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Navigation and obstacle avoidance are important tasks in the research field of au- 

tonomous mobile robots. The challenge tackled in this work is the navigation of a 4- 

wheeled car-type robot to a desired parking position while avoiding obstacles on the 

way. The taken approach to solve this problem is based on neural fuzzy techniques. 

Earlier works resulted in a controller to navigate the robot in a clear environment. It is 

extended by considering additional parameters in the training process. The learning 

method used in this training is dynamic backpropagation. 

For the obstacle avoidance problem an additional neuro-fuzzy controller is set up and 

trained. It influences the results from the navigation controller to avoid collisions with 

objects blocking the path. The controller is trained with dynamic backpropagation and 

a reinforcement learning algorithm called deep deterministic policy gradient. 
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Navigation und Hindernisvermeidung sind wichtige Aufgaben im Forschungsbereich 

autonomer mobiler Robotik. In dieser Arbeit wird die kollisionsfreie Navigation eines 

Roboters mit 4 Rädern in eine Zielparkposition behandelt. Der gewählte Ansatz um 

das Problem zu lösen basiert auf Techniken aus dem Neuro-Fuzzy Bereich. 

In früheren Arbeiten entstand bereits ein Regler mit welchem der Roboter in einer hinder- 

nisfreien Umgebung navigiert werden konnte. Dieser wurde erweitert indem zusätzliche 

Parameter in den Trainingsprozess mit einbezogen wurden. Die angewandte Lernmetho- 

de ist Dynamic Backpropagation. Für die Hindernisvermeidung wurde ein zusätzlicher 

Neuro-Fuzzy-Regler eingerichtet und trainiert. Dieser beeinflusst die Ergebnisse des 

Navigationsregler um Kollisionen mit Objekten zu vermeiden. Für das Training des 

Reglers kommen Dynamic Backpropgation und ein reinforcement learning-Algorithmus, 

genannt ’Deep Deterministic Policy Gradient Learning’, zum Einsatz. 

Das entwickelte Navigationssystem konnte in verschiedenen simulierten Szenarien ge- 

testet werden. Der Roboter war in der Lage ohne Probleme beliebige Parkpositionen 

anzufahren und verschieden geformte Linien zu verfolgen. 
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Chapter 1 

 
Introduction 

 

 
Robots are growing more and more important in our modern world. Whether to make 

our life easier or take over dangerous tasks, their presence in our daily life has been 

increasing in the recent years. Especially autonomous mobile robots can already be 

found in many everyday applications. Museums and stores employ them to guide visitors 

and floor-cleaning or lawn-mowing robots made their way in many homes. In order 

to move around in the environment without problems, good navigation and obstacle 

avoidance systems areessential formobilerobots. They guarantee that therobotreaches 

desired positions in time and does not collide with structures and objects on the way. 

 
In this thesis a control system for a navigation and obstacle avoidance problem is 

developed, implemented and tested. The task consists of navigating an autonomous 

4-wheeled cartype robot in a desired parking position, while avoiding collision with 

obstacles on the way. The techniques used to realize the controller belong in a category 

called fuzzy neural networks. They are hybrid systems consisting of elements from fuzzy 

inference systems and artificial neural networks. The  strength of fuzzy systems lies 

in the possibility to create a system based on expert knowledge. Neural networks are 

known for their ability to learn and adapt to new situations. Neuro-fuzzy networks 

combine the advantages of both approaches by considering a fuzzy inference system 

as a neural network and apply training algorithms to improve their performace. The 

training methods used in this thesis are dynamic backpropagation and deterministic 

policy gradient. 

 
This work is structured as follows: In chapter 2 the problem to be solved in this 

thesis is layed out in detail. Chapter 3 contains the theoratical foundations needed to 

understand this work. In chapter 4 a complete description on how the the controllers 

and learning algorithms were implemented is given. Chapter 5 presentes the results 
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1 Introduction 

 
reached with the controllers in different test scenarios, followed by the conclusion in 

chapter 6. 
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Chapter 2 

 
Problem Description 

 

 
The task for this thesis is to develop a neuro fuzzy controller capable of navigating a 

4-wheeled robot in the x-y-plane to a goal position. The problem is designed to be 

parking situation in which the robot has to move backwards in its designated spot. 

In the first part, the path to the goal position is clear and the robot should simply be able 

to reach it. This problem is shown in figure 2.1. The robot should be able to get from 

everystarting positionbetween −50 and 50 onthex-axisandeverystarting orientation 

to the target position of x∗ = 0 with an orientation of φ∗ = 
π 

2. This kind of problem 

 
𝑦 

 
 
 
 
 
 
 
 
 
 
 
 

−50 0 50 𝑥 
 

Figure 2.1 – Parking problem to be solved 

 
was once before tackled in [1] and a neuro-fuzzy controller was developed. Dynamic 

backpropagation was used in training, to adapt the parameters in the consequence part 

of the fuzzy controller. It lacked, however, the training of the premise parameters, which 

is to be added in the framework of this thesis. 
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2 Problem Description 

 
In the second part of the problem the robots way to the goal position is blocked by 

an obstacle, like shown in figure 2.2. The navigation controller is to be extended by 

the functionality to avoid obstacles. The solution should again be found by applying 

neuro-fuzzy techniques. A structure for the obstacle avoidance controller has to be set 

up and trained to fulfill the task. 

 
𝑦 

 
 
 
 
 
 
 
 
 
 
 
 
 

−50 0 50 𝑥 
 

Figure 2.2 – Parking problem with obstacle avoidance 
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Chapter 3 

 
Foundations 

 

 

3.1 Fuzzy Inference Systems 
 

3.1.1 Fuzzy Sets and Fuzzy Logic 

Fuzzy systems, and therefore fuzzy controllers, are based on the concepts of fuzzy 

sets and fuzzy logic, which were first established by Zadeh in 1965 [2]. The idea is to 

expand the classic set theory by an uncertainty: Whereas in the original theory it is 

only possibile for an object a to belong to a set M or not, in fuzzy theory it can belong 

partially to a fuzzy set. The membership of an object to a specific set is described with 

the membership function µM (a). In conventional sets the membership function can only 

take the so-called ’crisp’ values 0 (if a ∈ M ) or 1 (if a ∈/ M ).  The  membership grade to 

a fuzzy set though, can be any value between 0 and 1, allowing it to be partial or 

’fuzzy’. Common forms of membership functions in fuzzy-systems are shown in figure 

3.1: the ramp (a), the triangle (b) and the trapez(c). 

 
𝜇𝑀(𝑎) 𝜇𝑀(𝑎) 𝜇𝑀(𝑎) 

1 

 
 

𝑎 𝑎 𝑎 

𝑎) 𝑅𝑎𝑚𝑝 𝑏) 𝑇𝑟𝑖𝑎𝑛𝑔𝑙𝑒 𝑐) 𝑇𝑟𝑎𝑝𝑒𝑧 
 

 
Figure 3.1 – Common forms of fuzzy membership functions 

 
Fuzzy sets allow to characterize states without giving a strict classification. The 

human language contains a lot of options to describe things in a vague way, like e.g. ’a 

1 
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little bit’, ’a lot more’ or ’almost’. That is why fuzzy sets are a perfect instrument for 

transforming human language statements into a structure that can be treated formally 

exact. An example is given in figure 3.2, which shows a fuzzy description of a distance. 

The fuzzy variable is the distance d, which can be charaterized by the fuzzy sets ’ZERO’, 

’NEAR’ and ’FAR’. A distance of 0 gets full membership in the set ’ZERO’. A distance 

𝜇(𝑑) 
 
 
 
 
 

 
0 5 10 𝑑 

 

𝑍𝐸𝑅𝑂 𝑁𝐸𝐴𝑅 𝐹𝐴𝑅 
 

Figure 3.2 – Fuzzy description of a distance 

 

of 5 is considered as ’NEAR’ and every distance of 10 or greater is ’FAR’. The fuzzy 

sets allow to describe also distances in between. A distance of 3 for example would have 

partial membership grades in the sets ’ZERO’ and ’NEAR’. It could be described as 

’close to zero’, ’almost zero’ or ’very near’. As fuzzy sets in practise are often connected 

with a linguistical interpretation like this, they’re also called ’linguistic variables’. 
 

In order to work with fuzzy variables it is necessary to establish connecting opera- 

tors. Crisp variables can be linked with the boolean operators from standard logic. The 

definition of these were extended for fuzzy variables. Different applications resulted in 

different forms of this adaption. The most common ones are explained below. 

• AND operation (∧) 
The first definition of a fuzzy AND-operator was proposed in [2] and uses a 

minimum operation 

 

µA∧B = min(µA, µB) (3.1) 

As for optimization processes differentiability is often a requirement another 

definition can be used 
 

µA∧B = µA · µB (3.2) 
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µA µB min(µA, µB) µA · µB 
1 1 1 1 
1 0 0 0 

0 1 0 0 

0 0 0 0 

0.2 0.8 0.2 0.16 

 

µA µB max(µA, µB) µA + µB − µA · µB 
1 1 1 1 
1 0 1 1 

0 1 1 1 

0 0 0 0 

0.2 0.8 0.8 0.84 

 

 

• OR operation(∨) 
The two most commonly used definitions for the OR-operator are the maximum 

operation 
 

µA∨B = max(µA, µB) (3.3) 
 

and the algebraic sum  

µA∨B = µA + µB − µA · µB (3.4) 
 

• NOT operation 

The NOT-operation of a membership grade is determined by the difference between 

1 and the degree 
 

µA = 1 − µA (3.5) 

 
The tables 3.1 and 3.2 show that these definitions are consistant with the results from 

boolean operators and how they work on a fuzzy membership example 

 
 

 

Table 3.1 – Results 
of AND- 

operators 

Table 3.2 – Results of OR-operators 

 
 

3.1.2 Fuzzy Inference Systems 

Fuzzy inference systems (FIS) are systems which describe functions by mapping inputs 

to outputs with the help of fuzzy sets and fuzzy logic. The following information about 

them are taken from [3] and [4]. To explain the functionality of a FIS and example with 

2 inputs and 1 output, as shown in figure 3.3,is considered. 

The 3 mayor steps to determine the output are called fuzzification, inference and 

defuzzification. The first and the latter are ports to the surrounding environment. They 

realize the transformation between the real, crisp values outside and the fuzzy values 
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𝐼𝑛𝑝𝑢𝑡 𝐹𝑢𝑧𝑧𝑦𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐼𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐷𝑒𝑓𝑢𝑧𝑧𝑦𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑂𝑢𝑡𝑝𝑢𝑡 
 
 
 
 

 
𝑥1 

 
 
 
 

 
𝑦 

 
 

 
𝑥2 

 
 
 
 
 
 

𝑟𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑢𝑧𝑧𝑦 𝑣𝑎𝑙𝑢𝑒𝑠 𝑟𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠 
 
 

 
Figure 3.3 – Structure of a fuzzy inference system 

 

inside the FIS. The inference section contains the most important part of the fuzzy 

system: the rule base. It determines the relation between the input an the output and 

therefore the behaviour of the system. The functionality of the individual phases is 

explained further in the following section. 

 
Fuzziftcation 

 

In the fuzzification step the real input values are transformed to fuzzy values. Every 

input variable gets several fuzzy sets, which coverthe complete inputspace. The quantity 

of sets and the shape of their membership functions are design parameters and should 

describe the input adequatly. The membership functions for one input will then look 

similar to the ones in figure 3.2. The fuzzy system in the structure diagram above has 2 

inputs, which are characterized by respectivly m and n membership functions. For the 
first input x1 they are called µ1, µ1..., µ1 and for the second one x2 they are µ2, µ2...µ2 . 

1 2 m 1 2 n 

The result of the fuzzification are the membership grades of all inputs to each of their 

respective fuzzy sets. 

 
Inference 

 

The heart of every FIS is the rule base. A complete rule base has a rule for every 

possible combination of membership grades from the fuzzification. They determine the 

𝜇𝑅𝑢𝑙𝑒1 (𝑦) 
𝜇1(𝑥1) 

1 𝑅𝑢𝑙𝑒 1 
 

 
𝜇𝑅𝑢𝑙𝑒2 (𝑦) 

𝜇1 (𝑥 ) 
𝑅𝑢𝑙𝑒 2 

𝑚 1 

𝜇𝐼𝑛𝑓 (𝑦) 

𝜇2(𝑥 ) 
𝑂𝑅 

1 2 

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 
𝑡�� 

𝑎 𝑟𝑒𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 

𝜇2(𝑥2) 
2 

𝜇𝑅𝑢𝑙𝑒 𝑟(𝑦) 
𝜇2 (𝑥 ) 𝑛 2 𝑅𝑢𝑙𝑒 𝑟 
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𝜇𝑟𝑢𝑙𝑒𝑗(𝑥) 𝜇𝑟𝑢𝑙𝑒𝑗(𝑥) 

1 1 

 

output of the system for a specific input vector by employing r rules in an implication 

(IF-THEN) structure. 

IF premise i THEN consequence i 
 

The premises (Pi) are logical combinations of the results from the fuzzification step. In 

the consequence (Ci) of every rule i is a membership function µi(y) for the output. The 

first rule for the system in figure 3.3 can therefore have a structure like this 

IF µ1
(x1) AND µ2

(x2) THEN µ1(y) 

1 1 

 

The first step for determining the result of a rule is called aggregation and consists of 

calculating the premises with the fuzzy logic operators. The premises are fulfilled to 

different degrees, depending on the actual input vectors. Every consequence should be 

active at the same level as their respective premise. The logical expression, which has 

to be fulfilled for this demand is 

(Pi ∧ (Pi → Ci))=(Pi ∧ Ci) 

The transformation to the easier AND-operation can be done in classical logic only. It 

is, however, also used in fuzzy logic as an easier approximation. Depending on which of 

the AND-operators discussed in the previous section is used, the conclusion membership 

function  is  either  cut  (min(µPi , µCi ))  or  scaled  (µPi  · µCi )  to  the  level  of  the  premise 

(see figure 3.4). The calculation of the consequences is also called activation. In the 

 
 

𝜇𝐾𝑗 (𝑥) 

 
1 

𝜇Pj 

 

𝑥 

𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑜𝑓 𝑟𝑢𝑙𝑒 𝑗 

𝑥 

𝑅𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑟𝑢𝑙𝑒 𝑗 
𝑚𝑖𝑛 − 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 

𝑥 

𝑅𝑒𝑠𝑢𝑙𝑡 𝑜𝑓 𝑟𝑢𝑙𝑒 𝑗 
𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 

 
Figure 3.4 – Activation in a FIS with min- and product operator 

 
last part of inference all the consequences have to be accumulated to one fuzzy output. 

This is done by employing an OR-operator over all the results from the rules. 

µInf (y) = µC1 ∨ µC2 ∨ · · · ∨ µCr 

The result is one membership function for the output space, defining a fuzzy value of ŷ 
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Defuzziftcation 
 

This membership function needs to be transformed into a real value for the output ŷ. 

The result should consider all the rules consequences in their respective strenght. 

One method to calculate a real output is to determine the center of gravity of the 

accumulated membership function. This can be done with the following formular: 

∞ 

µInf (y) · y dy 

ŷ = −∞ 
∞

 

µInf (y) dy 

 
(3.6) 

−∞ 

As this approach needs a lot of computing time, another way of determing the output 

can be found in the maximum method. It just takes the output value corresponding to 

the maximum value of µInf (y). This method is easy but has the disadvantage that only 

the rule producing the maximum is considered for the out come. Also there is not a 

unique solution if the maximum is a plateau. In this case it is possible to define the 

mean of the maximum as the output. 
 

A special form of fuzzy inference systems are Takagi-Sugeno fuzzy systems, in which the 

concequences as not described by membership functions but by a linear combination of 

the real input values: 

IF Pi THEN ŷ = yi0 + yi1x1 + yi2x2 + · · · + yilxl 

With these type of systems an accurate approximation of functions can be reached. 

However, this type of concequence also reduces the comprehensibility of the system. In 

Takagi-Sugeno systems the defuzzification simplified so much, it can be concluded with 

the inference to the following 

Σr   µ y  y x y x  y x dy 
P   · (  i0) +   i1  1 +  i2  2 + · · · +i il  l 

ŷ = i=1 (3.7) 

Σr   
µ
 
P 

i=1 i 

Takagi-Sugeno systems, in which yi1 = yi2 = · · · = yil are called ’zero order Takagi- 

Sugeno systems’. They have crisp values in their consequences, which are expressed as 

singleton functions. 
 

IF Pi  THEN ŷ = yi 

Fuzzy inference systems can be employed for a variety of applications like modeling, 
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𝑤1 

 

𝑤2 
∑ 𝑓 

𝑤3 

 

controlling or classification. The advantage of fuzzy systems is the easy to understand 

structure. The possibility to describe input-output-relationships intuitively as simple 

rules makes FIS the perfect instruments to induce human knwoledge in a process. By 

checking every rule it is also easy to check if the system is working in the correct and 

desired way for the whole input space. The disadvantages are, that an expert is needed 

to define the rules and human knowledge alone often ist not at the optimum. 

 
3.2 Neural Network 

 
3.2.1 Structure of Neural Networks 

Artificial neural networks are a method to process data, which is inspired by the way 

human brains work with information. The following section serves to describe the 

fundamental structure and functionality of artificial neural networks, as well as the 

process of training them. It is based on the information in [4]. 

Biological neural networks consist of connected nerve cells, called neurons, which handle 

given stimulations and pass them on to connected neural cells. In the same way artifical 

networks are build up of connected smallest units, called neurons. The structure of a 

neuron can be seen in figure 3.5. It can have multiple inputs (x1, x2, x3 in the figure), 

 
𝑥1 

 

 
𝑥2 𝑦 

 
 

𝑥3 

 
Figure 3.5 – Neuron, smallest unit of a Neural Network 

 
which either come from other neurons or the outside of the network. Every input is 

associated with a weight (w1, w2, w3). The neuron consists of two functions. The first 

one combines the inputs by multiplaying each input with its respective weight and 

adding the results up 

xc = 

number of inputs 

 
i=1 

xiwi 

The other function is called activation f and uses the combined input to generate the 

output. Activation funtions are often nonlinear to include the possibility to handle 

nonlinear relations with the network. For this purpose a sigmoid function (also called 
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e 

 

fermi function) is frequently used: 

f (xc) = 
1 + 

1 

−axc
 

An artificial neural network forms when multiple of these neurons are connected and 

interchange their results. The easiest form to do this are feedforward multilayer networks, 

which can be seen in figure 

 
 
 
 

 
𝑥1 

 

   

 

𝑥2 

𝑦1 

 
 

𝑦2 

 
 
 

 
Input-Layer 𝒘𝟏 Hidden-Layers 𝒘𝐋 Output-Layer 

 
Figure 3.6 – Feedforward Network 

 

There are three different types of layer in a multilayer network. The input layer takes 

in the data given to the network and provides them for the following layers. Therefore 

the number of neurons in this layer equals the number of inputs to the network. After 

the input layer follow any number of hidden layers,  which absolve the computation  

of data. The final layer is called output layer and consists of as many neurons as the 

system has outputs to give them back at the environment. To compute data with the 

neural network, the data is given from layer to layer, which is called a forward pass. 

The output of every neuron in one layer is calculated before the processing in the next 

layer begins. Due to their ability to learn neural networks can be used in a variety of 

application, for example in modelling, speech/writing recognition or controllers. Their 

disadavantage is, that it is difficult to keep track on the learning process and ensure 

that the learned parameters are, in fact, correct ones. 

 
3.2.2 Standard Backpropagation 

An important step in the implementation of neural networks is the training. This 

describes the process of adapting the parameters in the network, so it will behave in the 

𝑤L 
𝑖𝑗 
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− 

 

desired way. One of the most basic ways to do this is error-backpropagation. The goal 

of this method is to adapt the weights at the connections between the neurons. This 

training method belongs to the techniques of supervised learning. These algorithms 

require that the desired output of the network is known so it can be compared to the 

real output. For the training process N pairs of input values (x) and desired output 

values, called teacher vector (t), are combined to a training set. The input values are 

presented to the network and the output is calculated via forward pass. The output can 

be written as a function of the input and the current network parameters (θ). 

y = g(x, θ) (3.8) 

 
The goal of training is to minimize the error of the whole training set 

 

E(θ) = 

1

 

 

 

 

i=1 

(ti − g(xi, θ))
2
 

 
(3.9) 

 

bybackpropagating it through thenetworkinanattempt toadjusttheweightresponsible 

for it. Therefore a gradient method is used: The weights are adapted in their proportion 

in direction of decline in the error 

 

θk+1 = θk + ∆θ (3.10) 

∆θ = η
 δE 

δθ 

 

(3.11) 

In the second equation, η is the learning rate, which determinates the size of steps made 

in the gradient direction. The derivative of E is computated via chain rule. For adapting 

the weight wij connecting the j-th neuron in the L-th layer with the i-th neuron in the 

(L + 1)-th layer it becomes 

 ∂E 
= 

∂E ∂yj 
= 

∂E ∂f (xj) ∂xj (3.12) 

∂wij ∂yj ∂wij ∂yj ∂xj ∂wij 

= δj 
dxj 

dwij 
(3.13) 

= δjyj (3.14) 

 
where xjc the combined input and yj = f (xjc) is the output of the j-th neuron in the 

L-th layer. The δj in the last equation can be computed in a recursion with values from 

N 
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𝑢𝑘 

 

the (L + 1)-th layer.  
δj=

 ∂f (xj) 
w δ

(L+1) (3.15) 

∂xj 
k←j 

jk k 

All these values will be available, as for backpropagation one starts at the output and 

work the way torward the input layer until all weights are adapted. With the δ-Notation, 

it is also often called Delta-Learning-Rule. 

 
3.2.3 Dynamic Backpropagation 

In chapter 3.2.2 the basic learning process of neural networks via backpropagation was 

explained. An extended method is dynamic backpropagation, which is explained in [5] 

andused for the training ofrecurrent neuralnetworks. This technique takes intoaccount 

that in this case information get fed back to the neural networks and works with this 

information from the past. When neural networks are used as controllers, they are also 

in a closed circle, which is why this form of training can be applied here. To explain 

this algorithm the whole process and interactions between controller and system are 

unfolded over time in figure 3.7. When unfolded over time, the control loop becomes a 

 

𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑘 − 1 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑘 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 𝑘 + 1 
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Figure 3.7 – Unfolded Network 

 
series of repetition between the controller and the system. This means, that their errors 

𝑢𝑘−1 

𝑥𝑘+1 
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∂w 

+ 

 

depend not only on the current parameters but also on past ones. Therefore for their 

value adaption, full derivatives until the starting point have to be calculated. This can 

be done in a recursive algorithm, which is explained below. The goal is to minimize the 

difference between the current and the desired position in every time step. This results 

in a cost function of 

J  = 

1 

(x1 − x∗
1 )

2 
+ 

1 

(x2 − x∗
2 )

2 
+ ... + 

1 

(xN − x∗  )
2 (3.16) 

2 2 2 
N

 

As before in standard backpropagation, the weights are adapted with 
 

 
wij,(k 

 
 

+1) = wij,k − ∆wij,k = wij,k − η 
∂J

 
ij 

 
(3.17) 

 

The overline in the last derivative signalizes, that the derivative is not only calculated to 

the actual influence, but is the total partial derivate considering all wij in the unfolded 

system. With equation 3.16 this total derivative can be split up to 

 
 

 ∂J = 
N
(x − x∗

)

 ∂xk 
(3.18) 

 

 
The total derivative of xk is 

∂wij 
k 

k=1 
k ∂wij 

 
 

   

 ∂xk  
= 

∂ xk ∂xk ∂xk−1 (3.19) 
 

∂wij ∂wij ∂xk−1 ∂wij    

=
 ∂xk 

+ 

.
 ∂xk 

+ 
∂xk ∂uk−1 

Σ
 ∂xk−1 (3.20) 

∂wij ∂xk−1 ∂uk−1 ∂xk−1 ∂wij 

Leading to the recursive formular for computing the total derivative of the state to the 

weight in dynamic backpropagation for neural controllers: 

 ∂x   ∂x ∂u  
.
∂xk+1  ∂xk+1 ∂uk 

Σ
 ∂xk 

k+1 
= 

k+1 k    
+ +

 (3.21) 
∂wij ∂uk ∂wij ∂xk ∂uk ∂xk ∂wij 

 

During training ∂xk+1
 and ∂xk+1 are determined with the system model equations. 

∂uk  ∂uk ∂x
∂u

k 
 The other derivatives - and 

∂wij 
k - are calculated by backpropagation through the 
∂xk 

controlling neural network. 

 

3.2.4 Reinforcement Learning with an Actor-Critic-Algorithm 

In the last two chapters techniques of backpropagation were explained as examplse of a 

supervised learning process. However, one may not always know the best value for the 

output of a network for comparison. For example in the case of controllers the desired 
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state may be known, but not the value of the actuating variable to reach. Unsupervised 

learning techniques attempt to solve this problem. A group of these methods is called 

reinforcement learning. These algorithms let the network operate and observate how 

it influences the environment. If the result of the taken actions are satisfactional the 

positive feedback is given, otherwise a negative one. Information about reinforcement 

learning in general can be found in [6] 

The reinforcement algorithm which is presented below is called ’Deep Deterministic 

Policy Gradient’ and was developed in [7]. It is based on [8] from 2014, in which the 

deterministic policy gradient was first presented. The algorithm was chosen because it 

can be employed for continuous state and action spaces, which are found in navigation 

problems. The algorithm has an Actor-Critic structure (see figure 3.8). The ’actor’ is 

 
 

 
Figure 3.8 – Structure of an Actor-Critic network 

 
the network which shall be trained. Based on a policy µa(s), it decides which action a 

is taken in a specific state s. A deterministic policy can simply be seen as the actor 

network with its current structure and parameters, computing an action as an output. 

 

ak = µa(sk) (3.22) 

 
The action ak effects the environment and an immediate feedback is given in form of a 

reward rk. The reward can be positive or negative, depending on weather ak helped the 

system to reach a defined ojective.  An ideal policy µ∗
a  would chose actions  which lead to 

the highest accumulated reward R in a long term horizon. To adapt the current policy 

in the direction of the ideal policy another network is employed, the so-called ’critic’. It 

evaluates the taken action in every time step by estimating the action-value function 

Q(s, a), which represents the expected long-term reward if action a is taken at state s. 

𝐴𝑐𝑡𝑜𝑟 
𝑎𝑐𝑡𝑖𝑜𝑛 

𝑃𝑜𝑙𝑖𝑐𝑦 

𝑉𝑎𝑙𝑢𝑒 
𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝐶𝑟𝑖𝑡𝑖𝑐 

r𝑒𝑤𝑎𝑟𝑑 

𝑠𝑡𝑎𝑡𝑒 
𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 
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The ascending gradient of this function leads in the direction of the ideal policy and is 

therefore used for adapting the current policy. The problem is, that the action-value 

function is not known in the beginning and the critic network has to learn it. The ideal 

action-value function returns the highest accumulated reward to be expected under the 

current policy: 
 

Q∗(sk,ak) = maxµaE[R|sk,ak] (3.23) 

This optimal function fullfills the so-called Bellmann equation 

Q∗(sk,ak) = E[rk + γQ∗(sk+1,ak+1)] (3.24) 

with γ being a discount factor between 0 and 1. The ideal value can be calculated with 

this equation and the difference to the current output can be backpropagated through 

the critic network. As the action value Q∗(sk+1, ak + 1) and therefore the action ak+1 

of the next time step is needed, two additional networks are implemented. These are 

called target networks and estimate the future values. With the parameters of the actor 

and critic networkbeing θa and θc the target networks parameters are designed to slowly 

follow them and updated via 
 

θa
t     = τθt

a + (1 − τ )θt
a 

θc
t   = τθt

c + (1 − τ)θt
c 

(3.25) 

 
(3.26) 

 

with τ << 1. Th outputs of the target networks can then be defined respectively as 
µt (sk+1, ak + 1, θt ) and Qt(sk+1, ak+1, θt) With these information it is possible to train 

a a c 

the actor and critic network as described below for the time step k. The loss function 

at the critic network output is constructed with the mean square error 

 

L(θc) = E[(rk + γQt(sk+1, ak+1) − Q(sk, ak, θc))
2
] (3.27) 

The critic network is adapted with the gradient to its parameters 

 ∂L(θc) 
= E[(r  

+ γQt(s , a ) − Q(s  ∂Q(sk, ak, θc) 

∂θc k 

θc = θc + ηc
 ∂L(θc) 

∂θc 

k+1 k+1 k
, a

k 
, θ

c
))

 ∂θc 
] (3.28) 

 
(3.29) 
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The parameters of the critic network are updated with the gradient of the action-value 

function: 

 ∂Q(sk,ak, θa) 
= 

∂ Q(sk, ak, θa) ∂ak (3.30) 

∂θa ∂ak ∂θa 

θa = θa + ηa
 ∂Q(sk, ak, θa) 

∂θa 

 
(3.31) 

 

As the estimated policy is deterministic it does not explore on itself. This means the 

actor choses the same action in the same situation every time. As it is necessary to try 

different actions in order to find the best policy a random process is added as a noise to 

the taken actions to ensure sufficient exploration. In [7] an Ornstein-Uhlenback random 

process is named to be suitable for this kind of task. As the random values generated 

by this process are temporally correlated they let the actor explorate efficiently in one 

direction. 

In practice there are difficulties with updating the networks every time step with the 

new information, which are rooted in the temporal dependence of the incoming data. 

This is why [7] proposes to let the actor sample transitions in a form like (sk, ak, rk, sk+1) 

and store them in a replay memory. For learning some samples from the replay memory 

are randomly chosen in a minibatch for learning. 

 
 

3.3 Fuzzy Neural Networks 

Fuzzy neural networks are hybrid systems of the both mentioned structures. The idea 

is to model a fuzzy inference system as a neural network. The parameters of the system 

can then be adapted by employing learning strategies. This kind of architecture was 

first presented in [9] as an ’Adaptive-Network-Based Fuzzy Inference System’ (ANFIS). 

For  explaining  the  functionality  a  system  with  2  inputs(x1  and  x2 ),  1  output(ŷ)  and 

two rules is considered. The fuzzy sets for the input are  A1  and A2  for x1  and B1  and 

B2 for x2. The structure is depicted in figure 3.9 
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𝑥1 

 
𝑦ො 

 
 
 

𝑥2 

 
 
 
 
 
 

Figure 3.9 – Fuzzy-Neural-Network 

 

The fuzzy neural network consists of 5 layers in a feed-forward structure containing 

different types functions. 

The nodes in the first layer contain the membership functions and take over the task of 

fuzzification. Note that because the networkshall be trained, the membership functions 

need to be at least piecewise differentiable. Thus the proposed fuzzy membership func- 

tions (see chapter 3.1.1) can be employed here but are nevertheless often approximated 

with other, differentiable functions. For instance the triangle shape can be expressed 

with a gaussian function 
− (x−c)2 

µ(x) = e a 

and the ramp with a sigmoid function 

 
µ(x) = 

 

1 

 1 + e a  

− x−c 

 
The variables c and a are different for everymembership function as they determine the 

center (c) and slope (a) of the function. From the view of fuzzy systems they define 

the position and size of the fuzzy sets for the input space. These parameters are called 

’premise parameters’ and are adaptable during training. 

The second layer realizes the aggregation of the premises by using AND-operators in 

the nodes. In the figure above the AND is realized with a product. The result of this 

𝐴1 
𝑥1 , 𝑥2 

Π 𝑁 𝑓1 

𝐴2 
∑ 

𝐵1 Π 𝑁 𝑓2 

𝑥1 , 𝑥2 

𝐵2 
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z = 

 

layer for rule i is called ’firing strength zi of rule i’. 

 
zi = µAi  · µBi 

The third layer contains normalization nodes. They scale the firing strenghts by dividing 

it by thesumofall firing strengths. The outputs of this layerarereferred toas’normalized 

firing strengths’. This step realizes the easy defuzzification for Takagi-Sugeno fuzzy 
systems, described in 3.1 

N   zi  
i z1  + z2 

The fourth layer calculates the rules cosequences and represents the inference from FIS. 

As ANFIS is based on Takagi-Sugeno fuzzy systems, the rules have linear combinations 

of the input variables as consequences. 

IF A1 AND B1 THEN f1 = p1x1  + q1x2  + w1 

IF A2 AND B2 THEN f2 = p2x1  + q2x2  + w1 

As every rule should be active in the same way their premise is active, the consequences 

are multiplied with the normalized firing strengthes. 

zN fi = zN  (pix1 + qix2 + wi) 

i i 

 
The parameters pi, qi and wi are called ’consequence parameters’ and can be changed 

by training to adapt the network. 

The fifth and last layer concludes all rules consequences into one output by adding them 

up. The final output is therefore: 

 
ŷ = 

Σ 
zifi 

zN fi  =
 i 

 

i Σ 
zi

 

i 
i
 

 

Fuzzy-Neural-Networks combine the advantages of fuzzy and artificial neural systems. 

The structure and functionality is easily comprehensible and can be set up without 

problem with parameters from expert knowledge. By having the possibility to change 

parameters with a training sequence the system can learn and adapt. 

 
3.4 Neuro-Fuzzy-Control in Robot Navigation 

Hybrid networks with fuzzy and neuralelements havebeensuccessfully implemented in 

many systems for control purposes. The applications range from the control of household 
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devices like washing mashines [10] to process control in power plants [11]. Another 

branch benefiting from neuro-fuzzy-techniques is the field of autnomous mobile robots. 

Fuzzy neural controllers can help to tackle the challenges of navigation and obstacle 

avoidance, and have therefore been employed several times for these tasks. 

In [12] an ANFIS-Controller was developed for the navigation of a mobile service robot 

with two differential wheels. It was trained to recognize and follow a line on the floor 

to its goal position. To realize this the desired motor speed values were predefined in 

a teacher vector. The fuzzy controller was then adapted in premise and consequence 

parameters of the rule base via supervised learning and could eventually lead the robot 

along the line. An approach for an obstacle avoidance controller is given in [9], where a 

two-wheeled robot should be able to move in a fixed area without colliding with the 

objects lying within. The parameters of the membership functions and the consequence 

part were adpated with supervised learning. The controller was tested in simulation 

and also experimentally. The authors in [13] focused on the adaption of the parameters 

in the membership functions. They predefined all parameters and set a perfect route 

to a goal position without colliding with an obstacle. This path was then used for 

adapting position and slope of the membership functions to "smooth the trajectory 

generated by the fuzzy logic model". The controller was employed sucessfully in a  

two wheeled, differential driven robot. To decrase the number of rules in one fuzzy 

controller the navigation algorithm in [14] is split up in a hierarchial system. Within this, 

different behaviours like e.g. "goto-target" or "turn-corner" are realized with respective 

neuro-fuzzy controllers. By doing this they could avoid having one big rule base to 

include all navigation orders. 

Reinforcement approaches for the navigation problem were taken in [15], with using 

adapted versions of Q-Learning and Sarsa-Learning algorithms. Another example is [16], 

where a controller for line following of a two wheeled, differential driven robot could be 

developed and tested in simulation. A 4-wheeled non-holonomic car-type robot, like 

the one considered in this thesis is the subject in [17]. A neural fuzzy controller was 

trained with a supervised training algorithm to find its way to a goal position and avoid 

obstacles in its path. The controller was implemented in a real experiment environment 

and could successfully drive to the target point without colliding with any objects. The 

paper [1], which builds the foundation for this thesis, describes the developement of a 

neural fuzzy controller for navigating a 4-wheeled robot from differentstarting positions 

and angles in a goal parking position. The goal for this thesis is to develop the existing 

controller further and add the ability to avoid obstacles. 
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Chapter 4 

 
Implementation 

 

 

4.1 Model 

For the development of the navigation algorithms a model of the system was needed. 

Figure 4.1 shows the robot considered in this work. The two back wheels are fixed and 

connected to the motor to provide the traction while the two front wheels are steerable. 

At any time the state s of the robot is defined by its position and orientation in the 

ground coordinate system. The position is described by its x- and y-coordinate and the 

orientation by the angle φ . 

xk 

sk = yk (4.1) 

φk 

 

The model should describe the dynamical transition of the robots state from one time 

step to another based on the actual state and the steering angle δ as the control input. 

The kinematic equations of cartype-mobile robots are derived in [1]. With the robot 

moving backwards and only a very small, fixed distance r every time step the model 

results in 

 

xk+1 = xk + rcos(φk) (4.2) 

yk+1 = yk + rsin(φk) (4.3) 
r 

φk+1 = φk − 
L
tan(δk) (4.4) 

 (4.5) 
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Figure 4.1 – 4-wheeled car-type robot 

 

where L the length of the robot measured between the front and back wheels and δk 

the current steering angle input. The steering angle is restricted to −30
◦ < δ < 30

◦ 

This model applies for a slow motion of the robot at constant speed. Also it doesn’t 

consider slipping and skidding of the wheels. 

 

4.2 Navigation 
 

4.2.1 Structure of the Neuro Fuzzy Controller 

The strategy for solving the problem is to let the robot move to the position of x∗ = 0 

while reaching the desired orientation of φ∗ =2
 π . After that position is reached, the 

robot will just move  straight in positive y-direction and the control variable will be   

δ = 0
◦. It can be seen in figure 4.2 that the taken path is independent of the robots y- 

position. Therefore the controller does not need the y position to determine the 

steering angle and uses only the x-position and the angle as inputs. As long as there is 

enough space in y-direction the robot will be able to reach its goal with this information. 

From here on the position in x-direction and the orientation of the robots are concluded 

in the state-vector s: 

s
k 
= 

Σ
xk 

Σ 

φk 

 
(4.6) 

 

The structure of the Neuro-Fuzzy-controller is given in figure 4.3. It has the same 5 

layers as the standard neuro fuzzy system described in 3.3. The only difference is, that 

the controller usedhere is basedonazero-order Takagi-Sugeno fuzzy system. Therefore 

𝛿 

𝜙𝑝 
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Figure 4.2 – Strategy to reach the goal position. The control input does not 

depend on the y-position of the robot, only on the x-position and 
orientation. 

 

the consequences are not a linear combination of the inputs, but reduced to one single 

value wi per rule. 

Seven membership partitions were used for each of the 2 inputs. The initial membership 

functions used for x and φ can be seen in figure 4.4. Table 4.1 lists their center and 

slope values as well as the respective linguistic interpretation. The outer Membership- 

functions of the position are sigmoid functions, because for every x-value smaller then 

−50/greater than 50 the steering command should be full right/full left, the same as at 

−50/50. The outer membership functions of the orientation are gaussian, because the an- 

gle range is only 2π and the value at the left end is the same as the value at the right end. 
 
 

 cx ax linguistic interpretation cφ aφ linguistic interpretation 

1 

2 
3 

4 

5 

6 

7 

−50 

−34 

−13 

0 

13 

34 

50 

4 

10 
6 

3 

6 

10 

4 

FAR LEFT 

LEFT 

CLOSE LEFT 

ZERO 

CLOSE RIGHT 
RIGHT 

FAR RIGHT 

-1.042 

-0.2618 
0.9599 

1.5708 

2.1817 

3.4034 

4.1888 

0.1745 

0.3491 
0.3491 

0.0524 

0.3491 

0.3491 

0.1745 

DOWN RIGHT 
RIGHT 

UP RIGHT 
UP 

UP LEFT 
LEFT 

DOWN LEFT 

Table 4.1 – Initial center and slope parameters as well as linguistic interpretation 
of the membership functions for the navigation control system 
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Figure 4.3 – Structure of the Neuro Fuzzy Controller 

 

Figure 4.4 – Initial membership functions of the x-position (above) and the ori- 

entation φ (below) 

 
 
 

The results of the membership functions are aggregated by using the product as a 

fuzzy AND-operator. The results are the premises z1 · · · z49. These are normalized in 
the next layer as a part of the defuzzification. 

zN 
=
 zi (4.7) 

zsum 
i 
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k 

k 

c k 

 

 
with z = 

Σ49  

z .  Afterwards the normalized premises are multiplied with their 
sum 

j=1 
j
 

respective weight wi to determine the results of theirs rules. In the final step all of the 

results are added up to form the steering angle output. Because of the normalization 

step every weight wi gets as much power on the output as their premise was active. 

 
4.2.2 Training with Dynamic Backpropagation 

The navigation controller was trained with dynamic backpropagation as described in 

chapter 3.2.3. The whole training process is listed in algorithm 4.1 and will be explained 

further here. 

At first the vectors with the slopes (a) and centers (c) of the membership functions as 

well as of the rules consequences (w) are initialized. Five symmetric starting states are 

defined as well as the maximum of training episodes. 

One training episode consist of following all starting positions for 1350 time steps or 

until the path leaves the field boundaries of xmin = −50 and xmax = 50. The network 

parameters are updated after every episode with the ratio of the sum over all calculated 

changes from the timesteps in this episode to the number of time steps included in this 

sum (ktotal). 

kΣtotal 
i,k 

wi = wi − ηk=1 

total 

 
kΣtotal  

∆a
 

 

 
(4.8) 

ai = ai − ηa 
k=1 

total 

 
kΣtotal  

∆c
 

i,k 

(4.9) 

i,k 

ci  = ci − η k=1  

total 

(4.10) 

 

In each time step k the current state sk is fed to the controller, which computes the 

steering angle uk = δk with the available parameters. The steering angle is given to 

the model of the system, which calculates the next state sk+1 = fm(sk, uk) with the 

kinematic equations from 4.1. This position is compared with the desired position and 

the error ek is determined. 
 

ek = 

Σ Σ 
xk+1 − x∗ 

φk+1 + φ∗ 

With the error and the equations from the dynamic backpropagation algorithm, the 

gradient toadapttheparameters canbe calculated. Belowtheequations for adapting the 

∆w 
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2 

∂w 

L 

∂ k  

∂uk L 

k = 

 

a rule consequence parameter wi in the navigation controller will be derived. Differences 

fo the derivation of the equations for the premise parameters will be listed afterwards. 

As explained in chapter 3.2.2, the rate of change is the total derivative of the cost 

function to the parameter. For consequence i that is 

 
 

∆wi =
 ∂J  

∂wi 

The cost function to minimalize consists of the error to the desired state. 

 
(4.11) 

J = 

1 

(sk+1 − s∗)
2 (4.12) 

With the application of chain rule the total derivative becomes 
 
 

 

∂ J 
 

 

∂wi 
= (sk+1 − s∗)

 ∂sk+1
 

i 

 
(4.13) 

 

As derived in chapter 3.2.2 this is calculated in a recursive way: 

 ∂sk+1 
= 

∂   sk+1 
+

.
 ∂sk+1 

+ 
 ∂sk+1 ∂uk 

Σ 
 ∂sk 

 

∂wi ∂wi ∂sk ∂uk ∂s
k 

∂wi 
(4.14) 

 ∂sk+1 

∂wi 

 
is split up by applying the chain rule. The first derivative is then calculated from 

the system model, the second from the controller structure: 

Σ 
 ∂sk+1 

=
 ∂sk ∂uk 

= 

0 

Σ 
zN (4.15) 

∂wi ∂uk ∂wi − r i
 

 

The next two derivatives are constructed as well with the help of the system model 

  ∂s  
 

∂ xk+1  ∂xk+1 Σ Σ 
1 r · cos(φ 

k+1 
=

 

∂sk 

 
 ∂sk+1 

=

 

∂uk 

∂xk 
∂φk+1 

 

∂xk 

 
 ∂xk+1 
∂u 
φk+1 

∂φ k) 

 ∂φk+1 

∂φk 

Σ 
Σ 

0

 

= 

− 
r
 

(4.16) 

 

 
(4.17) 

0 1 
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    j  

= z 

 

For the last derivative the structure of the controller is used again. 
 

 ∂uk 
=

 

∂s 

 ∂uk 
∂xk 

 
(4.18) 

 ∂uk 
∂φk 

 

∂ uk  ∂ 49 

N 
=

 

49 ∂zN (4.19) 
w 

∂xk ∂xk 
 

 

j=1 

wjzj j=1 
j 
∂xk 

 ∂uk 
= 

∂ 49 ∂zN (4.20) 
    j  N 

= w 
∂φk ∂φk 

 

 

j=1 

wjzj j=1 
j 
∂φk 

To compute the derivative of the normalized premises, the product rule has to be used. 
 

∂zN  ∂zj  zsum − zj  ∂zsum 
     j 

∂xk 
 ∂xk 2 

sum 
∂xk (4.21) 

∂zN  ∂zj  zsum − zj  ∂zsum 
     j 

∂φk = 
∂φk 2 

sum 
∂φk (4.22) 

The derivatives of the unnormalized premises and their sum are 

 ∂zj  
=
 ∂µx,1 

(µ  1w1 +µ  2w2 +· · · + µ  7w7)+ (4.23) 
∂xk ∂xk 

φ, φ, φ, 

 ∂µx,2 
(µ 1w8 +µ 2w9 +· · · + µ 7w14) + · · · 

∂xk 
φ, φ, φ, 

 ∂µx,7 
(µ 1w43 +µ 2w44 +· · · + µ 3w49) 

∂xk 
φ, φ, φ, 

 ∂zj   
= 

∂µφ,1 
(µ w + µ w + · · · + µ w )+ 

∂φk ∂φk 
x,1 1 x,2 2 x,7 7 

∂ µφ,2 
(µ w + µ w + · · · + m w 4) + · · · 

∂φk 
x,1 8 x,2   9 7 1 

∂ µφ,7 
(µ w  + µ w + · · · + µ w  ) (4.24) 

∂φk 

4 

x,1 43 x,2 44 x,7 49 

 ∂zsum 
= 9

 ∂zj 
(4.25) 

∂xk j=1 ∂xk 
 

4  ∂zsum 
= 9

 ∂zj 

∂φk j=1 ∂φk 
(4.26) 

k 

= 

49 

z 
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The derivatives of the membership function to the input depend on the type of function 

used. For the sigmoid functions it is 

 ∂µx,i 
= −

 1 
µx,i

(x )(1 − µ
x,i 

(x )) (4.27) 

∂xk ai k k 

and for the gaussian funtions it results in 

 ∂µx,i  
=
 2 

(xk 
− c )µ (x ) (4.28) 

∂xk ai 
i x,i k 

 

With all derivatives from the update equation broken down in terms which can be taken 

directly from the model or the controller, the change of consequence parameters can be 

calculated in every time step. 

The derivatives to update the premise parameters are calculated analog except for 4.27 

and 4.28, which are 

 ∂µx,i 
= −

 1 
µ x,i

(x )(1 − µ
x,i 

(x )) (4.29) 

∂ci ai k k 

 ∂µx,i  
= −

 1 
(x 

− c )µ (x )(1 − µ (x )) (4.30) 

∂ai 

for sigmoid functions and 

a 
2 k i 
i 

 
x,i k x,i k 

∂ µx,i 
=
 2 

µx,i 
(x )(x − c ) (4.31) 

∂ci ai 
k k i 

∂ µx,i  
=
 1 

µ 
(x )(x − c ) (4.32) 

 
 

for gaussian functions. 

∂ai 
a 

2   x,i k k i 
i 

In the navigation controller the premise parameters, as well as the consequence pa- 

rameters can be chosen symmetrically, as the strategy to reach the desired position is 

mirror-inverted to the middle lane. Therefore in updating the parameters only one half 

is used and projected on the other half of the parameters. As the starting states are 

chosen to symmetrical, no information is lost. 

The parameters of the slopes and centers had to be restricted. Especially the slopes 

would rise and lead to an overlapping of all membership function. That is there are 

maximum and minimum limts for components of the a- and c-vector. 

The learning rates were desingned to be slightly adaptable. A simple system was chosen 

in which every parameter has its own learning rate. If the parameter is to be adapted in 

the current episode in the same direction (positive ornegative) as in the lastepisode, the 
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learning rate increasing with the factor 1.1 If the directions are different, the learning 

rate will be decreased by 0.5. For every parameter vector a maximal rate is defined to 

avoid that rates swing up fast and make the learning process instable. In general the 

learning rates had to be chosen very small. 

Forthe training with dynamic a technique called "incremental learning" was employed. 

This means at the beginning of training starting positions close the the goal position (in 

x-position and angle) were used. When parameters for these were learned with success 

the starting positions were chosen to become more and more difficult. Accordingly, the 

algorithm 4.1 is to run numerous times with changed starting parameters for approx- 

imitaly 1000 episodes. This way it can be made sure the algorithm learns the correct 

steering technique, with the possibility to check after every learning stage. 
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k 

 
 
 
 

 

1: Initialize premise parameter vectors a and c and vector with rule consequences w 

2: Set symmetric starting points for training s0,1 · · · s0,M 
3: for each episode i do 
4: for each starting position j do 
5: for each time step k do 

6: Compute control signal uk = fc(xk, φk) 

7: Apply uk to model and compute state in next time step sk+1 = fm(sk, uk) 

8: Caluclate error to desired position ek = sk − s∗ 

9: Compute total derivatives with equations 4.14 - 4.32 
10: Calculate weight changes and them up 

 

∆sumw = ∆sumw + e 
∂ sk+1

 

∂w 

∆sumc = ∆sumc + ek
 ∂sk+1

 

∂c 

∆sum a = ∆sumw + ek
 ∂sk+1

 

∂a 

11: end for 
12: end for 

13: Calculate changes of parameters 

∆w =
 ∆sumw 

ktotal 

∆c =
 ∆sumc 

ktotal 

∆a =
 ∆suma 

ktotal 

 
14: Update step sizes 

15: Update weights and premise parameters 
 

w = w − ηw∆w 

c = c − ηc∆c 

a = a − ηa∆a 

 
16: Restrict premise parameters and mirror all parameters 

 17:  end for  
 

Algorithm 4.1 – Training the neuro fuzzy navigation controller with dynamic 

backpropagation 



4 Implementation 

32 Master Thesis Anna-Maria Grebner 

 

 

 

4.3 Obstacle Avoidance 
 

4.3.1 Structure of the Neuro Fuzzy Controller for Obstacle Avoidance 

The idea was to design an additional neural fuzzy controller for obstacle avoidance.  

It generates a variable δplus which is added to the steering angle δ of the navigation 

controller. With this manipulation thesteering angle is adpated if anobstacle is detected. 

A diagram of the control cycle with two controllers can be seen in figure 4.5. The 

 

 

 
Figure 4.5 – Control cycle with Navigation and Obstacle Avoidance Controller 

 
structure of the obstacle avoidance controller is again in 5 layers as described in 3.9 and 

can be seen in figure 4.6 

(𝑥𝑐; 𝑦𝑐) 
𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒 
𝐴𝑣𝑜𝑖𝑑𝑎𝑛𝑐𝑒 
𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 

𝛿𝑝𝑙𝑢𝑠 

+ 
𝑁𝑎𝑣𝑖𝑔𝑎𝑡𝑖𝑜𝑛 
𝐶𝑜𝑛𝑡𝑟𝑜𝑙 

𝛿 
𝑅𝑜𝑏𝑜𝑡 

𝒔 
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Π 𝑁 𝑤𝑜,1 
𝑧𝑜,1 𝑧𝑁 

𝑜,1 

𝑧𝑜,𝑠𝑢𝑚 

Π 𝑁 𝑤𝑜,2 

𝑧 𝑜,2 
𝑧𝑁 
𝑜,2 

𝑧𝑜,𝑠𝑢𝑚 

𝛿𝑝𝑙𝑢𝑠 

∑ 

Π 𝑁 
𝑤𝑜,133 

𝑧𝑜,133 𝑧𝑁 
𝑜,133 

𝑧𝑜,𝑠𝑢𝑚 

Π 𝑁 𝑤𝑜,134 
𝑧𝑜,134 𝑧𝑁 

𝑜,134 

𝑧𝑜,𝑠𝑢𝑚 

Π 𝑁 𝑤𝑜,135 

𝑧𝑜,135 𝑧𝑁 
𝑜,135 

 
 
 
 

 
𝑑𝑖𝑠𝑡𝑙 

 
 
 
 
 
 

 
𝑑𝑖𝑠𝑡𝑟 

 
 
 
 

 
𝑑𝑖𝑠𝑡𝑓 

 
 
 
 
 
 
 

𝑎𝑛𝑔𝑙𝑒𝑔 

 
 

 
𝑧𝑜,𝑠𝑢𝑚 

 

Figure 4.6 – Structure of the controller for obstacle avoidance 

 

The input variables for the controller are the detected distance to an object on the 

left, front and right of the robot and the current orientation angle of the robot. The 

membership functions for the input can be seen in figure 4.7, the chosen parameter 

values and their liguistic interpretation in table 4.2. The output is the manipulation 

variable δplus, which corrects the steering angle from the navigation controller to avoid 

obstacles. 

 
 

 cl al linguistic interpretation cg ag linguistic interpretation 

1 

2 

3 

4 

5 

1 

4 

7 

1 

3 

0.5 

TOO NEAR 

NEAR 

FAR 

−
 3π 
4 

−
 π 
4 

0 

 π 
4 

3π 
4 

0.3491 

0.3491 

0.3491 

0.34914 

0.34914 

DOWN RIGHT 
UP RIGHT 

UP 

UP LEFT 
DOWN LEFT 

Table 4.2 – Initial center and slope parameters as well as linguistic interpretation 
of the membership functions for the obstacle avoidance control system. 
The parameters are the same for the three distance inputs. 
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Figure 4.7 – Membership-Functions of the Obstacle Avoidance Algorithm 

 
 

4.3.2 Simulation of Obstacle Recognition 

The next step was to design a simulation for the recognition of obstacles, which would 

provide the distance between robot and object as if it was measured. Circular objects 

were chosen for this simulation because in that case the distance between robot and 

object is easily computable with the following equation 

.    
distc = (xc − x)

2 
+ (yc − y)

2 − R (4.33) 
 

where (xc; yc) are the center coordinates of the cicular object and R is its radius. 

Additionally to the distance it needs to be decided if the obstacle is on the left, right 

or front of the robot. The angle to the center of the obstacle is determined with the 

equation 

β = arctan(

(yc − y)

) −
 π 

(4.34) 
c 

xc − x 2 

The standard value for the three distance inputs is 100, symbolizing that the path is 

clear. This value is overwritten by the distance to the object if the angle to the object 
falls into the following ranges: 

−π < βc < − π → Object left, distl = distc 
2 8 

π 
< βc < π → Object front, distf = distc − 
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8 2 

 

 π < βc < π  → Object right, distr = distc 
 

The ranges are overlapping to recognize if an object is, for example, completely on 

the left or in front and slightly to the left (see figure 4.8). 

 
𝑦 

 
 
 
 
 
 
 
 
 
 
 
 
 

𝑥 
 

 
Figure 4.8 – Recognition of obstacles in tree sectors. Thecontinious lines describe 

the left and right section, the dashed line the front section. 

 
 

4.3.3 Training with Dynamic Backpropagation 

Dynamic Backpropagation is once again employed to train the parameters of the obstacle 

avoidance controller. In the cost function it was important to combine a punshiment 

for coming too near to an obstacle and a reward for staying close to the direct path to 

the goal position. 

Jo = 1 (x  − x∗)2 + 1 (φx − φ∗) − 12  (x   − xc)2 − 1(y  − yc)2 

2 k 2 2 
k 

2 
k 

 

With the distance to the obstacle being evaluated as negative, a greater distance to the 

obstacle comes with a minimalization, which is the desired outcome. For the obstacle 

avoidance the distance in y-direction is also considered, so it is added to the state vector 

xk 

sk =  φk (4.35) 

yk 

𝑙𝑒𝑓𝑡 

𝑓𝑟𝑜𝑛𝑡 

𝑟𝑖𝑔ℎ𝑡 
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The parameter updates are computed with 
 

∆wo,i = 
∂ Jo 

∂wo,i 

 

∆co,i  =
 ∂Jo 

∂co,i 

 

∆ao,i =
 ∂Jo 

∂ao,i 

 
 

(4.36) 
 

 
(4.37) 

 

 
(4.38) 

 

The detailed derivation of the update equations works similar to the derivation in 

chapter 4.2.2 and can be found in the appendix. The employed algorithm has the same 

structure as algorithm 4.1. 

 
4.3.4 Training with Actor-Critic-Algorithm 

Another training concept is applied the obstacle avoidance controller to compare the 

results afterwards. An actor-critic training algortihm based on the explanation in 

3.2.4 was implemented to adapt the parameters. The final algorithm can be seen in 

algorithm 4.2 and is further explained below. To present the algorithm clearer premise 

and consequence parameters are concluded in the variable θo. Note, that in the critic 

networkonly the consequence parametersare updated. The premise parameters should 

be the same as in the control network so every action can be critisized in relation to the 

state premises that led to it. In the beginning the all parameters are initialized. The 

premise parameters of the critic, target and critic target network were chosen to be the 

same as the ones from the controller network. The critic and the critic target network 

have the taken action as an additional input. The membership function chosen for this 

input is shown in figure 4.9. The concequence parameters were chosen to be 0 in all 

networks. One episode in this training consists of only one starting position and the 

resulting path in 1350 time steps. The starting state for every episode is determined 

randomly. At the beginning of each episode, the Ornstein-Uhlenbeck process layered 

upon the controller output to realize explorational behaviour is initilized. In every 

timestep k the current state is given to the controller and the correction variable δplus 

is calculated. The noice of the Ornstein-Uhlenbeck process is added and the result 

manipulates the steering angle from the navigation controller. The new steering angle 

is the control input for the kinematic model and the following state sk+1 is computed. 

Depending on that state the system is getting a reward. The reward r was chosen 

as follows: If the difference between the desired position x∗ and the position at the 

timestep k+1 is smaller than 0.1 the reward is a positive 1. Everywhere else the reward 
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plus 

∂θ o 

 
 

 

1: Initialize parameters θo, θo,c,θo
t, θo,c

t 

2: for every episode j do 

3: Initilize random exploration noise processN 
4: Randomly select a starting position s0 

5: for every time step k do 

6: Determine the taken action ak = δplus(sk) + N 
7: Apply action to model and compute next time step sk+1 = fm(sk, ak) 

8: Get reward r = r(sk+1) 

9: Store transition (sk,sk+1,ak,r) in replay memory 

10: if size of replay memory > n then 

11: Randomly sample a minibatch of n transistions from replay memory 

12: for every samply in minibatch i do 
13: Compute output of critic network Q 

14: Compute output of target network δt 

15: Compute output of critic target network Qt 

16: end for 

17: Update critic parameters 

 
wo,c = wo,c + ηo,c 

 ∂L(wo,c) 

∂wo,c 
∂Q 

= wo,c + ηo,c (r + γQt(s k+1 , ak+1 )) 
o,c 

 

18: Update actor parameters: θo = θo + ηo ∂Q(sk,ak ,θo) 

19: Update target critic parameters: θo,c
t = τθo,c + (1 

20: Update target parameters: θo
t = τθo + (1 − τ )θo

t 

21: end if 
22:        end for 

 
− τ )θo,c

t 

 23:  end for  
 

Algorithm 4.2 – Actor-Critic-Learning for the Obstacle-Avoidance Controller 

 
 

is bigger the closer the robot is to the ideal position and the reward is calculated with 

r =
  0.1  (4.39) 

 

√
(x 

 

k+1 
− x∗

)
2 

This helps the result to stay close to the desired position. The control system is punished 

if the robot is driving in the wrong direction (in negativ y direction) or it is getting too 

close to the obstacle 

distT OOCLOSE = 

.    
(xk+1 − xc )

2 
+ (yk+1 − yc )

2 − R − 0.5 (4.40) 

∂w 
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∂woc 

c 

 
 
 

 
 

Figure 4.9 – Membership function of the additional input of the critic networks 

 

In both cases the reward is reduced to −1. To be used in training the state sk, the 

taken action δplus, the gained reward r and the newly reached state sk+1 are saved 

in a replay memory. This algorithm learns with the transitions in the replay memory 

to improve the quality of learning. The minimum size of the replay memory to start 

learning was chosen to be 300. This means in the first 300 time steps of an episode the 

network is not trained at all but only collects transition samples. As soon as the replay 

memory has enough entries a minibatch of n = 100 transitions is sampled from it and 

used for training. At first the critic network determines the critic of the action taken at 

time step k. Then the target network determines the action the network would take in 

the time step k +1 with the current parameters. The critic target network critizises this 

action. With the outputs of these networks the parameter updates can be calculated. 

The critics network parameters are adapted with 

 ∂L(wo,c) 

wo,c = wo,c + ηo,c 
∂wo,c 

(4.41) 

  ∂Q 

= (rk + γQt(sk+1 , ak+1 )) · 
∂w

 (4.42) 

 

where uc is the output of the critic network and ∂Q is the vector of the critics normalized 

premise parameter zN. 

oc 
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+ 

 

The controllers parameters are updated with 
 

θ = θ η 
1 

n 
n  ∂Q(sk, uk, θo) (4.43) 

∂θo o o o

 1 

i=1    

 
= θ + η 

n 
n  ∂Q(sk, uk, θo) ∂uk (4.44) 

∂uk ∂θo 
o o 

i=1 
(4.45) 

 

The last two derivatives are computed this way: 
 

 ∂Q(s , u , wθ ) ∂zN 
k k 

∂uk 

o    
= θo

  o,c 

∂uk 

 ∂zo,c zo,sum − zo,c
 ∂zo,sum 

(4.46) 

= θo 
∂uk 

2
 

zo,sum 

∂uk (4.47) 

 ∂uk 
= zN (4.48) 

∂θo 
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Chapter 5 

 
Results 

 

 

5.1 Results of the Navigation Controller 

The newly added training of premise parameters adapted the inital membership functions 

(figure 4.4) to the ones shown in figure 5.1. The membership functions of the position in 
 

Figure 5.1 – Membership functions of the x-position (above) and the orientation 

(below) after training 

 
x- direction were barely changed. Only the one representing ZERO is now less wide as 

before. This may increases the accuracy at the goal position, because the range in which 

the robot is considered to be at the desired position is now smaller. On the contrary to 

the position, the membership functions of the orientation changed a lot and lost a bit of 

their linguistic interpretability. However, it is supposed that by moving the membership 

functions for UP LEFT and UP RIGHT closer together in the center the accuracy was 

once again increased, because now even small variations from the ideal φ∗ = 
π can be 

detected and corrected. 

 

The neuro fuzzy navigation controller obtained by training premise and consequence 

parameters with dynamic backpropagation was succeccfully tested in a simulation for 

different starting states. No matter which starting position and orientation was chosen, 
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the robot would always find the desired position in a fast way. A few examples of taken 

paths for different starting states are shown in the following figures 5.2. Even in figure 
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(a) start position x0 = −10,φ0 = π 
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(b) start position x0 = 45,φ0 = π 
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(c) start position x0 = −30,φ0 = π 
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(d) start position x0 = 0,φ0 = − π  

Figure 5.2 – Paths taken by the robot to parking position for different start 
positions 

 
5.2 b, where the starting x-value was chosen very close to the limits of the operating 

range, the robot could reach the goal position in under 50 units in the y-direction. It 

can also be observed, that the robot uses the strategy mentioned in chapter 4.2.1 and 

drives to the center, while correcting its orientation, before driving in a straight line to 

the parking spot. 

 
By changing the desired state the robot was also able  to  approach different park-  

ing spots. This can be seen in the figures below. 

Another test scenario was to let the robot navigate the way to a circular path and follow 
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it. To realize this the desired position values were chosen to be: 

∗ 
= (x  − x )

  R  
(5.1) 

x xc − c 
k 
. 

((xc − xk ) + y ) 

φ∗ = 

. 
arctan 

Σ yk 
(5.2) 

−
xc − xk 

where (xc; yc) are the center coordinates of the circle, R the radius of the circle and L 

the length of the robot. Once the robot reaches the circle the steering angle only needs 

to stay constant at a certain degree to stay on the path. This angle can be determined 

and is added to the steering angle from the controller as a ’correction term’. 

 

 
uk,corrected = uk + 

 π 
− arctan 

.
R 

Σ 

L 

 
; (5.3) 

 

In figure 5.3 the path for reaching and following a circular path is shown. 

The final test scenario was to let the robot follow a sinusodial path. The path is 

predefined with the parameters amplitude A, frequence f . The desired state for this 

case is 
 

x∗ = A · cos(f · yk) (5.4) 

φ∗ = arctan(A · f · sin(f · yk)) (5.5) 

Againa correction term is needed to smooth the robots motion while following the path. 

uk,corrected = uk + (f 2 · A · sin(f · xk 
)) ·

  L 
; (5.6) 

r · sec(f)2 

The robot was able to reach the sinusodial path and follow it, which can be seen in figure 

5.4 below. All in all the navigation algorithm could could reach very good results in 

simulation. The robot was able to reach any desired parking position from an arbitraty 

start state and could follow circular and sinusodial shapes lines. 
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Figure 5.3 – Robot finding and following a circular path. The circle has the 
parameters (xc; yc) = (50; 0), R = 35 and the starting state is 

(x0; y0; φ0) = (10; 30; π) 
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Figure 5.4 – Following a sinusodial path. 

 
 

5.2 Results of the Obstacle Avoidance Controller 

At first the results of the obstacle avoidance controller trained with dynamic backpropa- 

gation are presented. This method proved to be more difficult to apply to the obstacle 

avoidance problem than to the navigation problem before. The reason is that the 

definition of ’easy’ cases to start with the incremental learning is not as clear as in the 

navigation case. Choosing starting points at the side of the obstacle in the beginning 

and moving to the center seemed to be a good possibility but did not always result in 

the desired paths. The controller ended up navigating the robot around the right side of 

the obstacle for most starting positions. The results can bee seen in the following figures. 

The robot can avoid the obstacle but often not on the ideal path. The controller trained 

with deterministic policy gradient could not reach these results. Althought seeming 

to get in the right direction an collision was not always avoided as can be seen in the 

following figures 
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Figure 5.5 – Results of the obstacle avoidance controller trained with dynamic 
backpropagation 
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Figure 5.6 – Failed results of the obstacle avoidance controller trained with deter- 
ministic policy gradient 
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Chapter 6 

 
Conclusion 

 

 
The thesis focused on the development of a neuro-fuzzy controller for a 4-wheeled 

car-type robot to solve a parking problem while avoiding obstacles. 

At first the navigation to a desired position on a clear path was considered. The neural 

fuzzy navigation controller for that problem had been set up in an earlier work and 

has a zero-order Takagi-Sugeno structure. Until now it had only been trained in its 

consequence parameters and was expanded in this thesis by the dynamic backpropagation 

training for the premise parameters. 

In the second part of the work a controller for avoiding obstacles was developed. This 

controller returns a manipulation value, which is added to the output of the navigation 

controller should an object come near. It was trained with two different neural methods, 

which are called ’Dynamic Backpropagation’ and ’Deterministic Policy Gradient learning’. 

For the navigation task the controller trained with dynamic backpropagation led to 

very good results. The robot was able to reach the desired parking position without 

problems. With the algorithm it was also possible to let the robot drive in circular 

shapes and sinsusodial paths. 

The obstacle avoidance problem is still in need of further developing. The controller 

trained with dynamic backpropagation was able to avoid obstacle but increased its path 

to much while doing this. The controller trained with deterministic policy gradient 

seemed to have the opposite problem - a collision-free navigation cannot be guaranteed 

for the whole range of x-values. 

In future works the obstacle avoidance needs to be developed further. Maybe more 

membership function could help the case to get asmoother trajectory aroundtheobjects. 

The controller trained with deterministic policy gradient seems to need more training 

steps. Maybe a better, adaptable step size could solve this problem. 
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Appendix A 
 

 
The derivation of update equations for the parameters of the obstacle avoidance controller 

is shown exemplary for a concequence parameter wi, but is, except for the derivatives 

of the membership functions analog for the premise parameters. 

 
kΣtotal 

∆w
 

w = w − η k=1 o,i,k 

 
 
 
 

 
With the cost function being 

o,i o,i o,i   
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∆wo,i = 

∂Jo
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Jo = 1 (x  − x∗)2 + 1 (φx − φ∗) − 12  (x   − xc)2 − 1(y  − yc)2 

2 k 2 2 k 2 k 

 

(.3) 

the total derivative can be split up to 
 

 
 

∂Jo 
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= ((xk − x∗) + (xc − xk 
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+ (φk − ∗φ ) 
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) 
∂yk 
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(.4) 

 

The total derivatives of the state variables can be calculated with the recursive formular 

described in chapter 3.2.3. 

 ∂sk+1 
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L 

= 

 

By applying the chain rule, the first derivative becomes 
 

 ∂sk+1 
=
 ∂sk+1 ∂uk (.7) 
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0 

= − r zoN,i 

0 

(.8) 

 

The jacobian matrix of the system is derived from the model equations, listed in chapter 

4.1 
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The next two derivatives can be written as 
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The derivative of a normalized premise parameter zN  too,ithe inputs will be done 

exemplary to the input xk 
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