĝp − GBGp 

u
 

 
 

Σ 

+ −GBeGl 
 

 

t z−1→1 z−1→1. 1 − GB 
t 

1 − G t 

 
= lim 

 

Ĝp
 

Σ 

u
t 

+ lim 

. B Σ 
 −GB 

G u
 

p t 

 
+ lim 

.
 −GB 

Σ
 

l t 

z−1→1 1 − GB z−1→1 1 − GB z−1→1 1 − GB 

= 0 + lim 
z−1→1 

(Gput + Glet) 

= lim 
z−1→1 

(yt) . 

Stability of the estimate can be shown by evaluating the roots. 
 

z−d 1 − z−d 

1 − GB = 1 − 
1 − z−d = 

1 − z−d = 1 

Regarding the case of time delay and multirate sampling time, it was 

stated, that for a delay d and a sampling of the bias update term N , several 

cases must be considered. For the case that d ≤ N , the transfer function for 
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ˆ 

 

 

 
 

the multirate case  
 

1 

GB = 
1 − z−N 

is used. Proof that this choice of bias update term is adequate is given in 

section 3. Performance of such a soft sensor is shown in section 4.2. 

For the case that d > N , no general solution is given. However, it is 

proposed that if the delay is a multiple of the sample time, the bias update 

term of the delay 

 

 

 
is used. 

z−d 

GB = 
1 − z−d 

 

2.3.4 Bias Update Termfor Parameter Variation 
 

This thesis does consider the presence of a time delay and multirate sampling 

times. Furthermore, it is assumed that both the sampling time and the time 

delay are variable in time.    The time delay is assumed to be in the range 

d ∈ [dα, dΩ]. The sampling time is assumed to be in the range N ∈ [Nα, NΩ], 

where the range is referred to as S := [Nα, NΩ]. Note that everything that 

holds for variable sampling time and delay does hold for constant sampling 

time and delay since the upper and lower bound can be chosen equal. 

It is assumed that dα ≤ dΩ < Nα ≤ NΩ, so the sampling time is always 

bigger than the time delay. It holds qNα < NΩ ≤ (q + 1)Nα, where q is an 
integer value. 

A  linear  transfer  function  is  used  as  ĜB .  If  N  is  constant,  the  transfer 

function is 

 

 

  1  

GB = −
1 − z−N . (4) 
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i=Nα 

 

 

 

 

If N is variable, the transfer function is 

Ĝ = −  1 
 

 

 

(5) 

B 
|S| − 

ΣNΩ z−i 

where |S| is the cardinality of the set S including all sampling times. 
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3 Proof of Adequacy of Bias Update Term 

To show the influence of GB in the presence of time delay and multirate sam- 

pling times, the behaviour of ŷt  is shown at a time step where a measurement 

is taken. In this step the equation 

ŷt = Ĝput + GB(ŷt − yt) (6) 

holds.  Since GB  includes a time delay, the values (ŷt − yt) are delayed by d 
steps. Thus, the equation is 

 

ŷt = Ĝput + ĜB (ŷt−d − yt−d). 

Note  that  ŷt  =  yα,t  + yβ,t  and  the  value  yβ,t  is  part  of  the  feedback  loop. 

Hence, it is sampled with a zero order hold. Since d < N at any point of 

time, yβ,t−d = yβ,t−N . So the equation (6) is 

yα,t + yβ,t  = Ĝput + ĜB (yα,t−d + yβ,t−N  − yt−d). 

This equation is re-organised. First all terms including yβ,t are put to one 

side of the equation and all other terms to the other side. 

 

yβ,t − ĜB yβ,t−N  = Ĝput + ĜB(yα,t − yt−d) − yα,t 

Now, the delay of some variables is not described in the index, but with a 

delay term. 

 

yβ,t − ĜB z
−N yβ,t  = Ĝput − ĜB yt−d + ĜBz−dyα,t − yα,t 

The equation is re-organised: 

 

(1 − ĜB z−N )yβ,t = Ĝput − ĜB yt−d + (ĜBz−d − 1)yα,t 
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Both sides are divided by (1 − ĜB z−N ). 

Ĝp ĜB 
ĜB z−d − 1 

y
 

yβ,t = 
 

 

1 − ĜB z−N 
ut − 

1 − Ĝ
B 

z−N
 

yt−d + 

1 − Ĝ
B

 

z−N 

α,t 

Due to the system equation from Figure 1, yt−d = Gput−d + Glet−d. This is 

used to further re-organise equation (6). 
 

Ĝp ĜB 
ĜB z−d − 1 

y
 

yβ,t = 
 

 

1 − ĜB z−N 
ut − 

1 − Ĝ
B 

z−N
 

yt−d + 
1 − Ĝ

B
 
z−N 

α,t 

Since yt = Gput + Glet, this implies 

 
Ĝp 

ĜB Gp ĜB Gl ĜB z−d − 1 
y .

 
yβ,t = 

 
 

1 − ĜB z−N 
ut − 

1 − Ĝ
B 

z−N
 

ut−d + 

1 − Ĝ
B 

z−N 

et−d + 
1 − Ĝ

B
 

z−N 

α,t 

With ut−d = z−dut and et−d = etz−d, the term can be simplified: 

Ĝp − ĜB Gpz−d ĜB Glz−d ĜB z−d − 1 

yβ,t = 
1 − Ĝ

  
B 
z−N 

ut − 
 

1 − Ĝ 

et + 

Bz−N 1 − ĜB 
z−N 

yα,t (7) 

This  equation  is  now  used  to evaluate  what  choice  of  ĜB  is adequate.   The 

bias update term must ensure that the estimate converges to the correct 

value. This is shown by demonstrating that for t → ∞ the estimation is  

exact and by showing that the estimation has a stable behaviour. 

 

3.1 Behaviour for t → ∞ 

To ensure good tracking of a soft sensor, the behaviour of the estimation for 

t → ∞ is considered. It is shown that the bias update term for both the case 

of constant sampling time (4) and the case of variable sampling time (5) are 

chosen in a way that limt→∞ ŷt  = limt→∞ yt.  For a constant input, the output 

of the bias update term converges to this value and remains stationary if it 

reaches the value. For a stationary value, the past outputs are equal to the 

present output and all past inputs are assumed equal to the present input. 

Thus, the equation yk−1 = yk and uk−1 = uk hold for any k in the stationary 
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z−1→ 

B 

 

 

 
 

state. Therefore, it is assumed that z−1  = 1 and z−k  = 1 for all integer 

values in k. Thus, the limit the transfer function converges to is determined 

by limz−1→1(G(z−1)). 

Lemma 3.1 

bias update term GB taken from (4) two equations hold: 

ĜB z−d 

1 − Ĝ z−N 
= −1 

1 
= 0 

1 − ĜBz−N 

 
Proof : 

To prove this, the bias update term 

1 

1 − z−N 

is inserted into the equation. Then, the equation is simplified, leading 

to the desired result. 
.
 

lim 

 
t̂t 

Σ 

Bz−d = 

 

. z−d Σ 

−1−z−N 

. 
z−1→1 1 − 

t̂t 

lim 
B z−N 

Σ 

 
z−1→1 

 
 

 
1 + z

−N 

1−z−N 

= lim −z−d = lim . Σ 
z−d 

 

z−1→1 

 
 

1 − z−N + z−N 

− 
z−1→1 

= −1 

The same thing is done to show the second equation. 
.
   

Σ . Σ 

lim 
1  

= lim   1  
z−1→1 1 − ̂tt 

B z−N z−1→1    

Σ 
. 

1 −Nz−N 
N

 
 

 

1 + z
−N 

1−z−N . 
−N 

Σ 

= lim 
z−1→1 

1 − z− + z− 
= lim 

1 

1 − z = 0 

For the 
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i=Nα 

−|S|− z 

z 

|S|− ΣNΩ i 

B 

α 

B 

 

 
 

Lemma 3.2 

bias update term GB taken from (5) two equations hold: 

ĜB z−d 

1 − Ĝ z−N 
= −1 

1 
= 0 

1 − ĜBz−N 

 
Proof : 

To prove this, the bias update term 

tt̂ = −
  1 

 

B 
|S| − 

ΣNΩ z−i 

is inserted into the equation. Then, the equation is simplified, leading 

to the desired result. 

. 
lim 

 

t̂t 

 

Bz−d 
Σ 

= lim 
z−d 
ΣNΩ −i 

  Nα  

z−1→1 
1 − 

t̂t 
. 

B z−N 

− 

 
−1z →1 1 + 

 

Nα 
−N 

|S|−
ΣNΩ  z−i 

−z d   −1  

 
= 

z
l−i1m→1

 

z− 
Nα + z−N 

= |S| − |S| + 1 
= −1

 

The same thing is done to show the second equation. 
 

lim  
.
  1 

Σ
 

z−1→1 1 − tt̂ z
−N

 

 
= lim 

−1z →1 

 
  1  

z−N ΣN 

. Σ 1 + |S|− NαΩ  z−i 

− 
|S
Σ
| − NΩ z−i Σ    

 
= lim 

z−1→1 

|S|− 
NΩα  z−i +z−N 0 

 

= = 

|S| − |S| + 1 

For the 

Σ 
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Theorem 3.1 

For both bias update term proposed for the case of constant time delay 

given in (4) and the bias update term proposed for a variable time delay 

(5), holds: 

 
lim ŷt  =  lim yt 

t→∞ t→∞ 

 

Proof : 

The equation (7) can be converted to the desired form using Lemmata 

3.1 and 3.2, if t → ∞ is assumed. 

 
yβ,t = 

1 − t̂t B  
z−N 

ut − 
1 − tt̂

Bz
 

N 1 − ̂tt B 

The equations are re-organised. 

1 ˆ 
 

 

 
t̂t 
 
Bz−d 

ˆ
 
 

t̂t 
 
Bz−d 

yβ,t = 1 − tt̂B z−N ttput − 
1 −

 B
ˆ   −N 

ttput − 
z−N 

ttlet 
B
ˆ
 t̂t 

Bz−d tt z y 
1 − tt 

     1  α,t 

+ 
1 − tt̂zB−N 

yα,t − 
1 − tt̂   B z

−N
 

Now Lemma 3.1 and Lemma 3.2 are used. Since for t → ∞ 

t̂t 
Bz−d 

1 − ̂tt 

1 − ̂tt 

B z−N 
= −1, 

1 
= 0 

B z−N 

the equation above can be simplified: 
 

yβ,t  =0t̂t put + 

t̂t 
put + ttl et − yα,t − 0yα,t 

 

If yα,t is added to both sides of the equation, the equation simplifies, 

yield- ing the sought result. 

 

yα,t + yβ,t  = ttput + ttl et  = ŷt  = yt 
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1−ˆ −Ntt   z 

1 ˆ −N 

 
 
 

 

To show the adequacy of the bias update term, theorem 3.1 was proven. It 

was shown that if the estimation behaves asymptotically stable, it will con- 

verge to the true value without bias or slope. The stability of the estimation 

must still be proven to show that the soft sensor provides good tracking. 

 

3.2 Stability 

Toensure stability, the stabilityof the transfer function tt̂B z
−d

 
B 

 
 

and  1 
 

1−t̂t B z
−N

 

must be shown.  Assuming stability of Gput, Ĝput, Glet and yα,t, stability of 
t̂t Bz−d 

1−t̂t B z
−N

 
and  1 

 
1−t̂t B z

−N
 

implies stability of y 
 
β,t and hence, stability of the 

estimation ŷt. 
To show that the estimate is stable, proof is given that tt̂B z

−d

 
 

and 
 

 

  1  
1−t̂t B z

−N
 

1−t̂t B z
−N

 
are stable. This is sufficient to guarantee stability of the estimation 

for a system with multirate sampling time and time delay. Two separate 

proofs are given for the case of a constant sampling time and the case of a 

varying sampling time. The time delay is assumed variable for both proofs. 

Stability of ŷt  is shown using equation (7). 

 
3.2.1 Stability for Constant Sampling Time 

To show stability for a constant sampling time, the roots of the two transfer 

functions 
t̂t Bz−d 

1−t̂t B z
−N

 
and  1 

 
1−t̂t B z

−N
 

must be shown to be stable. Since both 

transfer functions share the same roots, it is sufficient to show that tt̂B z
−d

 

−tt B z 

only has stable  roots.  With  ĜB  given  in equation  (4),  the  roots  of  ĜB  are 

determined. Since 
 

ˆ −d z−d 

−d
 

 
 GBz =   − 1−z−N    =  −z = −z−d 

 

1 − ĜBz−N 
1 + z

−N 

1−z−N 

1 − z−N + z−N 

ĜB  has no unstable roots.  Therefore, the soft sensor provides good tracking. 

 
3.2.2 Stability for Variable Sampling Time 

The variable sampling times convert the linear system to a switched linear 

system. Since it is not sufficient to show that the estimation stays stable for 
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i=Nα 

| i=ΩNα 

 

 

 

each fixed sampling time N ∈ S, analysing the roots of the transfer functions 

is not sufficient (Lin and Antsaklis, 2009). To show the asymptotic stability 

of the switched system, a theorem from Bauer et al. (1993) is used. 

Theorem  3.2 (Bauer-Premaratne-Durán  Theorem ) 

A switched linear system xk+1 = Aσ(k)xk, where Aσ(k) ∈ {A1, A2, ..., AM }, 

is asymptotically stable under arbitrary switching if and only if there 

exists a finite integer n such that 

 

||Ai1Ai2 . . . Ain||∞ < 1 

for all n-tuple Aij ∈ {A1, A2, . . . , AM }, where j = 1, ..., n. 

The  norm  used  by  the  Bauer-Premaratne-Durán  theorem  is  the  maximum 

norm. It is the biggest absolute value of the matrix entries. Proof of the 

theorem is given in Bauer et al. (1993). 

To  verify  whether  the  Bauer-Premaratne-Durán  theorem  applies  to  the 

system, a state space realisation of the transfer functions tt̂ B z
−d

 

1−t̂t B z
−N

 

and  1 
 

1−t̂t B z
−N

 

must be found for every combination of the current sampling time N and 

sampling times for the past time steps. Since the state space realisation of 

the two transfer functions is the same, it is sufficient to analyse tt̂B z
−d      

. 
1−t̂t B z

−N
 

The sampling time at the current sampling step is N0. The sampling time of 

the last sampling step is N1, the sampling time before that N2 and the prior 

sampling times are described analogously, up to Nq. The bias update term  

is given as 

Ĝ = −  1 
 

B 
|S| − 

ΣNΩ z−i 

where |S| is the cardinality of the set S including all sampling times. There- 
fore, the matrix A is built by analysing 

 

ĜB z−d z−d 
 

 

= 
yB . 

 
 

1 − ĜB z−N 0
 

= − ΣN z−i + z−N0 uB 

S| − 

Both sides are multiplied with the denominators. The sum is divided into 
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j=0 j=0 

B    B    

 

 

 
 

the sum before the subtracted value and after the subtracted value z−N0 . 

. 

|S| − 

N0−1 

 
i=Nα 

 
z−i − 

 

NΩ 

 
 

i=N0+1 

Σ 

z−i 

 
yB = −z−duB 

 

Now, the term including the current output of the bias update term is brought 

to one side of the equation and all other terms to the other side. 

 
|S|yB = 

NΣ0−1 

 
i=Nα 

 
z−iyB + 

ΣNΩ 

 
i=N0+1 

 
z−iyB −z−duB 

 

Both sides of the equation are divided by |S|. 

y = 
NΣ0−1 

z−i 
y + 

NΩ z−i 
y
 − z−du 

 
(8) 

 
i=Nα 

|S| i=N0+1 
|S|

 
 

All values considered by the bias update term were taken at the discrete 

sampling points. For  example, the  values  between the last measurement 

N0 steps in the past and the current time step are held constant and are 

z−iyB = z−N0 yB for all values i ∈ [Nα, N0]. The variance of the sampling 

time is assumed high. The range of sampling times is defined as qNα < NΩ ≤ 
(q + 1)Nα, where q is an integer value. 

Therefore, the considered measurements can come from several time steps 

in the past.  For i ∈ [N0 + 1, NΩ], it is possible that 
Σr−1 

Nj  < i ≤ 
Σr 

Nj , 

with r ∈ [0, q]. Hence, the measurement considered by the bias update term 

can come from up to q + 1 different measurements steps in the past. Note 

that z−iyB = z−
 

Σr 

j=0 
Nj yB due to sampling. 

B B 
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j=0 j 

B    B    

i 

 

 

 
 

This is used to re-organise equation (8). This leads to 
 

y =  
NΣ−1  

z−i 
y + 

NΩ z−i 
y
 − z−du 

 
i=Nα 

|S| i=N +1 
|S|

 

z−N0  

y  +
 

 
 

r−1 
Σ
−z
 

N 
j=0 Nj y + 

= (N0 − Nα) 
|S| B 
r−1 

i 

i=1 Σ
− r      Nj 

|S| B 

+(NΩ − 
 
 

j=0 

Nj) 
z
 

j=0 

|S| 
yB − z−duB 

where r is the biggest integer value with 
Σr−1 

Nj < NΩ ≤ 
Σr 

=0 Nj.  Defining 

the state of the state space as ẋT  = (yB  yBz−1 . . . yBz−(2NΩ−1)), a state space 

realisation is given as 

 
xm+1  = Aẋm + Bum 

 
where A is the state space matrix and B = −(0 · · · 0 1 0 · · · 0)T the input 
matrix, with the value equal 1 in the dth row. The output is irrelevant for 

stability, so C and D are not given. A ∈ R(2NΩ−1)×(2NΩ−1) is constructed as 

A = 
   N −

Σr−1 N 

0N0−1×1 N0−Nα 

|S| 
0N1−1×1 N1 

|S| . . . 
Nr−1 

|S| 
0Nr−1−1×1 Ω j=0 

|S| 
j 

0 . . . 0 

1 0 . . . 0 0 

. . . 
. ..

 

0 1 . . 

0. . . . 1 0 

(9) 
 

To apply the Bauer-Premaratne-Durán theorem to the system of interest, 

B B 
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the matrices A are considered as the sum of two matrices, being 
 

A = Λi + M0 =  
N  N −

Σr−1 N 

0N0−1×1 N0−Nα 

|S| 
0N1−1×1 N1 

|S| 

. . . r−1 

|S| 

Ω j 

0Nr−1−1×1   j=0  

|S| 
0 . . . 0 

0 . . . 0 0 

. 
.. . . . 

0 . . . 0 0 
 

 

 

 

+ 
 

 

 

 

 

Note that Λi only has entries in the first row which are all positive and add 

up to less than one.  M0  is the subdiagonal shifting matrix.  A property of  

the matrix Λi is shown in Lemma 3.3. 

Lemma 3.3 

Given  Λi as above. For any matrix X ∈ R(2NΩ−1)×(2NΩ−1) holds the 
inequation 

 

||ΛiX||∞  < ||X||∞. 

 
Proof : 

The Lemma is proven by converting a general form of ||ΛiX||∞ to a form 

that obviously is smaller than ||X||∞ using upwards estimations. 

First, the multiplication of the matrices Λi and X is done. The 

entries of  X are xi,j,  where i  is the number of the  row of the entry  

and j the 

0 

1 

0 

. 

0 

. . . 

. . . 

0 

0 0 

.. . . 

0 

0  1 

. 
. 

0 . . . 0 
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Ω j 

0 

x 0 ( 

(N − 

k=0 

 

 

 

number of the column. 
 

ΛiX =  
N0−Nα 

Σr−1 Ni 
(N −

Σr−1 N ) 
j=0 

|S| 

. 

xN ,j + i=1 |S| x(
Σik=0 

Nk),j 
+ 

|S| 
x

(
Σkr=−01 

N(k)),j    
. . . 

. 

0 . . . 0 

  
. 

. . . . 
0 . . . 0 

Now, the norm of this matrix is calculated. It is the maximum of the 

absolute value of all entries. Since all rows except the first are zero, 

N0 −Nα 
 

 

Σ Ni Σ +
 

 

||Λi X||∞ =max j(| 
Σ −

(N |S|
r  1

 −
j=0 

N ,j + r−1 

i=1 
|S| 

x i 
k=0 Nk),j 

+ 
|S| 

x(
Σr−1 N (k)),j |). 

N  )Ωj 
k=0 

By splitting the equation, an estimation upward is made. 
 

||ΛiX|| ∞ ≤maxj(| N0 − Nα 
 

 

rΣ−1 xN0,j |) + maxj (| 
Ni x( Σi 

 
 

Nk),j |)+ 

 
+ max (| 

 

|S| 
Σ − r 1 

j=0 

 
 

x Σr−1 

i=1 
|S| k=0 

 

 

|) 

N|S)jΩ| 
( k=0N (k)),j 

The constants are all bigger than zero and are not affected by the maximum 

function. 

N − N  rΣ−1 
N

 
||ΛiX|| ∞ ≤ 

0 α 
maxj (|xN0,j |) + 

i 
maxj (|x( Σ

i
 N ),j |)+ 

|S| Σ −
(N   −r  1 

i=1 
|S| k=0 k 

+ 
j=0 

N|S)jΩ
|
 

maxj (|x(
Σr−1 N(k)),j |) 

Since all entries in X are smaller than its maximum norm, an estimation 

upward for the maximum terms can be made. 
.  

r−1 (N − 
Σr−1 N ) 

Σ 
||ΛiX||∞ ≤ N0  − Nα + Σ Ni + 

Ω j=0 
j
 

|S| 
i=1 |S| |S| 

||X||∞ 

j 

. . . 
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i=Nα 

i=1 

i=1 

 

 

 

The sum of the constant is calculated. 

N0− N  Σr−1 Ni
 (NΩ  −

Σr−1 Nj) N − N  |S| − 1 
 

|S| 
α + 

i=1 |S| 
+

 
j=0 

|S| = 
Ω

|S| 
α =

 

|S| 

Since |S|−1 < 1, the Lemma is proven. 
|S| 

||Λ X|| ≤
|S| − 1

||X|| < ||X|| 

i ∞ 
|S| 

∞ ∞
 

 

Now the stability of the switched system is shown. 

Theorem 3.3 

The switched system with the sampling time 

 
N ∈ S, dα ≤ dΩ < Nα ≤ NΩ < (q + 1)Nα 

Ĝ = −  1 
 

 
 

B 
|S| − 

ΣNΩ z−i 

is asymptotically stable for arbitrary switching N . 

 
Proof : 

Asymptotic stability of the system is shown using theorem 3.2. To 

apply it, it is shown by induction and application of Lemma 3.3, that 

the considered 

system has state matrices that have the property || 
Q2NΩ−1 Aij||∞ < 1 for 

any choice of Aij. 

Given Aij, j = 1, ..., n being n matrices in the form described as in 

equation (9). Choose n = 2NΩ − 1. It is shown by induction that the first 

k lines of the matrix product 
Qk Aij only consist of entries < 1 and all 

other values are ≤ 1. 

k = 1: trivial 

k > 1: 

 

 
Y

k 
Y
k 

Aik = Ai1 

i=1 i=2 

 
 
 

Aik 
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i=1 

 
 
 

 
Since the matrices are arbitrary, new indices can be chosen. 

k−1 k−1 k−1 k−1 

Ai0 

Y 
Aik = (M0 + Λ0) 

Y 
Aik = M0 

Y 
Aik + Λ0 

Y 
Aik. 

i=1 i=1 i=1 i=1 
 

Any matrix multiplied with the shifting matrix from the left is shifted 
Q 

one row below. Thus, due to the induction hypothesis, 
i
M
=10 k−1 Aik has 

only values < 1 in the first k lines and values ≤ 1 in the other lines. 
Due to Lemma 3.3, 

k−1 k−1 

||Λ0 

Y 

Aik||∞ < || 

Y 

Aik||∞ ≤ 1 
i=1 i=1 

kY−1 

=⇒ ||Λ0 Aik||∞  < 1. 
i=1 

 
Note that Λ0 only has entries in the first row and M0 no entries in the first 

row. Hence, the induction hypothesis holds. 

By choosing k = n, it is shown that || 
Qk Aik||∞ < 1. Thus, the Bauer- 

Premaratne-Durán  theorem  3.2  can be applied  and the system  is asymp- 

totically stable for arbitrary switching. 
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4 Application 

The method of the latter chapter is applied to a simulation of a system. The 

simulation is done under various conditions. 

 
4.1 Simulation Setup 

The system to which the soft sensor described in section 2 is applied to is 

called the continuous stirred tank reactor (CSTR), proposed in Morningred 

et al. (1990).     It is used as a benchmark in several publications (Huang      

et al., 2000; Zhang et  al., 2016;  Shardt and Huang,  2012a,b).  The CSTR  

is a nonlinear system, modelling an irreversible, exothermic reaction, where 

the substrate A reacts to the product B. The reactor is cooled by a single 

coolant stream and modelled by the differential equations 

V  ̇ .  E 
Σ

 

ĊA  = 
V 

(CA0 − CA) − k0CA exp − RT 

˙  
V˙ . Σ 

T =  (T0 − T ) − 
(−∆H)k0CA 

exp −
 E 

+
 

ρccpc ˙ 
.

 
 

 

. ΣΣ    hA  
+ ρc VV c 1 − exp − V˙ρ c (TC0 − T ) 

p c c pc 

 
where the nominal values are given in table 1. 

The system is implemented in MATLAB/SIMULINK and simulated. The 

input of the system in the implementation is the coolant flow rate V̇c.  It is 

chosen as a step function in simulation. The inlet flow rate V  ̇ is considered 

a disturbance and implemented as coloured noise. It is created from a trans- 

fer function that is applied to white noise. The behaviour of the substrate 

concentration CA of the CSTR in simulation is displayed in Figure 10. The 

goal of the implemented soft sensors is to estimate this variable at all points 

of time. 



50  

 

 

 

 

Table 1: Nominal CSTR parameter values 
 

 
product concentration CA 0.1 mol/l 

reactor temperature T 438.54 K 

coolant flow rate V̇c
 103.41 l/min 

process flow rate V˙ 100 l/min 

feed concentration CA0 1 mol/l 

feed temperature T0 350 K 

inlet coolant temperature TC0 350 K 

CSTR volume V 100 l 

heat transfer term hA 7 × 105 cal/min/K 
reaction rate constant k0 7.2 × 1010min−1

 

activation energy term E/R 1 × 104 K 

heat of reaction ∆H −2× 105 cal/mol 

liquid densities ρ, ρc 1 × 103 g/l 
  specific heats cp, cpc 1   cal/g/K  

 

 

 

 

 

Figure 10: Substrate concentration CA of the CSTR 
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4.2 Simulation 

In this section, the model of the CSTR is used to test the performance of the 

traditional soft sensor from section 2.3.3 and its modification from section 

2.3.4. They will be simulated one at a time to compare their performance 

once all approaches were simulated. The simulink implementation is visu- 

alised in the appendix in Figure 18. 

The case of a constant time delay and a constant sampling rate of the bias 

update term is assumed in the traditional approach as described in section 

2.3.3 and Shardt and Huang (2012a). For constant N and d, the method 

proposed in section 2.3.4 proposes the same bias update term. Therefore, no 

comparison of the methods can be done in this case. Still, the results are 

presented to show how the methods deal with a soft sensor with time delay 

and multirate sampling time.  For  a time delay d = 1 and a sampling time 

N = 3, a bias update term is used. 

GB = z−dĜB  = z−1  1  

1 − z−3 

To evaluate the accuracy of the estimation with a bias  update  term,  

three variables from the simulation are displayed. One of  the variables is  

the measured concentration CA of the substrate A, the value that shall be 

estimated. It is denoted as ’real output’ and displayed as the green line. The 

next variable displayed is the output of the system model. It is denoted as 

’simulated output’ and displayed as a red line. The third and last variable 

displayed is the soft sensor estimate of y. It is denoted as ’estimated output’ 

and displayed as a blue line. The parameters chosen for the soft sensor are 

given in the caption. This notation will be used for all graphics displayed in 

this section. 

The results for the simulation of a soft sensor with a time delay d = 1  

and a sampling time N = 3 are displayed in Figure 11. 

− 
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Figure 11: Soft sensor estimation of CA for d = 1 and N = 3 

 
During the first 20 time steps the system does not react to the input due to 

a time  delay.  The linear model does react to the input and converges to  its 

steady state for the given input.  The model output and true output do   not 

converge to the same value due to non-linearity. However, the estimation by 

the soft sensor is quite accurate. 

Assume the time delay d ∈ [1, 2] and the sampling time N = 3.  In  this 
case,  the  premises  of  the  traditional  soft  sensor  are  not  fulfilled.  However, 

the bias update term proposed by the method from section 2.3.4 is the same 

as for the traditional soft sensor. Due to the sampling time being higher 

than the time delay, the soft sensor for d ∈ [1, 2] behaves very similarly to 
the case that d = 1. The simulation results are shown in Figure 12. 
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Figure 12: Soft sensor estimation of CA for d ∈ [1, 2] and N = 3 

By direct comparison, one notices that the estimation in the first time 

steps is slightly worse for d ∈ [1, 2] than for d = 1. However, the behaviour 

for d ∈ [1, 2] appears to be very similar to the behaviour for d = 1. Looking 

at all simulations, the qualitative results for choosing d = 1 and d ∈ [1, 2] 

are the same, even though the estimation is less accurate for d ∈ [1, 2]. Since 

in all implementations, the distinguishing features between the traditional 

approach and the proposed approach are more visible for d ∈ [1, 2], only 

those results are shown. Assuming the time delay d ∈ [1, 2] and the sampling 

time N ∈ [3, 5], a bias update term according to the method given in section 

2.3.4 is used: 
 

GB = z−dĜB  = −d
  1  

3 − z−3 − z−4 − z−5 

As shown in Figure 13, the method gives an unbiased estimate of the sub- 

strate concentration. 
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Figure 13: Soft sensor estimation of CA for d ∈ [1, 2] and N ∈ [3, 5] 

Due to the variable sampling time and the widespread consideration of 

past  values  in  ĜB ,  the  estimate  of  the  soft  sensor  converges  to  the  correct 

value slower than in the previous cases. However, it is seen that it reaches  

the correct level of the output values and stays stable in its estimation. 

To use the traditional soft sensor on the problem, one has to decide which 

sampling time to pick for the bias update term. The possible sampling times 

to be chosen are 3, 4 and 5. 

By  choosing  N̂   = 3, the bias update term of the traditional approach 

is  Ĝ = 1 
 

1−z− 3 . The simulation for a system with a delay d ∈ [1, 2] and 

sampling time N ∈ [3, 5] is shown in Figure 14. 
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Figure 14: Soft sensor estimation of CA for d ∈ [1, 2] and N = [3, 5], 
using N̂  = 3 for the soft sensor 

 

The estimation of the traditional approach with N̂ 

value of the estimation diverges rapidly. 

= 3 is unstable. the 

 

By choosing N̂  = 4, the bias update term of the traditional approach is 
Ĝ = 1

 
 

B 1−z− 4 . The simulation for a system with a delay d ∈ [1, 2] and sampling 

time N ∈ [3, 5] is shown in Figure 15 and Figure 16. Since the results are 

not conclusive about the stability of the estimation, one simulation with 200 

steps is made and one simulation with 2000 steps. 



using N̂  = 4 for the soft sensor and s5im4 ulating 2000 steps 
 

 

 

 

 

 
 

 

 

Figure 15: Soft sensor estimation of CA for d ∈ [1, 2] and N = [3, 5], 
using N̂  = 4 for the soft sensor 

 
 

 

Figure 16: Soft sensor estimation of CA for d ∈ [1, 2] and N = [3, 5], 
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The results seem better than the results for N̂  = 3 on first sight. When 

simulated for 200 steps, the estimation is generally close to the correct value. 

However, there are some peaks with a high estimation error. 

Those peaks become bigger with increasing estimation time. Thus, this 

estimation shows to be unstable, as well. This is shown by simulating the 

estimation for 2000 steps instead of 200 steps. 

When choosing N̂  = 5, the bias update term of the traditional approach 

is  Ĝ = 1 
1−z− 5 . The simulation for a system with a delay d ∈ [1, 2] and 

sampling time N ∈ [3, 5] is shown in Figure 17. 
 

 

 
Figure 17: Soft sensor estimation of CA for d ∈ [1, 2] and N = [3, 5], 
using N̂  = 5 for the soft sensor 

 
Regarding the first 200 steps, the estimation shows strong oscillation. If 

only the 200 steps are considered, the instability becomes evident by com- 

paring the magnitude of the oscillation in the first steps and in the last steps. 

The instability becomes more visible when looking at a simulation including 

more time steps. 
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Apparently, the traditional soft sensor does not succeed to give a stable 

estimate of the substrate concentration if the sampling time is variable. On 

the other hand, the method proposed in section 2.3.4 provides good tracking 

in simulation. 
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5 Conclusion 

This thesis proposed a method for designing a soft sensor that estimates vari- 

ables in the presence of variable time delay and variable multirate sampling 

times. The objectives of the thesis were given as 

1. The soft sensor method applicable in the presence of multirate sampling 

and time delay presented in Shardt and Huang (2012a,b) is reviewed. 

2. The method is tested in simulation. 

 

3. An alternative approach is proposed which is designed to perform better 

for variable sampling times and variable time delays. 

4. Mathematical proof for the adequacy of the modified method is given. 

 

5. The convergence of the method is shown in simulation. 
 

To objective 1: Details to the soft sensor method  for  multirate sampling 

time and time delay are given in section 2.3.3. The method considered uses  

a linear model of the system of interest in combination with a bias update 

term (Shardt and Huang, 2012a,b). 

To objective 2: Section 4.2 gives results of the simulation of the soft sensor 

from section 2.3.3 on a nonlinear system. The soft sensor gives a stable 

estimation for a constant time delay and a constant sampling time. The 

performance hardly worsens if the time delay is assumed variable. However, 

for a variable sampling time the estimation of the soft sensors is unstable in 

simulation, regardless of the choice of time delay. 

To objective 3: An alternative approach to estimate variables in the pres- 

ence of variable multirate sampling time and variable time delay was proposed 

in section 2.3.4. The method proposed is a generalisation of the method given 

by Shardt and Huang (2012a,b). It uses a linear system model and a bias 

update term. However, the bias update term does not only consider one 

sampling time, but all possible sampling times in each step. The time delay 

is assumed smaller than the sampling time, since this situation is favoured  

by the literature proposing the algorithm and common in application. 
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To objective 4: The tracking abilities of the soft sensor are shown in sec- 

tion 3. It is proven that the method gives an asymptotically stable estimate 

converging to the true value. 

To objective 5: Simulation results confirming the convergence of the mod- 

ified method were shown in section 4.2. The test of the method in simulation 

gives stable results for both constant sampling times and variable sampling 

times, regardless whether the time delay is constant or variable. 

Future work will consider the application of the proposed method in a 

closed-loop implementation. Furthermore, the restriction on the time delay 

can be removed,  showing whether the system remains stable.  Simulation  

on the CSTR gives reason to assume that the proposed method gives good 

results for closed loop implementations. In case of a relaxation of the time 

delay, the stability can only be observed in some cases. For a general proof of 

stability for arbitrary time delays, some more modifications of the algorithm 

must be considered. 
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Appendix 
 
 
 

Figure 18: Simulink model 


