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Abstract 

The coupling between molecular diffusion and chemical reaction give rise to 

chemical fronts. For example, when we start an autocatalytic reaction in a liquid, 

we observe a moving interface separating reactants and products as the 

reaction proceeds. This interface is called chemical front or propagating front. 

Our goal is to study reaction fronts described by the Kuramoto-Sivashinsky 

equation under different types of fluid motion: an external Poiseuille flow which 

is contrasted with an external Couette flow, and convective flow due to the 

Rayleigh-Taylor instability. In the first case, the fronts propagate with or against 

a steady two-dimensional flow between two parallel plates, known as Poiseuille 

flow. In narrow slabs, we found steady front profiles that can be flat, 

axisymmetric, or nonaxisymmetric, depending on the slab width and the 

average flow speed. We find that stable steady axisymmetric fronts propagating 

against an axisymmetric Poiseuille flow become nonaxisymmetric when the 

average speed of this adverse Poiseuille flow is increased. In the case of 

Couette flow, two parallel plates moving in opposite directions generate a linear 

fluid velocity field. We find that the shape of the steady fronts and their stability 

depend on the slab width and on the relative velocity between the plates. These 

parameters have the potential to modify unstable fronts into stable fronts. When 

the denser fluid is on top of less dense fluid, the front instabilities are caused by 

the density difference across the front in a gravitational field. These instabilities 

are known as Rayleigh-Taylor instabilities. In this last case, the front describes 

the thin interface between two fluids of different densities inside a two-

dimensional vertical slab, while convection caused by buoyancy forces across 

an interface determines the flow due to the Rayleigh-Taylor instability. We 

obtain different spatial fronts profiles, depending on the slab width, the density 

gradient, and fluid viscosity. First we obtained fronts regardless of the stability, 

and then we carry out a linear stability analysis to determine the stability of the 



fronts in each case. We show regions of bistability where stable 

nonaxisymmetric and axisymmetric fronts can coexist for each type of flow.  

Keywords: Reaction fronts; Kuramoto-Sivashinsky equation; Rayleigh-Taylor 

instabilities; Couette flow; Poiseuille flow 
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Resumen 

Los frentes químicos se obtienen experimentalmente como resultado del 

acoplamiento entre difusión molecular y reacción química. Por ejemplo, cuando 

se inicia una reacción autocatalítica en un líquido, se observa una interfaz que 

separa reactantes y productos mientras se produce la reacción. A esta interfaz 

se le denomina frente químico. Nuestro objetivo es estudiar frentes químicos 

modelados mediante la ecuación de Kuramoto-Sivashinsky sujetos a diferentes 

tipos de movimiento de fluido: flujo externo de Poiseuille, el cual es contrastado 

con el flujo externo de Couette, y flujo convectivo debido a la inestabilidad de 

Rayleigh-Taylor. En el primer caso, los frentes se propagan a favor o en contra 

de un flujo estacionario bidimensional entre dos placas paralelas que se conoce 

como flujo de Poiseuille. Para pequeñas distancias entre las placas, 

encontramos frentes estacionarios que pueden ser planos, simétricos o 

asimétricos, dependiendo de la separación de las placas y de la velocidad 

promedio del fluido externo. Mostraremos que los frentes simétricos estables 

que se propagan en sentido opuesto al flujo simétrico externo se vuelven 

asimétricos al incrementar la rapidez del flujo externo. En el caso del flujo de 

Couette, el flujo es producido por el movimiento de dos placas paralelas en 

sentidos opuestos. Encontramos que la estabilidad y la forma de los frentes 

estacionarios dependen de la velocidad relativa entre las placas y de su 

separación. Estos parámetros pueden convertir frentes inestables en estables. 

Las inestabilidades en el frente producidas cuando el fluido más denso se 

encuentra encima del fluido menos denso, se conocen como inestabilidades de 

Rayleigh-Taylor y son causadas por la diferencia de densidades a través del 

frente bajo la acción de la gravedad. En este último caso, el frente describe la 

interfaz delgada entre dos fluidos de diferente densidad dentro de dos placas 

paralelas verticales, mientras que la convección causada por las fuerzas de 

flotación a través de una interfaz determina el flujo debido a la inestabilidad de 



Rayleigh-Taylor. Primero obtendremos los frentes y luego realizaremos un 

análisis de estabilidad lineal para determinar la estabilidad de los frentes en 

cada uno de los casos. Mostraremos regiones de bi-estabilidad donde frentes 

estables simétricos y asimétricos pueden coexistir para cada tipo de flujo. 

Palabras claves: Frentes de reacción; ecuación de Kuramoto-Sivashinsky; 

inestabilidad de Rayleigh-Taylor; flujo de Couette; flujo de Poiseuille 
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Chapter 1 

Introduction 

A variety of reaction-diffusion systems exhibits propagating waves and spatial 

patterns [1,2]. Among them, we have the Belousov-Zhabotinsky (BZ) reaction 

[3,4], the chlorite-iodide-malonic acid (CIMA) reaction [5] and the iodate-

arsenous acid (IAA) reaction [6]. The BZ reaction is an oscillatory reaction that 

exhibits travelling (concentration) waves [7], spiral waves, target patterns, and 

other spatio-temporal patterns [8], including stationary Turing structures [9] and 

chemical chaos [10]. Castets, et al. working experimentally with the Chlorite-

iodide-malonic acid-starch reaction in a gel reactor found the first evidence of 

the existence of the symmetry breaking, reaction-diffusion structures predicted 

by Turing [11,12]. In addition, the reaction between iodide ion and chlorite ion 

exhibits bistability, oscillatory behavior and propagating waves [13,14]. The IAA 

reaction also exhibits bistability and chemical waves, but in contrast to the other 

reactions, the IAA reaction can be accurately described by a one variable 

(scalar) reaction-diffusion equation with cubic reaction kinetics [6]. The IAA 

reaction, like many other autocatalytic or oscillatory reactions, generates 

propagating reaction-diffusion fronts [15], which are the simplest type of 

chemical waves. The front is an interface that divides the system into two 

different states (or phases), which can be also found in other contexts such as, 

forest fire [16], crystal growth, landslide, epidemics [17], cell populations, 

corrosion [18], and so on. In particular, we are interested in propagating fronts, 

which result from the coupling of autocatalytic reaction with molecular diffusion 

[19]. These fronts typically move with constant velocity and constant spatial 

profile, separating reactants and products.  

 A simple model for autocatalytic reactions with a quadratic autocatalysis can 

be written as 2 ,A B B   where A is the reactant and B is the autocatalyst (a 

product speeding up its own formation because it is also a reactant). The rate 

law in this case is quadratic because it is proportional to the product of the 

concentrations of the two reactants, which can be written in terms of one-

variable. In this case, the autocatalytic reaction-diffusion front is a constant 
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concentration profile separating two reacting species with different 

concentrations. The reactant A is ahead of the front, while the product B is 

behind of the front. Molecular diffusion plays an important role allowing the 

autocatalyst to spread, leading to propagating reaction fronts [1,14]. Fisher [20] 

worked a one-dimensional reaction-diffusion equation with a quadratic rate law 

to study the propagation of a dominant gene. At the same time, and 

independently, Kolmogorov et al. [21] worked with a more general nonlinear 

rate law. Hence, the equation they obtained independently is referred to as the 

Fisher-Kolmogorov equation (or sometimes FKPP equation). The solution to 

this reaction-diffusion equation with its quadratic nonlinearity corresponds to a 

propagating front [21]. However, there are other chemical systems (such as the 

IAA reaction) which can be described by a one variable reaction-diffusion 

equation where the reaction term is a cubic polynomial. In contrast to the 

quadratic reaction-diffusion equation, the cubic reaction-diffusion equation 

exhibits an analytical solution for velocity and concentration profile [1,6]. In 

addition, it is also useful to consider mixed-order autocatalysis where the rate 

law is a linear combination of quadratic and cubic rate laws to get more general 

features of propagating reaction-diffusion fronts [22]. Experiments with the IAA 

reaction (in gels to avoid fluid flow), having different diffusivities for the reactant 

and the autocatalyst, show instabilities that can be described with quadratic and 

cubic mixed-order models [23,24]. 

 Propagating reaction fronts can be considered as a thin interface separating 

products from reactants. The dynamics of the interface can be described with 

an eikonal relation [25], or a front equation derived independently by Y. 

Kuramoto [26] and G. Sivashinsky [27]. The eikonal equation shows the 

dependency of the normal velocity of the reaction front on the curvature of the 

front. This eikonal equation has been confirmed experimentally working with 

spiral waves in the BZ reaction [28,8]. On the other hand, reaction fronts 

presenting instabilities caused by substances with different diffusivities can be 

modeled using the Kuramoto-Sivashinsky (KS) equation [23,29]. This KS 

equation was derived by Y. Kuramoto to study chemical wave propagation in 

reaction-diffusion systems and, independently, by G. Sivashinsky to model the 

propagation of combustion fronts (see appendix A.1). The KS equation also 
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appears in other contexts, including chemical turbulence [30], rapid directional 

solidification [31], phase turbulence [32], and falling-film flows [33,34]. Similar to 

combustion fronts [27], instabilities in propagating fronts of the IAA reaction (in 

gels to suppress convection) appear when the ratio of the reactant diffusivity to 

the autocatalyst diffusivity exceeds a critical value [24]. The propagation of 

these fronts can be approximated with the KS equation, which exhibits suitable 

conditions to describe flat front instabilities. The KS equation can also show 

transitions between steady flat fronts, curved fronts, and complex pattern 

formation [35].  

The presence of fluid flow impacts on the evolution of reaction-diffusion 

systems since the fluid motion enhances transport and mixing [36,37]. For 

example, the presence of wind on a forest fire contributes to spread the fire, or 

ocean currents help plankton blooms by carrying the nutrients to the ocean 

surface. In the case of autocatalytic reaction fronts, density gradients generate 

convective fluid motion as the front propagates upward inside vertical tubes. For 

example, in ascending IAA reaction fronts, the change in density takes place 

because the reacted fluid is lighter than the unreacted fluid [38]. Hence the front 

separates fluids of different densities, which may result in Rayleigh-Taylor (RT) 

instabilities as a less dense fluid is placed under a denser fluid [39]. As the RT 

instability develops, the denser fluid goes down while the less dense fluid goes 

up. Consequently, the motion of the fluids decreases the potential energy of the 

fluid system. An initial small perturbation which takes the interface between the 

fluids out of equilibrium will grow fast, decreasing further the potential energy of 

the system. However, the problem of ascending IAA reaction fronts in vertical 

tubes differs from the RT problem because the front is not stabilized by surface 

tension. Since autocatalytic reaction fronts in the IAA reaction are thin, the 

reaction-diffusion model can be replaced with an eikonal relation between the 

normal front velocity and the front curvature [40]. This eikonal relation tends to 

stabilize the ascending front by flattening the front, while the buoyant effect 

tends to destabilize the flat front forming convective rolls [41]. Propagating 

fronts under the effects of convection due to a RT type of instability has been 

studied in several systems such as IAA acid mixtures [24,42,43], BZ reaction 

inside a vertical tube [44], and the iodate-sulfate system [45]. Experiments by 
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Masere et al. [46] on IAA mixture in vertical tubes showed that convective fluid 

motion due to density differences across the front can change the shape and 

speed of ascending fronts by increasing the tube diameter. On the other hand, 

experiments show no convection in descending fronts where the lighter fluid is 

above the heavier fluid. Moreover, Masere et al. found experimentally that no 

convection appears in ascending flat fronts for diameters less than a critical 

value. For diameters slightly above this value, the flat front becomes 

nonaxisymmetric with fluid rising on one side of the tube, and falling on the 

opposite side, as predicted by Vasquez et al. [42], while for higher values the 

flat front becomes axisymmetric. 

Another type of interaction between reaction fronts and fluids takes place 

inside a Hele-Shaw cell (which consists of two parallel plates separated by a 

small gap), with the fluid flow generated by an external pressure gradient. 

Edwards et al. [47,48] studied the effects of advection (the movement of fluid 

particles from one place to another) on reaction fronts using a steady flow 

between two parallel plates. This steady two-dimensional flow (known as 

Poiseuille flow) exhibits a parabolic velocity profile. They found that Poiseuille 

flow between parallel plates changes the shape and the speed of stable fronts 

[48]. These results have been confirmed experimentally by Salin et al. [49] in 

experiments inside tubes and Hele-Shaw cells [50]. Thus the coupling between 

reaction-diffusion fronts with fluid motion affects the structure and velocity of the 

fronts.  

Fluid flow affects stable flat fronts, as well as fronts showing complex spatio-

temporal structures. The latter requires the use of reaction-diffusion equations 

with species of different diffusivities, or the use of the KS equation. Indeed, 

fronts described by the KS equation coupled to convective fluid flow can exhibit 

complex spatiotemporal behavior, such as steady cellular structures, oscillatory, 

or chaotic fronts [51,52,53]. The aim of the present work is to study the effects 

of advection in patterns arising from flat front instabilities described by the KS 

equation. We look for steady fronts that propagate at a constant speed either in 

the same direction as the flow or in the opposite direction. The stability of the 

fronts is analyzed using a linear stability analysis on the advected fronts. In 

addition, we look for steady structures appearing from the combined effects of 
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the dynamics of the KS equation and the RT instability. We then determine their 

stability using a linear stability analysis. We consider both cases, one where the 

denser fluid is placed on top of a less dense fluid and the opposite case. We 

show that depending on the size of our domain, complex fronts can appear 

such as steady curved fronts, oscillatory or chaotic fronts. 

The study of chemical systems has contributed to the understanding of 

deterministic chaos [54,2]. An example of a chemical oscillator is the BZ 

reaction [4]. This reaction can exhibit a classic period-doubling sequence 

leading to chaotic behavior, where the oscillations are aperiodic (infinite period). 

This reaction can also display spatiotemporal patterns, in which the pattern is 

oscillatory in time and uniform in space, such as target patterns and spiral 

patterns [55]. These patterns can also arise in a combination of fluid flow with 

chemical reactions in reaction-diffusion-advection systems [56,57]. Among 

these patterns we find structures like curved fronts [42,46], fingering [58,51], 

and traveling patterns [56,59], which give rise due to the coupling between 

reaction-diffusion fronts with fluid motion [60]. In this work, we will present 

oscillatory and chaotic fronts as they are advected by fluid motion. 

 This thesis is organized as follows. In Chapter 2, we introduce the linear 

stability analysis for systems of ordinary differential equations. In Chapter 3, we 

introduce a steady laminar flow between infinite parallel plates. We derive the 

velocity profile of a Poiseuille flow and a Couette flow. We study viscous flows 

in a Hele-Shaw cell. We also analyze the Rayleigh-Taylor instability, including 

fluid viscosity and surface tension in the dispersion relation. In Chapter 4, we 

review the basic concepts related to chemical fronts, emphasizing the 

interaction between diffusion and reaction which leads to propagating fronts. 

We also include the eikonal approximation and the KS equation to describe the 

reaction fronts. In Chapter 5, we look for steady solutions described by the KS 

equation without fluid flow. We consider fronts propagating between two infinite 

parallel plates separated by a small distance, which corresponds to the domain 

width. This domain plays an important role in analyzing the fronts, since it 

determines the speed and symmetry of steady solutions of the KS equation. In 

Chapter 6, we analyze the effects of fluid flow on steady fronts described by the 

KS equation as they are advected by a Poiseuille flow. We also look for 
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oscillatory and chaotic fronts. In Chapter 7, we will study propagating fronts 

under an external Couette flow. This flow develops from the relative motion of 

two parallel plates separated by a constant distance resulting in a linear velocity 

profile. We compare our results with fronts developed under a Poiseuille flow. In 

Chapter 8, we consider fronts propagating between two infinite vertical plates 

separated by a small gap, containing two fluids of different densities. In this 

geometry the fluid flow can be approximated by Darcy’s law in two dimensions. 

Darcy’s law describes the rate at which a fluid flows through a porous medium. 

The domain is bounded by two vertical walls separated by a distance, which 

corresponds to the slab width. As the slab width is increased, the KS equation 

allows for the propagation of different fronts of steady shapes and symmetries. 

We also obtain oscillatory and chaotic fronts and look for conditions of stability 

for cellular structures, which corresponds to extended domains generated from 

solutions in smaller domains or cells. Finally, in Chapter 9, we review the most 

important ideas and conclude. 

2  

 

 



Chapter 2 

Dynamical systems and stability 

A dynamical system is a mathematical model to describe the evolution of a real 

system such as the growth of a bacteria population, radioactive decay, an 

electrical circuit, the time evolution of concentrations of reactants and products 

in a chemical reaction, the movement of a pendulum, etc. There are two kinds 

of dynamical systems: discrete time dynamical systems governed by difference 

equations (or discrete maps) and continuous time dynamical systems governed 

by differential equations. The former can be used to study population growth (or 

radioactive decay, pollution control, etc.) since changes in population occurs at 

discrete moments in time; while the latter can be used to study the evolution of 

concentrations of chemical reactions using differential equations (or the 

pendulum, the harmonic oscillator, etc.). It is worth mentioning that a continuous 

time system can be reduced to a discrete time map using the Poincaré surface 

of section method [61].  

2.1 Stability 

We are interested in study continuous dynamical systems whose time evolution 

is described by differential equations in terms of the state variables of the 

system. For example, in the case of a simple pendulum, the state variables are 

the angular position and velocity, since knowing these values at one time is 

enough to determine all their future values. Indeed, all the possible values of the 

state variables define a plane which is referred to as phase plane (or in general 

a phase space). Thus, a state of the system is represented by a point in phase 

space and the time evolution by an orbit or trajectory. Depending on the nature 

of the problem, we can have one differential equation or a set of differential 

equations. For example, a one-dimensional dynamical system could be of the 

form 

 ( , ),
du

f u r
dt

   (2.1) 
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where f  is usually a nonlinear function and r  is a parameter. In this case, the 

phase space is a line (one-dimensional) and for a fixed value of the parameter 

,r  a state of the system is represented by a point and the time evolution by a 

one-dimensional trajectory. Let 
su  be a stationary solution of Eq. (2.1) when the 

parameter takes the value 
0,r r  therefore it satisfies 

0( , ) 0.sf u r   The state 
su  

will be stable (in the sense of Lyapunov) if any solution of the dynamical system 

that starts near 
su remains close to it for all time. In contrast, 

su  will be 

asymptotically stable if 
su  is stable and all solutions that start near 

su tends to 

go back to 
su  after a long time. In this case the fixed point in the phase space is 

an attractor. To get a qualitative understanding of these definitions, imagine a 

marble sitting at rest at the bottom of a bowl. This lower position corresponds to 

the equilibrium position of the marble. If the marble is pushed aside slightly, the 

marble will oscillate around its equilibrium position. If there are no dissipative 

forces, the marble will continue oscillating around this point all time. We observe 

that the marble remains in the neighborhood of the equilibrium position. 

However, if there are dissipative forces, the marble will get back to the 

equilibrium position eventually. The first case corresponds to a stable 

equilibrium, while the latter corresponds to an asymptotically stable equilibrium. 

On the other hand, to determine the linear stability of su  we introduce a small 

perturbation to the stationary-state solution su , so that the state of the system is 

given by 

 ( ) ( ).su t u t    (2.2) 

We will explain in detail this method in the following section. 

2.2 Linear stability 

For the sake of simplicity we consider the following first order differential 

equation 

 ( ).
dx

f x
dt

   (2.3) 
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This one dimensional system is autonomous because f does not depend 

explicitly on the independent variable t. Let 
sx  be an equilibrium solution (or 

steady solution) of the system, hence   0.sf x   Now, we want to know whether 

the state of equilibrium of the steady solution is stable or unstable. We analyze 

the stability by introducing small perturbations to the stationary-state solution. 

We substitute in Eq. (2.3) 

 ( ) ( ),sx t x t    (2.4) 

where ( )t  is a small perturbation of the steady state .sx  We obtain 

 ( ).s

d
f x

dt


    (2.5) 

Using Taylor’s expansion for the function f  about sx  and keeping only the 

linear terms on  , we obtain 

 ( ) ( ) ( ).s s s

d
f x f x f x

dt


       (2.6) 

Notice that the approximation used in Eq. (2.6) requires that ( ) 0.sf x   

Assuming we are in this case, Eq. (2.6) can be written as 

 ,
d

dt


   (2.7) 

where   is a constant, being ( ).sf x   The solution of Eq. (2.7) is given by 

 0( ) ,tt e    (2.8) 

where 0 (0)   is the amplitude of the perturbation and it is a small value. 

From Eq. (2.8) we observe that the perturbation will grow exponentially if 0. 

That is, if ( ) 0sf x   the steady state is unstable. On the other hand, if ( ) 0sf x   

the steady state solution is stable. What happen if ( ) 0?sf x   In this case the 

linearization used in Eq. (2.6) is not appropriate. In other words, we have to 

execute a nonlinear analysis to determine the stability of this steady state 

solution [62]. 
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The linear stability analysis executed above can be extended to systems of 

many variables. As an example, let’s study the case of two first order differential 

equations. The autonomous system is given by 

 

( , )

( , )

dx
f x y

dt

d y
g x y

dt





  (2.9) 

Let ( , )s sx y  be a steady solution of Eq. (2.9). Hence ( , ) ( , ) 0.s s s sf x y g x y   We 

analyze the stability by introducing small perturbations to each component of 

the stationary-state solution. We have 

 ( ) ( )sx t x t    (2.10) 

and 

 ( ) ( ),sy t y t    (2.11) 

where ( )t  and ( )t  are small perturbations to the components of the steady 

state ( , ).s sx y  With these substitutions in Eq. (2.9), we obtain 

 

( , )

( , )

s s

s s

d
f x y

dt

d
g x y

dt


 


 

  

  

  (2.12) 

Using Taylor’s expansion for the functions f  and g  about the steady state 

( , ),s sx y
s

x  and keeping only the linear terms on  and  ; we obtain 

 

( , )

( , )

s s

s s

d f f f f
f x y

dt x y x y

d g g g g
g x y

dt x y x y


   


   

   
    

   

   
    

   

s ss s

s ss s

x=x x=xx=x x=x

x=x x=xx=x x=x

  (2.13) 

Since the partial derivatives of Eq. (2.13) are evaluated at the steady state 

( , ),s sx y
s

x  they are numbers. Hence, the system in Eq. (2.13) can be written 

in the matrix form 
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 .

f f
d

x y
dt

d g g

dt x y


 

  

  
   

       
       

         
    

 

J
s s

s s

x=x x=x

x=x x=x

  (2.14) 

Where the 2 2  matrix J  is referred to as the Jacobian matrix evaluated at the 

steady state ( , ).s sx y  The general solution of Eq. (2.14) is given by 

 1 2

1 2 .
t te e 





 
  

 
v v   (2.15) 

Where the constant column vectors 
1v  and 

2v , and the constants 1, and 2 are 

determined from 

    (for   1,  2)i i i i Jv v   (2.16) 

Equation (2.16) results from replacing Eq. (2.15) into Eq. (2.14). We are dealing 

with an eigenvalue problem, where i  are the eigenvalues of the Jacobian 

matrix J  evaluated at the steady state, and the column vectors iv  are their 

respective eigenvectors. In general, the eigenvalues i  are complex numbers. 

Therefore, the steady state will be stable if the real parts of 1  and 2 are both 

negative. In this way, we can easily generalize the method to a system of n first 

order differential equations. Let the system be of the form 

 

1
1 1 2

2
2 1 2

1 2

( , , , )

( , , , )

       

( , , , ).

n

n

n
n n

dx
f x x x

dt

dx
f x x x

dt

dx
f x x x

dt







  (2.17) 

We assume that a steady solution of the system is given by 1 2( , , , ).s s nsx x x
s

x  

Then, we introduced a small perturbation about the steady solution 

 ( ) ( ).t t 
s

x x    (2.18) 



 12 
  

Where 
1 2( , , , )nx x xx  and  1 2( ) ( ), ( ), , ( ) .nt t t t    Introducing Eq. (2.18) 

into Eq. (2.17) and keeping only the linear terms with respect to the 

perturbation, we obtain a system of n equation for the time evolution of the 

perturbation 

 .
T

Td

dt
 J


   (2.19) 

Where the Jacobian matrix J  is now an n n  matrix evaluated at the steady 

state 
s

x  with elements given by  J .i j i jf x


 
sx x

 The general solution of 

Eq. (2.19) is given by 

 1 2

1 2 .ntt tT

ne e e
    v v v   (2.20) 

Where the constant column vectors 
iv
 
and the constants 

i  are determined 

from 

    (for   1,  2, , ).i i i i n Jv v   (2.21) 

Where i  are the eigenvalues of the Jacobian matrix J  evaluated at the steady 

state, and the column vectors iv  are their respective eigenvectors. In general 

the eigenvalues i  are complex numbers, hence the steady state will be stable 

if the eigenvalue with the largest real part is negative. 

2.3 Linear stability in spatially extended systems 

We consider a continuous state variable ( , )u x t  that depends on t  and on a 

spatial coordinate .x  The dynamical system is given by 

 
( , )

( , , , ).
u x t

F u u x r
t


  


  (2.22) 

Where F  is in general a nonlinear function that depends on u  and on higher 

spatial derivatives of ,u  and it also depends on a parameter r. In experiment the 

value of the parameter r is varied gradually to take the system out of 

equilibrium; hence the parameter r is referred to as the control parameter [63]. 
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We assume that Eq. (2.22) has a stationary-state (or basic state) solution 
0( ).u x  

We introduce an arbitrary infinitesimal perturbation  ,u x t  about 
0( ).u x  Hence, 

the steady solution with the perturbation is given by 

      0, , .u x t u x u x t    (2.23) 

We replace Eq. (2.23) into Eq. (2.22) and linearize the equation (see Sec. 2.2) 

with respect to the perturbation. Notice that the perturbation has to satisfy the 

boundary conditions of the system. To execute a linear stability analysis, the 

perturbation can be expanded as a linear combination of Fourier components 

[64], which are linearly independent (normal modes) 

  , .kt ikx

k

k

u x t A e e


   (2.24) 

In addition, we can analyze the stability of each of the normal modes 

separately, since the linearity of the perturbation implies that the modes evolve 

independent from each other. Thus, a single normal mode of the perturbation 

can be written as  

  , ,t ikx

k ku x t A e e   (2.25) 

where σ is the growth rate of a single normal mode of the perturbation and k  is 

the respective wavenumber of this normal mode. Here the constant k will be a 

real number, if we assume that the system is unbounded in the x direction. This 

is a consequence of translational invariance in the x direction in order to avoid 

that the perturbation amplitude diverges at infinity, either at x   or .x   

The constant σ is in general a complex number. The perturbation will be linearly 

unstable when its magnitude grows exponentially with time. This will happen 

when the real part of the growth rate σ takes a positive value at least in one of 

the normal modes. Therefore, the steady solution will be stable if all of the 

growth rates have a negative real part (or equivalently, if the growth rate with 

the largest real part is negative, the steady solution is stable). In the case of a 

periodic boundary condition, we have a finite system of length L which is 

periodic. The perturbation also has to satisfy the boundary condition. That is, 
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    , ,u x t u x L t    (2.26) 

for any value of x and t. From Eq. (2.24) and Eq. (2.26), we find that 1.ikLe   

Therefore, in the case of periodic boundary conditions the real number k is 

restricted to the values 

 
2

,   0, 1, 2,k n n
L


      (2.27) 

We know that the steady solution is stable with respect to the perturbations if for 

a fixed value of r all of the growth rates ( , )k r  have a negative real part. On the 

contrary, the steady solution is unstable if the growth rates ( , )k r  are positive 

(at least in one of the normal modes). Hence, it is useful to find the neutral 

stability curve   Re , 0.k r   The plot of this curve in the r-k plane (or space) 

divides the stable region from the unstable region for the steady solution with 

respect to the perturbation.  

3  

 



Chapter 3 

Hydrodynamics flows and instabilities 

Our purpose is to study the propagation of reaction fronts in fluids using the 

methods of dynamical systems. Fluid motion is a dynamical system described 

by a set of equations: the Navier-Stokes equations. In this chapter we will focus 

in two types of steady flow which are exact solutions of the Navier-Stokes 

equations. These steady, fully developed laminar flows correspond to the plane 

Poiseuille flow and the plane Couette flow. The velocity profile of a fully develop 

flow is independent of the downstream coordinate. We assume a two-

dimensional incompressible fluid flow to simplify the Navier-Stokes equations. 

The plane Poiseuille flow is a type of viscous flow which moves between infinite 

parallel plates. This flow is caused by an externally applied pressure gradient. 

Another type of viscous flow is the plane Couette flow. In this case, the fluid 

motion is caused by a moving surface which drags the viscous fluid along with 

it. Although these solutions of the Navier-stokes equations correspond to steady 

laminar flows, these flows may become turbulent. Indeed, there is a threshold 

number related to average fluid velocity (Reynolds number) above which small 

perturbations will grow fast and the steady stable flow becomes unstable. These 

small perturbations may be introduced through irregularities in the experimental 

setup. There are other types of instabilities related to the motion of fluids, such 

as Rayleigh-Bénard convection caused by a thermal gradient on thin layers 

[65], and Taylor-Couette flow where the centrifugal force has a destabilizing 

effect [66,67]. In contrast, the Rayleigh-Taylor instability corresponds to the 

instability of an interface between two fluids initially at rest due to density 

gradients under gravity. In this chapter we also describe the Rayleigh-Taylor 

instability, including viscous fluids and surface tension. The effects of the 

Rayleigh-Taylor instability on propagating fronts will be discuss in Chap. 6. 

3.1 Plane Poiseuille flow 

We consider an incompressible steady flow confined by two infinite parallel 

plates located at 0x   and L,x   being the z-axis the direction of the flow. The 
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flow is sustained by an externally applied pressure gradient in the z-direction. In 

this regard, the mass density  of the fluid is constant, the mass conservation 

equation becomes 0,v   and the Navier-Stokes equations for incompressible 

fluids is given by [68] 

   2 .
v

v v p v
t

 
 

       
  (3.1) 

Where v  is the fluid velocity field, p is the pressure and the coefficient   is the 

dynamic viscosity (or usually called the viscosity). Since the flow is confined 

between two parallel plates, the fluid velocity at the plates is zero. We also 

assume that the flow velocity v  is only function of x. The continuity equation 

requires that 0xv x   , which implies that 
xv  is a constant. The value of this 

constant is zero, since 0xv   at the plates. This result is in agreement with the 

fact that the flow is along the z-direction and parallel to the plates. Under these 

circumstances, Eq. (3.1) in components reduces to 

 
2

2
0 zp d v

z dx



  


  (3.2) 

and 

 0 .
p

x





  (3.3) 

We deduce from Eq. (3.3) that pressure is only function of z. In addition, from 

Eq. (3.2) we observe that p z   must be a function of z only, while the other 

term must be a function of x only. Since Eq. (3.2) is valid everywhere between 

the plates, we conclude that both terms are constant. Thus, the pressure varies 

linearly along the z-direction. Since pressure is only function of z, Eq. (3.2) 

becomes 

 
2

2
0 .zdp d v

dz dx
     (3.4) 

Integrating Eq. (3.4) twice with respect to x, we obtain 
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2

0 ,
2

z

x dp
v Cx D

dz
       (3.5) 

where C and D are constants, which are determined from the boundary 

conditions ( 0zv   at the plates). The values of these constants are 

  L 2C dp dz  and 0.D   Therefore, the velocity profile of a plane Poiseuille 

flow shown in Fig. 3.1 is given by 

  
1

L ,
2

z

dp
v x x

dz
     (3.6) 

and the mean fluid velocity is given by 

 
2

L

0

1 L
.

L 12
z

dp
v v dx

dz
     (3.7) 

 

 

Figure 3.1: Parabolic velocity profile of a plane Poiseuille flow confined between two 

parallel plates. 

  

3.2 Plane Couette flow 

In the case of a Couette flow, the flow is sustained by the relative motion 

between the parallel plates. We consider that the plate located at x = L moves 

with constant speed u in the z-direction, while the other plate, which is located at 

x = 0, is stationary as shown in Fig. 3.2. These plates are parallel to the yz-

plane. Taking into account that the flow is only driven by the motion of the plate 

located at x = L, without any externally imposed pressure gradient, Eq. (3.5) 

reduces to 

0x 

Lx 

( )zv x
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 0 v ,z Cx D     (3.8) 

and the constants C and D are determined from the boundary conditions, which 

in this case are vz = 0 at x = 0, and vz = u at x = L. The results are  LC u   

and 0.D   Therefore, the velocity profile of a plane Couette flow is given by 

  L .zv u x   (3.9) 

 

 

Figure 3.2: Linear velocity profile of a plane Couette flow. The relative velocity 

between the parallel plates is u. 

 

3.3 Viscous flow in a Hele-Shaw cell 

We consider an incompressible fluid flow moving in a narrow space between 

two stationary parallel plates as shown in Fig. 3.3. This geometry is known as a 

Hele-Shaw cell. We use a rectangular coordinate system with axes x, y, and z. 

The plates are parallel to the yz-plane, being z the vertical axis. The x axis is 

perpendicular to the plates, which are separated by a small gap of thickness d. 

The plates are located at 2.x d   The fluid velocity field v
 
between the plates 

obeys the Navier-Stokes equations 

   2 ,
v

v v p v g
t

  
 

        
  (3.10) 

and 

 0,v    (3.11) 

0x 

Lx 

( )zv x
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Figure 3.3: Sketch of a Hele-Shaw cell. 

 

where g  is the acceleration of gravity. Notice that in Eq. (3.10) we have 

introduced the body force per unit volume ( g ). The body force is an external 

force that acts on a fluid element without physical contact like the gravitational 

or electromagnetic force. We assume that the gap d between the plates is small 

and that the flow is slow, so that the flow can be considered steady and parallel 

to the plates. In other words, no flow takes place in the x-direction ( 0xv  ). We 

also assume that ,yv  and zv  have parabolic Poiseuille profiles in the x direction 

[69]. That is, the flow achieves its maximum velocity at 0x   and the velocity of 

the flow vanishes at the plates of the Hele-Shaw cell in agreement with the 

boundary conditions: 0y zv v   at 2.x d   Thus, the components of the fluid 

velocity field can be written as 

 
2

2

2

2
2

2

( , , , ) 0

6
( , , , ) ( , , )

4

6
( , , , ) ( , , ).

4

x

y y

z z

v x y z t

d
v x y z t x V y z t

d

d
v x y z t x V y z t

d



 
  

 

 
  

 

 (3.12) 
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Where yV  and 
zV
 

are the average of yv  and 
zv  over 2 2d x d   , 

respectively. Substituting Eq. (3.12) into Eq. (3.10) and averaging these 

equations over 2 2d x d   , we obtain 

   2

2

V 6 12
V V g V V,

5
P

t d


  
 

       
 

     (3.13) 

Here P is the average of the pressure p over the gap 2 2d x d    and all 

vectors are two dimensional, being defined in the yz-plane. That is, V ( , ),y zV V  

 g 0, ,g   and the bold gradient  , .y z      Similarly, substituting 

Eq. (3.12) into Eq. (3.11) and averaging yield V 0.   We obtain the terms of 

Eq. (3.13) as follows: 

 the average value of the time derivative jv t   of the component jv  of 

the velocity field 

 
2

2

1
   (for , ).

d
j j j

d

v v V
dx j y z

t d t t

  
  

     (3.14) 

 the average value of the non-linear term implies the calculus of  

 

2

2

2
2

2
2

22

1

1 6
              

4

6
                   (for , ),

5

d
j j

y y
d

d
j

y
d

j

y

v v
v v dx

y d y

V d
V x dx

y d d

V
V j y z

y





 


 

   
   

   


 





   (3.15) 

and similarly with the z-axis  

6
     (for , ).

5

j j

z z

v V
v V j y z

z z

 
 

 
 

 finally, the average value of the term with the viscosity 
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4

12
                                        

d
j
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 

 
 

  (3.16) 

In the case of a small gap between the plates ( 0d  ) and a steady laminar 

flow ( 0V t   ), we can assume that the partial derivatives of yV  and 
zV  with 

respect to y and z are also negligible in contrast to the partial derivatives of yV  

and 
zV  with respect to x. Hence 

 

2 2

2 2
0   (for , ).

j j j jV V V V
j y z

y z y z

   
    

   
  (3.17) 

With these substitutions, Eq. (3.13) becomes 

  V g
K

P 


     (3.18) 

where 2 12K d  is the permeability of the Hele-Shaw cell. Equation (3.18) is 

known as Darcy’s law, which governs flows in porous media. Thus Eq. (3.18) 

describes a two-dimensional flow in a Hele-Shaw cell being analogous to 

Darcy’s law which is a phenomenological law for flow in porous media. 

3.4 Rayleigh-Taylor instability 

The instability of a flat interface that separates two fluids of different densities 

under gravity occurs when the denser fluid is supported by the less dense fluid. 

This instability, known as Rayleigh-Taylor instability, can also take place when 

the fluids are accelerated towards the denser fluid [39].  

We consider a simple case of Rayleigh-Taylor instability by assuming two 

immiscible and incompressible fluids without viscosity whose flow is irrotational. 

This situation corresponds to a high Reynolds number flow, in which the viscous 

term of the Navier-Stokes equations becomes negligible. The two 

incompressible inviscid fluids are initially at rest, and they are separated by a 
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flat interface under gravity. Let   
be the density of the fluid located in the 

upper half-space 0,z   whereas   
corresponds to the density of the fluid 

located in the lower half-space 0.z   We use a rectangular coordinate system 

and the interface is located at 0.z   The z axis is the vertical axis, while the x 

and y axes are parallel to the interface as shown in Fig. 3.4.  

 

 
(a)                                                  (b) 

Figure 3.4: (a) Two incompressible inviscid fluids separated by a flat interface under 

gravity. (b) The interface between two incompressible inviscid fluids is subject to small 

wave-like perturbation. 

 

In this case the Navier-Stokes equations [Eq. (3.10)] reduces to Euler’s 

equation 

 
1

( ) 0,
v

v v p g
t 


     


  (3.19) 

We assume that the flow is irrotational so that we can use a potential function 

for the velocity field .v   In addition, we use the identity 

   2 2 .v v v v v      With these substitutions, Eq. (3.19) becomes 

 
2

0.
2

v p
gz

t





 
     

 
  (3.20) 

Integrating Eq. (3.20) we obtain the time-dependent Bernoulli’s equation 

0z 

g
( , , )z x y t







 23 
  

 21
( ),

2
v p gz f t

t


  


   


  (3.21) 

where the Bernoulli constant may now be a function of time because the 

velocity potential is now unsteady. We also use the fact that the fluid is 

incompressible so the density is constant and the continuity equation becomes 

0,v   leading to Laplace’s equation  

 2 0.    (3.22) 

There exists a base solution that satisfies Eq. (3.22) and it corresponds to 0   

with a flat interface. We denote this base solution corresponding to equilibrium 

state (or basic state) by 
0 . In order to analyze the stability of the flat interface, 

we introduce small perturbations to the equilibrium state. That is, a potential 

perturbation to the field velocity and a surface perturbation. For simplicity, we 

are going to consider a two dimensional fluid motion and execute a linear 

stability analysis to determine the stability of the interface. We designate the 

potential perturbation to the field velocity by    and the surface perturbation by 

( , ).x t  Notice that the fluid motion whose stability is being studied arises from 

these small perturbations. We assume sinusoidal perturbations of the 

equilibrium state since the linearity of the problem allows us to represent any 

perturbation as linear superposition of normal modes. Since these normal 

modes constitute an orthonormal basis, the stability of each of the modes is 

analyzed independently. Let us consider a simple perturbation with frequency 

  and wavenumber ,k  being proportional to ( ).i kx te   Notice that the 

proportionality factor may be a function of z. There is no constraint in the x 

direction, hence the wavenumber k  is real (Sec. 2.3). On the other hand, the 

frequency   is in general a complex number. That is ,r ii     thus the 

system will be unstable for any value of k  if 0.i   This analysis corresponds to 

a single-mode perturbation, which is a perturbation with only one wavelength 

applied to the interface. We proceed to obtain a relation between the 

wavenumber k  of the mode and its frequency  . This relation is referred to as 

dispersion relation ( )k  . Thus, if we find a frequency   whose imaginary 
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part is positive (  Im 0  ) for at least one real value of ,k  the system will be 

linearly unstable. 

Therefore, to analyze the linear stability of the interface, we consider normal 

mode perturbations with frequency   and wavenumber k . The system is 

subject to three boundary conditions. The first condition requires that the 

potential perturbations of the fluid velocity    decay exponentially with z. For 

this reason, these potential perturbations are often referred to as surface 

modes. The second condition requires that the mass flow not cross the interface 

( , ).x t  Hence, the fluid particles can only move tangentially to the fluid 

interface. Since the surface ( , ) 0S z x t    describes the interface in motion 

at any time, the total time derivative of S  must be zero: 0.S t v S      This 

condition is also referred to as kinematic boundary condition. The third condition 

requires that in the absence of surface tension, the normal stress should be 

continuous across the interface. This results in continuity of the pressure at the 

interface. 

Replacing 0     in Eq. (3.22), we obtain: 2 2

0( ) 0.         We 

look for solutions of the Laplace’s equation corresponding to the normal mode 

with frequency   and wavenumber :k  ( ) .ikx i tA z e e   
 
Hence the Laplace’s 

equation leads us to  

 
2

2

2
0.

d A
k A

dz
    (3.23) 

In general, the solution of Eq. (3.23) has the form ,kz kzA e e  

    where   

and   are unknown constants. However, in order to satisfy that the solution be 

bounded at ,z     has to be zero for 0.z   Similarly for 0,z   0.   

Therefore the solution must have the form 

 
( )

( )

  for  0

  for  0

i kx t kz

i kx t kz

e z

e z










 



 



 
  


      . (3.24) 
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The solutions for 
 and 

 arise from the kinematic boundary condition. We 

can calculate the normal unit vector n̂  by using ˆ .n S S    In the case of a 

two dimensional flow, ˆ ˆ
x zS e x e      , where ˆ

xe  and ˆ
ze  are unit vectors 

along the positive axes x and z, respectively; and  
1 2

2
1 .S x     

 
 

Considering small perturbations ,  1S   up to second order in .  Hence the 

kinematic boundary condition can be approximated as 

 .zt v S v n v
z





       


  (3.25) 

Substituting a normal mode for the surface perturbation 

 ( )

0( , ) ,i kx tx t e      (3.26) 

we obtain  

 0 .i
k


     (3.27) 

In the absence of surface tension, the jump of the pressure across the 

interface must be zero: 

   0,
z

p

   (3.28) 

where the bracket means the jump of pressure across .z   In Eq. (3.21) we 

set the time function ( )f t  equal to zero, because we assume that the 

disturbances decay considerable far from the interface and the time function 

does not depend on .z  Using Eq. (3.28) and Eq. (3.21) with ( ) 0f t   and 0,v   

we obtain 

 .g g
t t

 
        

  
  

 
  (3.29) 

Expanding Eq. (3.29) about 0z   and keeping only the linear terms on ,   we 

obtain 

    0 0.g i                  (3.30) 
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Finally, using Eq. (3.27) we obtain the following dispersion relation 

 2 ( )
.

( )
kg

 


 
 

 





  (3.31) 

From Eq. (3.31), we observe that if the denser fluid is on top of the less dense 

fluid then 0     and the frequency will be complex. We are interested in 

determine the condition under which the system is unstable. In general the 

frequency is a complex number ,r ii   
 
and our solution is proportional to 

.i te   Since ,ir ti ti te e e
    the flow is unstable if 0i   for at least one real 

value of .k  In the case of Eq. (3.31), the frequency could be real or purely 

imaginary. We define i   and we look for the condition under which 0.   

This happens when 0.   
 
Thus, the perturbations will grow exponentially 

given rise to Rayleigh-Taylor instabilities when the denser fluid is on top of the 

less dense fluid. 

 We now want to take into account the surface tension in the dispersion 

relation obtained above [Eq. (3.31)]. In this case, the pressure difference across 

the interface tends to curve the interface in order to keep the force balance on 

it. The condition of force balance on any surface element of the interface leads 

us to the Young-Laplace equation [68]  

   ˆ.
z

p n




     (3.32) 

Here the pressure jump across the interface is denoted by the brackets and it is 

defined as the pressure of the fluid above the interface minus the pressure of 

the fluid below the interface,   is the surface tension and n̂  is the normal unit 

vector to the interface. The curvature of the interface, being positive when the 

center of curvature is in the fluid above the interface, is given by 

 

 

2 2

3 2
2

ˆ .

1

x
n

x






 
  

   
 

  (3.33) 

Keeping only the linear terms and assuming small perturbations, Eq. (3.32) 

becomes 



 27 
  

  
2

2
.p

x








  (3.34) 

Therefore, surface tension introduces a jump discontinuity in the pressure, 

replacing Eq. (3.28) by Eq. (3.34). Since we expand this expression about 0,z   

we evaluate Eq. (3.34) at 0z   instead of .z   From Eq. (3.34) and Eq. (3.21) 

with ( ) 0f t   and 0,v   we obtain 

 
2

2
.g g

t t x

  
         

   
     

  
  (3.35) 

Expanding Eq. (3.35) about 0z   and keeping only the linear terms on ,   we 

obtain 

     2

0 0 .g i k                   (3.36) 

Replacing Eq. (3.27) into Eq. (3.36) we obtain the dispersion relation 

 
3

2 ( )
,

( )

kg k  


 
 

 

 



  (3.37) 

where the surface tension has a stabilizing effect. The interface will be unstable 

if 2  is negative. 

The viscous effects are often neglected in the Rayleigh-Taylor instability 

when we work with thick layers. However, when we confine the fluids in a 

porous medium or in a Hele-Shaw cell, the viscosity becomes relevant [70]. In 

this case, the velocity field is governed by Darcy’s law [Eq. (3.18)] and we 

neglect the contribution of viscosity to the normal stress at the interface, so that 

the normal stress balance reduces to the Young-Laplace equation [Eq. (3.32)]. 

Using Eq. (3.18) and the velocity potential ,  which obeys ,v   we obtain 

  .
K

p gz 


     (3.38) 

Similarly, we introduce a small perturbation to the field velocity given by 

Eq. (3.24) and a surface perturbation given by Eq. (3.26). Using these 

equations together with Eq. (3.32) and Eq. (3.38) we obtain 
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 2

0 0 0 .g g k
K K

 
       

           (3.39) 

Here K  is the permeability of the porous medium or the Hele-Shaw cell, 
 is 

the viscosity of the upper fluid and 
 is the viscosity of the lower one. 

Replacing Eq. (3.27) into Eq. (3.39), and defining ,i   we obtain the 

dispersion relation 

 
3( )
.

gk k
K

  


 
 

 

 
 


  (3.40) 

It is worth mentioning that the last result also corresponds to the dispersion 

relation of the Saffman-Taylor instability with zero throughflow velocity [71]. 

Indeed, when a less viscous fluid is used to displace a more viscous one in a 

porous medium, the interface between the two fluids develops finger-like 

patterns which are referred to as viscous fingering. 

4  

 



Chapter 4 

Propagating reaction fronts 

Propagating fronts can be found in many natural phenomena separating 

different coexisting phases such as, forest fire [16], crystal growth, landslide, 

epidemics [17], and cell populations. For example, in an epidemic we can 

consider the front as the interface which separates infected people from 

uninfected people. We can model this propagating front by a reaction-diffusion 

equation to predict the speed of the epidemic and the change in the percentage 

of infected people as a function of time. In this case diffusion plays the role of 

spreading the agent of epidemic, while reaction specifies how uninfected people 

react with the agent of epidemic. Indeed, the natural phenomena mentioned 

above correspond to reaction-diffusion systems. Thus, solving the reaction- 

diffusion equation, we obtain information about the evolution of the different 

phases.  

 Other methods relay on a thin front approximation. This approximation 

considers the chemical front as a surface (or interface with negligible thickness) 

that separates reacted from unreacted fluid. Among these methods we have the 

eikonal-curvature relation that shows the dependency of the normal velocity of 

the reaction front on the local front curvature [8,72,28]. Considering a thin 

interface between reactants and products, the Kuramoto-Sivashinsky equation 

can be used to model the evolution of reaction fronts with diffusive instabilities 

[29] and thermal-diffusive flame instabilities in the propagation of plane flame 

fronts [73]. 

4.1 Reaction-diffusion equation 

Random particle motion causes the transport of matter from one place to 

another which is referred to as diffusion. A diffusion flux (J) is defined as the 

number of particles passing through a unit cross-sectional area per unit time, 

where the particles can be atoms, molecules, or ions [74]. The concentration of 

particles (or number density) corresponds to the number of particle per unit 

volume.  
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The Fick's first law, which is based on observations, states that diffusion flux 

always points in the direction from high concentration to low concentration [75], 

and it can be represented in a one-dimensional form as 

 ,
c

J D
x


 


  (4.1) 

where J  is the flux of particles (diffusion flux), D is the diffusion coefficient or 

diffusivity, and c is the concentration of particles. 

In most of the cases the concentration of particles at any position changes 

with time, which implies that the flux also changes with time. The non-steady 

state diffusion is described by Fick’s second law. To obtain Fick’s second law in 

one-dimension, we consider a rectangular parallelepiped volume element with 

two faces of unit area perpendicular to the x-axis as shown in Fig. 4.1. One of 

these faces is located at x, while the other is located at x+x. The net incoming 

flux of particles into this volume element is given by the difference between the 

incoming flux and the outgoing flux:    .J x J x x    Assuming that 0,x   

we can expand ( )J x x   about x using a Taylor series and keeping only the 

linear terms we have       .J x x J x J x x        The conservation of mass 

implies that the net incoming flux of particles into the volume element must be 

equal to the rate of accumulation of particles into this volume element 

 ,
J c

x x
x t

  
    
  

  (4.2) 

reducing simply to  

 
   , ,

.
J x t c x t

x t

 
 

 
  (4.3) 

Replacing Eq. (4.1) into Eq. (4.3), and assuming that D does not depend on x, 

we obtain a partial differential equation (PDE) in one-dimension for non-steady 

state diffusion, referred to as a diffusion equation in one-dimension [76] 

 
   2

2

, ,
.

c x t c x t
D

t x

 


 
  (4.4) 
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Figure 4.1: Sketch of a rectangular parallelepiped volume element with two faces of 

unit area perpendicular to the x-axis. The arrows indicate the incoming flux and the 

outgoing flux of particles into this volume element. 

 

Equation (4.4) corresponds to Fick’s second law in one-dimension, and this 

equation can be written in three-dimension as 

  .
c

D c
t


  


  (4.5) 

In the case of steady state diffusion with D constant, the concentration c does 

not change by time, so that Eq. (4.5) becomes Laplace’s equation  

 2 0.c    (4.6) 

The solution of Eq. (4.6) corresponds to Fick’s first law for steady state diffusion 

as expected. However, in general, the solutions of Eq. (4.5) depend on an initial 

condition and corresponding boundary conditions.  

A reaction-diffusion (RD) equation appears in the study of population growth 

and chemical reactions. It includes a reaction term besides a diffusion term, 

having the following form for one component in one spatial dimension 

  2 .
c

D c f c
t


  


  (4.7) 

 J x  J x x 

xx

y

z
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Here c  represents the population density or the concentration of a substance. 

The smooth function  f c  is in general a nonlinear function which represents 

the local change of c. For example, in the case of population growth, it is related 

to the rate of birth (or death) and to the carrying capacity of the biological 

species in the specific environment. In the case of chemical reaction it 

represents the chemical reaction rate law. Equation (4.7) have been studied by 

Fisher [20] and by Kolmogorov, Petrovsky, and Piskunov [21] in the context of 

population dynamics. They used Eq. (4.7) with    1f c c c 
 
 to study the 

propagation of a dominant gene. In this case the solution to this equation 

corresponds to a propagating front [77], and it is referred to as the FKPP 

equation. This equation can be generalized to include many species with their 

interrelations and their diffusion constants, giving rise to much more complex 

spatiotemporal propagation phenomena [78]. 

4.2 Reaction-diffusion equation with cubic order 
autocatalysis 

A very important type of reaction front arises in the case of cubic autocatalysis 

[1,79]. Cubic chemical autocatalysis arises from a two species reaction of the 

form 

 22 3 ,  rate .A B B kab    (4.8) 

Where A is the reactant with concentration a and diffusion coefficient aD , B is 

the autocatalyst with concentration b and diffusion coefficient ;bD  being k the 

rate constant [22,80]. The iodate-arsenous acid (IAA) reaction with adequate 

concentrations of the reactants can be described by a one variable (scalar) 

reaction-diffusion equation with cubic reaction kinetics [19,6,81]. This equation 

exhibits a solution in the form of    , .c x t c x vt   Since the propagation 

velocity v  of the front is constant and the front travels without changing its 

shape, it will be useful to change to a reference frame co-moving with the front. 

In this moving reference frame Eq. (4.7) becomes an ordinary differential 

equation 
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  
2

2
.

dc d c
v D f c

d d 
     (4.9) 

Here  c c   and .x vt    Using      1 2 3f c c c c c c c      with α a 

positive constant, we present the exact analytical solution of Eq. (4.7) based on 

the work of Saul and Showalter [19]. The steady state solutions 
ic  are obtained 

from   0.if c   We assume that 
1 2 3,c c c   being 

1c  and 
3c  linearly stable to 

small perturbations ( 0f c   ), while the intermediate steady state solution 
2c  

is linearly unstable ( 0f c   ). We are looking for a wave-front solution, which 

moves with speed v between two steady states. In this case we work with 
1c  

and 
3c . The front speed v can be positive or negative, because Eq. (4.7) is 

invariant with respect to the transformation .x x  Since we want a travelling 

wave between 1c  and 3c , the boundary conditions are as follows: 
3lim ( )c c





  

and 
1lim ( )c c





 . We define ( )G c dc d  as in Ref. [19], so that 

    2 2 .d c d dG dc dc d dG dc G    Replacing in Eq. (4.9) we obtain  

 .
dG

vG DG f
dc

     (4.10) 

Since we also want ( )G c  to link the steady states 1c  and 3c , from Eq. (4.10) we 

find that 1 3( ) ( ) 0.G c G c   In addition, from Eq. (4.10) we also notice that if 

dG dc  is of order n, G  must be of order 1n  , and f  must be of order 2 1.n   

However, we know that ( )f c  is of order 3. Thus, G  must be of order 2, having 

the form  

   1 3 .G k c c c c     (4.11) 

Replacing Eq. (4.11) and its derivative into Eq. (4.10), and using the fact that 

    2 ,f c k c c G   we obtain 

        2 2

1 3 1 3 22 0.c c c c Dk c Dk c c kv c           (4.12) 

Since Eq. (4.12) must be zero for all values of c, the only way is making 
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 22 0,Dk     (4.13) 

and 

  2

1 3 2 0.Dk c c kv c       (4.14) 

From Eq. (4.13) we obtain the value of  
1 2

2 ,k D  and we choose its positive 

value to get 0dc d   in order to satisfy the boundary conditions. Replacing the 

value of k in Eq. (4.14) we obtain 

    
1 2

1 3 2

1
2 .

2
v D c c c

 
    

  (4.15) 

We also replace the value of k in Eq. (4.11) and using ( )G c dc d , we obtain 

    1 2 .
dc

k c c c c
d

     (4.16) 

Solving this first order differential equation [Eq. (4.16)], we obtain the front 

solution with x vt    

      1 3 1 3
1 3

1
, tanh ,

2 2 2

c c c c
c x t k c c x vt B

   
        

 
  (4.17) 

where B is a constant to be determined from the initial conditions. 

The IAA system can be described by two main reactions [6]. The Dushman 

reaction, where iodide is oxidized by iodate [82]: 

 3 2 2IO 5I 6H = 3I +3H O.      (4.18) 

Here 3IO  is an iodate ion, I  is an iodide ion, and H  is a hydrogen ion. The 

second reaction corresponds to the Roebuck reaction, in which arsenous acid is 

oxidized by iodine [83]: 

 3 3 2 2 3 4H AsO I H O H AsO 2I 2H .        (4.19) 

The acid on the left-hand side of Eq. (4.19) is the arsenous acid, while the acid 

on the right-hand side is the arsenic acid. The rate laws of these reactions have 
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been obtained empirically [6]. The rate law for the Dushman reaction 

[Eq. (4.18)] is given by 

   2

3

1 [I ]
[I ] [I ][IO ][H ] ,

5
a b

d
k k

dt


        (4.20) 

while the rate law for the Roebuck reaction [Eq. (4.19)] is given by 

 2 2 3 3[I ] [I ][H AsO ]
.

[I ][H ]
c

d
k

dt  
    (4.21) 

Where the rate constants are 3 3 14.50 10 M s ,ak     8 4 14.36 10 M s ,bk     and 

2 13.20 10 Ms .ck     

In the case of iodide fronts in the IAA reaction with arsenous acid in 

stoichiometric excess to iodate, the net reaction is given by [6] 

 3 3 3 3 4IO 3H AsO I 3H AsO .      (4.22) 

Assuming that iodate and iodide have the same diffusion coefficient and that the 

initial concentration of iodide is negligible in contrast to the initial concentration 

of iodate, the IAA reaction can be described by a one variable reaction-diffusion 

equation. The IAA reaction kinetics is modeled by the cubic rate law 

    1 .sf c c c c c     Here c  is the normalized concentration of iodide with 

respect to the initial concentration of iodate [50]. The value of sc  depends on 

the empirical rate constants ka and kb and it is also normalized with respect to 

the initial concentration of iodate, being 0.sc   In this case the spatially 

homogeneous steady states are: 1c   and 0,c   and the wave-front solution 

will move from the 1c   region to the 0c   region, being 1c   the final reacted 

state which corresponds to the thermodynamic equilibrium. Using Eq. (4.15), we 

obtain the speed of the wave-front solution, which is given by  

  
1 2 1

2 ,
2

sv D c
 

  
 

  (4.23) 

and from Eq. (4.17), we obtain the traveling wave-front solution, which is given 

by 
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    
1 1 1

, tanh .
2 2 2 2

c x t x vt B
D

 
     

 

  (4.24) 

The initial concentrations values used in typical wave experiments by Hanna et 

al. [6] are 3

3 0
IO 5.00 10 M,       and   2

3 3 0
H AsO 1.55 10 M.   We assume the 

same diffusion coefficient for iodide and iodate 3 2 12.0 10 mm s .D     The value 

of 
sc  depends on empirical rate constants related to the process of oxidation of 

iodide by iodate [6] and on the initial concentration of iodate

   3 3 1 8 4 1 3

3 0
IO 4.50 10 M s 4.36 10 M s 5.00 10 M 0.00206.s a bc k k               

The constant  
2 2

3 0
IO Hbk           depends on the constant hydrogen ion 

concentration involved in the process of reduction of iodine by arsenous acid 

[19,6]:     
2 2

3 8 4 1 3 15.00 10 M 4.36 10 M s 7.1 10 M 0.55s .           Replacing this 

values in Eq. (4.23) we obtain a front propagation speed of 22.36 10 mm/s, in 

agreement with the experimental results [6]. 

4.3 Eikonal equation 

A variety of chemical systems exhibit propagating chemical waves such as the 

Belousov-Zhabotinsky (BZ) reaction and the iodate-arsenous acid (IAA) 

reaction [84]. Although the propagation of a chemical wave in a two-dimensional 

system is not difficult to obtain experimentally, modeling two dimensional wave-

fronts is more difficult because of their curvature. Previous works [8] without 

fluid motion have shown that the normal speed of a curved wave-front is related 

to its curvature. This relation is referred to as the eikonal equation and it is given 

by 

 0 ,nV V D    (4.25) 

where nV  is the normal speed of the wave-front, 0V  is the speed of a plane 

wave (a planar front), D  is the molecular diffusivity, and   is the curvature of 

the wave-front. The curvature   is positive if the front propagates toward the 

center of curvature. In Fig. 4.2 we observe that the eikonal equation increases 
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Figure 4.2: The eikonal equation increases the normal velocity of the points of the 

wavefront with positive curvature and decreases the normal velocity of the other points 

with negative curvature. 

 

the normal velocity of the points of the wave-front with positive curvature and 

decreases the normal velocity of the other points with negative curvature. Thus, 

Eq. (4.25) tends to flatten the wave-front. In order to get a qualitative 

understanding to this equation, imagine the propagation of a two-dimensional 

circular wave-front in polar coordinates. The evolution of this circular front is 

according to reaction-diffusion equation given by 

 
2

2

1
( ).

c c c
D f c

t r r r

   
   

   
  (4.26) 

On the other hand, the evolution of a one dimensional reaction-diffusion front 

advected by a constant flow of speed v  can be rewritten as 

 
2

2
( ).

c c c
D v f c

t x x

  
  

  
  (4.27) 

Since the speed of the advecting flow is opposite to the front propagation, the 

speed of the front in Eq. (4.27) is 0 ,v v v   where 0v  would be the velocity of 

the front without this supposed advection term. If we compare Eq. (4.26) with 

2n oV V D R 

1n oV V D R 
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Eq. (4.27), the term   D r c r   in Eq. (4.26) can be interpreted as an 

advection term, being v D r  the velocity of this supposed flow. Hence, the 

normal front velocity would be  

 0 0 .n

D
v v v v

r
      (4.28) 

Eq. (4.28) gives us the meaning of the eikonal equation, in which we add to the 

flat front velocity a term proportional to the front curvature. This result 

corresponds to the case of negative curvature, as shown in Fig. 4.2 for 

1

1 .R    Here the front is moving away from the center of curvature, while its 

normal velocity decreases in agreement with Eq. (4.25).  

4.4 Kuramoto-Sivashinsky equation 

Propagating chemical wave with diffusive instabilities and flame fronts with 

thermal-diffusive instabilities can be described by the Kuramoto-Sivashinsky 

(KS) equation [26,73]. The one dimensional KS equation is given by 

 
2 4

2 4
,

u u u u
u

t x x x


   
  

   
  (4.29) 

where  ,u x t  is an scalar field and  0,L .x  This partial differential equation is 

nonlinear due to the term .u u x   We also observe a diffusion term 2 2,u x    

which causes instability when 0.   The coefficient  depends on the physical 

characteristics of the system. In the case of autocatalytic reaction fronts 

involving two species, the coefficient  depends on the ratio of diffusivities 

between the reactant and the autocatalytic substance [24,29]. In this thesis we 

work with 0,   which allows for unstable flat fronts and steady stable curved 

fronts, including oscillating and chaotic solutions. 

The KS equation is non-integrable and therefore, there are no explicit 

solutions. In other words, there are no solutions of the form  , .u u x t  The 

second form of the KS equation can be obtain by setting u h x    and 

integrating Eq. (4.29) with respect to x. Considering 1,    this gives 
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22 4

2 4

1
.

2

h h h h

t x x x

    
     

    
  (4.30) 

Equation (4.30) has a flat front solution:  , 0.h x t   We use the normal mode 

method to analyze the linear stability of the flat front solution. Let us introduce a 

simple perturbation with frequency   and wavenumber ,k  being proportional to 

( ).i kx te 
 This means that the perturbation has the form    

, ,
i kx t

h x t Ae


  where 

A  is a small constant. In addition, we consider the following boundary 

conditions: 0h x    and 3 3 0h x    [85]. Taking into account the boundary 

conditions, the perturbation can be written as    , cos ,i th x t A kx e   where 

 0,Lx  and L.k n  Replacing the flat front solution with the addition of the 

perturbation into Eq. (4.30), and keeping only the linear terms with respect to 

the perturbation, we obtain 

 2 4.i k k     (4.31) 

We define ,i   so that the flat front will be unstable if 0.   The dispersion 

relation is given by 

 2 4.k k     (4.32) 

In Fig 4.3, we show the linearized dispersion relation for the KS equation. For 

small values of k, the growth rate σ is positive, indicating that the flat front 

solution is unstable. As we increase k, the growth rate σ increases until it 

reaches a maximum value of 0.25 at 0.707,k   it then decreases. Apart from 

the trivial solution, we observe that the flat front solution has critical stability

( 0)   at 1.k   The growth rate σ is negative for 1,k   indicating that the flat 

front solution is stable in this region. Since L,k n if the lowest mode ( 1n  ) 

is negative, all the other modes will also be negative and the flat front will be 

stable. Hence, we have 

 

2 4

0.
L L

    
    

   
  (4.33) 

Therefore, the flat front will be stable for L .  
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Figure 4.3: Growth rate σ as a function of the wavenumber k. The growth rate σ is 

negative for k > 1. Thus, the flat front will be unstable for L > π. 

 

 

The KS equation exhibits spatiotemporal behavior, such as oscillatory or 

chaotic solutions [86]. For example, in Fig. 4.4 we show the characteristic 

period-doubling bifurcations that lead to a chaotic regimen. The transition to 

chaos takes place as we increase the domain L. Later, we will discuss in detail 

different solutions for the KS equation. 
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Figure 4.4: Bifurcation diagram showing the relative maximum and minimum of the 

time evolution of the front velocity. The period-doubling bifurcations increase as we 

increase the control parameter L. 

 

Previous works have shown that the KS equation can model chemical 

reaction-diffusion systems [26]. For example, reaction fronts with chemicals 

having different diffusivities present instabilities that can be described with the 

KS equation [24,29]. Our goal is to study the effects of fluid motion in the speed, 

shape and stability of reaction fronts. For this purpose, we modify the KS 

equation to include fluid flow [47,79,29] as we discuss in Chap. 6. 

 

 

 

 

5  

 



Chapter 5 

Propagating fronts described by the 

Kuramoto-Sivashinsky equation 

Chemical reaction-diffusion fronts exhibiting diffusive instabilities can be 

modeled using the Kuramoto-Sivashinsky (KS) equation. Diffusive instabilities 

arise when the diffusivity of the autocatalyst is sufficiently lower than the 

diffusivity of the reactant [23,29]. Experimental studies of front instabilities 

carried out with the iodate-arsenous acid reaction in gels to avoid fluid flow 

showed that the flat front loses stability above a critical ratio of diffusion 

coefficients between the reactant and autocatalyst, developing cellular 

structures (periodic spatial structures) similar to those observed in propagating 

flame fronts [24,87]. Numerical studies of the KS equation revealed a rich 

variety of spatiotemporal behavior [88,86], such as propagating fronts and 

cellular structures that resemble the behavior of fronts near diffusive 

instabilities. In this chapter we will explore the different types of spatio-temporal 

structures arising in the KS equation as well as their stability. We will find 

transitions between flat fronts and curved fronts, together with oscillating states 

in transition to spatio-temporal chaos. 

5.1 Equation of motion  

We study the propagation of chemical fronts described by the KS equation in 

two dimensions. The front is confined between two parallel plates located at 

0X   and X L  as shown in Fig. 5.1. The system allows a flat front that 

propagates with constant velocity 0V
 
in a direction parallel to the Z axis. The 

spatial front profile ( , )H X T at time T, measured relative to the flat front, obeys 

the KS equation: 

 

22 4

2 4

0 .
2

H H H H

T X

V

X X
 

    
   

    
  (5.1) 
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Figure 5.1: Sketch of the propagating front confined between two parallel plates. 

 

We use a reference frame moving at the speed of the flat front (
0V ). Therefore 

the solution 0H   represents the flat front moving with constant velocity in the 

laboratory frame of reference. The coefficients  and  depend on the physical 

characteristics of the system. For example, in the case of an autocatalytic 

reaction, the parameter  depends on the ratio of diffusion coefficients between 

the reactant and the autocatalyst. According to Malevanets et al. [29], the flat 

front presents instabilities if 0,   given rise to steady stable curved fronts. We 

will change to a system of dimensionless units by making the substitution 

,xX L x  zH L h,  and TT L t , where the lowercase letters indicate 

dimensionless magnitudes, then the equation transforms into  

 

22 2 4

2 2 2 4

0

4
.

2

z z z z

T x x x

L h L L h L

L t L x L

h V

x x

h

L
 

    
   

    
  (5.2) 

Assuming that  is non-zero, we choose xL / | |  , 0z V|L | / , and 

2

TL /   as in reference [53] to arrive at  

 

22 4

2 4
.

2

1h h

t x x

h h

x


    
   

    
  (5.3) 

Here the x coordinate varies from 0 to L. The dimensionless parameter L is 

related to the gap between the plates ( L ) by L xL L . We have defined 
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| |,    hence the value of   can be only plus or minus one, depending on 

the sign of .  In this thesis we only consider the case 1,    which allows for 

unstable flat fronts and steady stable curved fronts [29]. We impose the 

boundary conditions at the vertical walls derived by Margolis et al. [85] for fronts 

propagating in a two dimensional channel corresponding to zero first and third 

partial spatial derivatives of the front height h: 3 3 0h / x h / x      . The front 

height  ,h x t  is measured relative to the flat front. 

5.2 Stationary solutions 

Equation (5.3) exhibits a rich variety of solutions, such as steady fronts that 

propagate at constant speed, oscillatory and chaotic fronts. In this section we 

will focus on steady front solutions. Working in a reference frame co-moving 

with the front, the steady front solutions become stationary. To this end we use 

a non-linear shooting method to obtain the stationary solutions with their 

respective propagation velocity for different values of the domain width (L). We 

then carry out a linear stability analysis to determine the stability of these fronts. 

We obtained the stationary solutions and their stability using numerical methods 

described in the following subsections.  

5.2.1 Non-linear shooting method 

Since we are studying reaction fronts that propagate with constant velocity and 

constant waveform, we are looking for solutions of the form    0h x,t h x ct  , 

where  0h x  is the spatial front profile and c is the constant velocity of the front. 

Consequently, the front looks stationary in a reference frame moving at the 

constant front velocity c, with  0h x  being the spatial front profile in this 

reference frame. With this substitution Eq. (5.3) becomes 

 

22 4

0 0 0

2 4

1

2

d dh d
c .

dx d

h

x dx

h  
     

 
  (5.4) 

Since the derivative of a constant is zero, any constant may be added to the 

solution  0h x  and it will still be a solution. We choose the constant to make the 
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average position of the front equal to zero. One of these solutions corresponds 

to a stationary flat front solution of zero height. 

We find a solution of Eq. (5.4) using a nonlinear shooting method [89]. We 

transform Eq. (5.4) into a set of four coupled first-order ordinary differential 

equations (ODEs) by defining each high order derivative as a new variable [90]. 

The differential equations are 

 

0

2

                

                  

                 

1

2

dh
u

dx

du
v

dx

dv
w

dx

dw
c v u

dx





 


 


   


  (5.5) 

We start the shooting method at 0x  . Since the value of  0h x  is arbitrary, 

we have two free parameters to start the shooting method: the speed c and the 

second derivative 2 2

0d h dx . Given guessing values to these parameters, we are 

able to integrate the equations with a simple Euler method in order to reach the 

other boundary at Lx  . We then adjust the parameters to obtain the correct 

boundary conditions at Lx  . We used 10
5 points with the Euler method in this 

interval; a similar calculation using a fourth-order Runge-Kutta method did not 

yield a significant difference. Finally, we adjust the value of  0h x  at 0x   to 

make the average position of the front equal to zero. 

5.2.2 Linear stability analysis  

We analyze the stability of chemical fronts by introducing small perturbations to 

the stationary-state solutions. Let  1h x,t  be a small perturbation of the 

stationary state  0h x . We have 

      0 1h x,t h x h x,t .    (5.6) 

Substituting this into Eq. (5.3), we obtain 
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t x x x x x

         
        

         
  (5.7) 

Keeping only the linear terms on 
1h , Eq. (5.7) becomes 

 
2 4

1 1 0 1 1
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.

h h h h h

t x x x x

      
     

      
  (5.8) 

We look for solutions of the form 

    1

th x,t e h x ,   (5.9) 

where σ is the growth rate of the perturbation. With this form of the perturbation 

we can determine the stability of the stationary state 
0h  since solutions with a 

negative real part of σ will decay with time. With this substitution, Eq. (5.8) 

becomes an eigenvalue equation, with σ the eigenvalue and  h x  the 

eigenfunction 
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x


  
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  
  (5.10) 

We solve Eq. (5.10) using a shooting method similar to the one described in 

Sec. 5.2.1. We first transform the partial differential equation into a set of first-

order ODEs. However, in this case, the system of ODEs is linear. This fact 

simplifies our work which is to determine the eigenvalue σ. The differential 

equations are 

 

1

1
2

2
3

3 0
2 1

                             

                           

                           

dh
y

dx

dy
y

dx

dy
y

dx

dy dh
h y y

dx dx











 



 
      
  

  (5.11) 

The free parameters in this case are h  and 2 2d h dx at the starting point 

0x  , and σ. Guessing some initial values to these parameters, we are able to 



 47 
  

integrate the equations with a simple Euler method, reaching the boundary at 

Lx  . After that, we adjust the parameters and repeat the process until we 

obtain the correct boundary conditions at Lx  . In other words, the shooting 

method aims at finding the initial values at 0x   that lead to the correct 

boundary conditions at Lx  . However, due to the fact that the system of ODEs 

is linear, we can generate two linearly independent solutions. Consequently, 

any solution that satisfies the boundary conditions at Lx   is a linear 

combination of these two solutions. This leads to a linear system of two 

equations. The eigenvalue σ will make the determinant of this system equal to 

zero. To generate the first linearly independent solution, we start the shooting 

method at 0x   with 1h   and 2 2 0d h dx  ; the second one is generated with 

0h   and 2 2 1d h dx  . The eigenvalue equation [Eq. (5.10)] allows for an infinite 

number of complex eigenvalues. The front will be stable if all of the eigenvalues 

have a negative real part. Therefore, if the eigenvalue with the largest real part 

is negative, the front is stable. 

5.3 Results 

We obtain stationary front solutions of the KS equation for different values of the 

slab width L. Since the solution depends on an arbitrary constant, we choose 

this constant to match the average front height equal to zero. The front height is 

measured relative to the average front height. We determine the stability of the 

fronts by calculating the growth rates σ for small perturbations. 

5.3.1 Spatial front profiles 

In order to describe the spatial front profile we define the axis as a line parallel 

to the z axis passing through the center of the two-dimensional domain at 

L 2x  . Thus, the fronts can be flat, axisymmetric, or nonaxisymmetric with 

respect to the axis. In Fig. 5.2 we show four different front profiles, with the front 

height function measured relative to the average front height. We show cases 

where L ,  since for these values the flat front presents instabilities 

[Eq. (4.33)] as we will discuss later. For L 4,  a nonaxisymmetric front 
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develops (Fig. 5.2a). This front has one side higher than the other side. For 

L = 8, the front is axisymmetric, with a single maximum on the axis (Fig. 5.2b), 

while for L = 8.5 the front is nonaxisymmetric, having a single minimum 

(Fig. 5.2c). For L 9.5  the front is also nonaxisymmetric, having three inflection 

points (Fig. 5.2d). The flat front is also a solution for these values of L. All these 

fronts have steady shape, each moving at different constant velocities. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.2: Different front profiles. The front height is measured from the average front 

height. (a) Nonaxisymmetric front having an inflection point (L = 4). (b) Axisymmetric 

front having a relative maximum (L = 8.0). (c) Nonaxisymmetric front having a relative 

minimum (L = 8.5). (d) Nonaxisymmetric front having three inflection points (L = 9.5). 

 

Since the equations are nonlinear, more than one solution may appear, we 

show this for the case with L = 9. These fronts are shown in Fig. 5.3. The flat 

front (A) is indeed a solution for each value of L. We also find the 

nonaxisymmetric solutions (B and C), being C a reflection of B about the central 

axis. Indeed, the symmetry of Eq. (5.4) implies that the reflection of a 
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nonaxisymmetric solution about the central axis is also a solution with the same 

velocity. The concave upward solution (D) and the concave downward solution 

(E) are axisymmetric. Therefore, given a slab width, steady fronts of different 

spatial profiles can be developed. We will analyze the stability of the fronts in 

the following section. 

 

 

Figure 5.3: Different front profiles for L = 9. The zero height solution corresponds to flat 

front (A). Lines B and C correspond to nonaxisymmetric solutions, while lines D and E 

correspond to axisymmetric solutions. The fronts are shifted for comparison. 

 

5.3.2 Regions of stability  

In the previous section we obtain stationary fronts with different shapes, in a 

reference frame co-moving with the front, for different values of the domain 

width L. Now, we are interested in determine the front velocities for different 

values of the slab width L in the absence of an external fluid flow [91,92]. The 

growth rate for small perturbations   determines the stability of each front. 

Figure 5.4 shows the velocities of several fronts relative to the velocity of the flat 

front for different values of L. In this figure, the flat front solution has a velocity 
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Figure 5.4: Front velocities for different distances between plates (L). The thick solid 

line (A) corresponds to stable nonaxisymmetric fronts. The solid line (B) corresponds to 

stable axisymmetric fronts. The dashed line (E) corresponds to unstable axisymmetric 

fronts. Broken lines (C, D, and F) correspond to unstable nonaxisymmetric fronts. 

 

equal to zero, being a solution for all values of L. The stability of the flat front 

solution provides an analytical dispersion relation [Eq. (4.32)] between growth 

rates ( ) and perturbation wavenumbers ( L ) given by    
2 4

L L    , 

having critical stability ( 0  ) for L  . When we increase L above ,  new 

stable nonaxisymmetric solutions appear. These solutions have a side near one 

boundary higher than the other, with their velocities shown in Fig. 5.4 by branch 

A. Because of the symmetry of the equation, the reflection about the axis is also 

a solution with the same velocity. In branch A, the front speed increases with 

increasing L until it reaches a maximum speed of 1.60 at L = 3.75, it then 

decreases until it meets branches B and E. Branch E corresponds to unstable 

axisymmetric solutions in the interval 6 28 L 6 31. .  . In this range it coexists 

with branch A. As we increase the width L beyond 6.31, branch A disappears 

and new stable axisymmetric solutions appear (branch B). In branch B the front 

speed increases until it reaches a maximum speed, decreasing after this 
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maximum. Branch B contains two solutions with the same velocity: one is 

concave downward (having a maximum); the other, concave upward (having a 

minimum). The concave downward solution is always stable in the domain         

( L 6 31. ), we discuss the stability of the other solution later. Axisymmetric 

fronts in branch B correspond to two mirrored nonaxisymmetric solutions; 

consequently, their maximum speed is the same as the maximum speed of 

nonaxisymmetric fronts. However, the fronts are not necessarily stable. We find 

other unstable nonaxisymmetric solutions with velocities described by branches 

C, D, and F. Branch C begins near the maximum of branch B, its velocity 

decreasing with increasing width L, continuing until it meets branches D and F 

at a single point (L = 9.46). For larger values of L, branch D shows higher 

velocities. In the range 9 18 L 9 46. .   branch D has solutions with two different 

velocities for each value of L. Branch F meets the branch of flat fronts, having 

higher velocities with increasing L. We are interested in determining how these 

front velocities change when an external fluid flow is applied. 

We obtain the largest real part of the growth rate [Re(σ)] for front 

perturbations (Fig. 5.5). These values of [Re(σ)] determine the stability of the 

solutions: positive values of [Re(σ)] indicate an unstable front. For small values 

of L, the only solution is the flat front solution (branch G) having Re(σ) negative. 

As we increase the width L, we find that Re(σ) becomes positive for L  , 

indicating a transition to unstable fronts. As we increase the width L further, the 

real part of the growth rate reaches a maximum, remaining positive for all 

values of L under consideration. Branch A in Fig. 5.5 corresponds to growth 

rates associated with the nonaxisymmetric solutions described in Fig. 5.4. All 

these values are negative, indicating stability of the nonaxisymmetric fronts. We 

notice that branch A has a minimum value near L = 4.60, where we find a 

discontinuity in the slopes. This discontinuity is due to the existence of more 

than one eigenvalue for each solution. As we increase L, the highest growth 

rate decreases, while the second largest increases. They meet at the place 

where the slope presents a discontinuity. Branches B1 and B2 correspond to two 

axisymmetric solutions having the same propagation velocities. One of these 
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Figure 5.5: The largest real part of the eigenvalues σ for different distances L between 

plates. The front is unstable when the largest real part of the eigenvalues σ is positive. 

The thickest solid line (A) corresponds to nonaxisymmetric fronts. Solid line B1 

corresponds to axisymmetric fronts and solid line B2 corresponds to other axisymmetric 

fronts. Broken lines (C, D, and F) correspond to nonaxisymmetric fronts. The dashed 

line (E) corresponds to other axisymmetric fronts. Solid line G corresponds to flat fronts. 

 

 

solutions corresponds to concave downward fronts represented by line B1; the 

other corresponds to concave upward fronts represented by line B2. The growth 

rates indicate that the concave upward fronts are stable (B1), while the concave 

downward fronts are unstable, except in the interval 7 47 L 8 65. .  . This 

interval is a region of bistability for both types of axisymmetric fronts. These 

branches also present minima with abrupt changes of slope, similar to the one 

exhibit by branch A. Branch E corresponds to two distinct unstable 

axisymmetric fronts having the same velocity. Branches C, D, and F show real 

parts of growth rates corresponding to nonaxisymmetric solutions. Their values 

are greater than zero, therefore these fronts are unstable. For all values of L in 

Fig. 5.5, we find at least one stable steady front. These stable solutions change 

from flat, to nonaxisymmetric, and then to axisymmetric as we increase L. 
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5.3.3 Cellular structures 

For larger values of L, we find solutions that can be constructed using fronts 

developed in smaller cells [91,92,93]. In this case a larger pattern can be 

formed by placing the cell solutions side by side. For example, in Fig. 5.6 we 

show four front profiles. Two of them correspond to nonaxisymmetric fronts 

obtained with L = 3.5 (Fig. 5.6a and Fig. 5.6b), while the others correspond to 

axisymmetric fronts obtained with L = 7.0 (Fig. 5.6c and Fig. 5.6d). The 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.6: Front profiles for L = 3.5 and L = 7.0. The front height is measured from the 

average front height. (a) Nonaxisymmetric front obtained with L = 3.5. (b) Another 

axisymmetric front obtained with L = 3.5. (c) Axisymmetric front obtained with L = 7.0. 

(d) Another nonaxisymmetric front obtained with obtained with L = 7.0. 

 

axisymmetric pattern of Fig. 5.6c corresponds to two nonaxisymmetric patterns 

formed with L = 3.5. Similarly, a concave upward axisymmetric pattern 

(Fig. 5.6d) can also be formed with these two nonaxisymmetric patterns 

obtained with L = 3.5. It is worth pointing out that the front of Fig. 5.6d is not a 
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reflection of the front of Fig. 5.6c about the average front height. As a 

consequence, both axisymmetric patterns with L = 7.0 share the same 

propagating speed, but not necessarily the same conditions of stability.  

In Fig. 5.7 we show the velocities corresponding to cellular patterns and their 

respective stabilities. Branches A, C and E correspond to nonaxisymmetric 

solutions, whereas branches B and D correspond to axisymmetric solutions. 

Solid lines correspond to stable fronts, while broken lines correspond to 

unstable fronts. The axisymmetric solutions of branch B correspond to two 

mirrored nonaxisymmetric solutions of branch A; the solutions of branch C 

correspond to joining solutions of branches A and B, forming an undulating 

curve; the solutions of branch D correspond to joining solutions of branches A 

and C, forming an undulating curve; and so on. Consequently, the maximum 

speed for each branch is the same, being located at a width equal to n × L1, 

where L1 = 3.75 is the location of the speed maximum for the smallest cell, n is 

an integer. Nonaxisymmetric stable solutions associated with branch A appear 

for L ,  where flat front solutions become unstable. Concave upward and 

concave downward axisymmetric fronts are represented by branch B sharing a 

region of bistability. However, the region of stability of the concave downward 

axisymmetric fronts is greater than the concave upward fronts. This region is 

represented by a solid line in branch B, which breaks for L 11 42.  indicating 

transition to unstable solution. Branch D also contains two solutions with the 

same velocity. These axisymmetric solutions have a maximum or minimum in 

the central axis. They are unstable except for the interval 14 97 L 16 84. .  , 

which is also a region of bistability for these axisymmetric fronts. The 

nonaxisymmetric solutions associated with branches A, C, and E, also have two 

solutions with the same velocity for each value of L in their respective domain. 

However, one of these solutions is the reflection of the other about the central 

axis, because of the symmetry of Eq. (5.4). Consequently, these 

nonaxisymmetric branches have the same values of Re(σ), the real parts of their 

growth rates. We found that although the speeds of the cellular patterns are 

determined by the speed of the smallest cell, they do not share the same 

conditions of stability. 
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Figure 5.7: Front velocities for different distances between plates (L). Solid lines 

correspond to stable fronts; broken lines correspond to unstable fronts. Lines A, C and 

E correspond to distinct nonaxisymmetric fronts, whereas lines B and D correspond to 

distinct axisymmetric fronts. 

 

 

We studied reaction fronts within a two-dimensional slab using the KS 

equation. The flat front loses stability as we increase the slab width L, leading 

first to a stable nonaxisymmetric front, and later to a stable axisymmetric front. 

In other words, these transitions can take place by changing the slab width L. 

We found stable axisymmetric fronts, having a maximum at the center of the 

slab (concave downward fronts) or a minimum (concave upward fronts). The 

concave upward and concave downward axisymmetric fronts share a small 

region of bistability. In addition, we studied the stability of extended patterns for 

larger values of the slab width L. We found that the speed of the smallest cell 

determines the speed of the cellular patterns. However, the cellular patterns 

presented different conditions of stability. 

6  

 



Chapter 6 

Kuramoto-Sivashinsky fronts advected by a 

Poiseuille flow  

Reaction fronts modeled with the KS equation can be modified by the presence 

of fluid flow, as in the case of chemical fronts in the iodate-arsenous acid 

reaction propagating inside vertical tubes [94]. In these fronts, density gradients 

generate convective fluid motion that determines the structure of the front. 

Chemical reaction fronts in Hele-Shaw cells also exhibit complex behavior due 

to the coupling with fluid flow [53]. In this chapter we consider the effects of fluid 

flow on steady fronts described by the KS equation as they are advected by a 

Poiseuille flow. 

We consider a two-dimensional slab confined by two infinite plates as shown 

in Fig 5.1. A viscous fluid flow is applied between the plates along the Z 

direction. The flow is sustained by an externally applied pressure gradient in the 

Z-direction. In this geometry the pressure varies linearly along the Z-direction, 

so the velocity profile becomes parabolic (see Sec. 3.1). Working with our 

system of dimensionless units defined in Sec. 5.1 and using a reference frame 

moving at the speed of the flat front, the KS equation is given by Eq. (5.3). In 

this equation, we use lowercase letters for the corresponding variables in our 

system of dimensionless units. In addition, L is the dimensionless parameter 

corresponding to .L  Hence, the x coordinate in Eq. (5.3) varies from 0 to L. 

Using Eq. (3.6) and Eq. (3.7) the parabolic velocity profile is given by 

    
2

6v
L

L
zv x,t x x.    (6.1) 

Here v  is the average velocity of the flow measured in our system of 

dimensionless units. The position of the front at time t is described by the front 

height  h x,t  above the x axis. The time evolution of the front is provided by 

Eq. (5.3) with the addition of the flow velocity [47],  
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Here we set 1,v    which allows for flat front instabilities as mentioned in 

Sec. 5.1. Because of the geometry, we still have the same boundary conditions 

for fronts propagating in a channel [85]: 3 3 0h x h x .       

We also look for stationary solutions in our reference frame that moves with 

the velocity of the front (c). Therefore we can set the solutions as 

   0h x,t h x ct,   where  0h x  corresponds to the spatial front profile. We also 

consider that the average position of the spatial front profile is zero in our 

reference frame. With this substitution Eq. (6.2) becomes 

 

22 4

0 0 0
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d dh d
c v .

dx dx d

h

x

h  
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 
  (6.3) 

We use the shooting method to solve Eq. (6.3). The  0h x  solution 

corresponds to the reaction front under a Poiseuille flow. The reaction fronts 

move along z  direction in the absence of Poiseuille flow. A supportive flow is 

an external fluid flow that moves in the same direction of these reaction fronts 

without fluid flow. In other words, the flow moves along z  direction ―pushing‖ 

the reaction fronts. An adverse flow moves in the opposite direction. A linear 

stability analysis leads us to the eigenvalue equation [Eq. (5.10)], where the 

growth rate   will determine the stability of the fronts. 

6.1 The effect of a supportive Poiseuille flow 

We first obtain stationary stable fronts for different average velocities of the 

supportive Poiseuille flow while keeping the slab width constant. The slab width 

is set to L = 3 since at this width there is a stable flat front solution propagating 

in the z  direction in the absence of Poiseuille flow. Figure 6.1 shows some of 

these stable stationary states for different average velocities of the supportive 

Poiseuille flow. The fronts are concave downward, with a single maximum on 

the axis (a line parallel to the z axis and passing through the center of the two- 
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Figure 6.1: Front profiles for different average velocities of the supportive Poiseuille 

flow. For supportive flows the fronts are axisymmetric. The fronts are shifted for 

comparison. 

 

 

dimensional domain). As we increase the average speed of the supportive 

Poiseuille flow ( v ), the maximum front height measured with respect to the 

average height of the front also increases. Therefore, adding a supportive 

Poiseuille flow to flat fronts results in stable concave downward fronts for L = 3. 

We apply a small supportive Poiseuille flow to study the effects on the 

velocities of the fronts. Figure 6.2 shows the front velocities with a supportive 

flow with v = 0.1  for different values of the domain width L. The original flat front 

without Poiseuille flow (see Fig. 5.4) becomes axisymmetric. The transition from 

these axisymmetric fronts to nonaxisymmetric fronts occurs at L = 3.15, whereas 

this transition without Poiseuille flow occurs at L   (see Fig. 5.4). The 

difference between these transition points is certainly small in this case. For 

larger values of L, the unstable front becomes part of branch B1 corresponding 

to concave downward fronts. As these fronts lose stability, stable 

nonaxisymmetric fronts appear (Branch A). The velocities in this branch 
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Figure 6.2: Front velocities subject to a Poiseuille flow in the same direction as the 

propagating front. The average velocity of the flow is v = 0.1 . Solid lines correspond to 

stable fronts; all broken lines correspond to unstable fronts. The thick solid line (A) 

corresponds to nonaxisymmetric fronts. Branch B1 corresponds to axisymmetric fronts. 

Branch B2 corresponds to other axisymmetric fronts. Broken lines (C, D, and F) 

correspond to nonaxisymmetric fronts. 

 

 

increase as they reach a maximum at L = 3.75, with the branch ending at 

L = 6.04, where branch A meets branch B1. This branch (B1) corresponds to 

concave downward fronts with increasing speeds until they reach a maximum 

speed at L = 7.44. The maximum speed for axisymmetric fronts in branch B1 is 

higher than the maximum speed for branch A, therefore supportive Poiseuille 

flows favour axisymmetric fronts. Branch B2 consists of axisymmetric fronts but 

concave upward. Without Poiseuille flow (see Fig. 5.4), branches B1 and B2 

exhibit the same velocities, but with Poiseuille flow they separate. Most of 

branch B2 is unstable, except for a small region of bistability with fronts in 

branch B1. Fronts that were previously flat (see Fig. 5.4) appear here as part of 

branch B2. Branches C, D, and F correspond to unstable nonaxisymmetric 

fronts. Branch C originates where fronts on branch B2 become stable, with their 
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velocities decreasing until the branch joins the lower portion of branch B2. 

Branches D and F start at the same point at L = 9.51, increasing their velocities. 

Branch D initially has higher velocities, but there is a crossover with branch F at 

L = 9.53 forming a very small loop in Fig. 6.2. In summary, adding a supportive 

Poiseuille flow changes the speeds of stable fronts. Speeds decrease for 

concave upward fronts, increase slightly for stable nonaxisymmetric fronts, and 

show a much higher increase for concave downward fronts. 

We calculate the growth rate σ from Eq. (5.10) to determine the stability of 

the fronts whose velocities are shown in Fig. 6.2. We show in Fig. 6.3 the 

largest real part of the growth rate for a supportive flow ( v = 0.1 ). Adding 

Poiseuille flow to flat fronts results in stable concave downward fronts for          

L < 3.15, as shown by the negative values of Re(σ). We observe a transition to 

positive values at L 3 15. , where branch A appears. Branch A, which is related 

to stable nonaxisymmetric fronts, has a slope discontinuity at its minimum 

value. The concave downward axisymmetric fronts (B1) are unstable in the 

interval 3 15 L 6 04. .  . The concave upward fronts B2 are now disconnected 

from branch B1 in contrast to the case without Poiseuille flow (see Fig. 5.5). 

They are stable in the interval 7.56 < L < 8.62, where we have a region of 

bistability between two types of axisymmetric fronts. The size of this 

region is 10% shorter than that of the one obtained in the absence of Poiseuille 

flow (see Fig. 5.5). The original flat fronts without Poiseuille flow have joined 

branch B2 for larger values of L, becoming concave upward fronts. Branch C 

begins where branch B2 becomes negative, with no connection to branches F 

and D. Applying Poiseuille flow results in higher growth rates for branches F and 

D. The presence of a supportive flow increases the region of stability for 

concave downward fronts, providing them with lower negative values for Re(σ). 

Increasing the average speed of a supportive Poiseuille flow favours the 

formation of axisymmetric fronts as shown in Fig. 6.4. In this figure we display 

the velocity of stable fronts as a function of the slab width. In the absence of 

Poiseuille flow ( v = 0 ), the curve has two local maxima, one of them located 

between two points where the slope changes abruptly. The widths between 

these two points allow for stable nonaxisymmetric fronts, with the fronts being  
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Figure 6.3: The largest real part of the eigenvalues σ for different distances L between 

plates. The Poiseuille flow is in the same direction as the propagating front. The 

average velocity of the flow is v = 0.1 . The front is unstable when the largest real part 

of the eigenvalues σ is positive. The thickest solid line (A) corresponds to 

nonaxisymmetric fronts. Solid line B1 corresponds to axisymmetric fronts. Solid line B2 

corresponds to other axisymmetric fronts. Broken lines (C, D, and F) correspond to 

nonaxisymmetric fronts. 

 

 

axisymmetric elsewhere. The value of the speed at each maximum is the same, 

with the maximum on the left corresponding to a stable nonaxisymmetric front. 

The other maximum corresponds to a stable axisymmetric front. In this case the 

transition points between stable axisymmetric and nonaxisymmetric fronts are 

located at L = π and L = 6.31. By introducing a small supportive flow, we notice 

that the speeds of all fronts increase: the curve corresponding to v =1.0  is 

completely above the curve for v = 0 . However, the maximum speed for 

axisymmetric fronts is now higher than the one for nonaxisymmetric fronts. We 

also notice that the locations of the transition points are changed. Increasing the 

average flow speed reduces the region where stable nonaxisymmetric fronts 

are present. As the average speed is increased further, the transitions points 
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Figure 6.4: Front velocities as a function of the distance L between plates for different 

supportive Poiseuille flows. All fronts propagate in the same direction as the Poiseuille 

flow. The average flow speed ( v ) affects the shape of the fronts. For v = 0  the curve 

has two maxima. The first one corresponds to stable nonaxisymmetric fronts; the 

second corresponds to axisymmetric fronts. As v  increases, nonaxisymmetric fronts 

disappear, as is the case of v = 2.5.  

 

 

approach each other, reducing the region of the nonaxisymmetric fronts until it 

finally disappear when v > 2.46.  This is also shown in Fig. 6.5, where we display 

the position of the transition points as we vary the average speed for the 

supportive flow. The curve representing the transition points separates regions 

where only stable axisymmetric fronts and nonaxisymmetric fronts can exist. 

This curve has a maximum value v = 2.46  at L = 3.7. Consequently, for v = 2.46

only stable axisymmetric fronts exist. A strong enough supportive Poiseuille flow 

will only allow stable axisymmetric fronts. 
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Figure 6.5: Regions for the existence of nonaxisymmetric and axisymmetric fronts for 

different values of the average flow velocity and plate separation. Only axisymmetric 

fronts can exit for v > 2.46.  

 

6.2 The effect of an adverse Poiseuille flow  

We first obtain stationary stable fronts for different average velocities of the 

Poiseuille flow in the adverse direction while keeping the slab width constant. 

The slab width is set to L = 3 for comparison with the opposite case. The results 

are shown in Fig. 6.6. We first find a stable axisymmetric concave upward front 

for v 2 0.   having a single minimum. As we increase the magnitude of the 

adverse flow ( v 2 5.  ) the front loses the axial symmetry, having one side 

higher than the other. Therefore, a strong enough Poiseuille flow in the adverse 

direction, which is an axisymmetric flow, can lead to a nonaxisymmetric front. 

We apply a small Poiseuille flow in the adverse direction to study the effects 

on the velocities of the fronts. Figure 6.7 shows the front velocities for an 

average adverse speed of v 0 1. .   The original flat front without Poiseuille flow 

(see Fig. 5.4) becomes axisymmetric and loses stability to nonaxisymmetric 
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Figure 6.6: Front profiles for different average velocities of the Poiseuille flow in the 

adverse direction. Small adverse flows ( v 2 0.  ) allow stable axisymmetric fronts, but 

for higher speeds ( v 2 5.  ) the front becomes nonaxisymmetric. The fronts are shifted 

for comparison. 

 

 

fronts (branch A) at L = 3.13. Branch A has a maximum speed at L = 3.75. This 

maximum is slightly smaller than the one obtained without Poiseuille flow (see 

Fig. 5.4). In addition, the adverse flow decreases the velocity of concave 

downward axisymmetric fronts (B1) and increases the velocity of concave 

upward axisymmetric fronts (B2). We notice that branch A becomes unstable 

before reaching branch B1, leading to a small region where no front is stable. 

Branches C, D, and F correspond to nonaxisymmetric fronts. Branch C starts 

where fronts on branch B2 become stable and finishes at L = 9.5, where it meets 

branch F. Both branch C and branch F are unstable. Branch D joins branch B1 

at L = 9.29, having two solutions for L smaller than this value. Branch D crosses 

over branches C and F, having a single solution for L > 9.29. A portion of branch 

D becomes stable due to the adverse flow. So in this case, we have two regions 

of bistability. The first one corresponds to upward and downward axisymmetric 
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Figure 6.7: Front velocities subject to a Poiseuille flow in the adverse direction to the 

propagating front. The average velocity of the flow is v 0 1.  . Solid lines correspond 

to stable fronts; all broken lines correspond to unstable fronts. The thick solid line (A) 

corresponds to nonaxisymmetric fronts. Branch B1 corresponds to axisymmetric fronts. 

Branch B2 corresponds to other axisymmetric fronts. Broken lines correspond to 

nonaxisymmetric fronts. Line D also corresponds to other nonaxisymmetric fronts. 

 

 

fronts and the other one corresponds to downward axisymmetric and 

nonaxisymmetric fronts. Therefore, the stability of the fronts can be affected by 

the adverse Poiseuille flow, modifying unstable fronts to become stable fronts. 

We calculate the largest real part of the growth rate for an adverse flow 

( v 0 1.  ). The results are shown in Fig. 6.8. The flat fronts for small values of L 

without Poiseuille flow (see Fig. 5.5) are now concave upward fronts. They are 

stable for L < 3.13, where they show a transition from negative to positive values 

of Re(σ). Branch A appears at this transition point, corresponding to 

nonaxisymmetric fronts. This branch has negative values for Re(σ) up to 

L = 6.49. We also find a region of bistability between concave upward 

axisymmetric fronts, associated with branch B2, and fronts on branch B1. This 

region of bistability is 8.5% larger than the one obtained without Poiseuille flow 
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(see Fig. 5.5). We also observe a small region, 6 49 L 6 58. . ,   where all steady 

fronts are unstable. Stable concave downward axisymmetric fronts, associated 

with B1, exist for L > 6.58. Branch D, which was completely unstable without 

Poiseuille flow, now has a region where Re(σ) is negative. Therefore, applying 

adverse Poiseuille flow results in stabilizing unstable fronts. In this case, 

adverse flow decreases the values of Re(σ) for nonaxisymmetric fronts and 

concave upward fronts, increasing their region of stability. 

 

 

 

Figure 6.8: The largest real part of the eigenvalues σ for different distances L between 

plates. The Poiseuille flow is in the adverse direction to the propagating front. The 

average velocity of the flow is v 0 1.  . The front is unstable when the largest real part 

of the eigenvalues σ is positive. The thickest solid line (A) corresponds to 

nonaxisymmetric fronts. Solid line B1 corresponds to axisymmetric fronts. Solid line B2 

also corresponds to other axisymmetric fronts. Broken lines (C and F) correspond to 

nonaxisymmetric fronts. Solid line D also corresponds to other nonaxisymmetric fronts. 

 

 

Although an adverse Poiseuille flow opposes the direction of front 

propagation, some stable fronts increase their speeds for adverse flow. In 

Fig. 6.9(a) we display the speed as a function of the slab width L for different 
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flows in the adverse direction. Without Poiseuille flow the maximum 

axisymmetric flow speed is exactly the same as the maximum nonaxisymmetric 

flow speed [Fig. 6.9(a)]. Applying an adverse Poiseuille flow of v 0 3.   reduces 

the speed of the nonaxisymmetric fronts. However, concave upward 

axisymmetric fronts have their speeds increased, while concave downward 

fronts have their speeds reduced. We also notice that at this speed stable 

nonaxisymmetric fronts appear at any value of L, whereas without flow they can 

only form for L < 6.31. Axisymmetric fronts can now form only at larger slab 

widths, sharing a region of bistability with nonaxisymmetric fronts. The curve 

representing stable axisymmetric fronts no longer meets the curve representing 

stable nonaxisymmetric fronts. As we reduce the velocity of the adverse flow to 

v 0 5. ,   we also notice a similar effect [Fig. 6.9(b)]. But in this case, we also 

observe that the region where concave downward axisymmetric fronts can form 

is much smaller, being bounded at larger slab widths. Increasing the adverse 

speed further, to a velocity of v 0 7. ,   we only find concave upward 

axisymmetric fronts. It is important to point out that the speeds of 

nonaxisymmetric fronts decrease with increasing adverse speed for widths near 

the maximum speed, but for larger slab widths the opposite effect takes place. 

For stable nonaxisymmetric fronts with relatively large slab widths (L ≥ 7), 

increasing the adverse flow increases the velocity in the opposite direction of 

the flow. 

To understand the effects of the Poiseuille flow on stable nonaxisymmetric 

fronts, we fix the width to L = 3.5, where a stable nonaxisymmetric front forms 

without flow, varying the average velocity of the flow. The results are shown in 

Fig. 6.10. For v 0,  the axisymmetric front (flat front) is unstable and the 

nonaxisymmetric front is stable. Increasing the speed of a supportive Poiseuille 

flow brings the speeds of unstable axisymmetric fronts closer to the speeds of 

nonaxisymmetric fronts until they become the same at v 2 27. .  For larger 

values of the average velocity, only stable axisymmetric fronts are present 

(branch A in Fig. 6.10). In the case of adverse flows, we always obtain stable 

nonaxisymmetric fronts with decreasing front speeds. The axisymmetric fronts 

are initially unstable, but for strong adverse flows ( v 655  ) the axisymmetric 
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(a) 

 
(b) 

Figure 6.9: Front velocities as a function of the width L between plates for adverse 

Poiseuille flows. The figure only shows stable fronts. (a) The solid line corresponds to 

no Poiseuille flow ( v 0 ), showing two maxima. The first one corresponds to stable 

nonaxisymmetric fronts; the second corresponds to axisymmetric fronts. The dashed 

line corresponds to v 0 3. .   Branches A1 and A2 represent stable axisymmetric fronts. 

(b) The solid line corresponds to v 0 5. ,   with branches A1 and A2 representing 

axisymmetric fronts. The dashed line corresponds to  v 0 7. .   Here there is only one 

branch B, corresponding to concave upward axisymmetric fronts. 
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fronts become stable again. As these axisymmetric fronts become stable, a 

branch of unstable nonaxisymmetric fronts appears (branch B in Fig. 6.10). 

While stable nonaxisymmetric fronts disappear at relatively low speeds of 

supportive flow, they are present even at high speeds of adverse flows. 

 

 

Figure 6.10: Front propagation velocity as a function of the average velocity of 

Poiseuille flow. The distance L between plates is 3.5. Branch A corresponds to 

axisymmetric fronts, both stable (solid lines) and unstable (dashed line). Branch B (dot-

dashed line) corresponds to unstable nonaxisymmetric fronts. The thick solid line (NA) 

corresponds to stable nonaxisymmetric fronts. 

 

 

6.3 Fronts evolving in time 

Chemical systems can exhibit complex spatiotemporal behavior such as the 

Belousov-Zhabotinsky (BZ) reaction [95], including the modified BZ reactions 

[96], and the chlorite-thiosulfate (CT) reaction [97,98]. The BZ reaction is a 

chemical oscillator which exhibits a sequence of period-doubling bifurcations 

(the system shifts to a new oscillatory pattern with twice the period of its 

predecessor, leading in some cases to chaotic behavior). We use the KS 
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equation to describe the oscillatory and chaotic patterns. In order to contrast the 

effects of Poiseuille flow on oscillatory and chaotic patterns, we first calculate 

the period-doubling bifurcations and identify those bifurcations that lead to 

chaos in our system without fluid flow, and later we recalculate these 

bifurcations taking into account the presence of a supportive (or adverse) 

Poiseuille flow. 

6.3.1 Numerical methods  

In previous sections we focused on steady front solutions. We used a non-linear 

shooting method to obtain these solutions with their respective propagation 

velocities. In this section we focus on solutions that evolve with time, especially 

in oscillatory and chaotic solutions. To obtain these solutions, we require 

different numerical methods to those used in previous sections. We solve 

Eq. (6.2) by introducing Fourier series expansion on the front height h, hence it 

can be written as 

    
0

cosn

n

h H t nqx ,


   (6.4) 

Here the parameter q is defined by Lq ,  where L is the width of the domain. 

The x coordinate varies from 0 to L. This Fourier series satisfy the boundary 

conditions at the vertical walls: 3 3 0h / x h / x .       Introducing this Fourier 

series on h in Eq. (6.2), and projecting over the corresponding cosine function, 

we obtain a set of ordinary differential equations (ODEs) 
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Where the Fourier coefficient  0H t  provides the average front height and its 

derivative ( 0dH dt ) corresponds to the front propagation velocity (c). The last 

term in Eq. (6.5) corresponds to the Fourier coefficient of the Poiseuille flow 
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Thus Eq. (6.5) determines the time evolution of the Fourier coefficients of the 

front height h, which in turn determine the time evolution of the front. 

We solve this set of ODEs numerically using an implicit Euler’s method (or 

backward Euler method) for time evolution. To get a qualitative understanding 

of this method, we consider a single differential equation of the form 

 ( , ).x g t x    (6.8) 

Here, ,x dx dt   x is a function of t, while g is a function of t and x. In this case, 

the implicit Euler’s formula is [99] 

 
1 1 1( , ).n n n nx x tg t x      (6.9) 

Where the time-step is t , the time at the n-th time-step is ,nt n t   and the 

solution at the n-th time-step is ( ).n nx x t  Knowing ,nx  we can find 1nx   

implicitly, since 1nx   appears on both sides of Eq. (6.9). The implicit Euler´s 

formula is based on a Taylor series expansion of order 1. Although the implicit 

method is stable for linear systems, in general the implicit methods give a better 

stability [89]. It can be used with larger time-step. In contrast, the explicit Euler’s 

formula is 

 1 ( , ).n n n nx x tg t x     (6.10) 

This method requires smaller time-steps than the implicit method and it is not 

always stable. 

6.3.2 Period-doubling transition to chaos 

We have obtained a set of ordinary differential equations which corresponds to 

Eq. (6.5) and Eq. (6.6). We solve this set of equations numerically using an 

implicit Euler’s method for time evolution with a time step set to Δ 0 001t .  time 
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unit and a 25 term truncation for the Fourier coefficients 
nH . We found no 

significant differences in the steady states with slightly fewer terms. We use 

small random initial conditions for each Fourier coefficient 
nH  at the beginning 

of the calculations and the system is let to evolve for a time to eliminate 

transient behavior. Since  0H t  provides the average position of the front, we 

define the velocity of the oscillatory (or chaotic) front as the velocity of the 

average position of the front (
0dH dt ). Hence we use Eq. (6.6) to calculate the 

front velocity. In Fig. 6.11a we show the front velocity as it varies with time (after 

a certain time to eliminate transient behavior). We observe that the front velocity 

oscillates between two values, a maximum and a minimum value. Since each of 

these two values repeats every 2 cycles, it is referred to as period-2 cycle. To 

obtain the results shown in Fig. 6.11a we set the domain width L = 8.7. We now 

increase the value of the parameter to L =9.01. We observe that the front 

velocity oscillates among four different values, two relative maxima and two 

relative minima. It is referred to as period-4 cycle, since each of these values 

repeats every 4 cycles as shown in Fig. 6.11b. In contrast, we show in Fig. 6.12 

(c) the chaotic behavior (aperiodic oscillations) of the front velocity for L = 9.024. 

We can summarize the information of the three graphs given in Fig. 6.11 into a 

single graph using a bifurcation diagram as shown in Fig. 6.12. In this diagram 

we display the relative maximum and minimum values of the front velocity as it 

varies with time. Hence the oscillatory front velocity shown in Fig. 6.11a is 

represented by two points in the bifurcation diagram, the maximum and 

minimum values. Similarly, the oscillatory front velocity shown in Fig.6.11b is 

represented by four points in the bifurcation diagram, and so on. The chaotic 

behavior shown in Fig. 6.11c is represented by all the relative maxima and 

minima values of the front velocity (―infinite points‖) in the bifurcation diagram. 

Since the branches in this diagram split each time the period of the oscillation is 

doubled, it is referred to as period-doubling bifurcations [62]. 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 6.11: Front velocity oscillations with time. (a) Period-2 cycle obtained with 

L = 8.7. (b) Period-4 cycle obtained with L = 9.01. (c) Chaotic behavior (the oscillations 

are aperiodic) obtained with L = 9.024.  
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In Fig. 6.12 we observe a period doubling bifurcations in transition to chaos as 

we increase the width of the domain (L). We obtain this figure without external 

fluid flow. We observe that the oscillatory behavior starts at L = 8.653 and it is 

represented in the graph by two points corresponding to the relative maximum 

and minimum values of the front velocity. As we continue increasing L, these 

period-doubling bifurcations continue, reaching a chaotic behavior around 

L = 9.022. When we reach L = 9.025, the system achieves a stable steady 

solution.  

 

 

 

Figure 6.12: Bifurcation diagram without fluid flow showing the relative maximum and 

minimum of the time evolution of the front velocity. The period-doubling bifurcations 

increase as we increase the distance L between plates. 

 

 

We obtain similar period-doubling bifurcations for a supportive Poiseuille flow 

( v 0 1. ) and an adverse Poiseuille flow ( v 0 1.  ). We show the results in 

Fig. 6.13 and Fig. 6.14, respectively. We observe that in the case of a 

supportive flow, the first bifurcation occurs at a lower value of L, namely, 
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L = 8.622 and in the case of an adverse flow, the first bifurcation occurs at a 

greater value: L = 8.684. We also notice that the interval of L where the period-

doubling bifurcations occur is greater in the case of an adverse flow. Therefore, 

the adverse Poiseuille flow favors the period-doubling bifurcations. 

  

 

 

Figure 6.13: Bifurcation diagram for a supportive Poiseuille flow ( v 0 1. ) showing the 

relative maximum and minimum of the time evolution of the front velocity. The period-

doubling bifurcations increase as we increase the distance L between plates. 

 

 

We have shown the front velocities for an average adverse speed of v 0 1.   

in Fig. 6.7 of Sec. 6.2. In this figure there are no stable steady solutions in the 

interval 6 477 L 6 578. . .   In this interval we find oscillatory solutions. We show 

in Fig. 6.15 the corresponding bifurcation diagram for these oscillatory solutions. 

The oscillatory behavior starts at L 6 477. and we observe only one period-

doubling bifurcation at L 6 536. .  As we continue increasing L the system 
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Figure 6.14: Bifurcation diagram for an adverse Poiseuille flow ( v 0 1.  ) showing the 

relative maximum and minimum of the time evolution of the front velocity. The period-

doubling bifurcations increase as we increase the distance L between plates. 

 

 

achieves a stable steady solution at L 6 578. .  To study the effects of the 

Poiseuille flow on these particular oscillatory solutions, we calculate these 

oscillatory solutions for different values of the average Poiseuille flow velocity. 

We show in Fig. 6.16 the width L at which the oscillatory behavior starts and the 

width L at which the only one period-doubling bifurcation takes place in terms of 

the average Poiseuille flow velocity. We observe that these bifurcations points 

are shifted to greater values of L as we increase the magnitude of the adverse 

flow. These particular oscillatory solutions can be found with small adverse flow 

in the interval 0 287 v 0 03. .    . We also study solutions that evolve in time for 

greater values of L. The results are summarized in Table 6.1. Here we show the 

intervals where the oscillatory solutions appear with and without Poiseuille flow, 

and the regions where these oscillatory solutions become chaotic. We notice 

that the regions of oscillatory and chaotic solutions are affected by Poiseuille 

flow. Moreover, the adverse Poiseuille flow revealed new regions of oscillatory 
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Figure 6.15: Bifurcation diagram for an adverse Poiseuille flow ( v 0 1.  ) showing the 

relative maximum and minimum of the time evolution of the front velocity. 

 

 

 

Figure 6.16: Location of the bifurcation points for different adverse Poiseuille flow. The 

dark circles correspond to the beginning of the oscillatory solutions, while the dark 

squares correspond to the first period-doubling bifurcation. 
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Description 

of the 

solutions 

Adverse flow 

( v 0 1.  ) 

Without flow 

( v 0 0. ) 

Supportive flow 

( v 0 1. ) 

Oscillatory 12 644 L 13 189. .   12 827 L 13 372. .   13 09 L 13 616. .   

Oscillatory 15 532 L 16 184. .   15 777 L 16 265. .   15 97 L 16 372. .   

Oscillatory 16 864 L 18 093. .   16 878 L 18 140. .   16 886 L 18 161. .   

Chaotic 18 093 L 18 321. .   18 140 L 18 384. .   18 161 L 18 397. .   

Oscillatory 18 321 L 19 537. .   18 384 L 19 317. .   18 397 L 19 113. .   

Chaotic 19 537 L 19 644. .   19 317 L 19 801. .   19 113 L 19 984. .   

Oscillatory 19 644 L 19 686. .   19 801 L 20 424. .   19 984 L 20 505. .   

Chaotic 19 686 L 19 932. .   20 424 L 20 570. .   20 505 L 20 782. .   

Oscillatory 19 932 L 20 008. .   20 570 L 21 289. .   20 782 L 21 303. .   

Chaotic 20 008 L 20 178. .   21 289 L 22.    21 303 L 22.    

Oscillatory 20 178 L 21 248. .   
 

 

 

 

Chaotic 21 248 L 22.    
 

 
 

 

Table 6.1: Window range of the oscillatory and chaotic solutions for greater values of 

the distance L between plates (10  L  22) 

 

and chaotic solutions. Therefore a supportive Poiseuille flow shifts the 

beginning of the oscillatory behavior to greater values of L, while an adverse 

flow shifts them to lower values of L and reveals new regions of oscillatory and 

chaotic behavior. 
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6.4 Summary 

We studied reaction fronts within a two-dimensional slab using the KS equation 

advected by a Poiseuille flow. The fronts exhibit transitions from a 

nonaxisymmetric to an axisymmetric profile. This transition can take place by 

changing the slab width L even without flow. Stable axisymmetric fronts develop 

when nonaxisymmetric fronts lose stability as we increase the width. Adding a 

Poiseuille flow will make the transitions occur at different widths, plus it will 

change the shape and speed of the fronts. Nonaxisymmetric fronts will remain 

stable for adverse flows, but they will disappear for strong supportive Poiseuille 

flows. In the latter case, the fronts become axisymmetric, having a maximum at 

the center of the slab. We also find stable axisymmetric fronts that have a 

minimum (concave upward fronts). They share a small region of bistability with 

concave upward fronts. A supportive Poiseuille flow will provide a higher 

increase in speed for concave downward fronts but has the opposite effect with 

the application of adverse flows. We also identify branches of unstable fronts 

that can turn into stable branches in the presence of a Poiseuille flow. In 

addition, the KS equation exhibits spatiotemporal chaos and the transitions to 

chaos are affected by the presence of a Poiseuille flow. We show some regions 

of oscillatory and chaotic solutions, including the period-doubling sequence in a 

bifurcation diagram. 

7  

 



Chapter 7 

The effect of an external Couette flow on 

Kuramoto-Sivashinsky fronts 

In previous chapter we studied the effect of a Poiseuille flow on steady reaction 

fronts described by the KS equation. We modified the KS equation to take into 

account the Poiseuille flow. We found that the structure of the steady fronts can 

be flat, axisymmetric, or nonaxisymmetric, depending on the gap between the 

plates and the average flow speed. Previous works with a cubic reaction-

diffusion advection equation showed that Poiseuille flow between parallel plates 

changes the shape and the speed of stable fronts [48]. These results have been 

confirmed experimentally by Salin et al. working with tubes and Hele-Shaw 

cells. As we showed in Sec. 3.1, Poiseuille flow confined between two parallel 

plates with a constant pressure gradient gives rise to a symmetrical velocity 

profile. Now we are interested in the effects of an asymmetric fluid flow on 

steady reaction fronts described by the KS equation. A particularly 

advantageous candidate is the plane Couette flow (see Sec. 3.2), which 

involves pattern formation [100] and transition from laminar flow to turbulence 

[101]. In addition, the plane Couette flow corresponds to the limit case (of 

infinite cylinder radii) of Taylor-Couette flow, where fluid is confined between 

two concentric rotating cylinders. The Taylor-Couette flow has been used to 

measure fluid viscosity, and to study flow instabilities and pattern generation in 

non-equilibrium systems involving fluid motion [66,102]. In this chapter we will 

study the effects of Couette flow on patterns arising from front instabilities 

described by the KS equation. The KS equation exhibits spatiotemporal chaos 

and we can use this equation to model pattern formation. As in the previous 

chapter, we can adapt the KS equation to take into account the external flow. 

We look for steady front solutions and we determine their stability by executing 

a linear stability analysis. Finally, we compare our results with fronts developed 

under a Poiseuille flow. 
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7.1 Couette flow 

Couette flow develops from the relative motion of two parallel plates separated 

by a constant distance resulting in a steady linear velocity profile. We consider 

fronts propagating between two infinite parallel plates separated by a small 

distance L. The parallel plates move in opposite directions, being u the relative 

velocity between the plates. Let the infinite plates be located at 0x   and 

L,x   thus we have a plane Couette flow constrained by these infinite plates. In 

this regard, we consider that the plate located at Lx   moves along the z 

direction with a constant velocity u, while the other plate remains stationary as 

shown in Fig. 3.2. Working in our system of dimensionless units defined in 

Sec. 5.1, the linear velocity profile is given by  Lzv u x .  We use the KS 

equation [Eq. (4.30)] with the addition of Couette flow to model the evolution of 

chemical fronts within the parallel plates [47] 
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  (7.1) 

Here h represents the front height, relating the vertical z coordinate as a function 

of the horizontal x coordinate, and the time t. The last term in this equation 

corresponds to the linear velocity profile of Couette flow. The suitable boundary 

conditions at the plates are zero first and third partial derivatives for the front 

height with respect to the x coordinate [85]. We are interested in solutions that 

move steadily without changing their spatial profile at a constant speed. 

Therefore we can set the solutions as    0h x,t h x ct  , where  0h x  

corresponds to a stationary front under Couette flow in a reference frame 

moving with constant velocity c. We also consider that the average position of 

the spatial front profile is zero in this reference frame. Thus, in the absence of a 

Couette flow (u = 0), the KS equation exhibits a stationary flat front solution of 

zero height. We solve Eq. (7.1) using a nonlinear shooting method as we 

described in the previous chapter to solve Eq. (6.2). We also analyze the 

stability of the fronts using a linear stability analysis, which leads to Eq. (5.10). 

This eigenvalue equation determines the stability of  0h x , since solutions with 

negative real part of σ will decay with time. 
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7.2 Steady solutions 

We obtain stationary fronts for different values of the slab width L while keeping 

constant the relative velocity u between the plates. These solutions correspond 

to KS equation with the addition of the Couette flow velocity solved using the 

shooting method. We also determine the stability of the fronts by calculating the 

growth rates σ. Figure 7.1 shows four different stable front profiles with the fluid 

velocity near them. The relative velocity between the plates is set to 0 8u .  to 

make these fronts stable. The front height is measured relative to the average 

front height. For L 4 6.  we show a front having an inflection point at 1 44x .  

(Fig. 7.1a). For L 9 2.  we show three different front profiles: a front having a 

relative maximum near the middle of the slab width (Fig. 7.1b), a front having a 

relative minimum at 3 82x .  (Fig. 7.1c), and a front having three inflection 

points (Fig. 7.1d). Consequently, given a slab width, different stable fronts with 

different shapes can be developed. 

We obtain fronts of different shapes and velocities as we vary the domain 

width L, while keeping constant the relative velocity u between the plates. To 

describe the fronts we defined the axis as a line parallel to the z axis passing 

through the center of the two-dimensional domain at L 2x .  In the absence of 

fluid flow, the flat front is a solution for each value of the slab width L. We show 

in Fig. 7.2 the velocities of several fronts under Couette flow for different values 

of L. These velocities are measured with respect to the flat front velocity 

obtained without fluid flow. The relative velocity between the plates is 0 2u . .   

We find that the original nonaxisymmetric fronts separate into branches A1 and 

A2. These branches have the same velocities without Couette flow. In branch 

A1, the front speed increases with increasing L until it reaches a maximum 

speed of 1.92 at L 3 71. , , it then decreases until it meets branch B1. The 

solutions of branch A1 correspond to nonaxisymmetric fronts having an 

inflection point for L 5 49. .  For greater values of L, the solutions of branch A1 

exhibit a small relative maximum until it meets branch B1. Branch A2 also 

corresponds to nonaxisymmetric fronts having an inflection point, but these 

fronts have a higher side at 0x   rather than at L.x   This branch reaches a 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7.1: Fluid velocity near different steady stable nonaxisymmetric front profiles. 

The relative velocity between the plates is u = 0.8. The front height is measured from 

the average front height. (a) Front profile having an inflection point (L = 4.6). (b) Front 

profile having a relative maximum (L = 9.2). (c) Front profile having a relative minimum 

(L = 9.2). (d) Front profile having three inflection points (L = 9.2). 

 

 

maximum speed of 1.47 at L 3 81. .  Due to Couette flow, the speed of the 

original axisymmetric states now follows branches B1, B2, B3. Solutions of 

branch B1 correspond to nonaxisymmetric fronts with a relative maximum. This 

relative maximum increases as L increases. Branch B1 reaches a maximum 

speed of 1.7 at L 7 51. .  Branches B2 and B3 correspond to nonaxisymmetric 

fronts with a relative minimum. Couette flow also transforms flat front solutions 

into nonaxisymmetric fronts. These new solutions are part of the lowest portions 

of branches A1, A2, and B2. Branches C and D have solutions with two different 

velocities for each value of L. The solutions of these branches correspond to 

other nonaxisymmetric fronts with three inflection points. Therefore, Couette 

flow turns flat or axisymmetric fronts into nonaxisymmetric fronts. 
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Figure 7.2: Front velocities relative to the flat front for different distances between 

plates (L). The relative velocity between the plates is u = 0.2. Solid lines correspond to 

stable fronts; all broken lines correspond to unstable fronts. Lines A1 and A2 

correspond to nonaxisymmetric fronts, most of them having one inflection point. The 

thick solid line B1 corresponds to nonaxisymmetric fronts with a relative maximum. 

Lines B2 and B3 correspond to nonaxisymmetric fronts with a relative minimum. Flat 

front solutions obtained without moving fluid (u = 0) change their shape and velocity 

due to Couette flow (u = 0.2). These new solutions correspond to the lowest part of 

lines A1, A2, and B2. Lines C and D correspond to other nonaxisymmetric fronts with 

three inflection points. 

 

 

The stability of the fronts is obtained by calculating the largest real part of the 

growth rate for front perturbations. We display these results in Fig. 7.3, where 

unstable fronts will have positive values of Re(σ). Branches A1 and A2 

correspond to two nonaxisymmetric solutions with one inflection point. These 

solutions have a side near one boundary higher than the other. Solutions with 

their higher side at x = L correspond to branch A1. These solutions are stable. 

The other solutions with their higher side at x = 0 correspond to branch A2. The 

growth rates indicate that branches A1 and A2 display a region of bistability in 

the interval 3.3 < L < 6.0. Branch B1 corresponds to nonaxisymmetric fronts with 
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a relative maximum. The growth rates show that these solutions are stable. 

Branch B2 corresponds to nonaxisymmetric fronts with a relative minimum. 

These solutions are unstable. The other nonaxisymmetric fronts with a relative 

minimum corresponding to branch B3 are also unstable, except in the interval 

7.9 < L < 8.7. This interval is a region of bistability for branches B1 and B3. 

Branch C, corresponding to nonaxisymmetric solutions with three inflection 

points, also exhibits a region of bistability with branch B1 in the interval 

8 9 L 9 9. . .   Branch D shows the real part of growth rates corresponding to 

nonaxisymmetric solutions with three inflection points. Their values are greater 

than zero, therefore these fronts are unstable. For all values of L in Fig. 7.3, 

 

 

 

Figure 7.3: The largest real part of the eigenvalues σ for different distances L between 

plates. The relative velocity between the plates is u = 0.2. The front is unstable when 

the largest real part of the eigenvalues σ is positive. Solid lines A1 and A2 correspond to 

nonaxisymmetric fronts, most of them having one inflection point. The thick solid line B1 

corresponds to nonaxisymmetric fronts with a relative maximum. Lines B2 and B3 

correspond to nonaxisymmetric fronts with a relative minimum. Lines C and D 

correspond to other nonaxisymmetric fronts with three inflection points. 
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we find at least one stable steady front. The introduction of Couette flow results 

in having only stable nonaxisymmetric solutions. 

The effects of increasing the strength of the Couette flow by increasing the 

plate speed to u = 0.6, are displayed in Fig. 7.4. In this case we observe that the 

velocities in branches A1 and B1 increase as they reach a maximum at L = 3.64 

and L = 7.51, respectively. However, the maximum speed in branches A2 and B2 

reduces to 1.08 and 1.22, respectively. The domain of these branches have 

diminished by 62% and 51%, respectively, compared with the previous case with 

0 2u . .  Increasing the flow speed further, we observe that the domain of 

 

 

 

Figure 7.4: Front velocities relative to the flat front for different distances between 

plates (L). The relative velocity between the plates is u = 0.6. Solid lines correspond to 

stable fronts; all broken lines correspond to unstable fronts. Lines A1 and A2 

correspond to nonaxisymmetric fronts, most of them having one inflection point. The 

thick solid line B1 corresponds to nonaxisymmetric fronts with a relative maximum. 

Lines B2 and B3 correspond to nonaxisymmetric fronts with a relative minimum. Flat 

front solutions obtained without moving fluid (u = 0) change their shape and velocity 

due to Couette flow (u = 0.6). These new solutions correspond to the lowest part of 

lines A1, A2 and B2. Line C corresponds to other nonaxisymmetric fronts with three 

inflection points. 
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branches A2 and B2 continue to shrink until they finally disappear. For u > 0.69, 

branch A2 vanishes and branch B2 disappears when u > 0.82. Branch B3 also 

reduces its maximum speed and its domain length when increasing the Couette 

flow. This branch also vanishes for u > 1.03. On the contrary, when Couette flow 

is increased, branch C tends to increase its maximum speed and its domain 

length. 

We also analyzed the stability of the fronts for a Couette flow having a 

relative speed between the plates u = 0.6. In Fig. 7.5 we display the largest real 

part of the growth rate for front perturbations. Branches A1 and A2, associated 

 

 

 

Figure 7.5: The largest real part of the eigenvalues σ for different distances L between 

plates. The relative velocity between the plates is u = 0.6. The front is unstable when 

the largest real part of the eigenvalues σ is positive. Lines A1 and A2 correspond to 

nonaxisymmetric fronts, most of them having one inflection point. The thick solid line 

B1 corresponds to nonaxisymmetric fronts with a relative maximum. Lines B2 and B3 

correspond to nonaxisymmetric fronts with a relative minimum. Line C corresponds to 

other nonaxisymmetric fronts with three inflection points. 
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with nonaxisymmetric fronts with one inflection point share a region of bistability 

in the interval 3.8 < L < 4.8. Branch A1 increases slightly the magnitude of the 

negative values of the growth rates; compared with the previous case with 

0 2u . .  Nevertheless in branch A2 the values are considerably reduced. Branch 

B1 is a stable solution, whereas the solution for branch B2 is always unstable. 

Branch B3 exhibits a small region of stability in the interval 8.7 < L < 9.0. 

However, branch C has increased its region of stability by 50% due to the 

increasing of Couette flow speed. Consequently, increasing the Couette flow 

speed favors the stability of the branches A1, B1 and C, while the other branches 

tend to reduce their regions of stability until they finally disappear. 

7.3 Strong Couette flow 

Another way to obtain different types of fronts is by changing the relative 

velocity between the plates while keeping the plate separation constant. In 

Fig. 7.6, we show the front propagation velocity for different fronts as a function 

of the relative velocity between the plates with a constant slab width equal to 

L 7 5. .  For u = 0 there are three solutions, but only one of them is stable. The 

stable solution corresponds to branch B1, being axisymmetric with a relative 

maximum at the center. The unstable solutions for u = 0 correspond to branch 

B2. The solution with zero velocity corresponds to flat front solution, while the 

other solution corresponds to a nonaxisymmetric front solution with a relative 

minimum. The lower portion of branch B2 corresponds to a modified flat front 

solution due to Couette flow; it becomes now a nonaxisymmetric front with an 

inflection point. For u > 0.25, this solution begins to show a relative minimum 

until it disappears for u > 0.726. The upper portion of branch B2 shows the 

response of the unstable nonaxisymmetric front with a relative minimum due to 

Couette flow speed. This solution also disappears for u > 0.726. The initially 

stable axisymmetric front with u = 0 having a relative maximum changes by the 

action of the Couette flow: the maximum shifts away from the center of the two-

dimensional domain thus losing the axial symmetry. However, these solutions 

remain stable as we increase the relative velocity u. We find a region of 

bistability in the interval 2.0 < u < 2.8. The nonaxisymmetric fronts with a relative 
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Figure 7.6: Front velocity in terms of the relative velocity (u) between the plates. The 

distance L between the plates is 7.5. Line B1 corresponds to nonaxisymmetric fronts 

with a relative maximum, both stable (solid line) and unstable (dashed line). Line C 

corresponds to nonaxisymmetric fronts with three inflection points, both stable (solid 

line) and unstable (dashed line). Line B2 corresponds to unstable nonaxisymmetric 

fronts with a relative minimum. The lower portion of B2 shows the flat front 

transformation due to Couette flow. 

 

 

maximum (branch B1) coexist with nonaxisymmetric fronts with three inflection 

points (branch C). Within this interval, we also find unstable solutions in 

branches B1 and C. For u > 2.78 only stable nonaxisymmetric fronts with three  

inflection points exist. To study in more detail the fronts found in branches B1 

and C in the region of bistability of Fig. 7.6, we choose plate velocities in this 

region computing the stable fronts as functions of the domain width L. In  

Fig. 7.7a we display the front velocities for stable fronts with u = 2.5. We observe 

that branches A1 and C meet at x = 6.97, while branches B1 and C cross each 

other two times at x = 7.05 and x = 7.45. However, branch B1 shows a reduced 

domain. The domain of branch B1 starts to decrease for u > 2.34. In Fig. 7.7b we 
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(a) 

 

(b) 

Figure 7.7: Front velocities relative to the flat front for different distances between 

plates (L). The figure only shows stable fronts. Broken line A1 corresponds to 

nonaxisymmetric fronts, most of them having one inflection point. Solid line B1 

corresponds to nonaxisymmetric fronts with a relative maximum. Broken line C 

corresponds to other nonaxisymmetric fronts with three inflection points. The relative 

velocities (u) considered here are: (a) u = 2.5, and (b) u = 2.7. 
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display the results for u = 2.7. Branches A1 and C meet each other at x = 6.83. 

The domain of branch B1 decreases compared with the previous case with 

2 5u . .  If we display similar plots for different speeds, we will find that branch B1 

vanishes for u > 2.82. Thus, we will only find branches A1 and C for these higher 

speeds. 

As we increase the relative speed of the plates, the speed of the fronts 

increases, with the largest increase of speed taking place for solutions arising 

from nonaxisymmetric fronts at u = 0. Fronts that were originally symmetric at 

0u ,  achieve a lower increase of speed. This is shown in Fig. 7.8, where we 

display the largest possible front speed as we vary L, for different relative 

 

 

 

Figure 7.8: Largest front velocities as a function of the slab width L for different plate 

velocities u. All solid lines correspond to stable nonaxisymmetric fronts most of them 

having one inflection point (branch A1). All dashed lines correspond to stable branches 

(B1). These branches correspond to nonaxisymmetric fronts with a relative maximum 

except for u = 0 where they are axisymmetric. All two-dash lines correspond to other 

nonaxisymmetric fronts with three inflection points (branch C). 
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velocities u. Here, the solid lines correspond to nonaxisymmetric fronts (branch 

A1) with different relative velocities u. The dashed lines (branch B1) correspond 

to originally axisymmetric fronts without fluid flow, which turn into 

nonaxisymmetric fronts as Couette flow speed is increased. The two-dash lines 

correspond to nonaxisymmetric fronts with three inflection points (branch C) for 

different relative velocities u. Without fluid flow, flat front solutions which have 

zero velocity are the only solutions for L < π. The nonaxisymmetric solutions 

with three inflection points have the largest speed for L > 9.82. As Couette flow 

is applied, the flat front solutions become nonaxisymmetric, being part of branch 

A1. As we continue increasing Couette flow speed, the fronts associated with 

branch C increase their speed faster than those of branch B1. This results in the 

increment of the domain of branch C, while the domain of branch B1 decreases. 

Eventually, branches A1 and C will have the largest speed in their respective 

domains for u > 2.57. However, the speed of branch A1 increases much faster 

than branch C. Therefore the nonaxisymmetric fronts with one inflection point 

show the largest increase in speed when the relative velocity u is increased. 

7.4 Comparison with fronts developed under a 
Poiseuille flow 

Without external flow, axisymmetric fronts exhibit the same velocities, but with 

an external flow they separate. Adding a supportive Poiseuille flow decreases 

the speed of stable concave upward axisymmetric fronts, increases slightly the 

speed of stable nonaxisymmetric fronts, but the highest increase of speed 

corresponds to concave downward axisymmetric fronts. Therefore, a supportive 

Poiseuille flow favors concave downward axisymmetric fronts, increasing their 

velocities much more than stable nonaxisymmetric fronts. On the contrary, an 

adverse flow decreases the maximum speed of stable nonaxisymmetric fronts 

and concave downward axisymmetric fronts, but increases the maximum speed 

of concave upward axisymmetric fronts, which exhibit a small region of stability. 

In contrast, applying a Couette flow will increase the maximum speed of stable 

nonaxisymmetric fronts with a higher side at the moving plate and decrease the 

maximum speed of the other stable nonaxisymmetric fronts. Therefore, the 

separation of nonaxisymmetric fronts with different speeds takes place on 
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Couette flows, but not in Poiseuille flows. In the case of the axisymmetric fronts 

without external fluid flow, they will lose their symmetry due to Couette flow, 

becoming nonaxisymmetric with a relative maximum or minimum. However, 

their velocities will not increase as fast as the nonaxisymmetric fronts with a 

higher side at the moving plate. We also find that nonaxisymmetric fronts 

remain stable for adverse Poiseuille flows, but they disappear for strong 

supportive Poiseuille flows. In contrast, strong Couette flows will increase the 

velocities of nonaxisymmetric fronts with a higher side at the moving plate. 

However, the nonaxisymmetric fronts with the higher side at the stationary plate 

will disappear. 

We also observe that the stability of the fronts can be affected by an external 

flow. The effects of advection in fronts described by the KS equation can be 

experimentally achieved in reactions with fronts that exhibit diffusive instabilities 

[23]. Advection can be added for reactions taking place inside a thin tube by 

pushing the fluid (Poiseuille flow), or by generating a Couette flow using a 

moving wall confining a fluid layer. Experiments in different types of flow could 

test the results from our work, such as the separation of nonaxisymmetric fronts 

with different speeds, which could be observed on Couette flows, but not in 

Poiseuille flows. 

7.5 Summary 

We studied the effect of Couette flow over reaction fronts between two parallel 

plates separated by a small distance L. The reaction fronts are modeled using 

the KS equation, including the linear velocity profile produced by Couette flow. 

We determine the stability of the fronts by performing a linear stability analysis. 

Without fluid flow, the stability of the fronts depends on the width of the gap L 

between the plates. As we increase L, stable front profiles change first from flat 

to nonaxisymmetric, and then to completely axisymmetric. The nonaxisymmetric 

fronts exhibit an inflection point, while the axisymmetric fronts have a maximum 

(or minimum) at the middle of the gap between the plates. Applying a Couette 

flow will increase the speed of nonaxisymmetric fronts with a higher side at the 

moving plate, but decreases the maximum speed and the range of stability of 

the nonaxisymmetric fronts with a higher side at the stationary plate. These two 
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types of nonaxisymmetric fronts share a region of bistability. The presence of 

Couette flow will turn originally axisymmetric fronts (without external fluid flow) 

into nonaxisymmetric fronts with a relative maximum (or minimum). The 

nonaxisymmetric fronts with a relative maximum also share regions of bistability 

with the other nonaxisymmetric fronts with a relative minimum. However, adding 

a strong Couette flow will make these nonaxisymmetric fronts with a relative 

maximum (or minimum) disappear, and new stable nonaxisymmetric fronts with 

three inflection points will appear. Moreover, the nonaxisymmetric fronts with a 

higher side at the stationary plate will also disappear. Thus, a strong Couette 

flow will increase the stability and velocity of nonaxisymmetric fronts with one or 

three inflection points, having their higher side at the moving plate. It is worth 

mentioning that the branch containing the nonaxisymmetric fronts with three 

inflection points (branch C) would be completely unstable without moving fluid 

flow, thus Couette flow can reveal otherwise unstable solutions. 
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Chapter 8 

Rayleigh-Taylor instabilities on steady 

Kuramoto-Sivashinsky fronts 

Propagation of chemical fronts under the effects of convection due to a 

Rayleigh-Taylor type of instability has been studied in several systems such as 

iodate-arsenous acid mixtures [42,43], Belousov-Zhabotinsky reaction inside a 

vertical tube [44], iron(II)-nitric acid reaction [103], the chlorite-tetrathionate 

reaction [104,105], and the iodate-sulfate system [45]. The interaction of 

diffusive instabilities and fluid flow was modeled by coupling hydrodynamics to 

the corresponding reaction-diffusion equations [51,52]. In previous chapters we 

study the effects of fluid flow on fronts described by the KS equation. We first 

impose an external Poiseuille flow (see Chap. 6) and we later impose an 

external Couette flow on the fronts (see Chap. 7). In these studies we did not 

take into account density differences across the front. Here we analyze the 

behavior of steady structures appearing from the combined effects of the 

dynamics of the KS equation and the Rayleigh-Taylor instability. Depending on 

the size of the domain, complex fronts can appear such as steady curved fronts 

or chaotic fronts even without fluid flow [106]. Previous work by Elliot and 

Vasquez established the stability of flat fronts governed by the KS equation 

under density gradients [53]. However, this work did not analyze the stability of 

more complex fronts arising in the KS equation [91]. These fronts are not 

necessarily stable requiring new computational techniques to obtain them, and 

to analyze their stability under density gradients, which is what we present in 

this chapter. 

We study the effects of the Rayleigh-Taylor instability on steady fronts 

described by the KS equation. We consider fronts propagating between two 

infinite vertical plates separated by a small gap, containing two fluids of different 

densities as shown in Fig. 8.1. In this geometry the fluid flow can be 

approximated by Darcy’s Law in two dimensions. This domain is bounded by 

two vertical boundaries separated by a distance L, which corresponds to the 
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Figure 8.1: Sketch of the propagating front confined in a Hele-Shaw cell. 

 

 

slab width. As this distance is increased, the KS equation allows for the 

propagation of different fronts of steady shapes and symmetries. We study the 

stability of this fronts that propagate with constant speed as convective fluid 

motion sets in. We first search for steady front solutions then we determine their 

stability using a linear stability analysis. We consider both cases, one where the 

denser fluid is placed on top of a less dense fluid and the opposite case. The 

slab width (L) is essential to study the fronts, since it determines the speed and 

symmetry of steady solutions of the KS equation. As L is increased, we find that 

the flat front solution loses stability, allowing for a steady curved front. This 

solution can be placed side by side, leading to solutions in larger domains 

consisting of a repeating cell. We obtain the conditions of stability for these 

cellular structures. 

8.1 Equations of motion 

We consider a two-dimensional slab confined by two infinite walls located at the 

coordinates 0X   and X L  containing two fluids of different densities, one 
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above the other as shown in Fig. 8.1. These fluids are separated by a thin 

interface corresponding to the reaction front. The position of the front at time T 

is described by the front height  H X ,T . The time evolution of the front is 

provided by the KS equation [Eq. (5.1)] with the addition of the fluid flow 
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  (8.1) 

Here, VZ is the vertical component of the fluid velocity, to be evaluated at the 

front height H. We also use a reference frame moving at the speed of the flat 

front V0. The coefficients  and  depend on the particular physical system 

under consideration. In the case of diffusive instabilities, the parameter  

depends on the ratio of diffusivities of a reactant and an autocatalytic 

substance. According to Malevanets et al. [29], this parameter can be 

approximated by    1 7 1 3 1/       with  being the ratio of their 

diffusivities. The flat front presents instabilities if  < 0, which in this 

approximation corresponds to  > 2.5. 

We use Darcy’s law to describe the motion of the fluid inside the slab. In a 

Hele-Shaw cell, the coefficient of permeability of a porous medium can be 

approximated by 2 12w , where w is the gap width between two vertical walls 

[107]. With this approximation Eq. (3.18) becomes   

  
2

12
Z

w
ˆV P ge .


      (8.2) 

Here, V  is the fluid velocity, P is the pressure, g is the acceleration of gravity in 

the vertical direction, Zê  is a unit vector in the vertical direction pointing upward, 

and µ is the dynamic viscosity. 

The fluid density changes abruptly across the interface, therefore we write 

the fluid density as 

 0 Δ Θ( Z H ),       (8.3) 
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where Θ  is a step function,  having a value of one if its argument is positive and 

zero otherwise. Here 
0  is the density of the fluid below the interface, Δ is the 

density difference between the two fluids, being positive when the denser fluid 

is on top. We use the continuity equation, 0V ,   to write the components of 

the fluid velocity in terms of a stream function  Ψ X ,Z ,T . As a result, 

ΨXV Z    and ΨZV X .    Introducing these relations into Darcy’s law, we 

obtain an equation for the stream function in terms of the front height H 
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
  (8.4) 

The Dirac  function results from the derivative of the step function. In addition, 

we use a Taylor expansion for the vertical component of the fluid velocity 
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The second term in the expansion will be neglected since we are considering 

only slow flows combined with the small deviations from flat fronts. Assuming 

that  is non-zero, we introduce time and length scales defined by 

 xL / | |  , 0z V|L | / , and 2

TL /   as in Sec. 5.1. Using lowercase 

letters for the corresponding variables in this system of dimensionless units, 

Eq. (8.1) becomes 
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  (8.6) 

and Eq. (8.4) becomes 
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Here we have defined the dimensionless numbers  2Ra 12 xw g / L ,    and 

x zL L .   The value of   is either plus or minus one, depending on the original 
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sign of . As in reference [53], we solve Eq. (8.7) by introducing Fourier series 

on h and   
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and 
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Here the x coordinate varies from 0 to L. These Fourier series satisfy the 

boundary conditions at the vertical walls [85], corresponding to zero horizontal 

fluid velocity ( 0xv  ) and, zero first and third derivatives for the front height with 

respect to x. The Fourier coefficient  0H t  corresponds to the average front 

height 0h .  Introducing the Fourier series into Eq. (8.7), we solve for each 

component of the stream function 
n  in terms of 

nH . Hence we obtain the 

Fourier components of the stream function [53] 
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Using Eq. (8.10), we replace Eq. (8.8) into Eq. (8.6), which leads to an equation 

that involves only the front height h, and its Fourier coefficients nH   

 

22 4

2 4

1 Ra
cos

2 2 L L
n

n

h h h h n n x
H .

t x x x

 


        
        

        
   (8.11) 

In our study we only consider the case 1,    which allows for unstable flat 

fronts, and steady stable curved fronts. 
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8.2 Numerical methods 

8.2.1 Stationary solutions 

We seek solutions of the form    h x,t h x ct,   where c is the constant velocity 

of the front. With this substitution (and dropping the prime), Eq. (8.11) becomes  
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We chose a reference frame moving with the same constant front velocity c to 

make the front stationary, being  h x  the spatial front profile in this reference 

frame and nH  the Fourier coefficients of h. The boundary conditions, zero first 

and third derivatives for the front height, allows for different solutions up to a 

constant. We solve Eq. (8.12) using a non-linear shooting method together with 

a recursive, self-consistent iteration. We transform Eq. (8.12) into a set of four 

first-order ordinary differential equations (ODEs) by defining each high-order 

derivative as a new variable. We chose h = 0 at x = 0, with the choice being 

arbitrary since adding any constant to a solution will still be a solution. We first 

find a solution of Eq. (8.12) for Ra = 0. We have two free parameters to start the 

shooting method and satisfy the remaining boundary conditions at x = L. One of 

them is the speed c and the other is the second derivative 2 2d h dx  at the 

starting point x = 0. After giving guessing values to these parameters, we 

integrate the equations with a simple Euler method to reach x = L. We adjust the 

parameters to obtain the correct boundary conditions at x = L. Once we have 

the solution for Ra = 0, we calculate the Fourier coefficients nH  for this solution. 

We keep these values constant to restart a shooting method with a small 

chosen value of Ra, which leads to a modified solution of h. We repeat this 

process until the solution remains unchanged. In this manner, we obtained a 

solution for nonzero Rayleigh number Ra. The calculations used a 25-term 

truncation for the Fourier coefficients, obtaining no significant difference in the 

front speed with fewer terms. We used 105 points with the Euler method in the 

interval 0 L,x   a similar calculations using a fourth-order Runge-Kutta 
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method did not yield significant difference. The front profile is reconstructed 

from its Fourier coefficients using a spatial grid of 1000 points. 

8.2.2 Linear stability analysis 

We analyze the stability of the fronts using small perturbations to the stationary 

state solutions. We introduce in Eq. (8.11) the solution  h x  with the addition of 

a perturbation  H x,t ,  keeping only linear terms the equation becomes 
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We look for solutions of the form 

    tH x,t e H x ,    (8.14) 

where σ is the growth rate of the perturbation. With this substitution, Eq. (8.13) 

becomes an eigenvalue equation, with σ the eigenvalue and H  the 

eigenfunction 
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This equation determines the stability of  h x ,  since solutions with negative real 

part of σ will decay with time. Introducing the Fourier series for  h x  and  H x  

and projecting over the corresponding cosine function (see appendix A.2), we 

obtain a linear set of eigenvalue equations on the coefficients pH  
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The eigenvalues and eigenvectors are obtained numerically using the CG 

subroutine in the EISPACK package [108]. The calculations used 25-term 

truncation obtaining no significant difference with fewer terms. The front will be 

stable if all of the eigenvalues have negative real part. Thus, if the eigenvalue 

with the largest real part is negative, the front is stable. 

8.2.3 Fronts evolving in time 

In previous sections we obtained steady front solutions using a non-linear 

shooting. In addition, we determine the stability of these steady solutions. We 

now look for solutions that evolve with time. We focus on oscillatory and chaotic 

solutions. We obtain these solutions following the method used in Sec. 6.3.1. 

Introducing the Fourier series for  h x,t  in Eq. (8.11) and projecting over the 

corresponding cosine function, we obtain the following set of ordinary 

differential equations: 

 

     
2

2 4

,

1

,

1

 

                                                                  Ra   for  1
2

4
n n p

n

n

p

npp n

dH q
nq H nq pHH H

dt

nq
H n

  

 

   

 
  

 


  (8.18) 

and  
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Here the parameter q is defined by Lq ,  where L is the slab width. We 

solve this set of equations numerically using an implicit Euler’s method 

described in Sec. 6.3.1. 

8.3 Results 

8.3.1 Steady solutions 

We obtain fronts of steady shape moving with constant velocity for different 

values of the slab width L. Previous works [42,43] showed that flat fronts 
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without convection become unstable for widths larger than a critical value that 

depends on the Rayleigh number Ra. In some cases, the fronts are symmetric 

with respect to a line parallel to the vertical z direction and passing through the 

center of the two-dimensional domain at x = L/2, we call this line the central 

axis. We first obtain stationary fronts when the denser fluid is on top (Ra = 0.5) 

for different slab widths. The front profile can be flat, axisymmetric, or 

nonaxisymmetric depending on the distance L between the vertical walls and 

the value of the parameter Ra. In Fig. 8.2, we show four different front profiles, 

with the front height function measured relative to the average front height. 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8.2: Fronts with corresponding fluid velocities inside a Hele-Shaw cell. The front 

height is measured from the average front height. The Rayleigh number is Ra = 0.5, 

having the denser fluid on top of the less dense fluid. (a) Nonaxisymmetric front with a 

single convective roll (L = 3.5). (b) Axisymmetric front having two convective rolls with 

fluid going up in the middle and falling near the walls (L = 7.0). (c) Nonaxisymmetric 

front having a minimum, fluid falls near the central axis (L = 7.0). (d) Nonaxisymmetric 

front showing a single convective roll rotating clockwise (L = 8.5). 
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Without fluid motion at L = 3.5, a nonaxisymmetric front develops due to the 

instability of the flat front for L > π [see Eq. (4.32)]. This profile has a horizontal 

density gradient that leads to a single convective roll, which in turns modifies 

the front, resulting in the structure displayed in Fig. 8.2a. This front is 

nonaxisymmetric having one side higher than the other side near the wall, the 

fluid rises on the higher side falling on the opposite side. In Fig. 8.2b, we show a 

stable axisymmetric front with a single maximum in the center of the slab for 

L = 7.0. This stable axisymmetric front can exist even without fluid flow. When 

fluid motion is present, density gradients generate two convective rolls in which 

the fluid rises in the middle and falls near the walls enhancing the position of the 

front maximum. This maximum takes a value of 3.59 compare to 2.46 without 

fluid motion. In contrast, Fig. 8.2c shows an unstable nonaxisymmetric front with 

a minimum near the center of the slab for L = 7.0. The fluid falls near the central 

axis and rises near the walls. Figure 8.2d displays another unstable 

nonaxisymmetric front with three inflection points and a single convective roll,  

but without relative maximum or minimum (L = 8.5). The flat front is also a 

solution for these values of L. All these fronts have steady shape, each moving 

at different constant velocities. We will analyze the stability of these types of 

fronts in detail in Sec. 8.3.2. 

In the case of having fronts separating the reactants with a denser fluid on 

top of a less dense fluid (Ra > 0), buoyancy forces provide an additional 

mechanism to destabilize the front. We obtain stationary fronts in a reference 

frame co-moving with the front for different values of the domain width L, while 

keeping the value of the Rayleigh number constant (Ra = 0.5). We show in     

Fig. 8.3, the velocities of these fronts relative to the velocity of the flat front as a 

function of L. The fronts shapes and velocities were obtained using Eq. (8.12), 

while their stabilities are determined from the growth rates using Eq. (8.16). We 

will compare this figure with the results of Chap. 5 (see Fig. 5.4 and Fig. 5.5) 

that provides the front velocities and corresponding conditions of stability 

without fluid flow (Ra = 0). We will focus on how these front velocities are 

affected by changing the Rayleigh number (Ra). In Fig. 8.3, the flat front has 

velocity equal to zero, being always a solution regardless of the value of L. 
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Figure 8.3: Front velocities relative to the flat front for different distances between the 

walls (L). The Rayleigh number is Ra = 0.5. The thick solid line (A) corresponds to 

stable nonaxisymmetric fronts. The solid line (B) corresponds to stable axisymmetric 

fronts. The dashed line (E) corresponds to unstable axisymmetric fronts. Broken lines 

(C, D, and F) correspond to unstable nonaxisymmetric fronts. 

 

 

The flat front becomes unstable for L > 2.83, a value smaller than the critical 

width for instability without density differences (L = π) indicating the destabilizing 

effect of buoyancy. Branches A and B correspond to the velocity of 

nonaxisymmetric and axisymmetric solutions, respectively. These branches 

meet each other at L = 5.71. The solutions of these branches are stable, 

reaching both branches a maximum speed of 3.46 in contrast to the maximum 

speed of 1.60 obtained without density differences (see Fig. 5.4). The symmetry 

of Eq. (8.12) implies that the reflection of a nonaxisymmetric solution about the 

central axis is also a solution with the same velocity. In addition, the central axis 

splits axisymmetric solutions in branch B into two mirrored nonaxisymmetric 

solutions corresponding to branch A. For this reason, branches A and B have 

the same maximum speed. Branch B also contains two solutions, for each value 

of L, with the same velocity. These solutions are concave downward (having a 
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maximum) and concave upward (having a minimum), with the concave 

downward solutions stable. The solutions in branch E are also axisymmetric, but 

they are unstable. These solutions coexist with those of branch A in the interval 

5.67 < L < 5.71. Branches C, D, and F correspond to the velocities of other 

unstable nonaxisymmetric solutions. Branch C meets branch B near the top, but 

its velocity decreases as width L increases, until it finally meets branch F at  

L = 8.55. Branch F begins in L = 8.51, having higher velocities for larger values 

of L. It meets branch D in two points. One of these points is near the maximum 

speed of branch D, which has solutions with two different velocities for each 

value of L in the interval 8 24 L 8 54. . .   

We also study propagating fronts where the less dense fluid is on top of the 

denser fluid (Ra < 0). We show in Fig. 8.4, the velocities of stationary fronts 

relative to the velocity of the flat front for different values of the domain width L, 

while keeping the value of the Rayleigh number constant ( Ra 0 5.  ). The 

transition from stable flat front solutions to stable nonaxisymmetric front 

solutions (branch A) occurs at L = 3.74, here buoyancy forces contribute to 

stabilize the flat front since the transition without fluid flow takes place at L = π 

(see Fig. 5.4). The maximum speed of nonaxisymmetric solutions (branch A) 

and axisymmetric solutions (branch B) is the same, but it is almost ten times 

smaller than the previous case with Ra = 0.5 (see Fig. 8.3). These branches 

meet each other at L 7 51. .  Branch B also contains two solutions with the 

same velocity, one being concave downward and the other concave upward. 

Nonaxisymmetric solutions described by branches C, D, and F, are unstable. 

Branch C meets branch B near its maximum, then its velocity decreases as 

width L increases until it meets branch F at L = 11.25. Branch D meets branch C 

at L = 11.23 and branch F at L = 11.26. Branch F increases its speed faster than 

D as L increases, but not as fast as in the case without density differences. As a 

result, when the less dense fluid is on top of a denser fluid, the speed of the 

stationary fronts decreases. 
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Figure 8.4: Front velocities for different distances between the walls (L). The Rayleigh 

number is Ra 0 5. .   The thick solid line (A) corresponds to stable nonaxisymmetric 

fronts. The solid line (B) corresponds to stable axisymmetric fronts. The dashed line (E) 

corresponds to unstable axisymmetric fronts. Broken lines (C, D, and F) correspond to 

unstable nonaxisymmetric fronts. 

 

8.3.2 Stability analysis 

We determine the stability of the steady fronts by calculating the growth rate σ 

for small perturbations to the fronts using Eq. (8.16). The front is unstable when 

the largest real part of the growth rate Re(σ) is positive since the perturbations 

will grow exponentially. The results of the linear stability analysis of the 

stationary fronts whose velocities were shown in Fig. 8.3 are summarized in  

Fig. 8.5. These stationary fronts were obtained with Ra = 0.5 (a denser fluid on 

top). Flat front solutions (branch G) are unstable except for L < 2.83, where they 

are the only solutions, because their values of Re(σ) are negative. The 

nonaxisymmetric solutions associated with branch A are stable because all their 

values of Re(σ) are also negative. There are two axisymmetric solutions with the 
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Figure 8.5: The largest real part of the eigenvalues σ for different distances L between 

walls. The Rayleigh number is Ra = 0.5. The front is unstable when the largest real part 

of the eigenvalues σ is positive. The thickest solid line (A) corresponds to 

nonaxisymmetric fronts. Solid line B1 corresponds to concave downward axisymmetric 

fronts and solid line B2 corresponds to concave upward axisymmetric fronts. Broken 

lines (C, D, and F) correspond to nonaxisymmetric fronts. The dashed line (E) 

corresponds to other axisymmetric fronts. Solid line G corresponds to flat fronts. 

 

 

same propagation velocities for each value of L in the domain under 

consideration. These solutions can be concave downward or concave upward, 

and their real parts of their growths rates are represented by lines B1 and B2, 

respectively. Fig. 8.5 shows a region of bistability for these axisymmetric 

solutions in the interval 6.82 < L < 7.76. This region is 20% shorter than the other 

obtained in Chap. 5 without density differences (see Fig. 5.5). Branch E 

corresponds to the region where these two concave downward and concave 

upward axisymmetric solutions are unstable. Branches C, D, and F are 

associated with distinct nonaxisymmetric solutions. All these solutions are 

unstable, except for branch D in the range 8.24 < L < 8.54, where these values 

are negative. The corresponding fronts to branch D without convection were 

unstable (see Fig. 5.5); consequently, the denser fluid on top of a less dense 
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one results in stabilizing unstable nonaxisymmetric fronts in this narrow range. It 

also increased the front propagation speed. Moreover, increasing the 

magnitude of Ra beyond Ra = 0.5 increases the region of stability of branch D. 

We also calculate the stability of the steady fronts with velocities shown in 

Fig. 8.4. These fronts were obtained with Ra 0 5.   (less dense fluid on top). 

We show the results of the largest real part of the growth rate Re(σ) for front 

perturbations in Fig. 8.6. Flat front solutions associated with branch G are stable 

for L < 3.74. They are the only solutions in this range. Nonaxisymmetric fronts 

(branch A) also increase its range of stability in contrast to the case without 

density differences (see Fig. 5.5). However, its values of Re(σ) have smaller 

magnitudes. The real parts of growth rates of concave downward and concave 

 

 

 

Figure 8.6: The largest real part of the eigenvalues σ for different distances L between 

walls. The Rayleigh number is Ra 0 5. .   The front is unstable when the largest real 

part of the eigenvalues σ is positive. The thickest solid line (A) corresponds to 

nonaxisymmetric fronts. Solid line B1 corresponds to concave downward axisymmetric 

fronts and solid line B2 corresponds to concave upward axisymmetric fronts. Broken 

lines (C, D, and F) correspond to nonaxisymmetric fronts. The dashed line (E) 

corresponds to other axisymmetric fronts. Solid line G corresponds to flat fronts. 
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upward axisymmetric fronts are represented by lines B1 and B2. These 

axisymmetric solutions have the same propagation velocity. However, the 

concave downward solution is always stable in the domain (L > 7.51), whereas 

the concave upward fronts are stable in the interval 8.66 < L < 10.60, becoming a 

region of bistability. The size of this region is almost two times greater than the 

one obtained with the denser fluid on top of the less dense fluid (Ra = 0.5). The 

nonaxisymmetric solutions associated with branches C, D, and F are unstable, 

but their maximum magnitudes of Re(σ) have also decreased. Consequently, 

having the less dense fluid on top of the denser fluid increases the region of 

bistability of axisymmetric fronts, but decreases the magnitude of the negative 

values of the growth rates. 

The formation of different types of steady front depends on the values of the 

Rayleigh number and the domain length L. In Fig. 8.7, we display the 

corresponding values that lead to steady axisymmetric and nonaxisymmetric 

fronts. The nonaxisymmetric fronts correspond to solutions displayed as branch 

A in Fig. 8.3, they have a higher side near the wall with a single convective roll. 

There are two types of axisymmetric fronts associated with branch B, one is 

concave downward (branch B1) and the other is concave upward (branch B2). 

For large enough values of Ra and small values of L, we find stable flat fronts. 

Increasing L leads to the formation of nonaxisymmetric fronts (branch A), while 

increasing it further leads to axisymmetric fronts (branch B1). However, for 

Ra 0 65. ,   this behavior is no longer observed, while increasing L allows the 

formation of nonaxisymmetric fronts, increasing L further leads to steady stable 

flat fronts instead of axisymmetric fronts. We also observe a region of bistability 

between concave upward and concave downward axisymmetric fronts, this 

region of bistability clearly increases when Ra 0 65. .   Eventually, all curve 

fronts vanish at Ra 0 769. ,   having only stable flat fronts. We observe larger 

regions of stability for nonaxisymmetric and axisymmetric fronts when the less 

dense fluid is on top. 

 



 111 
  

 
Figure 8.7: Regions of stability for nonaxisymmetric fronts (branch A) and 

axisymmetric fronts (branches B1 and B2), for different values of the Rayleigh number 

(Ra) and the domain length L. The region of stable axisymmetric fronts is bounded by 

open squares. The region bounded by dark squares corresponds to stable concave 

downward axisymmetric fronts (branch B1), while the region bounded by dark circles 

corresponds to a bistability region between concave downward and concave upward 

axisymmetric fronts (B2). 

 

8.3.3 Cellular solutions 

We calculate the stability of larger patterns constructed by placing side by side 

front solutions developed in smaller cells. This construction is similar to the one 

used in Sec. 5.3.3 to study fronts without convection. We want to study the 

effects of convective flow on extended patterns. In Fig. 8.8, we show the 

velocities corresponding to cellular patterns for different values of the Rayleigh 

number. Branches A, C and E correspond to nonaxisymmetric solutions, 

whereas branches B and D correspond to axisymmetric solutions. Solid lines 

correspond to stable fronts, while broken lines correspond to unstable fronts. 

Fig. 8.8a displays the velocities of cellular patterns when the denser fluid is on 

top with Ra = 0.5. Although all the branches have the same maximum speed, 



 112 
  

this maximum speed is greater than the case without convection (see Fig. 5.7). 

We also observe that the location of the speed maximum for the smallest cell is 

1 3 42L . ,  which is smaller than the case without convection. The transition from 

flat front to a nonaxisymmetric stable solution appears for L > 2.83. This value is 

smaller than the case without convection, indicating the destabilizing effect of 

the Rayleigh-Taylor (RT) instabilities on flat front solutions. There are two 

solutions related to branch B with the same velocity for each value of L. The 

region of stability of concave downward axisymmetric fronts is greater than the 

concave upward axisymmetric fronts. However, they share a region of 

bistability. The solid line in branch B means that at least one of these two 

solutions is stable. Thus, for L > 10.28 the solutions are unstable and they are 

represented by a broken line. This value is also smaller than the case without 

convection. In the case of branch D, there are two axisymmetric solutions with 

the same velocity for each value of L in their respective domain. These 

solutions have a maximum or minimum in the central axis, but they share the 

same interval of stability, namely 13.65 < L < 15.12. The length of this interval is 

smaller compared with the case without convection. The nonaxisymmetric 

solutions associated with branch C, also have two solutions with the same 

velocity for each value of L in their respective domain. However, one of these 

solutions is the reflection of the other about the central axis. Therefore, these 

solutions have the same maximum value of the real part of their growth rates. 

Branches A and E, which are also related to nonaxisymmetric solutions have 

the same behavior. However, these branches A, C and E have different 

conditions of stability. The length of stability of these branches is reduced due to 

the positive density gradient. Thus, the RT instabilities increase the maximum 

speed of the fronts, but decrease the range of stability of the fronts due to the 

destabilizing effect of the positive density gradient on the fronts.  

We study the formation of cellular structure with the less dense fluid on top of 

the denser fluid for Ra 0 5. .   We show the front velocities as a function of L in 

Fig. 8.8b. Although all the branches have the same maximum speed, this 

maximum speed is smaller than the previous case, where the denser fluid was 

on top. Each new cellular structure appears at a length that is an integer 

number of the smallest cell length. We also notice that these lengths take place 



 113 
  

at larger values of L compared to the values for positive Rayleigh numbers, thus 

indicating the stabilizing effect of the density gradient (less dense fluid on top). 

Nonaxisymmetric solutions (branch A) are stable. Concave downward 

axisymmetric fronts represented by branch B, become stable for L >13.62. They 

share a region of bistability with concave upward fronts, which have a small 

region of stability. Branch C corresponds to nonaxisymmetric solutions formed 

by three cells, they share a region of bistability with the axisymmetric fronts 

solutions of branch B. Branch D is associated with other axisymmetric solutions 

with the same velocity, having a central maximum (or minimum). The range of 

stability of these types of fronts is greater than the previous case (Ra = 0.5), but 

the absolute value of the real part of the growth rates decreases as L increases, 

indicating a slower decay for small perturbations. 

To study the stabilizing effects of a density gradient with the less dense fluid 

on top, we reduce the value of the Rayleigh number to Ra 0 75. ,   obtaining the 

velocities of stationary fronts for different values of the domain width L 

(Fig. 8.8c). The maximum speed of the fronts is much smaller than the previous 

two cases. In contrast with those cases, where the flat front is always unstable 

after a critical value of the length L, here the flat front is unstable in separated 

intervals. For example, it becomes unstable at L = 4.82, but then is stable at L = 

6.28, becoming unstable once again at L = 9.64. Increasing beyond a large value 

of L, the intervals of stability disappear, being the flat front unstable. Therefore 

increasing the magnitude of the Rayleigh number with the less dense fluid on 

top of the denser fluid increases the regions of stability of flat front solutions, 

also diminishing significantly the maximum speed of the stationary fronts. While 

in previous cases we have two different axisymmetric solutions sharing the 

same speed but with different ranges of stability, here we find that they also 

share the growth rates. This happens because with Ra 0 75. ,   one of the two 

fronts is the reflection of the other about the average front height, which is not 

the case for Ra 0 5. .   Each of the structures from A to E, present a minimum 

for the real part of the growth rate, with this minimum being almost the same for 

structures containing different cells. This did not occur with the previous values 

of the Rayleigh number. The stabilizing effect of Ra 0 75.   led not only to more 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 8.8: Front velocities for different distances between the walls (L). Solid lines 

correspond to stable fronts; broken lines correspond to unstable fronts. Lines A, C, and 

E correspond to distinct nonaxisymmetric fronts, whereas lines B and D correspond to 

distinct axisymmetric fronts. The respective Rayleigh numbers are (a) Ra 0 5. , (b) 

Ra 0 5. ,   and (c) Ra 0 75. .   
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stable flat fronts, but also provided a stabilizing mechanism for extended 

patterns in larger domains. If we continue to increase the magnitude of the 

Rayleigh number beyond Ra 0 769. ,   we find only the flat front as a solution, 

without cellular structures, which is consistent with the linear stability analysis of 

the flat fronts [53]. 

8.3.4 Period-doubling transition to chaos 

We show in Fig. 8.9 the period-doubling bifurcations when the denser fluid is on 

top ( Ra 0 1. ). The oscillation starts at L = 8.431 whereas the oscillation without 

convection occurs at L = 8.653 (see Fig. 6.12). This oscillation is represented in 

the graph by two points corresponding to the relative maximum and minimum 

values of the front velocity. These values decrease gradually with increasing L, 

until the oscillation splits again. As we continue increasing L, the bifurcations 

come faster and the system turns chaotic. The chaos remains until we reach 

L = 8.791, where the system achieves a stable steady solution. We observe a 

slight increase in the chaotic region compared with the case without convective 

fluid flow (see Fig. 6.11). We show in Fig. 8.10 the period-doubling bifurcations 

when the less dense fluid is on top ( Ra 0 1.  ). The oscillatory behavior starts 

at L = 8.903 and the system achieves a stable steady solution at L = 9.295. The 

region of chaos is slightly smaller than the one obtained without convection (see 

Fig. 6.11). However, a positive Rayleigh number decreases the length of the 

interval where we can find solutions that evolve in time (i.e. oscillatory and 

chaotic solutions) without convection, while a negative Rayleigh number 

increases the length of this interval. Therefore, the Rayleigh-Taylor instability 

(denser fluid on top) increases the chaotic region, but decreases the whole 

range of the non-steady solutions. For greater values of L, we also find 

solutions that evolve in time. The results are summarized in Table 8.1. In this 

table we show the intervals of the oscillatory solutions with positive and 

negative values of the Rayleigh number, and their respective regions of chaos. 

For 12.827 L 13.372  , we obtained oscillatory solutions without convection. A 

positive Rayleigh number shifts the beginning of the interval to lower values of 

L, while a negative Rayleigh number shifts the beginning of the interval to 
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Figure 8.9: Bifurcation diagram when the denser fluid is on top (Ra = 0.1). Here we 

show the relative maximum and minimum of the time evolution of the front velocity. The 

period-doubling bifurcations increase as we increase the distance L between plates. 

 

 

Figure 8.10: Bifurcation diagram when the less dense fluid is on top ( Ra 0 1.  ). Here 

we show the relative maximum and minimum of the time evolution of the front velocity. 

The period-doubling bifurcations increase as we increase the distance L between 

plates. 
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Description 

of the 

solutions 

Negative Ra 

( Ra 0 1.  ) 

Without convective flow 

( Ra 0 0. ) 

Positive Ra 

( Ra 0 1. ) 

Oscillatory 13 205 L 13 788. .   12 827 L 13 372. .   12 50 L 13 015. .   

Oscillatory 16 061 L 16 614. .   15 777 L 16 265. .   15 515 L 15 956. .   

Oscillatory 17 378 L 18 648. .   16 878 L 18 140. .   16 444 L 17 619. .   

Chaotic 18 648 L 19 122. .   18 140 L 18 384. .   17 619 L 17 893. .   

Oscillatory 19 122 L 19 193. .   18 384 L 19 317. .   17 893 L 19 264. .   

Chaotic 19 193 L 20 528. .   19 317 L 19 801. .   19 264 L 19 696. .   

Oscillatory 20 528 L 21 907. .   19 801 L 20 424. .   19 696 L 19 907. .   

Chaotic 21 907 L 22.    20 424 L 20 570. .   19 907 L 20 254. .   

Oscillatory  20 570 L 21 289. .   20 254 L 20 708. .   

Chaotic  21 289 L 22.    20 708 L 21 73. .   

Oscillatory   21 73 L 22.    

 

Table 8.1: Window range of the oscillatory and chaotic solutions for greater values of 

the distance L between plates (12  L  22) 

 

 

greater values of L. However, a positive Rayleigh number decreases the length 

of the interval of the oscillatory solutions, while a negative Rayleigh number 

increases the window range of the oscillatory solutions. A similar result occurs 

to the oscillatory region without convection located at 15.777 L 16.265.   For 

greater values of L, we observe a wide region of spatio-temporal behavior. In 

addition, the Rayleigh-Taylor instability revealed a new region of oscillatory 

behavior. Therefore the Rayleigh-Taylor instability shifts the beginning of the 

window range of the non-steady solutions to lower values of L, while a negative 

Rayleigh number (less dense fluid on top) shifts them to greater values of L. 
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8.4 Summary 

We studied thin reaction fronts moving across density gradients within a two-

dimensional slab using the KS equation with the addition of fluid flow. Without 

fluid flow, we observe transitions as we increase the slab width L: from flat to 

nonaxisymmetric fronts, and from nonaxisymmetric to axisymmetric fronts. 

Including density gradients, flat fronts can remain convectionless in small 

domains, while the originally curved fronts will generate convective fluid motion 

due to their horizontal density gradient. We find similar transitions between 

fronts as we vary the slab width L for Ra = 0.5, however the transitions to new 

solutions take place at different values of L. In the case of Ra 0 5. ,   the 

transitions occur at larger values, indicating the stabilizing effect of the negative 

density gradient. However, for Ra 0 75. ,   we found that the flat front is stable in 

separated intervals. That is, it is stable for L 4.82  and it is stable once again in 

the interval 6.28 L 9.64,   and so on. Therefore the stabilizing effect of the 

negative density gradient for flat front solutions increases as the Rayleigh 

number becomes more negative. In addition, we found for Ra 0 75.   extended 

patterns for larger values of the slab width L. 

The transition from nonaxisymmetric to axisymmetric front profiles depends 

on the slab width L and the dimensionless Rayleigh number Ra. We also find 

stable axisymmetric fronts that have a minimum (concave downward fronts) 

sharing a small region of bistability with concave upward fronts. This region of 

bistability increases when the less dense fluid is on top, but the front 

propagation velocity decreases. 

We also show that fluid motion contributes to define the front shape. In the 

case of axisymmetric front profiles, for larger values of Ra, the maximum front 

height increases with respect to the front height without convection since fluid 

will tend to rise through the middle of the slab. On the contrary, for negative 

values of Ra the maximum front height decreases since the fluid motion is 

opposite, with falling fluid near the axis. We also analyzed the stability of fronts 

in extended domains arising from placing together solutions in smaller domains, 

or cells. We find that negative Rayleigh numbers can increase the domain of 

stability of these structures. However, there is a lower limit for the Rayleigh 
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number ( Ra 0 769.  ) below which these cellular structures no longer appear, 

where the only solutions correspond to stable flat fronts. In addition, we study 

the effects of convective fluid flow on oscillatory and chaotic solutions. We find 

that the Rayleigh-Taylor instability (positive Rayleigh number) shifts the 

beginning of the window range of the solutions that evolve in time to lower 

values of L, while a negative Rayleigh number (less dense fluid on top) shifts 

them to greater values of L. 

 

 

 

9  

 



Chapter 9 

Conclusions  

A fluid flow in which a chemical reaction takes place can be found in a diversity 

of fields such as combustion, catalysis, and chemical vapor deposition process 

used in many thin film applications [109]. In this work, we have studied the 

effects of different types of fluid motion on steady reaction fronts described by 

the Kuramoto-Sivashinsky (KS) equation. These fronts described by the KS 

equation can result in steady curved fronts as they propagate in two-

dimensional domains. Transitions between these structures take place as the 

width of the domain is modified. We have focused especially in the analysis of 

the stability of complex fronts arising in the KS equation. We have identified 

branches of unstable fronts that can turn into stable branches in the presence of 

fluid motion. 

We first studied the effects of an external Poiseuille flow on reaction fronts; 

we later contrasted our results with the application of an external Couette flow. 

Finally, we studied a reaction front separating fluids of different densities which 

may result in Rayleigh-Taylor instabilities as a less dense fluid is placed under a 

denser fluid. We also considered fronts in extended domains generated from 

solutions in smaller domains or cells. The main findings may be listed as 

follows: 

1. Without external fluid flow, the reaction fronts described by the KS 

equation exhibit transitions from a nonaxisymmetric to an axisymmetric 

profile. This transition can be observed by changing the slab width. 

Adding a Poiseuille flow will change the shape and speed of the fronts 

and make these transitions occur at different widths. (Chapter 6). 

 

2. Strong supportive Poiseuille flows will make nonaxisymmetric fronts 

disappear. In addition, stable steady fronts propagating in the presence 

of an adverse Poiseuille flow will be axisymmetric for slow fluid flows, but 

for higher speeds the adverse flow can lead to stable nonaxisymmetric 

fronts (Sec. 6.2). 
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3. In the case of Couette flow, the maximum speed of stable 

nonaxisymmetric fronts with a higher side at the moving plate is favor by 

the increment of the relative velocity between the plates. While the other 

stable nonaxisymmetric fronts tend to decrease their maximum speed 

until they eventually disappear. Thus, we can observe the separation of 

these branches related to nonaxisymmetric fronts when a Couette flow is 

applied (Chapter 7). 

  

4. We can affect the symmetry and speed of the originally axisymmetric 

fronts (without external fluid flow) by applying a Couette flow. These 

fronts become nonaxisymmetric with a relative maximum or minimum 

(Sec. 7.1). 

 

5. Convective fluid motion takes place changing the shape and speed of the 

fronts. In the case of curved fronts, convection always exists due to a 

horizontal density gradient, even if the less dense fluid is on top. For 

positive values of the Rayleigh number, the maximum front height 

increases, whereas for negative values this maximum height decreases 

(Sec. 8.3.1). 

 

6. A favorable density gradient can provide stability to an extended pattern. 

These fronts in extended domains are generated from solutions in 

smaller domains or cells (Sec. 8.3.3). 

 

7. The Rayleigh-Taylor instability (where the less dense fluid is below a 

denser fluid) decreases the window range of the non-steady solutions 

compared with the case without convective fluid flow. In the opposite 

case (where the less dense fluid is on top), the length of this interval 

increases (Sec. 8.3.4). 

 

The experimental observation of the effects of the Poiseuille flow on reaction 

fronts will require fronts that are potentially unstable in systems such as 

reaction-diffusion fronts [24] or flame instabilities [110]. In the case of advection 
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due to Couette flow, experiments with fronts having diffusive instabilities can 

show these new structures. We can generate this flow using a moving wall 

confining a fluid layer. We also study thin reaction fronts moving across density 

gradients within a two-dimensional slab. As in the previous cases, we have 

presented a theory based on the KS equation, which can be applied to different 

physical situations. Its simplicity allowed us to track and analyze some complex 

fronts. We found stable convective fronts with extended structures under 

favorable density gradients, they may also be found in similar systems (either 

experimentally or theoretically), such as reaction-diffusion-convection systems 

with diffusive instabilities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Appendix A 

A.1 Derivation of the Kuramoto-Sivashinsky equation  

We present a derivation of the Kuramoto-Sivashinsky equation based on the 

work of Malevanets et al. [29] for the case of small-amplitude perturbations. A 

general reaction-diffusion equation in one dimension is given by 

 2( ) ,
t


  



z
F z D z  (A.1) 

where z is a vector of concentration of the components of the system,  F z  is a 

vector-valued function describing chemical reactions and D  is the diffusion 

matrix which is assumed diagonal. We also assume that in one dimension 

Eq. (A.1) has a stable solution with a propagating front profile 
0( )x ct z z , 

where c is the velocity of the front. Working in a reference frame co-moving with 

the front Eq. (A.1) becomes 

 
2( ) .c

t 

 
   

 

z z
F z D z   (A.2) 

Here x ct    and the corresponding stable solution in one dimension is given 

by 0( ).z z  Now we are wondering how would be the stable front solution in 

two dimensions. For small perturbations in the second dimension (y-axis), we 

can approximate the front solution as 0 0( ( )),y  z z  where the function 0( )y

shows a small spatial variation in y-axis. In general, we can write the two 

dimensional solution as 0 0( , , ) ( ( , )) .x y t y t   z z z  Replacing this solution in 

Eq. (A.2) and expanding  F z  in a Taylor series near 0z , neglecting terms of 

second order and higher, we obtain 

 
2 20 0

0 0( ) .c c
t t  

   
          

   
F

z z z z
F z J z D z D z   (A.3) 

Here F
J  is the Jacobian of the vector function  F z . In addition, we define  
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0 0

( , ) ( ) ,i i i i

i i

y t  
 

   u uz   (A.4) 

where the base chosen iu  corresponds to the operator  
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FL J D   (A.5) 

Consequently, ˆ .i i iu uL  Using the notation  | i i u u  and replacing 

the following identities: 
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  (A.6) 

in Eq. (A.3), we obtain 
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  (A.7) 

On the other hand, we know that 0( )z  is solution of Eq. (A.2). With this 

substitution in Eq. (A.2) we obtain 

 
2

0 0
0 2

ˆ0 ( ) .
ˆ ˆ

c
 

 
  

 

z z
F z D   (A.8) 

Taking the derivative of Eq. (A.8) with respect to ̂  we obtain 
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3 2

0 0 0
03 2

ˆ ˆ0 .
ˆ ˆ ˆ

c L
  
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   
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uF

z z z
J D   (A.9) 

Where 0 0 ̂  u z  is the eigenvector whose eigenvalue is zero. 

Consequently, we obtain the following identity 

 0 0 0
ˆ ( ) 0.

ˆ
c




  


u uF z D   (A.10) 

The left term of Eq. (A.7) can be express using the Einstein summation 

convention as follows 

 0 0 0
0

0 0

.
ˆ

i i i
i i i

i it t t t t

    

  
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 u u u u

z
  (A.11) 

Replacing Eq. (A.10) and Eq. (A.11) in Eq. (A.7) we obtain 

 

2 2

0
0 2
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t y y
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
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Multiplying by iu , we have 
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ji
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t y y

 
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We assume that near the instability  Re 0.i   We also assume that i  are 

small compare with 0 ,  and for a large time we assume that 0i t    for 

0.i   With these assumptions we can carry out the elimination of the slave 

modes [111]. We obtain the following approximation from Eq. (A.13)  
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  (A.14) 

But in the numerator of Eq. (A.14), the first term is smaller compared with the 

second term; therefore this equation can be reduced to 
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  (A.15) 

We also obtain an equation for 
0  from Eq. (A.13) 
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The last term in Eq. (A.16) can be expressed as follows 
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With this substitution Eq. (A.16) becomes 
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Where  

 0 0  u uD   (A.19) 

and 
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u u u uD D

  (A.20) 

Now we are going to find the coefficient of the term  
2

0 y   in Eq. (A.18). 

The null eigenvectors 0u  and 0u  satisfy [112]:   
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0 0 02
ˆ 0

ˆ ˆ
c

 
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and 
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u u uFJ D   (A.22) 
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Multiplying Eq. (A.21) from the left with 0u  and Eq. (A.22) from the right with 

0u , and subtracting the resulting equations, we obtain 

 
2 2
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The above equation can be written as 

 0 0 0 0 0 0| 0.
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c
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Integrating Eq. (A.24) two times, we obtain 
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Using the fact that 
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and using partial integration, Eq. (A.25) becomes 
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Thus 
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With this substitution Eq. (A.18) becomes 
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which is the KS equation. 
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A.2 Linear stability analysis and the eigenvalue 

equation  

In the following we will present the derivation of the linear set of eigenvalue 

equations used to determine the stability of the fronts. We obtained Eq. (5.10) 

that involves only the front height ,h  and its Fourier coefficients 
nH   
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h h h h n n x
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We introduce in this equation the solution ( )h x  with the addition of a 

perturbation ( , )H x t , and the equation becomes 
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Keeping only linear terms the equation becomes  
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We consider solutions of the form 

 ( , ) ( ),tH x t e H x    (A.33) 

where   is the growth rate of the perturbation. With this substitution, Eq. (A.32) 

becomes an eigenvalue equation, with   the eigenvalue and H  the 

eigenfunction 
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We introduce the Fourier series on ( )h x  and ( )H x : 

  cosn

n

h nh qx   (A.35) 

and 
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where .q L  With this substitution Eq. (A.34) becomes 
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and projecting over the corresponding cosine function, we have 
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Using the following product to sum formula 
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and taking into account that the integrals are nonzero only when ,m p  we 

obtain  
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       (A.40) 

This linear set of eigenvalue equations on the coefficients pH  can be written in 

compact form as 

    
2 4

  for  1, p p p pm m

m

H pq H pq H A H p       (A.41) 

where  
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