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Resumen

Debido a la generalidad de su formulación, las fases geométricas han sido objeto de

constantes investigaciones en áreas muy diversas y han llevado a muchos desarrollos,

tanto en aplicaciones como en trabajo teórico. Esta tesis se incluye dentro de las

investigaciones experimentales y se enfoca en las fases geométricas que aparecen al

manipular el grado de libertad de polarización. Se divide en dos partes. La primera

se centra en los aspectos teóricos esenciales que definen y relacionan los estados

mixtos de polarización con la luz láser parcialmente polarizada, y en las propiedades

de las fases geométricas que aparecen en los primeros. La segunda parte presenta

dos arreglos experimentales, uno que genera estados polarización y uno que permite

medir la fase geométrica adquirida por dichos estados después de alguna evolución

unitaria. El primero otorga un control casi arbitrario del estado de polarización de

la luz láser que deja el arreglo y, con una ligera modificación, puede utilizarse en

fotones individuales con casi idéntica efectividad. El segundo utiliza al primero para

generar estados mixtos de polarización y luego los somete a distintas evoluciones.

Las fases geométricas adquiridas son entonces determinadas mediante su relación

con las fases de Pancharatnam correspondientes, que son cantidades directamente

observables. Si bien hubo casos en los que la fase no se pudo determinar debido a

su sensibilidad a errores experimentales, en aquellas mediciones en las que se pudo

obtener un valor experimental este se ajustó muy bien a la predicción teórica.
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Abstract

Because of the generality of their formulation, geometric phases have been a subject

of continuous research in very different areas and have led to various developments,

both in applications and in theoretical work. This thesis falls in the line of experi-

mental investigations and focuses, in particular, in the geometric phases that appear

in mixed states of the polarization degree of freedom. It consists of two parts. The

first one deals with the essential theoretical aspects that define and relate polar-

ization mixed states with partially polarized laser light, and with the properties of

geometric phases that show up in the mixed states in question. The second one

presents two experimental setups, designed to prepare polarization states and to

generate and measure geometric phases, respectively. The first array provides al-

most arbitrary control over the generated polarization state and can be modified to

operate on single photons with the same effectiveness. The second array uses the

first one to generate mixed states and then subjects them to different evolutions,

thereby acquiring geometric phases. The latter are then measured by relating them

to the corresponding Pancharatnam phases, which are directly observable quanti-

ties and the results are contrasted with the theoretical predictions. Even though

not all intended points could be measured because of the sensibility of the phase

to experimental errors, a very good agreement was found in all cases in which the

phase could be determined.
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Chapter 1

Introduction

Geometric phases have been a subject of intense research since their discovery in

1984 [1]. From then on, theoretical generalizations applicable to ever more general

physical situations (both classical and quantum) have been developed and relations

with themes as diverse as gauge theory, topology, condensed matter physics and

Hamiltonian dynamics, to name a few, have been established. Implications for

quantum computing have also been theorized since [2].

Experimental investigations have gone hand in hand with theoretical developments.

Direct measurements have been done in several platforms: superconducting cir-

cuits [3], ultracold neutrons [4], photon polarization [5], etc. Several of their prop-

erties, such as their response to noise, have also been tested [6]. Furthermore,

geometric phases have also been used as tools to, for example, asses the conduc-

tance properties of some materials [7], or to create artificial magnetic fields acting

on atoms [8].

In view of all these different approaches to the subject, this work centers on one

of them, namely the experimental measurement of geometric phases that arise in

photon polarization. It should therefore be considered as the natural continuation

of [5], one that tries to extend its results to the realm of polarization mixed states.

Even though experiments of these kind have already been done [9], we can address

these polarization mixed states with greater generality and we try to demonstrate

this capability in the experiments we have performed.

This Thesis is organized as follows: in Chapter 2 we revise the concepts of mixed

states, how do they arise in the polarization degree of freedom and how are they

understood in terms of the standard quantum description of the Electromagnetic

Field. A parallel is also made with the polarization of classical lasers so that the

sequence of experiments presented in this Thesis can be better understood. Chap-

ter 3 deals properly with subject of phases in general (geometric and otherwise),
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and a summary of their main properties is presented. In Chapter 4 we present our

main results: the sequence of experiments that allowed the preparation of arbitrary

polarization mixed states and the subsequent generation and measurement of geo-

metric phases in them. We close with a summary of this work and our conclusions

in Chapter 5.
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Chapter 2

Mixed states in polarization optics

In this chapter, the most important properties of mixed states are revised. Polar-

ization mixed states are then discussed in the context of single-photon states: how

do they arise and what are their properties. The partial polarization properties of

a laser source are then discussed and the known parallelism between both systems

(single photon and laser polarization) is reviewed because it will be of use in the

experiment.

2.1 General overview of mixed states

Mixed states are ubiquitous in physics. No real system (except perhaps for the uni-

verse itself) is perfectly prepared nor completely isolated. Either there is imperfect

knowledge about its quantum state or it is entangled with another system, in which

case a pure state description will not suffice. The latter can only be used when

certain approximations regarding the environment and state of knowledge of the

observer can be made.

The description of mixed states is done with density matrices or operators. They

are constructed as follows: if there is imperfect knowledge about the quantum state

of the system, i.e. if the system is known to be in state |ψi〉 with probability pi, the

density operator is shown in (2.1).

ρ =
∑
i

pi|ψi〉〈ψi| (2.1)

If the system is entangled with other systems, the prescription is (2.2), where |Ψ〉S+E

is the full quantum state of the system plus anything it is entangled with (denoted

4



by E) and trE is a trace with respect to the degrees of freedom of these other things.

ρ = trE(|Ψ〉S+E〈Ψ|S+E) (2.2)

In any case, if the larger system is already described by a density matrix ρS+E, the

rule generalizes straightforwardly to (2.3).

ρ = trE(ρS+E) (2.3)

The most important properties of density matrices are listed in (2.4). Demonstra-

tions can be found in any standard text in Quantum Mechanics.

ρ† = ρ

tr(ρ) = 1

tr(ρ2) ≤ 1

P|k〉 = Probability of detecting the system in state |k〉

= 〈k|ρ|k〉

〈O〉 = Mean value of observable O when measuring state ρ

= tr(Oρ) (2.4)

2.2 Polarization mixed states

2.2.1 Single photon polarization

To study polarization mixed states, the first thing to do is to identify the relevant

pure states. In the case of the electromagnetic (EM) field, the standard basis vectors

used to construct quantum states are denoted by the occupation number of each

mode of the field. In turn, each mode is labelled by the momentum and polarization

of the photons it can contain. There’s the vacuum (all occupation numbers equal

to zero)(2.5), for example, and one-photon states (all occupation numbers equal to

zero except for one equal to one)(2.6).

|vac〉 = ...|0〉k1,H |0〉k1,V |0〉k2,H |0〉k2,V |0〉k3,H ... (2.5)

|k2, H〉 = ...|0〉k1,H |0〉k1,V |1〉k2,H |0〉k2,V |0〉k3,H ... (2.6)

To avoid the cumbersome repetition of irrelevant modes of the EM field (whose oc-

cupation number will always be zero), the shorthand notation shown in (2.6) will be

employed. There, a ket such as |k2, H〉 denotes a configuration of the EM field in

5



Single photon
source

M

M

UP

X

Y

M

Figure 2.1: Photons travel only along one path, so the polarization label suffices. The
M’s stand for mirrors and UP is a generic polarization transformation.

which there is one photon present with momentum k2 and H polarization (measured

with respect to a specified direction in the plane perpendicular to k2). Since most

of the work will be done with one-photon states, this will be enough.

The momentum label will be omitted when a single beam is considered since no con-

fusion can arise, even if the momentum of the photon changes (see Fig.(2.1)). In the

case of an interferometer, there will be times at which superpositions of states with

different momenta are present (though while still working with one photon states).

States will then be labelled by the direction in which the photon is propagating

(along with its polarization) with respect to some coordinate axes. Situation II in

Fig.(2.2) illustrates this case. The state is written in (2.7) and the action of most

optical elements (beam splitter, mirrors, wave plates, etc.) can be described very

succinctly in terms of these labels (see [10]).

|ψ〉 ∝ |k1, H〉+ |k2, H〉 = |X,H〉+ |Y,H〉 (2.7)

Situation III involves states with the same momentum but non-overlapping in space.

An exhaustive description which makes manifest the difference between the beams

would require the use of wavepackets and superpositions of states like (2.6) with

different transverse momenta, but since one is usually interested in the outputs of

the interferometer, no special notation will be devised and this configuration will

not be mentioned again.

When talking about a single photon polarization mixed state, what is meant are

configurations of the EM field that are described by a density matrix of the form of

6



Single photon
source

M

BS

BS

M

X

Y II

III

Figure 2.2: Two situations are shown. II involves a superposition of one-photon states
that propagate in different directions and the state is denoted in (2.7). III
involves superpositions of one-photon states propagating in the same direc-
tion. Distinction between the arms is related to wave packet localization,
which necessarily involves many states like (2.6).

(2.8).

ρ = a|k, H〉〈k, H|+ γ|k, H〉〈k, V |+ γ∗|k, V 〉〈k, H|+ (1− a)|k, V 〉〈k, V |

= a|H〉〈H|+ γ|H〉〈V |+ γ∗|V 〉〈H|+ (1− a)|V 〉〈V | (2.8)

(2.8) describes the presence of one photon traveling in a certain direction without a

sharp polarization. The presence of only one direction should be stressed. If |k, V 〉
were replaced by |k′, V 〉, the state would be a mixture of EM field configurations

with a photon traveling in different directions correlated with their polarization. Of

course, if two detectors: (1) collected photons coming with k and k′ respectively,

(2) did polarization analysis such that both beams were projected into the same

polarization state and (3) summed their individual counts (thereby forgetting from

which path the photons came), the results would be accurately described by (2.8).

Physically, however, it is a very different situation.

(2.8) can also be obtained in more general (and realistic) cases. Instead of working

with states such as (2.6), the modes of the EM field which are not (k, H) nor (k, V )

can be in any other state. (2.8) results, then, from tracing with respect to these

other modes (leaving aside, perhaps, modes that can interact with the original ones

via beam splitters and such).

In any case, the state ρ can be taken directly from (2.8) and analyzed. Since it

is a hermitian operator in a two-dimensional space, it has a matrix representation

7



spanned by the unit matrix and the Pauli matrices.

ρ =
1

2
+

1

2
S · σ (2.9)

The requirement tr(ρ2) ≤ 1 implies |S| ≤ 1. This means that the three-dimensional

vector S (called the Stokes vector) lies within the unit sphere in R3. Because ρ

and S are in a one to one correspondence, the tip of S can be identified with ρ.

Therefore, any kind of transformation on ρ can be visualized geometrically in this

sphere, commonly called the Poincaré sphere, which is analogous to the Bloch sphere

for spin 1
2
. Pure states lie at the surface, while the most incoherent mixture (ρ = 1

2
)

rests at the origin. Partially polarized states lie between them.

By diagonalizing (2.9) one obtains (2.10), where S = P n̂ (with P ∈ [0, 1] and

n̂ · n̂ = 1) and |n̂〉 is a pure state whose Stokes vector lies in the direction n̂ in the

sphere.

ρ =
1 + P

2
|n̂〉〈n̂|+ 1− P

2
|−n̂〉〈−n̂| (2.10)

When acting with a unitary operator on ρ, the degree of polarization, P (equal

to
√

1− 4 det ρ), is kept fixed while the kets |n̂〉 and |−n̂〉 change. The result of

U |n̂〉〈n̂|U † can be described as a rotation in the Poincaré sphere: U |n̂〉〈n̂|U † =

|RU · n̂〉〈RU · n̂|, where RU is a rotation matrix in R3 that depends on U .

2.2.2 Laser polarization

The classical analog of the above situation would be a partially polarized laser

source. The main difference between both is that partial polarization is a property

of the quantum state itself in the former and of the expectation value of the electric

field operator in the latter. Nevertheless, their mathematical description is identical

(modulo some nomenclature). There exists for this case an object analogous to (2.9)

called the polarization matrix [11] and we shall show how it arises.

The quantum state of a horizontally polarized EM field produced by a single-mode

laser working well above threshold can be described by a coherent state (2.11) with

an extremely large mean number of photons (n̄ = |α|2).

|ψ〉 = ...|0〉Fk1,H |0〉
F
k1,V |α〉

C
k2,H |0〉

F
k2,V |0〉

F
k3,H ... (2.11)

|α〉Ck2,H = e−|α|
2/2
∑
n=0

αn√
n!
|n〉Fk2,H

The F and C superscripts mean Fock and Coherent, respectively, and are used to

distinguish these two very different kinds of states. Note that (2.11) really describes
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a non-localized source with both infinite space and time extent and it is, therefore,

an approximation. For now it suffices, but situations will be encountered in which

this assumption will be relaxed.

A laser source in the same momentum mode (k2) but another polarization is repre-

sented as (2.12).

|ψ′〉 = ...|0〉Fk1,H |0〉
F
k1,V |α〉

C
k2,H |β〉

C
k2,V |0〉

F
k3,H ... (2.12)

It is not made from the superposition of states like (2.11), as happens in the single

photon case but remains a product state with respect to the EM field modes.

What is additive, though, is the expectation value of the (Heisenberg picture) electric

field operator (2.13).

Ex(t) =

∫
k

fke
ik·x−iωkt(ak,H ε̂k,H + ak,V ε̂k,V ) + h.c. (2.13)

ak,H is a destruction operator that destroys a photon of momentum k and H po-

larization, ε̂k,H is a unit vector pointing in the H direction (defined with respect to

k), fk includes some factors related to normalization and h.c. stands for hermitian

conjugate.

For example, the expectation value of (2.13) with respect to (2.11) is (2.14) and

with respect to (2.12) is (2.15).

〈Ex(t)〉ψ = fk2e
ik2·x−iωk2

tαε̂k2,H + c.c. (2.14)

〈Ex(t)〉ψ′ = fk2e
ik2·x−iωk2

t(αε̂k2,H + βε̂k2,V ) + c.c. (2.15)

The c.c. stands for complex conjugate. Because it contains no new information, the

c.c. will be omitted from now on. The prefactors including fk and eik·x−iωkt will

also be omitted since they only affect calculations that take into account the exact

intensity and phase of the field (when coherence is involved, for example) and all

will be normalized to unit intensity (therefore |α|2 + |β|2 = 1).

The resulting quantity is very similar to a one photon quantum state. (2.16) is the

quantum state of a photon with a given polarization whereas (2.17) is the electric

field of a laser with that same polarization.

|φ〉 = α|k, H〉+ β|k, V 〉 (2.16)

E+ = αε̂k,H + βε̂k,V (2.17)
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The analogy is very strong and there is the temptation to unify the descriptions by

setting |k, H〉 ↔ ε̂k,H . If this is done, it should be remembered that they mean two

very different things when referring to single photons or to lasers. In the former they

are vectors in Hilbert space and in the latter they are vectors in three-dimensional

space.

If the analogy is to be taken seriously, density matrices should have an analogue

too. By mimicking their construction but using (2.17), a dyad is obtained. It can

be represented in matrix form (2.18) where the first and second entries, be it of a

column or row, stand for ε̂k,H and ε̂k,V components. Since the matrix entries are

quadratic functions of the electric field components, they are easily connected to

intensity measurements.

J =

(
|α|2 αβ∗

α∗β |β|2

)
(2.18)

More generally, given the quantum state (of a laser) in (2.19), the expectation value

of the positive frequency part of the electric field operator is calculated (2.20). Note

that even taking into account spatial localization (enforced by the presence of several

adequate αk and βk) the quantum state remains factorizable.

|ψ〉 = ...|αk1〉Ck1,H |βk1〉
C
k1,V |αk2〉

C
k2,H |βk2〉

C
k2,V |αk3〉

C
k3,H ... (2.19)

E+
x (t) =

〈∫
k

fke
ik·x−iωkt(ak,H ε̂k,H + ak,V ε̂k,V )

〉
(2.20)

=

∫
k

fke
ik·x−iωkt(αkε̂k,H + βkε̂k,V )

Since the laser electric field is paraxial, the only αk and βk appreciably different

from zero are those for which k has a very large component along a fixed direction

(with an almost fixed magnitude because lasers have a very narrow spectrum) in

the laboratory frame with some small components in the transverse directions. This

allows the definition of global H and V directions (2.21).

E+
x (t) =

(∫
k

fke
ik·x−iωktαk

)
ε̂H +

(∫
k

fke
ik·x−iωktβk

)
ε̂V (2.21)

= E+
H(x, t)ε̂H + E+

V (x, t)ε̂V

This should come as no surprise since anyone who has seen a laser knows that

it propagates basically in one direction and its transverse plane is a well-defined

quantity. With this, the space and time dependent matrix (2.22) is constructed.

Jij(x, t) = E+
i (x, t)E+

j (x, t)∗ i, j = H, V (2.22)

10



As it stands, (2.22) describes the instantaneous polarization state at a specific point

in space. It is totally polarized by construction. However, detectors have a finite

space and time resolution so they really average over a time period T and a spatial

area A. The complete definition that takes this into account is (2.23).

Jij =
1

T

∫ t0+T

t0

dt

∫
A

Jij(x, t)d
2x (2.23)

It should be clear that this integration procedure is completely analogous to (2.1).

Each space-time point in the integral contributes one projector to the sum. The

vector (2.21) has complex entries and while not normalized, can be considered to be a

normalized vector times its modulus (
√
|E+

H(x, t))|2 + |E+
V (x, t)|2). The normalized

vector part contributes the |ψi〉〈ψi| terms, while the modulus squared is the pi. Since

the different pi sum up to
∫ t0+T

t0
dt
∫
A

(|E+
H(x, t))|2 + |E+

V (x, t)|2)d2x, and there is an

extra 1
T

factor besides the sum, a unit trace normalized polarization matrix can be

defined by (2.24).

ρij =
1
T

∫ t0+T

t0
dt
∫
A
E+
i (x, t)E+

j (x, t)∗d2x

1
T

∫ t0+T

t0
dt
∫
A

(|E+
H(x, t))|2 + |E+

V (x, t)|2)d2x
(2.24)

Many properties follow directly (2.25) because it has been constructed in exactly

the same way as a density matrix would be.

tr(ρ) = 1

tr(ρ2) ≤ 1

ρ =
1

2
+

1

2
S · σ

|S| = P ≤ 1

S = P n̂

ρ =
1 + P

2
|n̂〉〈n̂|+ 1− P

2
|−n̂〉〈−n̂| (2.25)

The state of polarization of the laser source can be visualized in the Poincaré sphere.

The graphical representation is identical, be it a quantum mixed state or a partially

polarized laser state.

It is also a known fact that the representation of a specific polarization changing

operation is the same both for a density matrix (one photon state) or a polarization

matrix (laser state). Elements such as quarter-wave and half-wave plates are asso-

ciated to unitary matrices members of SU(2) that rotate the Stokes vector in the

Poincaré sphere. They act in the following way: ρ → U †ρU . On the other hand,
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polarizers are represented by projection matrices that satisfy P 2 = P and P † = P .

After acting on a state (ρ′ = PρP ), the resulting matrix is no longer trace normal-

ized to unity. In one photon states, the magnitude of the trace is the probability

that the photon is measured in the state into which the polarizer projects, whereas

in laser states it is the intensity of the light transmitted through the element. The

resulting matrix, after trace normalizing it, will now describe either a photon or a

laser with the polarization given by the polarizer.
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Chapter 3

Phases

In this chapter, the different kinds of phases that have appeared in the literature are

described. The experimentally-motivated Pancharatnam phase and theoretically-

motivated Berry/geometric phase are defined and the standard relation between

the two is revised. Some properties of the latter are also discussed, especially their

manifestation in two-state systems, the central focus of this thesis. Following [12],

the definitions are generalized to cope with mixed states, the listed properties anal-

ysed to find how do they change and some specific calculations relevant to two-state

systems are done.

3.1 Pancharatnam’s phase

Let us consider the following situation: a quantum state |ψ〉 undergoes some kind of

cyclic evolution and ends in the state eiφ|ψ〉. The physical state is the same and the

expectation value of any observable is the same for both states. However, if we had

two copies of the initial state, we could make one of them undergo the evolution,

compare it with the second copy (using interferometry, for instance) and extract the

quantity φ. It then seems very natural to consider it as the “relative phase” between

both states. Accordingly, the mathematical definition is given by (3.1).

|ψ0〉 = |ψ〉

|ψf〉 = eiφ|ψ〉

φ = arg 〈ψ0|ψf〉 (3.1)

This definition can be extended to cases in which the evolution is no longer cyclic.

The final state is then no longer equal to the initial state multiplied by a phase factor

but (3.1) is still a well defined quantity (except when both states are orthogonal)
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Figure 3.1: Optical array that introduces a Pancharatnam phase shift. The sequence of
operations the photon undergoes is described in the text.

and is known as the Pancharatnam phase [13] between |ψ0〉 and |ψf〉. This defi-

nition can also be experimentally motivated by considering the setup in Fig.(3.1).

A horizontally polarized photon enters the first BS through input X. Its quantum

state then undergoes a sequence of operations: the action of the first BS and the

mirrors (3.2),

|H〉|X〉 → |H〉|X〉+ |H〉|Y 〉 (3.2)

a polarization transformation that acts only on one arm of the interferometer (3.3),

→ |H〉|X〉+ |Pf〉|Y 〉 (3.3)

the final BS (3.4),

→ (|H〉+ |Pf〉)|X〉+ (|H〉 − |Pf〉)|Y 〉 (3.4)

and a projection on the path degree of freedom (3.5). We have also included a possi-

ble phase difference originated by unequal arm lengths (ϕ) and have not normalized

the states.

PX ∝ ||H〉+ |Pf〉|2 ∝ 1 + |〈H|Pf〉| cos (arg 〈H|Pf〉+ ϕ) (3.5)

If there were no polarization transformation (the map |H〉 → |Pf〉 in (3.3)) then

the probability of detecting a photon in arm X would be PX ∝ 1 + cosϕ and an in-

terferogram could be constructed by varying ϕ. If the transformation is performed,

the interferogram changes in the two very clear ways seen in Fig.(3.2): the visibil-

ity is reduced and a phase shift equal to the Pancharatnam phase appears. The

Pancharatnam phase is, therefore, an experimentally measurable quantity.
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Figure 3.2: φ and IN correspond to ϕ and PX in Eq.(3.5). The orange curve is the stan-
dard interferogram that is measured when no polarization transformation
is applied and path-length difference is varied. The blue curve is measured
when a UP 6= 1 is applied. The phase shift and change in visibility are
manifest.

3.2 Geometric phase

From the theoretical side another phase was defined in 1984 by Michael Berry [1].

Though initially surprising because the main result contradicted the standard lore

about the adiabatic approximation, the subject has grown quite a lot and the con-

cepts have been generalized and applied to very different situations. First of all,

many known phenomena have been interpreted in the light of this concept of ge-

ometric phase. The Foucault pendulum, motion in slightly non-uniform magnetic

fields and the backreaction of the electron system on the heavy-ion system in met-

als [14] are some examples of them. There have also been numerous proposals to

implement quantum logic gates based on geometric phases [2, 15, 16] because there

are arguments showing its resilience to different kinds of noise that are expected to

be present on any real implementation of a quantum computer. The literature is not

conclusive in this respect [17], with some studies showing that it is more sensitive

than other proposals to control parameter noise [18] and decoherence [19], while

others reach the opposite conclusion [20]. Some experimental studies in this line

are [6, 21] It has also been measured numerous times in different physical systems:

superconducting circuits [3], ultracold neutrons [22], photon polarization [5], etc. In

yet another experimental context, geometric phases are also used to fabricate arti-

ficial gauge fields [8], both Abelian and non-Abelian. Interest in a related cousin of
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the geometric phase, one that is related to the topology of the space in which some

kind of evolution occurs, has also arisen [23–25]. It has been found to be relevant in

condensed matter systems such as topological insulators [7].

3.2.1 Berry’s original approach

Even though most of the conditions imposed by Michael Berry to study geometric

phases were later relaxed, it is instructive to describe and analyze the situation

he originally considered [1] because it is much more directly connected to physical

systems. We will first describe qualitatively the conclusions to which he arrived and

then complement them with the appropriate mathematical treatment.

Consider a spin 1/2 system in the presence of a constant classical magnetic field.

The solution to the spin’s time development can be very easily stated: the spin

vector (given by s(t) = 〈ψ(t)|σ|ψ(t)〉) precesses around the magnetic field at a

constant rate, proportional to the magnitude of B. What Berry did was to consider

the situation in which the field’s direction changed very slowly as compared to the

precession period of the spin and in which both were initially aligned. As a result,

the spin vector slowly followed the magnetic field throughout its movement in 3D

space (see Fig.3.3a). In the final situation, after performing a closed loop, both B

and s end up pointing in the initial direction (Fig.3.3b). Under this conditions,

one can also calculate the evolution of the system’s state vector. If it started in

state |ψ0〉, the final state can at most differ by a phase factor from the initial state

(|ψf〉 = eiφ|ψ0〉) since the spin vector ends up pointing in the initial direction.

Schrödinger’s equation allows us to calculate φ explicitly, and what Berry found

was that it could not be gauged away (we will shortly clarify what this means).

This suggested that it must be somehow related to a property of the spin vector’s

trajectory (evolution in projection space), and he succeeded in proving that there

was a contribution to φ called φG such that φG = −Ω/2, where Ω is the solid angle

subtended by the curve traversed by the spin vector as it evolved under the action

of B.

By gauging away the phase we mean the following: given a magnetic field B, a

state vector that describes a spin pointing in the same direction as B is

|B〉 = cos(θB/2)| ↑〉+ sin(θB/2)eiξB | ↓〉 (3.6)

As the evolution develops, B becomes a function of time and so the system’s state

vector is given by eiφ(t)|B(t)〉 where it is understood that |B〉 is always of the

form given by (3.6). When B closes a loop after time T , then |B(0)〉 = |B(T )〉
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(a) (b)

Figure 3.3: Trajectories followed by the spin vector and magnetic field when the latter
changes its direction adiabatically. The former precesses quickly about the
instantaneous B as it evolves smoothly (if they are not initially aligned). (a)
shows an open curve, while (b) shows that when B does a closed loop, so
does s approximately.

because |B〉 is a function of time only indirectly through B and B(0) = B(T ).

One could redefine |B′〉 = eiα(B)|B〉 trying to make eiφ(t) disappear and it turns

out one can do that for most times. This, however, does not work for t = T .

Such a transformation is known as a gauge transformation and so, in this language,

φ(T ) cannot be “gauged” away. For comparison purposes, we reproduce the full

calculation of φ(t) and show the gauge invariance of φ(T ).

First of all, a general spin 1/2 state can be written as |ψ〉 = c+(t)|B(t)〉 +

c−(t)|−B (t)〉. Plugging this into Schrödinger’s equation and projecting into 〈B(t)|
we obtain (3.7) by taking into account that |B(t)〉 is the instantaneous eigenvector

(with eigenvalue EB(t)) of the standard spin 1/2 Hamiltonian: Ĥ = −µσ ·B(t).

〈B(t)|i d
dt
|ψ〉 = i

dc+(t)

dt
+ ic+(t)〈B(t)| d

dt
|B(t)〉+ ic−(t)〈B(t)| d

dt
|−B (t)〉

〈B(t)|Ĥ|ψ〉 = c+EB(t) (3.7)

Adiabaticity guarantees us that 〈B(t)| d
dt
|−B (t)〉 ≈ 0. This can be seen by taking

the time derivative of σ ·B|−B (t)〉 = −B(t)|−B (t)〉 (B is the magnitude of B)

and then projecting on 〈B(t)|. The result is shown in (3.8), where b is the unit
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vector directed along B. By looking at (3.7) and noticing that the typical timescale

of evolution is given by frequency E/~, we see that if the direction of B changes

slowly as compared to E/~, then we can neglect the term we have analyzed.

〈B(t)| d
dt
|−B (t)〉 = −1

2
〈B(t)| σ· 1

B

dB

dt
|−B (t)〉

= −1

2
〈B(t)| σ· db

dt
|−B (t)〉 (3.8)

Because of this, (3.7) reduces to (3.9) and can be exactly solved.

i
dc+(t)

dt
+ ic+(t)〈B(t)| d

dt
|B(t)〉 = c+EB(t) (3.9)

Plugging in the initial conditions (c+(0) = 1, c−(0) = 0) we arrive at the conclusion

that c+ is a pure phase factor (3.10) and that |ψ(t)〉 = c+(t)|B(t)〉 = eiφ(t)|B(t)〉,
with φ(t) given by (3.11).

c+(t) = ei(−
∫ t
0 EB(t)dt+i

∫ t
0 〈B(t)| d

dt
|B(t)〉dt) (3.10)

φ(t) = −
∫ t

0

EB(t)dt+ i

∫ t

0

〈B(t)| d
dt
|B(t)〉dt (3.11)

Instead of using the set of |B〉 kets we could have used the |B′〉 = eiα(B)|B〉 kets.

The solution of Schrödinger’s equation did not rely on any of these specific gauges,

so we can reexpress the final result as |ψ(t)〉 = eiφ
′(t)|B′(t)〉 with φ′ given by (3.12).

Note that the eigenvalues of Ĥ are independent of gauge as well.

φ′(t) = −
∫ t

0

EB(t)dt+ i

∫ t

0

〈B′(t)| d
dt
|B′(t)〉dt (3.12)

Gauging away the phase means that by choosing adequately the set of |B′〉 we can

make φ′(t) = 0. To do this explicitly we replace the definition of the |B′〉 in terms

of the |B〉 in (3.12) and arrive at (3.13) and (3.14).

〈B′(t)| d
dt
|B′(t)〉 = 〈B(t)|e−iα(B(t)) d

dt
(eiα(B(t))|B(t)〉)

= 〈B(t)| d
dt
|B(t)〉+ i

dα(B(t))

dt
(3.13)

φ′(t) = −
∫ t

0

EB(t)dt+ i

∫ t

0

〈B(t)| d
dt
|B(t)〉dt−

∫ t

0

dα(B(t))

dt
dt

φ′(t) = φ(t)− (α(B(t))− α(B(0)) = φ(t)−∆α (3.14)
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It then seems very straightforward to nullify φ′(t) by adjusting ∆α. However, this

cannot be done at t = T . The reason is that B returns to its initial position, and

so |B′(T )〉 = |B′(0)〉. This implies that eiα(B(T ))|B(T )〉 = eiα(B(0))|B(0)〉, and since

|B(T )〉 = |B(0)〉 as well, it follows that α(B(T )) − α(B(0)) must be an integer

multiple of 2π. This leaves no freedom to cancel φ(T ).

This property of gauge invariance (module 2π) is also shared by the quantity φG =

i
∫ T

0
〈B(t)| d

dt
|B(t)〉dt which can be seen to be just a part of φ. It is quite obvious

from its definition that it does not depend on the way B changes with time. As far

as evaluation of the integral goes, time is just a parameter and the integral is seen

to be reparametrization invariant (a feature that φ itself does not share, which is

why the φG part has been singled out). The only important thing is the curve that

the magnetic field performed as the evolution unfolded. This means that φG can be

rewritten as (3.15), where Stokes’ theorem has been used to transform the line into

a surface integral in the space of parameters of the Hamiltonian (B).

φG = i

∮
C

〈B|∇B|B〉 · dB =

∫
S

∇B×(i〈B|∇B|B〉) · dS (3.15)

Parametrizing the surface S with the polar (θB) and azimuthal (ξB) angles that

B makes with the coordinate axes and using (3.6), the surface integral reduces to

(3.17) after some manipulations (3.16).

∇B×(i〈B|∇B|B〉) = i∇B(〈B|)×∇B(|B〉)

= i∇B(sin(θB/2)e−iξB)×∇B(sin(θB/2)eiξB)

= sin(θB/2) cos(θB/2)∇BξB ×∇BθB

= −1

2

B

B3
(3.16)

φG =

∫
S

∇B×(i〈B|∇B|B〉) · dS = −1

2

∫
S

B

B3
· dS = −1

2

∫
S

dΩ (3.17)

φG = −Ω

2
(3.18)

This provides further evidence of the gauge invariant character of either φ or φG.

The trajectory followed by the spin vector or the magnetic field in 3D space is in-

dependent of the gauge chosen (s(t) = 〈B(t)|σ|B(t)〉 = 〈B′(t)|σ|B′(t)〉) and so is

Ω, since it is defined entirely in terms of this trajectory (see Fig.3.4).

Some final points to consider are the following: both s and B performed the same

path since they were always aligned, so a valid question is whether φG should be

defined in terms of the curve made by B or by s. Insofar as the example of this
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Figure 3.4: The relevant solid angle is shown when B does a closed loop. The geometric
phase can be directly calculated from it.

section shows, the distinction is irrelevant. However, the difference turns out to

have consequences in the non-adiabatic case since then s and B no longer remain

aligned, even if they started so. The question of which of these trajectories should

be considered becomes then a question about dynamics vs. kinematics because pa-

rameters such as B enter the evolution naturally through the Hamiltonian, whereas

the trajectory made by s can be analyzed independently of the Hamiltonian that

generated it.

3.2.2 Kinematic formulation

The discussion of the last section opens the question of how to generalize the defi-

nition of geometric phases so that more general situations can be encompassed. As

developments of the field have shown, one can relax the conditions of adiabaticity,

closed trajectories, use of pure states, unitary evolutions, etc. The price to pay is

some degree of mathematical abstractness and some detachment from real physical

systems. In any case, we will try to develop the exposition such that the concepts

surveyed in the last section are connected to the definitions in this one so as to not

loose the feeling of what we are talking about. We will follow the approach described

in [26] and [27].

Definition

We will keep working with pure states and leave mixed states for later. Leaving that

aside, the first question to be asked is what features are desirable in a more general

20



definition of geometric phases. Most of them are listed in the next paragraph.

1. It must reduce to Berry’s result in the case of adiabatic cyclic evolution.

2. In two level-systems, it must depend on the path made by s rather than

B. The reason is one of simplicity. A general time varying B has a very

complicated effect on the system. Relating in a simple way information about

the curve made by B and some kind of phase in the system may prove to be

very difficult.

3. In systems bigger than two-level, it must depend on the path made by |ψ〉〈ψ|
(the system’s density matrix) in projective space (P-space from now on). This

is because in two-level systems, there is a one to one correspondence between

|ψ〉〈ψ| and s (|ψ〉〈ψ| = 1+s·σ
2

). |ψ〉〈ψ| serves as a natural generalization of s.

This also ensures gauge invariance.

4. It must be independent of the parametrization of the curve made by |ψ〉〈ψ|
since it must depend only on the curve itself.

A final remark is that, even if the geometric phase depends only on the curve in

P-space, there is no inherent problem in defining it in terms of state vectors |ψ〉 as

long as such a quantity possesses the properties that have been listed.

Building on the results of the previous section, a quantity invariant under curve

re-parametrizations is (3.19).

i

∫ t

0

〈B(t)| d
dt
|B(t)〉dt (3.19)

This suffers from various defficiencies, however. First of all, adopting the kine-

matic viewpoint means that reference to Hamiltonian parameters such as B must

be avoided. Because of this, we consider the set of |ψ(s)〉 for s ∈ [si, sf ] instead of

|B(t)〉. The set of |ψ(s)〉 defines a curve in Hilbert space (the succession of different

|ψ〉 as s varies) and this curve has an image in P-space. With this prescription,

(3.19) can be reformulated as (3.20).

− φD = i

∫ sf

si

〈ψ(s)| d
ds
|ψ(s)〉ds (3.20)

(3.20) still suffers from a problem: it is not gauge invariant. Suppose we define

|ψ(s)〉 = e−iα(s)|ψ′(s)〉. In a way analogous to (3.14), we obtain:

− φD = −φ′D + α(sf )− α(si) (3.21)
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This time, however, there is no relation between α(sf ) and α(0) so they do not cancel

each other. This illness can be cured by observing that the previously defined Pan-

charatnam phase (3.1) behaves in a very similar way under gauge transformations

(3.24).

φP = arg〈ψ(si)|ψ(sf )〉 (3.22)

= arg(〈ψ′(si)|ψ′(sf )〉e−i(α(sf )−α(si))) (3.23)

= φ′P + α(si)− α(sf ) (3.24)

This naturally implies that (3.25) is a gauge invariant quantity.

φG = arg〈ψ(si)|ψ(sf )〉+ i

∫ sf

si

〈ψ(s)| d
ds
|ψ(s)〉ds = φP − φD (3.25)

The decomposition φG = φP − φD makes it clear that the Pancharatnam phase

can be considered as the sum of two parts: a geometric one, that depends only on

the geometry of the curve in P-space and a dynamic one that does not posses that

property.

(3.25) will serve as the generalized definition of geometric phase. It has already

been shown that it is both reparametrization and gauge invariant. It also reduces

to the Berry phase in the situation he considered, as we argue next: when a system

in an eigenstate of a nondegenerate Ĥ undergoes adiabatic evolution, its density

matrix is in a one to one correspondence with the parameters of Ĥ for all times.

Up to a gauge transformation, so are the state vectors. For definiteness, a gauge

is chosen such that the state vector evolves only through its dependence on the

Hamiltonian parameters. It is permissible to do so because any gauge will deliver

the same answer. After a cyclic evolution, the Hamiltonian parameters return to

their initial value, and so does the state vector. Because of this, the Pancharatnam

phase after this trajectory is 0 (argument of 1). The geometric phase then reduces

to expression (3.15).

Open and segmented curves

Definition (3.25) has some mathematical subtleties. Consider a curve in Hilbert

space (and its image in P-space) composed of two segments: one goes from |ψ1〉
to |ψ2〉 and the second one from |ψ2〉 to |ψ3〉, as can be seen in Fig.(3.5). A valid

question is how does the geometric phase of the whole (P-space) curve compares to

the sum of the geometric phases of its segments. Since the dynamic phase is, by

definition, an additive quantity, the difference is given entirely by the Pancharatnam
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Figure 3.5: Two curves in P-space are shown. In the text it is argued that φI+IIG 6=
φIG + φIIG . Thus, geometric phases are generally not additive functions of
curves.

terms (3.26).

φI+IIG − (φIG + φIIG ) = arg(〈ψ1|ψ3〉〈ψ3|ψ2〉〈ψ2|ψ1〉) (3.26)

It is in general different from 0. When considering curves composed of more seg-

ments, the structure of expression (3.26) is preserved but longer chains of inner

products appear.

Of particular interest is the case in which the full curve is closed in P-space and it is

divided in just two segments, as in Fig.(3.6). Using (3.26) with |ψ3〉 = eiφ|ψ1〉, the

expression on the right hand side cancels because it reduces to arg(〈ψ1|ψ2〉〈ψ2|ψ1〉) =

arg(|〈ψ1|ψ2〉|2) = 0. In this particular case the geometric phase is additive. This is

a fact that will be important in the experimental section. From a theoretical point

of view, such additiveness is also useful in assigning a geometric meaning to the ge-

ometric phase of an open curve. Let’s start with curve I (see Fig.3.6), which is open

in P-space. It can be closed with curve II, for which φIIG = 0 (these curves do exist,

as will be shown in a later section). Therefore φI+IIG = φIG. The conclusion is that

the geometric significance of φIG is the same as the significance of the closed curve

obtained by completing I with this special curve II. Thus, geometric significance of

geometric phases of any kind of curve can be phrased in terms of closed curves and

geometric phases in that context are more easily interpreted. In the Berry case, for

example, they are related to solid angles.

23



Figure 3.6: When two curves form a closed loop, their geometric phases are additive.
See text for more details.

Zero geometric phase curves

Let’s now consider these zero phase curves. We are only interested in the P-space

curve. Therefore we are free to use any gauge we would like. In particular, we choose

one such that the Pancharatnam phase becomes zero (this means 〈ψ0|ψf〉 real and

positive). The only remaining condition to guarantee zero geometric phase is (3.27)∫ sf

s0

〈ψ(s)| d
ds
|ψ(s)〉ds = 0 (3.27)

This can be satisfied if the stronger condition 〈ψ(s)| d
ds
|ψ(s)〉 = 0 is enforced. Even

then, it can be easily seen that the curve is not unique in general. To make this point

clearer, let us restrict ourselves to a three-level system and work in an orthonormal

basis in which the coefficients of |ψ0〉 and |ψf〉 are all real. Both states can then be

represented as points in the unit sphere in R3 (all states are normalized to unity).

This can be done with any state that has real coefficients in this basis. It follows

that a curve in this sphere represents a curve in Hilbert space that joins |ψ0〉 and

|ψf〉 only through states with real coefficients. The condition 〈ψ(s)| d
ds
|ψ(s)〉 = 0 is

then automatically satisfied because in these kind of states it is equivalent to the

normalization condition (a fact that can be easily verified by taking the derivative

of 〈ψ|ψ〉 = 1). Any such curve will accumulate no geometric phase.

The ambiguity in the definition of the zero phase curves means that the closed

curve from which an open curve inherits its geometric significance is not unique.

All these closed curves and the original open curve share the same geometric phase

24



and trying to relate it to some straightforward geometric quantity (such as solid

angles) may prove to be complicated in general. In any case, it would be convenient

to select among this closing curves one that possesses another geometric property.

Fortunately the two-state system gives a clue as to what should this property be. It

can be demonstrated that in this case the zero phase curve (in P-space) is unique

and can be parametrized in the way shown by (3.28).

|ψ(s)〉 = |ψ0〉 cos(s) + (|ψf〉 − |ψ0〉 cos(sf ))
sin(s)

sin(sf )
s ∈ [0, sf ]

〈ψ0|ψf〉 = cos(sf ) (3.28)

Geodesics

Parametrization (3.28) makes no reference to the dimension of the Hilbert space

involved, so it can be used in larger systems. In any case, the curve in P-space to

which it is associated has an intriguing property. It minimizes a certain functional

that is associated to the notion of distance in P-space. These curves are, therefore,

geodesics and this is the property that will be required to unambiguously complete

an open curve. They can be constructed by the following prescription [26].

The length element in RN is identified with the expression dl2

ds2
=
∑

i
dxi
ds

dxi
ds

, where the

xi are the cartesian coordinates in the space. In an analogous manner, the coefficients

of a state vector in a particular basis can be considered to be its coordinates in

Hilbert space. With |ψ〉 =
∑

i ci|i〉, the line element would be dl2

ds2
=
∑

i
dc∗i
ds

dci
ds

where

the complex conjugate has been included to guarantee that the expression is real

and positive. Such an expression is in fact basis independent and can be rewritten

as dl2

ds2
= d〈ψ|

ds
d|ψ〉
ds

. As it stands, it is gauge-dependent and so cannot represent any

distance in P-space. This is because the quantity d|ψ〉
ds

does not transform in the

same way as |ψ〉 (see 3.29).

|ψ′〉 = e−iα(s)|ψ〉
d|ψ′〉
ds

= e−iα(s)(
d|ψ〉
ds
− idα(s)

ds
|ψ〉) (3.29)

To fix it, some kind of covariant differentiation must be introduced in order that

(D|ψ〉)′ = D′|ψ′〉 = e−iα(s)D|ψ〉. By examining (3.29), it becomes apparent that

a change of gauge introduces a spurious longitudinal component (parallel to |ψ〉).
This means that considering the component of d|ψ〉

ds
transverse to |ψ〉 might cure

the problem. Defining D|ψ〉
ds

= d|ψ〉
ds
− |ψ〉〈ψ|d|ψ〉

ds
, a quick calculation shows that

it satisfies (D|ψ〉)′ = e−iα(s)D|ψ〉. Therefore dl2 = (D〈ψ|)(D|ψ〉) = ||D|ψ〉||2 is
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a gauge invariant quantity and can be used as a definition of distance in P-space.

Geodesics are thus given by minimizing the funcional (3.30) subject to the restriction

of constant magnitude of the state (3.31).

S =

∫ sf

0

√
(D〈ψ|)(D|ψ〉) =

∫ sf

0

√
〈v|v〉 − |〈v|ψ〉|2ds (3.30)

|v〉 =
d|ψ〉
ds

〈ψ|ψ〉 = 1 (3.31)

Applying heuristically the calculus of variations to this problem (with a Lagrangian

multiplier to enforce the constraint) results in equation (3.33).

L′ =
√
〈v|v〉 − |〈v|ψ〉|2 +

1

2
λ(s)〈ψ|ψ〉 (3.32)

2
d

ds

(
∂L′

∂〈v|

)
=

d

ds

(
|v〉 − 〈ψ|v〉|ψ〉
||D|ψ〉||

)
= −〈v|ψ〉|v〉
||D|ψ〉||

+ λ(s)|ψ〉 = 2
∂L′

∂〈ψ|
(3.33)

Choosing a parametrization such that ||D|ψ〉|| = 1 and a gauge in which 〈ψ|v〉 = 0

(thus |v〉 = d|ψ〉
ds

= D|ψ〉) it becomes (3.34).

d

ds
|v〉 =

d2

ds2
|ψ〉 = λ(s)|ψ〉 (3.34)

There is no problem with these choices since the only interest is the geodesic in

P-space and this choice of gauge and parametrization amounts to selecting the most

convenient representative curve in Hilbert space. By differentiating the gauge con-

dition, λ(s) can be determined (3.35).

0 =
d

ds
〈ψ|v〉 = (

d

ds
〈ψ|)|v〉+ 〈ψ| d

ds
|v〉

= 〈v|v〉+ 〈ψ|λ(s)|ψ〉

0 = ||D|ψ〉||2 + λ(s) = 1 + λ(s)

λ(s) = −1 (3.35)

With this, (3.34) becomes (3.36).

d2

ds2
|ψ〉 = −|ψ〉 (3.36)

It is trivial to verify that the solution given by (3.28) satisfies (3.36), as well as

||D|ψ〉|| = 1 and 〈ψ|v〉 = 0. The procedure to construct the geodesic is then as
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Figure 3.7: Same curves as in Fig.(3.6). This time, curve I is completed by a geodesic.
The geometric phase of curve I equals that of curve I + geodesic, which is
closed.

follows:

1. Given two points in projective space, |ψ0〉〈ψ0| and |ψf〉〈ψf |, two representatives

in Hilbert space are chosen: |ψ0〉 and |ψ′f〉 such that 〈ψ0|ψ′f〉 is real.

2. Those states are connected with the curve given by (3.28). The image of this

curve in P-space is a geodesic and has zero geometric phase. See Fig.(3.7).

Two-dimensional case

After all this abstract detour we return to known territory and apply all these new

concepts to the two-level system. First of all, if the curve followed by the system is

closed (in P-space/Poincaré sphere), relation (3.37) holds.

φG = −Ω

2
(3.37)

If the curve is open, it can be closed by a geodesic and its geometric phase equals

the one of the closed curve. Therefore, (3.37) is valid for the completed curve. The

geometric phase of an open curve is minus one half the solid angle subtended by the

curve when completed with a geodesic.

Let’s examine more closely geodesics in this setting. Given two points in the Poincaré

sphere, a basis (in Hilbert space) can always be selected such that |ψ0〉 = |ψ0〉
and |ψf〉 = cos(θ)|ψ0〉 + sin(θ)|ψ⊥0 〉 with |ψ0〉 and |ψf〉 being suitable Hilbert space

representatives of the initial and final points in P-space and 〈ψ0|ψ⊥0 〉 = 0. Plugging
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this into (3.28) gives the curve |ψ(s)〉 = cos(s)|ψ0〉 + sin(s)|ψ⊥0 〉, s ∈ [0, θ]. This

shows that, in this case, the abstract notion of geodesic defined in the previous

section is equivalent to the standard definition: it corresponds to a great circle, the

shortest curve on the sphere.

To see this more clearly, consider |ψ0〉 as a |H〉 state and |ψ⊥0 〉 as a |V 〉 state.

Then, |ψf〉 is in the XY plane because it only has real coefficients (the X direction

represents |H〉 and the Y direction represents |D〉 = |H〉+|V 〉√
2

). By the same token,

every |ψ(s)〉 is in the XY plane and thus, the curve is a great circle. The identification

|ψ0〉 → |H〉 and |ψ⊥0 〉 → |V 〉 amounts to a change of basis, which manifests itself as

a rotation (and perhaps a reflection) in the Poincaré sphere. The property of being

a great circle is not changed by these operations, so the curve connecting |ψ0〉〈ψ0|
and |ψf〉〈ψf | is a great circle.

3.3 Extensions to mixed states

For the case of mixed states, two geometric phase definitions have been proposed

and have been shown to be inequivalent: Sjökvist’s [12] and Uhlmann’s [28]. Even

though it would be useful to make a parallel between both, in this thesis we will

work only with the first one since it is the only one with which we have done the

experiments. The following sections will motivate Sjökvist’s definition, analyze its

properties and compare them to the pure state case.

3.3.1 Sjövist’s phase

Pancharatnam phase

The original setup that motivated the definition of Pancharatnam’s phase (Fig.3.1)

can be used to extend it to mixed states undergoing unitary evolution. The proce-

dure is the following. Instead of an H polarized photon entering the interferometer,

one can imagine its polarization state to be described by a density matrix ρP . Apply-

ing the sequence of operations outlined in section 1 results in the state transforming

into (3.38).

TXρTotalTX ∝ |X〉〈X| ⊗ (1 + eiϕUP )ρP (1 + e−iϕU †P ) (3.38)

In this opportunity the polarization transformation is represented by the unitary

operator UP instead of the mapping |H〉 → |Pf〉 described in the previous section

because the initial state is no longer |H〉. However, both descriptions are equivalent

if ρP = |H〉〈H| and UP |H〉 = |Pf〉. The TX are projectors that project the state into

the X output of the interferometer and ϕ is, once again, the phase difference between
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the arms. The probability of detecting the photon in this arm can be extracted by

tracing expression (3.38) obtaining thus a very simple formula (3.39) that is to be

considered analogous to (3.5).

PX ∝ 1 + <(tr(ρPUP )eiϕ) = 1 + | tr(ρPUP )| cos[ϕ+ arg(tr(ρPUP ))] (3.39)

As before, the interferogram obtained by varying ϕ is shifted with respect to the

case in which UP = 1 (the P subscripts will now be omitted). This phase shift is

defined to be the Pancharatnam phase (3.40).

φP = arg(tr(ρU)) (3.40)

It reduces to the previous result when ρ = |H〉〈H| and U |H〉 = |Pf〉. In that

case, tr(ρU) = tr(U |H〉〈H|) = tr(|Pf〉〈H|) = 〈H|Pf〉 → φP = arg〈H|Pf〉. This

definition can be understood as a weighted sum of phases. To see this, consider the

quantity tr(ρU) and express ρ in its eigenbasis with eigenvalues λi and eigenvectors

|ψi〉 (3.41).

tr(ρU) =
∑
i

λi tr(|ψi〉〈ψi|U) (3.41)

The quantitites tr(|ψi〉〈ψi|U) = 〈ψi|U |ψi〉 can be written as vie
iφP,i , where vi and φP,i

are the visibility and Pancharatnam phase shift of the interferogram that would have

been obtained if the initial state had been |ψi〉 (as shown in (3.5)). Furthermore,

tr(ρU) can be expressed in the same way since | tr(ρU)| and arg(tr(ρU)) are the

visibility and Pancharatnam phase shift of the interferogram that is being analyzed,

as can be read from (3.39). Therefore, a relation between these various visibilities

and phases can be established (3.42) and the Pancharatnam phase can be reexpressed

as (3.43).

tr(ρU) = veiφP =
∑
i

λivie
iφP,i (3.42)

φP = arg(
∑
i

λi〈ψi|U |ψi〉) (3.43)

Geometric phase

(3.42) can be taken at face value and φP,i substituted directly by φG,i where, once

again, φG,i is the geometric phase that would have been obtained if the initial state

had been |ψi〉 (note that the |ψi〉 are pure states, so definition (3.25) can be directly

applied). This relation will be used define what is meant by geometric phase of

a mixed state, but before doing some things need to be stated clearly. Under the
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action of U in (3.40), the kets |ψi〉 evolved into |ψi,f〉 = U |ψi〉. The initial and final

kets are all that matter for the Pancharatnam phase. On the other hand, geometric

phases depend on the entire evolution that led into the state under consideration.

Therefore, not only |ψi〉 and |ψi,f〉 matter, but all the |ψi(s)〉 in between (where

s parameterizes the curve in Hilbert space under study). The curve followed by

|ψi(s)〉 is the one that is used to calculate φG,i and since the latter is gauge invariant

by construction, the complete mixed-state geometric phase φG is invariant under

any gauge transformation of the kind |ψ′i(s)〉 = eiφi(s)|ψi(s)〉 for any i. Taking into

account these considerations, definition (3.44) follows.

veiφG =
∑
i

λivie
iφG,i

=
∑
i

λivie
iφP,i−iφD,i =

∑
i

λi〈ψi|U |ψi〉)e−iφD,i

=
∑
i

λi〈ψi|U |ni〉e−
∫ sf
ψi
〈ψi(s)| dds |ψi(s)〉ds

φG = arg(
∑
j

λj〈ψj(si)|ψj(sf )〉e−
∫ sf
si
〈ψj(s)| dds |ψj(s)〉ds) (3.44)

In the pure state case, it reduces to (3.25) since then all the λi are zero except for

one that is equal to one. This is shown in (3.45).

φG = arg(〈ψ(si)|ψ(sf )〉e−
∫ sf
si
〈ψ(s)| d

ds
|ψ(s)〉ds)

= arg〈ψ(si)|ψ(sf )〉+ arg(e−
∫ sf
si
〈ψ(s)| d

ds
|ψ(s)〉ds)

= arg〈ψ(si)|ψ(sf )〉+ i

∫ sf

si

〈ψ(s)| d
ds
|ψ(s)〉ds (3.45)

What (3.44) tells is that to calculate the geometric phase of a mixed state undergo-

ing a certain unitary evolution one must diagonalize ρ at each point in the evolution,

find its eigenvalues (λi) and eigenvectors (|ψi(s)〉) and plug them into (3.44). It does

not matter whether |ψi(s)〉 or |ψ′i(s)〉 = eiφi(s)|ψi(s)〉 are chosen as eigenvectors of

ρ(s), since the formula is invariant under that choice by construction.

Another way to think about (3.44) is the following. A curve with constant purity in

the space of density matrices, ρ(s) for s ∈ [si, sf ], can be thought of as being gener-

ated by the action of some set of unitary operators acting on the initial state: ρ(s) =

U(s)ρ(si)U
†(s). This does not define uniquely the U(s), however. Indeed, for ρ(s) =∑

i λi|ψi(s)〉〈ψi(s)|, then U(s) as well as U
′
(s) = (

∑
i e
iφi(s)|ψi(s)〉〈ψi(s)|)U(s) =

V (s)U(s) result in the same ρ(s). The action of V (s) is to map |ψi(s)〉 → eiφ(s)|ψi(s)〉
and thus implements gauge transformations on the eigenvectors of ρ(s). There is an
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infinite set of V (s)’s, one for each possible gauge transformation. What is remark-

able is that whereas φP does differentiate between U(s) and U
′
(s), φG is insensible

to this choice. Any U
′
(s) that can be related to U(s) by an operator of the form of

V (s) (which means that U
′
(s) = V (s)U(s) with V (s) unitary and diagonal in the

eigenbasis of ρ(s)) will give the same value for φG. This invariance under generic

V (s) is the statement of gauge invariance in this context and is demonstrated next.

φ
′

G = arg(
∑
j

λj〈ψ
′

j(si)|ψ
′

j(sf )〉e−
∫ sf
si
〈ψ′j(s)|

d
ds
|ψ′j(s)〉ds)

〈ψ′j(si)|ψ
′

j(sf )〉 = 〈ψj(si)|V †(si)V (sf )|ψj(sf )〉 = 〈ψj(si)|ψj(sf )〉ei(φj(sf )−φj(si))

∫ sf

si

〈ψ′j(s)|
d

ds
|ψ′j(s)〉ds =

∫ sf

si

〈ψj(s)|V †(s)
d

ds
(V (s)|ψj(s)〉)ds

=

∫ sf

si

〈ψj(s)|e−iφj(s)
d

ds
(eiφj(s)|ψj(s)〉)ds

=

∫ sf

si

〈ψj(s)|e−iφj(s)
d

ds
(eiφj(s))|ψj(s)〉ds

+

∫ sf

si

〈ψj(s)|e−iφj(s)eiφj(s)
d

ds
|ψj(s)〉ds

=

∫ sf

si

d

ds
(iφj(s))ds+

∫ sf

si

〈ψj(s)|
d

ds
|ψj(s)〉ds

= i(φj(sf )− φj(si)) +

∫ sf

si

〈ψj(s)|
d

ds
|ψj(s)〉ds

φ
′

G = arg(
∑
j

λj〈ψ
′

j(si)|ψ
′

j(sf )〉e−
∫ sf
si
〈ψ′j(s)|

d
ds
|ψ′j(s)〉ds)

= arg(
∑
j

λj〈ψj(si)|ψj(sf )〉ei(φj(sf )−φj(si))e−i(φj(sf )−φj(si))−
∫ sf
si
〈ψj(s)| dds |ψj(s)〉ds)

= arg(
∑
j

λj〈ψj(si)|ψj(sf )〉e−
∫ sf
si
〈ψj(s)| dds |ψj(s)〉ds) = φG

φ
′

G = φG (3.46)

Two-state systems

In the case of two state systems, we can develop further the theory. As was shown

previously, each density matrix can be mapped to a point in the volume within a

unit sphere in three dimensions. Given an initial state ρ = 1
2

+ r
2
n̂ · σ (0 ≤ r ≤ 1),

n̂ indicates the direction of a vector in the Poincaré sphere and r is its length. The

tip of the vector rn̂ represents ρ. A curve in the space of density matrices is then
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identified with a curve in R3 within the sphere.

In the case of a closed curve (ρf = ρi) the curve is closed in R3 as well. Applying

(3.44) with |〈ψj(si)|ψj(sf )〉| = 1 results in φG = arg(
∑

j λje
iφG,i). Now, φG,j is the

geometric phase that the eigenstate |ψj(si)〉 of ρ would acquire under the evolution.

It is equal to minus one half the solid angle subtended by the curve it traces as it

evolves. Since the two orthogonal eigenstates of ρ are identified with antipode points

in the Poincaré sphere, their geometric phases are equal in magnitude and of opposite

sign (see Fig(3.8)). Furthermore, the solid angle associated to the eigenstate with

the largest eigenvalue (λj = 1+r
2

) is equal to the solid angle associated to the curve

traced out by the vector rn̂ which represents the original mixed state. Therefore,

everything is naturally expressed in terms of this solid angle. With this provisos,

the formula for the geometric phase (3.47) can then be modified into (3.48)

φG = arg(
∑
j

λje
iφG,i) =

1 + r

2
e−iΩ/2 +

1− r
2

eiΩ/2 (3.47)

= arg(cos
Ω

2
− ir sin

Ω

2
)

φG = arctan(−r tan
Ω

2
) (3.48)

(3.48) is clearly geometrical since it depends only on Ω and r.

Moving on to open curves, the first thing to study are geodesics. Since unitary

evolution of a mixed state is constrained to a sphere of fixed radius r, standard

geodesics are still great circles. It follows (through geometrical considerations) that

if ρ traces a great circle, its eigenstates also trace great circles and thus acquire zero

geometric phase. Applying the first line of (3.44) results in φG being the argument

of a positive real number so it is zero. Mixed states undergoing geodesic evolution

acquire no geometric phase. By the same token, when considering a general open

curve, it is easier to analyze independently the eigenstates. If we complete the mixed

state curve with a great circle (see Fig.(3.9)), the curve each eigenstate follows is

also completed by a great circle. It does not contribute to their overall geometric

phases (since the phase is additive for the eigenstates) and therefore they are equal

to the phase of their open curves. In sum, the geometric phase of a curve (I) traced

out by a state is equal to the phase of the curve that results from completing I with

a great circle, even for mixed states (undergoing unitary evolution). Then (3.48)

can be applied.

Nevertheless, some other properties of geometric phases are not retained. (3.26)

showed that when a closed curve in P-space was divided in two, the sum of geometric

phases of each part was equal to the geometric phase of the whole closed curve. This

32



Figure 3.8: The black arrow represents the state ρ = 1+r
2 |n̂〉〈n̂| +

1−r
2 |−n̂〉〈−n̂|. The

blue and red arrows represent the states |n̂〉〈n̂| and |−n̂〉〈−n̂| respectively.
As ρ traces out the black curve, its eigencomponents trace out the blue and
red curves. Because all shown surfaces enclose the same relative area (with
respect to the area of sphere on which they lie), they subtend the same solid
angle in magnitude. If the black curve is traversed in a counterclockwise
fashion (with respect to the outward normal), so is the blue curve, but
the red curve is done clockwisely. This accounts for the different signs in
Eq.(3.47).
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Figure 3.9: Same as for Fig.(3.8) but this time for open curves (black curve done by ρ).
If the curve is completed by a geodesic (yellow curve), the curves followed
by |n̂〉〈n̂| and |−n̂〉〈−n̂| are geodesics as well. Therefore, Eq.(3.48) can be
directly applied using the solid angle subtended by the orange surface.
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no longer holds generally (it does hold when one segment is a geodesic). As can be

clearly seen, the additive quantities are the solid angles. Therefore (3.26) can be

reformulated as (3.49).

φI+IIG = arctan[r tan[arctan(
1

r
tan(φIG)) + arctan(

1

r
tan(φIIG ))]] (3.49)

(3.49) is not neat, but will be useful to understand some features of the experiment.
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Chapter 4

Experimental implementations

4.1 Mixed state generation

For quite some time there have been attempts to prepare partially polarized laser

states, some of them with the objective of improving the calibration of polarime-

ters [29]. Things such as liquid-crystal displays [30–32] and interferometric se-

tups [33] have been used. Part of the experiments reported in this thesis address

this problem [34] in a way that does not require nor LCD’s nor the stability needed

for an interferometer. An identical solution was proposed afterwards by [35]. Fur-

thermore, the array can be directly applied to the single-photon case furnishing a

generator of arbitrary polarization mixed states. While such states have already

been constructed, the studies focus on remote state preparation [36, 37] and gen-

erally on entangled states [38]. For the purposes of our experiments, an entangled

photon source is not needed and would bring in unnecessary complications. More

similar to our array is [39] but it was designed with the intent of implementing a

pseudo-depolarizing channel rather than preparing arbitrary mixed states.

4.1.1 Laser source

The construction of a mixed state source in this context is tantamount to generat-

ing laser light with partial polarization. The language of pure and mixed states and

density matrices, though designed to cope with quantum systems, can be applied to

laser polarization in a way very similar to how polarization states of a single photon

are handled. This was shown in chapter 2 and this paragraph is a reminder that one

must be careful not to confuse the mathematical convenience of this correspondence

with the physical nature of the systems under consideration. We refer the reader to

chapter 2 to find a more detailed exposition in terms of quantum states.
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Figure 4.1: Polarization array. L: laser, BS: beam-splitter, M : mirror, Q: quarter-wave
plate, H: half-wave plate, P : polarization filter, D: detector. The input
state |h〉 is a horizontally polarized light-beam that is transformed into a
state cos θ |h〉 + sin θ |v〉 and then submitted to an array that first changes
its degree of polarization and then its Stokes vector. The output state has
the desired partial polarization, as can be confirmed at the measuring stage
(enclosed part).

The guiding principle behind the partially polarized light source is the reduction

of coherence between orthogonal polarizations. If this could be controlled at will,

everything else follows, since transforming between different kinds of polarizations

without changing coherence is straightforward (using wave plates). Since it is easier

to work with linear polarizations, an array that controls coherence between horizon-

tal and vertical components will be attempted.

The first way in which coherence could be reduced would be to somehow delay one of

the components with respect to the other and take advantage of the finite coherence

length of laser light. With sufficient delay, all coherence could be destroyed. This

is unfeasible, though, because He-Ne lasers have a coherence length on the order of

meters. To circumvent this problem, the array in Fig.(4.1) was developed.

Laser light with linear horizontal polarization enters the array and is transformed

into light with linear polarization in the theta direction (4.1) using a polarizer.

|θ〉 = cos θ|H〉+ sin θ|V 〉 (4.1)

A quarter-wave plate (from now on denoted as Q) is set at 45◦ and placed before the

polarizer to ensure that the light leaving the latter has a constant, θ-independent

intensity.

Upon entering the first BS, light is divided equally in two arms and then enters

two polarizers, one on each arm and set at 0◦ and 90◦. This results in two beams

with horizontal and vertical polarizations and intensities proportional to cos(θ)2

and sin(θ)2, respectively. They are once again recombined in a second BS such that
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they do not overlap after leaving the array, but rather they propagate parallel to one

another. A detector placed immediately after the BS would just sum their intensities

and this guarantees the incoherence between both polarization components.

Ideally, the results of any measurement performed by the detector would be described

by the polarization matrix shown in (4.2).

ρ = cos(θ)2|H〉〈H|+ sin(θ)2|V 〉〈V | (4.2)

The logic behind it is very clear: it is just the incoherent sum of H and V polariza-

tions with their respective intensities as weight. This can be seen even more clearly

by referring to Eqs.(2.22) and (2.23) and noting that the contributions to ρHH and

ρV V come from different regions of space, while there is no contribution to ρHV nor

ρV H since there is no region of space that has an electric field with H and V com-

ponents at the same time.

If the beams overlapped, the polarization states would sum coherently and a pure

state would be obtained (with a different relative phase between components). Par-

tial overlap would mean partial coherence and the array would not work as desired.

The degree of polarization can be controlled by changing the angle of the initial

polarizer. This controls θ in (4.2) and therefore the relative weights of H and V

polarization. In the Poincaré sphere, this means that any state in the X axis can be

generated. We would like to generate any state on the sphere, however, not just on

one axis. To achieve this, a unitary transformation is implemented with two wave

plates at the output of the second BS (the two Q shown after the last BS in Fig.(4.1)).

They perform the map |H〉〈H| → |n̂〉〈n̂| where n̂ denotes an arbitrary direction in

the Poincaré sphere. Because of unitarity they also map |V 〉〈V | → |−n̂〉〈−n̂|. The

final state is a generic polarization matrix (4.3), pointing in the direction n̂ (or −n̂
if cos(2θ) ≤ 0) at a radius | cos(2θ)|.

ρ = cos(θ)2|n̂〉〈n̂|+ sin(θ)2|−n̂〉〈−n̂| (4.3)

Imperfections in the experiment are mostly due to different transmissions between

both arms of the array (some elements may absorb and reflect more than others)

and they are largely independent of θ. To model this, we insert a factor β, equal

to the ratio between transmission coefficients, that multiplies the intensity of one of

the arms. With this changes and after normalization, (4.3) is modified into (4.4).

ρ =
cos(θ)2|n̂〉〈n̂|+ β sin(θ)2|−n̂〉〈−n̂|

cos(θ)2 + β sin(θ)2
(4.4)

38



Β=1.49

Β=1 HidealL

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

Θ˚

P

Figure 4.2: Degree of polarization of the laser source as a function of polarizer angle. The
red curve corresponds to the ideal case (β = 1). All experimental departures
from the ideal case are consistent with β = 1.49± 0.01.

Even with this modification, the array is very convenient because the degree of

polarization and the direction on the Poincaré sphere have independent controls.

As can be seen, β is the only free parameter in the model. Therefore, the first

experiment centered on its calibration. To achieve this, states with different θ were

generated and their degree of polarization (P ) was determined by measuring their

Stokes parameters using the measurement stage shown in Fig.(4.1). A plot of P

vs. θ is shown in Fig.(4.2), along with the ideal curve P = | cos(2θ)| and the

best-fit curve. The latter shows excellent agreement with the experimental results.

The second experiment was designed to show that the array can generate almost

any partially polarized state. A curve that explored many different regions of the

Poincaré sphere was chosen and 28 points on it were generated (Fig.(4.3)). For each

point on the curve, the previous calibration of β allowed the setting of the correct θ

value in the first half-wave plate so that the targeted P was obtained. The last two

wave plates were then adjusted to do the correct rotation in the Poincaré sphere

(from the X axis, labelled as S1 in Fig.4.3, to the desired direction). To check that

the targeted state was obtained, the Stokes parameters [11] were measured and the

polarization state reconstructed (Fig.(4.4)).
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Figure 4.3: Trajectory followed within the Poincaré ball by varying both the degree
of polarization and the Stokes vector of the laser source. The trajectory
corresponds to the values plotted in Fig. (4.4).
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Figure 4.4: The degree of polarization and the three Stokes parameters of the laser light
are shown as functions of the curve parameter.
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Figure 4.5: Degree of polarization of the single photon source as a function of polarizer
angle. The red curve corresponds to the ideal case (β = 1). All experimental
departures from the ideal case are consistent with β = 0.65± 0.01.

4.1.2 Single photon source

In the case of the single photon source, the setup is almost the same as the one

shown in Fig.(4.1). Because the path length difference between both arms of our

array is on the order of centimeters while the photon coherence length is on the

order of micrometers, single photon interference cannot be observed and both paths

can be safely merged at the output of the last BS. They contribute incoherently

and prepare a truly quantum mixed state. The experiments were done paralleling

almost exactly those of the previous sections: a calibration procedure, shown in

Fig.(4.5), that determines the value of β and the generation of mixed states that

lie on a spiral curve within the Poincaré sphere, shown in Figs.(4.6) and (4.7). The

graphs are completely analogous to the ones presented in section (4.1.1). Agreement

is good once again, but errors are larger because a very dim single photon source

with large statistical fluctuations was used. Furthermore, the experiments reported

in this section were done with optical elements that were calibrated with a method

that was later found out to be unreliable, in the sense that the method worked with

some elements and not with others. Even though we cannot assert with certainty

that those faulty elements were not used in this particular experiment, the lack of

any systematic error makes us think that only correctly calibrated elements were

employed.
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Figure 4.6: Trajectory followed within the Poincaré ball by varying both the degree of
polarization and the Stokes vector of the single photon source. The trajec-
tory corresponds to the values plotted in Fig. (4.7).

Figure 4.7: The degree of polarization and the three Stokes parameters of the single
photon source are shown as functions of the curve parameter.
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4.2 Geometric phase in mixed states

Measurements of mixed state geometric phases in two state systems have already

been done [4,9]. However, they were restricted to very specific curves in the Poincaré

sphere (closed and along great circles). The experiment presented in this section [40]

deals instead with essentially arbitrary open curves.

4.2.1 Array and methodology

Discussion

To study geometric phases in mixed states, the first step is to generate the mixed

state in question. Therefore, the array described in the previous sections is recycled

and set as the first stage of a more complex experiment (prep stage in Fig.(4.9)).

The preparation of the state is straightforward but the generation and measurement

of geometric phases requires some more discussion and the following points need to

be addressed:

1. Only means to measure the Pancharatnam phase have been provided, not the

geometric phase.

2. The setup that motivated the definition of Pancharatnam phase involved an

interferometer. This is highly inconvenient since the Mach-Zender array shown

in Fig.(3.1), which is ideally suited to implement the experiment, is very unsta-

ble. One could use the more stable Sagnac interferometer, but this one suffers

from a geometric impediment: the polarization transformation UP must act

only on one of the arms, not on both and this constraint is difficult to imple-

ment experimentally .

3. The only optical elements at hand (Q and H wave plates) perform a very

restricted class of transformations in polarization space. Although one can

transform one point in the Poincaré sphere into any other one, this cannot be

done along an arbitrary route (unless the number of optical elements available

is infinite).

Point 1 can be solved using the property of gauge invariance described in section

3.3.1. Given the trajectory in the Poincaré sphere whose geometric phase will be

measured, it was shown that for each point in the evolution (s) there was an infinite

set of unitaries U ′(s) that mapped the initial state (ρ(si)) to the state at that point

(ρ(s)). The Pancharatnam phase developed by the system depended on which of

these unitaries acted, but the geometric phase was the same for all of them. In
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particular, there is a unitary U||(s) such that φG = φP . Therefore, among all the

unitaries that cause the state to follow the trajectory in question, this special U||(s)

is the one that should be implemented in the array of Fig.(3.1). It can be constructed

from a generic U(s) with the addition of an appropriate V (s): U||(s) = V (s)U(s) in

the sense of (3.46)

To circumvent the problems of interferometry described in point 2, a procedure

devised by [41] was employed. The central point was to abandon the use of a real

interferometer that operates on two degrees of freedom (photon polarization and mo-

mentum) and simulate a process of “virtual interferometry” using only polarization.

The logic behind it is the following:

• A polarization state, such as |H〉, is interpreted as a state of momentum en-

tering one of the ports of the first BS of an interferometer (while |V 〉 would

correspond to the other port).

• The polarization map |H〉 → 1√
2
(|H〉 + |V 〉) is implemented because it simu-

lates the action of a BS.

• Polarization states regain their interpretation as polarization states and the

polarization transformation UP is applied.

• Polarization states mimic momentum states again and the map |H〉 → |H〉,
|V 〉 → eiφ|V 〉 is performed. This introduces a controllable “phase shift” that

simulates the effects of arm length difference.

• The BS map is applied again.

• The state is projected into the (|H〉, |V 〉) basis because this simulates the

measurement of one of the outputs of the interferometer (detection in “arm

|H〉 or in “arm |V 〉”).

The only modification needed to take into account an input state of the form ρ =

λ1|n̂〉〈n̂| + λ2|−n̂〉〈−n̂| rather than |H〉 is to modify the BS map into |n̂〉 →
1√
2
(|n̂〉 + |−n̂〉), the phase shift map into |n̂〉 → |n̂〉, |−n̂〉 → eiφ|−n̂〉 and to do

the final projection in the (|n̂〉, |−n̂〉) basis. The complete transformation is written

in (4.5).

Uint(φ) = UBSUphase(φ)UPUBS (4.5)

(4.5) has the inconvenience that P (φ) = 〈n̂|Uint(φ)ρ0U
†
int(φ)|n̂〉 (which includes the

projection into “one arm of the interferometer”) is a very nasty function of φ. This

is, naturally, due to the fact that UP does not commute either with UBS or Uphase,
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Figure 4.8: All the stages that the all-polarimetric setup must implement. At least 22
wave plates are needed.

a feature that the array in Fig.(3.1) does possess. This can be fixed by redefining

Uint(φ) as shown in (4.6).

Uint(φ) = UBSUphase(φ)UPU
†
phase(φ)UBS (4.6)

(4.6) has the advantage that then P (φ) is a sinusoidal function of φ (see Eq.(4.8)),

making the correspondence with interferometry more tight. It will later be shown

that in this setup, unlike interferometry, the Pancharatnam phase information is

encoded in the visibility of the interferogram and not on the phase shift.

Finally, point 3 just means that a given trajectory in the Poincaré sphere cannot be

done in one shot. Say one wants to measure the geometric phase as a function of

the distance along the curve. What cannot be done is to devise a single evolution

that makes the state follow the trajectory of interest as time passes and such that

the Pancharatnam phase at each point is equal to the geometric phase acquired.

For each point on the curve (s1 for example), what can be done is to implement a

unitary transformation (made up from optical elements) that maps ρ(si) into ρ(s1)

and such that the Pancharatnam phase is equal to the geometric phase that would

have been obtained if the state had evolved along the curve under study. Note that

it does not matter how does the system got from ρ(si) to ρ(s1). This same process

would be repeated for several points on the curve as the distance along it increases

and a plot of geometric phase versus distance could be constructed.

Experimental array

Taking into account all that has been described, the experiment should follow the

sequence shown in Fig.(4.8). There is a preparation stage, a UBS stage, a Uphase

stage, a U stage (made from a specific UP (s) plus the correction V (s)), another

Uphase stage, another UBS stage and a measurement stage. Except for the first and

the last, they involve only wave plates and phase shifters. Now, it is widely known

that any polarization SU(2) transformation can be implemented just with an ar-

ray of three wave plates set at appropriate angles in the configuration QHQ [42].

Therefore, each of these stages must be at least a QHQ set (remember that both the
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Figure 4.9: Experimental setup. In the preparation stage (Prep) the degree of polar-
ization of single photons – generated by parametric down-conversion – is
fixed by incoherently mixing |H〉 and |V 〉 polarization states, after which
the Stokes vector is brought to its desired orientation with the help of two
quarter-wave plates. The next stage (E) consists of a QHQ array that imple-
ments the required unitary transformation (see text). The projection stage
(Proj) serves to normalize coincidence counts (in the |n±〉 basis) between
idler (I) and signal (S) photons.

BS and the phase transformation are diagonal in the same basis as the input stage,

which is rather general). This means that at least 18 plates are needed. Summed to

preparation (2 plates) and measurement (2 plates), the total rises to 22. While such

an array allows the independent manipulation of each stage, it is very technically

demanding and a large amount of error can be introduced.

Luckily, this can be simplified since the whole transformation (leaving preparation

and measurement aside) is SU(2) in polarization. Thus, it can be replaced by an

equivalent QHQ set and the total number of plates is reduced to 7. In principle, this

could be applied to the other stages, but then preparation, evolution and measure-

ment would be scrambled together, making any interpretation of the results very

hard-pushed. On the other hand, this means that there is no independent control of

the BS, phase and UP transformations. Whenever one of those changes, the whole

equivalent QHQ set must be prepared in a different configuration of angles. The

resulting array is shown in Fig.(4.9).

The projection stage needs to be explained. As described before, the final action

of an interferometer is a projection into one of its arms. In this “virtual interfer-

ometry” context, this means projecting into |n̂〉 or |−n̂〉. To do this operation,

the QHP set shown in Fig.(4.9) was employed. The QH configuration transforms
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the projector |n̂〉〈n̂| into |H〉〈H|. As a consequence, setting the polarizer in the

horizontal direction means that the whole QHP set projects the state into |n̂〉〈n̂|.
A slight modification allows the projection into |−n̂〉〈−n̂| as well.

Methodology

The experiment is structured in the following way. A (rather arbitrary) curve in

the Poincaré sphere is chosen. The initial point determines the state that must be

prepared (ρ(si)). This also fixes UBS, the basis in which Uphase(φ) is diagonal and

the projection basis. The only freedom left in Uphase(φ) is the phase φ. Then, a point

in the curve, labelled by s′, is chosen and this determines the state ρ(s′). One of the

unitaries that maps ρ(si) to ρ(s′) is chosen and with it, U|| is calculated. UP is then

determined by setting it equal to U||. Finally a phase φ∗ is chosen and this fixes com-

pletely the array. Now that everything is known, the UBSUphase(φ
∗)UPU

†
phase(φ

∗)UBS

part is replaced by its equivalent QHQ set. This changes nothing, since they imple-

ment the same transformation. Therefore, the probability of detecting the photon

in the |n̂〉 state is still given by (4.7).

Uint = UBSUphase(φ
∗)UPU

†
phase(φ

∗)UBS

P (φ∗) = 〈n̂|Uintρ(si)U
†
int|n̂〉 (4.7)

This can be calculated explicitly by expressing UP in the form UP = e−iαq̂·σ that

describes a rotation about the axis q̂ in the Poincaré sphere by an angle 2α. After

a somewhat lengthy calculation (see Appendix A for details), (4.8) is obtained.

P =
1 + r

2
cos(α)2 +

1− r cos(θ)2

2
sin(α)2 +

r

2
sin(α)2 sin(θ)2 cos(2φ∗ − 2ϕ) (4.8)

θ is the angle that the vectors n̂ and q̂ make (θ = arccos(n̂ · q̂)) and ϕ is an angle

related to the choice of phase of |−n̂〉. Since the latter is inside the argument of the

cosine, it just contributes a constant phase offset which won’t affect the calculations.

By repeating the process with different φ∗ and leaving everything else untouched,

an interferogram can be constructed and the minimum and maximum probabilities

extracted (4.9).

Pmin =
1− r

2
+ r cos(α)2

Pmax =
1 + r

2
− r cos(θ)2 sin(α)2 (4.9)
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On the other hand, the Pancharatnam phase of the state ρ(si) undergoing the evo-

lution UP is given by (4.10).

φP = arg tr(ρ(si)UP )

= arg tr[(
1

2
+
rn̂ · σ

2
)(cos(α)− iq̂ · σ sin(α))]

= arg(cos(α)− ir sin(α)n̂ · q̂)

= arg(cos(α)− ir sin(α) cos(θ))

φP (modπ) =

{
− arctan(r tan(α) cos(θ)), α < π/2

arctan(r tan(α) cos(θ))− π, π/2 < α < π
(4.10)

φP can be solved in terms of Pmax, Pmin and r. Furthermore, because of the special

UP chosen (UP = U||), this Pancharatnam phase is equal to the geometric phase

that would have been obtained if the state had evolved along the chosen curve from

ρ(si) to ρ(s′). Thus, the geometric phase can be calculated in terms of explicitly

measurable quantities (4.11).

φG(modπ) =


− arctan(r

√
1+r−2Pmax
2Pmin−1+r

)

arctan(r
√

1+r−2Pmax
2Pmin−1+r

)− π
(4.11)

Which of both should be used will be clarified shortly. All that has been said until

now corresponds to just one point in the curve, ρ(s′). By repeating the procedure

for different points, a curve of φG vs. s can be constructed. The requirement

of continuity of this curve determines which of the formulas in (4.11) should be

employed (starting from φG = 0 for the initial point). As a side note, notice that

for s′ = si (α = 0), P (φ) = 1+r
2

. This provides a convenient way of determining r

experimentally.

The complete procedure can be described succinctly as follows:

1. Choose a curve in the Poincaré sphere beginning in an arbitrary initial state,

ρ(si).

2. Calculate UBS and the configuration of the QHP plates in the measurement

stage using ρ(si).

3. Choose another point on the curve, ρ(s′).

4. Using ρ(si), ρ(s′) and the chosen curve, calculate U||.

5. Choose a phase φ∗ and calculate Uphase(φ
∗).
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6. Calculate UBSUphase(φ
∗)UPU

†
phase(φ

∗)UBS and its QHQ equivalent.

7. Prepare the state ρ(si), let it evolve in the QHQ evolution stage, project it

with the QHP array and measure the probability of detection.

8. Construct the interferogram P (φ) vs. φ by repeating steps 5-7 varying φ.

9. Extract Pmax, Pmin and calculate φG(s′) using (4.11) and the value of r given

by the interferogram measured for s′ = si.

10. Repeat steps 3-9 with a different s′ and construct φG(s) vs. s.

4.2.2 Measurements

Technical information

Our single photon source is a barium borate crystal (BBO) which produces pairs

of twin photons (810nm) by type-I spontaneous parametric downconversion. The

crystal is pumped by 405nm cw diode laser (spectral linewidth between 0.5 and 1 nm

and output power of 37.5 mW). The paths of the travelling photons make 3◦ each

with the pump beam and 6◦ between them. The idler photon is sent directly into

an avalanche photodetector, while the signal photon enters the preparation stage of

the experiment. Coincidence counts of signal and idler beams are defined within a

10.42 ns time window. The photon-counting module (Perkin-Elmer SPCM-AQ4C)

has a dark count rate of 500 ± 10 counts. Converging lenses are used to focus and

couple them into multi-mode fiber-optic cables. Dichroic filters (Thorlabs FB800-40,

FWHM:40±8 nm) centered at 800±8 nm are placed in front of the detector to avoid

spurious counts. The degree of second-order coherence g(2) was measured between

the reflected (R) and transmitted (T) beams of a beam splitter to check single-

photon production. To do this, detections at gates T and R were made conditioned

upon detection at a third gate (G). In this situation, g(2) = NGTRNG/(NGTNGR),

where Nk denote simultaneous photodetection at the gates labelled by k. In our case

g(2) = 0.187± 0.011 was measured certifying that we are working with nonclassical

light (requires g(2) < 1).

The experiment made use of several zero-order quarter and half wave plates (Thor-

labs WPQ05M-808 and WPH05M-808) designed for 808 nm mounted on Thor-

labs RSP1/M rotation mounts, a Glan-Thomson polarizer (Thorlabs GTH5M-B),

a Thorlabs BS-017 beam splitter and a Thorlabs PBS-252 polarizing beam splitter.

The rotation mounts allowed for a ±1◦ precision in waveplate angle setting.
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Experimental details

Three curves in the Poincaré sphere were chosen and are shown in Fig.(4.10). They

correspond to initial states with degrees of polarization r = 0.7±0.04, 0.4±0.01, and

0.3± 0.01, and normalized Stokes vectors n̂ = (0.31± 0.05, 0.59± 0.05, 0.75± 0.04),

(0.71±0.03, 0.5±0.04, 0.5±0.04) and (0.71±0.03, 0.5±0.04, 0.5±0.04). These states

performed rotations about q̂ = (0, 0, 1), (0.85,−0.45,−0.26) and (0.31, 0.4, 0.86) re-

spectively. The curves are generated by acting with U = e−iαq̂·σ on the initial state,

and are parametrized by α ∈ [0◦, 180◦] maintaining q̂ fixed.

Geometric phases were measured following the procedure outlined in the previ-

ous section and detection probabilities were calculated by normalizing coincidence

counts with respect to a projection in the orthogonal polarization direction (P|n̂〉〈n̂| =

N|n̂〉〈n̂|/(N|n̂〉〈n̂|+N|−n̂〉〈−n̂|), where Nk denotes the number of coincidence counts per

second when projecting into state k). The measured points are shown in Fig.(4.11)

and plotted against the theoretical curve. Note that although φG varies in very

different ranges of values: 0.6 radians, 3 radians and 0.15 radians in Figs.(4.11a),

(4.11b) and (4.11c) respectively, the agreement is very good.

Occasionally, the previously described methodology had to be modified to take into

account experimental difficulties. Take for example Fig.(4.11a). Measuring the in-

terferograms and applying Eq.(4.11) to determine the first four points on the curve

gave obviously wrong results: imaginary values for φG accompanied by error bars as

large as the whole graph. The problem was traced to the fact that for those specific

points, the difference 1 + r − 2Pmax was very close to zero and, even though the-

oretically it should always be positive, experimental errors turned it negative (and

small). By looking at Eq.(4.11) it is clear that under such conditions an imaginary

phase would be obtained (because of the square roots) and that it would be very

sensible to experimental imperfections (because the slope of
√
x is very large near

x = 0). The way around this problem took advantage of the geometrical properties

of φG and made use of (3.49). To obtain φG at a specific point ρ(α1), the geometric

phase of the complete closed curve (from α = 0◦ to α = 180◦) was measured and

the solid angle it subtends determined (through (3.48)). Then, the geometric phase

of the reverse curve (from α = 180◦ to α = α1) was measured and related to the

solid angle it subtends when closed by a geodesic. As can be seen from Fig.(4.12),

this determines the solid angle subtended by the curve whose geometric phase is of

interest. From this two solid angles, φG can be inferred. Fig.(4.11c) suffered from

the same problems, but the procedure developed for Fig.(4.11a) could not be applied

because the geometric phase of the reverse curve was very sensitive to experimental

imperfections as well. Instead, the curve was traversed twice and the contribution

50



(a) Axis of rotation: q̂ = (0, 1, 1) (b) Axis of rotation: q̂ = (0.85,−0.45,−0.26)

(c) Axis of rotation: q̂ = (0.31, 0.4, 0.86)

Figure 4.10: Curves followed by the state in the Poincaré sphere as it evolves under
the action of U(α). |H〉, |D〉 and |R〉 stand for horizontal, diagonal and
right-handed circular polarization, respectively.
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(a)

(b)

(c)

Figure 4.11: Geometric phases as functions of the evolution parameter (α) for three dif-
ferent initial mixed states and evolutions. The experimentally measured
values (dots) are shown with their error bars. They closely agree with
theoretical prediction (solid curves). The curves correspond to the evolu-
tions shown in Fig.(4.10), respectively. (a) Initial state: r = 0.7 ± 0.04,
n̂ = (0.31 ± 0.05, 0.59 ± 0.05, 0.75 ± 0.04). Axis of rotation: q̂ = (0, 0, 1).
(b) Initial state: r = 0.4 ± 0.01, n̂ = (0.71 ± 0.03, 0.5 ± 0.04, 0.5 ± 0.04).
Axis of rotation: q̂ = (0.85,−0.45,−0.26). (c) Initial state: r = 0.3± 0.01,
n̂ = (0.71±0.03, 0.5±0.04, 0.5±0.04). Axis of rotation: q̂ = (0.31, 0.4, 0.86).
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Figure 4.12: The geometric phase acquired while following path A1B is directly related
to solid angle Ω2. This solid angle can also be found as the total solid
angle enclosed by path A2B1A minus Ω1. These solid angles determine the
geometric phase accumulated along paths A2B1A and A2B, respectively.
Path AGB is a geodesic (great circle) that closes the open curves A1B and
A2B.
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from the first loop was subtracted. In the case case of Fig.(4.11b), sensitivity was

found between α = 75◦ and α = 100◦ and is manifest in the large gradient around

those values. This time the expression 2Pmin − 1 + r was close to zero, no way to

circumvent the problem was found and no reliable measurement was obtained.

Error analysis

First of all, the preparation stage involves many imperfect reflective elements (BS,

PBS) which could affect the degree of polarization of the input state. To make

sure that the experimentally prepared state corresponded to the desired one, full

polarization state tomography was performed by measuring the Stokes parameters

and the array was adjusted until the generated and target states coincided. The

reported experimental errors in r and n̂ are due to the 1◦ precision of the wave

plates and polarizer used to do the tomography. Once this was done, the error

bars shown in Fig.(4.11) were calculated by considering each wave plate, polarizer,

mirror, BS and PBS as an independent source of error and using the standard

formula for error propagation σ2
I([θi])

=
∑

i(
∂I
∂θi

)2(σθi)
2. Strictly speaking it should

not be applicable because this would require resetting the whole array at least 30

times for each point in each interferogram, making the data recording procedure

too demanding. The correct formula in the particular case of this experiment is

σI([θi]) =
∑

i |
∂I
∂θi
|σθi . Nevertheless, it was numerically found that the difference

between both expressions affected only non-significant digits so, for this specific

case, the distinction is irrelevant. Finally, the propagated error was combined in

quadrature with the errors associated to the measurement apparatus itself.
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Chapter 5

Summary and Conclusions

In this Thesis we have addressed various topics. First, we have analysed and de-

scribed the polarization states that routinely appear in Quantum Optics in terms of

the standard description of the Electromagnetic Field: occupation number of each

mode of the field. On the basis of these building blocks, polarization mixed states

were defined and their basic properties and ways of representation described. In that

same chapter, laser polarization was discussed in terms of the quantum states that

describe it and an object, the polarization matrix, that encodes all this polarization

information was introduced. Finally, the known parallel between the mixed states

and the polarization matrix was shown, justified and developed.

Then, the different phases with which we had to work were described. Pancharat-

nam’s phase was motivated by a specific interferometric setup, whereas Berry’s phase

was defined following the original derivation. In a more modern approach, Berry’s

phase was then shown to be a special case of a more general quantity, commonly

called the geometric phase. The different properties of the latter were described,

including its behaviour under composition of curves, characteristics for open and

closed curves, and its relation to geodesics in what is known as projective space.

This allowed a more profound understanding of the two-state systems with which

we are concerned here. Afterwards, the same kind of analysis was done for geo-

metric phases of mixed states undergoing unitary evolution following one of the two

definitions that exist for this case.

Finally, the main experiments reported in this Thesis were described. The first one

was about the generation of an arbitrary partially polarized laser source with a setup

that, by virtue of the parallel described in Chapter 2, allowed the preparation of

arbitrary one photon polarization mixed states as well. This array, in turn, was used

as a preparation stage for a more general setup that made the initial state evolve,

thereby developing a geometric phase, and then measured this acquired phase. To
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achieve this, all the properties described in Chapter 3 were used: gauge invariance

allowed the Pancharatnam phase to become equal to the geometric phase and prop-

erties under curve addition were used to measure experimentally problematic points.

Three different curves in the Poincaré sphere were chosen and in them eight points

were selected. Geometric phases acquired as the state evolved from the initial point

to each one of those eight points were measured.

The array does demonstrate its capabilities since almost arbitrary curves were se-

lected showing geometric phases that varied in very different ranges. In particular,

one of them approached zero with decreasing radius whereas another one approached

a step function (from 0 to π) showing completely different behaviours for states close

to the maximally mixed.

While the present method to generate and measure geometric phases does not lend

itself to the implementation in real time of a quantum logic gate, it does provide a

way to experimentally show the effects of decoherence and other kinds of noise in

these polarization geometric phases. A future line of inquiry could try to study the

effect of controllable non unitary evolutions, perhaps by the use of entangled photon

sources thereby gaining the ability to simulate environment induced processes.
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Appendix A

Calculation of Eq.(4.8)

Eq. (4.8) for P (φ) was given without calculation. Here we derive it. We first state

what is to demonstrated in Eqs.(A.1) and (A.2)

Uint = UBSU
†
phase(φ

∗)UPUphase(φ
∗)UBS

P (φ∗) = 〈n̂|Uintρ(si)U
†
int|n̂〉 (A.1)

P =
1 + r

2
cos(α)2 +

1− r cos(θ)2

2
sin(α)2 +

r

2
sin(α)2 sin(θ)2 cos(2φ∗ − 2ϕ) (A.2)

Working in the basis of |n̂〉 and |−n̂〉, the operators take the forms shown in (A.3).

UBS =
1√
2

(
1 1

1 −1

)

Uphase(φ
∗) =

(
e−iφ

∗/2 0

0 eiφ
∗/2

)

UP = e−iαq̂·σ

=

(
cos(α)− iq̂ · n̂ sin(α) −iqc sin(α)

−iq∗c sin(α) cos(α) + iq̂ · n̂ sin(α)

)

qc = qTa − iqTb (A.3)

qT = q̂ − (q̂ · n̂)n̂
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The a and b directions are orthogonal to n̂ and (â, b̂, n̂) form an orthogonal triad.

Things can be further simplified (A.4).

q̂ · n̂ = cos(θ)

qc = |qc|e−iβ =

(√
(qTa )2 + (qTb )2

)
e−iβ

=
(√

1− (q̂ · n̂)2
)
e−iβ = | sin(θ)|e−iβ

= sin(θ)e−iϕ

UP =

(
cos(α)− i cos(θ) sin(α) −i sin(θ) sin(α)e−iϕ

−i sin(θ) sin(α)e+iϕ cos(α) + i cos(θ) sin(α)

)
(A.4)

Because ρ(si) = 1+r
2
|n̂〉〈n̂| + 1−r

2
|−n̂〉〈−n̂| in (A.1), the only things that should

be calculated are a = 〈n̂|Uint|n̂〉 and b = 〈n̂|Uint|−n̂〉. From these, P = 1+r
2
|a|2 +

1−r
2
|b|2. Furthermore, |a|2+|b|2 = 1 because of unitarity, so we only need to calculate

a. The complete expression for a is shown in (A.5).

a =
(

1 0
) 1√

2

(
1 1

1 −1

)(
eiφ
∗/2 0

0 e−iφ
∗/2

)
∗

(
cos(α)− i cos(θ) sin(α) −i sin(θ) sin(α)e−iϕ

−i sin(θ) sin(α)e+iϕ cos(α) + i cos(θ) sin(α)

)
∗

(
e−iφ

∗/2 0

0 eiφ
∗/2

)
1√
2

(
1 1

1 −1

)(
1

0

)
(A.5)

=
(
eiφ
∗/2
√

2
e−iφ

∗/2
√

2

)(cos(α)− i cos(θ) sin(α) −i sin(θ) sin(α)e−iϕ

−i sin(θ) sin(α)e+iϕ cos(α) + i cos(θ) sin(α)

)(
e−iφ

∗/2
√

2
eiφ
∗/2
√

2

)
a = cos(α)− i sin(θ) sin(α) cos(φ∗ − ϕ)

From this result, both |a|2 and |b|2 can be obtained.

|a|2 = cos(α)2 + sin(α)2 sin(θ)2 cos(φ∗ − ϕ)2

|b|2 = 1− |a|2 = 1− cos(α)2 − sin(α)2 sin(θ)2(1− sin(φ∗ − ϕ)2)

= sin(α)2 − sin(α)2 sin(θ)2 + sin(α)2 sin(θ)2 sin(φ∗ − ϕ)2

= sin(α)2 cos(θ)2 + sin(α)2 sin(θ)2 sin(φ∗ − ϕ)2
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The final result is then (A.6)

P =
1 + r

2
|a|2 +

1− r
2
|b|2

=
1

2
+
r

2
(|a|2 − |b|2)

=
1

2
+
r

2

(
cos(α)2 − sin(α)2 cos(θ)2 + sin(α)2 sin(θ)2 cos(2φ∗ − 2ϕ)

)
P =

1 + r

2
cos(α)2 +

1− r cos(θ)2

2
sin(α)2 +

r

2
sin(α)2 sin(θ)2 cos(2φ∗ − 2ϕ) (A.6)

This is what we set out to demonstrate.
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