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RESUMEN DE LA TESIS 
 

 
Irina Michelle Winter Arboleda 
Matemáticas 
SOLUTION OF FRACTIONAL LINEAR AND BILINEAR TIME INVARIANT SYSTEM 
VIA FORMAL POWER SERIES METHODS  
 
 
The area of fractional calculus is more than three centuries old but applications have only 
appeared in the past few decades. Differential equations of non-integer order are known to 
represent certain physical processes in a more precise way than using the usual differential 
equations with integer order. Therefore, considering fractional calculus in the context of input-
output systems can be beneficial. A useful representation of an input-output map in control 
theory is the Chen-Fliess functional series or Fliess operator. It can be viewed as a 
generalization of a Taylor series, and its algebraic nature is especially well suited for several 
important applications. In this thesis, a general solution for a fractional linear and bilinear time 
invariant system via formal power series methods and Fliess operators is presented. A 
mathematical model (that includes a differential equation) for an input-output linear and 
bilinear time invariant system is very well known, both the explicit solution and the one using 
formal power series. However, the question of how this system behaves when a fractional 
differential equation (where the derivative is of a non-integer order) has not been yet studied 
from the power series point of view. This thesis focuses on two specific kind of derivatives, one 
using Riemann-Liouville fractional derivatives and the other using Caputo fractional 
derivatives. 
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CHAPTER 1

INTRODUCTION

The main goal of this dissertation is to find a general solution for a fractional

linear and bilinear time invariant system via formal power series methods. A math-

ematical model (that includes a differential equation) for an input-output linear and

bilinear time invariant system is very well known, both the explicit solution and

the one using formal power series, specifically Fliess operators [5, 9, 12, 32, 33].

However, the question of how this system behaves when a fractional differential

equation (where the derivative is of a non-integer order) has not been yet studied

from the power series point of view. Several authors have formulated solutions

to these fractional systems using ordinary differential equations of fractional or-

der [13–15, 29]. But a solution does not appear in the literature via power series.

The main contribution of this dissertation is to address this gap in the literature,

mainly the analysis of these systems governed by a fractional differential equation

and solved via Fliess operators. This dissertation focuses on two specific kind of

derivatives, one using Riemann-Liouville fractional derivatives and the other using

Caputo fractional derivatives.

This chapter is organized as follows. Section 1.1 provides the background

and motivation for the research described in this dissertation. Subsequently, in

Section 1.2 the problem statement is presented. Finally, Section 1.3 outlines the

structure of the document.

1.1 BACKGROUND AND MOTIVATION

Systems are use to process, modify or extract sets of data or information. An

input-output system is usually illustrated by a “black box” where one set of in-

put variables u1(t), u2(t), . . . , um(t) are applied and another set of output variables

y1(t), y2(t), . . . , yℓ(t) are observed. A general scheme is given in Figure 1.

A linear input-output system is such that it satisfies the property of superposi-

tion. That is, given two inputs u1(t) and u2(t) that produce outputs y1(t) and y2(t),

respectively, and α, β ∈ R, then the input αu1(t) + βu2(t) should give the output

αy1(t) + βy2(t). If, in addition, u(t−T ) gives y(t− T ) where T ∈ R, then it is called

time invariant system.
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System•

•

•

u1(t)

u2(t)

um(t)

Input

•

•

•

y1(t)

y2(t)

yℓ(t)

Output

Fig. 1: Block diagram of an input-output system

A useful representation of an input-output map is the Chen-Fliess functional

series or Fliess operator. It can be viewed as a generalization of a Taylor se-

ries, and its algebraic nature is especially well suited for a number of important

applications [5,12].

These operators are described by functional series which are indexed by

words. First, introduce a “letter” xi for each input ui(t) where i = 1, 2, · · · , m.

Also, consider a fictional input u0(t) := 1 such that x0 is the letter associated to

it. A word is defined as any possible combination of letters, for example x0x1 is a

word defined as the catenation of the letter x0 followed by the letter x1. In general

“letters” do not commute (x0x1 6= x1x0). More formally, let X = {x0, x1, . . . , xm} be

an alphabet (set of all the letters) and X∗ the set comprised of all words over X

(including the word with no letters or empty word, ∅) under the catenation prod-

uct. A formal power series in X is any mapping of the form X∗ → Rℓ, and the

set of all such mappings will be denoted by Rℓ〈〈X〉〉. For each c ∈ Rℓ〈〈X〉〉,

one can formally associate an m−input, ℓ−output operator, Fc. Let p ≥ 1 and

a < b be given. For a Lebesgue measurable function u : [a, b] → Rm, define

‖u‖p = max{‖ui‖p : 1 ≤ i ≤ m}, where ‖ui‖p is the usual Lp-norm for a mea-

surable real-valued function, ui, defined on [a, b]. Let Lm
p
[a, b] denote the set of

all measurable functions defined on [a, b] having a finite ‖ · ‖p norm and define

Bm
p
(R)[a, b] := {u ∈ Lm

p
[a, b] : ‖u‖p ≤ R}. Assume C[t0, t1] is the subset of continu-

ous functions in Lm
1 [t0, t1]. For each letter xi ∈ X define

Exi
[u](t, t0) =

∫ t

t0

ui(τ) dτ, i = 1, 2 · · · , m.
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Observe that each word η ∈ X∗ can be written as η = xiη̄ where xi ∈ X and

η̄ ∈ X∗. Now, define inductively for each word, η ∈ X∗ the map Eη : Lm
1 [t0, t1] →

C[t0, t1] by setting E∅[u] = 1 and letting

Eη[u](t, t0) = Exiη̄[u](t, t0) =

∫ t

t0

ui(τ)Eη̄[u](τ, t0) dτ,

where xi ∈ X, η̄ ∈ X∗, and u0 = 1.

The input-output operator corresponding to c is the Fliess operator

y(t) = Fc[u](t) =
∑

η∈X∗

(c, η)Eη[u](t, t0), (1.1.1)

where (c, η) ∈ R denotes the value of c at η ∈ X∗, and is called the coefficient of η

in c [5,6].

Example 1.1.1. Observe that

Ex0
[u](t, t0) =

∫ t

t0

1 dτ = t− t0.

Example 1.1.2. When the word is η = x2
0 = x0x0, the iterated integral associated

to it is

Ex2
0
[u](t, t0) =

∫ t

t0

1Ex0
[u](τ, t0) dτ =

∫ t

t0

∫ τ

t0

(τ − t0) dξdτ =
(t− t0)

2

2
.

Example 1.1.3. When the word is η = x0x1, the iterated integral associated to it is

Ex0x1
[u](t, t0) =

∫ t

t0

1Ex1
[u](τ, t0) dτ =

∫ t

t0

∫ τ

t0

u1(ξ) dξdτ.
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Example 1.1.4. When the series is c = 2x0 + 3x0x1, the input-output operator

corresponding to it is the Fliess operator

y(t) = Fc[u](t) = F2x0+3x0x1
[u](t) = 2Ex0

[u](t, t0) + 3Ex0x1
[u](t, t0)

= 2(t− t0) + 3

∫ t

t0

∫ τ

t0

u1(ξ) dξdτ.

A mathematical model of an input-output system, as in Figure 1, that uses first-

order differential equations, a set of inputs, outputs and state variables is called a

state-space representation. When a state-space representation exists for an input-

output system, a coordinate frame has been intrinsically assigned. On the other

hand, a convenient property of any Fliess operator is that its input-output behavior

is completely determined by its generating series, independent of whether or not a

state-space representation is available. Therefore, the behavior of such an input-

output system can be studied naturally using only combinatoric/algebraic tools

[12].

A general case of a single-input single-output linear time invariant system (m =

1 and ℓ = 1) is shown in Figure 2. In this case, a state-space representation is the

ż(t) = Az(t) +Bu(t)

y(t) = Cz(t)
u(t) y(t)

Fig. 2: Block diagram of single-input single-output linear time invariant system

first-order differential equation and output equation.

ż = Az +Bu, z(0) = z0

y = Cz, (1.1.2)

where A ∈ Rnxn, B ∈ Rnx1, C ∈ R1xn and z0 is any vector in Rn.
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The explicit solution of (1.1.2) is

y(t) = Cz(t) = C

(

eAtz0 +

∫ t

0

eA(t−τ)Bu(τ)dτ

)

. (1.1.3)

The series solution of (1.1.2) in terms of Fliess operators is obtained through

iterative methods following the usual Peano-Baker formula [4,28], namely,

y(t) = Cz(t) = CFc[u](t) = C
∑

η∈X∗

(c, η) Eη[u](t), (1.1.4)

where X = {x0, x1}. The coefficients of the generating series are

(c, η) =



















AkB : η = x0
kx1, k ≥ 0

Akz0 : η = x0
k, k ≥ 0

0 : otherwise.

In order to see that these two solutions (1.1.3) and (1.1.4) are equivalent,

consider only the part of the series (1.1.4) related to the words of the form

η = x0
k, k ≥ 0. Calling it y1 and writing every term explicitly gives

y1(t) = Cz0E∅[u](t) + CAz0Ex0
[u](t) + CA2z0Ex0

2 [u](t) + CA3z0Ex0
3[u](t) + . . .

= C
(

1 + AEx0
[u](t) + A2Ex0

2[u](t) + A3Ex0
3 [u](t) + . . .

)

z0. (1.1.5)

Observe that for any k ≥ 0

Ex0
k [u](t) =

(t− t0)
k

k!
.

It is sufficient to repeat the procedure in Examples 1.1.1 and 1.1.2 inductively.

Substituting the expression above into (1.1.5) yields

y1(t) = C

(

1 + At + A2 t
2

2!
+ A3 t

3

3!
+ . . .

)

z0 = CeAtz0, (1.1.6)

since by definition eAt =
∑∞

k=0(At)
k. Now, it is easy to see that the term y1 given

on (1.1.6) appears explicitly in (1.1.3). Analogously the same identification can

be made for the part of the series (1.1.4) related to the words of the form η =

x0
kx1, k ≥ 0 and the second term of the explicit solution (1.1.3).
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The behaviour of this state-space representation is very well known [9, 10].

However, the question of how this system behaves when the differential equa-

tion (1.1.2) is modeled by a fractional differential equation where the derivative is

of a non-integer order has not yet been studied from the power series point of

view in terms of Fliess operators. Additional mathematical machinery given by

fractional calculus is needed to properly describe a fractional differential equation

since fractional integrals and several forms of fractional derivatives are available

in the literature.

The area of fractional calculus is more than three centuries old, but applications

have only appeared in the past few last decades. Fractional differential equations

of non-integer order represent in a better way to model certain processes involv-

ing long-range dependencies, power laws, long-term memory effects, diffusion

processes in semi-infinite media and thermal systems [23, 25, 29]. Basically, con-

sidering fractional derivatives in an input-output system can be beneficial for many

control loops that take advantage of important properties for robustness and dy-

namic performance [18].

In this thesis, two approaches regarding the fractional differential equation gen-

eralized from (1.1.2) are studied. The first one considers the Riemann-Liouville

fractional derivative as shown in (1.1.7), and the second one is involves the Ca-

puto fractional derivative as shown in (1.1.8).

Dαz = Az +Bu, z(0) = z0

y = Cz. (1.1.7)

CDαz = Az +Bu, z(0) = z0

y = Cz. (1.1.8)

where α ∈ R and 0 < α ≤ 1. As expected when α = 1 both systems are equivalent

to the original (1.1.2).

Several authors have formulated solutions to (1.1.7) and (1.1.8) using ordinary

differential equations of fractional order. In particular, Samko and Kilbas gave a

detailed description of the situation for the Caputo fractional derivative [13–15,29].

However, a solution does not appear in the literature from the power series point

of view. Hence, the primary goal of this thesis is to address these specific gaps in
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the literature.

1.2 PROBLEM STATEMENT

The main goals of this thesis are to:

i. Compute a general solution for a fractional linear and bilinear time invariant

system via formal power series in terms of Fliess operators.

ii. Define a fractional extension of Fliess operators in two specific cases: using

Riemann-Liouville fractional derivatives and Caputo fractional derivatives.

iii. Characterize a fractional extension of iterated integrals using Riemann-

Liouville fractional integrals.

iv. Provide for each approach independents checks of the solutions obtained and

verify that they agree with the known literature.

1.3 DISSERTATION OUTLINE

This thesis is organized as follows. In Chapter 2, the fractional calculus frame-

work is presented. First, the basic special functions used in the main defini-

tions are reviewed. Then, the Riemann-Liouville fractional integral, the Riemann-

Liouville and Caputo fractional derivatives are studied. The most important prop-

erties needed in the following chapters are presented and proved. In Chapter 3,

a basic introduction to formal power series is presented. In Chapter 4, Fliess op-

erators with fractional behaviour are considered. A characterization of a fractional

extension of the iterated integrals using Riemann-Liouville fractional integrals is

provided and a fractional extension of Fliess operators in two specific cases is

given using Riemann-Liouville fractional derivatives and Caputo fractional deriva-

tives. Subsequently, a general solution for a linear and bilinear time invariant sys-

tem is determined using this fractional extension of Fliess operators. Separate

analyses are done for each system, and independent checks of the solutions are

presented. Chapter 5 summarizes the main conclusions of the thesis.
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CHAPTER 2

FRACTIONAL CALCULUS

In classical calculus, derivatives and integrals are the concepts in which most

of the fundamentals rely on. Moreover, one naturally extend these concepts to

higher dimensions, but always taking derivatives and integrals to integer orders. It

is natural to ask the question what if the order is not restricted to an integer order?

Is it possible to define integrals and derivatives to arbitrary orders and still being

consistent with the classical calculus? Most authors agree that this questions was

first addressed by L’Hopital on a letter to Leibniz dated September 30, 1695. He

posed a question about what would be the result if n = 1
2

in Dnx
Dxn , this notation

was used by Leibniz to refer the nth-derivative of the linear function f(x) = x.

Leibniz reply that it would be “an apparent paradox, from which one day useful

consequences will be drawn” [22].

Following this discussion, fractional calculus was studied on formal founda-

tions by many great mathematicians: Liouville, Abel, Riemann, Grëunwald, Euler,

Laplace, Lagrange, Fourier, Letnikov, Caputo, to name a few [11, 22, 29]. Most of

them proposed and used their own notation and methodology, which is described

chronologically in [23]. The term fractional derivative was first used by Lacroix in

1819 and the first formal application of it was made by Abel in 1823 in the for-

mulation of the tautochrone problem [26]. The theory includes complex structures

for the derivative and integral of arbitrary order and also left and right definitions

(analogously to left and right derivatives). The most common definitions of frac-

tional integrals are the Riemann-Liouville and Grëunwald-Letnikov definitions, this

thesis focuses on the Riemann-Liouville fractional integral definition since most

of the other definitions are largely variations of it. For example, Caputo reformu-

lated the more classic definition of the Riemann-Liouville fractional derivative in

order to use integer order initial conditions to solve his fractional order differential

equations [25].

In the 20th century numerous applications and physical manifestations of frac-

tional calculus have been found: fractional differential equations represent in a

more accurate way certain processes involving long-range dependencies, power

laws, long-term memory effects, diffusion process in semi-infinite media and ther-

mal systems [23,25,29].
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This chapter is organized as follows. Section 2.1 provides some definitions,

special functions and techniques which are necessary for understanding fractional

calculus. Subsequently, in Section 2.2 the Riemann-Liouville fractional integral

definition is presented, including some basic examples, properties and sufficient

conditions for the continuity. In Section 2.3 the Riemann-Liouville and Caputo

fractional derivatives are described. Finally, Section 2.4 presents fundamental

properties that will be key in the study of Chapter 4, such as linearity, composition

rules, the fractional derivative of the product and composition functions, and the

Laplace transform in the fractional context.

2.1 PRELIMINARIES

Some special functions which are used in connection with fractional calculus

are presented first [1,15,22,23,25,29].

2.1.1 The gamma function

The Euler gamma function is connected to the fractional calculus by its very

definition, namely

Γ(z) =

∫ ∞

0

e−ttz−1dt, z ∈ C. (2.1.1)

This integral converges in the right half of the complex plane (Re(z) > 0). For

values in the left half of the complex plane, the gamma function reduce to

Γ(z) = lim
n→∞

n!nz

z(z + 1) . . . (z + n)
, (2.1.2)

after letting e−t = limn→∞(1 − t/n)n in (2.1.1) and performing integration by parts

n−times. A basic property of the gamma function is the reduced formula

Γ(z + 1) = zΓ(z) (2.1.3)

which can be proved by integration by parts. As a consequence when z ∈ N

Γ(z + 1) = z!



10

with (as usual) 0! = 1. The gamma function can also be used to extend the formula

for the binomial coefficient as

(

k

r

)

=
Γ(k + 1)

Γ(r + 1)Γ(k − r + 1)
, (2.1.4)

where k, r ∈ R. It can be seen, in a simple way, that the gamma function is a

generalization of the factorial for all positive real numbers. The graph of Γ(z) for

real values of z is shown in Figure 3.

-5 -4 -3 -2 -1 0 1 2 3 4 5

z

-20

-15

-10

-5

0

5

10

15

20

Γ
(z
)

Fig. 3: The gamma function

2.1.2 The beta function

The beta function is defined by the Euler integral of the first kind

B(z, w) =

∫ 1

0

tz−1(1− t)w−1dt, Re(z) > 0,Re(w) > 0. (2.1.5)

This function is related to the gamma function by

B(z, w) =
Γ(z)Γ(w)

Γ(z + w)
,



11

which can be proved using the Laplace transform of the convolution product

hz,w(t) =
∫ t

0
τ z−1(1 − τ)w−1dτ , noting that hz,w(1) = B(z, w). The beta function

is a combination of multiples gamma functions. In certain cases it is more conve-

nient to use as it has a similar structure to the fractional integrals and derivatives

of particular polynomials.

2.1.3 The Mittag-Leffler function

The exponential function appears naturally in the solution of ordinary differen-

tial equations, analogously, its generalization given by Mittag-Leffler in 1903, plays

a central role in fractional calculus.

Definition 2.1.1. The matrix Mittag-Leffler function is

Eα,β(At) =

∞
∑

k=0

(At)k

Γ(αk + β)
,

where t is real-valued, A ∈ Rn×n, and α, β are positive real numbers.

This two parameter generalization was introduced by Agarwal in 1953 [21], in

particular, E1,1(At) = eAt is the usual matrix exponential. The graph of Eα,1(t) for

different values of α is shown in Figure 4.

Fig. 4: The Mittag-Leffler function when β = 1 and α = 0.5, 1, 2, 4, 8.

The next lemma gives the derivative of the Mittag-Leffler function.
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Lemma 2.1.1. Let α > 0 and A ∈ Rn×n. Then

d

dt
Eα,1(At

α) = Atα−1
Eα,α(At

α), , t ∈ R.

Proof: By definition when β = 1

Eα,1(At
α) =

∞
∑

k=0

Aktαk

Γ(αk + 1)
.

Then
d

dt
Eα,1(At

α) =
αAtα−1

Γ(α + 1)
+

2αA2t2α−1

Γ(2α + 1)
+

3αA3t3α−1

Γ(3α + 1)
+ · · · .

Factoring and using (2.1.3), it follows

d

dt
Eα,1(At

α) = Atα−1

(

I

Γ(α)
+

Atα

Γ(2α)
+

A2t2α

Γ(3α)
+ · · ·

)

= Atα−1
Eα,α(At

α).

2.1.4 The Laplace transform

The Laplace transform is a function transformation useful in solving linear or-

dinary differential equations with constant coefficients. In this thesis it would be

use to derive formulas for fractional calculus and to solve fractional differential

equations.

Definition 2.1.2. Let f(t) be a complex-valued function in one real variable, then

the Laplace transform of f(t) is

F (s) = L [f(t)] =

∫ ∞

0

e−stf(t)dt.

The function f(t) is called original and the function F (s) is called the Laplace

image of f(t). An important property of this transformation is its linearity, given

fk, k = 0, 1 · · · , which are complex-valued functions of one real variable, and

complex numbers ak, it follows that

L

[

∞
∑

k=0

akfk(t)

]

=

∞
∑

k=0

akL [fk(t)] =

∞
∑

k=0

akFk(s).
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Other useful property is the image of convolution namely, given that f and g are

complex-valued functions in one real variable, it follows that

L [f(t) ∗ g(t)] = L [f(t)]L [g(t)] = F (s)G(s), (2.1.6)

where the convolutions is defined by

f(t) ∗ g(t) =

∫ t

0

f(t− τ)g(τ)dτ. (2.1.7)

One final property that will play an important role later on, is the Laplace transform

of a higher order derivative. Given f a complex-valued function of one real variable

and n ∈ N then

L [f (n)(t)] = snL [f(t)]−
n−1
∑

k=0

sn−k−1f (k)(0) = snF (s)−
n−1
∑

k=0

skf (n−k−1)(0).

In particular when n = 1,

L

[

df(t)

dt

]

= sL [f(t)]− f(0) = sF (s)− f(0). (2.1.8)

Example 2.1.1. Suppose α > −1. Then by definition

L [tα] =

∫ ∞

0

e−sttαdt.

Letting τ = st gives

L [tα] =

∫ ∞

0

e−τ
(τ

s

)α 1

s
dτ =

1

sα+1

∫ ∞

0

e−τ ταdτ.

Using Definition 2.1.1 yields

L [tα] =
Γ(α + 1)

sα+1
.

The next lemma is related to the Laplace transform of the Mittag-Leffler func-

tion.
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Lemma 2.1.2. Let α, β > 0 and A ∈ Rn×n. Then

L [tβ−1
Eα,β(At

α)] = (sαI−A)−1sα−β.

Proof:

L [tβ−1
Eα,β(At

α)] = L

[

tβ−1
∞
∑

k=0

Aktαk

Γ(αk + β)

]

.

Using the linearity of the Laplace transform and the identity L [tq] = Γ(q + 1)/sq+1

gives

L [tβ−1
Eα,β(At

α)] =

∞
∑

k=0

Ak

Γ(αk + β)
L
[

tαk+β−1
]

=

∞
∑

k=0

Ak

sαk+β

=
1

sβ

∞
∑

k=0

(

A

sα

)k

= (sαI−A)−1sα−β.

2.2 THE RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL

In 1832, Liouville published several memoirs which gave two definitions, one

concerning fractional derivative and the other addressing fractional integrals, how-

ever they were inconsistent with each other. Riemann also developed a fractional

integration theory when he was a student, but the definition was not very clear and

it caused a lot of confusion [27]. In 1869, N. Y. Sonin publish one of the first papers

that consider the two approaches together in order to provide a robust definition

for the fractional integral [30], however their formal structure was given in 1884 by

H. Laurent [16]. The Riemann-Liouville fractional integral definition is based on

the Cauchy’s formula for repeated integration. The n-th integral of f based at 0 is

given by

∫ t

0

∫ τ1

0

· · ·

∫ τn−1

0

f(τn) dτn · · ·dτ2 dτ1 =
1

(n− 1)!

∫ t

0

(t− τ)n−1f(τ) dτ (2.2.1)

for n ∈ N and f a Lebesgue integrable function defined in the interval [0, t] and

the Lebesgue integral will be used in the whole thesis, and if the Riemann integral

of a function exists, both types of integrals correspond. Therefore, the analytic

extension of such an integral of order n ∈ N to a real order α > 0 is achieved by
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using the gamma Function instead of the factorial in (2.2.1) as follows.

Definition 2.2.1. The Riemann-Liouville fractional integral of order α > 0 is de-

fined as

Iαf(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ) dτ,

for any t ∈ [0, b] and f a Lebesgue integrable function defined in the interval [0, t].

In addition I0f(t) := f(t). Note that when α ∈ N then the fractional integral is

the well known integral.

Lemma 2.2.1. The following relations hold when f, g are real-valued measurable

functions on [0, b] and α > 0.

1. IαIβf(t) = IβIαf(t) = Iα+βf(t), β > 0.

2. Iα(Af(t) + Bg(t)) = AIαf(t) + BIαg(t), A, B ∈ R.

Proof: The first relationship follows directly from the definition and using Dirichlet’s

formula, the second one follows from the linearity of the integrals.

2.2.1 The right fractional integral

The concept given in Definition 2.2.1 is the so called left sided fractional integral

because the integral is calculated at point t with the information of the function f

evaluated at points to the left of it. For example, if t represents time, this definition

makes sense since it uses the history of the function and future information (f

evaluated in points beyond t) is not needed. In this thesis, t is considered to be

the time, so only Definition 2.2.1 is needed. But in general the right sided fractional

integral can be defined as follows

−I
α
b f(t) :=

1

Γ(α)

∫ b

t

(τ − t)α−1f(τ) dτ,

where α > 0, t ∈ [0, b] and f a Lebesgue integrable function defined in the interval

[t, b]. A right sided version of Lemma 2.2.1 is easily shown to be true.
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2.2.2 Examples

Example 2.2.1. Let α > 0. By definition Iα ll(t) =
1

Γ(α)

∫ t

0

(t − τ)α−1 dτ where

ll is the unit step function whose value is 0 when t < 0 and 1 for t > 0. Using
∫ t

0

(t− τ)r−1 dτ =
tr

r
, r ∈ R and (2.1.3) above, gives

Iα ll(t) =
1

Γ(α)

(

tα

α

)

=
tα

Γ(α + 1)
.

This implies that for any constant c ∈ R,

Iαc =
c tα

Γ(α + 1)
.

Example 2.2.2. Let α > 0 and β > −1. Then

Iαtβ =
1

Γ(α)

∫ t

0

(t− τ)α−1τβ dτ =
tα−1

Γ(α)

∫ t

0

(

1−
τ

t

)α−1

τβ dτ

=
tα+β

Γ(α)

∫ t

0

(

1−
τ

t

)α−1 (τ

t

)β

dτ =
tα+β

Γ(α)

∫ 1

0

(1− ξ)α−1 ξβ dξ.

Using the equation (2.1.5) on the last integral above gives

Iαtβ =
tα+β

Γ(α)
B(α, β + 1) = tα+β Γ(β + 1)

Γ(α + β + 1)
.

Analogously, for the right sided fractional integral, it is simple to show that

−I
α
b (b− t)β = (b− t)α+β Γ(β + 1)

Γ(α+ β + 1)
.

Example 2.2.3. Let α > 1 and f a Lebesgue integrable function on [0, b]. By

definition Iαf(t) =
1

Γ(α)

∫ t

0

(t − τ)α−1f(τ) dτ . Using the equation (2.1.7) defining

convolution gives

Iαf(t) =
1

Γ(α)
tα−1 ∗ f(t).
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Finally, using Iα−1 ll(t) =
tα−1

Γ(α)
obtained from Example 2.2.1, yields

Iαf(t) = (Iα−1 ll(t)) ∗ f(t).

Example 2.2.4. Let α > 0. Then

Eα,1(t
α) =

∞
∑

k=0

tαk

Γ(αk + 1)
=

∞
∑

k=0

Iαk ll(t),

since from Example 2.2.1 Iαk ll(t) =
tαk

Γ(αk + 1)
.

2.2.3 Composition with the first-order derivative

In standard calculus, the Fundamental Theorem of Calculus establishes that

d

dt

∫ t

a

f(τ) dτ = f(t),

where f is a continuous function defined on an open interval and a ∈ R is any point

in that interval. Therefore, it is natural to seek a generalization of this concept

for the first-order derivative of the Riemann-Liouville fractional integral, the next

theorem replies partially this issue.

Theorem 2.2.1. Let α > 0, n ∈ N and f a continuous function on [0, b]. Then

dn

dtn
Iα+nf(t) = Iαf(t).

Proof: By Lemma 2.2.1 part 1, it follows that

dn

dtn
Iα+nf(t) =

dn

dtn
InIαf(t).

Applying n times the Fundamental Theorem of Calculus, the theorem is proved.

Note that the case where the order of the fractional integral is more than 1 is

implied in Theorem 2.2.1, in particular when n = 1, d
dt
Iα+1f(t) = f(t). But it still
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remains unknown what the result is when the fractional integral has order less

than 1, i.e., d
dt
Iαf(t). In order to address this case recall the Leibniz rule.

d

dt

(

∫ b(t)

a(t)

f(x, t) dx

)

=

∫ b(t)

a(t)

∂f

∂t
dx+ f(b(t), t)

d

dt
b(t)− f(a(t), t)

d

dt
a(t), (2.2.2)

where f(x, t) is a function such that the partial derivative of f with respect to

t exists and is continuous. A similar result for the Riemann-Liouville fractional

integral is shown in the next theorem.

Theorem 2.2.2. Let α > 0 and f a continuous function on [0, b]. Then

d

dt
Iαf(t) = Iα

(

d

dt
f(t)

)

+ f(0)
tα−1

Γ(α)
.

Proof: By definition, Iαf(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ) dτ , so setting τ = t− xβ and

β = 1/α gives

Iαf(t) =
1

Γ(α)

∫ 0

tα
xβ(α−1)f(t− xβ)(−βxβ−1) dx =

1

Γ(α + 1)

∫ tα

0

f(t− xβ) dx,

since dτ = (−βxβ−1)dx, βα = 1 and using (2.1.3). Now, taking the first-order

derivative of the expression above yields

d

dt
Iαf(t) =

1

Γ(α+ 1)

d

dt

(
∫ tα

0

f(t− xβ) dx

)

.

Using (2.2.2) for the for differentiation under the integral sign above gives

d

dt
Iαf(t) =

1

Γ(α+ 1)

(
∫ tα

0

(

∂

∂t
f(t− xβ)

)

dx+ f(0)Γ(α)tα−1

)

.

Finally, using (2.1.3) and replacing τ ,

d

dt
Iαf(t) =

1

Γ(α)

∫ t

0

(t− τ)α−1

(

d

dτ
f(τ)

)

dτ + f(0)
tα−1

Γ(α)

= Iα
(

d

dt
f(t)

)

+ f(0)
tα−1

Γ(α)
.
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The next lemma is also important.

Lemma 2.2.2. Let α > 0 and f a continuous function on [0, b]. Then

Iα+1

(

d

dt
f(t)

)

= Iαf(t)− f(0)
tα−1

Γ(α)
.

Proof: Using α + 1 instead of α in Theorem 2.2.2 gives

d

dt
Iα+1f(t) = Iα+1

(

d

dt
f(t)

)

+ f(0)
tα

Γ(α+ 1)
.

Applying Theorem 2.2.1 when n = 1 on the left side of the equality above gives

Iαf(t) = Iα+1

(

d

dt
f(t)

)

+ f(0)
tα

Γ(α+ 1)
,

which completes the proof.

2.2.4 α-Continuity

Note that in Definition 2.2.1, the only property of the function f(t) needed to

ensure that Iαf(t) is well defined is its integrability, no other restrictions were im-

posed. However, in order to ensure continuity of the Riemann-Liouville fractional

integral it is necessary to characterize the space of continuous functions in this

context. Here it is introduced the concept of α-continuity when 0 ≤ α ≤ 1 [3,29]

Definition 2.2.2. Let f be a Lebesgue measurable function defined on the interval

[0, b], t0 ∈ [0, b] and 0 ≤ α < 1 . The function f is called α-continuous in t0 if, there

exists λ ∈ [0, 1−α) for which |t− t0|
λ f(t) is a continuous function in t0. In the case

where α = 1, the function is called 1-continuous in t0 if it is continuous in t0.

Definition 2.2.3. Let f be a Lebesgue measurable function. The function f is

called α-continuous on [0, b] if it is α-continuous for every point in [0, b].

The space of all such functions described in Definition 2.2.3 is denoted by

Cα[0, b]. It can be proved by standard methods that Cα[0, b] is a linear space over

R. If 0 ≤ β < α ≤ 1 then Cα[0, b] ⊂ Cβ[0, b]. The following relations hold

C[0, b] ≡ C1[0, b] ⊂ Cα[0, b] ⊂ L[0, b],
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where C[0, b] and L[0, b] denoted the space of all continuous and Lebesgue inte-

grable functions over the interval [0, b], respectively.

Definition 2.2.4. Let f be a function defined on the interval [0, b] and t0 ∈ [0, b].

The function f is called integrable of order α in t0 if, Iαf(t0) exists and is finite.

Definition 2.2.5. The function f is called integrable of order α on [0, b] if it is inte-

grable of order α for every point in [0, b].

The space of all such a functions described in Definition 2.2.5 is denoted by

Iα[0, b]. It is easy to prove that Iα[0, b] is a linear space over R, and therefore Iα

can be seen as a linear operator. If 0 ≤ β < α then Iβ[0, b] ⊂ Iα[0, b].

Lemma 2.2.3. The following statements are true:

1. If f ∈ L(0, b) and bounded on [0, b]. Then f ∈ Iα[0, b].

2. If 0 ≤ α ≤ 1 and 1− α ≤ β, then Cα[0, b] ⊂ Iβ[0, b].

3. If f ∈ C[0, b], then Iαf ∈ C[0, b].

Proof:

1. If f ∈ L(0, b) and bounded on [0, b]. Then by Definition 2.2.1 Iαf(t0) is well

defined and finite for any t0 ∈ [0, b]. Thus, by Definition 2.2.5, f ∈ Iα[0, b].

2. Consider a function f such that f ∈ Cα[0, b], then by Definition 2.2.3 there

exists λ ∈ [0, 1 − α) for which |t− t0|
λ f(t) is a continuous function in t0.

Moreover, it is possible to choose a λ such that |t− t0|
λ f(t) is bounded on

[0, b]. Thus, Iβf(t0) is well defined and it is finite for any t0 ∈ [0, b] since

λ < 1 − α ≤ β. Therefore, by Definition 2.2.5, f ∈ Iβ[0, b] and the statement

is proved.

3. The proof is quite long and beyond the scope of the present work. But it can

be found in [29].

In this thesis, all functions are assumed to be continuous, i.e., f ∈ C[0, b], in

order to ensure that the associated fractional integral, i.e., Iαf is well defined and

continuous by Lemma 2.2.3 part 3.
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2.3 FRACTIONAL DERIVATIVES

As shown in the previous section, the definition of the Riemann-Liouville frac-

tional integral uses Cauchy’s formula for integrating in an iterative manner. In a

similar way, a first approach to defining a fractional derivative is to consider an

iterative process. This approach was developed by Grëunwald-Letnikov. How-

ever in this thesis another approach is consider based on Definition 2.2.1 for the

fractional integral. There are two approaches via this method, the first consists

of perturbing the integer order by a fractional integral and then apply an integer

number of derivatives. The second approach is simply to reverse the order of the

operations, first apply an integer number of derivatives and then compute a frac-

tional integral up to the required order. The following example will make more clear

this procedure.

Example 2.3.1. Consider the function f(t) and its first derivative d
dt
f(t). Now,

select an order α = 0.3. Following the method mentioned before, there are two

ways to obtain a fractional derivative of that order.

+ x + +

DerivationIntegration

I0.7f(t) f(t) D0.3f(t)

Fig. 5: Scheme for Riemann-Liouville fractional derivative

+ x + +

DerivationIntegration

f(t) D0.3f(t) d

dt
f(t)

Fig. 6: Scheme for Caputo fractional derivative
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The first one, shown in Figure 5, is obtained as

D0.3f(t) =
d

dt
I0.7f(t).

Clearly, the fractional integral is applied before the integer derivative, this approach

corresponds to the Riemann-Liouville fractional derivative. On the other hand, the

approach shown in Figure 6

D0.3f(t) = I0.7
(

d

dt
f(t)

)

corresponds to the Caputo fractional derivative, where the fractional integral is

applied after the integer derivative.

2.3.1 Riemann-Liouville fractional derivative

Example 2.3.1 gives the intuition behind this approach, however the formal

definition is given next.

Definition 2.3.1. The Riemann-Liouville fractional derivative of order α > 0 is

defined as

Dαf(t) =
dn

dtn
In−αf(t).

for any n − 1 < α ≤ n with n ∈ N, t ∈ [0, b] and f a Lebesgue integrable function

defined in the interval [0, t].

Note that when α ∈ N then the fractional derivative is the standard notion of

derivative. Also, D0f(t) = f(t) since I0f(t) = f(t).

Example 2.3.2. In particular, when 0 ≤ α ≤ 1 it follows that

Dαf(t) =
d

dt
I1−αf(t).

Example 2.3.3. Let 0 ≤ α ≤ 1. Using Example 2.3.2, Example 2.2.1 and equation

(2.1.3) gives

Dα ll(t) =
d

dt

(

t1−α

Γ(2− α)

)

=
(1− α)t−α

Γ(2− α)
=

t−α

Γ(1− α)
.
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This implies that for any constant c ∈ R,

Dαc =
c t−α

Γ(1− α)
.

Note that under the Riemann-Liouville fractional derivative approach, the deriva-

tive of a constant is not zero. This is the main difference as compared to the

classical derivative, and this issue is pursued later in Chapter4.

Example 2.3.4. Let α > 0 and β > −1. Then using Definition 2.3.1 and Exam-

ple 2.2.2 gives

Dαtβ =
Γ(β + 1)

Γ(n− α + β + 1)

d

dt

(

tn−α+β
)

=
(n− α+ β)Γ(β + 1)

Γ(n− α + β + 1)
tn−α+β−1,

where n− 1 < α ≤ n with n ∈ N. Using (2.1.3) yields

Dαtβ =
tn−α+β−1 Γ(β + 1)

Γ(β − α + n)
.

In particular, when 0 ≤ α ≤ 1 it follows that

Dαtβ = tβ−α Γ(β + 1)

Γ(β − α + 1)
.

It is natural to ask about the relationship between the Riemann-Liouville frac-

tional integral and derivative, it is expected that Fundamental Theorem of Calculus

should hold in some way. The next lemma addresses this issue.

Lemma 2.3.1. Let α > 0, then

DαIαf(t) = f(t).

Proof: By definition

DαIαf(t) =
dn

dtn
In−α(Iαf(t)),

where n− 1 < α ≤ n with n ∈ N. Using Lemma 2.2.1 part 1 gives

DαIαf(t) =
dn

dtn
Inf(t)) = f(t),
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since n ∈ N. The Fundamental Theorem of Calculus was used in the last step.

It is interesting to note that Lemma 2.3.1 established that the Riemann-Liouville

differentiation operator is a left inverse of the Riemann-Liouville integration opera-

tor of the same order. The inverse formula does not hold, i.e., IαDαf(t) 6= f(t) in

general the correct relationship is as follows.

Theorem 2.3.1. Let 0 ≤ α ≤ 1, then

f(t) = IαDαf(t) + I1−αf(0)
tα−1

Γ(α)
.

Proof: Using I1−αf(t) instead of f(t) in Theorem 2.2.2 gives

d

dt
IαI1−αf(t) = Iα

(

d

dt
I1−αf(t)

)

+ I1−αf(0)
tα−1

Γ(α)
.

Applying Lemma 2.2.1 part 1, the Fundamental Theorem of Calculus and Defini-

tion 2.3.1 yields

f(t) = IαDαf(t) + I1−αf(0)
tα−1

Γ(α)
.

2.3.2 Caputo fractional derivative

The next approach is based also on the Riemann-Liouville fractional integral.

Definition 2.3.2. The Caputo fractional derivative for any n−1 < α ≤ n with n ∈ N,

t ∈ [0, b], and n times differentiable function f is defined by

CDαf(t) = In−α

(

dnf

dtn

)

(t).

Note that when α ∈ N then the fractional derivative is the standard derivative.

In addition CD0f(t) = D0f(t) = f(t).

Example 2.3.5. When 0 ≤ α ≤ 1 it follows that

CDαf(t) = I1−α

(

d

dt
f(t)

)

.
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Example 2.3.6. Let 0 ≤ α ≤ 1. Using Example 2.3.5 gives

CDα ll(t) = I1−α

(

d

dt
ll(t)

)

= 0.

This implies that for any constant c ∈ R,

CDαc = 0.

Unlike the first approach, the Caputo fractional derivative of a constant is zero.

This property is one of the main differences with the Riemann-Liouville fractional

derivative approach (see Example 2.3.3).

Example 2.3.7. Let α > 0. Then using Definition 2.3.2 and Example 2.2.2 gives

CDαtβ = In−α

(

dn

dtn
tβ
)

=



















tβ−α Γ(β+1)
Γ(β−α+1)

: β ≥ n

0 : β < n and β ∈ N

not defined : otherwise,

where n− 1 < α ≤ n with n ∈ N. Note that in Definition 2.3.2, the function f(t) is

required to be n times differentiable in order to ensure that the Caputo derivative

is well defined. In this case, when β is non integer and β < n, it is obviously not n

times differentiable, and therefore it is not possible to take the fractional derivative

of order α.

2.3.3 The right fractional derivative

The concept given in Definition in 2.3.1 is the so called left sided Riemann-

Liouville fractional derivative because the left sided fractional integral is used. But

in general the right sided Riemann-Liouville fractional derivative can be defined as

follows

−D
α
b f(t) = (−1)n

dn

dtn
(

−I
n−α
b

)

f(t),
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where n − 1 < α ≤ n with n ∈ N, t ∈ [0, b] and f a Lebesgue integrable function

defined in the interval [0, t]. Note that this definition is analogous to Definition 2.3.1

but using the right sided fractional integral introduced in Subsection 2.2.1.

2.4 PROPERTIES

In this section key properties to be used in Chapter 4 are presented: the linear-

ity of fractional derivatives, some rules for the composition of fractional derivatives

and integrals, the fractional version of the Leibniz rule (the derivative of the product

of functions), the fractional version of the chain rule (the derivative of composite

functions), and the use of the Laplace transform in the fractional setting. The fi-

nal theorem will give the relationship between the Riemann-Liouville and Caputo

fractional derivatives.

2.4.1 Linearity

Lemma 2.4.1. Let A,B ∈ R, f and g real-valued measurable functions on [0, b]

and α > 0, such that CDαf(t) and CDαg(t) are well defined. Then,

1. Dα(Af(t) + Bg(t)) = ADαf(t) + BDαg(t)

2. CDα(Af(t) + Bg(t)) = A CDαf(t) + B CDαg(t).

Proof: Both relationships follow from the linearity of the fractional integrals and

integer derivatives.

2.4.2 Composition

In this subsection, the focus is on the composition of Riemann-Liouville frac-

tional integral and derivatives. First, the integer derivative of the fractional deriva-

tive is analyzed.

Theorem 2.4.1. Let α > 0, m ∈ N and f a continuous function on [0, b]. Then

dm

dtm
Dαf(t) = Dα+mf(t).
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Proof: By Definition 2.3.1, it follows that

dm

dtm
Dαf(t) =

dm

dtm

(

dn

dtn
In−αf(t)

)

=
dn+m

dtn+m
In−αf(t),

where n − 1 < α ≤ n with n ∈ N. Letting β = α + m and p = n + m, note that

p− 1 < β ≤ p. Substituting above gives

dm

dtm
Dαf(t) =

dp

dtp
Ip−βf(t) = Dβf(t) = Dα+mf(t).

Next, the fractional derivative of the fractional integral is analyzed.

Lemma 2.4.2. Let α, β > 0, then

DβIαf(t) = Iα−βf(t).

Proof: There is two cases: If α ≥ β, then using Lemma 2.2.1, part 1 it follows that

DβIαf(t) = Dβ(IβIα−βf(t)).

Now, using Lemma 2.3.1 gives

DβIαf(t) = Iα−βf(t).

On the other hand, if α < β, then by Definition 2.3.1

DβIαf(t) =
dn

dtn
(

In−β(Iαf(t))
)

,

where n − 1 < β ≤ n with n ∈ N. Assume that m − 1 < β − α ≤ m, then

n ≤ m. Now, using Lemma 2.2.1, part 1 and the commutative property of the

integral derivatives, it follows that

DβIαf(t) =
dn

dtn
In−β+αf(t) =

(

dm

dtm
dn−m

dtn−m

)

(

In−mIm−β+αf(t)
)

.
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Thus, using Lemma 2.3.1 and Definition 2.3.1 gives

DβIαf(t) =
dm

dtm
Im−(β−α)f(t) = Dβ−αf(t).

Both cases lead to the same conclusion, which proves the theorem.

Note that α = β in Theorem 2.4.2 leads to the same case as in Lemma 2.3.1.

Next, the fractional integral of the fractional derivative is analyzed when both

orders are less than 1.

Theorem 2.4.2. Let 0 ≤ α, β ≤ 1, then

IαDβf(t) = Iα−βf(t)− I1−βf(0)
tα−1

Γ(α)
.

Proof: There are two cases: If α ≥ β, then using Lemma 2.2.1, part 1 and

Theorem 2.3.1 gives

IαDβf(t) = (Iα−βIβ)Dβf(t) = Iα−β

(

f(t)− I1−βf(0)
tβ−1

Γ(β)

)

.

Applying Lemma 2.2.1, part 2,

IαDβf(t) = Iα−βf(t)−

(

I1−βf(0)

Γ(β)

)

Iα−βtβ−1.

Then using Example 2.2.2, gives

IαDβf(t) = Iα−βf(t)−

(

I1−βf(0)

Γ(β)

)(

Γ(β)tα−1

Γ(α)

)

= Iα−βf(t)− I1−βf(0)
tα−1

Γ(α)
.

On the other hand, if α < β, then Iαf(t) = Dβ−αIβf(t) using Theorem 2.4.2 since

β − α > 0. Therefore, it follows that

IαDβf(t) = Dβ−αIβDβf(t).
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Using Theorem 2.3.1, Theorem 2.4.1, part 1 and Example 2.3.4 gives

IαDβf(t) = Dβ−α

(

f(t)− I1−βf(0)
tβ−1

Γ(β)

)

= Dβ−αf(t)−

(

I1−βf(0)

Γ(β)

)

Dβ−αtβ−1

= Dβ−αf(t)−

(

I1−βf(0)

Γ(β)

)(

Γ(β)tα−1

Γ(α)

)

= Dβ−αf(t)− I1−βf(0)
tα−1

Γ(α)
.

Both cases lead to the same conclusion, which proves the theorem.

Note that α = β in Theorem 2.4.2 leads to the same case as in Theorem 2.3.1.

The last case to be analyze is the composition of two fractional derivatives.

Theorem 2.4.3. Let 0 ≤ α, β ≤ 1, then

DαDβf(t) = Dα+βf(t)− I1−βf(0)
t−α−1

Γ(−α)
.

Proof: Using Example 2.3.2 for Dβf(t) and Theorem 2.4.2, it follows that

DαDβf(t) =
d

dt

(

I1−α(Dβf(t))
)

=
d

dt

(

I1−α−βf(t)− I1−βf(0)
t−α

Γ(1− α)

)

.

Since the integer derivative is linear, applying Definition 2.3.1 gives

DαDβf(t) =
d

dt
I1−α−βf(t) +

(

I1−βf(0)

Γ(1− α)

)

d

dt
t−α = Dα+βf(t)−

(

I1−βf(0)

Γ(1− α)

)

αt−α−1

= Dα+βf(t)− I1−βf(0)
t−α−1

Γ(−α)
,

where (2.1.3) is used in the last step.

Note that in contrast to the Riemann-Liouville fractional integral which com-

mutes (Lemma 2.2.1 part 1), in general, the Riemann-Liouville fractional derivative

operator does not commute (DαDβf(t) 6= DβDαf(t), for arbitrary α, β > 0).

Lemma 2.4.3. Let 0 ≤ α, β ≤ 1. If DαDβf(t) = DβDαf(t), then α = β or

I1−αf(0) = I1−βf(0) = 0.

Proof: Consider

DβDαf(t) = Dα+βf(t)− I1−αf(0)
t−β−1

Γ(−β)
.
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Comparing it with the expression given in Theorem 2.4.3, it follows immediately

that if Dαf(t) = Dβf(t), then

I1−βf(0)
t−α−1

Γ(−α)
= I1−αf(0)

t−β−1

Γ(−β)
.

In order for the expression above to be true for any t > 0, the following must hold

I1−αf(0) = I1−βf(0) = 0.

Example 2.4.1. Let 0 ≤ α, β ≤ 1. Then

DαDβtβ = Dα(Γ(β + 1)) =
Γ(β + 1)t−α

Γ(1− α)

since Dβtβ = Γ(β + 1) from Example 2.3.4 and using Example 2.3.3 in the last

step. On the other hand,

DβDαtβ = Dβ

(

tβ−α Γ(β + 1)

Γ(β − α + 1)

)

=
Γ(β + 1)

Γ(β − α + 1)
Dβtβ−α =

Γ(β + 1)t−α

Γ(1− α)

applying Example 2.3.4 two times. Clearly, DαDβtβ = DβDαtβ . This result agrees

with Lemma 2.4.3 since

I1−αtβ |t=0 = t1−α+β Γ(β + 1)

Γ(2− α + β)

∣

∣

∣

∣

t=0

= 0

and

I1−βtβ |t=0 = tΓ(β + 1)|t=0 = 0,

using Example 2.2.2 in both cases. An important observation is that this condition

is not equivalent to taking fractional derivatives. Observe that

Dαtβ |t=0 = t−α+β Γ(β + 1)

Γ(1− α + β)

∣

∣

∣

∣

t=0

= 0

and

Dβtβ|t=0 = Γ(β + 1)|t=0 = Γ(β + 1) 6= 0,
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using Example 2.3.4 in both cases. Therefore, Dαtβ|t=0 6= Dβtβ|t=0.

2.4.3 Fractional derivative of the product of two functions

The fractional version of the Leibniz Rule, the derivative of the product of func-

tions, is given next.

Theorem 2.4.4. Let α > 0 and f and g be smooth functions on [0, t]. Then,

Dα(fg)(t) =

∞
∑

k=0

(

α

k

)

(Dα−kf(t))

(

dk

dtk
g(t)

)

.

The proof is nontrivial and can be found in [25]. An important remark is that this

fractional version of the Leibniz Rule has, in general, an infinite number of terms

in the summation. Furthermore, it is known that this characteristic is intrinsic of

derivatives of non-integer orders [31].

2.4.4 Fractional derivative of the composition of two functions

The fractional version of the chain rule, the derivative of the composition of two

functions, is given next. The results in this subsection are largely based on [24],

Another approach using the Faá di Bruno formula can be found in [25].

Theorem 2.4.5. Let α > 0 and f and g be smooth functions on [0, b]. Then,

Dα(f ◦ g)(t) =
∞
∑

k=0

1

k!

(

k
∑

r=0

(

k

r

)

(−g(t))rDαgk−r(t)

)

dk

dgk
f(g(t)).

Proof: The claim follows from the chain rule for fractional calculus introduced by

Osler [24], using equations (3.4)-(3.5) in [24] with z = t, g(t) = t and F (t, w) = 1.

Note that similar to the identity in Theorem 2.4.4, the chain rule for fractional

calculus has, in general, infinite number of terms in the summation.



32

Example 2.4.2. In the case where α = 1 in Theorem 2.4.5, it follows that

d

dt
(f ◦ g)(t) =

∞
∑

k=0

1

k!

(

k
∑

r=0

(

k

r

)

(−g(t))r
d

dt
gk−r(t)

)

dk

dgk
f(g(t))

=

(

d

dt
ll(t)

)

f(g(t)) +

(

d

dt
g(t)− g(t)

d

dt
ll(t)

)

d

dg
f(g(t))

+
1

2

(

d

dt
g2(t)− 2g(t)

d

dt
g(t) + g2(t)

d

dt
ll(t)

)

d2

dg2
f(g(t))

+
1

2

(

d

dt
g3(t)− 3g(t)

d

dt
g2(t) + 3g2(t)

d

dt
g(t)− g3(t)

d

dt
ll(t)

)

d3

dg3
f(g(t))

+ · · · .

Since for k ∈ N with k > 1,

d

dt
gk(t) =

k−1
∑

r=1

(

k

r

)

(−g(t))r
d

dt
gk−r(t),

[8] and d
dt
ll(t) = 0 for t > 0, all the terms are zero except the one corresponding

to k = 1. This term gives the usual chain rule.

The next result follows directly as a consequence of Theorem 2.4.5 when the

order of the fractional derivative is an integer. Also, this result is the well known

formula that appears in [8].

Corollary 2.4.1. If α = N ∈ N then

dN

dtN
(f ◦ g)(t) =

N
∑

k=0

1

k!

(

k
∑

r=0

(

k

r

)

(−g(t))r
dN

dtN
gk−r(t)

)

dk

dgk
f(g(t)).

Another, interesting special case of Theorem 2.4.5 is when the function f is

a polynomial. Let Pq denote the class of polynomials with real coefficients and

having degree q.

Corollary 2.4.2. Suppose f ∈ Pq then

Dα(f ◦ g)(t) =

q
∑

k=0

1

k!

(

k
∑

r=0

(

k

r

)

(−g(t))rDαgk−r(t)

)

dk

dgk
f(g(t)).

Proof: It follows directly as a consequence of Theorem 2.4.5 since dk

dgk
f(g(t)) = 0
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when k > q.

Example 2.4.3. In the case where f ∈ P1 in Corollary 2.4.2, it follows that

Dα(f ◦ g)(t) = (Dα ll(t))f(g(t)) + (Dαg(t)− g(t)Dα ll(t))
d

dg
f(g(t)).

This result would be very useful in Chapter 4.

2.4.5 Laplace Transform

In this subsection, the Laplace transform of the fractional integral and deriva-

tives will be given. Also, some examples and a theorem about the relationship be-

tween the Riemann-Liouville and Caputo fractional derivatives is described. This

will be useful in Chapter 4.

Theorem 2.4.6. Let α > 0. Then,

L [Iαf(t)] =
F (s)

sα
.

Proof: Following Example 2.2.3,

Iαf(t) =
1

Γ(α)
tα−1 ∗ f(t).

Applying the Laplace transform and using property (2.1.6) gives

L [Iαf(t)] =
1

Γ(α)
L [tα−1]L [f(t)].

Using Example 2.1.1 yields

L [Iαf(t)] =
1

Γ(α)

(

Γ(α)

sα

)

F (s) =
F (s)

sα
.

Theorem 2.4.7. Let 0 ≤ α ≤ 1. Then,

L [Dαf(t)] = sαF (s)− I1−αf(0).
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Proof: Applying the Laplace transform as in Example 2.3.2 gives

L [Dαf(t)] = L

[

d

dt
I1−αf(t)

]

.

Using property (2.1.8), it follows that

L [Dαf(t)] = sL [I1−αf(t)]− I1−αf(0).

Also, from Definition 2.4.6

L [Dαf(t)] = s

(

F (s)

s1−α

)

− I1−αf(0) = sαF (s)− I1−αf(0).

Theorem 2.4.8. Let 0 ≤ α ≤ 1. Then,

L [CDαf(t)] = sαF (s)− sα−1f(0).

Proof: Applying the Laplace transform as in Example 2.3.5 gives

L [CDαf(t)] = L

[

I1−α

(

d

dt
f(t)

)]

.

Using Theorem 2.4.6 gives

L [CDαf(t)] =
1

s1−α
L

[

d

dt
f(t)

]

.

Using property (2.1.8) above, one must concludes that

L [CDαf(t)] =
sF (s)− f(0)

s1−α
= sαF (s)− sα−1f(0).

The final theorem of this section gives the relationship between the Riemann-

Liouville and Caputo fractional derivatives. A new proof, different from the classical

one on [7], is presented here using the Laplace transform.
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Theorem 2.4.9. Let 0 ≤ α ≤ 1. Then,

CDαf(t) = Dα(f(t)− f(0)).

Proof: Define g(t) = f(t)− f(0). By Definition 2.4.7,

L [Dαg(t)] = sαG(s)− I1−αg(0). (2.4.1)

On the other hand,

G(s) = L [f(t)− f(0)] = F (s)− f(0)L [1] = F (s)−
f(0)

s
, (2.4.2)

since L [1] = 1/s using Example 2.1.1. Also,

I1−αg(t) = I1−αf(t)− I1−αf(0).

Thus, when t = 0,

I1−αg(0) = I1−αf(0)− I1−αf(0) = 0. (2.4.3)

Substituting (2.4.2) and (2.4.3) in (2.4.1) gives

L [Dαg(t)] = sα
(

F (s)−
f(0)

s

)

− 0 = sαF (s)− sα−1f(0).

Finally, from Definition 2.4.8, L [CDαf(t)] = sαF (s)− sα−1f(0), thus

L [Dαg(t)] = L [CDαf(t)].

Taking the inverse Laplace transform on each side yields

CDαf(t) = Dα(f(t)− f(0)),

which completes the proof.
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CHAPTER 3

FORMAL POWER SERIES AND FLIESS OPERATORS

This chapter presents some elements from the fundamental theory of formal

power series. The treatment relies heavily on [2]. Formal power series appear

naturally in the context of language theory; therefore, the terminology of this sub-

ject will be adopted. The definition of formal languages and formal power series

are introduced first. Then, the solutions of a single-input single-output linear and

bilinear time invariant system are exhibited from the power series point of view in

terms of Fliess operators.

3.1 FORMAL LANGUAGES

A finite nonempty set of noncommuting symbols X = {x0, x1, . . . , xm} is called

an alphabet. Each element of X is called a letter, and any finite sequence of letters

from X, η = xi1 · · ·xik , is called a word over X. The length of η, |η|, is the number

of letters in η. Let |η|xi
denote the number of times the letter xi ∈ X appears in

the word η. The set of all words of length k is denoted by Xk. The set of all words

including the empty word, ∅, is designated by X∗. A language is any subset of X∗.

Definition 3.1.1. The catenation product is the associative mapping

C : X∗ ×X∗ → X∗

(η, ξ) 7→ ηξ.

Clearly, for any η, ξ, ν ∈ X∗ it holds that

(ηξ)ν = (ηξ)ν.

Also, the empty word ∅ is the identity element for C since

η∅ = ∅η = η, ∀η ∈ X∗.

The triple (X∗,C , ∅) is a free monoid of X, the characteristic of free refers to the

fact that there are no relationship between the letters. For example, the letter x1

cannot represent the letter x2 or the word x2x3.
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Definition 3.1.2. Let (M,✷, e) and (M ′,✷′, e′) be two arbitrary monoids. A map-

ping ρ : M → M ′ is called a morphism if

ρ(η✷ξ) = ρ(η)✷′ρ(ξ), ∀η, ξ ∈ M,

where ρ(e) = e′. When ρ is bijective it is called an isomorphism.

Note that any mapping ρ : X → M ′ can be uniquely extended to a morphism

ρ : X∗ → M ′ by letting

ρ(xikxik−1
· · ·xi1) = ρ(xik)✷

′ρ(xik−1
)✷′ · · ·✷′ρ(xi1).

If ρ is injective, i.e, ρ(η) = ρ(ξ) implies η = ξ, ∀η, ξ ∈ X∗, then ρ is called a coding

of X∗.

3.1.1 Formal power series

Given the alphabet X = {x0, x1, . . . , xm} and a finite ℓ ∈ N, a formal power

series in X is any mapping of the form

c : X∗ → R
ℓ.

The value of c for a specific word η ∈ X∗ is denoted by (c, η) and is called the

coefficient of η in c. Typically, c is represented as the formal sum

c =
∑

η∈X∗

(c, η)η.

The coefficient (c, ∅) is referred to as the constant term. When the constant term

is zero, c is called proper. The support of c is the language

supp(c) = {η : (c, η) 6= 0}.

A series ĉ is said to be a subseries of c if supp(ĉ) ⊆ supp(c) and (ĉ, η) = (c, η), ∀η ∈

supp(ĉ). The collection of all formal power series over X is denoted by Rℓ〈〈X〉〉. In

addition, the set of all series with finite support is denoted by R
ℓ〈X〉. Its elements

are called polynomials.
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The sets Rℓ〈〈X〉〉 and Rℓ〈X〉 have a considerable algebraic structure, each

admits a vector space structure over R. If c, d ∈ Rℓ〈〈X〉〉, their sum is defined by

c + d =
∑

η∈X∗

(c + d, η)η =
∑

η∈X∗

((c, η) + (d, η))η,

and their scalar multiplication is given by

αc =
∑

η∈X∗

(αc, η)η =
∑

η∈X∗

α(c, η)η, ∀α ∈ R.

The set of formal power series with these two operations forms an R–vector space.

Definition 3.1.3. The Cauchy product of two series c, d ∈ Rℓ〈〈X〉〉 is

cd =
∑

η∈X∗

(cd, η)η =
∑

η∈X∗

∑

ξν=η

(c, ξ)(d, ν)η.

When ℓ = 1, the R–vector space R
ℓ〈〈X〉〉 forms a ring, an R–algebra and a

module over the ring Rℓ〈X〉 using the Cauchy product.

3.2 FLIESS OPERATORS

As explained in Chapter 1, a series c ∈ Rℓ〈〈X〉〉 can be formally associated

with an m−input, ℓ−output operator Fliess operator

Fc[u](t) =
∑

η∈X∗

(c, η)Eη[u](t, t0),

when the inputs are measurable functions.

In order to solve an input-output linear or non linear system using formal power

series, a Fliess operator representation is needed. This focuses mainly on two

input-output time invariant systems, namely the linear and bilinear cases. When

m = 1 and ℓ = 1, the systems are called single-input single-output. A single-input

single-output linear and bilinear time invariant system are shown in Figure 2 and 7,

respectively. The following subsections explain how to obtain the known solutions

for both systems obtained via iterated methods following the usual Peano-Baker

formula [4,28].
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ż(t) = N0z(t) +N1z(t)u(t)

y(t) = λz(t)
u(t) y(t)

Fig. 7: Block diagram of single-input single-output bilinear time invariant system

3.2.1 On linear time invariant systems

As shown in Chapter 1, the first-order differential equation associated to this

system is given in (1.1.2). Specifically the state equation is

ż = Az +Bu, z(0) = z0, (3.2.1)

where A ∈ Rnxn, B ∈ Rnx1 and z0 is any vector in Rn. This equation can be

written in integral form using the fundamental theorem of calculus, i.e,
∫ t

0
ż(t)dt =

z(t)− z(0), as

z(t) = z0 + A

∫ t

0

z(τ)dτ +B

∫ t

0

u(τ)dτ. (3.2.2)

Now substitute the expression above for z(t) in the term A
∫ t

0
z(τ)dτ of (3.2.2). This

yields

z(t) = z0 + A

∫ t

0

(

z0 + A

∫ τ

0

z(τ1)dτ1 +B

∫ τ

0

u(τ1)dτ1

)

dτ +B

∫ t

0

u(τ)dτ

= z0 + Az0

∫ t

0

dτ + A2

∫ t

0

∫ τ

0

z(τ1)dτ1dτ + AB

∫ t

0

∫ τ

0

u(τ1)dτ1dτ +B

∫ t

0

u(τ)dτ.
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Repeating the procedure in the term A2
∫ t

0

∫ τ

0
z(τ1)dτ1dτ above, gives

z(t) = z0 + Az0

∫ t

0

dτ + A2

∫ t

0

∫ τ

0

(

z0 + A

∫ τ1

0

z(τ2)dτ2 +B

∫ τ1

0

u(τ2)dτ2

)

dτ1dτ

+ AB

∫ t

0

∫ τ

0

u(τ1)dτ1dτ +B

∫ t

0

u(τ)dτ

= z0 + Az0

∫ t

0

dτ + A2z0

∫ t

0

∫ τ

0

dτ1dτ + A3

∫ t

0

∫ τ1

0

∫ τ

0

z(τ2)dτ2dτ1dτ

+ A2B

∫ t

0

∫ τ1

0

∫ τ

0

u(τ2)dτ2dτ1dτ + AB

∫ t

0

∫ τ

0

u(τ1)dτ1dτ +B

∫ t

0

u(τ)dτ.

Repeating the procedure agsin and arranging terms gives

z(t) = z0 + Az0

∫ t

0

1dτ + A2z0

∫ t

0

∫ τ

0

1dτ1dτ + A3z0

∫ t

0

∫ τ1

0

∫ τ

0

1dτ2dτ1dτ

+ A3B

∫ t

0

∫ τ2

0

∫ τ1

0

∫ τ

0

u(τ3)dτ3dτ2dτ1dτ + A2B

∫ t

0

∫ τ1

0

∫ τ

0

u(τ2)dτ2dτ1dτ

+ AB

∫ t

0

∫ τ

0

u(τ1)dτ1dτ +B

∫ t

0

u(τ)dτ +R3(z(t)), (3.2.3)

where

R3(z(t)) = A4

∫ t

0

∫ τ2

0

∫ τ1

0

∫ τ

0

z(τ3)dτ3dτ2dτ1dτ.

Recall, by definition, that for any k ≥ 0

Exk

0
[u](t, t0) =

∫ t

t0

· · ·

∫ τ

t0

1dτk−1 · · ·dτ,

since u0 = 1. Also, for any k ≥ 0

Exk

0
x1
[u](t, t0) =

∫ t

t0

· · ·

∫ τ

t0

u1(τk−1)dτk−1 · · · dτ.

Substituting the iterated integrals in (3.2.3) yields

z(t) = z0E∅[u](t) + Az0Ex0
[u](t) + A2Ex2

0
[u](t) + A3Ex3

0
[u](t)

+ A3BEx3
0
x1
[u](t) + A2BEx2

0
x1
[u](t) + ABEx0x1

[u](t) + BEx1
[u](t)

+R3(z).
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Continuing in this manner produces in the limit

z(t) =
∞
∑

k=0

Akz0Exk

0
[u](t) +

∞
∑

k=0

AkBExk

0
x1
[u](t), (3.2.4)

which can be viewed as the usual Peano-Baker formula [4, 28]. Equivalently, the

series solution of (3.2.1) is

z(t) = Fcz [u](t) =
∑

η∈X∗

(cz, η) Eη[u](t),

where X = {x0, x1}. Clearly, the only terms with coefficients different from zero in

(3.2.4) are the ones related to the words x0
k and x0

kx1 for any k ≥ 0. Therefore,

the coefficients of the generating series for y(t) = Fc[u](t) = Cz(t) = CFcz [u](t)

are

(c, η) =



















CAkB : η = x0
kx1, k ≥ 0

CAkz0 : η = x0
k, k ≥ 0

0 : otherwise.

As a check, the explicit solution for the system (1.1.2) can be calculated from

(3.2.4). The following two lemmas are needed in order to calculate it.

Lemma 3.2.1. For any k ≥ 0,

Ex0
k [u](t) =

tk

k!
.

Proof: The prove is done after k repeated integrations from Examples 1.1.1

and 1.1.2 taking t0 = 0.

Lemma 3.2.2. For any k ≥ 0,

Exk

0
x1
[u](t) =

∫ t

0

(t− τ)k

k!
u(τ)dτ.

Proof: When k = 0, by definition Ex1
[u](t) =

∫ t

0
u1(τ)dτ . Also, when k = 1,

Ex0x1
[u](t) =

∫ t

0

1Ex1
[u](τ), dτ =

∫ t

0

∫ τ

0

u1(τ1)dτ1dτ =

∫ t

0

(t− τ)u(τ)dτ,
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using integration by parts. This set up can be extended inductively to produce

Ex2
0
x1
[u](t) =

∫ t

0

∫ τ1

0

Ex1
[u](τ1)dτ1dτ

=

∫ t

0

∫ τ1

0

∫ τ2

0

u1(τ2)dτ2dτ1dτ =

∫ t

0

(t− τ)2

2
u(τ)dτ,

and after k repeated integrations the statement is proved.

Substituting (3.2.1) and (3.2.2) in (3.2.4), gives

z(t) =

∞
∑

k=0

Akz0
tk

k!
+

∞
∑

k=0

AkB

∫ t

0

(t− τ)k

k!
u(τ)dτ

=

(

∞
∑

k=0

(At)k

k!

)

z0 +

∫ t

0

(

∞
∑

k=0

(A(t− τ))k

k!

)

Bu(τ)dτ

= eAtz0 +

∫ t

0

eA(t−τ)Bu(τ)dτ.

As expected this result is the same as the well known solution given in (1.1.3).

3.2.2 On bilinear time invariant systems

A bilinear time invariant state space realization is the first-order differential

equation and output equation

ż = N0z +N1zu, z(0) = z0

y = λz, (3.2.5)

where N0, N1 ∈ Rnxn, λ ∈ R1xn and z0 is a any vector in Rn. Note that the state

equation can be written in integral form using the Fundamental Theorem of Cal-

culus as

z(t) = z0 +N0

∫ t

0

z(τ)dτ +N1

∫ t

0

z(τ)u(τ)dτ. (3.2.6)

The method applied next is similar to the one developed in Subsection 3.2.1, but

in this case the presence of the bilinear term z(t)u(t) generates a much more rich

and complicated structure. Making the substitution of z(t) in the corresponding
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two terms of (3.2.6), yields

z(t) = z0 +N0

∫ t

0

(

z0 +N0

∫ τ

0

z(τ1)dτ1 +N1

∫ τ

0

z(τ1)u(τ1)dτ1

)

dτ

+N1

∫ t

0

(

z0 +N0

∫ τ

0

z(τ1)dτ1 +N1

∫ τ

0

z(τ1)u(τ1)dτ1

)

u(τ)dτ

= z0 +N0z0

∫ t

0

dτ +N1z0

∫ t

0

u(τ)dτ

+N2
0

∫ t

0

∫ τ

0

z(τ1)dτ1dτ +N0N1

∫ t

0

∫ τ

0

z(τ1)u(τ1)dτ1dτ

+N1N0

∫ t

0

u(τ)

∫ τ

0

z(τ1)dτ1dτ +N2
1

∫ t

0

u(τ)

∫ τ

0

z(τ1)u(τ1)dτ1dτ.

Repeating this procedure one more time, in order to see the structure of the terms,

gives

z(t) = z0 +N0z0

∫ t

0

dτ +N1z0

∫ t

0

u(τ)dτ +N2
0

∫ t

0

∫ τ

0

dτ1dτ +N0N1

∫ t

0

∫ τ

0

u(τ1)dτ1dτ

+N1N0

∫ t

0

u(τ)

∫ τ

0

dτ1dτ +N2
1

∫ t

0

u(τ)

∫ τ

0

u(τ1)dτ1dτ +R2(z(t), u(t)),

(3.2.7)

where R2(z(t), u(t)) contains all the integrals depending explicitly on z(t) and u(t).

Using iterated integrals in (3.2.7) yields

z(t) = z0E∅[u](t) +N0z0Ex0
[u](t) +N1z0Ex1

[u](t)

+N2
0 z0Ex2

0
[u](t) +N0N1z0Ex0x1

[u](t) +N1N0z0Ex1x0
[u](t) +N2

1 z0Ex2
1
[u](t)

+R2(z(t), u(t)).

Note that all the possible words over X = {x0, x1} of length two or shorter appear

above, specifically {∅, x0, x1, x
2
0, x0x1, x1x0, x

2
1}. Also observe, that the coefficient

N0 is attached to the letter x0 and N1 to the letter x1. For example, the coefficient

of the word x2
0 is N2

0 and similarly the coefficient for x0x1 is N0N1. Continuing in this

manner produces in the limit the usual Peano-Baker formula [4, 28], so the series

solution of (3.2.5) is

z(t) = Fcz [u](t) =
∑

η∈X∗

(cz, η) Eη[u](t),
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where X = {x0, x1}. The coefficients of the generating series for y(t) = Fc[u](t) =

λz(t) = λFcz [u](t) are

(c, η) = λNik · · ·Ni1z0, η = xik · · ·xi1 , (3.2.8)

where i1, · · · , ik ∈ {0, 1}, Ni1, · · · , Nik ∈ {N0, N1} and xi1 , · · · , xik ∈ X.
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CHAPTER 4

FRACTIONAL FLIESS OPERATORS

The concept of a fractional Fliess operator is presented as a generalization of

the usual Fliess operator introduced in Chapter 1. The basic idea is that iterated

Riemann-Liouville fractional integrals are used instead of the classical integrals.

There are in fact two choices available for the definition, one that is compatible with

the Riemann-Liouville fractional derivative and the other with the Caputo fractional

derivative. Both approaches are pursued in the context of state space realizations

for these operators. At this stage, no requirement is placed on the coefficients of

the generating series, so the development is purely formal.

Let X = {x0, x1, . . . , xm}, p ≥ 1 and a < b. For a Lebesgue measurable function

u : [a, b] → Rm, define ‖u‖p = max{‖ui‖p : 1 ≤ i ≤ m}, where ‖ui‖p is the usual Lp-

norm for a measurable real-valued function, ui, defined on [a, b]. The first definition

is the fractional version of the iterated integral Eη[u](t, t0) given in Section 1.1.

Without loss of generality it is assumed that t0 = 0, and thus it will be omitted from

the notation.

Definition 4.0.1. Let 0 < α ≤ 1 and T ∈ R be fixed. The fractional iterated

integral for any η = xiη
′ ∈ X∗, xi ∈ X, η′ ∈ X∗, is the mapping Eα

η : Lm
1 [0, T ] →

R[0, T ] defined by the recursion

Eα
η [u](t) = Eα

xiη′
[u](t) = Iα[ui(τ) E

α
η′ [u](τ)](t),

where Eα
∅ := 1 and

u0(t) :=







tα−1

Γ(α)
: Riemann-Liouville derivative approach

1 : Caputo derivative approach.

Note that when α = 1, the resulting iterated integrals are the usual continuous

functions Eη[u](t, 0). But when 0 < α < 1, the corresponding fractional iterated

integrals will be continuous if, for example, the functions ui, i = 1, 2, . . . , m are all

continuous. Weaker sufficient conditions also exist, see Subsection 2.2.4.
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Example 4.0.1. Let 0 < α ≤ 1, thus the fractional version of Example 1.1.1 is

Eα
x0
[u](t) = Iα(u0(t)) =







Iα
(

tα−1

Γ(α)

)

: Riemann-Liouville derivative approach

Iα(1) : Caputo derivative approach.

Using Example 2.2.2 and 2.2.1 yields

Eα
x0
[u](t) =







t2α−1

Γ(2α)
: Riemann-Liouville derivative approach

tα

Γ(α+1)
: Caputo derivative approach.

Example 4.0.2. Let 0 < α ≤ 1, when the word is η = x2
0 = x0x0, the fractional

iterated integral associated with it is

Eα
x2
0

[u](t) = Iα[u0(τ)E
α
x0
[u](τ)](t) = Iα[u0(τ)I

α(u0(τ))](t)

=







Iα
[

tα−1

Γ(α)
Iα
(

tα−1

Γ(α)

)]

: Riemann-Liouville derivative approach

Iα[1Iα(1)] = I2α(1) : Caputo derivative approach.

Using Example 2.2.2, 2.2.1 and 4.0.1 yields

Eα
x2
0

[u](t) =







Iα
[

t3α−2

Γ(α)Γ(2α)

]

: Riemann-Liouville derivative approach

t2α

Γ(2α+1)
: Caputo derivative approach.

Example 4.0.3. When the word is η = x0x1, the fractional iterated integral associ-

ated with it is

Eα
x0x1

[u](t) = Iα[u0(τ)E
α
x1
[u](τ)](t) = Iα[u0(τ)I

α(u1(τ))](t)

=







Iα
[

tα−1

Γ(α)
Iα(u1(t))

]

: Riemann-Liouville derivative approach

Iα[1Iα(u1(t))] = I2α(u1(t)) : Caputo derivative approach.
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Note that while the fractional iterated integral associated with the Riemann-

Liouville derivative approach involves complicated operations even for the input u0,

the Caputo derivative approach has a structure more similar to the usual iterated

integral. The fractional version of the input-output operator corresponding to c is

given next.

Definition 4.0.2. For any c ∈ Rℓ〈〈X〉〉 and 0 < α ≤ 1 the fractional Fliess opera-

tor is defined formally by

F α
c [u](t) =

∑

η∈X∗

(c, η) Eα
η [u](t).

As expected, when α = 1, the operator is the usual one given in (1.1.1).

Example 4.0.4. When the series is c = 2x0 + 3x0x1, the corresponding Fliess

operator is

F α
c [u](t) = F α

2x0+3x0x1
[u](t) = 2Eα

x0
[u](t) + 3Eα

x0x1
[u](t)

=







2 t2α−1

Γ(2α)
+ 3Iα

[

tα−1

Γ(α)
Iα(u1(t))

]

: Riemann-Liouville derivative approach

2 tα

Γ(α+1)
+ 3I2α(u1(t)) : Caputo derivative approach.

4.1 ON FRACTIONAL LINEAR TIME INVARIANT SYSTEMS

The focus in this section will be on fractional linear time invariant systems. The

objective is to generalize the theory in Subsection 3.2.1 for fractional systems,

now using the tools introduced in previous chapters. The state equation related to

this new input-output model will be of non integer order since Riemann-Liouville

fractional integrals are used instead of classical integrals. When a fractional order

is used instead of the first order in (3.2.1), the resultant derivative can be of two

types: a Riemman-Liouville fractional derivative or a Caputo fractional derivative.

The following subsections analyze each case.
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4.1.1 Riemman-Liouville fractional derivative approach

A single-input single-output linear time invariant system with a fractional differ-

ential equation, where the derivative is the Riemann-Liouville fractional derivative

is shown in Figure 8.

Dαz = Az(t) +Bu(t)

y(t) = Cz(t)
u(t) y(t)

Fig. 8: Block diagram of single-input single-output Riemann-Liouville fractional

linear time invariant system

As shown in Chapter 1, the fractional differential equation associated with this

system is given in (1.1.7). Specifically, the state equation is

Dαz = Az +Bu, z(0) = z0, (4.1.1)

where 0 ≤ α ≤ 1, A ∈ Rnxn, B ∈ Rnx1 and z0 is a any vector in Rn. This equa-

tion can be written in integral form using the Fractional Fundamental Theorem of

Calculus given in Theorem 2.3.1, namely,

Iα(Dαz(t)) = Iα(Az(t) + Bu(t)) = AIαz(t) + BIαu(t).

Then,

z(t)− I1−αz(0)

[

tα−1

Γ(α)

]

= AIαz(t) + BIαu(t).

Rearranging terms gives

z(t) = I1−αz(0)

[

tα−1

Γ(α)

]

+ AIαz(t) + BIαu(t). (4.1.2)

Since integration and differentiation are defined componentwise, there is no loss

of generality in the following analysis by assuming n = 1. For any F ∈ P1, the
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differential chain rule in integral form given in Example 2.4.3 becomes

DαF (z(t)) = (Dα ll(t))F (z(t)) + (Dαz(t)− z(t)Dα ll(t))
d

dz
F (z(t)).

Replacing (4.1.1) gives

DαF (z(t)) = (Dα ll(t))F (z(t)) + (Az(t) + Bu(t)− z(t)Dα ll(t))
d

dz
F (z(t)).

Taking the fractional integral at each side,

IαDαF (z(t)) = Iα((Dα ll(t))F (z(t))) + A Iα
(

z(t)
d

dz
F (z(t))

)

+B Iα
(

u(t)
d

dz
F (z(t))

)

− Iα
(

(Dα ll(t))z(t)
d

dz
F (z(t))

)

.

Using Theorem 2.3.1 and rearranging gives

F (z(t)) = I1−αF (z(0))

[

tα−1

Γ(α)

]

+ Iα((Dα ll(t))F (z(t))) + A Iα
(

z(t)
d

dz
F (z(t))

)

+B Iα
(

u(t)
d

dz
F (z(t))

)

− Iα
(

(Dα ll(t))z(t)
d

dz
F (z(t))

)

.

Now let F (z(t)) = Az(t) above, then

Az(t) = AI1−αz(0)Iα
[

tα−1

Γ(α)

]

+ AIα((Dα ll(t))z(t)) + A2Iαz(t)

+ ABIαu(t)−AIα ((Dα ll(t))z(t)) ,

and cancelling two terms gives

Az(t) = AI1−αz(0)

[

tα−1

Γ(α)

]

+ A2Iαz(t) + ABIαu(t).

Substitute the resulting equation into (4.1.2). This yields

z(t) = I1−αz(0)

[

tα−1

Γ(α)

]

+ AI1−αz(0)Iα
[

tα−1

Γ(α)

]

+BIαu(t) + ABI2αu(t) + A2I2αz(t).

(4.1.3)
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Repeating this procedure with F (z(t)) = A2z(t) gives

A2z(t) = A2I1−αz(0)

[

tα−1

Γ(α)

]

+ A4Iαz(t) + A2BIαu(t).

Substitute the resulting equation into (4.1.3). This yields

z(t) = I1−αz(0)

[

tα−1

Γ(α)

]

+ AI1−αz(0)Iα
[

tα−1

Γ(α)

]

+ A2I1−αz(0)I2α
[

tα−1

Γ(α)

]

+BIαu(t)+ABI2αu(t) + A2BI3αu(t) +R2(z(t)),

where R2(z(t)) contains all the integrals depending explicitly on z(t). Continuing

in this manner produces in the limit

z(t) =

∞
∑

k=0

AkI1−αz(0)Iαk
[

tα−1

Γ(α)

]

+

∞
∑

k=1

Ak−1BIαku(t), (4.1.4)

which can be viewed as a fractional form of the usual Peano-Baker formula [4,28]

given in (3.2.4) for linear time invariant systems. Equivalently, the series solution

of (4.1.1) is

z(t) =
∑

η∈X∗

(cz, η) E
α
η [u](t), (4.1.5)

where u0(t) := tα−1/Γ(α) as indicated in Definition 4.0.1,X = {x0, x1} and the

coefficients of the generating series for y(t) = Cz(t) = F α
c [u](t) are

(c, η) =



















CAkB : η = x0
kx1, k ≥ 0

CAkI1−α(z0) : η = x0
k, k ≥ 0

0 : otherwise.

The fractional iterated integral in (4.1.5) is

Eα
η [u](t) =







Iαku(t) : η = x0
k−1x1, k ≥ 1

Iαk
[

tα−1

Γ(α)

]

: η = x0
k, k ≥ 0.

As a check, the explicit solution for the system (1.1.7) can be calculated from
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(4.1.4). Observe that using Example 2.2.2 and 2.2.3 yields

z(t) =
∞
∑

k=0

AkI1−αz(0)

(

tαk+α−1

Γ(α)

)(

Γ(α)

Γ(αk + α)

)

+
∞
∑

k=1

Ak−1B(Iαk−1 ll(t)) ∗ u(t).

Thus,

z(t) =
∞
∑

k=0

(Atα)k

Γ(αk + α)
tα−1I1−αz(0) +

∞
∑

k=1

Ak−1Iαk−1 ll(t)B ∗ u(t).

Using Definition 2.1.1, Example 2.2.4 and Lemma 2.1.1 gives

z(t) = Eα,α(At
α)tα−1I1−αz(0) + (tα−1

Eα,α(At
α))B ∗ u(t). (4.1.6)

On the other hand, taking the Laplace transform of (4.1.1) and applying Theo-

rem 2.4.7, then it follows that

sαL [z(t)] − I1−αz(0) = AL [z(t)] + BL [u(t)],

and thus,

L [z(t)] = (sαI − A)−1I1−αz(0) + (sαI − A)−1BL [u(t)].

Using Lemma 2.1.2 gives

L [z(t)] = L [tα−1
Eα,α(At

α)]I1−αz(0) + L [tα−1
Eα,α(At

α)]BL [u(t)].

Taking the inverse Laplace transform and using (2.1.6) yields

z(t) = Eα,α(At
α)tα−1I1−αz(0) + (tα−1

Eα,α(At
α))B ∗ u(t), (4.1.7)

which is the same result obtained in (4.1.6) when the series solution (4.1.5) is

used. That is, the generating series c can be written is terms of the function

tα−1Eα,α(At
α), which is a generalization of the matrix exponential eAt when α = 1.

Also note that in this Riemann-Liouville approach the coefficients are not explicit

functions of z(0) but rather I1−αz(0). This fractional initial condition can be written
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as

I1−αz(t)
∣

∣

t=0
=

z(t)Γ(α)

tα−1

∣

∣

∣

∣

t=0

[17,29].

4.1.2 Caputo fractional derivative approach

A single-input single-output linear time invariant system with a fractional differ-

ential equation, where the derivative is the Caputo fractional derivative is shown in

Figure 9.

CDαz(t) = Az(t) +Bu(t)

y(t) = Cz(t)
u(t) y(t)

Fig. 9: Block diagram of single-input single-output Caputo fractional linear time

invariant system

As shown in Chapter 1, the fractional differential equation associated to this

system is given in (1.1.8). Specifically the state equation is

CDαz = Az +Bu, z(0) = z0, (4.1.8)

where 0 ≤ α ≤ 1, A ∈ Rnxn, B ∈ Rnx1 and z0 is a any vector in Rn. This equation

can also be written in integral form. First, using Theorem 2.4.9, gives

CDαz = Dα(z(t)− z(0)) = Az(t) + Bu(t). (4.1.9)

Taking the fractional integral in each term yields

Iα(Dα(z(t)− z(0))) = Iα(Az(t) + Bu(t)) = AIαz(t) + BIαu(t).

Using the Fractional Fundamental Theorem of Calculus given in Theorem 2.3.1, it
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follows that

(z(t)− z(0))− I1−α(z(t)− z(0))
∣

∣

t=0

[

tα−1

Γ(α)

]

= AIαz(t) + BIαu(t).

Rearranging terms gives

z(t) = z(0) + AIαz(t) + BIαu(t), (4.1.10)

since I1−α(z(t)− z(0))|t=0 = 0. Assume n = 1 and use the same procedure as in

the previous Section 4.1.1. For any G ∈ P1, the differential chain rule in integral

form given in Example 2.4.3 becomes

DαG(z(t)) = (Dα ll(t))G(z(t)) + (Dαz(t)− z(t)Dα ll(t))
d

dz
G(z(t)).

Assume that G(z(t)) = F (z(t)) − F (z(0)) and note that Dαz(t) = Az(t) + Bu(t) +

Dαz(0) from (4.1.9). Substituting above gives

Dα(F (z(t))−F (z(0))) = (Dα ll(t))(F (z(t))− F (z(0)))

+ (Az(t) + Bu(t)− (z(t)− z(0))Dα ll(t))
d

dz
(F (z(t))− F (z(0))).

Taking the fractional integral at each side,

IαDαF (z(t)) = Iα((Dα ll(t))(F (z(t))− F (z(0))))

+ A Iα
(

z(t)
d

dz
F (z(t))

)

+B Iα
(

u(t)
d

dz
F (z(t))

)

− Iα
(

(Dα ll(t))(z(t)− z(0))
d

dz
F (z(t))

)

,

since d
dz
F (z(0)) = 0. Using Theorem 2.3.1 yields

F (z(t))− F (z(0)) = I1−α(F (z(t))− F (z(0)))

[

tα−1

Γ(α)

]

+ Iα((Dα ll(t))F (z(t)))

+ A Iα
(

z(t)
d

dz
F (z(t))

)

+B Iα
(

u(t)
d

dz
F (z(t))

)

− Iα
(

(Dα ll(t))(z(t)− z(0))
d

dz
F (z(t))

)

.
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Since I1−α(F (z(t))− F (z(0)))|t=0 = 0, rearranging gives

F (z(t)) = F (z(0)) + Iα((Dα ll(t))(F (z(t))− F (z(0)))) + A Iα
(

z(t)
d

dz
F (z(t))

)

+B Iα
(

u(t)
d

dz
F (z(t))

)

− Iα
(

(Dα ll(t))(z(t)− z(0))
d

dz
F (z(t))

)

.

Now let F (z(t)) = Az(t) above, then

Az(t) = Az(0) + A2Iαz(t) + ABIαu(t),

since (F (z(t))− F (z(0)))|t=0 = 0 and (z(t)− z(0))|t=0 = 0. Substituting the result

into (4.1.10) gives

z(t) = z(0) + Az(0)Iα ll(t) + BIαu(t) + ABI2αu(t) +R1(z(t)),

where R1(z(t)) contains all the integrals depending explicitly on z(t). Continuing

in this way produces the Caputo analogue of (4.1.4), namely,

z(t) =
∞
∑

k=0

Akz(0)Iαk ll(t) +
∞
∑

k=1

Ak−1BIαku(t). (4.1.11)

The main differences in this case are the presence of z(0) instead of I1−αz(0) in

the series coefficients and the factor of ll(t) instead of tα−1/Γ(α) in the iterated

integrals. The series solution of (4.1.8) is then

z(t) =
∑

η∈X∗

(cz, η) E
α
η [u](t), (4.1.12)

where u0(t) := ll(t) as indicated in Definition 4.0.1 and X = {x0, x1}. The coeffi-

cients of the generating series for y(t) = Cz(t) = F α
c [u](t) are

(c, η) =



















CAkB : η = x0
kx1, k ≥ 0

CAkz0 : η = x0
k, k ≥ 0

0 : otherwise.



55

The fractional iterated integral in (4.1.12) is

Eα
η [u](t) =







Iαku(t) : η = x0
k−1x1, k ≥ 1

Iαk ll(t) : η = x0
k, k ≥ 0.

As a check, the explicit solution for the system (1.1.8) can be calculated from

(4.1.11). First, recall that it was found in (4.1.6) that

∞
∑

k=1

Ak−1BIαku(t) = (tα−1
Eα,α(At

α))B ∗ u(t).

Using Example 2.2.4 and the expression above in (4.1.11) yields

z(t) = Eα,1(At
α)z0 + C(tα−1

Eα,α(At
α))B ∗ u(t). (4.1.13)

On the other hand, taking the Laplace transform of (4.1.8) and applying Theo-

rem 2.4.8 it follows that

sαL [z(t)]− sα−1z(0) = AL [z(t)] + BL [u(t)],

and thus,

L [z(t)] = (sαI −A)−1sα−1z(0) + (sαI − A)−1BL [u(t)].

Using Lemma 2.1.2 gives

L [z(t)] = L [Eα,1(At
α)]z(0) + L [tα−1

Eα,α(At
α)]BL [u(t)].

Taking the inverse Laplace transform and using (2.1.6) yields

z(t) = Eα,1(At
α)z(0) + (tα−1

Eα,α(At
α))B ∗ u(t), (4.1.14)

which is the same result obtained in (4.1.13) when the series solution (4.1.12) is

used.
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4.2 ON FRACTIONAL BILINEAR TIME INVARIANT SYSTEMS

The focus in this section will be on fractional bilinear time invariant systems.

The objective is to generalize the theory in Subsection 3.2.2 for fractional sys-

tems, now using the tools introduced in previous chapters. As in Section 4.1,

two approaches will be presented: the Riemman-Liouville fractional derivative ap-

proach and the Caputo fractional derivative approach.

4.2.1 Riemman-Liouville fractional derivative approach

A single-input single-output linear time invariant system with a fractional differ-

ential equation, where the derivative is the Riemann-Liouville fractional derivative

is used, is shown in Figure 10.

Dαz(t) = N0z(t) +N1z(t)u(t)

y(t) = λz(t)
u(t) y(t)

Fig. 10: Block diagram of single-input single-output Riemann-Liouville fractional

bilinear time invariant system

A state-space representation for this system is

Dαz = N0z +N1zu, z(0) = z0

y = λz, (4.2.1)

where 0 ≤ α ≤ 1, N0, N1 ∈ Rnxn, λ ∈ R1xn and z0 is a any vector in Rn. Note that

the state equation is

Dαz = N0z +N1zu, z(0) = z0. (4.2.2)

This equation can be written in integral form using the Fractional Fundamental
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Theorem of Calculus given in Theorem 2.3.1, namely,

Iα(Dαz(t)) = Iα(N0z(t) +N1z(t)u(t)) = N0I
αz(t) +N1I

α(z(t)u(t)).

Then,

z(t)− I1−αz(0)

[

tα−1

Γ(α)

]

= N0I
αz(t) +N1I

α(z(t)u(t)).

Rearranging terms gives

z(t) = I1−αz(0)

[

tα−1

Γ(α)

]

+N0I
αz(t) +N1I

α(z(t)u(t)). (4.2.3)

Assuming n = 1, for any F ∈ P1, the differential chain rule in integral form given in

Example 2.4.3 becomes

DαF (z(t)) = (Dα ll(t))F (z(t)) + (Dαz(t)− z(t)Dα ll(t))
d

dz
F (z(t)).

Substituting (4.2.2) gives

DαF (z(t)) = (Dα ll(t))F (z(t)) + (N0z(t) + Bz(t)u(t)− z(t)Dα ll(t))
d

dz
F (z(t)).

Taking the fractional integral at each side,

IαDαF (z(t)) = Iα((Dα ll(t))F (z(t))) +N0 I
α

(

z(t)
d

dz
F (z(t))

)

+N1 I
α

(

z(t)u(t)
d

dz
F (z(t))

)

− Iα
(

(Dα ll(t))z(t)
d

dz
F (z(t))

)

.

Using Theorem 2.3.1 and rearranging gives

F (z(t)) = I1−αF (z(0))

[

tα−1

Γ(α)

]

+ Iα((Dα ll(t))F (z(t))) +N0 I
α

(

z(t)
d

dz
F (z(t))

)

+N1 I
α

(

z(t)u(t)
d

dz
F (z(t))

)

− Iα
(

(Dα ll(t))z(t)
d

dz
F (z(t))

)

.

Now let F (z(t)) be replaced by Niz(t), i = 0, 1 above, then

Niz(t) = NiI
1−αz(0)Iα

[

tα−1

Γ(α)

]

+NiI
α((Dα ll(t))z(t)) +N0NiI

αz(t)

+N1NiI
α(z(t)u(t))−NiI

α ((Dα ll(t))z(t)) ,
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and cancelling two terms gives

N0z(t) = N0I
1−αz(0)Iα

[

tα−1

Γ(α)

]

+N2
0 I

αz(t) +N1N0I
α(z(t)u(t))

and

N1z(t) = N1I
1−αz(0)Iα

[

tα−1

Γ(α)

]

+N0N1I
αz(t) +N2

1 I
α(z(t)u(t)).

Substituting both results into (4.2.3) yields

z(t) = I1−αz(0)

[

tα−1

Γ(α)

]

+N0I
1−αz(0)Iα

[

tα−1

Γ(α)

]

+N1I
1−αz(0)Iα

[

u(t)
tα−1

Γ(α)

]

+N2
0 I

2αz(t) +N0N1I
2α(z(t)u(t)) +N1N0I

α(Iαz(t)u(t))

+N2
1 I

α(Iα(z(t)u(t))u(t)).

Repeating this procedure, let F (z(t)) be replaced by NiNjz(t), i, j = 0, 1 and

substitute back into the equation above. This gives

z(t) = I1−αz(0)

[

tα−1

Γ(α)

]

+N0I
1−αz(0)Iα

[

tα−1

Γ(α)

]

+N1I
1−αz(0)Iα

[

u(t)
tα−1

Γ(α)

]

+N2
0 I

1−αz(0)I2α
[

tα−1

Γ(α)

]

+N0N1I
1−αz(0)I2α

[

u(t)
tα−1

Γ(α)

]

+N2
1 I

1−αz(0)Iα(u(t)Iαu(t)) +N1N0I
1−αz(0)Iα

[

u(t)Iα
[

tα−1

Γ(α)

]]

+R2(z(t), u(t)),

where R2(z(t), u(t)) contains all the integrals depending explicitly on z(t) and u(t).

Continuing in this manner produces in the limit a fractional form of the usual

Peano-Baker formula [28], given in (3.2.2) for bilinear time invariant systems. So

the series solution of (4.2.2) is

z(t) =
∑

η∈X∗

(cz, η) E
α
η [u](t), (4.2.4)

where u0(t) := tα−1/Γ(α) as indicated in Definition 4.0.1. The coefficients of the

generating series for y(t) = λz(t) = F α
c [u](t) are

(c, η) = λNik · · ·Ni1I
1−αz(0), (4.2.5)
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where i1, · · · , ik ∈ {0, 1} and xi1 , · · · , xik ∈ {x0, x1}.

As a check, write (4.2.4) in the form

z(t) = I1−αz(0)

[

tα−1

Γ(α)

]

+

1
∑

i=0

∞
∑

k=0

1
∑

i0,...,ik=0

NiNik · · ·Ni1I
1−αz(0)Iα[ui(τ)E

α
xi

k
···xi1

u(τ)](t),

and take the Riemann-Liouville derivative of order α so that

Dαz(t) =
∞
∑

k=0

1
∑

i0,...,ik=0

N0Nik · · ·Ni1I
1−αz(0)u0(t)E

α
xi

k
···xi1

[u](t)

+
∞
∑

k=0

1
∑

i0,...,ik=0

N1Nik · · ·Ni1I
1−αz(0)u1(t)E

α
xik

···xi1
[u](t)

= N0z(t) +N1z(t)u(t),

which is consistent with (4.2.2). Also note that in this Riemann-Liouville approach,

like in Section 4.1, the coefficients are not explicit functions of z(0), but rather in

terms of I1−αz(0). This fractional initial condition can be written as

I1−αz(t)
∣

∣

t=0
=

z(t)Γ(α)

tα−1

∣

∣

∣

∣

t=0

[17,29].

4.2.2 Caputo fractional derivative approach

A single-input single-output bilinear time invariant system with a fractional dif-

ferential equation, where the derivative is the Caputo fractional derivative is shown

in Figure 11.

A state-space representation for this system is

CDαz = N0z +N1zu, z(0) = z0

y = λz, (4.2.6)

where 0 ≤ α ≤ 1, N0, N1 ∈ Rnxn, λ ∈ R1xn and z0 is a any vector in Rn. Note that
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CDαz(t) = N0z(t) +N1z(t)u(t)

y(t) = λz(t)
u(t) y(t)

Fig. 11: Block diagram of single-input single-output Caputo fractional bilinear time

invariant system

the state equation is

CDαz = N0z +N1zu, z(0) = z0. (4.2.7)

This equation can be written in integral form. First, using Theorem 2.4.9, gives

CDαz = Dα(z(t)− z(0)) = N0z(t) +N1z(t)u(t). (4.2.8)

Taking the fractional integral in each term yields

Iα(Dα(z(t)− z(0))) = Iα(N0z(t) +N1z(t)u(t)) = N0I
αz(t) +N1I

α(z(t)u(t)).

Using the Fractional Fundamental Theorem of Calculus given in Theorem 2.3.1, it

follows that

(z(t)− z(0))− I1−α(z(t)− z(0))
∣

∣

t=0

[

tα−1

Γ(α)

]

= N0I
αz(t) +N1I

α(z(t)u(t)).

Rearranging terms gives

z(t) = z(0) +N0I
αz(t) +N1I

α(z(t)u(t)), (4.2.9)

since I1−α(z(t)− z(0))|t=0 = 0. Assuming n = 1 and following the same procedure
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as in the previous subsections yields

F (z(t)) = F (z(0)) + Iα((Dα ll(t))(F (z(t))− F (z(0)))) +N0I
α

(

z(t)
d

dz
F (z(t))

)

+N1I
α

(

z(t)u(t)
d

dz
F (z(t))

)

− Iα
(

(Dα ll(t))(z(t)− z(0))
d

dz
F (z(t))

)

for any F ∈ P1 using Example 2.4.3 and (4.2.9). Now let F (z(t)) be replaced by

Niz(t), i = 0, 1 and substitute back into (4.2.9). This yields

z(t) = z0 +N0z0I
α ll(t) +N1z0I

αu(t) +R1(z(t), u(t)),

where R1(z(t), u(t)) contains all the integrals depending explicitly on z(t) and u(t).

Continuing in this way produces the Caputo analogue of the result obtain in the

Riemann-Liouville subsection, namely, the series solution of (4.2.7) is

z(t) =
∑

η∈X∗

(cz, η) E
α
η [u](t), (4.2.10)

where now u0(t) := ll(t) as indicated in Definition 4.0.1. The coefficients of the

generating series for y(t) = λz(t) = F α
c [u](t) are

(c, η) = λNik · · ·Ni1z0 (4.2.11)

for η = xik · · ·xi1 . As a check, take the Caputo derivative of order α of (4.2.10). A

straightforward calculation analogous to the one for Riemann-Liouville case gives

(4.2.7) as expected. Also, note that the coefficients in (4.2.11) coincide with the

ones in the non-fractional case given in (3.2.8).

The only difference between this Caputo fractional case and the regular case

is in terms of the iterative integrals, this motivates the final theorem of this thesis.

It is a generalization of a Volterra series [12] for a fractional bilinear system.

Theorem 4.2.1. The solution y(t) = λz(t) = F α
c [u](t) of a bilinear system in the

Caputo sense (4.2.6) can be written in terms of the matrix Mittag-Leffler function

as

y(t) = w0(t) +

∞
∑

k=1

∫ t

0

∫ τk

0

· · ·

∫ τ2

0

wk(t, τk, . . . , τ1)u(τk) · · ·u(τ1) dτ1 · · ·dτk,
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where

w0(t) = λEα,1(N0t
α)z0,

wk(t, τk, . . . , τ1) = λ(t− τk)
α−1

Eα,α(N0(t− τk)
α)N1(τk − τk−1)

α−1
Eα,α(N0(τk − τk−1)

α)

· · ·N1(τ2 − τ1)
α−1

Eα,α(N0(τ2 − τ1)
α)N1Eα,1(N0τ1

α)z0, k ≥ 1.

Proof: Since each word η = xik · · ·xi1 ∈ X∗ can be rewritten uniquely in the form

x0
nkx1x0

nk−1x1 · · ·x0
n1x1x0

n0, it follows from (4.2.10) and (4.2.11) that

y(t) =
∞
∑

k=0

∞
∑

n0,...,nk=0

λN0
nkN1N0

nk−1 · · ·N1N0
n0z0E

α
x0

n
kx1x0

nk−1 ···x1x0
n0
[u](t).

The claim is that y =
∑

k≥0 yk, where

yk(t) :=
∞
∑

n0,...,nk=0

λN0
nkN1N0

nk−1 · · ·N1N0
n0z0E

α
x0

nkx1x0
nk−1 ···x1x0

n0
[u](t)

=
∞
∑

n0,...,nk=0

∫ t

0

∫ τk

0

· · ·

∫ τ2

0

wk(t, τk, . . . , τ1)u(τk) · · ·u(τ1) dτ1 · · ·dτk

for k > 0 and y0 :=
∑

n0≥0 λN
n0

0 z0E
α
x
n0
0

[u] = w0. The expressions for yk are proved

by induction on k. When k = 0 observe that

y0(t) =

∞
∑

n0=0

λN0
n0z0 I

αn0 ll(t),

and using Example 2.2.4 yields

y0(t) = λEα,1(N0t
α)z0 = w0(t).

When k = 1, it follows via Example 2.2.3 that

y1(t) =
∞
∑

n0,n1=0

λN0
n1N1N0

n0z0 I
α(n1+1)(u(t)Iαn0 ll(t))

=

∞
∑

n0=0

(λtα−1
Eα,α(N0t

α)N1N0
n0z0) ∗ (u(t)I

αn0 ll(t)).
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Applying next Example 2.2.4 yields

y1(t) =

∫ t

0

λ(t− τ)α−1
Eα,α(N0(t− τ)α)N1Eα,1(N0τ1

α)z0u(τ) dτ

=

∫ t

0

w1(t, τ1)u(τ1) dτ1.

Now suppose the identity in question holds for all terms up to some fixed k ≥ 0.

Then

yk+1(t) =

∞
∑

n0,...,nk+1=0

λN0
nk+1N1N0

nk · · ·N1N0
n0z0I

α(nk+1+1)

(u(t)Eα
x0

nkx1x0
nk−1 ···x1x0

n0 [u](t)),

and Example 2.2.3 gives

yk+1(t) =
∞
∑

n0,...,nk=0

λtα−1
Eα,α(N0t

α)N1N0
nk · · ·N1N0

n0z0∗

(u(t)Eα
x0

nkx1x0
nk−1 ···x1x0

n0
[u](t))

=

∞
∑

n0,...,nk=0

∫ t

0

λ(t− τk+1)
α−1

Eα,α(N0(t− τk+1)
α)N1N0

nk · · ·N1N0
n0z0u(τk+1)

Eα
x0

nkx1x0
n
k−1 ···x1x0

n0 [u](t) dτk+1.

Finally, from the induction hypothesis, it follows that

yk+1(t)=

∫ t

0

∫ τk+1

0

· · ·

∫ τ2

0

λ(t− τk+1)
α−1

Eα,α(N0(t− τk+1)
α) · · ·N1(τ2 − τ1)

α−1

Eα,α(N0(τ2 − τ1)
α)N1Eα,1(N0τ1

α)z0u(τk+1) · · ·u(τ1)dτ1 · · ·dτk+1

=

∫ t

0

∫ τk+1

0

· · ·

∫ τ2

0

wk+1(t, τk+1, . . . , τ1)u(τk+1) · · ·u(τ1) dτ1 · · ·dτk+1.

Thus, the expression for yk holds for all k ≥ 0, and the theorem is proved.

In the case of a bilinear system corresponding to the Riemann-Liouville ap-

proach, an analogous Volterra series representation can be directly computed

using Theorem 2.4.9. Recall also in the non-fractional case that there is a di-

chotomy between causal Volterra series induced by initialized state space realiza-

tions [12] and a potentially noncausal variety whose kernel functions are often de-

rived from measurements and represented in terms of their multivariable Laplace
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transforms [28]. Theorem 4.2.1 above corresponds to the former in this fractional

setting, while the fractional generalization of the latter has appeared in [19,20].
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CHAPTER 5

CONCLUSIONS

The fractional extension of Fliess operators in two specific cases: using

Riemann-Liouville fractional derivatives and Caputo fractional derivatives was de-

fined and a characterization of a fractional extension of iterated integrals using

Riemann-Liouville fractional integrals was used.

A general solution for a fractional linear and bilinear time invariant system via

formal power series in terms of Fliess operators was created using this fractional

extension. One solution for each approach, using Riemann-Liouville fractional

derivatives and Caputo fractional derivatives.

In regards to the linear time invariant system, comparing the explicit solutions

for both systems in (4.1.7) and (4.1.14), it is evident that both approaches produce

the same impulse response, i.e, the part of y(t) only considering the input u(t) =

ll(t), then y(t) = C(tα−1Eα,α(At
α))B. While the zero-input state responses, i.e,

the part of y(t) considering the input u(t) = 0, differ in the way they depend on

the initial conditions. Namely, Eα,α(At
α)tα−1I1−αz(0) in the Riemann-Liouville case

versus Eα,1(At
α)z(0) in the Caputo case. In the case of bilinear time invariant

system, the main differences between the Caputo and Riemann-Liouville cases

are the presence of z(0) instead of I1−αz(0) in the series coefficients and the

factor of ll(t) instead of tα−1/Γ(α) in the iterated integrals.
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