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nanciar este trabajo en el marco de una beca completa de maestŕıa (233-2015-1) en la PUCP.
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Resumen

Modelos Seesaw de masas de neutrinos a baja escala con una simetŕıa aproximada de número
leptónico pueden ser probados en colisionadores. En el modelo mı́nimo Seesaw Tipo I, implica
la existencia de dos fermiones de Majorana pesados altamente degenerados que forman un par
Pseudo-Dirac. Una pregunta muy importante es, en qué medida los futuros colisionadores tendrán
sensibilidad al splitting entre los componentes de Majorana de este lepton pesado neutro, que
señala la ruptura de número leptónico. Consideramos la producción de estos leptones pesados en
la ILC, donde sus displaced decays proporcionan una señal de oro: una asimetŕıa forward-backward
, que depende crucialmente del splitting de la masa entre los dos componentes de Majorana.
Mostramos que este observable puede limitar el splitting de la masa a valores mucho más bajos
que los ĺımites actuales, que provienen de el neutrinoless double beta decay y las loop corrections.

Abstract

Low-scale seesaw models of neutrino masses with an approximate lepton number symmetry can be
tested at colliders. In the minimal Type I Seesaw model, this implies the existence of two highly
degenerate heavy Majorana fermions forming a pseudo-Dirac pair. A very important question
is to what extent future colliders will have sensitivity to the splitting between the Majorana
components of this neutral heavy lepton, which signals the breaking of lepton number. We consider
the production of these heavy leptons at the ILC, where their displaced decays provide a golden
signal: a forward-backward asymmetry, which depends crucially on the mass splitting between
the two Majorana components. We show that this observable can constrain the mass splitting
to values much lower than current bounds, which come from neutrinoless double beta decay and
loop corrections.
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1 Introduction

Extensions of the Standard Model that can explain neutrino masses are among the best motivated
leads to the new physics realm. The mass scale of the neutrino mass mediators is unknown, and
the possibility that it could be light enough to be produced and tested in laboratory experiments
has been extensively discussed in the literature. Particularly interesting signals of this type of
new physics are displaced vertices [1–5], since usually such light mediators are also very weakly
coupled and have long lifetimes.

Present and future colliders have the opportunity to discover or constrain interesting regions of
parameter space, particularly in connection with leptogenesis. The possibility to test leptogenesis
scenarios is very challenging due to the large parameter space that can affect the generated baryon
asymmetry. The putative discovery of the neutrino mass mediators and the measurement of their
properties will be essential to achieve this goal. Particularly important questions are establish-
ing the Majorana nature of the heavy neutral leptons expected in the type I seesaw model and
measuring their mass spectrum [6] and flavour mixings [4].

Determining the Majorana nature for on-shell particles is in principle straightforward, it is
sufficient to observe their lepton number violating decays (LNV). However, light neutrino mass
mediators with sufficiently large mixings require an approximate lepton number symmetry to avoid
fine-tuning. This implies that mediators come in pairs of pseudo-Dirac particles that interfere
destructively to cancel LNV decays. We expect on general grounds that the cancellation of LNV
decays will be effective provided the mass splitting in the pseudo-Dirac pair is small compared to
their decay width. Furthermore, even if LNV decays are not suppressed, lepton charges might not
allow to distinguish LNV and lepton number conserving (LNC) decays, as in e+e− colliders. In
this case, when only total rates are considered, the presence of LNV processes can be mimicked
by larger heavy neutrino mixings.

In this paper we consider the production of heavy neutrinos in the context of Type I Seesaw
model at a lepton collider in processes such as e+e− → Nν, with the displaced semileptonic decay
of the neutral heavy lepton, N → l±jj. The total number of positive and negative leptons is the
same, whether the N are Dirac or Majorana. However the angular distribution is not. We study
in detail this angular distribution and quantify the sensitivity it provides to the Majorana nature
of the heavy neutrino. Such a measurement could be very useful to constrain resonant leptogenesis
scenarios.

The paper is organized as follows. In Section 2 we review the minimal Type I Seesaw model,
where we define our notation and link the heavy neutrino mass splitting δM with LNV parameters.
In Section 3, we review the current most stringent constraints on δM that come from neutrinoless
double beta decay, and the requirement of no fine-tuning between tree and loop corrections to the
light neutrino masses. In Section 4 we examine the process e+e− → νN → νl±W ∗∓, and show
that the LNV contribution effectively vanishes when the mass splitting goes to zero. On Section 5
we study this process at the ILC, and quantify the forward-backward asymmetry of the lepton
as a function of δM . The putative observation of such an asymmetry would allow us to set very
strong bounds on δM of the order of Γ4.
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2 The Minimal Type I Seesaw Model

The minimal way of generating neutrino masses is achieved by extending the SM with two heavy
Majorana spinors, singlets under the gauge symmetries, which are usually identified as sterile
neutrinos. By imposing a lepton number symmetry, one can assign the two Majorana fields
opposite lepton number charges. The Lagrangian in this limit reads:

L = LSM −
∑

α=e,µ,τ

L̄αYα1Φ̃N1R −
1

2
N
c

1RMN2R + h.c.

With this, the two degenerate Majorana spinors can be combined into one massive Dirac neutrino.
After electroweak symmetry breaking, the allowed terms in the Lagrangian lead to the following
mass matrix:

Mν =

 0 mD 0
mT
D 0 M

0 M 0

 , (1)

where mD = Yα1
v√
2

is a three component vector. Even though flavour is violated in this limit, the
SM neutrinos remain massless.

If the above structure is perturbed by slightly breaking the lepton number symmetry, the heavy
Majorana pair are no longer degenerate and the Dirac fermion becomes a pseudo-Dirac one. The
perturbed mass matrix can be written:

Mν =

 0 mD εm′D
mT
D µ′ M

εm′TD M µ

 (2)

where µ, µ′ and ε are lepton number violating (LNV) terms, which can be kept small in a
technically-natural way. In particular, µ and µ′ correspond to independent Majorana mass terms
for each of the sterile neutrinos. These textures are well known. Setting µ = µ′ = 0 leads to
the Linear Seesaw [7], setting ε = µ′ = 0 corresponds to the Inverse Seesaw [8, 9], while ε = 0 is
sometimes called Extended Seesaw [10,11]. The three terms imply the existence of LNV processes,
and as long as ε 6= 0, one can explain the two observed SM neutrino mass differences [12].

For the case M � µ, ε and µ′ = 0, the mass splitting of the pseudo-Dirac pair can be shown to
be very small [13]. Phenomenologically, this leads to the suppression of LNV processes that signal
the Majorana nature of these states [14]. However, since the splitting is not exactly zero, this effect
should break down at some point. On the other hand, the entry µ′ does not affect neutrino masses
at tree level, while it induces a splitting between the heavy Majorana pair. Naively it looks
as if the mass splitting can be arbitrarily large inducing large LNV without spoiling neutrino
masses. However this is not the case when one loop corrections to neutrino masses are taken into
account [11].

Even though the picture shown in Eq. (2) is useful in order to understand the role of LNV
terms, one can also use a general and very convenient parametrization involving the physical
neutrino masses and the mixing angles [15]. This parametrization was extended in [16] to all
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orders in mD/M , and is the one we shall use in this work. Here, the neutrino mixing matrix is
divided into four blocks, which can be written1:

Ua` = UPMNS

(
1 0
0 H

)
, Uah = i UPMNS

(
0

Hm
1/2
` R†M

−1/2
h

)
,

Us` = i
(

0 H̄M
−1/2
h Rm

1/2
`

)
, Ush = H̄ . (3)

Here, the labels a = (e, µ, τ) and s = (s1, s2) on the mixing matrices refer to the active (SM)
and sterile neutrino interaction states, respectively, while ` = (1, 2, 3) and h = (4, 5) refer to
the light and heavy neutrino mass eigenstates. As we are including two sterile neutrino states,
only two light neutrinos acquire mass. This information is encoded in the 2× 2, diagonal m` and
Mh matrices, which contain the light and heavy neutrino masses, respectively. The R matrix,
originally introduced in [15], is an orthogonal complex matrix, while:

H =
(
I +m

1/2
` R†M−1

h Rm
1/2
`

)−1/2

,

H =
(
I +M

−1/2
h Rm`R

†M
−1/2
h

)−1/2

. (4)

As is well known, the complex parameters in R can be used to increase the mixing between active
and heavy states. In fact this limit is in one-to-one correspondance to the µ, ε � M and large
mD limit in Eq. (2).

In this limit, if one considers only the leading terms in (m2, 3/M4, 5), one can write:

Ua4 ' ±ZNH
a

√
m3

M4

cosh γ45 e
∓iθ45 , (5)

Ua5 ' i ZNH
a

√
m3

M5

cosh γ45 e
∓iθ45 , (6)

where θ45 and γ45 are real parameters found within R, and:

ZNH
a ≡ (UPMNS)a3 ± i

√
m2

m3

(UPMNS)a2 . (7)

One finds that for heavy neutrino masses of the order of the GeV, γ45 is bounded to values lower
than 10 by LFV experiments, such as µ → eγ and µ − e conversion [2]. θ45 on the other hand
remains unconstrained.

In this parametrization, and within the same limit, one can reconstruct the full neutrino mass
matrix:

M ′
ν =

 0 (mnew
D )a4 (mnew

D )a5

(mnew
D )Ta4 M4 0

(mnew
D )Ta5 0 M5

 , (8)

1This work uses expressions valid for a normal ordering of the SM neutrino masses, for equivalent expressions
with inverted ordering, one can see [2].
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where again (mnew
D )ah are three component vectors. All terms in this matrix get corrections of

O (m2, 3/M4, 5), as in Eq. (5). Since the basis is different, the Dirac terms mnew
D do not coincide

with mD and εm′D, appearing in Eq. (2):

(mnew
D )a4 ' ±(ZNH

a )∗
√
m3M4 cosh γ45 e

∓iθ45 , (9)

(mnew
D )a5 ' −i(ZNH

a )∗
√
m3M5 cosh γ45 e

∓iθ45 . (10)

At the same order of approximation, the 2× 2 block on the lower-right part of Eq. (8) is diagonal,
equal to Mh. With this, a field redefinition can readily put the neutrino mass matrix in the form
of Eq. (2). For example, if γ45 > 0, we find V TM ′

ν V = Mν , with:

V =

 I 0 0
0 −i cos θ i sin θ
0 sin θ cos θ

 (11)

and tan θ =
√
M5/M4. In this case, we find µ′ = δM ≡ M5 − M4, while µ and ε become of

the order of the neglected terms. Thus, as was shown in [12], we find that µ′ can encode a large
violation of lepton number without affecting significantly the light neutrino masses at tree level,
and that this effect depends on the mass splitting between the heavy neutrinos.

3 Current Constraints on Mass Splittings

Since the mass splitting of the heavy neutrinos is connected to µ′, LNV processes such as neutrino-
less double beta decay (0νββ) can be strongly affected by this splitting [11]. The non-observation
of this process can then constrain it. In addition, the loop corrections to the light neutrino masses
have also been shown to be sensitive to µ′ [12], so requiring no unnatural cancellation between tree
level and one loop corrections to neutrino masses severely constrains the value of the splitting in
this regime. We will require that the one loop corrections to the light neutrino masses are within
their 1σ errors.

Provided that loop corrections to neutrino masses can be neglected, the total contribution to
0νββ can be written as [2, 17]:

Aββ ∝ mββ ∆M(0, M5) +M4 U
2
e4 ∆M(M4, M5) , (12)

where mββ is the light neutrino contribution and ∆M(Ma, Mb) =M0νββ(Ma)−M0νββ(Mb), with
M0νββ being the nuclear matrix element (NME). The NMEs remain practically constant up to
neutrino masses larger than ∼ 100 MeV, and from this point they decrease with the inverse of
M2

i [17]. Important limits are:

∆M(Ma � 100 MeV, Mb � 100 MeV) ' M0νββ(0) (13)

∆M(Ma � 100 MeV, Mb � 100 MeV) ' 0 (14)

These limits allow us to understand better the heavy neutrino contributions to 0νββ. For
instance, if all neutrinos are much lighter than 100 MeV, the amplitude of this process vanishes.
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Figure 1: Maximum allowed value of δM , such that the heavy neutrino contribution
does not exceed the current bounds on 0νββ or loop corrections. We show splittings of
1, 10−2, 10−4, 10−6 GeV in solid, dashed, dash-dotted and dotted lines, respectively. In the grey
region the loop corrections are too large, even on the degenerate scenario. The blue region is ruled
out by direct searches.

If only M5 is larger than 100 MeV, one can factorize the NME, and compare directly mββ with
the heavy neutrino contribution.

If both neutrino masses are larger than 100 MeV, the heavy neutrino contribution is strongly
suppressed by the NME. In this case, the latter is dominated by the second term of Equation (12),
which is enhanced by the heavy neutrino mass. The term can be neglected by requiring M4 and
M5 to be degenerate, such that the NMEs cancel. As we have seen, this essentially means setting
µ′ → 0, leading to the vanishing of large LNV. If this does not happen, the second term can still
be relevant for masses up to O (10 GeV), depending on the value of U2

e4.
Regardless of the situation, one can generally reduce the amplitude by tuning M5, such that

the NMEs provide a sufficient enough suppression. This means that, for fixed M4 and mixing,
0νββ decay does bound the maximum possible mass splitting δM between heavy neutrinos.

On the other hand, loop corrections to light neutrino masses have also been extensively studied
in the past [12,18,19]. In our approximation these are given by:

δmloop =
g2

64π2m2
W

(mnew
D )M−1

h

(
m2

Higgs ln

[
M2

h

m2
Higgs

]
+ 3m2

Z ln

[
M2

h

m2
Z

])
(mnew

D )T (15)

where mZ and mHiggs are the Z and Higgs boson masses, respectively. In this case, due to the
structure of mnew

D in Eq. (9), the leading term again vanishes if the mass splitting goes to zero:

(δmdeg
loop)ab ∝

∑
h

(mnew
D )ah (mnew

D )bh = 0 (16)

This means that by requiring limits to the loop corrections, we can again constrain the heavy
neutrino mass splittings. However, since the contributions are proportional to m2

Higgs and m2
Z , we
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find that the subleading terms can still give substantial contributions once M4 is large enough,
even in the degenerate scenario. This means that this method shall be valid only for masses
roughly under mHiggs.

In Figure 1 we show the maximum splitting δM allowed by current constraints on 0νββ [20] and
loop corrections. To obtain the limits from 0νββ, we assume that the light neutrino contribution
is negligible in front of the one by heavy neutrinos, in other words, we only consider the second
term of Equation (12). For each point, we require Aββ/M0νββ(0) < 165 meV, which becomes
the most important constraint on the mass difference for M4 . 1 GeV. Moreover, we require
loop corrections not to exceed the 1σ bounds on mixing angles and light neutrino squared mass
differences, which becomes the most important bound for M4 > 1 GeV. We also find that for
|Ue4|2 larger than O (10−7 GeV), and 10 MeV < M4 < 100 GeV, mass differences are constrained
to be smaller than O (10 MeV). In particular regions of the parameter space, this bound can be
as low as O (1 keV).

4 PseudoDirac Neutrinos at Electron-Positron Colliders

In the previous Section we have shown that strong limits to heavy neutrino mass differences and
LNV exist. This points towards heavy neutrinos being pseudo-Dirac fermions in the region of the
parameter space where this scenario can be tested in future colliders. It might seem hopeless in
this situation to be able to distinguish between Dirac and Majorana, certainly the mass splitting
will most likely be impossible to detect by kinematical methods. The Majorana nature of the
heavy neutrinos is however essential to establish their connection to the light neutrino masses.
This motivates the exploration of other collider observables that are sensitive to LNV processes,
which can either determine if the heavy neutrinos are Majorana particles, or set stronger bounds
on the heavy neutrino mass difference.

One such observable are the heavy neutrino oscillations after production [6,13]. In this paper
we consider instead asymmetries in the pseudorapidity of a charged lepton coming from heavy
neutrino decay. We concentrate on the process e−e+ → νN∗ → ν µW (∗), which can be mediated
by different amplitudes, such as those shown in Fig. 4. Diagram A is lepton number conserving
(LNC), i.e. occurs whether Ni is Dirac or Majorana, while diagram B is LNV, and can only occur
if Ni is Majorana. In this process, the final fermion charges do not allow to distinguish the LNV
and LNC contributions, due to the presence of an unobserved light (anti-)neutrino in the final
state. However, we shall see in the next section that the pseudorapidity distribution of the lepton
will be different in the LNV and LNC situations.

The heavy neutrino production is expected to have a very large background coming from the
SM process e−e+ → W+W−. In order to avoid this background, we require the heavy neutrino to
be nearly on-shell, with a large enough lifetime in order to decay far from the interaction point.
Experimentally, this leaves a displaced vertex signature, which has been studied extensively in the
literature [1–5]. To be able to observe this signature at the LHC or future colliders, the lifetime
needs to be large enough, which requires heavy neutrinos with masses between 1− 50 GeV.

We consider the two contributions to the amplitude for the process in Fig. 4 and show explicitely
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Figure 2: The process e−e+ → νN∗ → ν µW (∗). Diagram A (left) conserves lepton number,
Diagram B (right) does not.

how the B diagram vanishes in the LNC limit. Their amplitudes are [21]:

MA =

(
g√
2

)3 5∑
j=4

UejU
∗
µjU

∗
eν

[
ūµ(p3)γλPL Sj γ

µPL ue(p1)
]

[v̄ē(p2)γνPL vν(p5)]Dµν(pA) ε∗λ(p4),

(17)

MB = −
(
g√
2

)3 5∑
j=4

U∗ejU
∗
µjUeν

[
v̄ē(p2)γνPL Sj γ

λPR vµ(p3)
]

[ūν(p5)γµPL ue(p1)]Dµν(pB) ε∗λ(p4),

(18)

where we call p1, . . . , p5 the momenta of e−, e+, µ−, W+(∗), ν respectively. Here, the term ε∗λ(p4)
represents the final state coming from the W (∗). If the W is on-shell, it would be a polarization
vector, otherwise it represents an additional W propagator coupled to a fermion current. The
propagator of each virtual heavy neutrino Nj, with mass Mj and width Γj is:

−iSj =
/q +Mj

q2 −M2
j + iMj Γj

≡ /q +Mj

f(Mj)
, (19)

with q = p3 +p4. In our calculation, we have written the virtual W propagator Dµν on the unitary
gauge, which can depend on pA = p5 − p2 or pB = p5 − p1.

Direct inspection shows that the interference terms between A and B amplitudes are propor-
tional to the masses of the light neutrinos, so they can be safely neglected. The total unpolarized
amplitude squared is therefore of the form

|M|2 = |MA|2 + |MB|2 , (20)
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with

|MA|2 =
1

4

(
g√
2

)6
[

5∑
j,k=4

ΩAjΩ
∗
Ak

]
Gλδ
A ε∗λ(p4) εδ(p4), (21)

|MB|2 =
1

4

(
g√
2

)6
[

5∑
j,k=4

MjMk

q2
ΩBjΩ

∗
Bk

]
Gλδ
B ε∗λ(p4) εδ(p4). (22)

Here, we have defined:

Gλδ
A ≡ Tr[γλ/qγ

µPL /p1
γβ/qγ

δ
/p3

] Tr[γν/p5
PRγ

α
/p2

]Dµν(pA)Dαβ(pA) (23)

Gλδ
B ≡ q2 Tr[γνγλ/p3

PL γ
δγα/p2

]Tr[γµ/p1
PRγ

β
/p5

]Dµν(pB)Dαβ(pB) (24)

and:

ΩAj ≡
U∗µjUejU

∗
eν

f(Mj)
, ΩBj ≡

U∗µjU
∗
ejUeν

f(Mj)
. (25)

The Majorana nature of the heavy neutrino is revealed by the presence of the B contribution.
Therefore we expect this to vanish in the LNC limit, in which:

M5 →M4, Γ5 → Γ4. (26)

Let us first analyse the A contribution, which is proportional to the term:

ΦA ≡
∑
jk

ΩAjΩ
∗
Ak = |Ueν |2

5∑
k,j=4

U∗µj Uej Uµk U
∗
ek

f(Mj)f ∗(Mk)
. (27)

Writing the mixings in our parametrization (see Eq. (3)) we obtain:

ΦA = m2
3 |Ze|2|Zµ|2|Ueν |2 cosh4 γ45

(
1

M2
4 |f(M4)|2

+
2

M4M5

<e
[

1

f(M4)f ∗(M5)

]
+

1

M2
5 |f(M5)|2

)
,

(28)
where the interference of the contribution from the two virtual neutrinos is explicitely shown. In
the LNC limit, Eq. (26), we get the non-vanishing result:

ΦLNC
A = 4|Ze|2|Zµ|2|Ueν |2 cosh4 γ45

m2
3

M2
4

1

|f(M4)|2
. (29)

For the B contribution we find instead:

ΦB ≡
∑
jk

MjMk

q2
ΩBjΩ

∗
Bk

= m2
3 |Ze|2|Zµ|2|Ueν |2 cosh4 γ45

(
1

q2|f(M4)|2
− 2

q2
<e
[

1

f(M4)f ∗(M5)

]
+

1

q2|f(M5)|2

)
,(30)
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which goes to zero in the LNC limit, as expected. In order to properly understand the behaviour
of ΦB near this limit, we Taylor expand around δM = M5 −M4, and δΓ = Γ5 − Γ4. We find the
first non-vanishing term at second order:

ΦB
LNC−−−→ 4|Zµ|2|Ze|2|Ueν |2 cosh4 γ45

m2
3

M2
4

M4
4

q2|f(M4)|4

[(
1 +

Γ2
4

4M2
4

)
(δM)2 +

1

4
(δΓ)2 +

Γ4

2M4

δΓ δM

]
.

(31)
Comparing this contribution to Eq. (29) we get

ΦB

ΦA

LNC−−−→ M4
4

q2|f(M4)|2

[(
1 +

Γ2
4

4M2
4

)
(δM)2 +

1

4
(δΓ)2 +

Γ4

2M4

δΓ δM

]
. (32)

Since we shall be requiring the heavy neutrino to leave a displaced vertex signature, we need it to be
close to on-shell. This is accomplished by taking q2 →M2

4 , which implies that |f(M4)|2 →M2
4 Γ2

4.
In this limit, we find the ratio above to be significantly simplified:(

ΦB

ΦA

)
on−shell

LNC−−−→
(

1 +
Γ2

4

4M2
4

)(
δM

Γ4

)2

+
1

4

(
δΓ

Γ4

)2

+
Γ4

2M4

δΓ δM

Γ2
4

. (33)

We find the expected result that for ΦB not to be negligible in front of ΦA in the LNC limit, it
must be satisfied that δM/Γ, δΓ/Γ or both are not negligible. In practice δM � δΓ and therefore
the ratio is controlled by (δM/Γ)2. This result is to be expected since the cancellation of LNV
contribution requires the interference of the amplitudes mediated by the two heavy neutrino states.
Such interference can only occur if δM is sufficiently smaller than the decay width Γ.

5 Forward-Backward Asymmetry at the ILC

We now consider the production of heavy neutrinos at the ILC and study the distribution in
the pseudorapidity of the final lepton, ` = e or µ, in the process. In order to carry out this
study we have implemented the model in SARAH 4.12.3 [22–24], with the calculation of the mass
spectrum and decay widths carried out in SPheno 3.3.8 [25,26]. The output of both programs was
input into WHIZARD 2.5.0 [27,28], which generated e+e− interactions at the ILC. The simulation
included a polarization of (0.80, 0.30) for the initial state electrons and positrons, respectively, as
well as ISR and beamstrahlung. Following the reports in [29,30], the collisions were produced at a
center-of-mass energy of 250 GeV, with a final integrated luminosity of 2 ab−1. As our final state
involves quarks, coming from W ∗(p4), the parton shower and hadronization of the jets was carried
out with the built-in version of Pythia 6 [31]. For the detector simulation and reconstruction of
events, we used DELPHES 3.4.1 [32, 33], with the DSiD card [34].

In order to avoid background processes we require the events to contain a displaced vertex
from the N decay, which means that the heavy neutrino must be nearly on-shell. We have made
sure this is the case before the parton shower. The procedure for establishing the cuts follows
the discussion in [3, 4, 35], with the heavy neutrino momentum being reconstructed from the jet
and charged lepton momenta. With this, as well as with the heavy neutrino lifetime, we use
the appropriate probability distribution to randomly assign a position for the secondary vertex.
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Name Mass (GeV) Γ4 (eV) c τ4 (µm)
Light 10 7.2× 10−4 270
Heavy 30 2.1× 10−1 0.94

Table 1: Benchmark scenarios considered in our study. We show masses, decay width and decay
length.

This position must be contained within the detector, that is, if Lxy and Lz are, respectively, the
transverse and longitudinal coordinates of this vertex, we require:

Lxy < 2.49 m, Lz < 3.018 m. (34)

In addition, we require Lxy > 10 µm, in order to avoid SM backgrounds from long-lived meson
decays [3]. However, the most important cut is on the impact parameter d` of the charged lepton
on the final state, given by:

d` ≡
Lx p

`
y − Ly p`x
p`T

> 6 µm (35)

where Lx,y and p`x,y are the components of Lxy and p`T , respectively, on the X and Y axes.
In order to choose points on our parameter space which maximize the probability of gener-

ating a displaced vertex, we shall refer to [3] and consider two benchmark scenarios (light and
heavy) differing by the heavy neutrino masses. In both scenarios, we take |Uµ4|2 = 10−6, which
corresponds to |Ue4|2 = 1.4× 10−7. Further details can be found in Table 1.

In Figure 3, we present the pseudorapidity distribution of the `−, for both benchmarks. We
show results for different mass splittings, depending on the value of Γ4. The top row shows the
distribution for δM � Γ4. Following our reasoning from Section 4, we expect that the LNV
contribution to this process shall be negligible, such that the `− will always be directly coupled
to the initial state e−. As a consequence, the `− prefers values of pseudorapidity relatively close
to the original direction of e−. Similarly, the `+ will prefer to be relatively close to the original
direction of e+. This means that in this situation two opposite forward-backward asymmetries
can be expected, one for the `− and one for the `+.

The bottom row shows the same pseudorapidity distribution when δM � Γ4. Here the LNV
contribution is larger, such that the `− can couple to both e− and e+, equally favouring both signs
of pseudorapidity. As the same behaviour is observed for `+, this leads to the vanishing of both
asymmetries. This proves that the asymmetry depends directly on the mass difference δM , such
that the latter can be constrained by the observation of the former.

In order to quantify this statement, we define the forward-backward asymmetry A±η for a lepton
with specific charge as:

A±η =
N±(η > 0)−N±(η < 0)

N±tot

, (36)

where N±(η > 0) and N±(η < 0) are the number of events where `± has positive or negative
pseudorapidity, respectively, and N±tot = N±(η > 0) +N±(η < 0).

The value of A±η is shown in Figure 4 for several values of (δM/Γ4)2, for both positively and
negatively charged leptons. For each case, 3σ error bars are plotted, taking into account the
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Figure 3: Pseudorapidity distribution of the charged leptons in e+e− → ν N → ν `+ jets, for the
light benchmark on the left column, and the heavy benchmark on the right column. We show
δM � Γ4 and δM � Γ4 on the upper and lower rows.

expected number of events. From the Figure we see that, at this confidence level, A±η can be
distinguished from zero for (δM/Γ4)2 . 1. Thus, in case of observing A±η 6= 0, one could establish
upper limits on δM of the order of the width Γ4. For the light benchmark, this bound would be
of δM . 1 meV, while on the heavy benchmark we would have δM . 0.1 eV. In the same way,
if the asymmetry is not observed, one can establish lower bounds on δM , around the same order
mangitude.

These constraints are significantly stronger than any of those obtained in Section 3. Moreover,
as one can see in Figure 4, when (δM/Γ4)2 ∼ 1 statistics are good enough to establish that
0 < |A±η | < 1. This suggests that in this sort of situation one can not only bound δM , but rather
determine its precise value. Such an observation would be particularly interesting in connection
to resonant leptogenesis models.

6 Conclusions

The minimal Type I Seesaw adds two heavy neutrinos to the SM, providing mass to two light
neutrinos. By choosing the model parameters appropriately, one can have relatively large active-
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Figure 4: Forward-backward asymmetry in `− (orange) and `+ (blue) events, as a function of
(δM/Γ)2. The light and heavy benchmarks are shown on the left and right, respectively.

heavy mixing even if the heavy neutrinos have masses of the order of the GeV. This is possible
due to specific textures within the full neutrino mass matrix, with LNV elements linked to the
mass splitting of the heavy neutrinos, δM .

In this work we have considered heavy neutrino production at the ILC, with the heavy neutrino
decaying into a charged lepton and jets. The main result is the finding of a forward-backward
asymmetry in the pseudorapidity distribution of the charged lepton, whenever (δM)2 � Γ2

4.
This appears due to the vanishing of a LNV contribution to the heavy neutrino production +
decay process, which is proportional to the neutrino mass splitting. In the opposite case, i.e. if
(δM)2 � Γ2

4, the LNV contribution is large enough, and the asymmetry vanishes.
Thus, provided the heavy neutrinos exist at this mass scale, the (non) observation of such an

asymmetry can establish upper (lower) bounds on (δM/Γ4)2, and with it constrain the size of the
LNV parameters of the model.

Since the process under consideration has heavy backgrounds, we require the observation of a
displaced vertex coming from the heavy neutrino decay. This restricts our study to a region of
the parameter space where the heavy neutrinos have a relatively large lifetime, that is, a decay
width of the order of 1 − 100 meV. This means that the study of the asymmetry can determine
if the mass splitting is smaller or larger than this scale, establishing bounds much more precise
than those currently available.
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