
Pontificia Universidad Católica del Perú

Escuela de Posgrado

Tesis de Maestría

Autonomous Obstacle Avoidance and Positioning
Control of Mobile Robots Using Fuzzy Neural Networks

Para obtener el grado de:
Magíster en Ingeniería de Control y Automatización

Presentado por: Anna-Maria Stephanie Grebner

Tutor Responsable (TU Ilmenau): Prof. Dr.-Ing. Johann Reger

Professor Responsable (TU Ilmenau): Prof. Dr. Kai Wulff

Professor Responsable (PUCP): Prof. Dr. Antonio Manuel

Moran Cárdenas

Fecha y Lugar: Octubre, 2018

Declaration

I declare that the work is entirely my own and was produced with no assistance from

third parties.

I certify that the work has not been submitted in the same or any similar form for

assessment to any other examining body and all references, direct and indirect, are

indicated as such and have been cited accordingly.

(Anna-Maria Grebner)

Ilmenau, 17 September 2018

Abstract

iii Master Thesis Anna-Maria Grebner

Navigation and obstacle avoidance are important tasks in the research field of au-

tonomous mobile robots. The challenge tackled in this work is the navigation of a 4-

wheeled car-type robot to a desired parking position while avoiding obstacles on the

way. The taken approach to solve this problem is based on neural fuzzy techniques.

Earlier works resulted in a controller to navigate the robot in a clear environment. It is

extended by considering additional parameters in the training process. The learning

method used in this training is dynamic backpropagation.

For the obstacle avoidance problem an additional neuro-fuzzy controller is set up and

trained. It influences the results from the navigation controller to avoid collisions with

objects blocking the path. The controller is trained with dynamic backpropagation and

a reinforcement learning algorithm called deep deterministic policy gradient.

iv Master Thesis Anna-Maria Grebner

Kurzfassung

Navigation und Hindernisvermeidung sind wichtige Aufgaben im Forschungsbereich

autonomer mobiler Robotik. In dieser Arbeit wird die kollisionsfreie Navigation eines

Roboters mit 4 Rädern in eine Zielparkposition behandelt. Der gewählte Ansatz um

das Problem zu lösen basiert auf Techniken aus dem Neuro-Fuzzy Bereich.

In früheren Arbeiten entstand bereits ein Regler mit welchem der Roboter in einer hinder-

nisfreien Umgebung navigiert werden konnte. Dieser wurde erweitert indem zusätzliche

Parameter in den Trainingsprozess mit einbezogen wurden. Die angewandte Lernmetho-

de ist Dynamic Backpropagation. Für die Hindernisvermeidung wurde ein zusätzlicher

Neuro-Fuzzy-Regler eingerichtet und trainiert. Dieser beeinflusst die Ergebnisse des

Navigationsregler um Kollisionen mit Objekten zu vermeiden. Für das Training des

Reglers kommen Dynamic Backpropgation und ein reinforcement learning-Algorithmus,

genannt ’Deep Deterministic Policy Gradient Learning’, zum Einsatz.

Das entwickelte Navigationssystem konnte in verschiedenen simulierten Szenarien ge-

testet werden. Der Roboter war in der Lage ohne Probleme beliebige Parkpositionen

anzufahren und verschieden geformte Linien zu verfolgen.

v Master Thesis Anna-Maria Grebner

Contents

Abstract iii

Kurzfassung iv

1 Introduction 1

2 Problem Description 3

3 Foundations 5

3.1 Fuzzy Inference Systems ... 5

3.1.1 Fuzzy Sets and Fuzzy Logic ... 5

3.1.2 Fuzzy Inference Systems ... 7

3.2 Neural Network .. 11

3.2.1 Structure of Neural Networks... 11

3.2.2 Standard Backpropagation ... 12

3.2.3 Dynamic Backpropagation .. 14

3.2.4 Reinforcement Learning with an Actor-Critic-Algorithm 15

3.3 Fuzzy Neural Networks ... 18

3.4 Neuro-Fuzzy-Control in Robot Navigation ... 20

4 Implementation 22

4.1 Model .. 22

4.2 Navigation ... 23

4.2.1 Structure of the Neuro Fuzzy Controller .. 23

4.2.2 Training with Dynamic Backpropagation .. 26

4.3 Obstacle Avoidance .. 32

4.3.1 Structure of the Neuro Fuzzy Controller for Obstacle Avoidance . 32

4.3.2 Simulation of Obstacle Recognition ... 34

4.3.3 Training with Dynamic Backpropagation ... 35

4.3.4 Training with Actor-Critic-Algorithm ... 36

vi Master Thesis Anna-Maria Grebner

Contents

Contents

5 Results 40

5.1 Results of the Navigation Controller ... 40

5.2 Results of the Obstacle Avoidance Controller ... 44

6 Conclusion 47

CBiboliongrtapehny ts 51

Appendices 54

1 Master Thesis Anna-Maria Grebner

Chapter 1

Introduction

Robots are growing more and more important in our modern world. Whether to make

our life easier or take over dangerous tasks, their presence in our daily life has been

increasing in the recent years. Especially autonomous mobile robots can already be

found in many everyday applications. Museums and stores employ them to guide visitors

and floor-cleaning or lawn-mowing robots made their way in many homes. In order

to move around in the environment without problems, good navigation and obstacle

avoidance systems areessential formobilerobots. They guarantee that therobotreaches

desired positions in time and does not collide with structures and objects on the way.

In this thesis a control system for a navigation and obstacle avoidance problem is

developed, implemented and tested. The task consists of navigating an autonomous

4-wheeled cartype robot in a desired parking position, while avoiding collision with

obstacles on the way. The techniques used to realize the controller belong in a category

called fuzzy neural networks. They are hybrid systems consisting of elements from fuzzy

inference systems and artificial neural networks. The strength of fuzzy systems lies

in the possibility to create a system based on expert knowledge. Neural networks are

known for their ability to learn and adapt to new situations. Neuro-fuzzy networks

combine the advantages of both approaches by considering a fuzzy inference system

as a neural network and apply training algorithms to improve their performace. The

training methods used in this thesis are dynamic backpropagation and deterministic

policy gradient.

This work is structured as follows: In chapter 2 the problem to be solved in this

thesis is layed out in detail. Chapter 3 contains the theoratical foundations needed to

understand this work. In chapter 4 a complete description on how the the controllers

and learning algorithms were implemented is given. Chapter 5 presentes the results

2 Master Thesis Anna-Maria Grebner

1 Introduction

reached with the controllers in different test scenarios, followed by the conclusion in

chapter 6.

3 Master Thesis Anna-Maria Grebner

Chapter 2

Problem Description

The task for this thesis is to develop a neuro fuzzy controller capable of navigating a

4-wheeled robot in the x-y-plane to a goal position. The problem is designed to be

parking situation in which the robot has to move backwards in its designated spot.

In the first part, the path to the goal position is clear and the robot should simply be able

to reach it. This problem is shown in figure 2.1. The robot should be able to get from

everystarting positionbetween −50 and 50 onthex-axisandeverystarting orientation

to the target position of x∗ = 0 with an orientation of φ∗ =
π

2. This kind of problem

𝑦

−50 0 50 𝑥

Figure 2.1 – Parking problem to be solved

was once before tackled in [1] and a neuro-fuzzy controller was developed. Dynamic

backpropagation was used in training, to adapt the parameters in the consequence part

of the fuzzy controller. It lacked, however, the training of the premise parameters, which

is to be added in the framework of this thesis.

4 Master Thesis Anna-Maria Grebner

2 Problem Description

In the second part of the problem the robots way to the goal position is blocked by

an obstacle, like shown in figure 2.2. The navigation controller is to be extended by

the functionality to avoid obstacles. The solution should again be found by applying

neuro-fuzzy techniques. A structure for the obstacle avoidance controller has to be set

up and trained to fulfill the task.

𝑦

−50 0 50 𝑥

Figure 2.2 – Parking problem with obstacle avoidance

5 Master Thesis Anna-Maria Grebner

1

Chapter 3

Foundations

3.1 Fuzzy Inference Systems

3.1.1 Fuzzy Sets and Fuzzy Logic

Fuzzy systems, and therefore fuzzy controllers, are based on the concepts of fuzzy

sets and fuzzy logic, which were first established by Zadeh in 1965 [2]. The idea is to

expand the classic set theory by an uncertainty: Whereas in the original theory it is

only possibile for an object a to belong to a set M or not, in fuzzy theory it can belong

partially to a fuzzy set. The membership of an object to a specific set is described with

the membership function µM (a). In conventional sets the membership function can only

take the so-called ’crisp’ values 0 (if a ∈ M) or 1 (if a ∈/ M). The membership grade to

a fuzzy set though, can be any value between 0 and 1, allowing it to be partial or

’fuzzy’. Common forms of membership functions in fuzzy-systems are shown in figure

3.1: the ramp (a), the triangle (b) and the trapez(c).

𝜇𝑀(𝑎) 𝜇𝑀(𝑎) 𝜇𝑀(𝑎)

1

𝑎 𝑎 𝑎

𝑎) 𝑅𝑎𝑚𝑝 𝑏) 𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑐) 𝑇𝑟𝑎𝑝𝑒𝑧

Figure 3.1 – Common forms of fuzzy membership functions

Fuzzy sets allow to characterize states without giving a strict classification. The

human language contains a lot of options to describe things in a vague way, like e.g. ’a

1

6 Master Thesis Anna-Maria Grebner

3 Foundations

little bit’, ’a lot more’ or ’almost’. That is why fuzzy sets are a perfect instrument for

transforming human language statements into a structure that can be treated formally

exact. An example is given in figure 3.2, which shows a fuzzy description of a distance.

The fuzzy variable is the distance d, which can be charaterized by the fuzzy sets ’ZERO’,

’NEAR’ and ’FAR’. A distance of 0 gets full membership in the set ’ZERO’. A distance

𝜇(𝑑)

0 5 10 𝑑

𝑍𝐸𝑅𝑂 𝑁𝐸𝐴𝑅 𝐹𝐴𝑅

Figure 3.2 – Fuzzy description of a distance

of 5 is considered as ’NEAR’ and every distance of 10 or greater is ’FAR’. The fuzzy

sets allow to describe also distances in between. A distance of 3 for example would have

partial membership grades in the sets ’ZERO’ and ’NEAR’. It could be described as

’close to zero’, ’almost zero’ or ’very near’. As fuzzy sets in practise are often connected

with a linguistical interpretation like this, they’re also called ’linguistic variables’.

In order to work with fuzzy variables it is necessary to establish connecting opera-

tors. Crisp variables can be linked with the boolean operators from standard logic. The

definition of these were extended for fuzzy variables. Different applications resulted in

different forms of this adaption. The most common ones are explained below.

• AND operation (∧)
The first definition of a fuzzy AND-operator was proposed in [2] and uses a

minimum operation

µA∧B = min(µA, µB) (3.1)

As for optimization processes differentiability is often a requirement another

definition can be used

µA∧B = µA · µB (3.2)

7 Master Thesis Anna-Maria Grebner

3 Foundations

µA µB min(µA, µB) µA · µB
1 1 1 1
1 0 0 0

0 1 0 0

0 0 0 0

0.2 0.8 0.2 0.16

µA µB max(µA, µB) µA + µB − µA · µB
1 1 1 1
1 0 1 1

0 1 1 1

0 0 0 0

0.2 0.8 0.8 0.84

• OR operation(∨)
The two most commonly used definitions for the OR-operator are the maximum

operation

µA∨B = max(µA, µB) (3.3)

and the algebraic sum

µA∨B = µA + µB − µA · µB (3.4)

• NOT operation

The NOT-operation of a membership grade is determined by the difference between

1 and the degree

µA = 1 − µA (3.5)

The tables 3.1 and 3.2 show that these definitions are consistant with the results from

boolean operators and how they work on a fuzzy membership example

Table 3.1 – Results
of AND-

operators

Table 3.2 – Results of OR-operators

3.1.2 Fuzzy Inference Systems

Fuzzy inference systems (FIS) are systems which describe functions by mapping inputs

to outputs with the help of fuzzy sets and fuzzy logic. The following information about

them are taken from [3] and [4]. To explain the functionality of a FIS and example with

2 inputs and 1 output, as shown in figure 3.3,is considered.

The 3 mayor steps to determine the output are called fuzzification, inference and

defuzzification. The first and the latter are ports to the surrounding environment. They

realize the transformation between the real, crisp values outside and the fuzzy values

8 Master Thesis Anna-Maria Grebner

3 Foundations

𝐼𝑛𝑝𝑢𝑡 𝐹𝑢𝑧𝑧𝑦𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐷𝑒𝑓𝑢𝑧𝑧𝑦𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑂𝑢𝑡𝑝𝑢𝑡

𝑥1

𝑦

𝑥2

𝑟𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑢𝑧𝑧𝑦 𝑣𝑎𝑙𝑢𝑒𝑠 𝑟𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠

Figure 3.3 – Structure of a fuzzy inference system

inside the FIS. The inference section contains the most important part of the fuzzy

system: the rule base. It determines the relation between the input an the output and

therefore the behaviour of the system. The functionality of the individual phases is

explained further in the following section.

Fuzziftcation

In the fuzzification step the real input values are transformed to fuzzy values. Every

input variable gets several fuzzy sets, which coverthe complete inputspace. The quantity

of sets and the shape of their membership functions are design parameters and should

describe the input adequatly. The membership functions for one input will then look

similar to the ones in figure 3.2. The fuzzy system in the structure diagram above has 2

inputs, which are characterized by respectivly m and n membership functions. For the
first input x1 they are called µ1, µ1..., µ1 and for the second one x2 they are µ2, µ2...µ2 .

1 2 m 1 2 n

The result of the fuzzification are the membership grades of all inputs to each of their

respective fuzzy sets.

Inference

The heart of every FIS is the rule base. A complete rule base has a rule for every

possible combination of membership grades from the fuzzification. They determine the

𝜇𝑅𝑢𝑙𝑒1 (𝑦)
𝜇1(𝑥1)

1 𝑅𝑢𝑙𝑒 1

𝜇𝑅𝑢𝑙𝑒2 (𝑦)

𝜇1 (𝑥)
𝑅𝑢𝑙𝑒 2

𝑚 1

𝜇𝐼𝑛𝑓 (𝑦)

𝜇2(𝑥)
𝑂𝑅

1 2

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛
𝑡��

𝑎 𝑟𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒

𝜇2(𝑥2)
2

𝜇𝑅𝑢𝑙𝑒 𝑟(𝑦)
𝜇2 (𝑥) 𝑛 2 𝑅𝑢𝑙𝑒 𝑟

9 Master Thesis Anna-Maria Grebner

3 Foundations

𝜇𝑟𝑢𝑙𝑒𝑗(𝑥) 𝜇𝑟𝑢𝑙𝑒𝑗(𝑥)

1 1

output of the system for a specific input vector by employing r rules in an implication

(IF-THEN) structure.

IF premise i THEN consequence i

The premises (Pi) are logical combinations of the results from the fuzzification step. In

the consequence (Ci) of every rule i is a membership function µi(y) for the output. The

first rule for the system in figure 3.3 can therefore have a structure like this

IF µ1
(x1) AND µ2

(x2) THEN µ1(y)

1 1

The first step for determining the result of a rule is called aggregation and consists of

calculating the premises with the fuzzy logic operators. The premises are fulfilled to

different degrees, depending on the actual input vectors. Every consequence should be

active at the same level as their respective premise. The logical expression, which has

to be fulfilled for this demand is

(Pi ∧ (Pi → Ci))=(Pi ∧ Ci)

The transformation to the easier AND-operation can be done in classical logic only. It

is, however, also used in fuzzy logic as an easier approximation. Depending on which of

the AND-operators discussed in the previous section is used, the conclusion membership

function is either cut (min(µPi , µCi)) or scaled (µPi · µCi) to the level of the premise

(see figure 3.4). The calculation of the consequences is also called activation. In the

𝜇𝐾𝑗 (𝑥)

1

𝜇Pj

𝑥

𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑟𝑢𝑙𝑒 𝑗

𝑥

𝑅𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑟𝑢𝑙𝑒 𝑗
𝑚𝑖𝑛 − 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟

𝑥

𝑅𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑟𝑢𝑙𝑒 𝑗
𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟

Figure 3.4 – Activation in a FIS with min- and product operator

last part of inference all the consequences have to be accumulated to one fuzzy output.

This is done by employing an OR-operator over all the results from the rules.

µInf (y) = µC1 ∨ µC2 ∨ · · · ∨ µCr

The result is one membership function for the output space, defining a fuzzy value of ŷ

3 Foundations

1 Master Thesis Anna-Maria Grebner

Defuzziftcation

This membership function needs to be transformed into a real value for the output ŷ.

The result should consider all the rules consequences in their respective strenght.

One method to calculate a real output is to determine the center of gravity of the

accumulated membership function. This can be done with the following formular:

∞

µInf (y) · y dy

ŷ = −∞
∞

µInf (y) dy

(3.6)

−∞

As this approach needs a lot of computing time, another way of determing the output

can be found in the maximum method. It just takes the output value corresponding to

the maximum value of µInf (y). This method is easy but has the disadvantage that only

the rule producing the maximum is considered for the out come. Also there is not a

unique solution if the maximum is a plateau. In this case it is possible to define the

mean of the maximum as the output.

A special form of fuzzy inference systems are Takagi-Sugeno fuzzy systems, in which the

concequences as not described by membership functions but by a linear combination of

the real input values:

IF Pi THEN ŷ = yi0 + yi1x1 + yi2x2 + · · · + yilxl

With these type of systems an accurate approximation of functions can be reached.

However, this type of concequence also reduces the comprehensibility of the system. In

Takagi-Sugeno systems the defuzzification simplified so much, it can be concluded with

the inference to the following

Σr µ y y x y x y x dy
P · (i0) + i1 1 + i2 2 + · · · +i il l

ŷ = i=1 (3.7)

Σr
µ

P

i=1 i

Takagi-Sugeno systems, in which yi1 = yi2 = · · · = yil are called ’zero order Takagi-

Sugeno systems’. They have crisp values in their consequences, which are expressed as

singleton functions.

IF Pi THEN ŷ = yi

Fuzzy inference systems can be employed for a variety of applications like modeling,

3 Foundations

1 Master Thesis Anna-Maria Grebner

𝑤1

𝑤2
∑ 𝑓

𝑤3

controlling or classification. The advantage of fuzzy systems is the easy to understand

structure. The possibility to describe input-output-relationships intuitively as simple

rules makes FIS the perfect instruments to induce human knwoledge in a process. By

checking every rule it is also easy to check if the system is working in the correct and

desired way for the whole input space. The disadvantages are, that an expert is needed

to define the rules and human knowledge alone often ist not at the optimum.

3.2 Neural Network

3.2.1 Structure of Neural Networks

Artificial neural networks are a method to process data, which is inspired by the way

human brains work with information. The following section serves to describe the

fundamental structure and functionality of artificial neural networks, as well as the

process of training them. It is based on the information in [4].

Biological neural networks consist of connected nerve cells, called neurons, which handle

given stimulations and pass them on to connected neural cells. In the same way artifical

networks are build up of connected smallest units, called neurons. The structure of a

neuron can be seen in figure 3.5. It can have multiple inputs (x1, x2, x3 in the figure),

𝑥1

𝑥2 𝑦

𝑥3

Figure 3.5 – Neuron, smallest unit of a Neural Network

which either come from other neurons or the outside of the network. Every input is

associated with a weight (w1, w2, w3). The neuron consists of two functions. The first

one combines the inputs by multiplaying each input with its respective weight and

adding the results up

xc =

number of inputs

i=1

xiwi

The other function is called activation f and uses the combined input to generate the

output. Activation funtions are often nonlinear to include the possibility to handle

nonlinear relations with the network. For this purpose a sigmoid function (also called

3 Foundations

1 Master Thesis Anna-Maria Grebner

e

fermi function) is frequently used:

f (xc) =
1 +

1

−axc

An artificial neural network forms when multiple of these neurons are connected and

interchange their results. The easiest form to do this are feedforward multilayer networks,

which can be seen in figure

𝑥1

𝑥2

𝑦1

𝑦2

Input-Layer 𝒘𝟏 Hidden-Layers 𝒘𝐋 Output-Layer

Figure 3.6 – Feedforward Network

There are three different types of layer in a multilayer network. The input layer takes

in the data given to the network and provides them for the following layers. Therefore

the number of neurons in this layer equals the number of inputs to the network. After

the input layer follow any number of hidden layers, which absolve the computation

of data. The final layer is called output layer and consists of as many neurons as the

system has outputs to give them back at the environment. To compute data with the

neural network, the data is given from layer to layer, which is called a forward pass.

The output of every neuron in one layer is calculated before the processing in the next

layer begins. Due to their ability to learn neural networks can be used in a variety of

application, for example in modelling, speech/writing recognition or controllers. Their

disadavantage is, that it is difficult to keep track on the learning process and ensure

that the learned parameters are, in fact, correct ones.

3.2.2 Standard Backpropagation

An important step in the implementation of neural networks is the training. This

describes the process of adapting the parameters in the network, so it will behave in the

𝑤L
𝑖𝑗

3 Foundations

1 Master Thesis Anna-Maria Grebner

2

−

desired way. One of the most basic ways to do this is error-backpropagation. The goal

of this method is to adapt the weights at the connections between the neurons. This

training method belongs to the techniques of supervised learning. These algorithms

require that the desired output of the network is known so it can be compared to the

real output. For the training process N pairs of input values (x) and desired output

values, called teacher vector (t), are combined to a training set. The input values are

presented to the network and the output is calculated via forward pass. The output can

be written as a function of the input and the current network parameters (θ).

y = g(x, θ) (3.8)

The goal of training is to minimize the error of the whole training set

E(θ) =

1

i=1

(ti − g(xi, θ))
2

(3.9)

bybackpropagating it through thenetworkinanattempt toadjusttheweightresponsible

for it. Therefore a gradient method is used: The weights are adapted in their proportion

in direction of decline in the error

θk+1 = θk + ∆θ (3.10)

∆θ = η
 δE

δθ

(3.11)

In the second equation, η is the learning rate, which determinates the size of steps made

in the gradient direction. The derivative of E is computated via chain rule. For adapting

the weight wij connecting the j-th neuron in the L-th layer with the i-th neuron in the

(L + 1)-th layer it becomes

 ∂E
=

∂E ∂yj
=

∂E ∂f (xj) ∂xj (3.12)

∂wij ∂yj ∂wij ∂yj ∂xj ∂wij

= δj
dxj

dwij
(3.13)

= δjyj (3.14)

where xjc the combined input and yj = f (xjc) is the output of the j-th neuron in the

L-th layer. The δj in the last equation can be computed in a recursion with values from

N

3 Foundations

1 Master Thesis Anna-Maria Grebner

𝑢𝑘

the (L + 1)-th layer.
δj=

 ∂f (xj)
w δ

(L+1) (3.15)

∂xj
k←j

jk k

All these values will be available, as for backpropagation one starts at the output and

work the way torward the input layer until all weights are adapted. With the δ-Notation,

it is also often called Delta-Learning-Rule.

3.2.3 Dynamic Backpropagation

In chapter 3.2.2 the basic learning process of neural networks via backpropagation was

explained. An extended method is dynamic backpropagation, which is explained in [5]

andused for the training ofrecurrent neuralnetworks. This technique takes intoaccount

that in this case information get fed back to the neural networks and works with this

information from the past. When neural networks are used as controllers, they are also

in a closed circle, which is why this form of training can be applied here. To explain

this algorithm the whole process and interactions between controller and system are

unfolded over time in figure 3.7. When unfolded over time, the control loop becomes a

𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑘 − 1 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑘 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑘 + 1

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟
𝑆𝑦𝑠𝑡𝑒𝑚

𝑥𝑘

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟
𝑆𝑦𝑠𝑡𝑒𝑚

𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟

Figure 3.7 – Unfolded Network

series of repetition between the controller and the system. This means, that their errors

𝑢𝑘−1

𝑥𝑘+1

3 Foundations

1 Master Thesis Anna-Maria Grebner

∂w

+

depend not only on the current parameters but also on past ones. Therefore for their

value adaption, full derivatives until the starting point have to be calculated. This can

be done in a recursive algorithm, which is explained below. The goal is to minimize the

difference between the current and the desired position in every time step. This results

in a cost function of

J =

1

(x1 − x∗
1)

2
+

1

(x2 − x∗
2)

2
+ ... +

1

(xN − x∗)
2 (3.16)

2 2 2
N

As before in standard backpropagation, the weights are adapted with

wij,(k

+1) = wij,k − ∆wij,k = wij,k − η
∂J

ij

(3.17)

The overline in the last derivative signalizes, that the derivative is not only calculated to

the actual influence, but is the total partial derivate considering all wij in the unfolded

system. With equation 3.16 this total derivative can be split up to

 ∂J =
N
(x − x∗

)

 ∂xk
(3.18)

The total derivative of xk is

∂wij
k

k=1
k ∂wij

 ∂xk
=

∂ xk ∂xk ∂xk−1 (3.19)

∂wij ∂wij ∂xk−1 ∂wij

=
 ∂xk

+

.
 ∂xk

+
∂xk ∂uk−1

Σ
 ∂xk−1 (3.20)

∂wij ∂xk−1 ∂uk−1 ∂xk−1 ∂wij

Leading to the recursive formular for computing the total derivative of the state to the

weight in dynamic backpropagation for neural controllers:

 ∂x ∂x ∂u
.
∂xk+1 ∂xk+1 ∂uk

Σ
 ∂xk

k+1
=

k+1 k
+ +

 (3.21)
∂wij ∂uk ∂wij ∂xk ∂uk ∂xk ∂wij

During training ∂xk+1
 and ∂xk+1 are determined with the system model equations.

∂uk ∂uk ∂x
∂u

k
 The other derivatives - and

∂wij
k - are calculated by backpropagation through the
∂xk

controlling neural network.

3.2.4 Reinforcement Learning with an Actor-Critic-Algorithm

In the last two chapters techniques of backpropagation were explained as examplse of a

supervised learning process. However, one may not always know the best value for the

output of a network for comparison. For example in the case of controllers the desired

3 Foundations

1 Master Thesis Anna-Maria Grebner

state may be known, but not the value of the actuating variable to reach. Unsupervised

learning techniques attempt to solve this problem. A group of these methods is called

reinforcement learning. These algorithms let the network operate and observate how

it influences the environment. If the result of the taken actions are satisfactional the

positive feedback is given, otherwise a negative one. Information about reinforcement

learning in general can be found in [6]

The reinforcement algorithm which is presented below is called ’Deep Deterministic

Policy Gradient’ and was developed in [7]. It is based on [8] from 2014, in which the

deterministic policy gradient was first presented. The algorithm was chosen because it

can be employed for continuous state and action spaces, which are found in navigation

problems. The algorithm has an Actor-Critic structure (see figure 3.8). The ’actor’ is

Figure 3.8 – Structure of an Actor-Critic network

the network which shall be trained. Based on a policy µa(s), it decides which action a

is taken in a specific state s. A deterministic policy can simply be seen as the actor

network with its current structure and parameters, computing an action as an output.

ak = µa(sk) (3.22)

The action ak effects the environment and an immediate feedback is given in form of a

reward rk. The reward can be positive or negative, depending on weather ak helped the

system to reach a defined ojective. An ideal policy µ∗
a would chose actions which lead to

the highest accumulated reward R in a long term horizon. To adapt the current policy

in the direction of the ideal policy another network is employed, the so-called ’critic’. It

evaluates the taken action in every time step by estimating the action-value function

Q(s, a), which represents the expected long-term reward if action a is taken at state s.

𝐴𝑐𝑡𝑜𝑟
𝑎𝑐𝑡𝑖𝑜𝑛

𝑃𝑜𝑙𝑖𝑐𝑦

𝑉𝑎𝑙𝑢𝑒
𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝐶𝑟𝑖𝑡𝑖𝑐

r𝑒𝑤𝑎𝑟𝑑

𝑠𝑡𝑎𝑡𝑒
𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡

3 Foundations

1 Master Thesis Anna-Maria Grebner

The ascending gradient of this function leads in the direction of the ideal policy and is

therefore used for adapting the current policy. The problem is, that the action-value

function is not known in the beginning and the critic network has to learn it. The ideal

action-value function returns the highest accumulated reward to be expected under the

current policy:

Q∗(sk,ak) = maxµaE[R|sk,ak] (3.23)

This optimal function fullfills the so-called Bellmann equation

Q∗(sk,ak) = E[rk + γQ∗(sk+1,ak+1)] (3.24)

with γ being a discount factor between 0 and 1. The ideal value can be calculated with

this equation and the difference to the current output can be backpropagated through

the critic network. As the action value Q∗(sk+1, ak + 1) and therefore the action ak+1

of the next time step is needed, two additional networks are implemented. These are

called target networks and estimate the future values. With the parameters of the actor

and critic networkbeing θa and θc the target networks parameters are designed to slowly

follow them and updated via

θa
t = τθt

a + (1 − τ)θt
a

θc
t = τθt

c + (1 − τ)θt
c

(3.25)

(3.26)

with τ << 1. Th outputs of the target networks can then be defined respectively as
µt (sk+1, ak + 1, θt) and Qt(sk+1, ak+1, θt) With these information it is possible to train

a a c

the actor and critic network as described below for the time step k. The loss function

at the critic network output is constructed with the mean square error

L(θc) = E[(rk + γQt(sk+1, ak+1) − Q(sk, ak, θc))
2
] (3.27)

The critic network is adapted with the gradient to its parameters

 ∂L(θc)
= E[(r

+ γQt(s , a) − Q(s ∂Q(sk, ak, θc)

∂θc k

θc = θc + ηc
 ∂L(θc)

∂θc

k+1 k+1 k
, a

k
, θ

c
))

 ∂θc
] (3.28)

(3.29)

3 Foundations

1 Master Thesis Anna-Maria Grebner

The parameters of the critic network are updated with the gradient of the action-value

function:

 ∂Q(sk,ak, θa)
=

∂ Q(sk, ak, θa) ∂ak (3.30)

∂θa ∂ak ∂θa

θa = θa + ηa
 ∂Q(sk, ak, θa)

∂θa

(3.31)

As the estimated policy is deterministic it does not explore on itself. This means the

actor choses the same action in the same situation every time. As it is necessary to try

different actions in order to find the best policy a random process is added as a noise to

the taken actions to ensure sufficient exploration. In [7] an Ornstein-Uhlenback random

process is named to be suitable for this kind of task. As the random values generated

by this process are temporally correlated they let the actor explorate efficiently in one

direction.

In practice there are difficulties with updating the networks every time step with the

new information, which are rooted in the temporal dependence of the incoming data.

This is why [7] proposes to let the actor sample transitions in a form like (sk, ak, rk, sk+1)

and store them in a replay memory. For learning some samples from the replay memory

are randomly chosen in a minibatch for learning.

3.3 Fuzzy Neural Networks

Fuzzy neural networks are hybrid systems of the both mentioned structures. The idea

is to model a fuzzy inference system as a neural network. The parameters of the system

can then be adapted by employing learning strategies. This kind of architecture was

first presented in [9] as an ’Adaptive-Network-Based Fuzzy Inference System’ (ANFIS).

For explaining the functionality a system with 2 inputs(x1 and x2), 1 output(ŷ) and

two rules is considered. The fuzzy sets for the input are A1 and A2 for x1 and B1 and

B2 for x2. The structure is depicted in figure 3.9

3 Foundations

1 Master Thesis Anna-Maria Grebner

𝐿𝑎𝑦𝑒𝑟 1 𝐿𝑎𝑦𝑒𝑟 2 𝐿𝑎𝑦𝑒𝑟 3 𝐿𝑎𝑦𝑒𝑟 4 𝐿𝑎𝑦𝑒𝑟 5

𝑥1

𝑦ො

𝑥2

Figure 3.9 – Fuzzy-Neural-Network

The fuzzy neural network consists of 5 layers in a feed-forward structure containing

different types functions.

The nodes in the first layer contain the membership functions and take over the task of

fuzzification. Note that because the networkshall be trained, the membership functions

need to be at least piecewise differentiable. Thus the proposed fuzzy membership func-

tions (see chapter 3.1.1) can be employed here but are nevertheless often approximated

with other, differentiable functions. For instance the triangle shape can be expressed

with a gaussian function
− (x−c)2

µ(x) = e a

and the ramp with a sigmoid function

µ(x) =

1

 1 + e a

− x−c

The variables c and a are different for everymembership function as they determine the

center (c) and slope (a) of the function. From the view of fuzzy systems they define

the position and size of the fuzzy sets for the input space. These parameters are called

’premise parameters’ and are adaptable during training.

The second layer realizes the aggregation of the premises by using AND-operators in

the nodes. In the figure above the AND is realized with a product. The result of this

𝐴1
𝑥1 , 𝑥2

Π 𝑁 𝑓1

𝐴2
∑

𝐵1 Π 𝑁 𝑓2

𝑥1 , 𝑥2

𝐵2

3 Foundations

2 Master Thesis Anna-Maria Grebner

z =

layer for rule i is called ’firing strength zi of rule i’.

zi = µAi · µBi

The third layer contains normalization nodes. They scale the firing strenghts by dividing

it by thesumofall firing strengths. The outputs of this layerarereferred toas’normalized

firing strengths’. This step realizes the easy defuzzification for Takagi-Sugeno fuzzy
systems, described in 3.1

N zi
i z1 + z2

The fourth layer calculates the rules cosequences and represents the inference from FIS.

As ANFIS is based on Takagi-Sugeno fuzzy systems, the rules have linear combinations

of the input variables as consequences.

IF A1 AND B1 THEN f1 = p1x1 + q1x2 + w1

IF A2 AND B2 THEN f2 = p2x1 + q2x2 + w1

As every rule should be active in the same way their premise is active, the consequences

are multiplied with the normalized firing strengthes.

zN fi = zN (pix1 + qix2 + wi)

i i

The parameters pi, qi and wi are called ’consequence parameters’ and can be changed

by training to adapt the network.

The fifth and last layer concludes all rules consequences into one output by adding them

up. The final output is therefore:

ŷ =

Σ
zifi

zN fi =
 i

i Σ
zi

i
i

Fuzzy-Neural-Networks combine the advantages of fuzzy and artificial neural systems.

The structure and functionality is easily comprehensible and can be set up without

problem with parameters from expert knowledge. By having the possibility to change

parameters with a training sequence the system can learn and adapt.

3.4 Neuro-Fuzzy-Control in Robot Navigation

Hybrid networks with fuzzy and neuralelements havebeensuccessfully implemented in

many systems for control purposes. The applications range from the control of household

3 Foundations

2 Master Thesis Anna-Maria Grebner

devices like washing mashines [10] to process control in power plants [11]. Another

branch benefiting from neuro-fuzzy-techniques is the field of autnomous mobile robots.

Fuzzy neural controllers can help to tackle the challenges of navigation and obstacle

avoidance, and have therefore been employed several times for these tasks.

In [12] an ANFIS-Controller was developed for the navigation of a mobile service robot

with two differential wheels. It was trained to recognize and follow a line on the floor

to its goal position. To realize this the desired motor speed values were predefined in

a teacher vector. The fuzzy controller was then adapted in premise and consequence

parameters of the rule base via supervised learning and could eventually lead the robot

along the line. An approach for an obstacle avoidance controller is given in [9], where a

two-wheeled robot should be able to move in a fixed area without colliding with the

objects lying within. The parameters of the membership functions and the consequence

part were adpated with supervised learning. The controller was tested in simulation

and also experimentally. The authors in [13] focused on the adaption of the parameters

in the membership functions. They predefined all parameters and set a perfect route

to a goal position without colliding with an obstacle. This path was then used for

adapting position and slope of the membership functions to "smooth the trajectory

generated by the fuzzy logic model". The controller was employed sucessfully in a

two wheeled, differential driven robot. To decrase the number of rules in one fuzzy

controller the navigation algorithm in [14] is split up in a hierarchial system. Within this,

different behaviours like e.g. "goto-target" or "turn-corner" are realized with respective

neuro-fuzzy controllers. By doing this they could avoid having one big rule base to

include all navigation orders.

Reinforcement approaches for the navigation problem were taken in [15], with using

adapted versions of Q-Learning and Sarsa-Learning algorithms. Another example is [16],

where a controller for line following of a two wheeled, differential driven robot could be

developed and tested in simulation. A 4-wheeled non-holonomic car-type robot, like

the one considered in this thesis is the subject in [17]. A neural fuzzy controller was

trained with a supervised training algorithm to find its way to a goal position and avoid

obstacles in its path. The controller was implemented in a real experiment environment

and could successfully drive to the target point without colliding with any objects. The

paper [1], which builds the foundation for this thesis, describes the developement of a

neural fuzzy controller for navigating a 4-wheeled robot from differentstarting positions

and angles in a goal parking position. The goal for this thesis is to develop the existing

controller further and add the ability to avoid obstacles.

22 Master Thesis Anna-Maria Grebner

Chapter 4

Implementation

4.1 Model

For the development of the navigation algorithms a model of the system was needed.

Figure 4.1 shows the robot considered in this work. The two back wheels are fixed and

connected to the motor to provide the traction while the two front wheels are steerable.

At any time the state s of the robot is defined by its position and orientation in the

ground coordinate system. The position is described by its x- and y-coordinate and the

orientation by the angle φ .

xk

sk = yk (4.1)

φk

The model should describe the dynamical transition of the robots state from one time

step to another based on the actual state and the steering angle δ as the control input.

The kinematic equations of cartype-mobile robots are derived in [1]. With the robot

moving backwards and only a very small, fixed distance r every time step the model

results in

xk+1 = xk + rcos(φk) (4.2)

yk+1 = yk + rsin(φk) (4.3)
r

φk+1 = φk −
L
tan(δk) (4.4)

 (4.5)

23 Master Thesis Anna-Maria Grebner

4 Implementation

𝑦

𝑦𝑝

𝑥𝑝 𝑥

Figure 4.1 – 4-wheeled car-type robot

where L the length of the robot measured between the front and back wheels and δk

the current steering angle input. The steering angle is restricted to −30
◦ < δ < 30

◦

This model applies for a slow motion of the robot at constant speed. Also it doesn’t

consider slipping and skidding of the wheels.

4.2 Navigation

4.2.1 Structure of the Neuro Fuzzy Controller

The strategy for solving the problem is to let the robot move to the position of x∗ = 0

while reaching the desired orientation of φ∗ =2
 π . After that position is reached, the

robot will just move straight in positive y-direction and the control variable will be

δ = 0
◦. It can be seen in figure 4.2 that the taken path is independent of the robots y-

position. Therefore the controller does not need the y position to determine the

steering angle and uses only the x-position and the angle as inputs. As long as there is

enough space in y-direction the robot will be able to reach its goal with this information.

From here on the position in x-direction and the orientation of the robots are concluded

in the state-vector s:

s
k
=

Σ
xk

Σ

φk

(4.6)

The structure of the Neuro-Fuzzy-controller is given in figure 4.3. It has the same 5

layers as the standard neuro fuzzy system described in 3.3. The only difference is, that

the controller usedhere is basedonazero-order Takagi-Sugeno fuzzy system. Therefore

𝛿

𝜙𝑝

24 Master Thesis Anna-Maria Grebner

4 Implementation

𝑦

−50 0 50 𝑥

Figure 4.2 – Strategy to reach the goal position. The control input does not

depend on the y-position of the robot, only on the x-position and
orientation.

the consequences are not a linear combination of the inputs, but reduced to one single

value wi per rule.

Seven membership partitions were used for each of the 2 inputs. The initial membership

functions used for x and φ can be seen in figure 4.4. Table 4.1 lists their center and

slope values as well as the respective linguistic interpretation. The outer Membership-

functions of the position are sigmoid functions, because for every x-value smaller then

−50/greater than 50 the steering command should be full right/full left, the same as at

−50/50. The outer membership functions of the orientation are gaussian, because the an-

gle range is only 2π and the value at the left end is the same as the value at the right end.

 cx ax linguistic interpretation cφ aφ linguistic interpretation

1

2
3

4

5

6

7

−50

−34

−13

0

13

34

50

4

10
6

3

6

10

4

FAR LEFT

LEFT

CLOSE LEFT

ZERO

CLOSE RIGHT
RIGHT

FAR RIGHT

-1.042

-0.2618
0.9599

1.5708

2.1817

3.4034

4.1888

0.1745

0.3491
0.3491

0.0524

0.3491

0.3491

0.1745

DOWN RIGHT
RIGHT

UP RIGHT
UP

UP LEFT
LEFT

DOWN LEFT

Table 4.1 – Initial center and slope parameters as well as linguistic interpretation
of the membership functions for the navigation control system

25 Master Thesis Anna-Maria Grebner

4 Implementation

Π 𝑁 𝑤1
𝑧1 𝑧𝑁

1

𝑧𝑠𝑢𝑚

Π 𝑁 𝑤2
𝑧2 𝑧𝑁 2

𝑧𝑠𝑢𝑚

𝛿
∑

Π 𝑁 𝑤80
𝑧48 𝑧 𝑁

48

𝑧𝑠𝑢𝑚

Π 𝑁
𝑧49

𝑤81

𝑧 𝑁
49

𝑥

𝜙

𝑧𝑠𝑢𝑚

Figure 4.3 – Structure of the Neuro Fuzzy Controller

Figure 4.4 – Initial membership functions of the x-position (above) and the ori-

entation φ (below)

The results of the membership functions are aggregated by using the product as a

fuzzy AND-operator. The results are the premises z1 · · · z49. These are normalized in
the next layer as a part of the defuzzification.

zN
=
 zi (4.7)

zsum
i

26 Master Thesis Anna-Maria Grebner

4 Implementation

k

k

c k

with z =

Σ49

z . Afterwards the normalized premises are multiplied with their
sum

j=1
j

respective weight wi to determine the results of theirs rules. In the final step all of the

results are added up to form the steering angle output. Because of the normalization

step every weight wi gets as much power on the output as their premise was active.

4.2.2 Training with Dynamic Backpropagation

The navigation controller was trained with dynamic backpropagation as described in

chapter 3.2.3. The whole training process is listed in algorithm 4.1 and will be explained

further here.

At first the vectors with the slopes (a) and centers (c) of the membership functions as

well as of the rules consequences (w) are initialized. Five symmetric starting states are

defined as well as the maximum of training episodes.

One training episode consist of following all starting positions for 1350 time steps or

until the path leaves the field boundaries of xmin = −50 and xmax = 50. The network

parameters are updated after every episode with the ratio of the sum over all calculated

changes from the timesteps in this episode to the number of time steps included in this

sum (ktotal).

kΣtotal
i,k

wi = wi − ηk=1

total

kΣtotal

∆a

(4.8)

ai = ai − ηa
k=1

total

kΣtotal

∆c

i,k

(4.9)

i,k

ci = ci − η k=1

total

(4.10)

In each time step k the current state sk is fed to the controller, which computes the

steering angle uk = δk with the available parameters. The steering angle is given to

the model of the system, which calculates the next state sk+1 = fm(sk, uk) with the

kinematic equations from 4.1. This position is compared with the desired position and

the error ek is determined.

ek =

Σ Σ
xk+1 − x∗

φk+1 + φ∗

With the error and the equations from the dynamic backpropagation algorithm, the

gradient toadapttheparameters canbe calculated. Belowtheequations for adapting the

∆w

4 Implementation

27 Master Thesis Anna-Maria Grebner

2

∂w

L

∂ k

∂uk L

k =

a rule consequence parameter wi in the navigation controller will be derived. Differences

fo the derivation of the equations for the premise parameters will be listed afterwards.

As explained in chapter 3.2.2, the rate of change is the total derivative of the cost

function to the parameter. For consequence i that is

∆wi =
 ∂J

∂wi

The cost function to minimalize consists of the error to the desired state.

(4.11)

J =

1

(sk+1 − s∗)
2 (4.12)

With the application of chain rule the total derivative becomes

∂ J

∂wi
= (sk+1 − s∗)

 ∂sk+1

i

(4.13)

As derived in chapter 3.2.2 this is calculated in a recursive way:

 ∂sk+1
=

∂ sk+1
+

.
 ∂sk+1

+
 ∂sk+1 ∂uk

Σ
 ∂sk

∂wi ∂wi ∂sk ∂uk ∂s
k

∂wi
(4.14)

 ∂sk+1

∂wi

is split up by applying the chain rule. The first derivative is then calculated from

the system model, the second from the controller structure:

Σ
 ∂sk+1

=
 ∂sk ∂uk

=

0

Σ
zN (4.15)

∂wi ∂uk ∂wi − r i

The next two derivatives are constructed as well with the help of the system model

 ∂s

∂ xk+1 ∂xk+1 Σ Σ
1 r · cos(φ

k+1
=

∂sk

 ∂sk+1

=

∂uk

∂xk
∂φk+1

∂xk

 ∂xk+1
∂u
φk+1

∂φ k)

 ∂φk+1

∂φk

Σ
Σ

0

=

−
r

(4.16)

(4.17)

0 1

4 Implementation

28 Master Thesis Anna-Maria Grebner

 j

= z

For the last derivative the structure of the controller is used again.

 ∂uk
=

∂s

 ∂uk
∂xk

(4.18)

 ∂uk
∂φk

∂ uk ∂ 49

N
=

49 ∂zN (4.19)
w

∂xk ∂xk

j=1

wjzj j=1
j
∂xk

 ∂uk
=

∂ 49 ∂zN (4.20)
 j N

= w
∂φk ∂φk

j=1

wjzj j=1
j
∂φk

To compute the derivative of the normalized premises, the product rule has to be used.

∂zN ∂zj zsum − zj ∂zsum
 j

∂xk
 ∂xk 2

sum
∂xk (4.21)

∂zN ∂zj zsum − zj ∂zsum
 j

∂φk =
∂φk 2

sum
∂φk (4.22)

The derivatives of the unnormalized premises and their sum are

 ∂zj
=
 ∂µx,1

(µ 1w1 +µ 2w2 +· · · + µ 7w7)+ (4.23)
∂xk ∂xk

φ, φ, φ,

 ∂µx,2
(µ 1w8 +µ 2w9 +· · · + µ 7w14) + · · ·

∂xk
φ, φ, φ,

 ∂µx,7
(µ 1w43 +µ 2w44 +· · · + µ 3w49)

∂xk
φ, φ, φ,

 ∂zj
=

∂µφ,1
(µ w + µ w + · · · + µ w)+

∂φk ∂φk
x,1 1 x,2 2 x,7 7

∂ µφ,2
(µ w + µ w + · · · + m w 4) + · · ·

∂φk
x,1 8 x,2 9 7 1

∂ µφ,7
(µ w + µ w + · · · + µ w) (4.24)

∂φk

4

x,1 43 x,2 44 x,7 49

 ∂zsum
= 9

 ∂zj
(4.25)

∂xk j=1 ∂xk

4 ∂zsum
= 9

 ∂zj

∂φk j=1 ∂φk
(4.26)

k

=

49

z

4 Implementation

29 Master Thesis Anna-Maria Grebner

The derivatives of the membership function to the input depend on the type of function

used. For the sigmoid functions it is

 ∂µx,i
= −

 1
µx,i

(x)(1 − µ
x,i

(x)) (4.27)

∂xk ai k k

and for the gaussian funtions it results in

 ∂µx,i
=
 2

(xk
− c)µ (x) (4.28)

∂xk ai
i x,i k

With all derivatives from the update equation broken down in terms which can be taken

directly from the model or the controller, the change of consequence parameters can be

calculated in every time step.

The derivatives to update the premise parameters are calculated analog except for 4.27

and 4.28, which are

 ∂µx,i
= −

 1
µ x,i

(x)(1 − µ
x,i

(x)) (4.29)

∂ci ai k k

 ∂µx,i
= −

 1
(x

− c)µ (x)(1 − µ (x)) (4.30)

∂ai

for sigmoid functions and

a
2 k i
i

x,i k x,i k

∂ µx,i
=
 2

µx,i
(x)(x − c) (4.31)

∂ci ai
k k i

∂ µx,i
=
 1

µ
(x)(x − c) (4.32)

for gaussian functions.

∂ai
a

2 x,i k k i
i

In the navigation controller the premise parameters, as well as the consequence pa-

rameters can be chosen symmetrically, as the strategy to reach the desired position is

mirror-inverted to the middle lane. Therefore in updating the parameters only one half

is used and projected on the other half of the parameters. As the starting states are

chosen to symmetrical, no information is lost.

The parameters of the slopes and centers had to be restricted. Especially the slopes

would rise and lead to an overlapping of all membership function. That is there are

maximum and minimum limts for components of the a- and c-vector.

The learning rates were desingned to be slightly adaptable. A simple system was chosen

in which every parameter has its own learning rate. If the parameter is to be adapted in

the current episode in the same direction (positive ornegative) as in the lastepisode, the

4 Implementation

30 Master Thesis Anna-Maria Grebner

learning rate increasing with the factor 1.1 If the directions are different, the learning

rate will be decreased by 0.5. For every parameter vector a maximal rate is defined to

avoid that rates swing up fast and make the learning process instable. In general the

learning rates had to be chosen very small.

Forthe training with dynamic a technique called "incremental learning" was employed.

This means at the beginning of training starting positions close the the goal position (in

x-position and angle) were used. When parameters for these were learned with success

the starting positions were chosen to become more and more difficult. Accordingly, the

algorithm 4.1 is to run numerous times with changed starting parameters for approx-

imitaly 1000 episodes. This way it can be made sure the algorithm learns the correct

steering technique, with the possibility to check after every learning stage.

4 Implementation

31 Master Thesis Anna-Maria Grebner

k

1: Initialize premise parameter vectors a and c and vector with rule consequences w

2: Set symmetric starting points for training s0,1 · · · s0,M
3: for each episode i do
4: for each starting position j do
5: for each time step k do

6: Compute control signal uk = fc(xk, φk)

7: Apply uk to model and compute state in next time step sk+1 = fm(sk, uk)

8: Caluclate error to desired position ek = sk − s∗

9: Compute total derivatives with equations 4.14 - 4.32
10: Calculate weight changes and them up

∆sumw = ∆sumw + e
∂ sk+1

∂w

∆sumc = ∆sumc + ek
 ∂sk+1

∂c

∆sum a = ∆sumw + ek
 ∂sk+1

∂a

11: end for
12: end for

13: Calculate changes of parameters

∆w =
 ∆sumw

ktotal

∆c =
 ∆sumc

ktotal

∆a =
 ∆suma

ktotal

14: Update step sizes

15: Update weights and premise parameters

w = w − ηw∆w

c = c − ηc∆c

a = a − ηa∆a

16: Restrict premise parameters and mirror all parameters

 17: end for

Algorithm 4.1 – Training the neuro fuzzy navigation controller with dynamic

backpropagation

4 Implementation

32 Master Thesis Anna-Maria Grebner

4.3 Obstacle Avoidance

4.3.1 Structure of the Neuro Fuzzy Controller for Obstacle Avoidance

The idea was to design an additional neural fuzzy controller for obstacle avoidance.

It generates a variable δplus which is added to the steering angle δ of the navigation

controller. With this manipulation thesteering angle is adpated if anobstacle is detected.

A diagram of the control cycle with two controllers can be seen in figure 4.5. The

Figure 4.5 – Control cycle with Navigation and Obstacle Avoidance Controller

structure of the obstacle avoidance controller is again in 5 layers as described in 3.9 and

can be seen in figure 4.6

(𝑥𝑐; 𝑦𝑐)
𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒
𝐴𝑣𝑜𝑖𝑑𝑎𝑛𝑐𝑒
𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟

𝛿𝑝𝑙𝑢𝑠

+
𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛
𝐶𝑜𝑛𝑡𝑟𝑜𝑙

𝛿
𝑅𝑜𝑏𝑜𝑡

𝒔

4 Implementation

33 Master Thesis Anna-Maria Grebner

Π 𝑁 𝑤𝑜,1
𝑧𝑜,1 𝑧𝑁

𝑜,1

𝑧𝑜,𝑠𝑢𝑚

Π 𝑁 𝑤𝑜,2

𝑧 𝑜,2
𝑧𝑁
𝑜,2

𝑧𝑜,𝑠𝑢𝑚

𝛿𝑝𝑙𝑢𝑠

∑

Π 𝑁
𝑤𝑜,133

𝑧𝑜,133 𝑧𝑁
𝑜,133

𝑧𝑜,𝑠𝑢𝑚

Π 𝑁 𝑤𝑜,134
𝑧𝑜,134 𝑧𝑁

𝑜,134

𝑧𝑜,𝑠𝑢𝑚

Π 𝑁 𝑤𝑜,135

𝑧𝑜,135 𝑧𝑁
𝑜,135

𝑑𝑖𝑠𝑡𝑙

𝑑𝑖𝑠𝑡𝑟

𝑑𝑖𝑠𝑡𝑓

𝑎𝑛𝑔𝑙𝑒𝑔

𝑧𝑜,𝑠𝑢𝑚

Figure 4.6 – Structure of the controller for obstacle avoidance

The input variables for the controller are the detected distance to an object on the

left, front and right of the robot and the current orientation angle of the robot. The

membership functions for the input can be seen in figure 4.7, the chosen parameter

values and their liguistic interpretation in table 4.2. The output is the manipulation

variable δplus, which corrects the steering angle from the navigation controller to avoid

obstacles.

 cl al linguistic interpretation cg ag linguistic interpretation

1

2

3

4

5

1

4

7

1

3

0.5

TOO NEAR

NEAR

FAR

−
 3π
4

−
 π
4

0

 π
4

3π
4

0.3491

0.3491

0.3491

0.34914

0.34914

DOWN RIGHT
UP RIGHT

UP

UP LEFT
DOWN LEFT

Table 4.2 – Initial center and slope parameters as well as linguistic interpretation
of the membership functions for the obstacle avoidance control system.
The parameters are the same for the three distance inputs.

4 Implementation

34 Master Thesis Anna-Maria Grebner

4 4

1 Distance Left

0.5

0
-5 0 5 10 15 20

1 Distance Right

0.5

0
-5 0 5 10 15 20

1 Distance Front

0.5

0
-5 0 5 10 15 20

1 Orientation

0.5

0
-4 -3 -2 -1 0 1 2 3 4

Figure 4.7 – Membership-Functions of the Obstacle Avoidance Algorithm

4.3.2 Simulation of Obstacle Recognition

The next step was to design a simulation for the recognition of obstacles, which would

provide the distance between robot and object as if it was measured. Circular objects

were chosen for this simulation because in that case the distance between robot and

object is easily computable with the following equation

.
distc = (xc − x)

2
+ (yc − y)

2 − R (4.33)

where (xc; yc) are the center coordinates of the cicular object and R is its radius.

Additionally to the distance it needs to be decided if the obstacle is on the left, right

or front of the robot. The angle to the center of the obstacle is determined with the

equation

β = arctan(

(yc − y)

) −
 π

(4.34)
c

xc − x 2

The standard value for the three distance inputs is 100, symbolizing that the path is

clear. This value is overwritten by the distance to the object if the angle to the object
falls into the following ranges:

−π < βc < − π → Object left, distl = distc
2 8

π
< βc < π → Object front, distf = distc −

4 Implementation

35 Master Thesis Anna-Maria Grebner

8 2

 π < βc < π → Object right, distr = distc

The ranges are overlapping to recognize if an object is, for example, completely on

the left or in front and slightly to the left (see figure 4.8).

𝑦

𝑥

Figure 4.8 – Recognition of obstacles in tree sectors. Thecontinious lines describe

the left and right section, the dashed line the front section.

4.3.3 Training with Dynamic Backpropagation

Dynamic Backpropagation is once again employed to train the parameters of the obstacle

avoidance controller. In the cost function it was important to combine a punshiment

for coming too near to an obstacle and a reward for staying close to the direct path to

the goal position.

Jo = 1 (x − x∗)2 + 1 (φx − φ∗) − 12 (x − xc)2 − 1(y − yc)2

2 k 2 2
k

2
k

With the distance to the obstacle being evaluated as negative, a greater distance to the

obstacle comes with a minimalization, which is the desired outcome. For the obstacle

avoidance the distance in y-direction is also considered, so it is added to the state vector

xk

sk = φk (4.35)

yk

𝑙𝑒𝑓𝑡

𝑓𝑟𝑜𝑛𝑡

𝑟𝑖𝑔ℎ𝑡

4 Implementation

36 Master Thesis Anna-Maria Grebner

The parameter updates are computed with

∆wo,i =
∂ Jo

∂wo,i

∆co,i =
 ∂Jo

∂co,i

∆ao,i =
 ∂Jo

∂ao,i

(4.36)

(4.37)

(4.38)

The detailed derivation of the update equations works similar to the derivation in

chapter 4.2.2 and can be found in the appendix. The employed algorithm has the same

structure as algorithm 4.1.

4.3.4 Training with Actor-Critic-Algorithm

Another training concept is applied the obstacle avoidance controller to compare the

results afterwards. An actor-critic training algortihm based on the explanation in

3.2.4 was implemented to adapt the parameters. The final algorithm can be seen in

algorithm 4.2 and is further explained below. To present the algorithm clearer premise

and consequence parameters are concluded in the variable θo. Note, that in the critic

networkonly the consequence parametersare updated. The premise parameters should

be the same as in the control network so every action can be critisized in relation to the

state premises that led to it. In the beginning the all parameters are initialized. The

premise parameters of the critic, target and critic target network were chosen to be the

same as the ones from the controller network. The critic and the critic target network

have the taken action as an additional input. The membership function chosen for this

input is shown in figure 4.9. The concequence parameters were chosen to be 0 in all

networks. One episode in this training consists of only one starting position and the

resulting path in 1350 time steps. The starting state for every episode is determined

randomly. At the beginning of each episode, the Ornstein-Uhlenbeck process layered

upon the controller output to realize explorational behaviour is initilized. In every

timestep k the current state is given to the controller and the correction variable δplus

is calculated. The noice of the Ornstein-Uhlenbeck process is added and the result

manipulates the steering angle from the navigation controller. The new steering angle

is the control input for the kinematic model and the following state sk+1 is computed.

Depending on that state the system is getting a reward. The reward r was chosen

as follows: If the difference between the desired position x∗ and the position at the

timestep k+1 is smaller than 0.1 the reward is a positive 1. Everywhere else the reward

4 Implementation

37 Master Thesis Anna-Maria Grebner

plus

∂θ o

1: Initialize parameters θo, θo,c,θo
t, θo,c

t

2: for every episode j do

3: Initilize random exploration noise processN
4: Randomly select a starting position s0

5: for every time step k do

6: Determine the taken action ak = δplus(sk) + N
7: Apply action to model and compute next time step sk+1 = fm(sk, ak)

8: Get reward r = r(sk+1)

9: Store transition (sk,sk+1,ak,r) in replay memory

10: if size of replay memory > n then

11: Randomly sample a minibatch of n transistions from replay memory

12: for every samply in minibatch i do
13: Compute output of critic network Q

14: Compute output of target network δt

15: Compute output of critic target network Qt

16: end for

17: Update critic parameters

wo,c = wo,c + ηo,c

 ∂L(wo,c)

∂wo,c
∂Q

= wo,c + ηo,c (r + γQt(s k+1 , ak+1))
o,c

18: Update actor parameters: θo = θo + ηo ∂Q(sk,ak ,θo)

19: Update target critic parameters: θo,c
t = τθo,c + (1

20: Update target parameters: θo
t = τθo + (1 − τ)θo

t

21: end if
22: end for

− τ)θo,c

t

 23: end for

Algorithm 4.2 – Actor-Critic-Learning for the Obstacle-Avoidance Controller

is bigger the closer the robot is to the ideal position and the reward is calculated with

r =
 0.1 (4.39)

√
(x

k+1
− x∗

)
2

This helps the result to stay close to the desired position. The control system is punished

if the robot is driving in the wrong direction (in negativ y direction) or it is getting too

close to the obstacle

distT OOCLOSE =

.
(xk+1 − xc)

2
+ (yk+1 − yc)

2 − R − 0.5 (4.40)

∂w

4 Implementation

38 Master Thesis Anna-Maria Grebner

∂woc

c

Figure 4.9 – Membership function of the additional input of the critic networks

In both cases the reward is reduced to −1. To be used in training the state sk, the

taken action δplus, the gained reward r and the newly reached state sk+1 are saved

in a replay memory. This algorithm learns with the transitions in the replay memory

to improve the quality of learning. The minimum size of the replay memory to start

learning was chosen to be 300. This means in the first 300 time steps of an episode the

network is not trained at all but only collects transition samples. As soon as the replay

memory has enough entries a minibatch of n = 100 transitions is sampled from it and

used for training. At first the critic network determines the critic of the action taken at

time step k. Then the target network determines the action the network would take in

the time step k +1 with the current parameters. The critic target network critizises this

action. With the outputs of these networks the parameter updates can be calculated.

The critics network parameters are adapted with

 ∂L(wo,c)

wo,c = wo,c + ηo,c
∂wo,c

(4.41)

 ∂Q

= (rk + γQt(sk+1 , ak+1)) ·
∂w

 (4.42)

where uc is the output of the critic network and ∂Q is the vector of the critics normalized

premise parameter zN.

oc

4 Implementation

39 Master Thesis Anna-Maria Grebner

+

The controllers parameters are updated with

θ = θ η
1

n
n ∂Q(sk, uk, θo) (4.43)

∂θo o o o

 1

i=1

= θ + η

n
n ∂Q(sk, uk, θo) ∂uk (4.44)

∂uk ∂θo
o o

i=1
(4.45)

The last two derivatives are computed this way:

 ∂Q(s , u , wθ) ∂zN
k k

∂uk

o
= θo

 o,c

∂uk

 ∂zo,c zo,sum − zo,c
 ∂zo,sum

(4.46)

= θo
∂uk

2

zo,sum

∂uk (4.47)

 ∂uk
= zN (4.48)

∂θo

40 Master Thesis Anna-Maria Grebner

2

Chapter 5

Results

5.1 Results of the Navigation Controller

The newly added training of premise parameters adapted the inital membership functions

(figure 4.4) to the ones shown in figure 5.1. The membership functions of the position in

Figure 5.1 – Membership functions of the x-position (above) and the orientation

(below) after training

x- direction were barely changed. Only the one representing ZERO is now less wide as

before. This may increases the accuracy at the goal position, because the range in which

the robot is considered to be at the desired position is now smaller. On the contrary to

the position, the membership functions of the orientation changed a lot and lost a bit of

their linguistic interpretability. However, it is supposed that by moving the membership

functions for UP LEFT and UP RIGHT closer together in the center the accuracy was

once again increased, because now even small variations from the ideal φ∗ =
π can be

detected and corrected.

The neuro fuzzy navigation controller obtained by training premise and consequence

parameters with dynamic backpropagation was succeccfully tested in a simulation for

different starting states. No matter which starting position and orientation was chosen,

41 Master Thesis Anna-Maria Grebner

5 Results

2

2

the robot would always find the desired position in a fast way. A few examples of taken

paths for different starting states are shown in the following figures 5.2. Even in figure

50 50

40 40

30 30

20 20

10 10

0 0

-10 -10

-20
-50 0 50

(a) start position x0 = −10,φ0 = π

-20
-50 0 50

(b) start position x0 = 45,φ0 = π

50 50

40 40

30 30

20 20

10 10

0 0

-10 -10

-20
-50 0 50

(c) start position x0 = −30,φ0 = π

-20
-50 0 50

(d) start position x0 = 0,φ0 = − π

Figure 5.2 – Paths taken by the robot to parking position for different start
positions

5.2 b, where the starting x-value was chosen very close to the limits of the operating

range, the robot could reach the goal position in under 50 units in the y-direction. It

can also be observed, that the robot uses the strategy mentioned in chapter 4.2.1 and

drives to the center, while correcting its orientation, before driving in a straight line to

the parking spot.

By changing the desired state the robot was also able to approach different park-

ing spots. This can be seen in the figures below.

Another test scenario was to let the robot navigate the way to a circular path and follow

42 Master Thesis Anna-Maria Grebner

5 Results

2 2k

2

it. To realize this the desired position values were chosen to be:

∗
= (x − x)

 R
(5.1)

x xc − c
k
.

((xc − xk) + y)

φ∗ =

.
arctan

Σ yk
(5.2)

−
xc − xk

where (xc; yc) are the center coordinates of the circle, R the radius of the circle and L

the length of the robot. Once the robot reaches the circle the steering angle only needs

to stay constant at a certain degree to stay on the path. This angle can be determined

and is added to the steering angle from the controller as a ’correction term’.

uk,corrected = uk +

 π
− arctan

.
R

Σ

L

; (5.3)

In figure 5.3 the path for reaching and following a circular path is shown.

The final test scenario was to let the robot follow a sinusodial path. The path is

predefined with the parameters amplitude A, frequence f . The desired state for this

case is

x∗ = A · cos(f · yk) (5.4)

φ∗ = arctan(A · f · sin(f · yk)) (5.5)

Againa correction term is needed to smooth the robots motion while following the path.

uk,corrected = uk + (f 2 · A · sin(f · xk
)) ·

 L
; (5.6)

r · sec(f)2

The robot was able to reach the sinusodial path and follow it, which can be seen in figure

5.4 below. All in all the navigation algorithm could could reach very good results in

simulation. The robot was able to reach any desired parking position from an arbitraty

start state and could follow circular and sinusodial shapes lines.

43 Master Thesis Anna-Maria Grebner

5 Results

100 100

50 50

0 0

-50

0 20 40 60 80 100

(a)

-50

0 20 40 60 80 100

(b)

100 100

50 50

0 0

-50

0 20 40 60 80 100

(c)

-50

0 20 40 60 80 100

(d)

100 100

50 50

0 0

-50

0 20 40 60 80 100

(e)

-50

0 20 40 60 80 100

(f)

Figure 5.3 – Robot finding and following a circular path. The circle has the
parameters (xc; yc) = (50; 0), R = 35 and the starting state is

(x0; y0; φ0) = (10; 30; π)

44 Master Thesis Anna-Maria Grebner

5 Results

500

450

400

350

300

250

200

150

100

50

0

-10 -5 0 5 10

Figure 5.4 – Following a sinusodial path.

5.2 Results of the Obstacle Avoidance Controller

At first the results of the obstacle avoidance controller trained with dynamic backpropa-

gation are presented. This method proved to be more difficult to apply to the obstacle

avoidance problem than to the navigation problem before. The reason is that the

definition of ’easy’ cases to start with the incremental learning is not as clear as in the

navigation case. Choosing starting points at the side of the obstacle in the beginning

and moving to the center seemed to be a good possibility but did not always result in

the desired paths. The controller ended up navigating the robot around the right side of

the obstacle for most starting positions. The results can bee seen in the following figures.

The robot can avoid the obstacle but often not on the ideal path. The controller trained

with deterministic policy gradient could not reach these results. Althought seeming

to get in the right direction an collision was not always avoided as can be seen in the

following figures

45 Master Thesis Anna-Maria Grebner

5 Results

50 50

40 40

30 30

20 20

10 10

0 0

-10 -10

-20
-50 0 50

(a)

-20
-50 0 50

(b)

50 50

40 40

30 30

20 20

10 10

0 0

-10 -10

-20
-50 0 50

(c)

-20
-50 0 50

(d)

Figure 5.5 – Results of the obstacle avoidance controller trained with dynamic
backpropagation

46 Master Thesis Anna-Maria Grebner

5 Results

50 50

40 40

30 30

20 20

10 10

0 0

-10 -10

-20
-50 0 50

(a)

-20
-50 0 50

(b)

Figure 5.6 – Failed results of the obstacle avoidance controller trained with deter-
ministic policy gradient

47 Master Thesis Anna-Maria Grebner

Chapter 6

Conclusion

The thesis focused on the development of a neuro-fuzzy controller for a 4-wheeled

car-type robot to solve a parking problem while avoiding obstacles.

At first the navigation to a desired position on a clear path was considered. The neural

fuzzy navigation controller for that problem had been set up in an earlier work and

has a zero-order Takagi-Sugeno structure. Until now it had only been trained in its

consequence parameters and was expanded in this thesis by the dynamic backpropagation

training for the premise parameters.

In the second part of the work a controller for avoiding obstacles was developed. This

controller returns a manipulation value, which is added to the output of the navigation

controller should an object come near. It was trained with two different neural methods,

which are called ’Dynamic Backpropagation’ and ’Deterministic Policy Gradient learning’.

For the navigation task the controller trained with dynamic backpropagation led to

very good results. The robot was able to reach the desired parking position without

problems. With the algorithm it was also possible to let the robot drive in circular

shapes and sinsusodial paths.

The obstacle avoidance problem is still in need of further developing. The controller

trained with dynamic backpropagation was able to avoid obstacle but increased its path

to much while doing this. The controller trained with deterministic policy gradient

seemed to have the opposite problem - a collision-free navigation cannot be guaranteed

for the whole range of x-values.

In future works the obstacle avoidance needs to be developed further. Maybe more

membership function could help the case to get asmoother trajectory aroundtheobjects.

The controller trained with deterministic policy gradient seems to need more training

steps. Maybe a better, adaptable step size could solve this problem.

48 Master Thesis Anna-Maria Grebner

List of Figures

2.1 Parking problem to be solved ... 3

2.2 Parking problem with obstacle avoidance ... 4

3.1 Common forms of fuzzy membership functions .. 5

3.2 Fuzzy description of a distance ... 6

3.3 Structure of a fuzzy inference system .. 8

3.4 Activation in a FIS with min- and product operator 9

3.5 Neuron, smallest unit of a Neural Network .. 11

3.6 Feedforward Network .. 12

3.7 Unfolded Network ... 14

3.8 Structure of an Actor-Critic network ... 16

3.9 Fuzzy-Neural-Network .. 19

4.1 4-wheeled car-type robot .. 23

4.2 Strategy to reach the goal position. The control input does not depend

on the y-position of the robot, only on the x-position and orientation 24

4.3 Structure of the Neuro Fuzzy Controller ... 25

4.4 Initial membership functions of the x-position (above) and the orientation

φ (below) ... 25

4.5 Control cycle with Navigation and Obstacle Avoidance Controller 32

4.6 Structure of the controller forobstacle avoidance ... 33

4.7 Membership-Functions of the Obstacle Avoidance Algorithm 34

4.8 Recognition of obstacles in tree sectors. The continious lines describe the

left and right section, the dashed line the front section 35

4.9 Membership function of the additional input of the critic networks 38

5.1 Membership functions of the x-position (above) and the orientation

(below) after training .. 40

5.2 Paths taken by the robot to parking position for different start positions 41

49 Master Thesis Anna-Maria Grebner

List of Figures

5.3 Robot finding and following a circular path. The circle has the parameters

(xc;yc) = (50; 0), R = 35 and the starting state is (x0; y0; φ0) = (10; 30;π) 43

5.4 Following a sinusodial path. .. 44

5.5 Results of the obstacle avoidance controller trained with dynamic back-

propagation ... 45

5.6 Failed results of the obstacle avoidance controller trained with determin-

istic policy gradient ... 46

50 Master Thesis Anna-Maria Grebner

List of Tables

3.1 Results of AND-operators ... 7

3.2 Results of OR-operators .. 7

4.1 Initial center and slope parameters as well as linguistic interpretation of

the membership functions for the navigation control system 24

4.2 Initial center and slope parameters as well as linguistic interpretation of

themembership functions for theobstacle avoidance control system. The

parameters are the same for the three distance inputs 33

51 Master Thesis Anna-Maria Grebner

Bibliography

[1] Cardenas, Antonio M. ; Razuri, Javier G. ; Sundgren, David ; Rahmani,

Rahim: Autonomous Motion of Mobile Robot Using Fuzzy-Neural Networks.

In: Castro, Félix (Hrsg.): 12th Mexican International Conference on Artificial

Intelligence (MICAI 2013). Piscataway, NJ : IEEE, 2013. – ISBN 978–1–4799–

2605–3, S. 80–84

[2] Zadeh, L. A.: Fuzzy sets. In: Information and Control 8 (1965), Nr. 3, S. 338–353.

http://dx.doi.org/10.1016/S0019-9958(65)90241-X. – DOI 10.1016/S0019–

9958(65)90241–X. – ISSN 00199958

[3] Ross, Timothy J.: Fuzzy Logic with Engineering Applications. 4. Aufl. s.l.

: Wiley, 2016 http://gbv.eblib.com/patron/FullRecord.aspx?p=4694618. –

ISBN 1119235863

[4] Czogała, Ernest ; Łęski, Jacek: Studies in Fuzziness and Soft Computing. Bd. 47:

Fuzzy and Neuro-Fuzzy Intelligent Systems. Heidelberg : Physica-Verlag HD,

2000. http://dx.doi.org/10.1007/978-3-7908-1853-6. http://dx.doi.org/

10.1007/978-3-7908-1853-6. – ISBN 9783662003893

[5] Narendra, Kumpati S. ; Parthasarathy, Kannan: Neural networks and

dynamical systems. In: International Journal of Approximate Reasoning 6 (1992),

Nr. 2, S. 109–131. http://dx.doi.org/10.1016/0888-613X(92)90014-Q. –

DOI 10.1016/0888–613X(92)90014–Q

[6] Sutton, Richard S. ; Barto, Andrew G.: Reinforcement learning: An introduction.

1998 (Adaptive computation and machine learning). – ISBN 978–0–262–19398–6

[7] Lillicrap, Timothy P. ; Hunt, Jonathan J. ; Pritzel, Alexander ; Heess, Nicolas

; Erez, Tom ; Tassa, Yuval ; Silver, David ; Wierstra, Daan: Continuous

control with deep reinforcement learning. In: CoRR abs/1509.02971 (2015)

http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://gbv.eblib.com/patron/FullRecord.aspx?p=4694618
http://dx.doi.org/10.1007/978-3-7908-1853-6
http://dx.doi.org/10.1007/978-3-7908-1853-6
http://dx.doi.org/10.1007/978-3-7908-1853-6
http://dx.doi.org/10.1007/978-3-7908-1853-6
http://dx.doi.org/10.1016/0888-613X(92)90014-Q

52 Master Thesis Anna-Maria Grebner

BIBLIOGRAPHY

[8] Silver, David ; Lever, Guy ; Heess, Nicolas ; Degris, Thomas ; Wierstra,

Daan ; Riedmiller, Martin: Deterministic Policy Gradient Algorithms. In: ICML.

Beijing, China, 2014

[9] Godjevac, J. ; Steele, N.: Adaptive neuro-fuzzy controller for navigation of

mobile robot. In: International Symposium on Neuro-Fuzzy Systems. Lausanne,

Switzerland : Repro EPFL, 1997. – ISBN 0–7803–3367–5, S. 111–119

[10] Gui-juan, Wang ; Zuo-xun, Wang ; Yan-rong, Wu ; Hong-dong, Xu: The

Application of Neuro-Fuzzy Controller in the Washing Machine Control System.

In: Second International Conference on Intelligent Computation Technology and

Automation, 2009. Piscataway, NJ : IEEE, 2009. – ISBN 978–0–7695–3804–4, S.

818–821

[11] Jurado, Francisco ; Ortega, Manuel ; Cano, Antonio ; Carpio, José: Neuro-

fuzzy controller for gas turbine in biomass-based electric power plant. In: Electric

Power Systems Research 60 (2002), Nr. 3, S. 123–135. http://dx.doi.org/10.

1016/S0378-7796(01)00187-0. – DOI 10.1016/S0378–7796(01)00187–0. – ISSN

03787796

[12] Budiharto, Widodo ; Jazidie, Achmad ; Purwanto, Djoko: Indoor Navigation

Using Adaptive Neuro Fuzzy Controller for Servant Robot. In: Second International

Conference on Computer Engineering and Applications (ICCEA), 2010. Piscataway,

NJ : IEEE, 2010. – ISBN 978–1–4244–6079–3, S. 582–586

[13] Zhu, Anmin ; Yang, Simon X.: Neurofuzzy-Based Approach to Mobile Robot

Navigation in Unknown Environments. In: IEEE Transactions on Systems,

Man and Cybernetics, Part C (Applications and Reviews) 37 (2007), Nr. 4,

S. 610–621. http://dx.doi.org/10.1109/TSMCC.2007.897499. – DOI

10.1109/TSMCC.2007.897499. – ISSN 10946977

[14] Rusu, P. ; Petriu, E. M. ; Whalen, T. E. ; Cornell, A. ; Spoelder,

H.J.W.: Behavior-based neuro-fuzzy controller for mobile robot navigation.

In: IEEE Transactions on Instrumentation and Measurement 52 (2003), Nr.

4, S. 1335–1340. http://dx.doi.org/10.1109/TIM.2003.816846. – DOI

10.1109/TIM.2003.816846. – ISSN 0018–9456

[15] Kuremoto, Takashi ; Tsubaki, Kazuhiro ; Obayashi, Masanao ; Mabu, Shingo

; Kobayashi, Kunikazu: A neuro-fuzzy reinforcement learning system for au-

tonomous robot dealing with continuous space. In: NCSP 2016 : 2016 RISP

http://dx.doi.org/10.1016/S0378-7796(01)00187-0
http://dx.doi.org/10.1016/S0378-7796(01)00187-0
http://dx.doi.org/10.1016/S0378-7796(01)00187-0
http://dx.doi.org/10.1109/TSMCC.2007.897499
http://dx.doi.org/10.1109/TIM.2003.816846

53 Master Thesis Anna-Maria Grebner

BIBLIOGRAPHY

International Workshop on Nonlinear Circuits, Communications and Signal Pro-

cessing, Hawaii, United States of America, Mar 06-Mar 09,2016

[16] Al-Dabooni, Seaar ; Wunsch, Donald: Mobile robot control based on hybrid

neuro-fuzzy value gradient reinforcement learning. In: IJCNN 2017. Piscataway,

NJ : IEEE, 2017. – ISBN 978–1–5090–6182–2, S. 2820–2827

[17] Brahimi, Somia ; Azouaoui, Ouahiba ; Loudini, Malik: Neuro-Fuzzy Navigation

for a Car-Like Robot in Unknown Environments, 2015

54 Master Thesis Anna-Maria Grebner

Appendices

55 Master Thesis Anna-Maria Grebner

Appendix A

The derivation of update equations for the parameters of the obstacle avoidance controller

is shown exemplary for a concequence parameter wi, but is, except for the derivatives

of the membership functions analog for the premise parameters.

kΣtotal

∆w

w = w − η k=1 o,i,k

With the cost function being

o,i o,i o,i

ktotal

∆wo,i =

∂Jo

∂wo,i

(.1)

(.2)

Jo = 1 (x − x∗)2 + 1 (φx − φ∗) − 12 (x − xc)2 − 1(y − yc)2

2 k 2 2 k 2 k

(.3)

the total derivative can be split up to

∂Jo

∂wo,i

= ((xk − x∗) + (xc − xk
))

 ∂xk

∂wo,i
+ (φk − ∗φ)

∂φk

∂wo,i

+ (yc − yk

)
∂yk

∂wo,i

(.4)

The total derivatives of the state variables can be calculated with the recursive formular

described in chapter 3.2.3.

 ∂sk+1
=

 ∂sk+1
+

.
 ∂sk+1

+
 ∂sk+1 ∂uk

Σ
 ∂sk (.5)

∂wo,i ∂wo,i ∂sk ∂uk ∂sk ∂wo,i

(.6)

56 Master Thesis Anna-Maria Grebner

L

=

By applying the chain rule, the first derivative becomes

 ∂sk+1
=
 ∂sk+1 ∂uk (.7)

∂wo,i ∂uk ∂wo,i

0

= − r zoN,i

0

(.8)

The jacobian matrix of the system is derived from the model equations, listed in chapter

4.1

 ∂s
1 −r · sin(φk) 0

k+1
=

∂sk
1 0 (.9)

0 r · cos(φk) 1

The next two derivatives can be written as

 ∂s ∂u 0 Σ Σ
k+1 k

= − r ∂uk ∂uk ∂ uk (.10)

∂uk ∂sk L ∂xk

0

∂φk ∂yk

(.11)

 ∂uk ∂ 81 81

N
=

∂z oN,j (.12)

∂xk ∂xk

j=1

wo,jzo,j j=1 w
k

o,j ∂x

 ∂uk
=

∂ 81 81
 ∂z oN,j (.13)

∂yk ∂yk

j=1

N
=

wo,jzo,j j=1 wo,j
∂y

 ∂uk
=

∂ 81 81
 ∂z oN,j (.14)

∂φk ∂φk

j=1

N
=

wo,jzo,j j=1 wo,j
∂φ

0

k

k

57 Master Thesis Anna-Maria Grebner

The derivative of a normalized premise parameter zN too,ithe inputs will be done

exemplary to the input xk

∂z
 ∂zo,i zo,sum − zo,i

∂zo,sum

 o,i
=

∂xk

 ∂zo,i

∂xk 2

zo,sum

..
 ∂distl

∂xk (.15)

 ∂distr
Σ

∂xk
=

 ∂xk
µ r(distr) + µ l(distl)

 ∂distf
Σ

∂xk

µf (distf) (.16)

+µ l(distl)µr(distr)
∂xk

µg(goal) (.17)

+ µ
l
(dist)µ (dist)µ (dist

f)
∂goal (.18)

l r r f
∂xk

 ∂distl
=
 ∂distr

=
∂ distf

=
 ∂distc

= √
 (xk −xc) (.19)

∂xk

∂goal

=

∂xk

2 yk 2

∂xk ∂xk (xk − xc)
2
+ (yk − yc)

2

(.20)

∂xk xk + yk

81

 ∂zo,sum
=

 ∂zo,i (.21)
∂xk i=1 ∂xk

