
PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ
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Abstract

Over the time, the development of the digital design has increased dramatically and

nowadays many different circuits and systems are designed for multiple purposes in

short time lapses. However, this development has not been based only in the

enhancement of the design tools, but also in the improvement of the verification tools,

due to the outstanding role of the verification process that certifies the adequate

performance and the fulfillment of the requirements. In the verification industry, robust

methodologies such as the Universal Verification Methodology (UVM) are used, an

example of this is [1], but they have not been implemented yet in countries such as Peru

and they seem inconvenient for educational purposes.

This research propose an alternative methodology for the verification process of

designs at the industry scale with a modular structure that contributes to the development

of more complex and elaborated designs in countries with little or none verification

background and limited verification tools. This methodology is a functional verification

methodology described in SystemVerilog and its effectiveness is evaluated in the

verification of an AES (Advance Encryption Standard) encryption module obtained from

[2]. The verification framework is based on a verification plan (developed in this

research as well) with high quality standards as it is defined in the industry. This

verification plan evaluates synchronization, data validity, signal stability, signal timing

and behavior consistency using Assertions, functional coverage and code coverage.

An analysis of the outcomes obtained shows that the AES encryption module was

completely verified obtaining 100% of the Assertions evaluation, 100% of functional

verification and over 95% of code coverage in all approaches (fsm, block, expression,

toggle). Besides, the modular structure defines the intercommunication with the Design

only in the bottom most level, which facilitates the reuse of the verification framework

with different bus interfaces. Nonetheless, this unit level verification framework can be

easily instantiated by a system level verification facilitating the scalability. Finally, the

documentation, tutorials and verification plan templates were generated successfully and

are aimed to the development of future projects in the GuE PUCP (Research group in

Microelectronics). In conclusion, the methodology proposed for the verification

framework of the AES encryption module is in fact capable of verifying designs at the

industry scale with high level of reliability, defining a very detailed and standardized

verification plan and containing a suitable structure for reuse and scalability.
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Introduction

The Electronics field has performed an outstanding role in the society development with several

contributions such as the creation of multiple devices to fulfill people’s needs and improve their

living conditions. Currently, in this industry many devices are developed for different

applications in short time lapses. Internally, these devices are constituted by digital systems each

of which groups a great variety of integrated circuits. These circuits have been an essential factor

in the electronics evolution which has remained over the time according to what Gordon Moore

predicted: the density of transistors per square inch in an integrated circuit will increase yearly

[6]. The current integrated circuits overpass the million of transistors per square inch, several

input/output ports, and a multitasking performance in a single chip. Hence, the complexity level

of numerous designs is so high that the behavior under any set of stimuli is greatly unpredictable.

In the industry, every design is submitted to an exhaustive verification process before its

massive production since those circuits are normally involved in some critical areas such as

medicine, information security and the stock exchange. In these areas, any failure could cause

severe consequences, some of them are: money loss, information leak and death. The verification

process mainly consists of a comparison between the design requirements and the actual behavior

of the circuit under any possible condition. Besides, this process can widely vary among the

different designs because of the functionality and the requirements.

In the communication systems, the encryption modules are in charge of guaranteeing the

information integrity, protecting the information transmissions from any possible attack.

Therefore, the design of those modules must be tested under very high verification standards to

ensure its correctness and reliability.

This document gives a deeper perspective of the verification, specifying the types and its

differences, highlighting the convenience of the functional verification employment.

Furthermore, a complete functional verification framework is developed for an AES 1(Advance

Encryption Standard) encryption module which is considered a design at an industry scale.

1The AES is described in detail in section 2.1
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Chapter 1

Verification basics and problem

formulation

1.1 Verification fundamentals

In practice, the verification process is done by the verification framework which generates input

stimuli and monitors output behavior of the digital system that is normally known as the Design

under verification (DUV). These tasks performed by the verification framework allow the

accomplishment of a comparison between the design requirements and the actual behavior of a

given design. Figure 1.1 illustrates the interaction enclosed by the DUV and the verification

framework.

Figure 1.1: General verification process functionality

There are different verification types, each of them employs different techniques and implies

its different benefits and drawbacks. In the following sections, a deeper approach of the most

outstanding verification types used worldwide is presented.

In the first place, the direct verification is based in the application of different stimuli sets to the

DUV, these stimuli sets must consider every possible case otherwise the given design could only
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get partially verified which means the correctness of its behavior will be restricted to particular

conditions. The principal advantage of this verification type is that it requires relatively little

mental effort and short time lapses to generate each test. On the contrary, the excessive amount of

time required to reach the verification completion is its main disadvantage since this computational

time increases as high as the design complexion extends [3].

In the second place, the formal verification consists in the search of a mathematical expression

set equivalent to a given design behavior. The principal benefit is that it only requires one test for

the verification completion. However, the development of this test demands a great deal of mental

effort and much more time than a direct verification test [7].

Finally, the functional verification involves random constraint stimulation which allows a

performance enhancement in the simulation due to 3 main advantages. First, the coverage of

different stimuli is done randomly which causes this process to be faster and more robust than in

direct verification. Second, the amount of time and mental effort to generate a test are much less

than in formal verification. Finally, the computational time to reach verification completion is

dramatically less than in direct verification for high-level and medium-level designs. The only

disadvantage refers to the fact that only for the generation of the first test the functional

verification requires quite more time than the direct verification.

1.2 Problem description and formulation

In the digital design projects in this country, the direct verification has been used in the great

majority of the time and in a reduced minority the formal verification instead. However, those

verification approaches are certainly restrictive in the complexity level they can handle. This idea

is clarified in this section through a comparison between the verification approaches previously

described.

Generally, the low-level designs and some medium-level designs are characterized by a

reduced number of input/output ports and a very predictive behavior. Consequently, there are

only few or not so many different stimuli cases and high probability of finding equivalent

mathematical expressions for their behavior. Those aspects contribute to the feasibility of using

direct verification or formal verification. On the other hand, high-level designs and many

medium-level designs normally implement many different input/output ports and a complex

non-predictive behaviors. Hence, the number of possible stimuli cases increases drastically, the

computational time required for the verification completion using direct verification becomes

excessively high and there is enormous complexity on finding an equivalent mathematical
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expression for the design behavior. This situation evidences the need for the implementation of a

verification type in order to develop projects at a industry scale and overcome the limitations of

the direct and formal verification [3]. This verification approach needed must be capable of

guaranteeing time efficiency and high level of reliability in the verification process of

medium-level and high-level designs, otherwise the projects scope will be restricted due to the

lack of an adequate verification tool in this country.

1.3 Verification evolution and contextualization

The hardware design languages (HDL) have greatly contributed to the development of digital

design since their creation. In the late 90s Verilog became the worlds most used HDL for

simulation and synthesis. However, this HDL had simple constructions for verification which

caused trouble to handle the verification process since the designs would constantly increment

their complexity and size. This circumstances promoted the development of hardware verification

languages (HVL) such as Openvera and e [3].

Shortly after, the developers on this area realized that the time utilized in both processes

design and verification were close to each other which was denominated as the verification gap.

The existence of 2 different languages for design and for verification and the rapidly development

of the integrated circuits triggered the productivity crisis in this area [8]. In favor of finding the

remedy for this crisis, Acellera, company of EDA, and external volunteers developed an HVL

named SystemVerilog based on Openvera [3]. SystemVerilog could handle both design and

verification, with consistent syntax and semantics, and the incorporation of object oriented

programming (OOP) techniques. Hence, this HVL remarkably contributed to the overcoming of

the verification gap and the productivity crisis [9]. Since its development, SystemVerilog has

been used as a standard in the digital design projects although it has involved some challenges for

the design and verification teams at first. A more specific study about these challenges and their

impact is done in [8].

Currently, the universal verification methodology (UVM), which is based on SystemVerilog,

is widely used in the industry for the verification process of most of the designs that are developed

in the daily routine such as [1]. However, the employment of SystemVerilog remains mostly

in the research area, an example of this is presented in [10]. This situation ensures the present

research’s viability in the use of SystemVerilog and the complexity level of the proposed design

(AES encryption module) because its complexity level is similar to the one in [10]. At this point,

it is important to highlight the fact that both works utilized functional verification and this is due
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to the fact that in the countries where these works were developed the direct verification over the

time has been relegated only for educational purposes.

In Peru, the GuE (Grupo de Microelectrónica) that operates in PUCP (Pontificia Universidad

Catlica del Perú) can be considered as a reference in the digital design area. GuE is constituted by a

group of people with research and training purposes in Microelectronics. Although GuE represents

a high standard of development in this country, the direct verification has been employed in most of

the projects GuE has developed since the beginnings. As a consequence, the scope of the projects

has been restricted and the verification process has represented a very time-consuming activity.

The table 1.1 presents the verification method used in 7 thesis works developed within the last

9 years by GuE members in PUCP. Based on this table, it can be concluded that in the 100% of

these thesis works the direct verification was employed to guarantee the validity of each design.

However, not all the possible cases were tested during the simulation which reduces the reliability

of this verification method. Consequently, under particular stimuli conditions any of those designs

can experience failures. For this reason, the direct verification is not the best option to consider in

the verification process of such designs though its employment is massively extended among the

works in this country.

1.4 Importance and justification

The verification process is critical to the integrated circuit development since it is in charge of

granting the validity and reliability level to any given design. Any failure in the verification

method could end up in the erroneous validation of a defective design. Moreover, this design can

even be massively produced and marketed before the error is identified which could cause serious

consequences. Three of these consequences are listed below to illustrate the importance of the

verification process.

• An international company can risk its reputation and lose its customers’ confidence if one

of its devices presents a failure in one of the internal circuits that was not detected during

the verification process.

• Lives can be lost if any integrated circuit fails in a device that perform critical tasks in the

medicine field.

• Valuable information related to banking or stock exchange can get seriously damaged in

case one error in any circuit in the system shows up due to the fact that not all conditions

were simulated for every circuit.
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Table 1.1: Verification method used in 7 different thesis works developed in PUCP
Works Year Verification Description

[11] 2008 For the simulation of the entire system which includes the pre-processing
modules, neural network and the post-processing modules, it was only
employed one image stored in memory that corresponded to the digit 7.
It is advisable for a robuster verification to test all 10 possible cases of
images and evaluate delays and corner cases.

[12] 2008 The simulation of the complete system constituted by the direct digital
synthesizer (DDS) and the audio module consisted of the assignment of
a constant phase increment, consequently the wave generated in the first
block was always the same. In order to get a higher level of reliability in
the verification process, a random phase increment between the 232 values
should be selected in every different test.

[13] 2010 A function with 2 inputs and only 1 output was used to train the ANFIS
system and get the precedent and consequent parameters. Besides, for
the validation of this training, only 20 random values were employed.
For a more solid verification a better option would be the employment
of different functions in the training process and the use multiple random
values and corner cases.

[14] 2011 For the validation of the FME quarter pixel architecture, it was used
a MATLAB script to compare the obtained results. Moreover, 14
different sequences of distinct resolution (HDTV, OCIF or CIF) were
utilized. A more complete verification process would have considered
the stimulation of multiple sequences of distinct resolution with a random
pixel distribution and the evaluation of delays.

[15] 2012 The verification process of each of the stages and FIR filter architecture
modules consisted in the used of only one image with an OVGA
resolution. A more consistent verification implies the employment of
multiple random images with distinct resolutions and the consideration
of delays between the images.

[16] 2013 The complete simulation of the system was based on the direct connection
between the transmitter output and the receiver input, so the input bit-
stream must be the same as the output bit-stream. The stimulus for the
system was a random bit-stream of 4096 bits which was verified sample
by sample. In order to get a robuster verification, it is advisable to employ
multiple random bit-streams, considering corner cases and delays.

[17] 2014 The verification process of the conjugate gradient method implementation
and the enhancement consisted of several tests with different sizes
(powers of 2) between 8 and 512. Specifically, there were evaluated 10
tests of each size for a total of 70 tests. A complete verification would
imply a stimulation with a greater number of tests for each size which
must be selected randomly.
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Another important point to highlight is that in Peru the digital design development is not based

on the industry, it is restricted to the people and groups with research purposes that are reduced in

number. Besides, in many of these groups there are not all the necessary tools (software, hardware

or knowledge) to convert designs into functional integrated circuits. An adequate verification

method is normally one of the missing tools for the validation of medium-level and high-level

projects. Also, this method must be replicable and scalable so it can be used for the verification

of any design even with industrial standards. Hence, this thesis work is aimed for the use of

functional verification and its solid features that make it ideal to solve the problems and overcome

the obstacles before mentioned in contrast to the traditionally used direct verification. Among

these features, the most outstanding is the sufficiency in parameters of computational time and

reliability in design at industrial scale such as [10] and [1]. The superiority of the functional

verification over the direct verification is clearly shown in the Figure 1.2, where a comparison

between them in terms of computational time is done.

Figure 1.2: Coverage progress comparison between the functional verification and direct
verification in terms of computational time (Adapted from [3])

Finally, it is required to set a precedent that demands a high verification level so the

methodology employed can be reproduced in designs of all levels from low to high. For this

reason, the design chosen to develop a pioneer functional verification environment is the AES

encryption module. In general, the encryption modules require high standards of verification

because of their complex structure and their common application on information security.

Moreover, the AES is currently one of the most reliable encryption modules and it used

worldwide [18].
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1.5 Objectives

In general, the main objective of this thesis work is to generate a functional verification

framework for an AES encryption module that uses the Wishbone bus interface which is in

charge of performing the communication protocols between the DUV and the verification

framework. Also, there are 4 specific objectives that this thesis work is going to cover and are

listed below:

• Implement a functional verification environment described in SystemVerilog and based on

all the specifications contained in the verification plan elaborated in the third chapter of this

document.

• Define a functional verification methodology that can be reproduced in any given design of

similar or lower complexity.

• Elaborate a verification plan template with technical quality standards similar to the actual

industrial standards so it can be employed as a reference in any future project in PUCP.

• Write documentation about the study of SystemVerilog and develop simple and concise

tutorials of its application so it can be easily utilized in any verification process.
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Chapter 2

Approach to the functional verification

and the AES encryption module

In this chapter, important concepts and basic notions about functional verification and the AES

encryption module are explained in detail in order to provide an adequate comprehension of the

solution presented in next chapters. Conveniently, this chapter has been divided in two different

sections. the first section is related to the AES encryption module in general, that is to say its

functionality, its algorithm and its requirements in order to identify the AES features and

properties. The second section covers the functional verification methodology and the modular

structure it employs as well as the behavior and usefulness of every module. Besides, in this

second section the concepts of Functional Coverage and Assertions are described, these

concepts constitute the base of the functional verification methodology.

2.1 Analysis of the AES encryption module

2.1.1 AES Algorithm

In 1997, the National institute of standards and technology (NIST) of the United States of America

(USA) announced that a contest would take place to choose an algorithm as the new encryption

standard which would be denominated as the AES (Algorithm encryption standard). For this

reason, Joan Daemen y Vincent Rijmen developed an algorithm that they called Rijndael and

presented it to the contest. Once the contest finished, this algorithm was chosen as the winner and

ever after has been known in the industry as the AES [18].

The AES is a symmetric key algorithm in charge of the cryptographic processing of 128-bit

data blocks with cipher keys that are multiple of 32 bits between 128 bits and 256 bits. For the
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encryption process the inputs are the original text and the cipher key and the output is the ciphered

text. On the contrary, for the decryption process the inputs are the ciphered text and the cipher

key and the output is the original text. In each case the inputs and outputs are considered as

one-dimensional arrays of 8 bits (1 byte) [18].

The AES is based on the application of a sequence of direct or inverse transformations for

the encryption and decryption, respectively. However, the application of these transformations are

not done over the data block, this block is first converted into a state block which is defined as

a rectangular array with 4 rows and a variable number of columns (Nb) that is calculated by the

expression 2.1. Consequently, the state block is a 4 X 4 rectangular array [18].

Nb =
Data block size (bits)

32 bits
=

128 bits
32 bits

= 4 (2.1)

Both the original text and the ciphered text are defined as one-dimensional and are represented

as: P = P0P1P3...P4Nb−1 y C = C0C1C3...C4Nb−1, respectively; where the sub-index ’0’

denotes the first byte and ’4Nb − 1’, the last byte. The state block is denoted as: ai,j , 0 6 i <

4, 0 6 j < Nb, where i is related to the row number and j, to the column number. In Figure 2.1 it

is described how the byte assignation is done in the pre-processing stage to generate the state block

as well as the byte assignation for the ciphered data block during the post-processing; a similar

byte distribution can be deduced for the decryption process [18].

Figure 2.1: Byte assignation in the pre and post processing

Similarly, the input key is a one-dimensional array and is denoted as following:

Z = Z0Z1Z3...Z4Nb−1. However, before the processing it is mapped onto a rectangular array

with 4 rows and a number of columns denoted by Nk and equal to the key length divided by 32.

This two-dimensional array of the cipher key is denoted as: Ki,j , 0 6 i < 4, 0 6 j < Nk. The

byte distribution of the input key onto the cipher key is defined in Figure 2.2.
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Figure 2.2: Byte assignation to the cipher key

Specifically, the encryption process is divided into 4 stages and those are: the expanded key

generation (KeyExpansion function), the initial key addition (AddRoundKey function), the

application of Round transformation Nr - 1 times, and the application of FinalRound

transformation. The parameter Nr depends on the data block length and the input key length.

Figure 2.3 shows high level flow diagram of the general encryption process using the AES

algorithm [18].

Figure 2.3: High level flow diagram of the AES encryption process

The sub-transformation KeyExpansion uses the key scheduler of the AES and generates the

ExpandedKey array derived from the cipher key and constituted by Nr + 1 sub-keys that are used

in each Round transformation [19]. The parameter Nr is defined according to the data length,

so for this case it is recommended Nr = 10. The AddRoundKey sub-transformation takes as

input the two-dimensional state array and a sub-key of the ExpandedKey array, then it modifies

the state array by combining each of its bytes with the correspondent sub-key byte through a bit-

to-bit XOR operation. This operation is possible due to the fact that both arrays are the same size.

A comparison between the flow diagrams of the Round transformation (a) and the FinalRound

transformation (b) is shown in Figure 2.4 in order to highlight that the only difference between

them is the employment of the MixColumns function [18].
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(a) (b)

Figure 2.4: High level flow diagrams of the Round transformation (a) and the FinalRound
transformation (b).

In the next paragraphs, a deeper approach of the functions mentioned before on the flow

diagrams is done. In the first place, the SubBytes function consists of replacing each byte of the

state array by the correspondent byte from a two-dimensional array of the same size denominated

S-box. This array is generated from the application of two successive functions: a multiplicative

inversion operation of finite field GF (28) : g(a) which provides the non-linearity to the process

and an invertible affined transformation: f(a) which decreases the vulnerability to attacks based

on mathematical properties. As a consequence, the calculus of the S-box values can be done as

follows: S − box[a] = f(g(a)). Figure 2.6 describes the effect of the application of the SubBytes

function to the State array [18].

Figure 2.5: SubBytes application effect over the State array

In the second place, the ShiftRows function is based on a cyclic byte transposition in every

row with different offsets. These offsets are established according to many probabilistic studies

about the possible attacks that can occur. Figure 2.6 describes the effect of this function over the

State array [18].

12



Figure 2.6: ShiftRows function effect over the State array

Finally, the MixColumns function consists of the application of an invertible linear

transformation over the bytes in each column of the State array. Every State array column is

considered a polynomial of GF (28) and is multiplied in modulus by the non-reducible

polynomial x4 + 1 with the fixed polynomial: C(x) = 3x3 + x2 + x + 2. This operation is

equivalent to the multiplication of every State array column by the fixed matrix denominated as

C. In Figure 2.7, it is shown the MixColumns effect over the State array [18].

Figure 2.7: MixColumns effect over the state array

2.1.2 Design under verification

The AES encryption module that is used as the DUV (Design Under Verification) is specified in

[2] and its source code was taken from the Opencores virtual repository, which is a foundation in

favor of the easy access to open-source hardware designs. The communication between the DUV

and the verification framework is performed by a Wishbone bus interface.

The Wishbone bus interface is a hardware module that implements a SoC (System on Chip)

architecture and is defined as a portable interface with IP cores which means it does not require

any permission or licence to use it [4]. In general, the Wishbone bus interface performs the

communication according to the Master-Slave scheme and the data is sent in blocks through a

handshake process with a maximum size of 64 bits [4]. In this thesis work it is employed a

Wishbone controller adapted for only one master and one slave with data transmission in blocks

of 32 bits, and it is based on the architecture obtained from [20]. A deeper approach of this

hardware design is done on the first section of chapter 3.
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2.2 Functional verification overview

2.2.1 Direct verification methodology

Traditionally, the direct verification has been employed in the verification process of any given

design although its use has decreased over the time. This verification type implies the definition of

a verification plan containing a list of tests so that each test can cover different corner cases, specific

requirements or single properties and features. Also, the stimuli vectors need to be established for

each test on this verification plan. Once the verification is complete, the simulation starts with the

first test and the waveforms and output files are analyzed manually. When the simulation finishes,

if the test was successful the next test should take place and the process start again. Finally, the

design is fully verified only if all tests defined in the verification plan are successful [3].

This methodology is based on an incremental and progressive coverage so it only reaches the

100% of coverage when all possible cases are tested. For this reason, if the complexity of the

design doubles, then the computational time of the simulation increases, greatly. As a

consequence, this methodology can be successfully used with low-level designs which have

reduced number of input/output ports and a predictive behavior such as: sequence detectors,

adders and memory blocks. On the other hand, if this methodology is applied with medium-level

or high-level designs which have multiple input/output ports and non-predictive behaviors, it can

be easily deduced that its use is not feasible. For example, for the verification of a design with 10

1-bit inputs and 100 registers, using an average stimulation speed of 1000 stimuli vectors per

second, the computational time required can be calculated as in (2.3).

Tcomputational =
210 × 2100cases
1000cases/s

= 4, 1× 1022years (2.2)

The previous calculus shows the limitation of the complexity level this methodology can handle.

For designs of similar or higher complexity it is necessary to employ another methodology with

time efficiency and high reliability.

2.2.2 Functional verification with random constraints

In the industry this type of methodology is greatly used for most of the designs from low to high

level of complexity. In view of the fact that it allows fast error identification and considerably

lower computational time to reach the full coverage in comparison with the direct verification [3].

The functional verification has 2 important metrics to measure the effectiveness of a verification

framework and those metrics are: Code Coverage and Functional Coverage. The first one, code
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coverage, is related to the percentage of the total lines that have been executed until a given

moment and is important because during the simulation not all lines are executed due to

conditional statements, which allow the execution of certain lines according to the logical value

of an expression [5]. The second one, functional coverage, measure the proportion between the

cases that have been exercised over the design until a given moment and the total cases. This is

important because despite the fact that there are numerous cases, they can be grouped in reduced

numbers according to the effect they produced in the design, thereby it is crucial to measure how

many different cases are left to be exercised [3].

The functional verification methodology can be summarized on the next stages: random

stimuli generation, driving direction of the stimuli to the DUV, output data monitoring, correct

output data prediction according to a golden model (Reference model which implements the ideal

behavior of the DUV) , comparison between the predicted and the actual results, progress

evaluation according to the metric before described, and the alert generation in case of

malfunctioning in the verification framework or its interface with the DUV which is normally

done through Assertions. Each of these stages presents some specific details related to its

implementation and usefulness, those details are listed below.

• Initially, the stimuli cases are restricted to the valid cases for the design and are group

according to their effect on the design behavior. These groups of cases occur based on a

probabilistic distribution that is set before the simulation starts and can be altered in order

to evaluate specific cases or reach the maximum percentage of code coverage and

functional coverage [21].

• Driving the stimuli vector to the DUV and Monitoring its outputs are processes that should

be synchronized with the timing control of the DUV ports [3].

• The Assertions are monitoring tools to identify error occurrence during the simulation, it

should be highlighted that an effective verification framework must employ assertions in

favor of a constant performance evaluation of the DUV and the verification environment

working together. Time efficiency and productivity can be affected if assertions are not

utilized [22].

• For the verification process it is compulsory to own an ideal model of the behavior that is

implemented by the DUV so both results can be compared at every stimulation during the

simulation time [9]. This ideal model or golden model is not supposed to be a hardware

implementation previously validated, but usually a software development implementing
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desired behaviors [3].

2.2.3 Standard structure of the verification framework

The functional verification methodology demands a modular structure for the verification

framework in which each module performs an specific task that could be expendable or

indispensable according the DUV. In fact, in most of the low-level designs and some particular

cases of the medium-level designs, not all the modules are required since some of them are

considered optional. Besides, the modular structure is not definitive, it can employ different

schemes and is highly adaptable to the particular features of a given design. This is motivated on

the fact that a particular scheme can be the most effective for a design type, but it can present

deficiencies if it is applied to other design type. This section will describe the standard modular

structure used in the industry for the implementation of a verification framework. This standard

structure is normally divided into 3 modules: Test, Environment and Functional Coverage.

However, the environment module is sub-divided into 7 different sub-modules and those are:

Generator, Agent, Scoreboard, Checker, Driver, Assertions and Monitor, the interconnection of

these sub-modules is presented in Figure 2.8 [3].

Figure 2.8: Standard modular structure of a functional verification environment (Adapted from
[3])

The stimulation driven to the DUV is based on transactions, this is to say that the stimulation

exercises one behavioral condition or a particular case at a time, and all data and configurations of

an stimuli vector are specified in each transaction. Hence, Transactions are pieces of information

that flow through most of the modules and sub-modules in the framework structure. Since all these

modules and sub-modules have different features and perform different tasks, a general description

with the most important aspects of each of them is presented below.
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• Test: it has the highest hierarchy level and manages the the other 2 modules, also in it it is

defined the general configuration of the complete environment.

• Generator: it generates randomly the transactions based on the random constraints and sends

them to the agent sub-module.

• Agent: it receives the transactions from the generator sub-module, divides the transactions

into single commands and sends them to the Driver and Scoreboard sub-modules.

• Scoreboard: it receives the commands from the Agent and predicts the appropriate results

based on these commands and then sends the results to the checker sub-module.

• Checker: it receives the commands from the Monitor sub-module and the results from the

Scoreboard sub-module and then compares both results in order to evaluate the success of

the transaction.

• Driver: it has a direct connection with the DUV and receives the commands from the Agent

sub-module, also it drives the appropriate signals to the DUV in the correct moment

according to the commands previously received that refer to specific low-level tasks such

as: Read, Write, reset, etc.

• Assertions: it monitors constantly the communication between the DUV and the verification

framework, the assignment of valid values to the input ports of the DUV and the adequate

reception of the DUV output values [22].

• Monitor: it has direct connection with the DUV and receives the output values that come

from the DUV, grouping them into commands that are later sent to the Checker sub-module.

• Functional Coverage: it measures the progress of the transactions and stimuli sequences in

favor of the completion of all requirements specified in the verification plan. At the end of

the simulation, a report of the general performance is generated. [5].

2.2.4 Working methodology

The implementation of the functional verification framework which is the main objective of this

thesis work has been generated following the next methodology in order to the set the adequate

sequence of steps to successfully accomplish this objective.

• RTL analysis: inspection of the AES encryption module to determine the features and

properties of the design, identify the requirements and comprehend its logic behavior over

the time.
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• Elaboration of the verification plan: setting the most important properties to verify, define

all critical conditions and corner cases, determine the specific points where to use the

assertions and the type of transaction that is required as well as the minimum level of

functional coverage necessary.

• Implementation of the functional verification environment: create each of the modules and

sub-modules of the modular structure, describing them in SystemVerilog and building all

necessary internal interconnections.

• Verification process simulation: interconnect the DUV and the functional verification

framework so they can be simulated together.

• Outcome evaluation: Compare the level of functional required and the actual level

obtained, examine the results of all assertions during the simulation time and determine if

the verification accomplished all the objectives described in the verification plan.

• Design Validation: Generate the final report containing the results of the verification and the

level of reliability of the general process.
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Chapter 3

Elaboration and implementation of the

functional verification framework

3.1 Verification plan

3.1.1 Signal layer

The DUV requires a 128-bit key and 128-bit input data so the encryption/decryption process can

be successfully done. For further comprehension a complete list of the DUV input/output ports

is presented in Table 3.1. In addition, a detailed inspection of the DUV code and architecture has

shown important specifications that are listed below.

• The S-box sub-module is implemented by circuitry, discarding the option of using a memory

block containing defaults values.

• The design internally implements 3 Finite State Machines (FSM) which are distributed

among the SubBytes, Keysched and MixColumn sub-modules.

• The DUV architecture does not implement the encryption/decryption process according to

a pipeline methodology, where some tasks are performed in parallel. On the contrary, the

process of a previous data block must finish before the next data block can be processed.

The Wishbone bus interface allows the communication between the DUV and the verification

framework and as a consequence it has 2 different signal groups. The first group is used for

the interaction with the DUV input/output ports considering the appropriate synchronization and

timing. The second group is employed to interact with the verification framework according to the

wishbone handshake protocol. Moreover, all signals in this second group are listed Table 3.2.
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Table 3.1: Input/Output ports list of the DUV [2]
Signal Direction Length (bits) Description

clk Input 1 System clock
reset Input 1 System reset
load i Input 1 Data load indicator

decrypt i Input 1 Encryption/Decryption indicator
data i Input 128 Input data (Original text or ciphered text)
key i Input 128 Encryption key

ready o Output 1 Operation completion indicator
data o Output 128 Output data (Ciphered text or original text)

Table 3.2: Wishbone controller input/output ports [4]
Signal Direction Length (bits) Description

clk Input 1 System clock
reset Input 1 System reset

wb stb i Input 1 Slave/Master indicator
wb dat i Input 32 Input data
wb adr i Input 32 Input address
wb we i Input 1 Writing enable
wb cyc i Input 1 Indicator of bus cycle validation
wb sel i Input 4 Not utilized
wb dat o Output 32 Output data
wb ack o Output 1 Acknowledge

It is important to mention that this hardware module is used in this verification framework as

glue logic which means it can be considered as ideal with no need to verify its behavior and is only

used as an interface so the DUV and the verification framework can work together.

The handshake protocol implemented by the Wishbone bus interface is described in detail in

Table 3.3. Besides, it is important to highlight that the lower layer on the verification framework

should implement an adapter to connect the driver and monitor with the DUV. This adapter must

perform accurately the handshake protocol in order to avoid any synchronization or

interconnection problem. A diagram of the adapter implementation is presented in Figure 3.1.

Table 3.3: High-level handshake protocol of the Wishbone bus interface [4]
Order Involved signals Description

1 clk/reset Bus synchronization
2 wb stb i/wb we i/wb cyc i Bus write enabling
3 wb dat i/wb adr i/wb ack o Control register transmission
4 wb dat i/wb adr i/wb ack o Transmission of the input data in 4 32-bits blocks
5 wb dat i/wb adr i/wb ack o Transmission of the cipher key in 4 32-bits blocks
6 wb stb i/wb we i/wb cyc i Bus read enabling
7 wb dat o/wb adr i/wb ack o Wait for the process completion
8 wb dat o/wb adr i/wb ack o Reception of the cipher key in 4 32-bits blocks
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Figure 3.1: Diagram of the interconnection between the DUV and the functional verification
environment

3.1.2 Stimuli sequences

In general, the stimuli sequences refer to the different test types that can be applied to the DUV

according to its features and specifications. For the AES encryption module, 2 different stimuli

sequences have been defined and are described in Table 3.4.

Table 3.4: Stimuli sequences for the AES encryption module
Sequence code Description

Variant data The input data and cipher key are generated randomly in order to verify
the fact that the encryption and decryption process should work for any
given pair of input data and cipher key.

Invariant data Only the cipher key is generated randomly while the value of the
input data remains the same during a pre-established time period. The
objective of this test type is the verification of the effectiveness in the
encryption and decryption process for multiple keys using the same data.

3.1.3 Validation mechanism

The Environment module of the verification framework is composed by a Scoreboard sub-module

which is in charge of predicting the correct result based on the current stimuli vector. Hence, it

requires a golden model, in other words, a model that implements the expected behavior of the

DUV with no errors. At the industry, this model is normally a piece of software described in a

programming language such as C/C++ or a system description language such as SystemC. For this

reason, it should be developed an adapter between the HVL (in this case SystemVerilog) and the

golden model, so it can be correctly instanced in the verification framework.

The golden model employed in this thesis work is an adaptation in C/C++ of the SystemC

model contained in the AES encryption module file downloaded from the OpenCores online

repository [2]. Furthermore, the interconnection between this C/C++ model with the verification
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framework in SystemVerilog has been possible due to the employment of the Direct

Programming interface (DPI) from SystemVerilog. The DPI allows a SystemVerilog model to

call any function or construction from a foreign language such C/C++ and some others. In

particular, the DPI-C plays the roll of an adapter between C/C++ and SystemVerilog [3].

A significant aspect to point out is that the golden model employed presents some limitations

since it is not a piece of hardware, on the contrary it is software based. An analysis of the golden

model has encountered 3 main limitations in contrast to the DUV and are presented below.

• Constant arrays with default values are used to perform operations in the SubBytes and

MixColumn sub-modules.

• There are two functions per sub-transformation, one for the encryption process and another

for the decryption process in contrast to the DUV behavior with only one sub-module per

sub-transformation.

• The decryption process is based on a flow diagram different from the one defined by the

AES standard in [2].

3.1.4 Coverage metrics

Functional coverage is a metric of verification effectiveness and it involves a report of all the

requirements (covered by cover-points/cover-groups and assertions) defined for a given DUV

which specify a property or a particular feature of the design such as signal timing, response time,

signal toggle, etc. In addition, this requirements are assigned with a requirement code label so it

can be easily identified in the functional verification report. Furthermore, the type of verification

used to cover the requirement and the priority are defined for every requirement along with the

requirement code. Table 3.5 presents the complete list of requirements for the AES encryption

module.

Another useful metric is the Code coverage and it measures how much of the code in the

DUV has been exercised by the functional verification framework. Most of the software tools

for verification and design present the code coverage report at the end of simulation. Generally,

this metric is divided into 5 different types and each of these types has particular methodologies

to test the performance in the simulation. In Table 3.6, those types are listed along with their

description and the minimum percentage ratio expected to be reached during the simulation. It is

important to notice that at the industry the standard percentage ratio for all types of code coverage

is between 95% and 100%, so in order to define a functional verification framework capable of

handling designs at industry scale, this thesis work takes this standard as a requirement.
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Table 3.5: Requirement specifications of the DUV
Requirement Description Validation Priority

code type
load i val After the posedge of load i, it must not occure a

new posedge of load i, before the DUV process
completeness

Property 1

data i val If load i is High, input data must only be 1s or
0s, No Xs or Zs

Property 1

key i val If load i is High, key i must only be 1s or 0s, No
Xs or Zs

Property 1

data o val If ready o is High, output data must only be 1s or
0s, No Xs or Zs

Property 1

data i stb data i must remain stable after the posedge of
load i, until the negedge of load i

Property 1

key i stb data i must remain stable after the posedge of
load i, until the negedge of load i

Property 1

data o stb data o must remain stable after the negedge of
ready o, until the posedge of load i

Property 1

decrypt i stb wb decrypt o must remain stable until the
posedge of ready i

Property 1

dti adr seq data adr must change its value according to a pre-
established sequence during the simulation

Property 1

dto adr seq data o adr must change its value according to a
pre-established sequence during the simulation

Property 1

kyi adr seq key adr must change its value according to a pre-
established sequence during the simulation

Property 1

ready o tm ready o must only be High during 1 clock cycle Property 1
load i tm load o must be in High just during 1 clock cycle Property 1

time out tm The time limit between a posedge of load i and a
posedge of ready o is 500 clock cycle

Property 2

fsm stuck cst None of the FSM used in the AES module should
get stuck for any stimuli vector

Property 3

data i cvr data i must cover at least 100 value in every sub-
range of the 128 sub-ranges

Cover-point 2

key i cvr key i must cover at least 100 value in every sub-
range of the 128 sub-ranges

Cover-point 1

case stim cvr Both stimuli sequences must be covered at least
40% of the time, the least probable to occur

Cover-point 2

decrypt cvr decrypt i should cover both cases, at least 40%
the least probable of them

Cover-point 2
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Table 3.6: Code coverage metrics
Type Description Expected ratio (%)

Expression How many statements were covered 100
Block How many blocks have been covered 95
Toggle How many times signals and ports are

toggled during simulation
95

FSM Indicates whether the FSMs in the
design reach all possible states or not

95

3.2 Implementation review

In chapter 2, it was discussed the standard structure of a functional verification framework and a

general description of each module and sub-module contained in this structure was presented. In

this section, the specification of these modules and sub-modules for the verification of the AES

encryption module is described in detail.

3.2.1 Test module

The Test module represents the top most level in hierarchy of the verification framework and it

contains some important definitions such as the number of tests and the instance of the

Environment module as well as its methods. Moreover, according to the the DUV, multiple tests

are defined in order to exercise all DUV features and each of these tests is based on a different

stimuli sequence. However, the verification framework for the AES module defines only one type

of test due to the fact that a macro overview of this module shows that its functionality is based

on a response in its output ports after an stimulation on its input ports with any variant which

requires no need to develop multiple tests. Nonetheless, this verification framework takes into

account 2 different stimuli sequences which were specified in the verification plan, but these

stimuli sequences are handled directly in the randomization process of the transactions. Despite

of the fact that there is only one test type for this verification framework, it is exercised as many

times as the times set on the Test module, so for each time it is required a new Transaction with a

different stimuli vector randomly generated.

As it was established in the verification plan, the total range for the data i and key i has been

divided into 128 sub-ranges and the minimum number of occurrences per range to validate the

DUV is 100. There are two important aspects that determined this decision in the current

verification framework.

First, a functional verification framework is not based on exercising all possible cases, it must

be focused on analyzing if all intended functionality of the design have been verified and this

involves defined transitions, variable ranges, multiple states evaluation, corner cases, signal timing,
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etc. For the AES, all particular requirements has been defined in the previous section and the corner

cases are limited since according to [23] there are no weak or semi-weak key values, so all possible

key values have the same probability to fail. Besides, most transformations that the AES module

performs are linear and the only non-linear transformation takes place in the SubBytes sub-module

and it is a bricklayer permutation which means that neither the data value nor the key value has

impact over the general behavior [2]. In conclusion, exercising only a segment of the whole range

of possible values can ensure the validation of the DUV for any value within the possible range as

long as all requirements are fulfilled.

Second, in the industry functional coverage and code coverage are two important metrics to

determine the efficiency and consistency of a given verification framework, but there are other

important aspects to consider when the verification performance is analyzed. These aspects refer

to the memory occupied and the elapsed time during simulation, since normally the unit-level

verification frameworks which verify single circuits are not simulated individually. On the

contrary, they are used in system-level verification frameworks that verify complex systems, so

the minimum consumption of memory and time are always important requirements. For this

reason, a good verification framework requires trading off the reliability level against the resource

consumption. This means the number of tests must be high enough to reach an acceptable

reliability level and low enough to consume the least possible resources.

This verification framework implements two cover-points for the data i and the key i signals

which have 128 bits each, and the established number of sub-ranges is 128 with at least 100

occurrences per each, so the minimum number of test to validate this DUV is 12800. However,

this is an ideal number since in the randomization process many values can be repeated and the

invariant data stimuli sequence increments the probability of repetition. Hence, this verification

framework implements a control over the values through a sub-range signal which is randomized

cyclically and contributes to reach the occurrences required faster, with a number of tests that is

very close to the double of the minimum. An analysis of how the reliability level and the elapsed

time during simulation change with higher or lower number of sub-ranges is presented in Chapter

4.

Finally, it has to be mentioned that the Test module represents the highest level in hierarchy

of the verification framework, but this module as well as the DUV and any glue logic employed

are instanced on the Top module which is the main module and is normally used to instance all

interfaces and resources, and is in control of the clock generation.
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3.2.2 Environment module

The Environment module is considered as the core of the verification framework since in this

module all Transactions are generated, driven to the DUV and evaluated. Each transaction contains

all information of a given stimuli vector which involves stimuli sequence, random constraints,

input signal values, auxiliary signals or variables, expected results and the actual results from

the DUV so it can be determined whether the stimulation was successful or not. In addition,

transactions are defined based on the DUV, so all specific parameters and considerations for the

transaction used in the current verification framework of the AES encryption module are shown in

Table 3.7.

Table 3.7: Transaction parameters [3]
Parameter Description
Stimuli Sequence Defines if the current transaction exercises Variant data or

Invariant data, this second sequence is possible because in every
transaction the data i value is temporally stored in the prev data
signal.

Random Constraints Both key i and data i are 128-bit long so they can represent
numbers from 0 to 2128 − 1, so this enormous range has been
conveniently divided into 128 sub-ranges. For this reason, these
signals take their value according to the value of a Sub-range
signal that indicates which of the 128 sub ranges is exercised.

Input signal values There are 3 signals: data i, key i and decrypt i which hold the
actual values that are exercised in the DUV during the current
transaction.

Auxiliary signals There is an id variable which identifies the number of transaction
and a static id counter which is in charge of granting the correct
value to the id variable. Also, the sub range signal previously
discussed is defined.

Expected results This parameter refers to the output of the Golden model located
in the Scoreboard sub-module and the signal holding this value
is: data o scb

Actual DUV results This parameter refers to the output of the DUV collected in
the Monitor sub-module and the signal holding this value is:
data o duv.

All Environment sub-modules are directly or indirectly interconnected to each other, so the

data can easily flow through the entire module. There are different techniques to reach this

objective and the most common are described below.

• Callback: involves pre transmission and post transmission methods that are called in the

transmitter class before and after a particular the call to a particular task or function. Those

methods take the data required to be sent as input, and then call a task from this receiver

class to save this data into a Queue declared on it.
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• Direct handler: Based on calling a task directly from a class, sending the data required as

inputs. However, this technique is only valid if the receiver class was declared inside the

transmitter class which normally does not occur.

• Mailbox:it is a direct interface that can be used between 2 independent classes to transmit

and receive one or more signals of a pre-established data type.

The verification framework for the AES module implements Callbacks and Mailboxes, since

it presents a modular structure where all sub-modules are treated as independent classes with no

option to use the Direct handlers. All Callbacks and Mailboxes used in this verification framework

are presented in Table 3.8.

Table 3.8: Interconnection interfaces used in the verification framework
Interface Type Sub-modules/modules interconnected
mbG2A Mailbox Generator and Agent
mbA2D Mailbox Agent and Driver
mbM2C Mailbox Monitor and Checker

Dcbk Callback Driver and Monitor
Acbk Callback Agent and Scoreboard
Ccbk Callback Checker and Coverage

Another important aspect to take into account is the synchronization and timing in the

verification framework. During the simulation, most tasks are executed in parallel, but some of

them must stop execution until an external condition is given. In consequence, a synchronization

protocol is required to manage all concurrent and sequential tasks. In the industry, there are some

techniques that are normally employed such as semaphores and events which are explained

below.

• Semaphores: implement mutually exclusive access to a resource with multiple requestors

from inside the verification framework. However, most tasks in the present framework do

not manipulate the same resources since a modular structure with multiple different tasks is

implemented.

• Events: Are handlers to synchronization objects that can be passed through routines with no

need to declare them globally. Basically, their functionality is based on flag objects that can

be triggered to unblock a part of the code that required a given condition.

This verification framework employs only events to manage the synchronization among the

multiple tasks execution during simulation. Those events are specified in Table 3.9 as well as the

sub-modules involve.
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Table 3.9: Interconnection event interfaces used in the verification framework
Event Sub-modules/modules involve

DoneG2A Generator and Agent
DoneA2D Agent and Driver
DoneD2M Driver and Monitor
DoneM2C Monitor and Checker
DoneA2S Agent and Scoreboard

In general this thesis work follows the standard modular structure for the functional

verification. However, for further comprehension, the modular structure defined for the AES

verification framework and all specifications are shown in Figure 3.2.

Figure 3.2: Modular structure of the functional verification framework for the AES encryption
module - Own design

The Generator sub-module is in charge of the randomization process of the Transactions. This

process evaluates two aspects before assigning a value to each signal in the stimuli vector. First,

the value for each signal is restricted to the range defined in the random constraints, only if no

constraints are defined for a given signal, any possible value can be assigned to it. Second, each
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signal is randomized according to its data type, it means that the types rand and randc are evaluated

differently. When a rand type is evaluated, in each randomization any possible value considering

the random constraints can be obtained. On the contrary, when a randc type is evaluated, in each

randomization not only the random constraints restrict the possible value, but also the values that

have been obtained before, since all possible values should be obtained before any of them can

be selected again, which is denominated as a cyclic randomization. In Table 3.10, each signal of

the stimuli vector with its respectively data type and a brief argument for the decision taken are

presented.

Table 3.10: Randomization types in the stimuli vector signals
Signal Data type Description
data i rand Any possible value is valid
key i rand Any possible value is valid

decrypt i rand There are only 2 different values, so a cyclic randomization
will be much monotonous

stim seq rand There are only 2 different values, so a cyclic randomization
will be much monotonous

sub range randc Cyclic randomization takes much less tests to
reach the goal of 100 occurences per sub-range

Once the randomization process is finished, the transaction generated is sent to the Agent

sub-module using the mailbox mbG2A and then generator’s execution is blocked until the event

DoneA2G is triggered by the Agent sub-module.

The Agent sub-module is in charge of sending the Transaction handler to the Driver sub-

module and the Scoreboard sub-module, for this purpose the mailbox mbA2D and the Callback

Acbk are used, respectively. As soon as the handler is sent, the execution gets blocked until the

event DoneA2D as long as the event DoneA2S are triggered by the Driver and Scoreboard sub-

modules, respectively. When this last condition occurs, the event DoneA2G is triggered so the

Generator can continue its execution.

The Driver sub-module is located at the lowest layer of the verification framework and it

is directly interconnected with the DUV. For this reason, this sub-module should implement an

adapter to perform the handshake protocol appropriate for the DUV. First, the Driver sub-module

receive the Transaction handler from the Agent sub-module through the Mailbox mbA2D. Second,

the data in the transaction is divided into single commands which are sent to the DUV using the

wishbone adapter. Finally, this sub-module execution gets blocked until the event DoneM2D is

triggered by the Monitor sub-module, then the event DoneA2D is triggered so the Agent can

continue its execution.

The Scoreboard sub-module predicts the expected results for a given stimuli vector, so first it
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receives the Transaction handler trough the callback Acbk, then the input data is sent to the Golden

Model using the DPI-C from SystemVerilog. Soon after, the results are obtained and stored in the

Transaction parameter of expected results. Finally, the event DoneA2S is triggered so the Agent

can continue its execution.

The Monitor sub-module as well as the Driver sub-module is located at the lowest layer of the

verification framework and requires an adapter. First, the handler to the Transaction is received

through the callback Dcbk and the transaction parameter of actual results is filled with the output

collected from the DUV. Second, the Transaction handler is sent to the Checker sub-module using

the mailbox mbM2C. Finally, the execution is blocked until the event DoneM2C is triggered by

the Checker and once this happens, the event DoneD2M is triggered so the Driver can continue its

execution.

The Checker sub-module compares the result from the DUV and the Golden Model and

determines whether the Transaction was successful or not. It is important to highlight that this

verification framework not only checks for the final result in the DUV to be correct, but also

checks every partial result from the DUV which refers to the results at every Round

transformation. As a consequence, if any error is encountered in the partial results, then the

Transaction would be considered as failed. In addition, in order to simplify the error identification

when testing a design, for every Transaction a report is printed in console containing all

stimulation information and the evaluation result. An example of this report is presented in

Figure 3.3. Besides, as soon as the evaluation finishes, the event DoneM2C is triggered so the

Monitor can continue its execution. Finally, the Transaction handler is sent to the Coverage

module using the callback Ccbk.

Figure 3.3: Transaction report
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About Figure 3.3, the report presented in this Figure gives detail of the stimulation and the

results at some point during the simulation. The first line specifies the elapsed time until the

stimulation takes place and the number of transaction it is. The second line states whether or not

the stimulation has been successfully driven to the DUV. The third an Fourth lines show what

value of ”data in” and ”key in” are being evaluated during the present stimulation. the fifth line

determines the type of process that is being exercised (Encryption or Decryption). The sixth and

seventh lines shows the results obtained from the golden model and the DUV, respectively. In the

eighth line a message is printed indicating if the partial results were correct, if only one of them

is wrong then an error message is printed instead. In line tenth the number of error encountered

in the present stimulation is printed. Finally, in the line eleventh it is indicated whether or not the

stimulation has been successfully sampled.

3.2.3 Functional Coverage

The Coverage module receives the Transaction handler trough the callback Ccbk and then it

samples the data on it according to what was previously defined in the verification plan. As it was

discussed before, the coverage is based on cover-points which should be associated with the

signals of interest. In this verification framework, five signals of interest were defined and each of

them requires different coverage options. In general, a coverage option defines a parameter of a

cover-point or a cover-group, so it gives the chance to the verification engineer to set different

coverage configurations for each of the cover-points/cover-groups defined in the verification plan.

All different coverage options employed in the AES verification framework are described in

detail in Table 3.10.

Table 3.11: Coverage options employed [5]
Coverage option Description

Auto bin max Defines how many bins (specific ranges or values of
interest) are generated automatically when no bins
are declared

Weight Defines the priority to reach the appropriate number
of occurrences for a given cover-point/cover-group

at least Defines the minimum number of occurrences
required to consider a cover-point/cover-group as
fully covered

For further comprehension, all cover-points defined in the verification plan as well as the

coverage options values established for each of them are listed in Table 3.12.

Another important aspect of the functional coverage is the inlclussion of assertions which

were defined, as well as the cover-points in the verification plan. The assertions were not
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Table 3.12: Cover points specifications
Coverage option id cover decrypt cover data i cover key i cover case stim

Auto bin max - - 128 128 -
Weight 2 2 1 1 2
at least - - 100 100 12500

considered as an independent module. All of them were declared inside the top module since the

all assertions evaluate signals in the bus interface declared in the top module, and another module

instance was not required. In general, the assertions are aimed to verify an specific requirement of

the verification plan and to build them, reusable sequences were defined which increases the

reusability level of the code. Moreover, both the requirement and the assertion related to this

requirement hold the same name to make their relation obvious. Nevertheless, the assertions that

end with the index ”aux” were defined to reduce complexity in some assertions. Besides, the

assertions are classified according to its purpose and the way to identify them is noticing the last

value on each name which can vary among different indexes. A further explanation of each index

is detailed in Table 3.13.

Table 3.13: Coverage options employed
Assertion index Description

val verifies the validity of the data at some point in the
simulation time

stb verifies the stability of the data when driving stimuli
or monitoring results

seq verifies that all transitions between sequences are
correct

tm verifies if the appropriate amount of clk cycles has
passed before any further event occurs

cst verifies the consistency of state machines
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Chapter 4

Simulation and result evaluation

4.1 Design handling

The DUV asserts the signal ready o whenever the result is ready and stored in the output port

data o, this signal remains asserted for one clock period. However, at the end of every Round

transformation the corresponding partial result is stored in the output port data o, but the ready o

signal is not asserted when this event occurs. Hence, there is no way to identify when the partial

results are ready so the verification framework can read their value. In order to solve this problem,

a modification was made in the DUV which allows the assertion of the signal ready o in every

partial result. In Figure 4.1 the signal waveform of all ports in the DUV before the modification is

shown and in Figure 4.2 the same waveform is presented after the modification implementation.

Figure 4.1: DUV behavior before the modification
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Figure 4.2: DUV behavior after the modification

According to previous chapters, the implementation of two Wishbone adapters was required

in order to build a intercommunication with the DUV. These adapters are located in the lowest

layer of the verification framework and the result of their performance evaluation is presented in

Figure 4.3. In this figure, it can be appreciated that the handshake protocol is implemented

successfully (the protocol uses all signals that begin with the index wb) and the DUV responds to

the stimuli, calculating the partial results (This occurs at every positive edge of the signal

”ready i”) and obtaining the final output data (This occurs at the 11th positive edge of the signal

”ready i” which is highlighted in yellow). The final result is stored on the output port of the DUV

and collected by the wishbone controller.

Figure 4.3: DUV and Verification framework intercommunication

So far, the wishbone bus implementation as the intercommunication interface between the

DUV and the verification framework has been accomplished and no problems were detected.
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4.2 Golden model handling

The Golden model employed in this work is a C/C++ adaptation of the a SystemC-model obtained

from the Opencores online repository. The adaptation consisted not only of building equivalent

instructions and statements from the SystemC model to the C/C++ model, but also on altering the

algorithm in order to get the partial results for every Round transformation. During the simulation

of the golden model, the results are printed in the console. In Figure 4.4, the simulation of the

altered golden model is presented and it can be seen that the new algorithm allows to collect every

partial or final result.

Figure 4.4: Golden model simulation

4.3 Coverage results

As it was established in chapter 3, the number of tests depends only on the times required for

the completion of all design requirements and it was determined that the number was close to the

double of the minimum (12800 times). This analysis was done based on 128 different bins (number

of sub-ranges of all possible values) for the key i and data i input ports. Consequently, during

simulation it was determined that the appropriate number is 20500 since all requirements and

coverage statistics were accomplished at this number of times. Something important to mention

at this point is that in the industry normally the simulation are not restricted to a number of tests,

most of the time million of tests are exercised for better reliability. However, in this work the

number of tests is restricted since the goal is to reach a high level of reliability considering the

least resources (memory and time) consumption. Hence, the final report considering this number

is shown in Figure 4.5.
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Figure 4.5: Verification report summary

Based on this simulation the analysis of code coverage and functional coverage are presented

in the next section.

4.3.1 Code coverage

The code coverage results of the complete DUV specified by code coverage type can be

appreciated in Figure 4.6 and the average grade of all code coverage type for each sub-module is

presented in Figure 4.7.

Figure 4.6: Code coverage by type

Figure 4.7: Average grade of code coverage in each module

Based on these results, all requirements of code coverage were accomplished according to

the verification plan (greater than 95%), reaching 100% in all code coverage types is hard to

accomplished since it does not only depend of the verification framework, but also it depends of
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the design and the codification techniques employed. Moreover, with more tests the results can

improve slightly.

4.3.2 Functional verification

The functional coverage consists of cover-points and assertions, both results are summarized in

Figure 4.8 and further performance detail is given in Figure 4.9 and 4.10 for the cover-points and

assertions, respectively.

Figure 4.8: Functional verification summary report

Figure 4.9: Cover-points coverage performance

These cover-points elements were defined in order to fulfill the requirements established in the

verification plan, more specifically the requirements whose codes end with the index ”cover”, so

the cover-point element ”id” responds for the id cover requirement and so on. Based on Figure 4.9

all bins were covered for each cover-point at 100%, which means that all the related requirements

were successfully covered.

Figure 4.10: Assertions coverage performance
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The assertions are evaluated at least once during each transaction, so if the number of times

an assertion was evaluated is less than this number, it has failed despite of the fact that it might be

successful in all evaluations. For this reason, a more specific report is presented in Figure 4.11.

Figure 4.11: Assertions occurence report

Based on the report of Figure 4.11, all transactions were evaluated at least once per

Transaction (number of Transactions = 20500) and were successful each time so the requirements

were successfully accomplished.

4.3.3 Reliability vs Resources Consumption

As it was discussed in Chapter 3, the reliability level a verification framework can reach depends

on the resources available, so the higher the reliability level is intended, the most resources are

employed. In order to illustrate this point an analysis is presented where different number of

bins and tests are evaluated. It is important to mention that this analysis is focused only on the

computational time during simulation since with memory the analysis is similar and the evaluation

does not have to be very rigorous as it is just an illustration.

Before further discussion of this analysis, it must be pointed out that all simulations in this

research have been restricted to the memory and clock frequency of the computational system in

which they were evaluated. In table 4.1 the specifications of this computational system are listed.

Table 4.1: Computational system specifications
Parameter Value
Processor Intel(R) Core(TM) i3-4700MQ

Clock frequency 1.2 GHZ
RAM 2 Gigabytes

In table 4.2 the data required for this analysis is presented and it has been collected from
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different simulations of the verification framework design in Chapter 3. It should be noticed that

only 4 simulations are included in Table 4.2 and this is due to the RAM size, which is normally

the principal limitation in the number of bins.

Table 4.2: Simulation comparison
Number of Number Number Computational Times of the fastest
simulation of bins of tests time (s) simulation

1 128 20500 112.55 5.12
2 96 15000 82.35 3.75
3 64 8400 46.11 2.09
4 32 4000 21.96 1

About Table 4.2, an important aspect to understand is that the most number of bins are

considered, the most reliable is the verification. Although an ideal number would consider all

possible values, this is pointless since many stimuli vectors have the same effect over the DUV, so

the possibilities are divided in sub-ranges and the most sub-ranges quantity, the closest to the

total. On the contrary, in simulation it is important to get reduced computational time and

memory consumption so the less they are consumed, the most efficient the verification framework

is. Based on these ideas it can be concluded that the simulation 1 was the most reliable and

simulation 4 was the most time-efficient. Besides, although the number of bins increases by 32 in

every simulation, the computational time does not increase linearly as the cost of time gets much

bigger. The next simulation with 160 bins would take at least 7 times the first simulation and with

further simulations this difference will increase drastically. For this reason in the industry a

trade-off is made between resources and reliability. In this verification framework the number of

bins selected was 128 since the computational time that 160 bins would require does not make it

worth the little increment in reliability.

4.3.4 Comparison highlights

In [24], a verification framework is developed to verify an AES encryption module which

implements the same architecture as the DUV of the present research. This section is oriented to

compare the metrics and reliability of these works. It is important to mention that these works

implements different verification methodologies, consequently the performance of theses

verification framework differ from each other. There are three important aspects to highlight.

First, the performance held by the verification process using the methodology proposed in this

work presented higher metrics of code coverage in comparison with the one obtained from [24]

which is summarized in Table 4.3.
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Table 4.3: Code Coverage metrics comparison
Code coverage type Result in this work (%) Result in [24] (%)

Expression 100 99.57
FSM 100 100
Block 97.69 94.51
Toggle 97.53 84.85

Second, in contrast of the work in [24] which presented no results of functional coverage, the

present work reach 100% in all cover-points and assertions as it was presented in Figures 4.8, 4.9

and 4.10.

Finally, the structured of the proposed methodology facilitates the specification of a more

robust analysis in opposition to the work in [24] as it can be seen in Table 4.4.

Table 4.4: Code Coverage metrics comparison
Functional verification feature Quantity in this work Quantity in [24]

Assertions 15 7
Cover-points 5 5

Total bins 20760 316
Goal average per bin 540 1
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Conclusions

• The verification plan for the AES encryption module was developed according to the

technical quality standards used in the industry to ensure a high reliability level. Based on

the performance metrics of code coverage and functional coverage obtained during

simulation, all requirements defined in the verification plan were fulfilled and there were no

failures neither in the implementation nor in the simulation. In view of these outcomes it

can be stated that the verification framework was completely successful. (Appendix 1)

• The methodology proposed verified an AES encryption module completely and presented

no problems to evaluate all design requirements from the verification plan. The modular

structure facilitated the employment of a glue logic hardware as interconnection interface

which can be easily replaced with similar hardware due to its reusability.Further validation

of this methodology is done in the appendix 4 where a different design (a floating Multiplier-

Accumulator) is entirely verified using the proposed methodology. For these reasons, it can

be stated that this methodology can be reproduced on the verification process of different

designs independently of the architecture they implement.

• The verification plan defined in this work is based on a standard structure and technical

specifications used in the verification industry (Advisor from ARM). It includes the

definition of stimuli sequences, transactions, validation mechanism and coverage metrics

which allow the accomplishment of high levels of quality and reliability. The appendix 2

contains the template of the verification plan which can be used with multiple types of

designs with similar or lower complexity of the AES.

• The appendix 3 contains the documentation of the study of SystemVerilog which is based on

all the information collected during the elaboration of this research, containing explanations

and useful examples to facilitate the use of SystemVerilog focused in verification. Besides,

a verification of a floating point Multiplier-Accumulator (MAC) is done in appendix 4 with

more detail to illustrate the sturdiness of the present verification methodology.
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Recommendations

• In order to exercise the reusability of the modular structure methodology, a different bus

interface should be employed to interconnect the DUV and the verification framework such

as the APB bus.

• The AES encryption module is normally used as a module stage of a System on Chip

(SoC) design, a further work should develop a system level verification framework using

the present unit level verification framework as a sub-module to evaluate the scalability of

this work.

• With the purpose of testing the effectiveness of the verification methodology proposed, many

other design must be verified with different features and behaviors. For instance, it can be

used in the development of future projects of the research group in Microelectronics PUCP

(GuE PUCP).

• The evaluation of error injection to the DUV is an aspect not developed in the methodology

proposed and it would be useful for a more robust verification. However, it should be

previously established in the verification plan the desired behavior when the error occurs.

• An improvement of the present work is aimed to develop a Sequencer module to select

randomly multiple types of Transactions instead of handling the stimuli sequences

internally, which will allow the verification methodology to verify designs of a higher level

of complexity.

• The upgrade of the present methodology should be implemented in UVM which is the

most recent standard of verification in the industry and it involves high level of reusability

with many pre-defined blocks and innovative tools for verification. Basically, this upgrade

requires to find the UVM equivalent blocks and tools used in this methodology, this

adaptation is not quite complex since UVM is based in SystemVerilog.
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