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Abstract

For the most demanding measurement tasks in force metrology flexure hinges in compliant
mechanisms represent a key component. To enhance the mechanical properties of devices
like weighing cells, the ability of precise modeling of flexure hinges is essential. The
present scientific work focuses on the modeling of the mechanical behavior of a single
flexure hinge subjected to geometric deviations and non-ideal loading conditions as those
encountered in weighing cells. The considered hinge has a semi-circular contour and a
large width compared to its minimum notch height. This geometry is modeled using
the finite element method. Requirements for a trustworthy and efficient computation are
elaborated under the consideration of geometric deviations for later parametric studies.
Analytical expressions found in the literature are compared to numerical results to prove
the validity of their assumptions for thin hinges. The model is used for studying the
deviation of the stiffness in non-ideal flexure hinges. Sources of deviation are identified
and described by parameters. The range of values for each parameter is chosen on the
basis of available manufacturing technology. Influential parameters are identified through
a sensitivity analysis. The effect of loading conditions is studied in the context of the
application in weighing cells. For the enhancement of the overall sensitivity, the stiffness
of the flexure hinges can be reduced. One option, the alteration of the geometry by adding
a flexure strip in the center of the semi-circular flexure hinge is studied in comparison to
existing analytical equations. The effects of ground tilts for a single loaded flexure hinge
are investigated as a foundation for future modeling of a tilt insensitive state of a weighing
cell mechanism (autostatic state). By adjusting the vertical position of the center of mass
of the lever, the tilt sensitivity can be reduced to zero. An approach to find the position
for this state is presented considering the numerical limitations of finite element modeling.
Using this approach, the variation of the sought position is evaluated for different values
of the design parameters.
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Kurzzusammenfassung

Für die anspruchsvollsten Aufgaben in Messgeräten in der Kraftmesstechnik
gehören Festkörpergelenke in nachgiebigen Mechanismen zu den leistungsbestimmenden
Bestandteilen. Um die mechanischen Eigenschaften von Geräten wie Wägezellen zu
verbessern, ist die genaue Modellierung von Festkörpergelenke wesentlich. Die vorliegende
wissenschaftliche Arbeit konzentriert sich auf die Modellierung des mechanischen
Verhaltens eines einzelnen Festkörpergelenkes, das geometrischen Abweichungen und nicht
idealen Lastbedingungen wie sie in Wägezellen auftreten unterliegt. Das betrachtete
Gelenk hat eine Halbkreiskontour und eine große Breite im Vergleich zu seiner
minimalen Kerbhöhe. Diese Geometrie wird mit der Finite-Elemente-Methode modelliert.
Anforderungen für eine vertrauenswürdige und effiziente Berechnung werden unter
Berücksichtigung geometrischer Abweichungen für spätere parametrische Untersuchungen
erarbeitet. Analytische Gleichungen aus der Literatur werden mit numerischen
Ergebnissen verglichen, um die Gültigkeit ihrer Annahmen bezüglich dünner Gelenke zu
überprüfen. Das Modell wird verwendet, um die Abweichung der Drehsteifigkeit in nicht
idealen Festkörpergelenken zu untersuchen. Quellen der Abweichungen wird identifiziert
und durch Parameter beschrieben. Der Wertebereich für jeden Parameter wird aufgrund
der zu erwartenden Abweichungen von typischerweise anwendbaren Fertigungsverfahren
bestimmt. Einflussreiche Parameter werden durch eine Sensitivitätsanalyse ermittelt.
Die Auswirkung der Lasteinleitung wird im Zusammenhang mit der Anwendung
in Wägezellen untersucht. Zur Verbesserung der Gesamtempfindlichkeit kann die
Steifigkeit der Festkörpergelenke reduziert werden. Eine Option, die Änderung der
Geometrie durch Hinzufügen eines Streifens in der Mitte des Festkörpergelenks, wird im
Vergleich zu bestehenden analytischen Gleichungen untersucht. Die Auswirkungen von
Bodenneigungen für ein einzeln belastetes Festkörpergelenk werden als Grundlage für die
zukünftige Modellierung eines neigungunempfindlichen Zustands der Wägezelle untersucht
(autostatischer Zustand). Durch das Einstellung der vertikalen Lage des Schwerpunktes
des Hebels kann die Neigungsempfindlichkeit theoretisch vollständig beseitigt werden.
Ein Ansatz, um die Position für diesen Zustand zu finden, wird unter Berücksichtigung
der numerischen Begrenzungen der Finite-Elemente-Modellierung vorgestellt. Mit Hilfe
dieses Ansatzes wird die Variation der gesuchten Position für verschiedene Werte der
Designparameter ausgewertet.



iv

Table of contents

Statement i

Abstract ii

Kurzzusammenfassung iii

Table of contents iv

List of abbreviations vi

List of symbols vii

1. Introduction 1

2. State of the art 3
2.1. Flexures in high-precision applications . . . . . . . . . . . . . . . . . . . . . 3
2.2. Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3. Deformation errors in compliant systems . . . . . . . . . . . . . . . . . . . . 10
2.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3. Finite element modeling of thin flexure hinges 16
3.1. Model requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2. Geometry and material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3. Loading and boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4. Meshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5. Geometrically nonlinear calculation . . . . . . . . . . . . . . . . . . . . . . . 24
3.6. Mechanical behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7. Comparison to analytical models . . . . . . . . . . . . . . . . . . . . . . . . 28
3.8. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4. Investigation of non-ideal flexure hinges 37
4.1. Identification of sources of deviation . . . . . . . . . . . . . . . . . . . . . . 37
4.2. Parametrization of the flexure hinge . . . . . . . . . . . . . . . . . . . . . . 40
4.3. Model behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4. Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5. Application of thin flexures in weighing cells 53
5.1. Axially-loaded flexure hinges . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2. Ground tilt effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6. Conclusions 70



TABLE OF CONTENTS v

Appendix x
A. Loading application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
B. Mesh sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
C. Circular contour flexure hinge design equations . . . . . . . . . . . . . . . . xiii
D. Bending in plane strain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv
E. Model behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
F. Sensitivity measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xviii
G. Sampling methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx
H. Stiffness deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii
I. Gravity effect in sensitivity measures. . . . . . . . . . . . . . . . . . . . . .xxvii
J. Center of mass position for autostatic state. . . . . . . . . . . . . . . . . . .xxviii

Bibliography xxxi



vi

List of abbreviations

A-LHS : Advanced Latin Hypercube Sampling

BCM : Beam Constraint Model

CAD : Computer-Aided Design

CNC : Computer numerical controlled

CoP : Coefficient of Optimal Prognosis

DoF : Degrees of freedom

FE : Finite element

FEA : Finite element analysis

FBMM : Finite Beam based Matrix Modeling

ICCG : Incomplete Cholesky Conjugate Gradient

JCG : Jacobi Conjugate Gradient

LHS : Latin Hypercube Sampling

MEMS : Microeletromechanical systems

MoP : Metamodel of Optimal Prognosis

OAT : One-at-a-time

PCG : Preconditioned Conjugate Gradient

PRBM : Pseudo Rigid-Body Model

WEDM : Wire electrical discharge machining



vii

List of symbols

a : Number of levels per parameter

b : Width

CoP : Coefficient of Optimal Prognosis

db : Width deviation parameter

dE : Elastic modulus deviation parameter

dh : Minimum height deviation parameter

dR : Radius deviation parameter

dx : Deviation parameter for hinge position in x -direction

dxc : Deviation parameter for hole separation in x -direction

dy : Deviation parameter for hinge position in y-direction

dβgz : Deviation parameter for gravity vector orientation around z -axis

dβgy : Deviation parameter for gravity vector orientation around y-axis

dν : Poisson’s ratio deviation parameter

dθx : Deviation parameter for hole orientation around x -axis

dθy : Deviation parameter for hole orientation around y-axis

ekϕ : Relative rotational stiffness deviation

eσx,max : Relative deviation of the maximum bending stress

eσz,max : Relative deviation of the maximum out-of-plane stress

E : Elastic modulus

E′ : Modified elastic modulus

F : Load vector

Fa : Applied load vector

Fnr
i : Restoring load vector at the i -th iteration

Fx, Fy, Fz : Force in the x, y, z -direction

~g : Gravity vector

h : Minimum hinge height



LIST OF SYMBOLS viii

h′ : Hinge height for 10 % of maximum bending stress

H : Total height

Iz : Moment of inertia about z -axis

j : Parameter j =
√
EIz/W

K : Stiffness matrix

KT
i : Tangent stiffness matrix at the i -th iteration

k : Number of parameters

kb : Stress concentration factor for bending

kij : ij -th component of the stiffness matrix

kϕ : Rotational stiffness

k̂ϕ : Normalized rotational stiffness

l : Hinge length

L : Total length

m : Supported mass

M : Applied bending moment

Mx, My, Mz : Moment in the x, y, z -direction

n : Order of the polynomial for approximation

N : Total number of samples

R : Radius of the circular contour

RRef : Reference force value

Ri : Residual load vector at the i -th iteration

s : Flexure strip length

Si : Sensitivity index for the i -th parameter

SSPredictionE : Sum of squared prediction errors

SST : Total variation

u : Displacement vector

ui : Solution displacement vector at the i -th iteration

ux, uy, uz : Displacement in the x, y, z -direction

W : Supported weight force by the flexure hinge

W1, W2 : Measured and counter weight forces of the weighing cell

WB : Weight of the transmission lever of the weighing cell

Wx, Wy : Component of the weight force in the x, y-direction



LIST OF SYMBOLS ix

x, y, z : Position in the x, y, z -direction

xCM : Position of the center of mass

x̄CM : Position of the center of mass for the autostatic state

x′CM : Position of the center of mass for the instable state
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1. Introduction

With the development of modern science, the need for precision is continuously rising.
High-precision systems such as nanopositioners [23, 34, 36], measurement instruments
[18, 54, 69], precision machine tools [28, 90] and microelectromechanical systems (MEMS)
[43, 92] often require features that are not achievable through conventional design. In
measuring technology, for instance, instruments are designed to obtain measurements as
precise and repeatable as possible with high resolution. Compliant mechanisms have
proven to be suitable for those systems due to their almost frictionless and precise
motion. In fact, they are used in many engineering applications, in both macro- and
micro/nano-scale, e.g. weighing cells (see Figure 1.1).

Figure 1.1: Compliant mechanism in a weighing cell. Adapted from [7].

Conventional mechanisms have a number of drawbacks, especially when it comes to
precision applications. As a conventional joint is basically an assembly of parts composing
the kinematic pair, clearance between elements is necessary to enable relative rotation.
Consequently, backlash results in a loss in the precision of motion. Contact between
surfaces produces friction, which leads to wear, increased clearance and undesired forces.
Lubrication becomes necessary, so they not suited for vacuum operations or clean
environments. The difficulty of manufacturing small parts with good tolerances and their
assembly also makes them unsuitable for miniaturization. As a result, compliant joints
were developed to replace conventional joints in such applications.

A compliant joint is a connection between two bodies or body segments with at least
one relative motion due to deformation [37]. They are usually fabricated monolithically
with the rest of the mechanism, meaning that no assembly is needed. Thus, they
overcome the aforementioned problems of conventional joints. Mechanisms based on these
joints, known as compliant mechanisms, present multiple advantages such as smooth
and continuous motion, increased precision, high repeatability, simplified manufacturing,
potentially lower costs, compactness, better scalability and ability to work in vacuum
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and clean environments. These characteristics make them suitable for high-precision and
small-scale applications. However, beside the numerous advantages, compliant joints
exhibit certain disadvantages, for example: theoretical modeling can be rather difficult or
not always possible, rotational motion is not pure as the center of rotation is not fixed,
limited capacity of rotation and performance can be greatly affected by small changes in
the parameters of the joint.

The capability of compliant mechanisms to fulfill their expected duties depends mostly on
the compliance of the joints. Compliance is defined as a measure of the ability of a body
or structure to deform due to the action of external forces [37]. It is the reciprocal of
stiffness and it is frequently used for describing the behavior of a compliant mechanism.
However, the latter is used for optimization purposes. For quasi-static applications, the
stiffness comprises all mechanical properties required for modeling purposes, topology
optimization and efficient, reduced models for finite element (FE) calculations [19].

Compliant mechanisms are usually required to be more compliant (or less stiff), especially
in force measurement instruments. Flexure hinges of different geometries have been
extensively studied through the years. Stiffness in these joints is usually decreased by
reducing their thickness down to some micrometers. As dimensions reach the micrometer
range, the behavior of a compliant joint becomes more sensitive to small deviations
from ideal conditions, e.g. manufacturing and material imperfections. Consequently, the
stiffness cannot be accurately determined. Besides, analytical models lose accuracy for
very thin compliant joints since they are based on assumptions that lose validity in such
ranges.

In systems based on compliant mechanisms, proper modeling and knowledge of the actual
performance of their joints are necessary for predicting the overall behavior. For a better
understanding of the behavior of compliant joints in highest precision applications, i.e.
thin compliant joints, proof of the validity of available expressions and a study on the
sources of influence over the stiffness are required. In a first step, a thin compliant joint
is modeled using the finite element method to analyze the applicability of analytical and
design equations. Then, its response under non-ideal conditions is studied in terms of
its rotational stiffness. Sources of deviation are first identified and classified based on a
detailed literature research. The identified deviations are described by parameters which
must be supported by the model in their respective range of values. Most influential
parameters are determined later through a sensitivity analysis. In a further step, the
consideration is continued in the context of the compliant joints in a monolithic weighing
cell.

The structure of this thesis is organized in six chapters. Chapter 2 reviews the modeling
of flexure hinges as well as investigations on the sources of deformation deviation of
compliant mechanisms to date. This chapter also discusses the studies yet to be done
that will be covered in this work. Chapter 3 focuses on the finite element modeling of a
thin flexure hinge and studying the deviation between models. The behavior of the thin
flexure hinge under non-ideal conditions is analyzed in Chapter 4. The methodology of
study, identification of sources, parametrization of the model, determination of influential
parameters and discussion of the results are all included here. Chapter 5 is dedicated
to the investigation on flexures for the application in monolithic weighing cells. Finally,
conclusions and future work are presented in Chapter 6.
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2. State of the art

This chapter provides a review on the literature to date on the modeling of flexure hinges
as well as on error sources concerning the behavior of compliant mechanisms. Section 2.1
introduces the fundamentals of this topic for better a understanding of the upcoming
sections and chapters. Geometric configuration, material properties and manufacturing
are of utmost importance for defining the behavior of a flexure hinge and, thus, are
briefly discussed. Models and approximate equations for different types of joints have
been widely developed over the years. Most of them are based on basic theories, e.g.
Euler-Bernoulli beam theory. Section 2.2 reviews those expressions and classifies
them by the approaches used. Studies on deformation errors of compliant mechanisms are
reviewed in Section 2.3, where sources described as parameter deviations are classified and
explained. Section 2.4 discusses about the previous sections and the challenges encountered
that constitute the basis of this work.

2.1. Flexures in high-precision applications

In literature, numerous types of compliant joints can be found [21], as well as diverse
criteria for classifying them [48]. Among all of them, flexure hinges are the most studied
type. Flexure hinges, or just flexures, allow relative rotation between two elements through
bending [37]. In most applications, especially of high precision, they are used to replace
conventional joints in common mechanism configurations, as in Figure 2.1.

(a) (b)

Figure 2.1: (a) Mechanism with conventional revolute joints; (b) Mechanism with
compliant joints. Adapted from [10].

Geometry

Flexure hinges are usually subdivided in two big groups: notch type hinges and leaf type
hinges (see Figure 2.2). Notch hinges are mostly produced by removing material from a
plate leaving a thin neck-like region which serves as the flexible element. The compliant
region is limited to the thinnest part of the joint, approximately defining the axis of
rotation, which makes them preferred for precision applications. However, due to the high
concentration of stress, their capacity of rotation is very limited. In contrast, leaf hinges
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consist of a slender member connecting the links, where deformation is distributed over the
whole hinge length, i.e. distributed compliance. They are suitable for large displacement
applications but are more sensitive to parasitic motions. Among both types, the notch
hinge is state of the art [47]. As such, a variety of different notch contours can be found
in the literature, e.g. circular, elliptic, parabolic and many more [50].

(a) (b)

Figure 2.2: (a) Notch flexure hinge with concentrated compliance; (b) Leaf flexure hinge
with distributed compliance.

Materials

Depending on the application, compliant mechanisms can be manufactured of different
materials, especially metals. Aluminium, steel and titanium are commonly utilized,
although other materials and diverse alloys have also been studied, e.g. shape memory
alloys [94]. Material selection requirements are often based on the following criteria [19, 23]:

• Stiffness-to-density ratio.

• Admissible elastic strain, based on the yield strength.

• Fatigue strength.

As a result, high strength aluminium alloys, especially the 7075 grade, are widely used in
precision engineering applications [23]. Other criteria may also include machinability,
resistance against corrosion, low thermal expansion and more [14, 23, 82]. Common
materials for compliant mechanisms can be seen in Table 2.1.

Table 2.1: Mechanical properties of common flexure hinge materials [9].

Material
Elastic modulus Poisson’s Density Yield strength

(GPa) ratio (g/cm3) (MPa)

2024 Aluminium 72.4 0.33 2.77 347
6061 Aluminium 69 0.33 2.70 276
7075 Aluminium 71 0.33 2.80 505
Titanium 114 0.34 4.43 830
Stainless steel 193 0.30 8.00 205

The values shown above are only referential. Mechanical properties can differ considerably
between manufacturers and sources. For example, aluminium alloys 2024 can be found
with a specified elastic modulus between 70 and 72.4 GPa [9, 21]. Metals also have
different classes or grades for a same composition, e.g. aluminium alloys 2024 can
be found with yield strenghts of 75 up to 440 MPa [21]. Those values depend greatly
of the manufacturing processes, such as tempering, and also from measurement techniques.

Manufacturing

Most of the advantages of compliant joints already mentioned were based on the fact
that they can be manufactured monolithically with the rest of the structure. It is also
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possible to assemble them with rigid members using fasteners or through bonding [23].
Assembled joints can be fabricated with standard machining processes, like milling
and turning. Yet, the use of fasteners or adhesives in their assembly can affect the
performance of the whole mechanism. Monolithic mechanisms offer more predictable and
repeatable performance. Common fabrication processes for single- and two-axis flexure
hinges include standard milling and drilling. As for multi-axis hinges, turning is usually
preferred, although precision casting is also possible [50]. These techniques are best
suited for hinges made of metals with dimensions above 1 mm, achieving tolerances of
around ± 25 µm [23]. However, when extremely thin dimensions or complex geometries
are required, non-traditional processes such as the wire electrical discharge machining
(WEDM) are best suited.

Figure 2.3: Wire electrical discharge machining. Adapted from [29].

In WEDM, the raw material is sumerged in a dielectric solution and an electric arc, or
spark, is produced by generating a voltage difference between a wire electrode and the
workpiece (see Figure 2.3), vaporizing the material locally. The wire is kept in tension
by a mechanical device while being continuously fed and travels against the workpiece
removing material. The cutting is produced in steps controlled by a pulse generator,
which turns the spark on and off. It allows the manufacturing of hinges with minimum
thicknesses of around ± 50 µm [31]. Dimensional accuracy on the order of ± 12 µm is
usually obtained using wires of approximately ± 100 µm of diameter [23], but tolerances
of ± 2.5 µm can be achieved through this process [63]. Other manufacturing techniques
suitable, especially for two dimensional applications, are laser cutting, metal shaping,
water jet cutting or photolithographic techniques for MEMS [50].

2.2. Modeling

Unlike conventional joints, flexure hinges exert a restoring force during motion. This force
can be either advantageous in systems where an initial position is needed or limiting when
high mobility is required. In quasi-static analysis, where no damping or inertial forces are
considered, it equals the external loads generating the deformation. Stiffness is usually
obtained by applying a certain type of load to the joint and measuring the displacements
or rotations of a specific reference point. As all points of a same hinge can displace in
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different directions and amounts, it highly depends on the location of the reference point,
thus, specifying it can be really complex and involves various parameters [97].

Geometrical configuration, material properties, boundary and loading conditions, and
environmental conditions define the mechanical behavior of a compliant joint. Geometry
defines the distribution of matter in a body, which plays a major role on its deformation.
Thus, location and type of constraints have great influence. Material behavior, whether
elastic, viscoelastic or plastic, defines the relationship between the external loading and
displacements. Materials possess different values of mechanical properties, which results
in different deformations for same geometries and loading conditions. Size-dependency is
also present in material behavior as properties are actually average values, resulting from
different phenomena occuring in the micro- and nano-scale. External influences, such
as temperature and gravity, tend to vary the expected ideal conditions, like dimensions
or loading. Nevertheless, stiffness is specified depending on how loads are applied or
how deformation occurs, e.g. bending or rotational stiffness. Direction, orientation,
type, magnitude and location of loading, in combination with material properties and
geometric configuration, determine the direction and magnitude of the displacements of all
unconstrained points of a compliant joint. Since there are numerous factors which define
the stiffness, modeling approaches are based on various assumptions and considerations.

Mechanical model

An ideal flexure hinge is usually modeled as shown in Figure 2.4. The mechanical model
contemplates only the contour region of the joint as a cantilever beam of variable section,
where the loading is applied on the free end [50, 62, 91]. Some authors also consider the
deformation of the adjacent links [47, 73]. Points of reference of the model commonly
specified are the fixed end O, the ideal center of rotation C and the free end P. In fact,
all points over the longitudinal axis actually represent the cross section at that position,
as flexures are prismatic most of the times. A cartesian coordinate system is located in
point O, where two axes are on the plane of motion, one parallel to the longitudinal axis
(x -axis) and the other one to the transversal axis (y-axis). Sometimes the origin coincides
with point C to match the third axis (z -axis) with the ideal axis of rotation [48, 50].

Figure 2.4: Mechanical model of a flexure hinge.

When loads are exerted on the point of reference P, displacements and rotations of its
cross section occur, and the elastic behavior of the joint can be formulated as:

F = Ku
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where F is the external load vector acting in point P, u is the displacement vector of point
P and K is the stiffness matrix. Stiffness is considered a 6 × 6 matrix, where each ij-th
component represent the relationship between the i-th load and the j-th displacement of
the load and displacement vectors:

Fi = kijuj

which means that a certain load Fi produces a fraction of the displacement uj . In perfectly
prismatic hinges this is not always possible, as, for example, axial loads do not produce
transversal displacements. As a result, some components kij are zero. The behavior with
the complete stiffness matrix should be expressed as [40]:

Fx
Fy
Fz
Mx

My

Mz

 =



kux,Fx 0 0 0 0 0
0 kuy ,Fy 0 0 0 kϕz ,Fy

0 0 kuz ,Fz 0 kϕy ,Fz 0
0 0 0 kϕx,Mx 0 0
0 0 kuz ,My 0 kϕy ,My 0
0 kuy ,Mz 0 0 0 kϕz ,Mz





ux
uy
uz
ϕx
ϕy
ϕz


The idealized model contemplates a compliant joint as a pin joint (only rotational motion)
with a torsional spring. Then, the behavior of a hinge can be expressed as:

M = kϕϕ (2.1)

where M is the external bending moment, ϕ the angle of rotation and kϕ the rotational
stiffness. Ideally, the rotational stiffness is considered to be constant, which means that
the rotation angle is directly proportional to the applied moment. As such, the behavior
of a hinge represented in a moment-angle graph should be a straight line with kϕ as slope,
like in Figure 2.5.

Figure 2.5: Ideal rotational stiffness behavior of a flexure hinge.

Compliance to other rotations exist but flexure hinges are designed as stiff as possible
around other axes to avoid possible parasitic motions. However, undesired motions in
longitudinal direction cannot be fully eliminated.

Based on this characterization of the hinge, various authors have proposed exact and
simplified expressions trying to calculate the value of compliances (or stiffnesses) using
many different approaches, especially the rotational compliance. Those values can differ
in great manner depending on the assumptions and simplifications made so they are
briefly described in the following paragraphs. A summary of the mentioned expressions
and corresponding contours studied is presented in Table 2.2.
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Analytical modeling

Theoretical description of the mechanical behavior of flexure hinges was first obtained
from basic theory, i.e. mechanics of materials. Analytical expressions are often of great
complexity so simplified and approximate equations have as well been derived.

• Euler-Bernoulli beam theory:
In 1965, Paros and Weisbord [62] developed, for the first time, an exact compliance
equation of the semi-circular flexure hinge by integrating the Euler-Bernoulli
differential bending equation adding dimensionless parameters ξ = h/2R, where h
is the minimum height of the hinge and R the contour radius, and ζ = 1 + ξ to
reduce its complexity. Furthermore, it was reduced to a simplified design equation for
small values of ξ. Smith et al. [76] presented in 1997 closed form equations for the
compliance of elliptic flexure hinges based on a modification of the equation by Paros
and Weisbord by including the aspect ratio of the ellipse. Wu and Zhou [91]
also derived design equations for calculating the compliances of semi-circular hinges
including a dimensionless parameter λ = R/h for further simplification. In 2003,
Merken et al. [57] sought to increase the accuracy of the simplified equation by
Paros and Weisbord by adding correction factors for the range of dimensions of
the hinge and its surface roughness. Later in 2009, Chen et al. [11] introduced a
generalized expression for conic curves to obtain a compliance equation depending on
three parameters that describe the type and geometry of the contour.

• Castigliano’s second theorem:
Lobontiu et al. [52] introduced in 2001 closed form equations for the compliances
of corner-filleted flexure hinges derived from Castigliano’s second theorem. In the
same way, equations for hinges of different contours were derived later, e.g. circular,
parabolic, elliptic and more [50]. In 2010, Tian et al. [84] approximated dimensionless
empirical equations by using an eighth-order polynomial to fit compliance results for
circular, cycloidal and filleted V-shaped hinges from Castigliano’s second theorem.
Liu et al. [49] did the same in 2016 for the novel quasi V-shaped hinge using a
third-order polynomial.

• Timoshenko’s beam theory:
In their contribution, Dirksen and Lammering [19] derived equations for the
rectangular flexure hinge using the Timoshenko beam theory, i.e. shear deformation
was considered. The model was used for circular and parabolic contour hinges, however,
equations were not presented due to high complexity.

• Principle of virtual work:
A new type of flexure hinge, the power-function-shaped, was presented by Li et al.
[45] in 2013. To obtain its compliances, the principle of virtual work, i.e. the unit load
method, was used. According to the unit load method, the virtual rotation is done by
a unit load.

The previous approaches have been rather inaccurate for some rather inaccurate for some
dimensions, contours and geometries with complex shapes. Consequently, other modeling
approaches have been proposed.

• Pseudo Rigid-Body Model (PRBM):
An approach for design of compliant mechanisms was presented by Howell and
Midha [33] in 1994. Compliant joints such as rectangular hinges or flexure beams
are replaced by torsional springs of same stiffness connecting rigid links. This approach
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is particulary useful for modeling compliant joints based on constant section beams in
conventional mechanism configurations, like the cross flexure hinge [39]. However, its
main purpose is its use for the synthesis of compliant mechanisms.

• Continuum mechanics:
Tseytlin [88] presented formulas for the rotational compliance of hinges of circular
and elliptic contours. In his contribution, the contours were approximated by circles
of different radius with displaced centers and transformed into rectilinear ones through
inverse conformal mapping. Compliance was determined using continuum mechanics
theory and tractable equations were derived on the basis of simplified series expansion
of trigonometric functions.

• Euler-Bernoulli beam-column theory:
Awtar [4] developed in his doctor thesis a model of flexure beams, called the Beam
Constraint Model (BCM), based on the Euler-Bernoulli beam-column theory. By
considering equilibrium in deformed state, a possible constraining axial force is allowed
to appear in the differential equation, thus, having an influence on the transverse
stiffness. Later in 2010, the model was updated for beams of changing section [5].

• Finite Beam based Matrix Modeling (FBMM):
In 2015, Zhu et al. [100] presented a novel modeling method called the Finite Beam
based Matrix Modeling, where the whole hinge is considered a sequence of n rectangular
short beams. Compliance is obtained by a summation of the partial compliances of
every short beam.

• Nonlinear theory of large deflections of rods:
Based on numerically calculated results from the nonlinear theory for modeling slender
curved rods by Zentner [96], Linß et al. [47] approximated rotational stiffness
equations using a power function expression. Two coefficients were used to consider
the different characteristics of each studied contour.

Finite element analysis based empirical equations

The finite element method is the most widely used method for modeling compliant
joints. Different complex geometries can be generated in Computer-Aided Design (CAD)
softwares for later meshing and computation in commercial FE packages. Finite element
analysis (FEA) results are numerical so no general expressions can be obtained. However,
some authors offer empirical equations based on those results.

In 1987, Smith et al. [78] obtained a formula similar to that of a simple cantilever beam
for semi-circular hinges including a coefficient dependent of the geometric parameters.
This coefficient was approximated to fit the finite element analysis results. Later,
Koster et al. [42] presented dimensionless design graphs as a result of finite element
calculations for the circular notch hinge. However, no information about the model was
provided. In 2005, Schotborgh et al. [73] fitted dimensionless polynomial functions of
first, second and third order to FEA results of corned-filleted, circular and cross flexure
hinges, respectively. Meng et al. [56] presented in 2012 a method for calculating the
compliances based on Castigliano’s second theorem and FEA nonlinear calculations.
Their approach consists in adjusting analytical results to FEA results by means of a
contour-dependent correction parameter.
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Table 2.2: Review of analytical modeling and empirical equations approaches used for
different flexure hinge contours.

Year Author Approach Contour

1965 Paros and
Weisbord

Integration of Euler-Bernoulli equation
using parameters ξ = h/2R and ζ = 1 + ξ.

C

1987 Smith et al. FEA-approximated empirical formula. C
1992 Koster et al. FEA-based design graph. C
1994 Howell and

Midha
PRBM: replacement with a rigid-body joint
with torsional spring.

R, CR

1997 Smith et al. Modification of equation by Paros and
Weisbord using aspect ratio of ellipse.

C, R, E

2001 Lobontiu et
al.

Castigliano’s second theorem. C, CF, E, P,
H, IP, S

2002 Wu and Zhou Integration of Euler-Bernoulli equation
using parameter λ = R/h.

C

2002 Tseytlin Inverse conformal mapping of circular
approximating contour.

C, E, P, H

2003 Merken et al. Modification of equation by Paros and
Weisbord using correction factors.

C

2004 Awtar et al. BCM: model based on Euler-Bernoulli
beam-column theory.

R

2005 Schotborgh
et al.

Polynomial function fitting FEA results. C, CF, CR

2009 Chen et al. Integration of Euler-Bernoulli equation
using a generalized conic curve equation.

C, E, P, H

2010 Tian et al. 8th-order polynomial approximation for
Castigliano’s theorem derived equations.

C, CY, FV

2011 Dirksen and
Lammering

Timoshenko’s beam theory. C, R, P

2012 Meng et al. Correction function for the equations by
Lobontiu by fitting FEA results.

CF

2013 Li et al. Unit load method. PF
2015 Zhu et al. FBMM: Summation of compliance of n

rectangular-section partitions.
C, E, ES, PF,

FV
2016 Liu et al. 3rd-order polynomial approximation for

Castigliano’s theorem derived equations.
QV

2017 Linß et al. Power function fitting to results from
nonlinear rods model by Zentner [96].

C, CF, E, PL

C: Circular; R: Rectangular; CF: Corner-filleted; E: Elliptical; P: Parabolic; H: Hyperbolic;
PL: Polynomial; IP: Inverse parabolic; S: Secant; CY: Cycloidal; ES: Exponent-sine;
PF: Power-function; CR: Cross; QV: Quasi V; FV: Filleted V.

2.3. Deformation errors in compliant systems

As mentioned in Chapter 1, one of the disadvantages of compliant joints is their sensitivity
to small changes in their parameters. Compliant mechanisms, as all manufactured
products, are not ideally perfect. Manufacturing and material imperfections, especially
in the joints, can greatly affect the performance of the whole system. These effects have
been discussed by some authors and three groups can be identified:



CHAPTER 2. STATE OF THE ART 11

• Manufacturing deviations.

• Material imperfections.

• External influences.

Manufacturing deviations

Real motion of compliant mechanisms include parasitic errors caused by machining
imperfections. Geometric parameters are always manufactured within certain tolerances,
as no exact values are achievable. These values are called manufacturing tolerances and
are restricted so that they do not significantly affect the intended function of a device.
However, they are not only limited by design or function issues, they are limited by
manufacturing technologies. Manufacturing of flexure hinges with WEDM is done in
multiple steps. Inconsistencies in each step and positioning errors during the process
generate imperfections in the resulting compliant mechanism [99]. Some authors have
studied their effects. Common approaches consider deviations as variations of individual
parameters. Through analytical or finite element (FE) modeling, motion errors in the
output of a certain mechanism are quantified. Moreover, all work to date is concentrated
on flexure hinges of circular contour, since it is commonly used and easy to manufacture.
Parameters considered in the literature are as shown in Table 2.3.

Planar compliant mechanisms are normally cut out of a single metallic plate. Thus, the
width of the joints b equals the thickness of the plate, which can be produced by different
processes, such as milling or rolling. As the geometric profile is usually generated with
WEDM, positioning and cutting errors generate a deviation from the circular contour.
For simplification, only deviation of the hole radius R is usually considered. The radius
deviation parameter has been defined in two ways: with variation of the minimum hinge
height h [74], or with constant minimum hinge height [70]. Both cases would produce
different results as the minimum hinge height influences to a greater extent the behavior
of a hinge [74]. Aside from shape and dimension deviations of the contour, positioning
errors during machining also generate deviation of the position of the holes. Cases
considered by Ryu and Gweon [70] are displacements of the holes in the transversal
direction, as well as combined cases with the longitudinal case. Opposed displacements
in the transversal direction would produce in pure deviation of the minimum height
h. Additionally, orientation errors of the wire in WEDM also occur, thus, generating
perpendicularity deviation of the holes around the longitudinal and transversal axes.

Among the authors referenced in Table 2.3, only Ryu and Gweon [70] and Shen
[74] have studied the individual influences of the each parameter. In other works,
only combined effects on particular mechanisms were studied. From the results of the
mentioned authors, a first conclusion can be drawn about circular-contour hinges: the
minimum hinge height is the most influential parameter between the geometric deviations.
In the work of Ryu and Gweon the hole radius and hole position parameters were
most influential. This statement has to be seen against the background of the parameter
definition. Their parameter variation leads to a pronounced change of the minimum hinge
height of the hinge. The results from Shen also reveal predominance of the minimum
height, especially when its value is reduced.

The results of Shen indicate a linear deviation caused by the basic parameters (h, R,
b) compared to the second-order errors caused by perpendicularity. Perpendicularity
deviations generate out-of-plane motions in the joint even when submitted to in-plane
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loads. This fact adds a directional component to the point of reference that is not
considered by the measurement.

Table 2.3: Review of manufacturing deviation parameters.

Parameter Symbol Representation References

Hole radius with
constant hole center
position

∆R [36, 61, 70]

Hole radius with
constant minimum
height h

∆R [74, 99]

Hole center position
in longitudinal
direction

∆x1, ∆x2 [36, 99]

Hole center position
in transversal
direction

∆y [36, 61, 64, 70, 74]

Hole center position
with shift of
rotational axis

∆c [70]

Hole center position
with rotation of
hinge

∆θz [36, 61, 70]

Perpendicularity of
hole centers to
longitudinal axis

∆θx [61, 64, 70, 74]

Perpendicularity of
hole centers to
transversal axis

∆θy [61, 64, 70, 74]

Plate thickness ∆b [36, 70, 74, 99]
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Material imperfections

Materials are selected based on the needs of a particular system. Depending on the
application, material selection often requires constancy of some properties with predictable
variation of others, or even only satisfactorily constant properties. This sometimes leads
to the search for unusual special-purpose materials or or purposeful combinations of
available materials make use of compensation effect [83]. Moreover, precision applications
often confront the designer with situations where unexpected phenomena arise or where
assumptions do not apply anymore, e.g. anelasticity in micro-size beams for MEMS [12].

Properties of materials are actually assigned numerical values obtained through
experimental procedures in accordance with specialized standards. As such, they are
bound to the inherent uncertainity of those experiments. Many values can only be valid
for specific conditions of other parameters, like temperature. Sometimes needed properties
are not easy to find in the literature, like the degree of mechanical hysteresis, because
handbooks include only common properties of widely used materials. More problematic
can be the fact that the values of well known materials vary between manufacturers.
Heat treatment, cold working and composition can have a great influence over the actual
value.

In compliant systems, motion is enabled by the use of the elasticity of a material. Models
mentioned in Section 2.2 consider only the elastic modulus to describe the material
behavior but it is important to remark some other mechanical properties or parameters
encountered in precision design [82]:

• Elastic drift : change of strain that occurs after the stress becomes stable.

• Thermal coefficient of elasticity : measure of the variation of elastic modulus with
variation of temperature.

• Zero shift : change of the zero state of the system due to plastic deformations.

• Mechanical hysteresis: strain retained during stress cycling.

• Creep: slow dimensional change occurring under stress conditions.

• Ageing properties: variation of elastic modulus with time.

• Internal friction: loss mechanism withing material structure.

• Fatigue strength: endurable amplitude of cyclic stress without failure.

These phenomena arise to some degree, usually neglectible in rough design, in all
mechanical systems. Such parameters can be fundamental in precision design as they
deviate the expected elastic behavior of a material. This encourages sometimes the
development of some special purpose materials. For example, nickel-iron alloys can be
mixed in different propotions (27 or 42 %) to show virtually zero variation of their elastic
modulus with temperature changes. Other alloys can be heat treated to reduce the degree
of mechanical hysteresis [83]. Some discussions exist about the ideality of elasticity in
flexure hinges [82] but almost no work has been dedicated to study their influence. In
fact, the only works that treat this topic are dedicated to the anelasticity of flexure strips
at low frequencies and related relaxation effects [67, 79, 80].
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External influences

Although manufacturing deviations have been studied intensively by different authors,
other influences aside from them are yet to be studied in detail. In their work, Niaritsiry
et al. [61] presented the influences of temperature and gravity over the output motion of
a compliant mechanism. Temperature effects considered were convection and conduction
effects. Convection between the environment and the mechanism proved to be more
influent. However, precision systems work in environments with thermal insulation and
temperature control. Thus, temperature variations of about ± 0, 01 ◦C can be achievable
[61]. In such ranges, temperature does not represent a major problem. In contrast, gravity,
especially at nanometer scale, can be a major source of inaccuracy [61]. Gravity produces
loading without the presence of input forces so it can change the expected motion of
the mechanism, depending on its direction and the mass of the system. Some works have
addressed the effect of gravity due to a small deviation of its direction produced by ground
tilt [18, 54, 79]. This effect is of particular interest in load measuring systems.

2.4. Discussion

The discovered restrictions and problems of previous investigations and their modeling
approaches constitute the challenges to overcome in this work. The following discussion
on the current state of the art is treated around two major topics:

• The applicability of previous approaches to model thin flexure hinges under ideal
and non-ideal conditions.

• The description of the stiffness of a flexure hinge under non-ideal conditions.

On the one hand, expressions in the literature proved acceptable accuracy only in some
ranges of the geometric parameters of a flexure hinge when compared to FEA results,
e.g. the minimum height-radius ratio h/R in semi-circular flexure hinges. According to
the results of Yong [95], as the value of h/R decreases, the rotational compliance results
based on Euler-Bernoulli beam theory should equal the FEA results. This theory
assumes that the dimensions of the cross section are much smaller than the length of the
beam. Depending on the contour, this assumption can be invalid but it should correctly
apply to thin hinges. However, such conclusion cannot be generalized. Because compliance
in other directions is to be avoided, the width of the hinges, especially thin ones, can be
actually large. In such case, the mentioned assumption would not apply anymore. Also
important is a decrease in dimensions to the micrometer scale as other effects may gain
influence. Only two works in the literature have exposed this fact. In the experiments
of Zhang et al. [98], polysilicon thin circular micro-hinges of 3 µm of minimum height
showed stiffness around 15 times greater than the values calculated with the full equations
of Paros und Weisbord [62]. The results of Merken et al. [57] also show appreciable
disagreement between modeling and measurements. In their contribution, flexure hinges
of 66 µm of minimum hinge height were compared to three models, being the first one the
simplified equation from Paros and Weisbord. The other two models were corrections
of the first one considering thick hinges and surface roughness to match the measurements.

On the other hand, most analytical and empirical equations of Section 2.2 consider only
the ideal hinge model of Figure 2.4. In the case of circular-contour hinges, for example, the
parameters that fully describe the behavior of the joint according to this characterization
are the minimum height h, radius R, width b and the elastic modulus E. This means that
all possible influences over the stiffness are caused by the deviations of those parameters,
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which is an oversimplified approach. A more generalized method, the FBMM [100], was
used to model non-ideal geometries, i.e. hinges affected by manufacturing imperfections
[99], but modeling of out-of-plane deviations is yet to be done. Also, other effects such
as gravity or temperature have no place in these expressions so their study cannot be
conducted.

Investigations up to date, related to errors in compliant systems, analyze motion errors
caused by manufacturing imperfections and external influences. In most studies, combined
effects of manufacturing deviations in the motion of particular compliant mechanisms were
considered. As such, their results cannot be applied to study the stiffness of individual
joints. Although Shen [74] analyzed the motion performance of a single flexure hinge,
his work was focused on a single-notch circular hinge with a minimum height-radius ratio
of 0.4, which can be considered a thick hinge [88]. Another drawback of previous works
are the parameters used for modeling non-ideal hinges. Among those investigations, the
work of Ryu and Gweon [70] considers the most geometric deviations, but the work
of Niaritsiry et al. [61] is the only one that studies the influences of temperature
and gravity. Consistency in parameter selection and definition cannot be found among
the studies. For example, the hole radius deviation in the study of Ryu and Gweon
generates a variation of the minimum height, while Shen considers it as constant. Such
incongruity in parameter definition produces incongruity in the results, distorting the
apparent influence of certain parameters between investigations. Extending the previous
example, when looking at modeling equations of circular contour hinges, the minimum
height and the radius are parameters independent from one another, which means
that the definition of the radius parameter in the work of Ryu and Gweon forces a
relationship between both dimensions. For a better understanding of the behavior and
a correct definition of the sources of error, such studies should aim for independent
parametrization, althought it is not always possible. Concerning the definition of stiffness
discussed in Section 2.2, it can be observed that no actual study on loading conditions
as sources of deviation exists in the reviewed literature. Studies of this type have been
found for thin flexure hinges.

Based on the problems mentioned, this work will focus on the following studies:

• Analysis of the accuracy of analytical models in determining the rotational stiffness
of thin flexure hinges.

• Identification of the parameters that define the stiffness of compliant joints and their
sources of deviation.

• Characterization of a flexure hinge under non-ideal conditions.

• Detailed study of the influence of the parameters on the rotational stiffness based
on their range of deviation.

A remark should be done to the fact that these studies are conducted to support future
design of compliant mechanisms for high-precision applications and some results will be
validated through experimentation using a setup developed by a fellow student. Therefore,
some limitations will be encountered, e.g. lack of knowledge of anelastic properties.
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3. Finite element modeling of thin flexure
hinges

It was stated at the end of the previous chapter that the results of this investigation
would support future designs of compliant mechanisms. The large number of available
geometrical shapes for flexure hinges cannot be covered within the scope of the present
study. Therefore, it is necessary to select an appropriate geometry based on its
importance in the field of application. In the work of Linß et al. [48], a comparison
between compliant joint types was presented in which the leaf, notch and cross flexure
hinges were rated as the most frequently used. Among them, notch hinges are more
suitable for high-precision applications due to their well-defined axis of rotation. Numerous
notch contours exist but the majority of investigations are focused on circular-contour
flexure hinges, as shown in Table 2.2 and in Section 2.3. Circular contours are suitable for
thin hinges as they realize the best accuracy [46] so they are commonly found in highest
precision systems, e.g. weighing cells [18]. Therefore, a circular-contour flexure hinge is
studied in this work.

It is also necessary to define what characteristics a thin flexure hinge posseses. Although
no textbook definition exists, thin hinges are defined by Tseytlin [88] as those whose
deformation occurs mostly within its boundaries. This means that there exists almost
no influence of the adjacent links in the deformation. In his work, circular-contour hinges
were categorized based on the ratio between their minimum height h and their radius R in:
thick (0.2 < h/R 6 1.0), intermediate (0.07 < h/R 6 0.2) and thin (h/R 6 0.07) hinges.
A more general description was later introduced by Linß et al. [48] using the relationship
between the minimum height h and the total height H for hinges of various contours. For
thin hinges h = 0.03H and for intermediate hinges h = 0.05H. A thin semi-circular hinge
would have a h/R ratio less than 0.062 according to Linß et al. Additionally, important
is to remark that flexure hinges are designed with high off-axis to on-axis stiffness ratios
to reduce parasitic motions. This is accomplished with a large width in comparison to
its minimum height. As a result, very thin hinges tend to have high aspect ratios. These
considerations are taken into account later for modeling.

3.1. Model requirements

For a proper investigation on the behavior of a flexure hinge, some requirements for the
model must be established first. Emphasis is placed on the numerical accuracy of the
results but also on the computational efficiency of the calculation due to the later use of
the model in studying non-ideal hinges. The requisites are as follows:

• Singularities must be avoided, e.g. sharp corners or point loads.

• Solutions must be mesh independent.

• Low calculation time without compromising solution accuracy.
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• Convergence stability, i.e. absence of excessive element distortion.

• Element compatibility, i.e. displacement continuity between elements.

• Shear locking due to bending must be prevented.

• Geometric nonlinearities must be considered.

• The model must support geometric deviations, thus, it needs to be flexible to avoid
modeling errors. The type and range of values of these deviations are defined in the
next chapter.

These considerations are verified during the modeling steps when they correspond.

3.2. Geometry and material

The consideration of out-of-plane effects requires the development of a 3D model. FE
modeling of flexure hinges usually includes not only the notch domain but also a part of
the connecting links because deformation not only occurs within the boundaries of the
notch [47, 95]. Although this is neglectible for thin hinges according to the definition by
Tseytlin [88], they are included for later modeling of geometric deviations and to avoid
sharp corners due to the end of the contour. The geometry of the flexure hinge is shown
in Figure 3.1. The notation used is the same as in [47].

Figure 3.1: Geometry of the investigated right semi-circular flexure hinge.

Following the mechanical model presented in Section 2.2, coordinates origin O is placed
at the center of one end face. The x -axis coincides with the longitudinal axis, the
y-axis is parallel to the transversal axis and the z -axis parallel to the rotation axis.
Ideal dimensions considered for the flexure hinge are presented in Table 3.1. The
minimum height h was set at a value of 50 µm which lies near the limit achievable with
manufacturing technologies without altering the physical characteristics of the material
[65, 72]. The h/R ratio for this geometry results 0.0167, falling in the category of
thin hinge according to Tseytlin [88]. The width b of the hinge was set at a value
of 10 mm, which is sufficient for most planar applications [19]. The aspect ratio b/h
amounts to 200, a typical value for the thinnest flexure hinges [6] although the current
limit lies around 375 [32]. The total height H should be greater than the height at the
end of the contour h(x) = h + 2R as the geometric deviations later considered could
generate singularities at this point. Thus, the total height was set at a value of 9 mm.
The height ratio h/H is 0.0055 so it is also classified as thin according to Linß et al. [48].
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Material properties for the model are assumed perfectly linear elastic. The material is
the high strength aluminium alloy grade 7075 with an elastic modulus E = 71 GPa, a
Poisson’s ratio ν = 0.33 and a yield strength σyield = 505 MPa, which is widely used for
precision engineering applications [47]. The density of the material is ρ = 2.8 g/cm3.

Table 3.1: Flexure hinge parameters.

Parameter Symbol Value Parameter Symbol Value

Total length L 15 mm Width b 10 mm
Total height H 9 mm Elastic modulus E 71 GPa
Hinge length l 6 mm Poisson’s ratio ν 0.33
Radius R 3 mm Yield strength σyield 505 MPa
Minimum height h 50 µm Density ρ 2.8 g/cm3

3.3. Loading and boundary conditions

The rotational stiffness is calculated from an applied bending moment M and the resulting
rotation angle ϕ as in Equation 3.1:

kϕ =
M

ϕ
(3.1)

Another possibility is the application of displacements to obtain the resulting reaction
forces. However, since out-of-plane displacements will be present due to deviations
later considered, this approach would add unnecessary constraints. As presented in the
mechanical model of Figure 2.4, the end of the flexure hinge where the coordinates origin
O locates is fixed (no nodal displacements) and loading is applied on the free end. The
rotation angle ϕ is calculated from the displacement components x and y of two reference
points of the link on the free end [47] P1 and P2 (see Figure 3.2(a)). The edge between
the selected points is always parallel to the normal vector of the free end face. Only the
in-plane component of the rotation is calculated as non-ideal hinges may rotate around
other axes.

(a) (b)

Figure 3.2: Loading and boundary conditions: (a) idealized case; (b) FE model.

Application of the bending moment M should be done through nodal forces as 3D finite
elements possess only three degrees of freedom (DoFs) per node. The bending moment M
is produced by a shear force F multiplied by the lever arm L/2 to the ideal axis of rotation
(point C in Figure 2.4). Force F is distributed over the nodes on the edge at position
y = 0 of the free end to avoid point loads, (see Figure 3.2(b)). This loading condition
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ensures that the applied bending moment is always in the same direction (z -axis) and that
the reference points are not subjected to any loading, ensuring a rigid-body motion of the
edge P1P2. A comparison of results to different loading conditions using the model defined
later is presented in Appendix A. In Table A.1, the bending moment M is applied using a
distributed shear force, a couple of distributed normal forces and a surface force, and the
rotational stiffness kϕ is calculated assuming geometric nonlinearities for different rotation
angles ϕ. Results in Figure A.1 show a strong deviation of the surface force case to the
other two, especially for higher rotation angles. Surface loads are always perpendicular
to the surface they are applied to, so the nodal forces change their direction with the
deformation. In non-ideal flexure hinges, rotations around other axes may exist, making
surface forces not suitable for their study. In contrast, shear and normal forces maintain
always the same direction. In the case of interest of this work, flexure hinges in weighing
cells, the bending moment is generated due to a couple of forces. However, the case in
Appendix A would subject reference point P2 to loading, which is not desired. Since
results of the shear force and the couple of forces cases are almost equal for small rotation
angles, application through a shear force is an acceptable approach.

3.4. Meshing

Although there is not much information about 3D-FE models in the literature, 2D-FE
models of circular contour hinges can be found in various contributions using either free
or mapped meshing of triangular or quadrilateral elements. Notch flexure hinges are most
suitable for mapped meshing because of their simple prismatic geometries and, thus, it is
used in this model. In the case of modeling of thin hinges, emphasis should be placed on
the meshing strategy to be used as they present high aspect ratios H/h and b/h. Due to
them, the number of elements can be quite high or they can have undesirably high aspect
ratios. For example, Figure 3.3 shows two models of a thin semi-circular flexure hinge
using two mesh strategies found in the literature. The model from Figure 3.3(a) produces
a high number of elements to avoid excessive distorsion and the model from Figure 3.3(b)
produces highly distorted elements in the zone of interest.

1
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Figure 3.3: Meshing strategy from: (a) Yong [95]; (b) Shen [74].

Solutions of the model must be independent of the mesh, i.e. numerical convergence.
To obtain convergence, mesh must be refined until results do not vary significantly
with increasing number of elements. Refinements should be done in zones with high
stress gradient to avoid an unnecessarily large number of elements, which results in high
computational time. In the case of notch flexure hinges, stresses are concentrated around
the thinnest region (h(x) = h) where the ideal axis of rotation approximately locates.
Transition from rough meshes in zones with low stress gradient to fine meshes should also
be taken in consideration. Therefore, the meshing strategy shown in Figure 3.4 is proposed.
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Figure 3.4: Domain partition for meshing.

The domain of the flexure hinge is divided in three zones: a highly refined central zone
(1), a transition zone (2) and a rough-meshed outer zone (3). Zone 1 is where most
deformation occurs and is limited by the height where the stress is 10% of the maximum
normal stress produced by bending considering stress concentration effects [75]. This
occurs when h(x) = h′ =

√
10/kb h where kb is the stress concentration factor for bending

calculated as [75]:

kb =

(
1 +

h

2R

)9/20

(3.2)

Zone 2 is limited by the end of the circular contour and exists as a transition from the
rough mesh in zone 3 to the fine mesh in zone 1. Zones 1 and 2 are limited by cylindrical
surfaces to avoid excesive skewness of the elements produced by the circular contour.
Element size in the out-of-plane direction in each zone is determined by the minimum
element size in the plane of motion and a limiting aspect ratio to reduce the number of
elements.

It is important to remark that these meshes may not match at their interfaces and,
thus, need to be connected through contact elements. Formulations for contact elements
available in ANSYS Mechanical [2] are:

• Pure Penalty: establishes a relationship between the contact surfaces using a
spring-like contact. Penetration between surfaces is determined by the defined
contact stiffness.

• Augmented Lagrange: utilizes the penalty method but the contact forces are
augmented during the equilibrium iterations until the penetration is smaller than a
defined tolerance value.

• Normal Lagrange: uses a defined contact force as an extra degree of freedom instead
of the contact stiffness and penetration.

• Multi-point Contraints: adds constraint equations to relate displacements between
nodes of the contacting surfaces.

To select a suitable formulation, a comparison is presented in Table 3.2 based on the
following criteria:

• Convergence behavior: number of equilibrium iterations needed.

• Contact stiffness: need and sensitivity of a normal contact stiffness.

• Penetration: magnitude of the contact penetration.
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Table 3.2: Comparison of contact formulations.

Formulation
Convergence

behavior
Contact
stiffness

Penetration

Pure Penalty + - -
Augmented Lagrange - +/- +/-
Normal Lagrange - + +
Multi-point Constraints + + +

Contact needed for a continuous body such as a flexure hinge needs to be always
bonded with no penetration. This means that penalty-based methods, where a contact
stiffness exists, are not suitable as they would require infinite stiffness, which is not
numerically possible. The model must also converge to the solution as fast as possible so
methods like Normal Lagrange, where a large number of equilibrium iterations may be
needed, do not apply. Therefore, multi-point constraints are used for connecting the zones.

Since 3D solid elements are used, the order of the polynomial used in the interpolation
function needs to be defined. Although first-order or linear elements are computationally
more efficient due to having less nodes (or DoFs), thin structures modeled with them
present shear locking when subjected to bending [8]. This phenomenon increases the
stiffness of the structure due to the inability of these elements to capture the kinematics
of deformation. This problem can be reduced by increasing the number of elements along
the height of the bending beam or by using second-order elements. Increasing the number
of elements along the height would also increase them along the out-of-plane direction
seeking to avoid high distortion. Second-order elements, on the other hand, avoid shear
locking as they can assume a curved shape during deformation due to the midside nodes.
In a first step, 20-node quadratic solid elements SOLID186 is used in the model but
results are also verified for 8-node linear elements SOLID185.

As previously stated, refinements should be done in zones with high stress gradient
but it is also important to analyze how the solution behaves in relationship with the
overall mesh. Number and transition of elements along the edges of each zone are
studied in Appendix B by assuming different combinations of values for each parameter
and observing the resulting value of the maximum bending stress σx,max at x = L/2.
Stresses are used because they converge slower than displacements since they are derived
results. Stress σx,max can also be easily compared with analytical calculations. Solutions
like von Mises stress cannot be compared with analytical values due to the existence
of a stress in z -direction in the FE results, which is zero in the analytical approach.
This phenomenon is studied later. 200 combinations of parameters were generated
using the Advanced Latin Hypercube Sampling (A-LHS) method [35] and simulated
assuming geometric linearity. A bending moment M = 1 Nmm was applied which
results in a stress σx,max = 240.90 MPa according to analytical calculations considering
stress concentration. The stress concentration factor was calculated from Equation 3.2.
Results of these combinations are presented and fitted with a power function in Figure 3.5.

Figure 3.5 shows that σx,max converges to approximately 242 MPa with increasing number
of nodes. This means that the numerical solution of σx,max deviates from the analytical
result in 0.46 %. A sensitivity analysis conducted using the Metamodel of Optimal
Prognosis (MoP) [58] shows that results of σx,max depend highly on the number of elements
along the length of zone 1 and their transition (see Appendix B). There is not much
influence of the number of elements along the height and along the width of this zone
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(governed by the aspect ratio parameter) as well as along the length of zone 2 but they
influence the overall number of nodes. Other parameters show almost no influence.
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Figure 3.5: Solution convergence of σx,max.

Meeting an appropiate mesh would require a suitable combination of parameters for
which the solution lies within a certain range of accuracy without excessive computational
time. For that reason, the rough meshed model of Figure 3.6(a) is used. Number of
elements along the height should be even for the shear force F to be properly applied and
was set at 2 in zone 1. Number and transition of elements along the length of zone 1 was
selected so that elements have an aspect ratio of approximately 1 in the plane of bending.
Maximum aspect ratio of the elements was set at 10. The model is uniformly refined (see
Figure 3.6) and convergence of the solution is studied (see Figure 3.7). Additionally, the
same meshes are utilized and further refined using linear elements SOLID185 to show
their behavior.
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Figure 3.6: Model with different meshes.

Figure 3.7 shows that quadratic elements converge to a solution with lower number of
nodes than linear elements. Computational time is less for linear elements for about the
same number of nodes but solution converges to approximately 234 MPa, which results in a
deviation of −2.86 % to the analytical value. This greater negative deviation demonstrates
the stiffer behavior of linear elements. Stresses are derived from the displacement results so
lower stresses are produced from smaller displacements, i.e. higher stiffness. In contrast,
solutions of quadratic elements with meshes (b), (c) and (d) have less than 0.58 % of
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deviation to the analytical value and a maximum deviation of 0.12 % to the converged
value from Figure 3.5. Therefore, quadratic elements SOLID186 will be used for the
model.
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Figure 3.7: Mesh independence.

Simulation time highly increases with the number of nodes (and DoFs), especially for
nonlinear calculations. Meshes (b), (c) and (d) required 0.65, 8.8 and 42.8 minutes,
respectively, using a processor of 3.4 GHz (4 cores). Taking into account that several
simulations are required for this investigation due to the nature of the sensitivity analysis
and further studies, mesh (b) will be selected for the model. The number of elements
of mesh (b) amounts to 18912, including contact elements, and the resulting maximum
bending stress is σx,max = 242.29 MPa for linear calculations.
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Figure 3.8: Bending stress σx in MPa.
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3.5. Geometrically nonlinear calculation

Solutions of solid mechanics problems depend also on the deformation itself, resulting
in a nonlinear relationship between loading and displacements. This means that the
rotational stiffness kϕ is not constant for different rotation angles ϕ. In nonlinear problems,
equilibrium equations are updated during deformation. A common approach for solving
such problems is the Newton-Raphson method [8], used by ANSYS [1]. In this method,
an iterative procedure is conducted in which a linear solution is performed for evaluating
the out-of-balance or residual load vector R, which is the difference between the applied
loads Fa and restoring forces Fnr as in:

Ri = KT
i ∆ui = Fa − Fnr

i

ui+1 = ∆ui + ui

where KT
i is the tangent stiffness matrix. If a specified convergence criteria is not

satisfied, KT
i and Fnr

i are updated for the resulting ui+1 and the solution repeated until
it converges. To obtain better convergence of this method, load is usually applied in a
series of increments (time steps), in which this procedure is done for each load increment.
For a trustworthy geometrically nonlinear calculation, it is necessary to define information
such as number of load increments, convergence criteria and type of equation solver. To
optimize convergence, the line search method is used, which is helpful when a stiffening
response occurs [1] as is the case of bending of flexure hinges [26]. This method scales the
solution vector by a scalar multiplier α, which is automatically determined by ANSYS to
minimize the energy of the system [1]:

ui+1 = α∆ui + ui

Convergence criteria

Convergence criteria is first studied using program-controlled timestepping and the robust
direct solver. Force convergence is checked by comparing the vector norm of the force
imbalances against the criteria:

||R|| < εR Rref

||R|| can be either the L1, L2 or infinite norm of the out-of-balance vector R and the
convergence criteria is the product of tolerance value εR and a reference force value Rref .
By default, ANSYS uses the L2 norm for comparison with values of εR and Rref equal
to 0.005 (0.5%) and 0.001, respectively [1]. Displacement convergence is also evaluated
analogously but serves only as an additional check. Convergence criteria is evaluated by
adjusting the value of εR for each norm and observing the variation of the results. The
maximum bending stress σx,max and rotation angle ϕ for M = 1 Nmm are calculated for
decreasing εR three orders of magnitude and the relative deviations eσx,max and eϕ to the
values when εR = 0.0005% are compared.

Results of nonlinear calculations in Figure 3.9 show that default values of the convergence
criteria may be sufficient for this model as their maximum deviations are 1.6 × 10−8 %
for σx,max and 5 × 10−9 % for ϕ when reducing the criteria for all norms. Some slight
deviations between norms are appreciated for default values but same results are obtained
by all norms when the tolerance is reduced to 0.0005%. Simulation time was not affected
by adjusting the convergence criteria so tighter tolerances can be used although default
values produce no significant deviation. In this work, the L2 norm will be used and a
tolerance of εR = 0.0005% will be set.
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Figure 3.9: Convergence criteria.

Load increments

Using the defined convergence criteria and the direct solver, the number of load increments
is evaluated to improve simulation time by increasing them from 1 to 12, which was the
number automatically determined by ANSYS in Figure 3.9 for the default convergence
criteria and M = 1 Nmm. However, automatic increments are not uniformly distributed
but are controlled using an a prediction algorithm which calculates a new increment
according to the equilibrium iterations needed for convergence of the last step. The
number of increments and the number of equilibrium iterations per increment depends on
the nonlinearity of the problem. If rotations are large, the number of equilibrium iterations
is higher and more increments may be needed. In this case, load is uniformly distributed
for each number of time steps and the relative stress deviation eσx,max to the value for
12 load increments is calculated for M = 1 Nmm (ϕ ≈ 3.17◦) and ϕ = 1◦ (see Figure 3.10).

Figure 3.10 shows that with more than two load increments the value of σx,max does
not vary anymore but simulation time gets very high (approximately 30 minutes for
M = 1 Nmm). In contrast, using 1 time step, results deviate in 1.7 × 10−5 % for
M = 1 Nmm and 4.5 × 10−6 % for ϕ = 1◦ but simulation time is highly decreased. It is
also observed that deviations and simulation time decrease with smaller rotation angles.
This is in fact convenient as rotation angles cannot be too large because of the stiffening
behavior of the hinge which could lead to false results in later analysis. As such, load will
be applied in one increment and rotation angles will be kept small to avoid stiffening and
reduce deviations. This is treated later.

Equation solver

There exist two types of solvers for linear equation systems: direct and iterative. The direct
solver is based on a direct elimination of equations so they lead to an exact solution. On
the other hand, iterative solvers obtain a solution by refining an initial guess until it is
within an acceptable tolerance. The need of an iterative solver is based on requirements
of time and memory. Defining a suitable solver for this investigation would require a
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Figure 3.10: Number of load increments.

comparison seeking for improving the computational time. Solvers available in ANSYS
are [1]:

• Sparse solver.

• Preconditioned Conjugate Gradient (PCG) solver.

• The Jacobi Conjugate Gradient (JCG) solver.

• The Incomplete Cholesky Conjugate Gradient (ICCG) solver.

They are compared in terms of accuracy of results, simulation time and memory required
in Table 3.3, where σx,max is calculated for M = 1 Nmm. Tolerance for iterative methods
is set at the default value of 1× 10−8.

Table 3.3: Comparison of equation solvers.

Solver
Accuracy
eσx,max (%)

Simulation
time (min)

Memory
(MB)

Sparse - 2.9 3415.0
PCG −2.34× 10−11 3.5 614.0
JCG 2.02× 10−10 46.7 483.0
ICCG 3.73× 10−10 28.0 893.0

Results from iterative solvers show almost no deviation when compared to the exact
solution but simulation time was not improved. In contrast, it increased. The direct solver
requires more memory but for this investigation, due to the high number of upcoming
calculations, efficiency will be prioritized. As such, the sparse solver will be used.

3.6. Mechanical behavior

The rotational stiffness of the flexure hinge was calculated using the model defined in
Section 3.4 while assuming geometric linearity and is presented in Table 3.4. Additionally,
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values obtained through analytical and design equations by different authors from the
literature are included. These expressions can be found in Appendix C.

Table 3.4: Rotational stiffness kϕ according to different approaches.

Author Approach
Value

(Nmm/rad)

3D-FE model (linear) Finite element method 18.029
Paros and Weisbord (full) [62] Euler-Bernoulli beam theory 16.243
Paros and Weisbord (simp.) [62] Euler-Bernoulli beam theory 16.209
Wu and Zhou [91] Euler-Bernoulli beam theory 16.243
Tseytlin [88] Continuum mechanics 18.542
Lobontiu [50] Castigliano’s theorem 16.243

Linß et al. [47]
Design equation based on
nonlinear theory for curved rods

15.887

It is to remark that the equations from Paros and Weisbord, Wu and Zhou and
Lobontiu are exact solutions of the bending differential equation obtained through
different methods, so their results are exactly the same. As such, from now on they
are treated as a unique approach: the linear beam theory. The simplified equation from
Paros and Weisbord is a reduced expression for when the h/R ratio tends to zero. It
can be observed in Table 3.4 that there is an appreciable deviation of beam theory results
to the 3D-FE model, being the FE model stiffer. This phenomenon is studied in the next
section. Stiffness in the nonlinear case was not presented as it is dependent on the rotation
angle. Thus, a graphical representation is more suitable.
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Figure 3.11: Behavior of the flexure hinge according to different modeling approaches.

Figure 3.11 shows the linear and nonlinear behavior of the flexure hinge calculated with
the 3D-FE model as well as according to three analytical approaches: linear beam theory,
nonlinear beam theory and continuum mechanics. The value of the rotational stiffness kϕ
is not constant for nonlinear calculations. In fact, it increases with deformation, as was also
observed in the contribution from Friedrich et al. [26]. Ideally, kϕ = 18.029 Nmm/rad
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but increases up to almost 0.18 % when rotations reach ϕ = 3◦. This can be appreciated
in Figure 3.12, where the relative stiffness deviation ekϕ of nonlinear to linear calculations
is presented for different rotation angles. This needs to be taken into account for later
steps to avoid false results due to excessive rotations.
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Figure 3.12: Deviation of kϕ in geometrically nonlinear calculations.

3.7. Comparison to analytical models

Disagreement between analytical and numerical results in the modeling of the compliance
of a flexure hinge has been evidenced in some works [11, 51, 53, 56, 76, 93, 95], where
deviations lie in the range of 3 to 10 %. In the contribution of Yong [95], the analytical
equations from Paros and Weisbord [62], Lobontiu [50], Wu and Zhou [91] and
Tseytlin [88] as well as FEA-based equations from Smith et al. [78] and Schotborgh
et al. [73] were compared to a 2D-FE model for semi-circular hinges with ratios h/R
in a range from 0.05 to 0.65. Results of this investigation show that relative deviation
of analytical equations to their model decreases as the hinge gets thinner. For very thin
hinges, analytical and numerical results should coincide. Moreover, their model shows a
less stiff behavior than the equations. This is not the case for 3D-FE models, as shown
in Figure 3.11.

Modeling deviations

For better depicting the aforementioned phenomenon, the minimum height h of the
flexure hinge is increased in a range from 0.05 to 0.1 mm while maintaining every other
parameter constant and the relative deviation between results from analytical approaches
and the 3D-FE model is evaluated in terms of the rotational stiffness kϕ (see Figure 3.13).
Analytical approaches used for the comparison are the exact equation by Paros and
Weisbord obtained from linear beam theory [62] and design equations based on nonlinear
beam theory by Linß et al. [47] and on continuum mechanics by Tseytlin [88]. The
equations by Linß et al. and Tseytlin are approximated from exact or numerical results
of the theories they are based on. As such, they are only valid in a certain range of values
but they are included to see their applicability in the proposed range. FEA-based equations
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from other authors are not considered since FE models are already being used. Number
of elements is kept constant but, due to the change of geometry, the size of the mesh
zones specified in Section 3.4 are accordingly updated to avoid highly distorted elements.
Geometric nonlinearity is considered and the applied bending moment M is the same for
all cases so that it produces rotations of less than ϕ = 1◦ in all of them.
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Figure 3.13: Relative deviations of analytical kϕ to 3D-FE model results.

Figure 3.13 shows pronounced relative deviation (ekϕ ≈ 9 to 12 %) of the results from
Euler-Bernoulli beam theory and the design equations based on nonlinear beam
theory to the 3D-FE model. This deviation increases as the hinge gets thinner (h/R
decreases), which contrasts with the work of Yong [95]. This can be explained from two
facts. First, Euler-Bernoulli beam theory assumes that cross sections remain planar
after deformation, which is only valid for long slender beams [50]. This was also assumed
in the nonlinear beam theory by Zentner [96], used to derive the design equations by
Linß et al. [47]. Second, beam theory assumes a state of plane stress, which considers
that stresses out of the plane of deformation are zero [85]. Plane stress is also assumed in
2D-FE models so that as the ratio h/R decreases, the central zone of the hinge tends to
a slender beam, which reduces the deviation to the analytical model. However, when the
width of the hinge is sufficiently large, a plane stress state can no longer be assumed. In
the 3D-FE model, a stress in the out-of-plane direction σz exists, as shown in Figure 3.14.
This stress reduces the normal strain in x -direction according to Hooke’s law, producing
a stiffer behavior of the hinge.

State of stress

The state of stress of a prismatic body where loading is perpendicularly distributed over
its width, e.g. a flexure hinge, lies between two limit cases: plane stress, when the width
is very small (b → 0), and plane strain, when the width is very large (b → ∞). Plane
strain assumes that strains in the out-of-plane direction are zero, which results from the
out-of-plane dimension being very large or from its end faces being constrained by two
smooth rigid planes [85]. In the case of bending of plates, the cross section is stretched
where the bending stress is negative and is compressed where it is positive due to the
Poisson’s effect, producing an anticlastic surface [17]. The 3D-FE model deviates in
great manner to approaches which assume plane stress. In constrast, the equation from
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Figure 3.14: Out-of-plane stress σz in MPa for h = 0.05 mm.

Tseytlin [88] shows deviations of less than 5 % in the considered range of h. Although
this equation was approximated from the plane differential equation from continuum
mechanics, it considers a modified elastic modulus E′ = E/(1 − ν2) which applies for
thin films and plates [87]. The differential equation for a bending plate can be derived
in the same way as for bending beams but assuming a plane strain state instead of
plane stress, which results in the term 1/(1 − ν2) differentiating the flexural ridigity of
both cases (see Appendix D). This gives rise to the assumption that the 3D-FE model
behaves closer to a state of plane strain. In plane strain state, the plate is stressed
as if it were also subjected to a bending moment νM [17] producing a distribution
of σz so that strains are zero along the width, as shown in Figure 3.15. A first proof
of the plane strain assumption can be done by the results of stress for h = 0.05 mm.
The maximum bending stress for ϕ = 1◦ (M ≈ 0.315 Nmm) at x = L/2 equals
σx,max = 76.21 MPa and the out-of-plane stress σz,max = 25.37 MPa. Since M and σ are
proportional, σz,max = νσx,max which is the approximately the case here (eσz,max ≈ 0.9 %).

Figure 3.15: Cross section of plate in bending.

To further prove this assumption, two 2D-FE models, one assuming plane stress and
one assuming plane strain, were generated using the same mesh strategy as the 3D-FE
model. The models are compared to using the previous procedure and are included in
Figure 3.13. It is to remark that plane strain models in ANSYS assume a width of
1 (mm), so stiffness results are multiplied by the width of the hinge b and loading is
divided by the same factor to avoid false results. Deviations to the 3D-FE model are
presented in Figure 3.16. Results show a deviation of less than 1 % of the plane strain
model and around 10 % of the plane stress model to the 3D-FE model, which proves the
aforementioned assumption. The behavior concluded in the work of Yong [95] can also
be observed in the proximity of results of the beam theories to the plane stress results.
This deviation in the 3D model behavior implies a dependency on the width of the hinge.

Width dependency

The analytical equations, as well as the 2D-FE models, consider a linear relationship
between the rotational stiffness kϕ and the width b (see Appendix C). If this were true,
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Figure 3.16: Relative deviations of kϕ to 3D-FE model results.

a graph between a normalized stiffness k̃ϕ = kϕ/Eb and h should not vary for FE
calculations using different widths. However, this is not true for the 3D-FE model. To
show this behavior, k̃ϕ is calculated for different values of h while maintaining all other
parameters constant. This procedure is repeated using different values of b and is presented
in Figure 3.17.
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Figure 3.17: Normalized stiffness k̃ϕ for different values of width b.

Figure 3.17 shows that with increasing width b, the behavior of the model changes from a
state of plane stress to a state of plane strain. An important observation is that in some
value of the width, the results converge into an state of plane strain. This also means
that the relationship between the rotational stiffness and the width of a flexure hinge
is nonlinear but converges into a linear one (with increased stiffness) when the width is
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sufficiently large. This occurs due to the behavior of the out-of-plane stress σz. In plane
strain, the value of σz, which depends on the other two normal stresses σx and σy, should
be constant along the width at a certain position x. Simulations show that σz always
exists but is concentrated in the middle of the width (z = 0) of the hinge when b is small.
As b increases, σz tends to become uniformly distributed along the width.
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Figure 3.18: Distribution of σ̃z along the width for h = 0.05 mm.
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Figure 3.19: Distribution of σ̃z along the width for different values of h and b.

The behavior of σz is depicted in Figure 3.18, which shows the distribution of a normalized
out-of-plane stress σ̃z = σz/σz,max along the normalized z -position z̃ = z/b calculated at
x = L/2 for different values of b for the 3D-FE model (h = 0.05 mm). Out-of-plane stress
σz never reaches a uniform distribution since it reduces to zero at the outer boundaries
(see Figure 3.14). This explains the small relative deviation of the 3D model to the plane
strain model when b = 10 mm (see Figure 3.16). Figure 3.19 also shows the distribution of
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σz for different values of h and b. The values of b presented are the same as in Figure 3.18.
It can be observed that the distribution of σz converges faster to a state of plane strain
as the hinge gets thinner. This is produced by the value of the b/h ratio, which is higher
in thinner hinges for a same width.

The b/h aspect ratio

To show the influence of the b/h ratio, the relative deviation of the 3D-FE model to
the linear beam theory results is depicted for different values of b/h in Figure 3.20. The
equations based on linear beam theory are used for comparison since they are an analytical
exact solution and other design approaches are based on their assumputions, e.g. flexure
strip equation by Eastman [20] used in balance design [69]. Equations by Linß et al.
[47] and Tseytlin [88] are not valid for the geometries considered in this study and will
not be further considered. This fact is evidenced in Figure 3.16 as both surpass either the
plane stress or plane strain boundaries. The plane stress and plane strain models are also
used in the comparison. It is to remark that the radius R is always constant so the ratio
h/R varies. To show its relationship to the b/h ratio, the h/R is used for comparison.
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Figure 3.20: Deviations of kϕ to linear beam theory for different h/b ratios when R = 3.

The results show that deviation of the plane stress and plane strain models are purely
dependent on h/R as no influence of changing the width exists. Results of the plane
strain model are 1/(1 − ν2) times the results of plane stress, as shown in Appendix D.
The deviation of the 3D-FE model decreases as the hinge gets thinner for lower b/h
ratios. This occurs due to the changing value of h(x) along the length of the hinge which
is determined by the contour. For thinner hinges and low values of b/h, the hinge gets
closer to a slender beam, for which the Euler-Bernoulli assumption is valid. Thus, the
deviation for a certain b/h ratio depends on the h/R ratio, which describes the contour of
thin circular flexure hinges. This is better observed in Figure 3.21, where the deviations
are calculated in the same manner, but while maintaining the h/R constant at a value of
0.025. Since h/R is constant, the minimum height h is used for comparison.

Figure 3.21 shows that for a certain h/R ratio, the deviation of each model is constant
for each value of b/h. This means that deviation between models of thin flexure hinges of
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Figure 3.21: Deviations of kϕ to linear beam theory for different h/b ratios when
h/R = 0.025.

circular contour can be described as a function of only both ratios. Modeling deviations
for hinges of other contours cannot described by only two factors such as b/h and h/R
as they are defined by more parameters, e.g. excentricity for elliptic contours. However,
the fact that, besides a contour-dependent deviation, a width dependency exists does not
change. In the case of thicker hinges, the total height of the hinge H plays a role in the
deformation so it will also appear in the deviations.

Effect of the total hinge height

The effect of H can be demonstrated by using an additional 3D model, such as the one in
Figure 3.22. This model was generated in the same manner and with the same settings as
the one in Section 3.4 but elements above h(x) = h+ 2R where removed. The first model
cannot support values of H close to h+ 2R due to high distortion of those elements.

1

flexure hinge                                                                   

FEB 28 2018
18:14:52

PLOT NO.   1

ELEMENTS

Figure 3.22: 3D-FE model for flexure hinges with H < h+ 2R.

Relative deviation of the rotational stiffness is calculated by changing the value of H for
the hinge with h = 0.05 mm and maintaining all other parameters constant. Results are
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compared to the value of kϕ for H = 12 mm. Values up to H = 6.05 mm (h/H ≥ 0.0083)
are calculated using the model from Figure 3.22 and above H = 6.75 mm (h/H ≤ 0.0074)
using the model defined in Section 3.4. Values of H between 6.05 and 6.75 cannot be
modeled with the first proposed model due to element quality and are depicted with
dashed line in Figure 3.23. Results show that, when H < h+ 2R, the rotational stiffness
rapidly decreases. Also the results of the second model seem to converge to a stiffness
value lower than the value for H = 12 mm. This occurs due to the model having less
elements than the first one, i.e. less stiff.
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Figure 3.23: Deviations of kϕ due for different values of h/H.

3.8. Summary

Analytical expressions found in the literature are mostly based on the assumptions of
the Euler-Bernoulli beam theory, which apply only to slender beams. Thin flexure
hinges, although slender in the plane of bending, are usually wide in the out-of-plane
direction. To prove the validity of these assumptions for modeling flexure hinges with
such characteristics, a 3D-FE model was developed. Due to the high aspect ratios of
these hinges, element quality can be compromised. Meshing was done by dividing the
domain in zones, each with its own mesh and connected with the others through multipoint
constraints. Settings were defined to ensure the accuracy and efficiency of geometrically
nonlinear calculations. The rotational stiffness of the flexure hinge was calculated using
different approaches and compared to FE results. The 3D-FE model was found to be
around 10 % stiffer than most analytical expressions, except the one from Tseytlin [88],
which considers a modified elastic modulus that applies for thin plates. Using 2D-FE
models for comparison, one assuming a plane stress state and other assuming plane strain,
the 3D-FE model was found to be closer to a plane strain state for minimum heights
between 0.05 to 0.1 mm and a width of 10 mm. The existence of an out-of-plane normal
stress along the width suggests a nonlinear width dependency. A normalized rotational
stiffness, which only depends on the contour parameters h and R, was used to prove
this assumption. A nonlinear relationship between the rotational stiffness and the width
was found to be related to the distribution of the out-of-plane stress along the width.
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FE results show that depending on the aspect ratio b/h, thin flexure hinges can have
a behavior closer to a plane strain state, like plates. Even for low ratios, for example:
b/h = 10, deviations to the analytical results can be around 3 % for the thinnest hinges.
The relationship between the rotational stiffness kϕ and the width b is nonlinear when
b/h is small, but is almost linear when it is sufficiently large. When assuming a plane
stress state, a deviation still exists between analytical and 2D-FE results. This deviation
depends only on the h/R ratio in circular contour flexure hinges. In fact, deviation to
analytical models depends only on the ratios b/h and h/R for thin circular flexure hinges.
The total height H, expressed by the h/H ratio, has an almost neglectible influence on
the rotational stiffness of thin hinges when compared to the other parameters. As h/H
increases, its effect rapidly increases, especially when H < h+2R. This may be of interest
for thicker hinges, but is only considered in the expression by Linß et al. [47].
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4. Investigation of non-ideal flexure
hinges

Studying the mechanical behavior of a flexure hinge requires analysis of its response under
different conditions in terms of stiffness. This response is measured as the deviation from
an ideal state generated by the variation of different parameters. Knowledge of most
influential parameters is of great importance for predicting their behavior. This work
proposes the following approach for identifying these parameters on a circular-contour
thin flexure hinge (see Figure 4.1).

Identification

of sources

Definition of

parameters
Modeling

Sensitivity

analysis

Figure 4.1: Workflow.

First, possible sources of deviation are identified based on the definition of the stiffness.
Suitable parameters for these sources are defined considering modeling limitations. A
proper selection of parameters is necessary for reducing the dimensionality of the model
and to obtain significant results. It is also important to establish their range of values
to avoid modeling errors and for a trustworthy analysis of their influences. With this
characterization of the joint, a model needs to be generated for evaluating the stiffness.
The model presented in Chapter 3 is used for this matter. As discussed in Section 2.4,
analytical models and approximate equations in the literature are not suitable for this
study because of their assumptions and limited parameter inputs. In constrast, FE
calculations can be easily conducted using CAD generated models. It is also important
to analyze how the model behaves under new geometric conditions. Most influential
parameters are obtained later through a sensitivity analysis. Due to its integration with
ANSYS and functionalities, OptiSlang inside ANSYS is used in this step. For this analysis,
calculations of the stiffness are conducted using various combinations of values of the input
parameters. Thus, it also helps to identify errors in the model (see Figure 4.1). These
combinations, or samples, are generated based on a experimental design and influence of
parameters are represented numerically by sensitivity measures. To determine a suitable
sampling method and sensitivity measure, comparisons are presented.

4.1. Identification of sources of deviation

Stiffness of a system is defined by its geometrical configuration, material properties, loading
and other conditions, as stated in Section 2.2. As such, the sources of deviation can be
classified in four groups:

• Geometric deviations.
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• Material behavior.

• Loading conditions.

• Other influences.

Variation of these characteristics of the hinge produces a deviation to some degree on its
stiffness. However, non-bounded parameter ranges may lead to undesirable results which
distort the sensitivity values. Some limitations must be placed for a significant study. In
this investigation, geometric deviations are those produced by the manufacturing process,
which are limited by its tolerances. Deviation sources related to material behavior
consist of deviations in the value of its properties produced by the inaccuracy of its
determination. This is better explained in the next paragraphs.

Geometric deviations

There exist many processes for manufacturing flexure hinges. When it comes to thin hinges
and complex geometries, WEDM is mostly preferred, thus, it is the used for defining
the deviation parameters. WEDM is considered extremely accurate when compared to
standard manufacturing techniques. The reason lies on three facts [38]:

• No contact exists between the cutting tool and the workpiece, eliminating adverse
effects such as mechanical stresses, chatter and vibration.

• The wire used as cutting tool posseses small diameters and high mechanical
properties which should produce very fine and clean cuts.

• The movements of the workpiece are governed by a computer numerical controlled
(CNC) system significantly reducing positioning errors.

Yet, errors inherent to the manufacturing process are always present. The tension of the
wire influences a phenomenon known as wire-lag, in which various forces generated by the
occurrence of sparks during machining produce a static deflection opposing the cutting
direction [66]. This effect produces erosion in the corners of the workpiece resulting in
dimensional and flatness errors [38]. In the case of circular contours, when the radius are
small (R < 3 mm), the wire-lag produces a significant effect on the dimensional accuracy
[15]. Depending on the electrostatic and electromagnetic forces ocurring during cutting,
a concavity effect may also appear (see Figure 4.2).

Figure 4.2: Wire-lag and concavity effects. Adapted from [15].
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Parameters of the pulse, such as intensity, duration and frequency are mainly responsible
for overcutting (see Figure 4.3). Overcutting ocurrs because the size of the cavity in the
workpiece is larger than the diameter of the wire. Its exact size is difficult to predict but
it is propotional to the discharge current. Normally, WEDM machines are incorporated
with measures for compensating overcutting but it cannot be fully eliminated [38].

Figure 4.3: Overcutting effect. Adapted from [44].

Excessive pulse duration and discharge current, as well as low pulse off-time generate
high levels of heat, which results in a high number of sparks leading to wire vibration
and wear. When combined with high cutting speeds, the removal of material is not
uniform, producing circularity errors of the contour [81]. Surfaces machined by WEDM
are affected by metallurgic transformations and recast layer growth due to the heat input,
compromising its structural integrity, thus, leading to reduce fatigue life [15]. Surface
roughness is highly influenced by the duration of the pulse, the discharge current and
wire speed. Higher discharge energy produces melting explosion, eroding larger material
(craters) and surface layers, which, when combined with high wire speeds, produces
an increased surface roughness [29]. It is important to remark that positioning and
orientation errors are also present due to the accuracy of the CNC guiding systems of the
WEDM machines [99].

Material behavior

Flexure hinges are purposefully considered perfectly elastic bodies where elastic modulus
fully defines its material behavior. This means that a perfectly linear relationship between
stresses and strains is assumed. This is not always the case, but linearity can be assumed
when stresses are really low, about 1/10 of the elastic limit [82]. On the other hand,
materials do have a certain degree of mechanical hysteresis and other anelastic behaviors,
e.g. creep (see Section 2.3). Anelasticity has been reported in highest precision systems
such as the flexure-based balance by Quinn et al. [69]. This balance uses flexure strips
of a copper beryllium alloy, which show a relaxation after-effect following a small angular
displacement (about 0.003◦) at low frequencies. It was concluded that this anelastic
behavior is a bulk property of the material and is not produced by the surface damage
due to the manufacturing [68]. The damping component of this behavior was found to be
dependent on the stress levels in high strenght materials, which are commonly used in
flexure hinges.

In addition to the absence of information on the values of anelastic properties, lack
of consistency in the values of elastic constants also suppose an important problem.
Elastic constants of a material consist on the elastic modulus, the Poisson’s ratio and
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the shear modulus, which are experimentally determined and, hence, are subjected to
its inherent uncertainty. Multiple parameters influence the results of tensile tests, which
can be summarized in four categories: test specimen, test system, environment and test
procedure [27]. As a result, available values found in the literature or in data sheets vary
among them and may differ to real values. For example, the value of the elastic modulus
can be difficultly accurate to better than 1% [77].

Loading conditions

The rotational stiffness of a flexure hinge assumes that it is subjected to a pure bending
moment which produces a certain rotation. In real applications, they are subjected
to more complex loading conditions. For example, the central flexure strip in mass
comparators is subjected to a bending moment produced by the difference of weights and
a tensile force equal to their sum [69]. Eastman [20] determined that the stiffness of a
flexure in such conditions varies with the value of the tensile force. Consideration of this
phenomenon in the upcoming sensitivity analysis would result in a loss of generality of
the measures, as the value of this force depends on the overall system. Application of
out-of-plane loads are not considered either due to the same reason. Nevertheless, further
investigation is necessary for describing the behavior of notch hinges under non-ideal load
conditions and is conducted in a later chapter in the context of weighing cells.

External influences

Geometry, material properties and loading conditions can be affected by external factors,
e.g. environment. Dimensions of the joint can change in presence of thermal effects,
such as conduction or convection, or due to corrosion. Material properties are also
temperature-dependent. Flexure-based high precision systemsare often operated under
vacuum or highly controlled conditions, to exclude environmental influences to a large
extent. Loading conditions change in presence of gravity. The weight of the hinge exists
as an additional load, whose effect varies with the direction of the weight force relative to
the hinge. Flexure hinges may have any orientation in space due to design [30] or have
small changes of orientation due to ground tilt.

4.2. Parametrization of the flexure hinge

Parametrization of the model for a sensitivity analysis ideally requires selected parameters
to be independent from one another. This is not always possible, especially for geometric
deviations, but it is taken into account for the selection of parameters. Machining
processes of flexure hinges produce the following types of deviation: dimensional,
flatness, perpendicularity, circularity and positioning, and parameters to describe them
are considered as follows (see Table 4.1):

• Dimensional errors are treated as the variation of value of the basic parameters:
minimum height dh, radius dR and width db. Deviation of the total height H due to
manufacturing would have almost no effect on the behavior of a thin flexure hinge
since changing H in the order of milimeters only produces deviations in the stiffness
in the order of 10−4 % and manufacturing deviations lie in the order of micrometers.

• Flatness errors occur in the flat faces of the hinge, which consist mainly on faces of
the adjacent links. Flatness of the lateral faces alters the width of the notch section
in a non-uniform way and its contemplation would require various parameters which
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impose a correlation with db and increase the complexity of the model. As such,
these effects are not considered.

• Perpendicularity errors in the faces of the adjacent links are not considered.
Inclination of the holes is described by their orientation around the longitudinal
x -axis dθx and transversal y-axis dθy. Both holes are considered always parallel,
otherwise, the height of the hinge would not be constant along its width.

• The circularity error is not considered as it cannot be described without increasing
the complexity of the model, e.g. generating a certain irregular profile. Another
approach could be changing the hinge contour, but it can increase the number of
parameters depending on the contour selected and dR would not apply anymore.
Modeling of surface roughness also would require the modeling of an irregular profile,
so it is not considered.

• Positioning errors of the machine are considered as deviation of the position of the
holes in longitudinal and transversal directions. These deviations are treated as hole
separation in x -direction dxc and hinge positions in x -direction dx and in y-direction
dy. Hole separation in y-direction would be equal as dh so this parameter is already
considered.

Based on this characterization, the non-ideal flexure hinge shown in Figure 4.4 is studied.

Table 4.1: Geometric deviations representation

Symbol Representation Symbol Representation

dh dx

dR dy
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Table 4.1 (Cont.): Geometric deviations representation

db dθx

dxc dθy

Anelastic behavior of the material is not considered in this work as it introduces the time
variable, highly increasing the complexity of the model. Material behavior is assumed
perfectly elastic and parameters to be considered are the deviation of the elastic modulus
dE and the Poisson’s ratio dν. The elastic modulus E is a basic parameter for defining
the behavior of a flexure hinge so the lack of consistency in its value is considered as
a deviation parameter. It was shown in Section 3.7 that thin hinges follow a behavior
according to a plane strain state, in which the Poisson’s ratio ν plays a role. As such,
the lack of consistency of values of this parameter is used.

Figure 4.4: Geometry of the flexure hinge. Continuous: non-ideal; dashed: ideal.

External influences such as temperature or corrosion are not considered. Temperature
alters the geometry and material properties of the hinge. However, due to the small
temperature variations allowable in high precision systems, the deviations already
considered produce a higher variation of the same parameters as temperature effects
would. Corrosion produces the same geometric deviations but its time dependent. Gravity
introduces an additional load to the system, the weight force, which depends on the relative
direction of the hinge to the gravity acceleration vector. In fact, a flexure hinge can have
any direction in space depending on the designed mechanism. When in a specific position,
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the hinge orientation still deviates during application due to the ground tilt. Gravity
orientation relative to the flexure hinge is considered as two parameters, rotation around
z -axis dβgz and around y-axis dβgy. The initial direction of the gravity vector is the
positive x -axis βgz = βgy = 0.

Table 4.2: Gravity deviation parameters

Symbol Representation Symbol Representation

dβgz dβgy

4.3. Model behavior

Before passing onto the sensitivity analysis, it is important to verify how the model
behaves when changing the parameters defined. Verification of results is supported by
the observation from other contributions. The number of elements is kept constant to
allow comparison of results [74]. It is important to verify how the mesh adapts to the new
geometries. Varying the geometry will help to identify points where the model does not
support deviations anymore so that it can be corrected. In a first attempt, the deviation
parameters are set at ranges of values which are comparable, although these may not
be realistic in actual applications. Results using too small parameter values may run
into numerical errors, such as round-off errors. For values to be comparable, percentual
deviations are used but this is only possible for the basic parameters h, R, b, E and ν.
Parameters like hole positions are deviated as a percentage of the hinge length l. Hole
orientation parameters must necessarily be set at a certain angle value. These values are
shown in Table 4.3. Rotational stiffness deviations are calculated using the same bending
moment M in all cases. The bending moment M is one that produces a rotation of ϕ = 1◦

on the ideal flexure hinge. Gravity is only considered for parameters dβgz and dβgy and
is assumed to amount 9.81 m/s2.

Table 4.3: Parameter deviations.

Parameter
Relative

value
Absolute

value
Parameter

Relative
value

Absolute
value

dh ± 5 %h ± 2.5 µm dθx ± 1◦ ± 1◦

dR ± 5 %R ± 150 µm dθy ± 1◦ ± 1◦

db ± 5 % b ± 500 µm dE ± 5 %E ± 3.55 GPa
dxc ± 5 % l ± 300 µm dν ± 5 % ν ± 0.0165
dx ± 5 % l ± 300 µm dβgz ± 180◦ ± 180◦

dy ± 5 % l ± 300 µm dβgy ± 180◦ ± 180◦
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Behavior of the mesh when considering geometric deviations can be observed in Figure E.1.
The meshing strategy presented in Chapter 3 ensures that the zone of highest stress
gradient is always finely meshed so that results are trustworthy. This zone is always
around the minimum value of h(x), which is contained in zone 1. Zone 1 of the model
adapts to the new geometry following the settings presented in Section 3.4, trying to avoid
high element distortion while capturing the mentioned zone as in Figure 4.5.ANSYS Release 17.2
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Figure 4.5: Bending stress σx in MPa: (a) ideal flexure hinge (b) non-ideal flexure hinge.

Results of the deviation of the rotational stiffness ekϕ using the range of values presented
in Table 4.3 are presented in Appendix E. It can be observed that deviation of basic
parameters h, R, b, E and ν produces an almost linear variation of the rotational stiffness.
This behavior was also observed for displacement in the work of Shen [74] for h, R and
b. In fact, these effects are not all linear. The nonlinear relationship between kϕ and
basic parameters h and b can be observed in Figure 3.17, where R was set at a constant
value. When the width is sufficiently large kϕ is almost linearly proportional to b and
proportional to h2.5. In that case, kϕ should also be inversely proportional to R0.5 for the
dimensions to correspond. E is linearly proportional to kϕ due to the assumption made
for this work. In plate-like hinges, kϕ is inversely proportional to 1 − ν2. This apparent
linearity occurs due to the range of values considered. In Figure 3.17, h was increased by
100 %, so nonlinearity can be observed. Hole orientation parameters dθx and dθy produce
parabolic deviations with dθx producing much more deviation, as was also observed in
the work of Shen [74]. Hole center separatation parameter dxc produces also a parabolic
deviation. This parabolic behavior is caused due to the geometric symmetry around
the axes of the hinge. Hole center position parameters dx and dy produce also linear
deviations of kϕ. Effect of dx can be also be interpreted as a variation of the lever arm.

Gravity has a particular effect on the stiffness. Stiffness deviation in the presence of
gravity orientation deviations dβgz and dβgy behaves like a sine and cosine function of these
parameters, respectively. This occurs due to existence of additional loading on the flexure
hinge, i.e. the weight force. When the hinge weight force points to the same direction as
the deformation produced by pure bending (negative y-direction), stiffness reduces due to
the increasing loading. When pointing to the opposite direction, stiffness increases. In
fact, the stiffening effect when dβgz > 0 produces more deviation than when kϕ decreases
due to dβgz < 0 (see Figure E.4). This deviation is also dependent on the value of the
applied bending moment. The sine-like behavior when rotating the gravity vector relative
to the flexure hinge occurs mainly due to the component of the weight force acting in the
direction of the deformation. Even when dβgz = 0, there is still a small stiffening effect
(ekϕ > 0) on the hinge produced by a beam-column behavior. This is observed in the
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next chapter. Results considering these ranges of values show an important influence of
parameters dh, dxc and dβgz. Nevertheless, only dh is considered between realistic values
(± 2.5 µm). This suggests that dh is an influential parameter, as has been concluded in
other works [70, 74]. The degree of influence compared to other parameters is measured
in the next section.

4.4. Sensitivity analysis

A sensitivity analysis can be understood as the study of how uncertainty in the output
of a model can be apportioned to different sources of uncertainty in the model input [71].
The result of this analysis is granted in the form of numerical values known as sensitivity
measures, which represent the individual effect of an input parameter on the output. As
such, its main purpose is to identify most influential parameters. Its reliability is based on
different factors like the number of parameters used for the study, the dependency between
one another, the capability of measures to capture the model behavior and the exploration
of the input space. False set up of the analysis would lead to errors in the assessment of
the influence of each parameter. These are classified in three types [71]:

• Type I: Erroneously defining a non-influential error as important.

• Type II: Non-identification of an influential parameter.

• Type III: Framing errors, e.g. due to parameter values off the mark.

For a trustworthy estimation of the influences of each aforementioned parameter, a
decision on the sensitivity measures and sampling methods must be made. To that
matter, some comparisons are made.

Sensitivity measures

Sensitivity measures are compared in Table 4.4 based on the following criteria:

• Model nonlinearity.

• Input space exploration.

• Parameter interaction.

It was observed in Appendix E that some of the parameters produce a nonlinear response
of the model. In fact, the behavior of the model can be separated in a linear and a
nonlinear fraction and sensitivity measures Si should be able to capture both effects so
that:

n∑
i=1

Si = 1

The use of linear sensitivity measures would overestimate the influence of a parameter as
the linear fraction of a model is always less than one. Also important in the selection of
a measure is that it can properly capture the global effect of a parameter rather than at
particular points of the input space. In local methods, the effect of changing one parameter
at a time is tested. In global methods, all parameters are changed simultaneously and a
much larger range of parameter combinations is tested. They take interactions between
parameters into account, explore the effect of each parameter across a wide range of values,
and can deal with nonlinear relationships between the parameters and the model output
[71]. Interaction between parameters, or higher-order effects, are important to capture
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as one parameter may have no first-order influences but can produce significant variation
when combined with other parameters. Although this is important for understanding
the overall model behavior, it is preferred to have parameters as independent as possible.
Another comparison criteria is usually the analysis efficiency. However, as the calculation
time for needed combinations is usually high, especially for FE analysis, it is regarded as
irrelevant. Further explanation on the measures compared can be found in Appendix F.

Table 4.4: Comparison of sensitivity measures.

Measure
Model

nonlinearity
Input
space

Parameter
interaction

Overall

Derivatives - - - -
Sigma-normalized
derivatives

- +/- - -

Standarized regression
coefficients

+/- + - +/-

First-order indices + + - +/-
Total effect + + + +

According to the comparison made in Table 4.4, the total effect sensitivity index would be
more suitable for this analysis since there are non-linear responses of the model, the great
number of parameters (12) would require a proper exploration of the input space and
unknown parameter correlations, especially geometric, may exist. It is also possible for
linear sensitivity indices to be suitable, due to the apparent linearity of most parameters
and the small individual effects of the nonlinear ones. Nevertheless, to be on the safe
side, total effect indices will be used.

Experimental design

The degree of how precise global sensitivity analysis are lies on how well the space of
input parameters is explored. This means that, ideally, points in all regions of the
multidimensional space must be considered for the analysis. These points are combinations
of input values, or samples, generated following certain rules, a process known as
experimental design. There exist a vast amount of experiments or sampling methods
in the literature which are suitable to different types of analysis and models. To find one
suitable to the study in this work, a comparison is done in terms of [22]:

• Number of samples required.

• Space filling.

• Orthogonality.

To properly capture main effects and interactions between parameters, a certain number
of values of each parameter may be needed depending on the response of the model. For a
high number of parameters, the number of samples can highly increase to have significant
results. This fact is very important when working with numerical simulations that are
already computationally expensive so the number of samples must be the least possible
without losing a proper space filling. Another important consideration is how combination
of parameters are selected and in which order. Ideally, selection of independent parameters
is necessary to reduce the complexity of the model. This means that parameters are not
correlated, i.e. orthogonality. However, interactions between parameters may still appear
as undesired statistical correlation between parameters can be introduced depending on
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the combination ordering, leading to false results. This was evidenced by Florian [24]
and is caused by generating random input combinations. To that matter, a comparison
between sampling methods is presented in Table 4.5. These methods are included inside
OptiSlang so that combination of parameters can be generated and then computed by
ANSYS. Further explanation of the sampling methods can be found in Appendix G.

Table 4.5: Comparison of sampling methods.

Method
Number of

samples
Space filling Orthogonality Ref.

Koshal linear k + 1 - + [41]
Koshal quadratic (k+1)(k+2)/2 - + [41]
D-optimal linear N +/- - [89]
D-optimal quadratic N +/- - [89]
Full factorial ak - + [22]
Plain Monte Carlo N +/- +/- [86]
LHS N + +/- [55]
A-LHS N + + [35]

k - number of parameters; a - number of levels per parameter; N - number of combinations.

According to Table 4.5, the A-LHS method is most suitable for a correct exploration of
the multidimensional space while keeping the number of samples as low as possible. In
fact, the number of combinations N required for a sensitivity analysis using this method
is obtained by the convergence of the sensitivity measures, unlike fixed values as for
factorial or one-at-a-time experiments [71].

Study cases

Using the parameters defined in Section 4.2, two sets of values are used for the analysis.
First, the ranges of values considered are those that can be obtained with high accuracy
within common methods, e.g. WEDM tolerances (see Table 4.6). Second, values for
conventional accuracy are used, e.g. drilling or milling tolerances (see Table 4.7). The
purpose of two analysis lies in showing how sensitivity measures vary for different ranges
of values due to the order of the errors produced by each parameter. The range of
deviations of dh is kept the same for both cases since deviations of 25 µm would result
in h = 0 mm and higher deviations than 2.5 µm are already imprecise for this geometry
(5%). It is also to remark that gravity deviations are considered as those produced by
ground tilt. Although a flexure hinge can be designed in any position in space [30], the
use of such range of values in this analysis leads to a type III error. It is necessary to set
a certain position of the hinge. This decision is based on the stiffness deviations produced
by the parameters in their range of values.

In Appendix H, stiffness deviations are calculated for each parameter in their according
range of values for high and conventional accuracy. Deviation produced by ground tilt in
both directions are calculated for three hinge positions βgz = 0◦, βgz = 90◦ and βgz = 270◦.
It can be appreciated that ground tilt around the z -axis dβgz produces a greater deviation
for βgz = 0◦ than for other positions and ground tilt around the y-axis dβgy does not
produce a deviation at all in this range of values. In fact, deviations in such small range
of input values may coincide with numerical errors of the FE model. This is also the
case of parameter dθy. Since their effects cannot be measured with the FE model, these
parameters are not used in the analysis. The position of the hinge is considered as βgz = 0◦.
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Table 4.6: Parameter values for high accuracy.

Parameter Value Ref. Parameter Value Ref.

dh ±2.5 µm [61] dx ±2.5 µm [61]

dR ±2.5 µm [61] dy ±2.5 µm [61]

db ±2.5 µm [61] dE ±0.71 GPa [77]

dθx ±0.005 ◦ [61] dν ±0.001 [25]

dθy ±0.005 ◦ [61] dgz ±0.1 ◦ [18]

dxc ±2.5 µm [61] dgx ±0.1 ◦ [18]

Table 4.7: Parameter values for conventional accuracy.

Parameter Value Ref. Parameter Value Ref.

dh ±2.5 µm [61] dx ±25 µm [23]

dR ±25 µm [23] dy ±25 µm [23]

db ±25 µm [23] dE ±1.42 GPa [13]

dθx ±0.017 ◦ [63] dν ±0.003 [25]

dθy ±0.017 ◦ [63] dβgz ±0.1 ◦ [18]

dxc ±25 µm [23] dβgy ±0.1 ◦ [18]

Considerations for the analysis

Prior to the calculation, some considerations of the analysis need to be clarified:

• Loading in all calculations is done by applying a bending moment M = 0.315 Nmm
(ϕ ≈ 1◦).

• Gravity is considered in all calculations.

• Parameters are uniformly distributed.

• Parameters are assumed independent from one another.

• Number of samples for each study amounts to 100. Convergence of measure was met
for a less number of samples due to high influence of some parameters.

• Geometric nonlinearities are considered.

The quality of the model is measured by means of the Coefficient of Optimal Prognosis
(CoP) [58], which is included in OptiSlang. This coefficient is defined as:

CoP = 1−
SSPredictionE

SST

where SSPredictionE is the sum of squared prediction errors, which are estimated by cross
validation, and SST is the total variation. The model used as approximation is the one
that maximizes this coefficient based on the number of variables, model complexity and
support points used [59]. This approach is called Metamodel of Optimal Prognosis (MoP).
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Total effect sensitivity indices are calculated for the approximation model and the variance
contribution of each input parameter is determined in terms of individual CoP coefficients:

CoP (Xi) = CoP SMoP
T (Xi)

Results

Table 4.8 shows the results of the sensitivity analysis using all parameters in their according
range of values. Results show that parameter dh is by far the most influential for the thin
flexure hinge. All other parameters show almost no influence at all. A linear regression
model was used for these analysis since almost all deviation is produced by an apparently
linear parameter such as dh. The elastic modulus deviation dE stands as the second
most important parameter in both cases. Due the approximation nature of the model and
dominance of dh, the indices results for less influential parameters may not be trustworthy.
For that matter, dh is removed from the analysis and calculations are repeated to see the
relative influence of other parameters.

Table 4.8: Sensitivity indices for βgz = 0◦.

Parameter CoPhigh (%) Shigh CoPconv (%) Sconv

Model 99.96 1.000 99.93 1.000
dh 98.52 0.986 98.98 0.990
dR 0.01 0.000 0.11 0.001
db 0.00 0.000 0.03 0.000
dxc 0.01 0.000 0.00 0.000
dx 0.00 0.000 0.03 0.000
dy 0.00 0.000 0.00 0.000
dθx 0.00 0.00 0.000 0.000
dθy − − 0.00 0.000
dE 0.48 0.005 2.35 0.024
dν 0.00 0.000 0.04 0.000
dβgz 0.00 0.000 0.02 0.000
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Figure 4.6: Linear regression model. (a) high accuracy; (b) conventional accuracy.

Table 4.9 shows a total influence of one parameter, dE. Since the effect produced by dE
is perfectly linear and other nonlinear effects show almost no influence, a linear regression
suits perfectly as model. Other parameters, such as dν, that did not show any influence
in the previous analysis, gain certain influence for high accuracy values. However, due to
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Figure 4.6 (Cont.): Linear regression model. (a) high accuracy; (b) conventional accuracy.

the dominance of dE, an additional analysis is done to better depict the influence of the
other parameters. In this case, dE is removed from the analysis.

Table 4.9: Sensitivity indices for βgz = 0◦ without dt.

Parameter CoPhigh (%) Shigh CoPconv (%) Sconv

Model 100.00 1.000 99.53 1.000
dR 0.07 0.001 3.83 0.039
db 0.08 0.001 1.62 0.016
dxc 0.00 0.000 0.01 0.000
dx 0.12 0.001 2.47 0.025
dy 0.02 0.000 0.37 0.004
dθx 0.00 0.000 0.00 0.000
dθy − − 0.00 0.000
dE 100.00 1.000 89.33 0.898
dν 0.44 0.004 1.17 0.012
dβgz 0.16 0.000 0.00 0.000
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Figure 4.7: Linear regression model without dh. (a) high accuracy; (b) conventional
accuracy.

Table 4.10 shows two different behaviors for the high and conventional accuracy cases. In
the first case, parameter dν contributes with about half of the influence on the stiffness
above geometric parameters. In the second case, geometric parameters dR, db and dx are
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Figure 4.7 (Cont.): Linear regression model without dh. (a) high accuracy; (b)
conventional accuracy.

responsible for most of the deviation. The gravity orientation deviation dβgz also gains
certain influence for when geometric deviations are small, though its effect is small due
to the almost neglectible mass of the flexure hinge and its range of value. However, the
quality of the model and the fiability of measures decrease if the whole range of possible
values is taken into account (see Appendix I).

Table 4.10: Sensitivity indices for βgz = 0◦ without dt and dE.

Parameter CoPhigh (%) Shigh CoPconv (%) Sconv

Model 99.98 1.000 99.99 1.000
dR 17.36 0.174 44.20 0.442
db 6.51 0.065 17.58 0.176
dxc 0.04 0.000 2.26 0.023
dx 9.94 0.099 24.98 0.250
dy 0.89 0.009 1.81 0.018
dθx 0.00 0.000 0.00 0.000
dθy − − 0.00 0.000
dν 50.85 0.509 9.58 0.096
dβgz 14.80 0.148 0.20 0.002
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Figure 4.8: Linear regression model without dh and dE. (a) high accuracy; (b)
conventional accuracy.
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Figure 4.8 (Cont.): Linear regression model without dh and dE. (a) high accuracy; (b)
conventional accuracy.

4.5. Summary

In the actual application, the defining characteristics of a flexure hinge are not ideal.
Geometric deviations due to manufacturing, errors in measuring material properties and
external influences like the existence of additional loads, e.g. the weight force, alter the real
performance of the hinge. As such, the rotational stiffness differs to the value obtained
through analytical and numerical models. To analyze the behavior of a thin flexure hinge
under non-ideal conditions and to find influential parameters, a sensitivity analysis was
conducted. For that matter, possible sources of deviation were identified and described by
parameters supported by the finite element model. The sensitivity analysis was conducted
using values of deviation attainable with high and conventional accuracy using available
technologies. Overall results of the analysis show an almost absolute dependence on the
minimum height of the flexure hinge, being followed by a small dependence on the elastic
modulus. After them, parameters show almost no influence and their effects depend
mostly on the range of values in which they can deviate. These results show that actual
performance of a thin flexure hinge with h = 50 µm may deviate significantly from the ideal
value, about 13.7 % for highly accurate values. Tolerances achievable through WEDM and
common processes like milling are not sufficiently accurate for manufacturing the thinnest
flexure hinges. Attention should also be placed on material properties, since they gain
influence as geometric deviations are reduced. Deviations due to non-ideal conditions are
sometimes expected to compensate the modeling approach errors. In fact, deviations due
to analytical modeling and actual operation may lie around the same order (≈ 10 to 12 %),
so current analytical models are still considered by some authors suitable for flexure hinges
[19].
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5. Application of thin flexures in
weighing cells

Application of flexures in force-measuring devices has been reported since the end of the
19th century [20]. They are used to replace the knife-edge pivots in sensitive balances
since they present practically no wear, so their resistance to motion can be regarded as
constant. This resistance is of utmost interest in such systems. Stiffness of a flexure limits
the sensitivity of a balance. In fact, the sensitivity depends mostly on the stiffness of its
central flexure [69, 79]. In this chapter, this flexure is the object of study.

Figure 5.1: Transmision lever in a weighing cell. Adapted from [79].

Weighing cells work using the principle shown in Figure 5.1. The weight force W1 is
measured by applying a counter force W2 while measuring the position of point P2 of
the transmision lever. The value of W2 is controlled by the measurement of the position
of point P2, increasing W2 until a position detector marks zero. This means that the
measured value of W1 occurs when the beam is parallel to the base. W2 should be equal
to W1 if both lever arms to the pivot are equal, as in some mass comparators [69], but
this is not necessarily the case [18, 54]. If moment equilibrium of the lever is evaluated,
W2 cannot be directly used to determine W1 due to the existance of the restoring moment
M produced by the flexure (see Figure 5.2). Then, the determination of W1 depends on
the knowledge of the restoring moment M , which depends on the rotational stiffness kϕ
of the flexure, as in Equation 2.1.

It was stated in Section 2.2 that kϕ depends on the loading conditions. Figure 5.2 shows
the free-body diagram of the transmission lever of a weighing cell. Point Pf is the location
of the flexure hinge. The weight of the beam is located along the longitunidal axis of the
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Figure 5.2: Free-body diagram of the transmission lever.

flexure to avoid additional moments. Equilibrium shows that the flexure is subjected not
only to a bending moment M but to an axial force W as well which equals the sum of
all supported weights, i.e. beam-column behavior. The existance of an axial force on a
flexure hinge generates an additional bending moment which increases with deformation
(see Figure 5.3). If the force is tensile, the stiffness increases and if it is compressive, the
stiffness decreases. The effect of this axial force on the stiffness of a flexure strip was
modeled by Eastman [20] and the following equation was derived:

kϕ =
EIz

j tanh
s

j

(5.1)

where j =
√
EIz/W , s is the length of the strip and EIz its flexural rigidity. However,

such an expression has not been derived for notch hinges, where Iz is not constant. Only
a numerical solution of great complexity has been proposed in the work of Awtar [5] for
beams of variable cross-section.

Figure 5.3: Notch flexure hinge subjected to bending and axial loading.

In weighing cells, foundantion of the device may not be perfectly perpendicular to the
gravity acceleration vector ~g due to either misalignment or ground tilt caused by vibrations.
This is expressed by the angle γ in Figure 5.1. The analysis done in Chapter 4 showed
a small influence of the gravity orientation deviation dβgz ≡ γ on the rotational stiffness
when ~g had ideally a positive x -direction (βgz = 0◦). dβgz produces an undesired additional
rotation of the flexure hinge, which was measured as a deviation of kϕ (see Appendix H).
Important is to remark that the small value of the stiffness deviation was due to the mass
of the flexure hinge. Masses measured in weighing cells are many times greater than that
of the hinge, so this effect will have greater influence. Then, W2 needs to compensate for
the additional rotation for the beam to be parallel to the base of the device (γ = ϕ1),
producing a false measure of W1.
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In this chapter, the stiffening effect due to the tensile force and the deviations produced
due to ground tilt will be further studied in circular-contour flexure hinges. For that
matter, the model defined in Chapter 3 is utilized and modified for the required studies.

5.1. Axially-loaded flexure hinges

The flexure hinge model from Chapter 3 is subjected to a tensile weight force W and
deviation of the rotational stiffness ekϕ is calculated. Compressive forces are not taken
into account as solution may not converge. Calculations are conducted assuming geometric
nonlinearities, since in the linear case this effect cannot be captured, i.e. constant stiffness.
Axial load W is better described by the supported mass parameter m as W = mg. In
fact, the mass is the value of interest to be measured. The force is applied through a point
mass m located at coordinate (L/2+R, 0, 0), at the end of the contour. The point mass is
modeled using the element MASS21 defined in a node. This node is connected to the free
end face of the model through multipoint contraints. Results are presented in Figure 5.4,
where ekϕ is calculated for supported masses up to 2 kg:
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Figure 5.4: Deviation of kϕ due to axial loading according to FE results.

When supporting masses up to 2 kg, the rotational stiffness of the flexure hinge can
increase up to 311 %. This means that, in force measuring systems, knowledge of the
beam-column behavior of flexure hinges becomes mandatory. Even when the application
does not require that the hinge supports axial foce, existence of additional constraints
can generate these loading conditions, e.g. parallel mechanisms [4].

Minimizing stiffness

The sensitivity of the system in Figure 5.1 can be increased by reducing the stiffness of
the central flexure strip by either decreasing the moment of inertia Iz or increasing its
length. Decreasing Iz by reducing b is not effective and might increase the sensitivity
to parasitic motions while h cannot be reduced much further than 50 µm. The term
tanh(s/j) of Equation 5.1 suggests that there is a value of s for which the reduction of
the stiffness kϕ is almost neglectible for given E, Iz and W values. For flexure strips,
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this value is approximately s = 3j = 3
√
EIz/W , since tanh(3) ≈ 1. This means that

increasing the value of s further would not produce a significant variation of kϕ. In
the case of circular contour flexure hinges, a geometry for minimum stiffness cannot be
analytically determined. Increasing the radius too much would result in loss of rotational
precision. In their design of a mass comparator, Quinn et al. proposed to add a strip-like
zone, with length denoted as s, on the thinnest region (h(x) = h) of a semi-circular
flexure hinge, resulting similar to a corner-filleted flexure hinge with large fillet radius [69]
(see Figure 5.5). This way the rotational stiffness can be reduced while sacrificing little
rotational precision.

Figure 5.5: Flexure hinge by Quinn et al. [69].

The behavior of this hinge was modeled using the equation from Eastman (see
Equation 5.1), expecting it to be a good approximation [69]. However, ignoring the
compliance of the circular section is a simplification. The use of modeling based on the
plane stress assumption also constitutes an oversimplification for this approach. The
accuracy of Equation 5.1 is validated by modifying the model of Chapter 3 by adding the
additional length s and applying the axial load W at end of the contour.

Figure 5.6: New FE model for s = 1.5 mm.

Modeling

The model is presented in Figure 5.6. The strip of variable length s with a constant
cross section was added to the center of zone 1. The weight force W is applied through a
point mass m located at coordinate (L/2 + s/2 + R, 0, 0) at the end of the contour. The
point mass is modeled in same way as before. According to the strategy of Chapter 3,
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the number of elements in zone 1 would need to be increased to preserve the in-plane
aspect ratio of 1. However, this highly increases the number of elements and, thus, the
computational time. For example, a simulation for s = 1.5 mm, M = 0.1 Nmm and
m = 2 kg using the parameters from Table 3.1 requires approximately 240 minutes for
geometrical nonlinear calculations with the same settings as in Chapter 3. Using the same
number of elements as the previous model or using a fixed number would produce high
distortion and bad element transition when s is too large or small. With this approach,
numerical errors such as non-continuity of results started to appear for m > 1 kg when
s = 1.5 mm using 20 additional elements along the straight section. This occurs because
some highly distorted elements get more distorted during deformation, especially for large
masses. To reduce both problems, element size along the length of zone 1 is set to the same
as size as along the height in h(x) = h′ (see Section 3.4). Parameter h′ was determined
only from the circular contour dimensions, so it is not affected when s was added. In
the first approach, transition of element size stops when reaching the straight section. In
the new proposed one, it stops when reaching zone 1. Number of elements using the first
approach for s = 1.5 mm amounts to 61927 while in the new approach it amounts to
21607.
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Figure 5.7: Deviation of k for reduced element number to full model.

Results between both mesh approaches are compared for a flexure hinge with s = 1.5 mm
for different values of m. The applied bending moment M equals 0.1 Nmm. Figure 5.7
shows that maximum deviation is around 0.0002 %, which is acceptable. Later calculations
are conducted using the reduced model. Simulation time was highly reduced from 240 to
approximately 20 minutes.

Comparison

Using the model defined before, the rotational stiffness kϕ is calculated for masses from
0 to 2 kg for hinges with increasing lengths s until its variation is sufficiently small. The
case for which s = 0 mm is calculated using the model from Chapter 3. The applied
bending moment M is the same for every flexure hinge and amounts to 0.1 Nmm. The
authors in [69] considered the circular section to be rigid for their calculations. It means
that Equation 5.1 cannot be used for this calculation since it would consider the axial
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load applied at the end of straight region (x = L/2 + s/2). To consider a displaced load
application point, the following expression can be derived from Equation 5.1 [69]:

kϕ = W

(
xCM +

j

tanh
s

j

)
(5.2)

xCM is the position of the center of mass of the supported mass, i.e. axial load application
point, relative to the end of the contour (see Figure 5.8). Setting the value xCM = R
would match with the assumption made by Quinn et al. FE results are presented in
Figure 5.9(a) while results using Equation 5.2 in Figure 5.9(b). The elastic modulus used
for these calculations is the modified value E′ = E/(1 − ν2) to compensate for the plane
stress assumption.

Figure 5.8: Loading conditions for the flexure hinge model.
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Figure 5.9: Behavior of the flexure hinge according to (a) FE model; (b) Equation 5.2.
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Figure 5.9 (Cont.): Behavior of the flexure hinge according to (a) FE model; (b)
Equation 5.2.

Results show that the behavior according to Equation 5.2 is stiffer than to the FE model for
the same value of s. This was to be expected, since the FE model still has the compliance
of the circular section and its stress state is not completely plane strain. While analytical
results do not have an upper limit value since kϕ →∞ for s→ 0 mm, FE results have the
stiffness of the circular contour flexure hinge as an upper limit value. Figure 5.9(a) shows
that kϕ can be minimized for m > 1 kg when s ≈ 1 mm while Figure 5.9(b) shows that
the minimum occurs when s ≈ 1.5 mm. This means that Equation 5.2 cannot be used
to accurately describe the behavior of the flexure hinge as proposed by Quinn et al. [69].

Stiffening effect

According to Equation 5.2, s can be increased infinitely while kϕ converges to a minimum
value. The value of s for an acceptable converged kϕ depends on the supported mass m.
This can be better depicted in a graph of kϕ against s for different values of m rather
than as was done in Figure 5.9. The values of s for both cases are considered from 0 to
2 mm. Results are shown in Figure 5.10, where an unexpected behavior can be observed.
FE results show that rather than converging with the increasing length, kϕ reaches a
minimum value and, then, increases again. This behavior appears only for high values of
m in Figure 5.10 but can be expected for low masses if s is sufficiently large.

The explanation for this behavior can be done with help of Equation 5.2. The rotational
stiffness can be separated in two parts:

kϕ =
Wj

tanh
s

j

+WxCM (5.3)

The first term of the right side is equivalent to Equation 5.1, which models the
beam-column behavior when loading is applied at the end of the flexure strip. The
second term is the additional stiffness due to the displaced load application point.
Assuming geometric nonlinearities, the lenght s increases during deformation, which is
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Figure 5.10: Comparison between FE results (continuous) and Equation 5.2 (dashed).

not considered by Equation 5.2. When s is large enough that the first term cannot be
significantly decreased anymore, the elongation has practically no effect. On the other
hand, the center of mass is displaced due to the elongation of the strip, i.e. xCM increases.
The second term of Equation 5.3 affects the stiffness to a much higher degree than the
first term. This means that when the elongation is sufficiently large due to s and W ,
the effect of the second term will overcome the other one and the rotational stiffness
increases. This can be observed in Figure 5.10 for the high load values.

Equation 5.1 suggested that kϕ could be minimized for supported masses above a certain
value if the flexure was sufficiently large. Increasing the length any further would have no
significant effect. However, the effect caused by the elongation implies that kϕ can only
be minimized by a specific length for a certain supported mass. This would mean that
when supporting other values of m, the stiffness of the flexure represents a non-minimum
value.

5.2. Ground tilt effect

In the previous section, the center of mass of the supported system was considered at the
end of the contour (x = L/2+s/2+R). The position of the center of mass can be adjusted
to vary the stiffness of the flexure. This can be seen in Equation 5.2. If xCM < 0, kϕ
can be reduced. This is further developed in the work of Quinn et al. [69], where the
angle of rotation ϕ1 of a flexure strip in the global coordinate system x’-y’ (see Figure 5.1)
can be determined for given ground tilt angle γ and position of the center of mass xCM
relative to the free end (coordinate system x”-y”), as in:

ϕ1 =
γ

xCM
j

sinh
s

j
+ cosh

s

j

(5.4)

According to Equation 5.4, the condition where the base of the hinge and the supported
beam are parallel occurs when the denominator equals 1. A value of xCM can be
determined in terms of s, E, Iz and W , so that ground tilt has no effect, i.e. zero tilt
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sensitivity. This is called the autostatic state [16]. It is to remark that this is only valid
for very small values of γ. An expression of this type is yet to be proposed for other types
of flexures. In this work, circular contour flexure hinges will be studied.

Study approach

The circular contour flexure hinges modeled in Section 3.4 (s = 0 mm) and Section 5.1
will be used to find the location of the center of mass for the autostatic state, labeled as
x̄CM . The position of the center of mass xCM according to Equation 5.4 is measured from
the free end of the strip. In this section, it will be measured from the midpoint of the
flexure hinge (x = L/2), as in Figure 5.11. Since x̄CM cannot be directly determined using
ANSYS, it will be approximated for given γ and m values and geometric configuration.
In the local coordinate system x-y, the gravity acceleration vector is deviated by dβgz = γ
and the position xCM for ϕ = 0◦ is to be found (see Figure 5.11). Rotations are considered
positive around the positive z -axis.

(a) (b)

Figure 5.11: Rotation angle ϕ produced by ground tilt angle γ: (a) generic state; (b)
autostatic state (ϕ = 0◦).

The approach for finding x̄CM consists on changing the value of xCM while measuring
the rotation angle ϕ. x̄CM can be determined from either the linear interpolation of
two points, one positive and one negative, for which ϕ is closest to zero or by fitting a
function ϕ(xCM ) using the results as support points and evaluating it at ϕ = 0◦. This
function can be visualized using Equation 5.4 edited for the coordinate system at the
middle of the strip as an example. In Figure 5.12, ϕ was calculated while changing xCM
for different values of γ considering E = 71 GPa, ν = 0.33, h = 0.05 mm, b = 10 mm,
s = 1.5 mm and m = 1 kg. As in the previous section, calculations will be done using the
modified elastic modulus E′ and the circular section is assumed rigid.

x̄CM amounts to approximately 0.131 mm, as appreciated in Figure 5.12. It can also be
observed that the solution tends to infinite, i.e. system inestability, for a certain value
of xCM , which will be labeled x,CM and equals −0.194 mm in this case. There are two
things to remark from Figure 5.12, which will serve later for correct modeling. First,
x̄CM for each value of γ is always the same due to the simplification of the sine function
for small angles used in the derivation of Equation 5.4. As such, the approximated x̄CM
in the simulations will be found dependent on γ. Second, x̄CM locates below the middle
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Figure 5.12: Determination approach for x̄CM using analytical results.

the flexure (xCM > 0) while x,CM locates above (xCM < 0). This is better depicted in
Figure 5.13, where normalized values of x̄CM and x,CM , calculated as x̂CM = xCM/s,
are calculated for different values of s. It can be appreciated that x̄CM is always located
below the middle of the flexure and gets closer to the free end as the strip gets longer.
x,CM locates mostly above the middle of the flexure but, as the strip gets larger, it can
overcome the middle of the flexure and both points get closer. From the FE modeling
point of view, knowledge of the behavior of these points becomes important for limiting
the range of values of xCM for which the curves in Figure 5.12 will be approximated. If
results are seeked near x,CM , the solution may never converge.
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Figure 5.13: x̂CM for autostatic and instable state for different values of s.
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Convergence criteria

In a first step, convergence criteria is evaluated using the models from Chapter 3 (s =
0 mm) and Section 5.1 with s = 1.5 mm for the new loading conditions. The value of the
tolerance εR is reduced from 5×10−4 %, which was defined in Chapter 3, to 5×10−8 % and
the deviation of the value of ϕ compared to its value for εR = 5×10−8 % is evaluated using
masses of 1 and 2 kg (see Figure 5.14). The point mass is located at x = L/2. Results
are presented in Figure 5.14. A tolerance of 5 × 10−4 % produces results for s = 0 mm
s = 1.5 which deviate eϕ ≈ 0.15 % to those using the reference value. Acceptable deviations
(eϕ ≈ 0.02 %) for both cases can be obtained with εR = 5×10−5 %. The use of more precise
tolerances produces a high increment in the simulation time, especially for s = 1.5 mm.
To that matter, εR = 5× 10−5 % will be set for this work.
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Figure 5.14: Convergence criteria for ground tilt effect.

Autostatic compensation

The value of x̄CM for s = 0 mm will be obtained through the process previously defined
(see Figure 5.11). Using the circular contour flexure hinge model, ϕ was calculated for
tilt angles γ from 0.01 to 0.1◦ for a supported mass of m = 1 kg. Results are presented
in Figure 5.15. Calculations for some values of γ were omitted for better visualization. In
a first attempt, xCM was set at values from −0.3 to 0.3 mm, knowing that x̄CM should
be close to the center of the hinge (xCM = 0 mm) and x,CM → −∞ for very short hinges.
Stepping was set at ∆xCM = 0.03 mm.

Results show that x̄CM locates near the center of the hinge, as expected. In contrast to
Figure 5.12, the curves presented do not intersect at a fixed point. This means x̄CM also
depends on the value of γ. Being that the case, x̄CM is approximated for all considered
values of γ. Two approaches were previously proposed: linear interpolation of two points
and function fitting. x̄CM was calculated using both approaches and results are presented
in Figure 5.16. The fitted function used is a fourth-order polynomial.
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Figure 5.15: Determination approach for x̄CM using FE results for s = 0.

Results from both approaches are similar when the ground tilt angle is small (γ < 0.02◦).
For larger angles results deviate in approximately 2 µm. The cause of this deviation is
mostly due to the numerical errors occurring near x̄CM . For very small angles ϕ, as those
encountered near the seeked autostatic state, errors start to appear in the solution. The
fact that x̄CM is larger for the smallest values of γ may lie in the component of the weight
force in the x -direction being larger. However, numerical errors have also been observed
around these values. In the actual application, ground tilt angles can be even smaller but
the FE model cannot capture these effects.
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Figure 5.16: x̄CM for different tilt angles.
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Figure 5.17: Displacements in y-direction in mm. Deformation scaled by a factor of 2500.

In the autostatic state, at ϕ = 0◦, the deformed flexure hinge presents an s-shape, as
reported in [18]. The deformed state of the flexure hinge for γ = 0.1◦ when xCM =
0.014 mm is depicted in Figure 5.17. From the deformation point of view, the s-shape
is generated by deformation due to bending produced by the y-component of the weight
force being compensated by the nonlinear bending from the x -component and an additional
bending moment from the displaced load application point. The loading in the point of
zero slope is similar as in flexure hinges of parallel mechanisms [4]. From an idealistic
point of view, the autostatic state can be understood as the center of mass being located
at the pivot of a physical pendulum (see Figure 5.18). When loading is applied below the
pivot, rotations are positive and when applied above, rotations are negative.

(a) (b)

Figure 5.18: Autostatic state interpretation: (a) Deformation; (b) Idealization.

Limitations

False results due to numerical errors can be observed in Figure 5.19, where results are
recalculated using a step of ∆xCM = 0.0015 mm. For that matter, x̄CM cannot be
reliably determined using linear interpolation. If a solution point is too close to the error
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zone, results will not be trustworthy. Smaller steps cannot be used either due to the same
reason, even when fitting a function.
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Figure 5.19: Determination approach for x̄CM using FE results for s = 0.

Fitting can still compensate for small numerical errors if sufficient number of large steps
are used. Taking for example the results from Figure 5.15, the fourth-order polynomial
function is presented in Figure 5.20 in the range of -0.06 to 0.06 mm. Solutions at xCM =
0 mm are false results produced by numerical errors (see Figure 5.19). Nevertheless, the
fitted function still follows the overall behavior of the results, which is almost linear near
x̄CM . As such, polynomial fitting represents a more robust approach for determining x̄CM
and is used.
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Figure 5.20: Determination approach for x̄CM using FE results for s = 0.

Since the position of x̄CM for any value of s is unknown and also due to its proximity
to x,CM for large strips, it is required to search for x̄CM from the free end towards the
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center of the flexure. That way, it is less likely to find non-convergent points even with
large steps. Calculating many points past the region where x̄CM might locate, as in
Figure 5.15, would still be risky for longer strips. The least computationally expensive
approach would require to look for x̄CM until a negative value of ϕ is found. Since ϕ is
positive when the mass point is closer to the free end, this approach minimizes the risk of
finding non-convergent points and reduces simulation time of additional points. ANSYS
Mechanical APDL provides the possibility to use the mentioned approach to look for
the value of x̄CM due to its programming capabilities. xCM can be relocated in a single
program while calculating ϕ in an iterative process until a negative value is found. Then,
results of ϕ are fitted with a polynomial function and x̄CM can be approximated.

Mapping numerous xCM close to the free end would be innecesary and would affect the
approximation of the fitted function, especially for large values of s. Since ϕ seems to
converge for values of xCM closer to the free end (see Figure 5.12), polynomial functions
cannot correctly fit the results, even when using higher orders. This can be better observed
in Figure 5.21, where the searching approach is applied for s = 1.5 mm, m = 1 kg and
γ = 0.02◦. Step size was set as 1/40 of hinge length l and polynomial functions of order
n are used for the interpolation.
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Figure 5.21: Determination approach for x̄CM using FE results for s = 1.5 mm, m = 1 kg
and γ = 0.02◦.

Calculating only one negative value of ϕ would be risky if such point were too close
to ϕ = 0◦. In that case, the fitted function would produce false results, especially for
higher-order polynomials. Higher-order polynomials fit better the individual FE results
rather than the overall behavior. If a support point is near the error zone, the function will
have a wave-like form as in Figure 5.21. To compensate for these errors, some additional
points must be calculated and the order of the polynomial must be kept as low as possible.

Settings

To avoid false fitting, the search for x̄CM should start closer to it, where the behavior is
almost linear, with sufficient support points. It is known that x̄CM will be close to the
center of the flexure hinge when s = 0 mm but it is unknown where it is approximately
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located for higher values of s. According to Figure 5.13, as s increases, x̄CM moves closer
to the free end. The value of s for the minimum rotational stiffness lies around 0.5 to
1 mm for supported masses between 0.6 to 2 kg using the FE model (see Figure 5.10).
When conducting a parametric study, required s for minimum kϕ could either increase or
decrease depending on the other parameters. To set a start point to search for x̄CM , its
approximate distance from the center for s = 1.5 mm is used. Since strips longer that
1 mm would be of no interest, using a distance of 0.45 mm the center as start point would
compensate for parameter variation effects on the location x̄CM . Stepping will be set at
∆xCM = 0.05 mm. Calculations stop when three negative values are found. A polynomial
function of second order is used to fit the results. With these settings, an automatic
approach has been defined for finding the value of x̄CM in flexure hinges with constant
strips. Using this approach, the value of x̄CM for s = 1.5 mm amounts to 0.286 mm when
m = 1 kg and γ = 0.02◦. In comparison to the result obtained from Equation 5.4, the
position of the center of mass is closer to the free end when the compliance of the circular
region is taken into account.

Parameter effects

Using the mentioned approach, the position of the center of mass for the autostatic state
is measured while varying the constructive parameters of the hinge. The considered
parameters are as follows:

• supported mass m

• strip length s

• minimum hinge height h

• radius R

• width b

• elastic modulus E

Parameter values will be variated from an initial case when s = 0 mm and the value
of x̄CM calculated for γ = 0.1◦ and m = 1 kg. Results are presented in Appendix J.
Variations due to γ were already presented in Figure 5.16. For each parameter, a function
of x̄CM is fitted to the FE results. Results show that x̄CM varies almost linearly with
parameters m, R, b and E. In fact, the value of x̄CM increases with the compliance,
which is proportional to R and inversely proportional to E and b. The FE model does
not seem to capture the effect of h due to its small effect and, thus, was not fitted.
Approximation errors are most likely the cause. Deviations from the fitted function can
be appreciated in each parameter due to the nature of the approximation. Parameter s
produces a nonlinear variation of x̄CM that greatly deviates from the analytical results.
The behavior of these results difficults the approximation of an empirical expression,
since most expressions of this type are either polynomial or power functions. Correlation
between parameters, e.g. h and s, and the fact that giving them zero values results
in neither x̄CM = 0 or x̄CM = ∞ constitute the main limitations for finding a proper
function shape.

5.3. Summary

The effect of loading conditions, which were not considered in the previous chapter, were
analyzed in the context of the central flexure hinge in monolithic weighing cells. The
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existence of a tensile force due to the weights supported by the flexure hinge increases its
rotational stiffness. To model this effect, a point mass was added at the end of the circular
contour and connected to the FE model through multipoint constraints. Results show
an increase of approximately 311 % in the rotational stiffness when supporting a mass of
2 kg. The theory developed by Eastman [20] suggests that the rotational stiffness of a
flexure strip can be reduced by increasing its lenght. A certain value of the length can
be calculated, for which increasing it further does not produce any significant reduction
in stiffness. This minimization of the rotational stiffness was studied by modifying the
FE model to include a rectangular strip and by adding the point mass at the end of
the contour. The analytical approach, which considers the circular region as rigid, was
also used in the calculation. Results showed a stiffer behavior of the analytical approach
due to the compliance of the circular region in the FE model. A minimum value of the
rotational stiffness can only be obtained in the FE model at a certain strip length for
higher supported masses. In the case of the FE model, this length is around 0.5 to 1 mm
for masses between 1 and 2 kg. Further increasing the length results in an increase of
the stiffness for high masses, in contrast to what analytical results show. This stiffening
may occur due to the elongation of the strip, which is not considered in the analytical
expression. The elongation generates a displacement of the point mass which produces
an increase of the stiffness according to Equation 5.3.

The investigation continues with the consideration of the effect of the ground tilt. The
ground tilt produces an additional rotation which can be compensated by adjusting the
position of the center of mass of the transmission lever. The autostatic state produces a
s-shape of the flexure hinge due to complex loading conditions which was also appreciated
in the FE simulations. The study was conducted using the flexure hinges with additional
rectangular strips. According to the analytical results, two positions of the center of mass
were found of interest: one for the autostatic state and one for instability, for which the
FE calculation do not converge. The proximity of both positions with increasing length
strip poses as a major problem for FE modeling of this effect. To find the autostatic
state for flexure hinges in the range of interest, a searching approach was presented.
Robust solutions can only be approximated through function fitting due to numerical
errors in the proximity of the autostatic state. Number of support points and step size
must also be taken into account. Comparison of FE and analytical results show that the
position for the autostatic state of the FE model locates closer to the free end of the
hinge. This occurs due to the compliance of the circular region, which is not considered
by the analytical expression. The location for the autostatic state was approximated using
different parameter values. Results show that the sought position is closer to the free end
of the flexure hinge when parameter values favor the increase of compliance.



70

6. Conclusions

In this work, the mechanical behavior of a thin flexure hinge with circular contour was
studied in terms of its rotational stiffness. Flexure hinges constitute a fundamental part of
highest precision systems and proper definition of their stiffness is of utmost importance,
especially in force metrology. The work was developed throughout five chapters, which
deal with different aspects of the mechanical behavior of thin flexure hinges.

In the first chapter, the motivation for this investigation, the studies proposed and
structure were presented. The investigation covers three main aspects: proper modeling
of an ideal thin flexure hinge, behavior under non-ideal conditions and practical
application in weighing cells.

The second chapter focuses on reviewing the investigations to date on the modeling
and deformation errors of flexure hinges. Various expressions for the rotational stiffness
were found in the literature. Most of them are based on the assumptions of the
Euler-Bernoulli beam theory. Other methods include approximating functions using
numerical results from theories like continuum mechanics and nonlinear theory of slender
curved rods as well as FEA results. The approaches are based on assumptions that are
no longer valid for the geometry of the thinnest flexure hinges. Works by other authors
show certain disagreement between common design equations, FEA and experimental
results. Additionally, these expressions are limited to the basic constructive parameters.
As such, they are not suitable for parametric studies of flexure hinges under non-ideal
conditions. Investigations on deformation errors of compliant mechanisms produced by
manufacturing deviations have been widely studied. Other effects such as those caused
by gravity, material properties and loading conditions on single flexure hinges have not
been studied. Inconsistency on independent parameter selection and lack of studies on
thin flexure hinges are also limitations that were encountered throughout the literature
research.

In the third chapter, a thin semi-circular flexure hinge with a minimum notch height of
50 µm was modeled by means of the finite element method. Dimensions of the flexure
hinge were based on values which lie at the limit of presently available manufacturing
technology. Material behavior was considered as linear elastic. Requirements for the
model were proposed and settings were evaluated to ensure the reliability of the results
while keeping computational time to a minimum. A meshing strategy based on partitions
connected through multipoint constraints was proposed to reduce element number and
distorsion due to high aspect ratios. 20-node brick element SOLID186 was used and
the total element number including contact elements amounts to 18912. Using the
generated model, the rotational stiffness assuming geometric linearity and nonlinearity
was calculated. Geometric nonlinearity produces a stiffening effect on the flexure hinge
with increasing rotation angle. The FE model shows a behavior around 10 % stiffer
than desing equations based on plane stress assumption. This deviation was evaluated
for flexure hinges with minimum heights between 50 to 100 µm. Simulations show that
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the 3D-FE model rather complies with the plane strain assumption than with the plane
stress assumption while most analytical equations are based on the latter. This occurs
due to the width to minimum height ratio b/h. A nonlinear relationship between the
rotational stiffness and the width was found, which depends on the distribution of the
out-of-plane normal stress. An almost uniform distribution of the out-of-plane stress like
in the plane strain state appears as the width gets larger, while limited to the central part
of the cross section for small widths. Even for small b/h ratios, such as 10, deviations
are still around 3 %. The deviation between analytical equations and FE results was
found to be dependent only on the b/h and h/R ratios. Other parameters, such as the
total height, presented an almost neglectible effect when the full contour is considered,
but rapidly increases when it is not. These observations lead to the conclusion that thin
flexure hinges, which usually present large aspect ratios, should be modeled considering
the width dependency. Models which assume plane stress are no longer valid for large
width-minimum height ratios and using the plane strain assumption would be more
suitable.

The fourth chapter presents an approach to study flexure hinges under non-ideal
conditions. Possible sources of deviation of the stiffness where identified and classified
in four groups: geometric deviations, material behavior, loading conditions and other
influences. Loading conditions depend on the application case and are studied in the fifth
chapter. The model developed in the third chapter was updated to support geometric
deviations and calculations were conducted to verify a proper behavior. Geometric
parameters deviation show linear and parabolic effects on the rotational stiffness in the
specified range of values while gravity produces a sinus-like effect. Using the defined
parameters, a sensitivity analysis was conducted. The range of values of the parameters
was considered as those attainable with high and conventional accuracy. Gravity effects
were considered as those produced by ground tilt, since full space exploration produces
false results in the sensitivity measures. Combinations were determined using the
Advanced Latin Hypercube Sampling method to approximate a meta-model using linear
regression. A linear model was most suitable due to the linear effect produced by most
parameters in the range of values. Total effect sensitivity indices show dominance of the
minimum height parameter. The elastic modulus appears as the second most influential
parameter while effects of other parameters are neglectible and depend on their range of
value. Even for high accuracy values, rotational stiffness of the thin flexure hinge can
deviate around 13 %, in which the minimum hinge height manufacturing errors (± 2.5 µm)
contribute the most. This suggests that manufacturing processes, such as WEDM, which
are considered highly accurate, show critical deviations for the precise definition of the
stiffness of thin flexure hinges.

Loading conditions are studied in fifth chapter in the context of the application in weighing
cells. The flexure hinge which supports the transmission lever in balances is subjected
to an additional axial load due to all supported weights. In the usual configuration,
the lever is suspended by a flexure hinge and the axial load can almost linearly increase
the rotational stiffness up to approximately 311 % when 2 kg are supported. To reduce
rotational stiffness, a strip is monolitically added to the thinnest region. For that matter,
the model previously developed was updated. A strip length around 0.7 to 1 mm was
found to be sufficient for reducing the stiffness to a minimum value for supported masses
above 1 kg. However, a fixed value that minimizes it above a certain supported mass
value, as the analytical approach suggests, could not be found. A stiffening effect could
be observed for high masses and long strips due to the elongation of the flexure. This
means that a specific load values correspond to a specific required length for a minimized
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stiffness of the design. The effect of weight force orientation deviation due to ground tilt
was studied as well. According to the theory developed by Quinn et al., the center of
mass of the supported weight can be adjusted to reduce the tilt sensitivity of a balance.
Aside from the position for zero tilt sensitivity, a point of instability also exists, which
is in closer proximity to the sought tilt insensitive point for longer strips. An approach
was defined for locating the position of the center of mass for the autostatic state for the
hinges in the range of interest. Based on this approach, the effect of the parameters on
the location of this point were studied.

In summary, the following studies have been conducted in this work:

• A finite element model was developed to validate the assumptions of analytical
models. The analytical models based on the plane stress assumptions revealed to be
inappropriate for an accurate description of the behavior of thin flexure hinges due
to a width dependency. The plane strain assumption is proven to be suitable for
high width to minimal notch height ratios.

• The same model was updated for analyzing geometric deviations of the hinges due to
manufacturing deviations. Rotational stiffness deviates up to 13 % for the presumed
parameter ranges. Deviations can be attributed mostly to the manufacturing errors
of the minimum hinge height. Common processes such as WEDM have been found
inaccurate for really thin geometries.

• Axial loads, like supported weights in balances, produce a significant effect on
the rotational stiffness. Values can increase up to 311 % in common weighing
applications. The rotational stiffness can be reduced through adding strip-like
regions but stiffening effects can also be encountered above certain lengths. Ground
tilt produces undesired rotation which can be compensated by adjusting the center
of mass of the supported system. The position for the autostatic state displaces
towards the free end of the flexure when compliance is increased.

This work is concentrated on flexure hinges of circular contour. Proof of analytical
expressions is yet to be done for flexure hinges of other contours and results are still
to be compared to experimental results. Expressions that consider the width dependency
can be approximated using 3D finite element models for different geometries. Nonlinear
material behavior is also of importance in the actual performance of very thin hinges. The
precondition for a meaningful study of these effects is the deep knowledge of material
anelastic properties. Effects produced by material imperfections, i.e. at the level of
microstructure, can only be considered by complex modeling, which would require a study
on their own and must be supported by experimentation. For simpler design of weighing
cells, empirical equations that can quantify the rotational stiffness under beam-column
conditions are required to be derived for other geometries. In the same way, expressions
for locating the position of the center of mass still are to be developed. Other various
phenomena that affect the actual performance of flexure hinges in weighing cells, e.g.
lateral vibrations, have not been thoroughly studied. All these topics could prove necessary
for optimizing the performance of weighing cells and simplifying the design of such systems.
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Appendix

A. Loading application

Table A.1: Loading conditions

Load type Representation Parameter Value

Shear force q0
2M

bL

Couple of forces n0
M

bH

Surface force p0
6M

bH2

ϕ (◦)
0 0.5 1 1.5 2 2.5 3

k
ϕ
(N

m
m
/
ra
d
)

18.03
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Shear force

Couple of forces

Surface force

Figure A.1: Rotational stiffness kϕ for different load cases.
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B. Mesh sensitivity analysis

Figure B.1: Local refinements

Table B.1: Mesh parameters.

Parameter Description Value

x1 Elements along the length of zone 1 10− 100
x2 Elements along the length of zone 2 3− 30
x3 Elements along the length of zone 3 1− 10
y12 Elements along the height of zones 1 and 2 2− 10
y3 Additional elements along the height of zone 3 1− 5
s1 Transition of elements along the length of zone

1 towards the center of the hinge
0− 1

s2 Transition of elements along the length of zone
2 towards the center of the hinge

0− 1

AR Limiting aspect ratio 5− 10
z1 Elements along the width of zone 1 by12/hAR
z2 Elements along the width of zone 2 by12/h

′AR
z3 Elements along the width of zone 3 by12/(h+ 2R)

Considerations for the analysis:

• Sampling method: Advanced Latin Hypercube Sampling.

• Sensitivity analysis method: Metamodel of Optimal Prognosis.

• Applied bending moment M = 1 Nmm.

• Geometric linearity assumed.
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Table B.2: Sensitivity indices.

Parameter
COPσx,max

(%)
Sσx,max

COPnodes

(%)
Snodes

Model 88.67 1.000 98.84 1.000
x1 75.06 0.847 32.15 0.325
x2 6.63 0.075 7.99 0.081
x3 0.00 0.000 0.39 0.004
y12 4.24 0.048 66.16 0.669
y3 0.00 0.000 0.26 0.003
s1 22.07 0.249 0.32 0.003
s2 0.00 0.000 0.23 0.002
AR 5.63 0.064 11.34 0.115

240
0

245

σ
x
,m

a
x

1

x1

50

250

s1

0.5

100 0

Figure B.2: Linear regression model for σx,max.

-1
0

0

×106

N
u
m
b
er

o
f
n
o
d
es

1

10

x1

50

2

8

y12

6
4

100 2

Figure B.3: Linear regression model for number of nodes.
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C. Circular contour flexure hinge design equations

Paros and Weisbord (1965), full equation [62]:

kϕ =
2EbR2

3
(2ξ + ξ2)

{[
1 + ξ

ζ2
+

3 + 2ξ + ξ2

ζ(2ξ + ξ2)

]√
1− (1 + ξ − ζ)2 +

[
6(1 + ξ)

(2ξ + ξ2)3/2

]
tan−1

(√
2 + ξ

ξ

(ζ − ξ)√
1− (1 + ξ − ζ)2

)}−1
(C.1)

with ξ = h/2R and ζ = 1 + ξ.

Paros and Weisbord (1965), simplified equation [62]:

kϕ =
2Ebh2.5

9π
√
R

(C.2)

Wu and Zhou (2002) [91]:

kϕ =
EbR2

12

[
2λ3(6λ2 + 4λ+ 1)

(2λ+ 1)(4λ+ 1)2
+

12λ4(2λ+ 1)

(4λ+ 1)5/2
tan−1(

√
4λ+ 1)

]−1
(C.3)

with λ = R/h.

Tseytlin (2002) [88]:

For thin hinges, h/R ≤ 0.07:

kϕ =
Ebh2

16

{
1 +

[
1 + 0.1986

(
2R

h

)]1/2}−1
(C.4)

Lobontiu (2003) [50]:

kϕ =
Ebh3(2R+ h)(4R+ h)3

24R

[
h(4R+ h)(6R2 + 4Rh+ h2)+

6R(2R+ h)2
√
h(4R+ h) tan−1

(√
1 +

4R

h

)]−1
(C.5)

Linß et al. (2017) [47]:

kϕ = kM1Eβbβ
(−kM2)
l β

(2+kM2)
h H3 (C.6)

with βb = b/H, βl = l/H, βh = h/H.
For circular contours, kM1 = 107.9× 10−3 and kM2 = 0.52.
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D. Bending in plane strain

Figure D.1: Pure bending of differential element.

If the dimension in y-direction is small and no pressure loads are applied, the stress
σy = 0 can be assumed. Then, according to Hooke’s law [85], the strains result:

εx =
1

E
(σx − νσz)

εz =
1

E
(σz − νσx)

When a plane strain state is assumed, εz = 0. Then:

σz = νσx

εx =
1

E
(σx − ν2σx)

Substituting σx by the equation of bending stress:

σx =
My

Iz

εx =
1

E
(1− ν2)My

Iz
(D.1)

where Iz is the moment of inertia relative to z. By the definition of a bending beam:

εx = κy (D.2)

where κ is the curvature of the beam. Finally, equaling Equation D.1 and Equation D.2:

κ =
M

EIz
(1− ν2)

Results in the bending differential equation in plane strain.

d2w(x)

dx2 p.strain
=

M

EIz
(1− ν2) (D.3)

where Dp.strain is the flexural rigidity for plane strain:

Dp.strain =
1

1− ν2
EIz =

1

1− ν2
Dp.stress
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E. Model behavior

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure E.1: Mesh adapting to non-ideal geometries. (a) dh; (b) dR; (c) db; (d) dxc; (e)
dx; (f) dy; (g) dθx; (h) dθy. Representations are exaggerated for better visualization.
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Figure E.2: Deviation of kϕ due to geometric deviations.
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Figure E.3: Deviation of kϕ due to material properties deviations.
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F. Sensitivity measures

Derivatives

The most straightforward approach for calculating measures is partial derivative-based.
Indeed the partial derivative of an output Y with respect to an input Xi can be thought
as a mathematical definition of the sensitivity of Y versus Xi [71]. However, some
problems may be encountered with this approach. Since this study is based on numerical
calculations using FEM, the output Y , which corresponds to the rotational stiffness kϕ,
is not described as a function. Then, partial derivatives need to calculated in a certain
point of the input space, which is not trustworthy. Model nonlinearity and parameter
interactions cannot be captured by this measure either.

Si =
∂Y

∂Xi
(F.1)

Sigma-normalized derivatives

A more trustworthy approach is to normalize the derivatives using the input and output
standard deviations σXi and σY . This way, the statistical distribution of each input
is included into the measure calculation so the space exploration problem is reduced.
Nevertheless, interactions and nonlinearity effects cannot be captured.

Si =
σXi∂Y

σY ∂Xi
(F.2)

Standarized regression coefficients

A solution for studies based on numerical calculations is metamodeling, in which the
simulation model is approximated by a simpler statistically fit function that predicts
the output based on the parameter values [71]. A common metamodeling approach
is, for example, linear regression using simulation results as support points. In this
case, sensitivity measures would be based on the regression coefficients b̂Xi , which are
determined by least-square computation. Regression coefficients are often normalized to
β̂Xi , as was done Equation F.2, and sensitivity measures equal β̂2Xi

so that their sum

would equal 1. This approach can still be used for models of low nonlinearity since β̂Xi

are multidimensionally averaged measures.

Si = β̂2Xi
=

(
σXi

σY
b̂Xi

)2

(F.3)

First-order sensitivity indices

An approach for models of any degree of linearity are the variance-based methods.
Variance methods work by decomposing the variance of the output Y into fractions
attributed to the inputs Xi. This is done by using conditional variances VX∼i(Y |Xi),
which are the variances of Y calculated while fixing a parameter Xi to a certain value. It
can be inferred that the smaller VX∼i(Y |Xi), the greater the influence from Xi. To avoid
dependencies on a selected fixed value, the average is used EXi(VX∼i(Y |Xi)) for different
fixed values. Since EXi(VX∼i(Y |Xi)) is the effect caused by all parameters but Xi, the
sensitivity index can be defined as:

Si = 1− EXi(VX∼i(Y |Xi))

V (Y )
=
VXi(EX∼i(Y |Xi))

V (Y )
(F.4)
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This measure cannot capture interactions between parameters. In fact, when used in
highly linear models it equals β̂2Xi

. To capture interactions, the same approach could be
used by fixing multiple parameters at the same time, but this is not practical.

Total effect sensitivity indices

It can be demonstrated that the variance of Y produced by fixing a parameter Xi to a
certain value includes all terms of any order that do not include that fixed parameter Xi

[71]. As such, it can capture interactions between parameter of any order. Then, since all
sensitivity measures should sum 1, the total effect can be defined as:

Si = 1− V (E(Y |X∼i))
V (Y )

=
E(V (Y |X∼i))

V (Y )
(F.5)
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G. Sampling methods

Koshal design

In One-at-a-time (OAT) sampling methods, the number of samples is greatly decreased
by changing the value of only one parameter between consecutive simulations. In its
most basic form, also known as Koshal design for first-order models [60], every variable
take two values, 0 or 1 (normalized), so that in the n + 1-th run, variable Xn has
value 1 and the others 0, meaning that the number of simulations is k + 1. In the
first run, all variables have value 0. Another methods consider that in the n + 1-th
run, variables X1 to Xn have value 1 and the others 0, or, in an expanded form,
include additional k simulations where variables are returned to value 0 in the same way
[71]. These methods demonstrate that if any change occurs in consecutive runs, that
means any variation between Yi and Yi+1, it is only caused by the change in parameter
Xi. The Koshal design was originally used for a second-order model, where parameters
have three levels (values 0, 1 and 2) and interactions between them are also considered [41].

D-Optimal design

Optimal designs are methods based on optimization. A certain optimality criteria
and a model to be fit, either linear or quadratic, are used through an algorithm for
generating the experiment. A D-Optimal design is one that is based on the D-optimality
criteria, which maximizes the determinant of the information matrix X′X, minimizing
the variance of the regression coefficients of the model [3]. This approach is used when
classical designs, like factorial designs, require a great number of samples. The algorithm
chooses an optimal candidate set of possible treatment runs based on the mentioned
criteria before calculations. However, matrices are not truly orthogonal [3].

Factorial design

Stratified sampling methods divide the sample space in various subspaces or strata.
Then, equal number of sample points are selected in each strata. Those points can be
selected either randomly or to lie at particular locations in the subspace. This ensures
the existance of sample points in all divisions of the hypercube [71]. Full factorial designs
are a type of stratified sampling method which divide assign each input parameters
a number of levels n, usually 2 o 3, and all possible combinations between all levels
of all parameters are sampled. Due to that matter, this approach is computationally
demanding but information matrices are orthogonal [3].

Plain Monte Carlo

In this approach, input values of the variable Xi come from a pseudo-random number
generator [86]. This way data points are scattered all over the sample space, which could
be ideal at first view. However, uncontrolled scattering produces non-uniform density
of points. Two problems arise due to this matter: clusters and gaps [71]. Clusters are
concentrations of points in certain regions of the space while gaps are regions without
points at all. To reduce such problems, large number of samples are required.
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Latin Hypercube Sampling

This method ensures that all regions of the space are sampled but also seeks that each
input variable Xi has a value in all portions of its distribution. In a first approach, the
range of known values of an input variable Xi is divided in n intervals of equal marginal
probability 1/n and one value per interval is asigned [55]. Then, values of each variable
are ordered randomly. This way, the output Y is dominated by few components of X,
but undesired correlation between some variables can be observed. An update of Latin
Hypercube Sampling (LHS) to reduce the randomly introduced correlation is proposed by
Florian [24]. In his work, the rank numbers, which are values of i used to generate the
samples, are arranged in the same way as in a pseudo-ordering matrix whose correlation
matrix is very close to the identity matrix, thus, reducing it. In the mentioned methods,
values were chosen from the cumulative distribution function of each variable. This
approach produces samples with a mean close to the desired one but different variances.
Such problems can be corrected with increased number of samples. A more accurate
approach was proposed by Huntington [35]. He proposes the use of the random mean
of each interval as sample value. This way, errors in the mean are eliminated and errors
in the variance are greatly decreased. Another contribution in this work includes an
iterative optimized ordering scheme. The procedure computes the change in the error in
correlation coefficients between the n-th column and each of the previous ones of an initial
unordered sample matrix if a pair of samples of that n-th variable is switched. The pair
of samples with the greatest reduction are then switched, and the process is repeated in
an iterative way as no further improvement is possible or the coefficents are within the
expected accuracy. Then the procedure is repeated for each variable. This approach is
known as the Advanced Latin Hypercube Sampling (A-LHS) method.
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H. Stiffness deviations

Case 1: High accuracy.
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Figure H.1: Deviation of kϕ for different parameter deviations.
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Figure H.1 (Cont.): Deviation of kϕ for different parameter deviations.
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Figure H.1 (Cont.): Deviation of kϕ for different parameter deviations.

Case 2: Conventional accuracy.
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Figure H.2: Deviation of kϕ for different parameter deviations.
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Figure H.2 (Cont.): Deviation of kϕ for different parameter deviations.
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Figure H.2 (Cont.): Deviation of kϕ for different parameter deviations.
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I. Gravity effect in sensitivity measures.

Table I.1: Sensitivity indices for dβgz = ±180◦.

Parameter CoPhigh (%) Shigh CoPconv (%) Sconv

Model 41.87 1.000 24.20 1.000
dh 17.70 0.423 18.86 0.779
dR 5.25 0.130 1.10 0.045
db 7.92 0.172 1.05 0.043
dxc 5.73 0.137 0.44 0.018
dx 7.38 0.176 0.56 0.023
dy 7.09 0.169 0.76 0.031
dθx 8.59 0.205 1.00 0.041
dθy − − 0.43 0.018
dE 8.72 0.208 0.61 0.025
dν 7.80 0.186 1.37 0.057
dβgz 8.70 0.208 0.84 0.035
dβgy 7.51 0.179 0.12 0.005
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J. Center of mass position for autostatic state.
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Figure J.1: Variation of x̄CM due to supported mass m.
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Figure J.2: Variation of x̄CM due to strip length s.
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Figure J.3: Variation of x̄CM due to minimum height hinge h.
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Figure J.4: Variation of x̄CM due to radius R.
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zur geometrischen Gestaltung und Optimierung prismatischer Festkörpergelenke in
nachgiebigen Koppelmechanismen. PhD thesis, Technische Universität Ilmenau,
2015.

[49] Liu, M., Zhang, X., and Fatikow, S. Design and analysis of a high-accuracy
flexure hinge. Review of Scientific Instruments 87, 5 (2016), 055106.

[50] Lobontiu, N. Compliant Mechanisms: Design of Flexure Hinges. CRC Press, Boca
Raton, 2003.

[51] Lobontiu, N., Paine, J. S., Garcia, E., and Goldfarb, M. Design of
symmetric conic-section flexure hinges based on closed-form compliance equations.
Mechanism and Machine Theory 37, 5 (2002), 477–498.

[52] Lobontiu, N., Paine, J. S. N., Garcia, E., and Goldfarb, M. Corner-Filleted
Flexure Hinges. Journal of Mechanical Design 123, 3 (2001), 346.

[53] Lu, Y. Rigidity analysis of elliptic flexible hinges. In 2013 2nd International
Symposium on Instrumentation and Measurement, Sensor Network and Automation
(IMSNA) (2013), IEEE, pp. 1064–1066.

[54] Marangoni, R. R., Rahneberg, I., Hilbrunner, F., Theska, R., and
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