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Abstract

Discrete-time survival models are discussed and applied to the study of which factors

are associated with student dropouts at a private university in Lima, Perú. We studied the

characteristics of 26, 790 incoming students enrolled between 2004 and 2012 in all the under-

graduate programs at the University. The analysis include the estimation of the survival and

hazard functions using the Kaplan-Meier method and the fitting of parametric models using

the Cox proportional hazards regression and the Logistic regression for survival analysis,

this last one, in order to include time varying variables as predictors. During the period of

analysis, the cumulative probability of remain at the University after five years was 73.7%

[95% CI: 73.1% - 74.4%]. In any period the hazard is greater than 4.4% and this highest

value is reached in the 3rd semester. In a multivariate analysis, we found that academic

factors (area of study, type of admission, standardized academic performance index, and the

percentage of passed credits); economic factors (type of residence, and payment scale); and

sociodemographic factors (mother education level, indicators of whether or not parents are

alive, and the age of the student) were associated with the risk of dropout.

Keywords: survival analysis, discrete survival analysis, time failure analysis, discrete time

model, Kaplan−Meier estimator, Cox regression model, logistic model, proportional hazard

model, university dropouts.
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Chapter 1

Introduction

“I do not want to foresee the future.

I am concerned with taking care of the present.

God has given me no control over the moment following”.

Gandhi, 1924

In many areas of science, researchers are interested in estimating the time at which a

given event occurs and how this time is accelerated or retarded by certain factors. In this

settings, this gathered information of times in which events occur is called time-to-event data.

It is often the case when the event of interest can only occur at regular, discrete time points,

or the available data is only a fixed interval in which the event occurs. As a motivation

example of discrete time, consider the study of student dropout at a given university. This

information is only assessed at the end of each semester and the collection process could last

up to eight years that is the maximum time a student can remain at the University. As a

result, each student event time will be discrete. On the other hand, if we want to estimate

the distribution of the student attrition time we would use a random sample of students

that could, or not, drop out. Each student that does not drop out can be considered as an

incomplete observation because they do not provide a dropout time or never experienced the

event of interest. This scenario, as others we are going to explain in the present study, is

named “censoring”.

Kaplan and Meier (1958) developed the nonparametric estimator of the survival func-

tion of the distribution of time to the event. Greenwood (1926) proposed an estimator for

the variance and derived approximated confidence intervals for the Kaplan-Meier estimator

within an application on health. Cox (1972) proposed the proportional hazards model to

continuous times by parameterizing the hazard as a function of explanatory variables and an

unknown baseline function of time (baseline hazard function). The initial theoretical devel-

opment considers a model were failure times are continuous, measured by an exact method

1



CHAPTER 1. INTRODUCTION 2

and in which two or more individuals can not fail at the same time (without ties). In the

same publication, Cox (1972) proposed another model for the hazard using the Logit or

“log(odds)” transformation: the logistic regression model, that could be applied when the

failure times are intrinsically discrete. Three years later, Cox (1975) introduced the concept

of partial likelihood to reduce the dimensionality of the problem and proved that such a esti-

mator is consistent and has normal distribution. Breslow (1974) and Efron (1977) proposed

variations of the Cox likelihood function to deal with ties in the estimation process.

There have been many applications of discrete time survival models in several areas,

mostly of them using the theoretical background developed by Kaplan and Meier (1958) and

Cox (1972). Allison (1982) used a discrete-time model for the analysis of event histories on a

sociological context. Singer and Willett (1993) published an study explaining the importance

of discrete time models with special emphasis on educational contexts, taking as an example

an analysis of the number of years that Michigan special educators teach in public schools.

Scheike and Jensen (1997) worked a discrete time analysis to model the time to pregnancy

using the number of menstrual cycles that a couple needs to conceive as a measure of hu-

man reproduction. Another study in the medical field was done by Borges (2005), studying

survival time of patients with peritoneal dialysis. This study modeled the time since the

beginning of dialysis sessions until death as event of interest. Muthn and Masyn (2005)

described an analysis of discrete time model incorporating categorical and continuous latent

variables and showing its application with two examples: recidivism after incarceration and

school removal related with aggressive behavior in classrooms.

Another scientific and specific interest has been represented by attempts to model the

dropout time of students in academic institutions and to discover which factors are associated

with this phenomena. Given that the student dropout is generally recorded in semesters or

academic cycles, current research suggests the use of discrete time survival methods. Des-

Jardins et al. (1998) worked in an educational application, modeling student departures from

college and describing the particular effect of different explanatory variables over time. In

this study they estimated a time−constant coefficients model and a time−varying coefficients

model based in the discrete-time model proposed by McCall (1994), which use a complemen-

tary log-log link function to parametrize the hazard. Smith and Naylor (2001) conducted

an study to model the probability of withdrawal, for a group of universities in UK, applying

a binomial probit regression analysis and considering as withdrawal the departure before a

given point in the scheduled final year of the degree course. Later, Arulampalam et al. (2004)

applied the proportional hazards model to analyze the probability of medical school dropouts

in UK. Radcliffe et al. (2006) modeled the incidence and timing of student attrition using a

logit and longitudinal model, being the goal of this study to identify at−risk students to pro-

mote retention policies. They found that the powerful predictors were related with academic

performance. Recently, Cheng (2012) has studied the effect of institutional characteristics

over the dropout risk in higher education institutions in US.
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In the current study, we applied the Logistic and Cox proportional hazard models for

discrete time-to-event data to data collected between March 2002 and December 2012 of

students enrolled in the undergraduate programs at a private University in Lima, Perú. The

general aim of this paper is to study regression models for discrete-time survival data and to

apply them to estimate student dropouts hazards and understand how student features are

related to these rates.

The organization of this document is as follows. In Chapter 1, we define the framework

for the study, starting with the definition of survival analysis and presenting a state of the art

review considering mainly examples and the most current research in discrete−time survival

analysis applied to model student dropouts. In Chapter 2, we present the notation to be

used along the study and develop the theoretical background of discrete-time survival models.

We show the nonparametric and parametric estimations of the model, with special emphasis

on the Kaplan-Meier estimator and the regression models (Cox and logistic). In Chapter

3, we apply the studied methods to understand the students dropout problem at a private

University in Perú. It includes the application of all the items described in the theoretical

chapter. Results are supported by the implementation of a program in the statistical software

R. In Chapter 4 we discuss some outcomes and conclusions obtained in this project, related

with the most powerful predictors that explain the study problem, and analyze advantages

and disadvantages of the proposed methods. In the section Appendix we show some detailed

tests and results (Appendix B), as well as the source code of the applications used to process

the data and generate the described results (Appendix C).



Chapter 2

Discrete Time Survival Model

“When I admire the wonders of a sunset or the beauty of the moon

my soul expands in the worship of the creator”.

Gandhi, 1924

¨ Mount Abu, Rajasthan; India

2.1 Definitions

Survival analysis is a group of statistical methods that aims to model the time at which a

given event occurs and how this time is accelerated or retarded by certain factors. This time

can be continuous or discrete, depending of the scenario of study.

To analyze data in discrete intervals, the continue scale is divided into a infinite sequence of in-

tervals as follows: [0 = a0, a1], (a1, a2], . . . , (aj−1, aj ], . . . , (ak−1, ak =∞], where a1, a2, a3, . . . , aj , . . .

are ordered points in time on which events can occur, j represents an index period, and the

jth period is written as (aj−1, aj ]. These intervals are usually assumed equal in length (for

instance a ”month” or a ”semester”), in which case positive integers numbers can be used to

index, and aj = 1, 2, 3, . . ..

There are two ways in which discrete survival data appear: (i) the survival time is originally

continuous but it is only observed in intervals (case known as ”grouped data”), or (ii) the

survival time scale is originally discrete. In both cases theory assumes that observations are

measured in intervals, which means that ”failed” observations in different points within a

time period have the same survival time (See figure (2.1)).

Let T be a non-negative discrete random variable that represents the time in which the event

of interest is observed (failure time). The distribution of T at time “t” can be represented

by (i) the hazard function λ(t) = λt, (ii) the survival function S(t) = St, (iii) the cumulative

distribution function F (t) = Ft, (iv) the probability density function f(t) = ft and (v) the

4
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Figure 2.1: Continuous and discrete intervals

2 3 4 5 6

Observations in a continuous time scale

2 3 4 5 6 7

Observations in a discrete time scale

cumulative hazard function Λ(t) = Λt.

The hazard is a fundamental quantity that represents the risk of a event occurrence in a time

period. The hazard for an individual i at time T = j is defined as

λij = P (Ti = j | Ti ≥ j) (2.1)

and it is the conditional probability that the event occurs for the individual i at the time

period j (from now on only time j) given that it did not occur before or, equivalently, given

that it has survived until time j. The set of discrete time hazard probabilities, one per period,

is known as the discrete time hazard function. In a population the hazard function for any

individual can be expressed as λj = P (T = j | T ≥ j).

The survival at time j is the probability that an individual survives past time j, which

means that the event did not occur neither in a current period nor an earlier time. The set

of survival probabilities is known as the survival function. The survival probability that an

event has not occur for the individual i at the time period T = j, is defined as

Sij = P (Ti > j) (2.2)

In a population the survival function for any individual can be expressed as Sj = P (T > j).

Then

λj = P (T = j|T ≥ j) =
P (T = j)

P (T ≥ j)
=

P (T = j)

P (T = j) + P (T > j)

=
Sj−1 − Sj

[Sj−1 − Sj ] + Sj
= 1− Sj

Sj−1
(2.3)

Therefore, the survival function can be expressed as

Sj = (1− λj)Sj−1, j = 1, 2, 3, . . . (2.4)

where (1− λj) denotes about the probability of non-occurrence of the event at time j, given
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that the event did not occur before, and S0 = P (T > 0) = 1, because at the beginning all

individuals are assumed to be “alive”, i.e., without experiencing the event.

It is easy to see that the discrete time survival function can be written in terms of the hazard

rate as

Sj = (1− λj)(1− λj−1) . . . (1− λ2)(1− λ1)(S0)

=

j∏
k=1

(1− λk). (2.5)

Similarly, the discrete time failure cumulative function Fj represents the probability that the

event occurs until certain time T = j and is defined as

Fj = P (T ≤ j) = 1− Sj

= 1−
j∏

k=1

(1− λk) (2.6)

The probability density function, on the other hand, assesses the probability that the event

occurs at time T = j and is represented in terms of the previously defined functions as

fj = P (T = j) = Fj − Fj−1 = Sj−1 − Sj =

j−1∏
k=1

(1− λk)−
j∏

k=1

(1− λk)

=

j−1∏
k=1

(1− λk)− (1− λk)
j−1∏
k=1

(1− λk)

= [1− (1− λj)]
j−1∏
k=1

(1− λk)

= λj

j−1∏
k=1

(1− λk) (2.7)

For an alternative demonstration see appendix (A.0.1).

2.2 Inference

2.2.1 Data structure

Let {(Ti)}ni=1 be a sample of n observations, where Ti is the observed time of the event for

the individual i and let j be the index for the intervals in which individuals can fail, where

j = 1, . . . , k. Then the empirical distribution function at time j, in terms of the indicator

function, is defined as

F̂j =
1

n

n∑
i=1

I(Ti ≤ j) (2.8)
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and the empirical survival function is defined as

Ŝj = 1− F̂j

= 1− 1

n

n∑
i=1

I(Ti ≤ j) (2.9)

where Ŝj represents the observed proportion of the n individuals in the population that re-

main “alive” at T = j.

Beyond the natural complexity of modeling the effect of some features that accelerates or

retards the time in which an event occurs, event history data has a special feature: censor-

ing. A censored observation is defined as an individual for whom its failure time is unknown,

either because it does not experience the event of interest within the observation period (case

known as right-censoring), or because at the beginning of the observation its lifetime had

already started (case known as left-truncation). Those observations are considered as missing

data. Right-censored observations are included in the estimation processes assuming a non

informative censoring, which means that the distribution of censoring times is independent

of the distribution of the time to the event of interest (this scenario is also known as “missing

at random” assumption).

In general, it is possible to identify the following censoring cases when the information about

survival time of elements is incomplete. Figure (2.2) shows the types of failure time obser-

vations and censoring mechanisms. The arrowheads indicate the time when the event occurs

and the whole length of the arrows represents the observation period.

Figure 2.2: Mechanisms of censoring. Arrow 1: Start and end time known. Arrow 2: End time outside
the observation period (right-censored observation). Arrow 3: Start time outside the observation
period (left-truncated observation). Arrow 4: Start and end time outside the observation period.

- 1

- 2

- 3

- 4t t
Start End

Let Tc be the random variable of censoring time and T0 be the random variable of failure

time. Then, one can define the random variable of observed time

T = min{T0, Tc}, (2.10)

and the censoring indicator
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C = I(T0 ≤ Tc) =

{
1, when observed time is a failure (T0 ≤ Tc)
0, when observed time is censored (T0 > Tc)

(2.11)

2.2.2 One sample estimation

Let {(Ti, Ci)}ni=1 be a sample of n independent and identically distributed observations, where

Ti is the observed time of the event for the individual i and Ci the related censoring indicator.

The contribution to the likelihood function of an individual who fails at time ti is P (T =

ti) = fi, and the contribution of an censored observation at time ti is P (T > ti) = Si (because

we only know that the survival time is greater than ti). Then, the likelihood function has

the form:

L(λ | t1, t2, . . . , tn) =
n∏
i=1

[P (T = ti)]
ci [P (T > ti)]

1−ci (2.12)

In the discrete case, there could be more than one failure or censored observation in the same

period. Let k be the number of distinct intervals in study on which a failure can occurs,

dj be the number of observations that fail, mj the number of censored observations, and nj

the number of observations at risk at the jth period, then nj = (mj + dj) + . . .+ (mk + dk)

(and nj+1 = nj − dj −mj), where j = 1, . . . , k. Based on this information and according to

equations (2.7) and (2.5) the likelihood function L can be written in terms of the hazard as

L(λ | t1, t2, . . . , tn) =

k∏
j=1

{[
λj

j−1∏
l=1

(1− λl)
]dj[ j∏

l=1

(1− λl)
]mj}

(2.13)

and analyzing the factor Aj =

[∏j−1
l=1 (1−λl)

]dj[∏j
l=1(1−λl)

]mj
we can observe the following

series of components

If j = 1 , A1 = (1− λ1)m1

If j = 2 , A2 = (1− λ1)d2(1− λ1)m2(1− λ2)m2

If j = 3 , A3 = (1− λ1)d3(1− λ2)d3(1− λ1)m3(1− λ2)m3(1− λ3)m3

...
...

If j = k , Ak = (1− λ1)dk(1− λ2)dk . . . (1− λk−1)dk(1− λ1)mk(1− λ2)mk . . . (1− λk)mk

(2.14)



CHAPTER 2. DISCRETE TIME SURVIVAL MODEL 9

Grouping the components with the same λl we have

(1− λ1)d2+...+dk+m1+...+mk = (1− λ1)n1−d1

(1− λ2)d3+...+dk+m2+...+mk = (1− λ2)n2−d2

...

(1− λk)mk = (1− λk)nk−dk

Therefore, L can be reduced to

L(λ | t1, t2, . . . , tn) =

k∏
j=1

λ
dj
j (1− λj)nj−dj (2.15)

and the log likelihood function to

l(λ | t1, t2, . . . , tn) =
k∑
j=1

[dj log (λj) + (nj − dj) log (1− λj)] . (2.16)

The derivative of the log likelihood function is given by

∂l

∂λi
=

di
λi

+
(ni − di)
(1− λi)

(−1)

=
di − λini
λi(1− λi)

(2.17)

By equating to zero the derivative of the log likelihood function, it is easy to see that the

MLE, λ̂ = (λ̂1, . . . , λ̂k) of λ, also known as the Kaplan-Meier estimator (Kaplan and Meier

(1958)), is defined as

λ̂j =
dj
nj
, j = 1, . . . , k (2.18)

where λ̂j represents the observed proportion of the nj individuals at risk who fail at T = j.

Therefore, the estimator for the survival function is defined as

Ŝj =

j∏
i=1

(
1− λ̂j

)
=

j∏
i=1

(
1− di

ni

)
=

j∏
i=1

(
ni − di
ni

)
(2.19)

Another important estimator is the Nelson-Aalen estimator of Λj , which defines a right-

continuous step function approximation of the cumulative risk function based on the Kaplan-

Meier estimations, as follows

Λ̂j =
∑
i|ti≤j

λ̂i =
∑
i|ti≤j

di
ni

(2.20)

A 100(1 − α)% confidence interval for the survival function estimator can be given by con-

sidering the Greenwood formula (See Greenwood (1926)). This is based on the first order
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Taylor expression

f(X) ≈ f(c) + f ′(c)(X − c), (2.21)

of a function f(X) of a random variable X around a point c close to E(X). Then,

E[f(X)] ≈ f(c) + f ′(c)(E(X)− c)

V ar[f(X)] ≈ f ′(c)
2
V ar(X). (2.22)

According to equation (2.19) we have

log(Ŝj) =

j∑
i=1

log(
ni − di
ni

) =

j∑
i=1

log(π̂i) (2.23)

where π̂i = ni−di
ni

. Then applying the variance operator to both sides one can prove

V ar

[
log(Ŝj)

]
= V ar

[ j∑
i=1

log(π̂i)

]
= 1

j∑
i=1

V ar

[
log(π̂i)

]
(2.24)

under the assumption that failures arise independently (independence of variables π̂i). Fur-

thermore, if one supposes that di follows a Binomial distribution with parameters ni and πi,

then an estimator of πi is π̂i and the estimator of the variance is niπ̂i(1 − π̂i). Given this

information and applying variance properties it is easy to see that

V ar(π̂i) = V ar

(
ni − di
ni

)
= V ar

(
1− di

ni

)
= V ar

(
di
ni

)
=

V ar(di)

ni2
=
niπi(1− πi)

ni2

=
πi(1− πi)

ni
≈ π̂i(1− π̂i)

ni
(2.25)

Then, considering the last result in equation (2.22) one obtains

V ar

[
log(π̂i)

]
≈
(

1

πi

)2

V ar(π̂i) =
1− π̂i
niπ̂i

(2.26)

and

V ar

[
log(Ŝj)

]
≈

j∑
i=1

V ar

[
log(π̂i)

]

≈
j∑
i=1

1− π̂i
niπ̂i

≈
j∑
i=1

di
ni(ni − di)

, π̂i = 1− di/ni (2.27)

1This result is not trivial, but is out of the scope to the thesis
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A new application of equation (2.22) yields

ˆV ar[Ŝj ] =
V ar[f(x)]

f ′(x)2 , f(x) = ex

= Sj
2
j∑
i=1

di
ni(ni − di)

(2.28)

Let zα be the α-quantile of the normal distribution. Hence, the 100(1 − α) % confidence

interval of Ŝj is defined as

Ŝj ± zα/2

√
V ar[Ŝj ] (2.29)

where ˆV ar[Ŝj ] = Ŝ2
j

j∑
i=1

dj
nj(nj − dj)

observing that Ŝ = 1− F̂ and

V ar(Ŝ) = V ar(1− F̂ )

= V ar(F̂ )

we can also obtain a 100(1− α) % confidence interval for F̂ given by

F̂j ± zα/2
√

ˆV ar[Ŝj ] (2.30)

Aalen (1976) and Peterson (1977) demonstrated that the estimator Ŝj has almost sure con-

sistency, furthermore Breslow and J. (1974) established an asymptotic normality of the esti-

mator:
√
n(Ŝj − Sj)→ N (0, σ2

j), where σ2 is estimated as V ar(Ŝ).

2.2.3 Regression models

To analyze the predictors that accelerate or delay the failure time we can fit regression

models by representing the hazard or an equivalent function as a function of the covariates

and evaluate them to analyze its goodness-of-fit. Let z be a set of p factors or explanatory

variables for an individual i denoted by zi = (z1i, z2i, ..., zpi), then the hazard at time T = j

is denoted by

λ(tj , zi) = P (T = j | T ≥ j and Z = zi)

= P (T = j | T ≥ j and Z1 = z1i, Z2 = z2i, ..., Zp = zpi) (2.31)

that represents the conditional probability that the event occurs at time tj given that it did

not occur before and given an specific set of variables z for the p predictors. In a heteroge-

neous population, individuals can have different hazards functions depending of their values

for the set of predictors (or profiles) and only if two individuals have the same set of covariate

values they will have the same hazard function.
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In this work we will consider a regression model for survival analysis of the form

y[λ(tj , zi)] = y[λ0(tj)] + zi
tβ (2.32)

or

λ(tj , zi) = y−1[y[λ0(tj)] + zi
tβ] (2.33)

where the component (ztβ) represents the effect of the predictors, β = (β1, β2, ..., βp) is a

regression vector of slope parameters, y is a monotone-increasing and twice-differentiable

function defined in (−∞,∞) with y[0] = −∞, that can be any of the following forms:

• y(u) = log(u), called the discrete relative risk model

• y(u) = log[u/(1− u)], called the discrete logistic model

• y(u) = log[−log(1− u)], called the grouped relative risk model

λ(tj , zi) is the hazard at time tj for an individual i with covariate values zi and λ0(tj) is

the baseline hazard at time tj . Notice that λ0(t) is the discrete baseline hazard function

and can be understood as the hazard function for the set of covariates z = 0, or without

incorporating predictors in equation (2.33), once:

λ(t, z = 0) = y−1[y[λ0(t)]] = λ0(t) (2.34)

The hazard ratio (HR) is defined as the rate between the hazard function of two individuals

a y b with covariate vectors za and zb and has the general shape:

HR(ti, za, zb) =
λ(tj , za)

λ(tj , zb)
=
y−1[y[λ0(tj)] + za

tβ]

y−1[y[λ0(tj)] + zbtβ]
(2.35)

The interpretation of this result is that individuals with features za have a risk HR(ti, za, zb)

times greater/less than individuals with features zb. If HR(ti, za, zb) < 1 then features za

retards the failure time with respect to zb, if HR(ti, za, zb) = 1 or is very close to 1 then the

effect over the failure time is the same, if HR(ti, za, zb) > 1 then features za accelerates the

failure time with respect to zb.

The Cox proportional-hazards model or standard discrete relative risk model comes from

equation (2.32) by using the logarithm function:

log(λ(tj , zi)) = log(λ0(tj)) + zi
tβ (2.36)

Taking exponential, this model defines the hazard as

λ(tj , zi) = λ0(tj)e
zi
tβ. (2.37)

The model has two parts: a parametric one, depending on the vector of covariates or factors

ezi
tβ; and one nonparametric part, depending on the time, λ0(t), but without specifying a
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shape for the distribution of the survival times. That is why this model is described as a

semiparametric model or partially parametric (Allison (1982)) and is just this feature which

makes it robust, making this model a good alternative under the lack of knowledge about

the real distribution of the failure times in analysis. Another important feature is that the

linear predictor is associated with the hazard function through the exponential function that

guarantees nonnegative values. Note that the covariates can be independent or time depen-

dent.

In this model the HR for two individuals a y b, with covariate vectors za and zb, comes from

equation (2.35) by using the logarithm function and has the shape:

HR(t, za, zb) =
λ0(t)eza

tβ

λ0(t)ezbtβ
=
eza

tβ

ezbtβ
= e(za−zb)tβ (2.38)

Notice that this result does not depend on the baseline hazard function, but only on the co-

variates vector and the regression coefficients. The interpretation of this results is explained

with more details in the appendix (A.0.2). When the Cox model is fitted it is necessary to

verify that the proportionality assumption holds. Graphical methods can be used to assure

that the effect of a variable is constant over time, for example, comparing hazard curves of

individuals with different variables and confirming that they are proportional (see Figure

(??)). Appendix (A.0.3) shows an example of the lack of this assumption. Schoenfeld test

of residuals (Schoenfeld (1980)) is another method that can be used to test the proportional

hazard assumption.

Figure 2.3: Proportionality hazard assumption in the Cox model: In this example two hazard functions
(for two types of individuals) are shown, they are proportional along time.

In case of a bivariate analysis for a covariate zj the HR represents the rate of hazards when

the variable increases in one unit. Then, if we need to analyze the HR when the continuous

variable increases in c units the formula (A.5) will consider the values cza and czb, instead of
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za and zb, respectively.

The confidence interval for the hazard ratio is given by

eβ̂±zα/2
√
V ar(β̂) = eβ̂±zα/2se(β̂) (2.39)

where eβ̂ is the effect of a covariate (without interactions).

If we increase a covariate zi in c units the hazard ratio will be HR = e(cβ̂i) and its associated

confidence interval will be

ecβ̂i±zα/2|c|se(β̂i) (2.40)

The discrete logistic model comes from equation (2.32) by using the logistic transformation

(Logit or log odds):

log

(
λ(tj , zi)

1− λ(tj , zi)

)
= log

(
λ0(tj)

1− λ0(tj)

)
+ zi

tβ (2.41)

Taking exponential and solving

λ(tj , zi)

1− λ(tj , zi)
=

λ0(tj)

1− λ0(tj)
ezi

tβ. (2.42)

This model defines the hazard as

λ(tj , zi) =
λ0(tj)e

zi
tβ

λ0(tj)ezi
tβ + 1− λ0(tj)

. (2.43)

The main benefit of using a Logit transformation is its interpretation based on the odd of

failure. The idea behind the odds is to measure how more likely is success than failure, which

in this case means to measure the rate between the probability that the event occurs at time

j given that did not occur before (λj) divided by the probability that the event does not

occur at j given that did not occur before (1− λj):

odds =
λj

1− λj
(2.44)

Odds metric however is asymmetric and hence can not provide a fair curve to model the

changing of probability of failure, to be used in the regression. The solution to deal with this

scenario is by taking the natural logarithm of the odds, value that depends on the magnitude

of the hazard.

logit(λj) = log(odds(λj)) = log

(
λj

1− λj

)
(2.45)

In Logit scale if two values of hazard are small or close to 0 this transformation increase the

difference between them and if they are large or far from 0 the difference will be decreased.

In the Logit scale the size of the gap between two hazard functions is stable over time, being
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this condition known as proportionality assumption (see Figure (2.4)).

Figure 2.4: Proportionality Logit assumption in the logistic model. In this example two Logit(hazard)
functions (for two types of individuals) are shown, they are proportional along time.

Some of the characteristics of this model are: (i) for each set of values of the covariates we

can estimate a hazard function; (ii) the generated logit hazard functions based in the same

set of covariates are parallel, then each function has the same shape for different set of values,

although we can specify the shape of the hazard function that can be flat, linear or to has

another general form; and (iii) the character of the covariates or predictors can be: time-

invariant (regarding variables that keep fixes values over time) or time-varying (regarding

variables which values can change over time).

The hazard function to be estimated will have two parts: a baseline Logit hazard function,

and the effect of the predictors as a constant value to be summarized to the value of the

baseline in each period. To provide flexibility to the shape of the model to be specified,

instead of constraining the Logit hazard function to be linear with time (for instance having

the component β0 +β1ztime in the model), a set of time indicators D is used to represent the

dichotomized covariate of failure time, each one of them indexes one record of the observation-

period data set, pointing out whether or not the individual took part of the observation at

each time period (See table (2.1)).

The logistic hazard model can be also written as

logit λ(tj , z) = Dtα+ ztβ

= [α1D1 + α2D2 + ...+ αjDj ] + [β1z1 + β2z2 + ...+ βjzj ] (2.46)
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Table 2.1: Mapping the failure time as time indicators

Period (from 1 to failure time) D1 D2 ... Dj−1 Dj

1 1 0 0 0 0
2 0 1 0 0 0
... 0 0 ... 0 0

j − 1 0 0 0 1 0
j 0 0 0 0 1

∗Each indicator shows “1” only at the time it is indexing

and rewriting in terms of the hazard function, 2.43 reduces to

λ(tj , z) =
1

1 + e−(Dtα+ztβ)

=
1

1 + e−([α1D1+α2D2+...+αjDj ]+[β1z1+β2z2+...+βjzj ])
(2.47)

The component (Dtα) represents the baseline Logit hazard function. It will provide a set of

values that can be understood as multiple intercept parameters (one per period) and can be

interpreted as the hazard function without incorporating predictors (the set of P covariates

z = 0). Each one of them α1, α2, ..., αj is the log odds of the hazard value in the respec-

tive period and we consider them as intercepts because for each individual i, when Dix = 1

(x = 1 . . . j) all other terms become 0 and the log odds of the hazard value for the xth period

becomes αx. Each slope parameter β measures the change in the log odds of failure (Logit

values) per unit of difference in its associated covariate, assuming that the other covariates

are constant.

For instance, considering as a dichotomy covariate zx1, then we have the following models

for zx1 = 0 and zx1 = 1, respectively:

logit λ(tj , z) = [α1D1 + α2D2 + ...+ αjDj ]

logit λ(tj , z) = [α1D1 + α2D2 + ...+ αjDj ] + βx1 (2.48)

then, the respective values of Logit hazard for in the period j for these models are:

logit λ(tj , z) = αj

logit λ(tj , z) = αj + βx1 (2.49)

Considering as a continuous covariate zx2, in addition to zx1, we have a model that incorpo-

rates more than one predictor and from different types, as follows:

logit λ(tj , z) = [α1D1 + α2D2 + ...+ αjDj ] + βx1zx1 + βx2zx2 (2.50)

In this case the baseline hazard function is given by the model when zx1 = 0 and zx2 = 0.

The interpretation of the slope parameters βx1 and βx2 depend of the group of covariates

included in the model. βx1 is the change in the log odds of failure, per unit of difference in
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the predictor zx1, when zx2 remains constant.

The grouped relative risk model 2comes from equation (2.32) by using the complementary

log-log transformation (cloglog):

log(−log(1− λ(tj , zi))) = log(−log(1− λ0(tj))) + zi
tβ (2.51)

Taking exponential twice we have

− log(1− λ(tj , zi)) = −log(1− λ0(tj))e
zi
tβ

1− λ(tj , zi) = [elog(1−λ0(tj))]e
zi
tβ

(2.52)

Isolating λ(ti, zi), the grouped relative risk model defines the hazard as

λ(tj , zi) = 1− [1− λ0(tj)]
ezi

tβ
. (2.53)

2.2.4 Estimation with covariates

We define in general terms the estimation process to be applied to the showed models. Let

γj = y[λ0(tj)], where j = 1, ..., k, λk+1 = 1 (all observations fail at the end of the study),

and g = y−1, the model can be written as

λ(tj , z) = g[γj + ztβ] (2.54)

The survival function in terms of the relative risk, can be written as

Ŝj =

j∏
i=1

(1− g[γ̂i + ztβ̂]). (2.55)

Note that if β̂ = 0 it reduces to the Kaplan-Meier estimator (See equation (2.5)).

The likelihood function is built by multiplying the contributions for k failure times, as follows

L(λ | γ, β) =
k∏
i=1

Li(γ,β) (2.56)

Assuming independent censoring the likelihood of γ = (γ1, γ2, ..., γk), β = (β1, β2, ..., βp),

2Further explanation about the grouped relative risk model is out of the scope of the thesis
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and considering l as the index for periods, can be written as

L(λ | γ, β) =
k∏
i=1

∏
l∈Di

λ(ti, zl)×
∏
l∈Ri

(1− λ(ti, zl))


=

k∏
i=1

∏
l∈Di

g[γi + zl
tβ]×

∏
l∈Ri

(1− g[γi + zl
tβ])

 (2.57)

(2.58)

and the likelihood function as

l(λ | γ, β) =
k∑
i=1

∑
l∈Di

log(g[γi + zl
tβ]) +

∑
l∈Ri

log(1− g[γi + zl
tβ])

 (2.59)

where Di represents the indexes of observations that fail and Ri the indexes of censored

observations at period i. The score function is defined as

S(γ, β) =
∂logL(λ | γ, β)

∂βj
=
∂l(λ | γ, β)

∂βj
(2.60)

where j = 1, ..., p. Then, the MLE are found by solving

S(γ, β) =

(
∂l

∂γ1
, ...,

∂l

∂γk
,
∂l

∂β1
, ...,

∂l

∂βp

)
= 0 (2.61)

where each component has the shape

∂l

∂γi
=
∑
l∈Di

g′il
gil
−
∑
l∈Ri

g′il
1− gil

(2.62)

and

∂l

∂βu
=

k∑
i=1

∑
l∈Di

zlu(g′il)

gil
+
∑
l∈Ri

zlu(g′il)

1− gil

 (2.63)

being gil = g[γi + zi
tβ], 1 ≤ i ≤ k and 1 ≤ u ≤ p.

A Newton-Raphson iteration algorithm can be included to update the current values (γ0, β0)

to (γ1, β1) until convergence according to the following relation

(γ1, β1) = (γ0, β0) +H−1
0 S(γ0, β0) (2.64)

where H0 represent H at the point (γ0, β0). After this numerical methods we get the MLE

estimators γ̂ = (γ̂1, ..., γ̂k) and β̂ = (β̂1, ..., β̂p).

To obtain the variance of the estimators, the observed Fisher information is calculated. For

this we need the negative of the second derivative (Hessian matrix) of the log-likelihood
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function evaluated at the MLE of γ and β, i.e.,

H = I(γ̂, β̂) =
∂2logL(λ | γ̂, β̂)

∂γ∂βj
= −∂

2l(λ | γ̂, β̂)

∂γ∂βj
(2.65)

where

H =

(
H11 H12

H21 H22

)
=

(
−∂2l
∂γ2

−∂2l
∂γ∂β

−∂2l
∂γ∂β

−∂2l
∂β2

)
(2.66)

An estimator of the variance-covariance matrix of (γ̂, β̂),
∑̂

, is given by I(γ̂, β̂)−1.

2.2.5 Particulars for Cox regression

In the Cox regression model the regression parameter vector β = (β1, β2, ..., βp) is estimated

using the partial likelihood function (PL), which is based on the product of the likelihoods

of all failures occurred, unlike the ordinary maximum likelihood estimation that is based on

the product of likelihoods for all individuals in the sample. In the estimation only take part

the probabilities of real failure times but not those of censored data, although at calculating

the probabilities of failure times it takes into account all observations under risk of failure,

censored or not in the future (Cox (1975)). By this procedure we reach to complete the para-

metric component of the model, being enough to do inference over that vector of parameters

and calculating the hazard ratios, despite of not being a real likelihood function.

Let L or L(β1, ..., βp) be the partial likelihood function, n the number of observations, k the

number of failure times (there are no ties), n− k the number of censored times, t1, ..., tk the

ordered failure times, Ri (for i = 1, ..., k) the number of observations under risk at ti, and

Li the portion of the likelihood function because of the contribution of ti (for i = 1, ..., k).

Then the definition of Li become as follows:

Li(β) =
λ(ti, zi)∑
l∈Ri λ(ti, zl)

=
λ0(ti)e

ztiβ∑
l∈Ri λ0(ti)e

ztlβ

=
ez
t
iβ∑

l∈Ri e
ztlβ

(2.67)

After obtaining the contribution to the likelihood by each failure time we have the following

expression to be used as a likelihood function:

L(β) =

k∏
i=1

Li(β) =

k∏
i=1

[
ez
t
iβ∑

l∈Ri e
ztlβ

]
(2.68)

In a real situation, either due to the lack of accurate instruments to measure continuous

data or because of the data seems to be discrete, we could observe more than one failure

at the same time. In this way, there have been some approximations of the partial

likelihood function in case of ties. These approaches aim to estimate parameters of the



CHAPTER 2. DISCRETE TIME SURVIVAL MODEL 20

hazard function making some adaption to the likelihood function defined above. Let mi be

the multiplicity or number of observations that fail at ti, then mi = 1 if only one observation

fail and mi > 1 if instead more than one fail. If we denote uj to the random selection of mi

observations that fail having Ri elements at risk, then the number of possible subsets uj ’s is

given by: (
Ri
mi

)
=

Ri!

mi!(Rimi)!
(2.69)

Let Ui be the set of all possible subsets where Ui = (u1, ..., u(Rimi)
); zk = (z1k, z2k, ..., zpk)

be the covariates vector of the kth observation, xuj =
∑

k∈uj zk = (x1uj , x2uj , ..., xpuj ) be

the vector of summarization of covariates where xluj is the summarization of the lth co-

variate for the mi observations within uj ; u
∗
i be the subset of mi observations that fail at

ti; and xu∗
i

=
∑

k∈u∗i
zk = (x∗1u∗i

, x∗2u∗i
, ..., x∗pu∗i

), where xlu∗j is the summarization of the lth

covariate of the mi observations within u∗i that fail at ti. Then, when mi is a small num-

ber in comparison with ri we can use the following two approaches to the likelihood functions.

The Breslow (1974) approach defines the likelihood function as:

LB(β) =

k∏
i=1

 e
xt
u∗
i
β[∑

l∈Ri e
ztlβ
]mi

 (2.70)

The Efron (1977) approach defines the likelihood function as:

LE(β) =

k∏
i=1

 e
xt
u∗
i
β∏mi

j=1

[∑
l∈Ri e

ztlβ − [ j−1
mi

]
∑

l∈u∗i
ez
t
lβ
]
 (2.71)

2.2.6 Particulars for logistic regression

The method gets the estimated values of α and β that maximize the likelihood of the ob-

served sample data. The likelihood function models the probability of getting the sample

currently observed. In order to fit this function it is necessary to format the data set in an

“individual-period” level which means that we will have the following scheme of covariates:

PERIOD, representing the number of period; EVENT (E), representing whether or not a

failure has occurred at each period; and a series of time indicators D (See table (2.1)). For

example, table 2.3 shows how data can be rewritten at the commented level in comparison

with data in 2.2, where n is the number of observations with failure times t1, ..., tn and cen-

soring indicators c1, ..., cn, k is the number of failure times and z represents a vector of fixed

predictors.

The likelihood function for the discrete-time hazard aims to model the specific probability

of observing a specific pattern of 0s and 1s for the variable EVENT in an “Individual-period

level” data set, and the output of the estimation process is a set of values for vectors of

coefficients αs and βs. Let Ji the number of observations for individual i (one per period
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Table 2.2: “Individual level” example data set

ID T Censor zb zf zv1 zv2 zv3 ... zvt2 ... zvtn ... zvt1−1 zvt1
1 5 1 1 zf1 zv11 zv21 zv31 ... zvt21 ... zvtn1

... zvt1−11 zvt11

2 3 0 0 zf2 1 0 0 ... 0 - - - - -
... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
n 7 1 1 zfn zv1n zv2n zv3n ... zvt2n ... zvtnn - - -

Table 2.3: “Individual-period level” example data set

ID Period Event D1 D2 D3 D4 D5 D6 D7 ... Dt1−1 Dt1 zb zf zv
1 1 0 1 0 0 ... 0 ... 0 ... 0 0 1 zf1 zv11

1 2 0 0 1 0 ... 0 ... 0 ... 0 0 1 zf1 zv12

1 3 0 0 0 1 ... 0 ... 0 ... 0 0 1 zf1 zv13

1 4 0 0 0 0 ... 1 ... 0 ... 0 0 1 zf1 zv1t2
1 5 1 0 0 0 ... 0 ... 1 ... 0 0 1 zf1 zv1tn
2 1 0 1 0 0 ... 0 ... 0 ... 0 0 0 zf2 1
2 2 0 0 1 0 ... 0 ... 0 ... 0 0 0 zf2 0
2 3 0 0 0 1 ... 0 ... 0 ... 0 0 0 zf2 0
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
n 1 0 1 0 0 ... 0 ... 0 ... 0 0 1 zfn zvn1

n 2 0 0 1 0 ... 0 ... 0 ... 0 0 1 zfn zvn2

n 3 0 0 0 1 ... 0 ... 0 ... 0 0 1 zfn zvn3

n 4 0 0 0 0 1 0 ... 0 ... 0 0 1 zfn zvn3

n 5 0 0 0 0 ... 1 ... 0 ... 0 0 1 zfn zvnt2
n 6 0 0 0 0 ... 1 ... 0 ... 0 0 1 zfn zvnt2
n 7 1 0 0 0 ... 0 ... 1 ... 0 0 1 zfn zvntn

∗ In the example zb represents a binary variable, zf is fixed value and zv a time-varying variable

of risk), then the number of terms of the likelihood function will be equal to the number

of rows in the dataset and we will assume that the Ji observations for each individual are

independent. The contribution to the likelihood function of an individual i who fails at time tj

is λ(tij , z), and the contribution of an individual that does not fail at time tj is (1−λ(tij , z)).

Then is easy to see that individuals that fail contribute with one term of the first type and

with Ji − 1 terms of the second type, while censored observations contribute with J terms

of the second type. Using this explanation the likelihood function L or L(α1, ..., α, β1, ..., βp)

has the form

L(λ | t1, t2, .., tn) =

n∏
i=1

Ji∏
j=1

[
λ(tj , z)

]Eij[
1− λ(tj , z)

](1−Eij)

=

n∏
i=1

Ji∏
j=1

[
1

1 + e−(Dtα+ztβ)

]Eij[
1− 1

1 + e−(Dtα+ztβ)

](1−Eij)

=

n∏
i=1

Ji∏
j=1

[
1

1 + e−([α1D1+α2D2+...+αjDj ]+[β1z1+β2z2+...+βjzj ])

]Eij
×

[
1− 1

1 + e−([α1D1+α2D2+...+αjDj ]+[β1z1+β2z2+...+βjzj ])

](1−Eij)
(2.72)
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Then the log likelihood function can be written as

l(λ | t1, t2, .., tn) =
n∑
i=1

Ji∑
j=1

Eijlogλ(tj , z) + (1− Eij)log(1− λ(tj , z)) (2.73)

2.2.7 Hypothesis testing

The asymptotic distribution of the MLE estimator β̂ = (β̂1, ..., β̂p) is normal with mean β

and covariance matrix
∑̂

= V ar(β̂) = I(β̂)−1, which provides the conditions to apply tests

from generalized linear models.

To test the hypothesis H0 : βj = 0 versus H1 : βj 6= 0 we can use the Wald statistic, defined

as the rate between the estimator and its standard deviation:

zW =
β̂j√

V ar(β̂j)
(2.74)

Under the null hypothesis one can show that zW follows a standard normal distribution and,

therefore the 100(1− α) % asymptotic confidence interval for the estimator β̂j is given by

β̂j ± z1−α/2

√
V ar[β̂j ] (2.75)

To test the hypothesis H0 : β = β0 versus H1 : β 6= β0 one can alternative use the Wald test,

the likelihood ratio test or the score or Logrank test. Under the null hypothesis we assume

that there is no relation between the variable (in the univariate case), or one of the variables

(in the multivariate case), and the survival time (β = 0). The statistic that provides the

easiest interpretation is given by the Wald test which, as we will see, does not use the likeli-

hood function. On the other hand, as it shows the Log Rank test only uses the coefficients

under the null hypothesis, then if it is a goal to estimate many coefficients this method will

be faster than the others. Finally the Likelihood ratio test converges faster to the normal

distribution.

The Wald test use the fact that the distribution of the MLE estimator β̂ = (β̂1, ..., β̂p) is

normal with mean β and covariance matrix
∑

, that can be estimated by
∑̂

= V ar(β̂) =

I(β̂)−1. Under that null hypothesis the Wald statistic follows a χ2 distribution with p degrees

of freedom and it is defined as

χW = (β̂ − β0)tI(β̂)(β̂ − β0) (2.76)

The Likelihood ratio test calculates an statistic that use the partial likelihood function eval-

uated in β̂, L(β̂), and evaluated in β0, L(β0). Under that null hypothesis the statistic follow
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a χ2 distribution with p degrees of freedom and is defined as

χLR = 2(logL(β̂)− logL(β0))

= 2(l(β̂)− l(β0)) (2.77)

where l is the log likelihood function.

The Score or Log Rank test use the gradient of the logarithm of the partial likelihood function

evaluated at the null hypothesis (β = β0). Under the condition that the scores vector follows

approximately a normal distribution with means 0 and covariance matrix I(β). Furthermore,

the statistic follows a χ2 distribution with p degrees of freedom and it is defined by

χS =

(
∂L(β0)

∂β

)t(∂L2(β0)

∂β∂βt

)−1∂L(β0)

∂β
(2.78)

2.2.8 Comparison of models with the likelihood test

Let us suppose we estimated two models, one with p predictors and a second one with p+ q

predictors. The vector of parameters for the first one is β̂ = (β̂1, ..., β̂p) and for the second

one is β̂ = (β̂1, ..., β̂p+q). Two methods are reviewed to compare the goodness of fit over a

group of models.

• The Deviance statistic. In the first model we have the hypothesis H0 : βj = 0 versus

H1 : βj 6= 0 (at least one coefficient different to zero), where j = 1, ..., p; and for the

second model we have the contrast H0 : βj = 0 versus H1 : βj 6= 0, where j = 1, ..., p+q.

Then we can calculate uses the deviance concept Di = −2logLi(β̂) = −2li(β̂). The

statistic follows a χ2 distribution with q degrees of freedom and is defined as

χDD = D1 −D2 = D = −2logL1(β̂)−−2logL2(β̂) = −2log

(
L1(β̂)

L2(β̂)

)
(2.79)

• The Akaike’s information criterion (Akaike (1973)). It is a metric for comparing models

which measures both, how well the model fits the data, and how complex the model

is. It uses the parsimony principle that says that a model using fewer parameters and

explaining the context almost in a same level is the best. This statistic is defined as

AIC(β̂) = −2logL(β̂) + 2p

= −2l(β̂) + 2p. (2.80)

Then, AICi values of R models (i = 1, . . . , R) are compared by calculating the dif-

ferences between each AICi and the minimum AIC value AICmin = argmin(AICi):

∆i = AICi − AICmin. The maximum difference will point out which model provides

the most plausibility according with the following scale: If ∆i ∈ (0− 2) then there is a
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similar plausibility, else if ∆i ∈ (4−7) then there is less plausibility, and if ∆i ≥ 10 then

there is much less plausibility. The AIC metric is recommended under the condition

n/p ≥ 40, where n is the number of observations within the sample on study. If the

condition is not reached there is a variation of the metric named “Akaike second order

information criterion”, AICc, defined as

AICc(β̂) = AIC(β̂) +
2p(p+ 1)

n− p− 1.
(2.81)



Chapter 3

Application

“There is an orderliness in the universe,

there is an unalterable law governing everything

and every being that exists or lives.

It is no blind law, for no blind law can govern the conduct of living beings”.

Gandhi, 1928

3.1 Framework of the study

The application in this work has been conducted at a private University in Perú. This con-

sist of a population of 26, 790 students enrolled between 2004 and 2012 in the undergraduate

programs at the University (18 cohorts of incoming students in 9 years)1. After admission

we classified a student to be enrolled in one of the following units: Arts, Architecture and

Urbanism, Humanities and Social Sciences, Formal Sciences and Engineering, or Education.

Dropout was defined as not being enrolled for at least two semesters (one year), excluding

the summer academical cycles. Censored students in this context are due to graduation or

due to they did not accomplish the dropout condition, within the observation period. Our

primary objective is to study factors associated with time to drop out.

3.2 Data Structure

The covariates considered in the study were obtained at two levels that we will call the base-

line level and the follow-up level.

In the first level we considered variables whose values do not change over time, also named

fixed variables, as: gender (female, male), area of first enrollment (Arts, Architecture and

Urbanism, Humanities and Social Sciences, Formal Sciences and Engineering, or Education),

high school type (private, public, parochial, others (“fe y alegŕıa”,armed forces)), high school

1Data provided by the Department of Statistics and Institutional Intelligence (PUCP)

25
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location (Lima y Callao, provinces, abroad), type of residence (own, renting, living with

relatives, others (use, surveillance, rural or precarious occupation)), marital status (single,

married and others (partners, religious, divorced)), indicator of whether or not the mother

and father are alive (yes, no), mother and father education levels (college education [postgrad-

uate, university, incomplete university], technical education [complete or incomplete technical

education], high school [complete or incomplete high school], primary school [complete or in-

complete primary school]), number of relatives at the University , indicator of whether or

not the student was working at admission time, and modality of admission (entrance ex-

amination, entrance examination in first attempt, pre-university center, special programs of

admission (bachelor diplomas, exonerations, admission by “Bicentennial of the Republic of

Perú” program, agreements with “Fe y alegŕıa” schools, admission by “R.P. Jorge Dintilhac

SS.CC.” program, scholar excellency program)).

In the second level we considered variables measured at follow-up whose values change over

time, also named time−varying variables, as: payment scale, indicator to have asked for re-

classification, type of benefit (scholarship, discount, loans, others), number of visits to health

service, age, standardized academic performance index or “CRAEST” (equivalent metric for

GPA), and percentage of passed credits.

3.3 Results

Of the 26, 790 individuals, 20881 (78% ) were persistent students or were finally graduated,

while 5909 (22% ) were dropouts. In general, there is a balanced amount of female (43.42%)

and male (56.58%) enrolled students. The majority of them was single (at least 94.62%

). Ninety two percent of students was enrolled in Formal Sciences and Engineering, and

Humanities and Social Sciences; 83% come from private or private religious schools; 85%

studied in Lima and Callao; and 50.49% lives in their own houses (see table (3.1)). About

family information, at least 91.49% of students has its mother alive and 81.05% its father

alive, being the most common education level of parents the college education, 47.95% in

the case of the mother and 59.43% in the case of the father. The 94.23% has other relatives

(parents or siblings) studying at the University. Mostly of students, 44.24%, are admitted to

the University by the entrance examination and only 8.98% is admitted by studying at the

pre−university center (see table (3.2)). The 73.71% of students starts the university in the

first semester of the year (see table (3.3)).

A general behavior of the dropout phenomena can be described by estimating the hazard and

survival functions for the whole population of students using the Kaplan-Meier estimators

(see Table (3.4)). Table (3.4) shows that since enrollment, 78.7% (95% CI: 0.782-0.793) of

students remain until 6 semesters (3 years); 73.7% (95% CI: 0.731-0.744) of students remain

until the 10th semester (5 years); 31.1% of students has dropped out the University after

7 years. In any period the hazard is not greater than 4.4% and this maximum scenario is

reached in the 3rd semester. By the end of the data collection (second semester of 2012)

5909 students had left studying, and those 20881 who did not, were censored, representing
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Table 3.1: Descriptive statistics at enrollment

Population N = 26790

Factor N Percentage ( % )

Dropout

Yes (event) 5909 22.00%

No (censored) 20881 78.00%

Gender

Female 11633 43.42%

Male 15157 56.58%

Marital status

Single 25348 94.62%

Married and others 26 <1.00%

Missing 1416 5.29%

Area of first enrollment

Formal Sciences and Engineering 12028 44.90%

Architecture and Urbanism 1126 4.20%

Arts 779 2.91%

Education 292 1.09%

Humanities and Social Sciences 12565 46.90%

High school type

Private / private religious 22143 83.00%

Public / public religious 2534 9.00%

Parochial 1294 5.00%

Others (“fe y alegria”, armed forces) 819 3.00%

High school location

Lima y Callao 22771 85.00%

Provinces 3970 14.82%

Abroad 45 <1.00%

Missing 4 <1.00%

Type of housing

Own 13525 50.49%

Renting 4485 16.74%

Living with relatives 6124 22.86%

Others (use, surveillance, rural or precarious occupation) 1183 4.42%

Missing 1473 5.50%

∗academic semesters, ∗∗nuevos soles (S/.), +interquartile range IQR [Q1,Q3]
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Table 3.2: Descriptive statistics at enrollment

Factor N Percentage ( % )

Indicator of mother alive

Yes 24511 91.49%

No 835 3.12%

Missing 1444 5.39%

Indicator of father alive

Yes 21713 81.05%

No 3633 13.56%

Missing 1444 5.39%

Mother education level

College education (Postgraduate, university, incomplete university) 12846 47.95%

Technical education (Technical, incomplete technical) 5396 20.14%

High school (High school, incomplete high school) 6285 23.46%

Primary school (Primary school, incomplete primary school) 541 2.02%

Missing 1722 6.43%

Father education level

College education (Postgraduate, university, incomplete university) 15922 59.43%

Technical education (Technical, incomplete technical) 3425 12.78%

High school (High school, incomplete high school) 4369 16.31%

Primary school (Primary school, incomplete primary school) 306 1.14%

Missing 2768 10.33%

Number of relatives at the University

Only student 1546 5.77%

Two∗ 1943 7.25%

Three∗ 6985 26.07%

Four∗ 16281 60.77%

Five∗ 35 <1.00%

Working

Yes 461 1.72%

No 15274 57.01%

Missing 11055 41.27%

Type of admission

Entrance examination 11851 44.24%

Entrance examination − first attempt 6601 24.64%

Pre−university center 2407 8.98%

Special programs of admission 5931 22.14%

∗values different to “Only student” are considering relatives and the student
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Table 3.3: Descriptive statistics at enrollment

Factor N Percentage ( % )

Cycle of entry

First semester of the year 19746 73.71%

Second semester of the year 7044 26.29%

Cohort∗

2004 first semester of the year 1520 5.67%

2004 second semester of the year 842 3.14%

2005 first semester of the year 1672 6.24%

2005 second semester of the year 768 2.87%

2006 first semester of the year 1993 7.44%

2006 second semester of the year 668 2.49%

2007 first semester of the year 2560 9.56%

2007 second semester of the year 634 2.37%

2008 first semester of the year 2238 8.35%

2008 second semester of the year 712 2.66%

2009 first semester of the year 2500 9.33%

2009 second semester of the year 772 2.88%

2010 first semester of the year 2374 8.86%

2010 second semester of the year 977 3.65%

2011 first semester of the year 2239 8.36%

2011 second semester of the year 854 3.19%

2012 first semester of the year 2650 9.89%

2012 second semester of the year 817 3.05%

∗Admission of students is not effective in summer academic cycles, only in semesters 1 and 2

the 78% of the analyzed population. In the appendix (B.0.5), Figure (B.1) shows graphically

the explained description.

Results of a bivariate analysis (univariate regression) give a high level interpretation. We ex-

ecute two estimations, using the Cox regression and the logistic regression obtaining similar

coefficients. The objective of showing these two methods is to demonstrate that the estima-

tions can be compared with fixed covariates and the analysis of time-varying covariates is

only restricted to the logistic model. Taking as reference the logistic regression, outcomes

show that in male students the odds of dropout hazard (“ODH”) increases in 59% (OR =

1.59, 95% IC: 1.50-1.68) over female students. Taking as reference students enrolled in for-

mal sciences and engineering, students enrolled in humanities and social sciences have 49%

(OR = 0.51, 95% IC: 0.48-0.54) less ODH, while the enrolled ones in Arts has 22% (OR =

0.78, 95% IC: 0.67-0.92) less ODH. About the high school of origin, students who came from

parochial schools have 23% (OR = 0.77, 95% IC: 0.67-0.89) less ODH than those who came
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Table 3.4: Kaplan-Meier estimation for the entire population

Semester At riska Failuresb Riskc Survivald 95% CI

1st 26790 885 0.033 0.967 (0.965, 0.969)

2nd 24933 1076 0.043 0.925 (0.922, 0.928)

3rd 21264 937 0.044 0.884 (0.881, 0.888)

4th 19426 781 0.040 0.849 (0.844, 0.853)

5th 16656 642 0.039 0.816 (0.811, 0.821)

6th 15134 532 0.035 0.787 (0.782, 0.793)

7th 12722 322 0.025 0.768 (0.762, 0.773)

8th 11776 217 0.018 0.753 (0.748, 0.759)

9th 9712 100 0.010 0.746 (0.740, 0.752)

10th 9094 101 0.011 0.737 (0.731, 0.744)

11th 7040 78 0.011 0.729 (0.723, 0.736)

12th 5787 70 0.012 0.720 (0.714, 0.727)

13th 3385 48 0.014 0.710 (0.703, 0.717)

14th 2250 66 0.029 0.689 (0.681, 0.698)

15th 1133 33 0.029 0.669 (0.659, 0.680)

16th 644 21 0.033 0.647 (0.634, 0.661)

17th 267 0 0.000 0.647 (0.634, 0.661)

18th 103 0 0.000 0.647 (0.634, 0.661)

anumber of students at risk of dropout

bnumber of dropouts in the current semester and before the next one

cprobability to dropout in the current semester

dprobability that a student remains at the University until the current semester

from a private or private religious schools. In the cases of “fe y alegŕıa” schools and students

from armed forces, that rate reduces to 22% (OR = 0.78, 95% IC: 0.65-0.93). Additionally,

students who studied at the hight school in provinces have 13% (OR = 0.87, 95% IC: 0.80-

0.95) less ODH than those who studied in Lima, while who studied abroad have 102% (OR =

2.02, 95% IC: 1.18-3.49) more ODH. About type of housing, we observed that in the case of

students who rent the ODH increases in 17% (OR = 1.17, 95% IC: 1.08-1.26). On the other

hand, for students who do not have any of their living parents the ODH increases, being the

rate in the case of absent of the mother 36% (OR = 1.36, 95% IC: 1.17-1.58) and in the

case of the father 10% (OR = 1.10, 95% IC: 1.02-1.20). The parent educational levels are

inversely proportional to the ODH, while the level is higher the ODH decreases. The highest

rates of ODH related with parents educational level is reached when they have studied only

at the primary school, in the case of the mother the rate increases in 69% (OR = 1.69, 95%

IC: 1.42-2.02) and in the case of the father increases in 61% (OR = 0.61, 95% IC: 1.27-2.03).

Another outstanding feature is for the students who have some relatives associated with the

University (current studies or in the past); in general for those students the ODH decreases.
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If the student was working at the admission time the ODH increases in 45% (OR = 1.45,

95% IC: 1.17-1.80). In general, students who were admitted to the University by another

modality different to the most common way, entrance examination, has less ODH. For in-

stance, students belonging to the “top third percent” type of admission have 40% (OR =

0.60, 95% IC: 0.54-0.65) less risk to dropout. The relation between payment scale and ODH

is directly proportional, if the level increases in one unit the ODH increases in 5% (OR =

1.05, 95% IC: 1.02-1.07) and students who asked for reclassification has less risk than those

who did not in 22% (OR = 0.78, 95% IC: 0.67-0.92). In the same direction, students enjoying

some benefit have less hazard. For example, in the case of loans, the rate decreases in 77%

(OR = 0.23, 95% IC: 0.14-0.39). The age is also directly proportional to the ODH, each

year a student increases its ODH in 15% (OR = 1.15, 95% IC: 1.13-1.17). The standardized

academic performance index has an inverse effect, for each unit that it increases the ODH

decreases in 15% (OR = 0.85, 95% IC: 0.84-0.85).

We point out now a criterion in order to select a group of variables in the multivariate model

estimation. These variables have to be statistically significant at 25% . Given this rule

we identify the following variables and their respective instances as significant ones: area

of first enrollment (Humanities and Social Sciences, Education), high school type (public,

parochial), type of residence (renting, living with relatives), indicator of whether or not the

mother is alive, mother education level (technical education, high school, primary school),

number of relatives at the University, modality of admission (entrance examination in first

attempt, top third of the class in high school), payment scale, indicator of whether or not

the student has asked for reclassification, number of visits to health service, standardized

academic performance index, percentage of passed credits. In addition we are including the

variable “age” (p−value = 0.332) as part of a research special feature, despite of not being

include within the range of 25%. The decision was taken in order to get knowledge about

how much more students increases their risk to drop out each year they are older.

After selecting a group of significant variables based in the univariate analysis and filtering

those which in the multivariate model are not significant, we analyze those variables which

are just in the limit of the significance level in order to confirm if we should or not keep them

as part of a second instance or final multivariate model. Likelihood ratio tests are executed

for the following variables, taking as reference a basic multivariate model that do not include

any of them: high school type, indicator of whether or not the mother is alive, number of

relatives at the University. Finally we decided to remove these three variables of the model

after analyzing the obtained significance values for the hypothesis test. In appendix (A.0.4),

table (??) shows the outcomes with which we conclude that there is no evidence to point out

that two models are different in each test.

We keep the following variables as part of the final multivariate model: area of first en-

rollment, type of housing, mother education level, type of admission, payment scale, age,

standardized academic performance, percentage of passed credits. Taking as reference stu-
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dents enrolled in formal sciences and engineering, students enrolled in humanities and social

sciences have 43% (OR = 0.57, 95% IC: 0.53-0.62) less ODH, controlling at the same time by

type of housing, mother education level, type of admission, payment scale, age, standardized

academic performance and percentage of passed credits (or in general “the rest of variables”

to mean those which are not mentioned). Students enrolled in these 2 areas represents more

than 91% of the population in study. About type of housing, we observed that in the case of

students who rent the ODH increases in 15% (OR = 1.15, 95% IC: 1.06-1.26) controlling at

the same time by the rest of variables. As was analyzed before, the mother educational level

is inversely proportional to the ODH, while the level is higher the ODH decreases. To have

attended technical studies increases the ODH in 11% (OR = 1.11, 95% IC: 1.02-1.21), high

school level increases the risk in 9% (OR = 1.09, 95% IC: 1.01-1.18), and primary school level

increases the ODH in 27% (OR = 1.27, 95% IC: 1.04-1.56), all this scenarios in comparison

with the college level and after controlling by the rest of variables. It was also found that

when students obtained the admission by studying at the pre-university center their ODH

decreases in 22% (OR = 0.78, 95% IC: 0.69-0.88) and if they were admitted by entrancing

as member of the top third percent at the high school, then the ODH increases in 27%

(OR = 1.27, 95% IC: 1.13-1.41), controlling at the same time by the rest of variables. The

relation between payment scale and ODH keep being directly proportional, if the payment

scale increases to the next category, then the ODH increases in 14% (OR = 1.14, 95% IC:

1.11-1.17), controlling by the rest of variables. The age is also directly proportional to the

ODH, each year that a student is older, the ODH to leave increases in 3% (OR = 1.03, 95%

IC: 1.01-1.05). The standardized academic performance index, as could be expected, has

an inverse effect in the ODH, for each unit that it increases the ODH decreases in 8% (OR

= 0.92, 95% IC: 0.92-0.93), controlling by the rest of variables. Finally, the percentage of

passed credits performs an inverse relation with the ODH too, for each unit this variable

increases the ODH decreases in 3% (OR = 0.97, 95% IC: 0.97-0.97), controlling by the rest

of variables. By design we included the cohort effect in the estimation of the multivariate

model. We found that while more recent is the cohort students are less prone to drop out

(see Table (??)).
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Table 3.5: Univariate regression analysis (1/3)

Cox regression Logistic regression

Factor HR 95% CI p-value OR 95% CI p-value

Gender

Female 1.00 − − 1.00 − −
Male 1.56 (1.48, 1.65) <0.001 1.59 (1.50, 1.68) <0.001

Marital status

Single 1.00 − − 1.00 − −
Married and Others 1.81 (0.98, 3.37) 0.060 1.72 (0.84, 3.52) 0.136

Area of first enrollment

Formal Sciences and Engineering 1.00 − − 1.00 − −
Architecture and Urbanism 0.99 (0.88, 1.11) 0.862 0.99 (0.87, 1.12) 0.835

Arts 0.81 (0.70, 0.93) 0.004 0.78 (0.67, 0.92) 0.003

Education 1.10 (0.89, 1.36) 0.356 1.15 (0.92, 1.44) 0.222

Humanities and Social Sciences 0.57 (0.54, 0.60) <0.001 0.51 (0.48, 0.54) <0.001

High school type

Private / private religious 1.00 − − 1.00 − −
Public / public religious 1.07 (0.98, 1.16) 0.146 1.05 (0.96, 1.15) 0.315

Parochial 0.82 (0.72, 0.93) 0.002 0.77 (0.67, 0.89) 0.006

Others 0.79 (0.67, 0.93) 0.005 0.78 (0.65, 0.93) <0.001

High school location

Lima y Callao 1.00 − − 1.00 − −
Provinces 0.85 (0.79, 0.92) <0.001 0.87 (0.80, 0.95) 0.001

Abroad 1.87 (1.12, 3.10) 0.016 2.02 (1.18, 3.49) 0.011

Type of housing

Own 1.00 − − 1.00 − −
Renting 1.18 (1.10, 1.26) <0.001 1.17 (1.08, 1.26) <0.001

Living with relatives 1.05 (0.98, 1.12) 0.171 1.04 (0.97, 1.12) 0.301

Others 1.11 (0.98, 1.24) 0.100 1.09 (0.96, 1.24) 0.196

Indicator of mother alive

Yes 1.00 − − 1.00 − −
No 1.34 (1.17, 1.53) <0.001 1.36 (1.17, 1.58) <0.001

Indicator of father alive

Yes 1.00 − − 1.00 − −
No 1.13 (1.05, 1.21) 0.001 1.10 (1.02, 1.20) 0.017

∗First showed value for each variable is the reference or pivot value
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Table 3.6: Univariate regression analysis (2/3)

Cox regression Logistic regression

Factor HR 95% CI p-value OR 95% CI p-value

Mother education level

College education 1.00 − − 1.00 − −
Technical education 1.15 (1.07, 1.23) <0.001 1.14 (1.06, 1.23) <0.001

High school 1.37 (1.29, 1.46) <0.001 1.34 (1.25, 1.43) <0.001

Primary school 1.73 (1.48, 2.03) <0.001 1.69 (1.42, 2.02) <0.001

Father education level

College education 1.00 − − 1.00 − −
Technical education 1.24 (1.15, 1.34) <0.001 1.19 (1.09, 1.30) <0.001

High school 1.39 (1.30, 1.49) <0.001 1.34 (1.25, 1.45) <0.001

Primary school 1.71 (1.39, 2.11) <0.001 1.61 (1.27, 2.03) <0.001

Number of relatives at the University

Only student 1.00 − − 1.00 − −
Two 0.80 (0.70, 0.91) <0.001 0.74 (0.64, 0.85) <0.001

Three 0.74 (0.66, 0.82) <0.001 0.68 (0.61, 0.77) <0.001

Four 0.67 (0.61, 0.74) <0.001 0.63 (0.57, 0.70) <0.001

Five 0.99 (0.56, 1.76) 0.984 1.03 (0.56, 1.90) 0.933

Working

No 1.00 − − 1.00 − −
Yes 1.67 (1.40, 2.00) <0.001 1.45 (1.17, 1.80) <0.001

Type of admission

Entrance examination 1.00 − − 1.00 − −
Entrance examination - 1st attempt 0.68 (0.64, 0.72) <0.001 0.71 (0.66, 0.76) <0.001

Pre-university center 0.74 (0.67, 0.81) <0.001 0.75 (0.67, 0.83) <0.001

Entrance by top third percent 0.55 (0.51, 0.60) <0.001 0.60 (0.54, 0.65) <0.001

Special programs of admission 0.86 (0.76, 0.97) 0.011 0.97 (0.86, 1.10) 0.665

Payment scale ∗∗

Payment scale − − 1.05 (1.02, 1.07) <0.001

Request reclassification ∗∗

No − − 1.00 − −
Yes − − 0.78 (0.67, 0.92) 0.002

∗First showed values for each variable was the reference or pivot value

∗∗Time-varying variables

∗∗For “education level” variable, each value means complete or incomplete studies at the respective level
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Table 3.7: Univariate regression analysis (3/3)

Cox regression Logistic regression

Factor HR 95% CI p-value OR 95% CI p-value

Type of benefit ∗∗

None − − − 1.00 − −
Scholarship − − − 0.56 (0.40, 0.78) <0.001

Discount − − − 0.72 (0.56, 0.91) 0.007

Loans − − − 0.23 (0.14, 0.39) <0.001

Others − − − 10.23 (4.94, 21.19) <0.001

Visits to health service ∗∗

Number of visits − − − 0.90 (0.88, 0.93) <0.001

Age ∗∗

Age − − − 1.15 (1.13, 1.17) <0.001

Academic performance index ∗∗

CRAEST − − − 0.85 (0.84, 0.85) <0.001

Percentage of passed credits ∗∗

Passed credits − − − 0.96 (0.96, 0.96) <0.001

∗First showed values for each variable was the reference or pivot value

∗∗Time-varying variables
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Table 3.8: Multivariate logistic regression model (1/2)

Logistic regression

Factor OR 95% CI p-value

Area of first enrollment

Formal Sciences and Engineering 1.00 − −
Architecture and Urbanism 0.80 (0.70, 0.92) <0.001

Arts 1.11 (0.92, 1,33) 0.270

Education 1.46 (1.12, 1.91) <0.001

Humanities and Social Sciences 0.57 (0.53, 0.62) <0.001

Type of housing

Own 1.00 − −
Renting 1.15 (1.06, 1.26) <0.001

Living with relatives 1.13 (1.04, 1.23) <0.001

Others 1.11 (0.96, 1.29) 0.150

Mother education level

College education 1.00 − −
Technical education 1.11 (1.02, 1.21) 0.020

High school 1.09 (1.01, 1.18) 0.030

Primary school 1.27 (1.04, 1.56) 0.020

Type of admission

Entrance examination 1.00 − −
Entrance examination - 1st attempt 1.11 (1.02, 1.21) 0.010

Pre-university center 0.78 (0.69, 0.88) <0.001

Entrance by top third percent 1.27 (1.13, 1.41) <0.001

Special programs of admission 1.96 (1.65, 2.34) <0.001

Payment scale ∗∗

Payment scale 1.14 (1.11, 1.17) <0.001

Age ∗∗

Age 1.03 (1.01, 1.05) 0.010

Standardized academic performance index ∗∗

academic performance index 0.92 (0.92, 0.93) <0.001

Percentage of passed credits ∗∗

Passed credits 0.97 (0.97, 0.97) <0.001

∗First showed values for each variable was the reference or pivot value

∗∗Time-varying variables
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Table 3.9: Multivariate logistic regression model (2/2)

Logistic regression

Factor OR 95% CI p-value

Cohort∗∗∗

2004 1.00 − −
2005 0.87 (0.77, 0.98) 0.020

2006 0.81 (0.72, 0.92) <0.001

2007 0.89 (0.79, 1.00) <0.001

2008 0.73 (0.64, 0.82) <0.001

2009 0.69 (0.61, 0.78) <0.001

2010 0.55 (0.48, 0.62) <0.001

2011 0.28 (0.23, 0.34) <0.001

2012 0.00 (0.00, ∞ ) 0.830

∗∗∗In the analysis the cohort effect is included by design.



Chapter 4

Discussion and Future Research

“Providence has its appointed hour for everything.

We cannot command results, we can only strive”.

Gandhi, 1939

4.1 Conclusions

In this paper, we reviewed the regression models for discrete data and applied them to

the analysis of factors associated with dropout at a major private University in Perú. After

fitting univariate and multivariate regression models, we found that the academic factors

associated with student dropout were the area of study, modality of admission, standardized

academic performance index, and percentage of passed credits. Important factors that could

be associated with student’s economy were the type of residence and payment scale. A

personal features was also important: the mother education level, and in general the two

features related with parents, indicators of whether or not are alive and education levels

revealed to be more important if the mother is absent. The risk of dropout is directly

proportional to the age of the student, it increases each year a student is older. We consider

that the model’s assumption of proportionality is so difficult to reach, at least taking as

reference the comparison of hazard curves (or the logit of hazards curves), as we could see

in the section of Kaplan-Meier estimators. However, in most of the observation period this

assumption allows us to make the conclusion presented in section Results. One additional

feedback we take, is that in this study, censored observations were taken as right-censoring

cases, we can also assume this feature as interval-censored data given that we take measures

at the end of one semesters and the real interruption of the studies can place in before or

after each ending of semester. It implies to handle another likelihood function in order to

calculate the respective estimators. It would be an interesting work to compare these two

forms of estimations applied to a same case of study.

38
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4.2 Future Research at Survival Analysis

• Additive models. The Nelson-Aalen estimator can be used to generate a cumulative

hazard rate function (see equation (2.20)) and using this result the estimated survival

function is Ŝj = e−Λ̂j .

• Prediction. We have focus on the problem of estimation. There is a remaining

question on how to do model prediction under this setting. One approach is to study

the time-dependent accuracy summaries based on time-specific versions of sensitivity

and specificity calculated over risk sets (Heagerty, 2005).

• Long-term survival. In addition, the discrete-time survival model we have consid-

ered, we assumed that all individuals will eventually drop out the University. However,

in this case of study, this is clearly unlikely. Current works attempt to adapt this

discrete time survival model to consider a cure fraction (group of individuals that does

not fail in the observation period)(Zhao and Zhou, 2008).

• Bayesian survival methods. Another approach to the estimate of survival functions

is by using Bayesian methods. The current dropouts research problem can be performed

by using this kind of techniques (Susarla and Van Ryzin, 1976).

• Competing risk models. There can be many causes of failure within a context.

These models attempt to model the time of event occurrence under many conditions

that can trigger the failure. The condition which occurs first will determine the survival

time of the individual of interest. An example of this type of study and its merging

with Bayesian estimation methods can be found on (Vallejos and Steel, 2014).



Appendix A

Theoretical notes and calculations

A.0.1 Probability density function of T expressed in terms of the hazard func-

tion

fj = P (T = j) =
λj

(1− λj)

j∏
k=1

(1− λk) =
λj

(1− λj)
Sj (A.1)

To get last equation in (A.1) it considers 2.3

λj =
P (T = j)

P (T = j) + P (T > j)
=

1

1 +
Sj

P (T=j)

(A.2)

and isolating the discrete density function

fj =
λjSj

1− λj
=

λj
(1− λj)

j∏
k=1

(1− λk) = λj

j−1∏
k=1

(1− λk) (A.3)

A.0.2 Hazard ratio interpretation

As examples, suppose there are two individuals a and a∗ with vector of covariates z and

z∗ that only differs at the kth variable being zka = b for individual a and zka∗ = b∗ for

individual a∗, then the hazard ratio will be e(b−b∗)tβ because

HR(t, z, z∗) =
λ(t, z1, ..., zk−1, b, zk+1, ..., zp)

λ(t, z1, ..., zk−1, b∗, zk+1, ..., zp)

=
λ0(t)e(β1z1,...,βk−1zk−1,b,βk+1zk+1,...,βpzp)

λ0(t)e(β1z1,...,βk−1zk−1,b∗,βk+1zk+1,...,βpzp)

= e(b−b∗)βk (A.4)
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Notice that in the particular case that values in which differs individuals a and a∗ were zk = 1

for individual a and zk = 0 for individual a∗, we have

HR(t, z, z∗) =
λ(t, z1, ..., zk−1, 1, zk+1, ..., zp)

λ(t, z1, ..., zk−1, 0, zk+1, ..., zp)

=
λ0(t)e(β1z1,...,βk−1zk−1,1,βk+1zk+1,...,βpzp)

λ0(t)e(β1z1,...,βk−1zk−1,0,βk+1zk+1,...,βpzp)

= e(1−0)βk

= eβk (A.5)

A.0.3 Proportional hazard assumption

The following example considers three hazard ratio values that shows the lack of propor-

tionality along time. Let t1,t2 and t3 be failure times and z a binary covariate, then if it

needs to analyze the hazard ratio for individuals with z = 1 and z∗ = 0 the function would

be

HR(t, z, z∗) =
λ(t, z = 1)

λ(t, z = 0)
(A.6)

and if HR(t1, z, z
∗) < 1, HR(t2, z, z

∗) = 1, and HR(t3, z, z
∗) > 1, we might observe the

following behavior:

then, the hazard ratio is not constant over time, the hazard functions are not parallel and

even an intersection exists. Under this scenario this type of regression could not be the most

suitable. Suggested options to deal with this scenario are: to split the analysis in two parts

(before and after intersection time) and to estimate functions separately; or to include a

time-dependent covariate in order to measure the interaction between the variable z and the

time.
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A.0.4 Likelihood ratio test

Table A.1: Likelihood ratio test

Model DF Chi-square p-value

Regression models comparison

Basic multivariate model (BMM) vs BMM + high school type 4 8.513219 0.074

Basic multivariate model (BMM) vs BMM + indicator or mother alive 1 0.1182135 0.731

Basic multivariate model (BMM) vs BMM + number of relatives 4 6.357758 0.174



Appendix B

Graphical results

B.0.5 Kaplan-Meier estimators for the whole population

Figure B.1 shows the Kaplan-Meier estimator as the estimated hazard and survival func-

tions for the entire population and its 95% (Wald) confidence intervals. The graphic shows

also ticks in intervals where there are censored observations.

Figure B.1: Kaplan-Meier estimator for the entire population

B.0.6 Estimated hazard functions or logit(hazard) functions for relevant covari-

ates
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Figure B.2: Hazard for entire population by first enrolled area

Figure B.3: Hazard for entire population by residence type

Figure B.4: Hazard for entire population by mother level education

Figure B.5: Hazard for entire population by admission type



Appendix C

Source code

C.0.7 Simulation of proportionality assumption

#COX MODEL

par(mfrow=c(1,1))

#Simulating HAZARD, in black

logit1 = c(runif(5),1,1.5,2) #random values for simulation

logit2 = logit1 + 1 #parallel function

plot(logit1,type="l",ylim=c(-0.1,4),main="Hazard",xlab="Time",ylab="Hazard")

lines(logit2)

#LOGISTIC MODEL

par(mfrow=c(1,3))

#Simulating LOGIT(HAZARD), in black

logit1 = c(runif(5),1,1.5,2) #random values for simulation

logit2 = logit1 + 1 #parallel function

plot(logit1,type="l",ylim=c(-0.1,4),main="Logit",xlab="Time",ylab="Logit")

lines(logit2)

#Calculating ODDS, in blue

odds1 = exp(logit1)

odds2 = exp(logit2)

plot(odds1,type="l",col="blue",ylim=c(-0.1,20),main="Odds",xlab="Time",ylab="Odds")

lines(odds2,col="blue")

#Calculating HAZARD, in red

hazard1 = 1/(1+exp(-logit1))

hazard2 = 1/(1+exp(-logit2))

plot(hazard1,type="l",col="red",ylim=c(-0.1,1.5),main="Hazard",xlab="Time",ylab="Hazard")

lines(hazard2,col="red")

C.0.8 Processing source code in R 3.0

rm(list=ls(all=TRUE))

library(splines); library(survival); library(foreign); library(xtable); library(plyr); library(stringr)

#FUNCTION

trim <- function (x) gsub("^\\s+|\\s+$", "", x)

par(mar=c(4,4,0.5,0.5)); #par(mfrow=c(1,3))
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#01 - DATA LOADING

dir = "D:/Miguel Pebes/02 - PUCP - Maestrı́a en Estadı́stica/13 Ciclo4 - Seminario de Tesis/

MPEBES_Sustentacion/R App/"

graph_dir = "D:/Miguel Pebes/02 - PUCP - Maestrı́a en Estadı́stica/13 Ciclo4 - Seminario de Tesis/

MPEBES_Sustentacion/graphics/"

datos <- read.csv(paste(dir,"archivo 1-alumno-final.csv",sep="")); names(datos)

datos2<- read.csv(paste(dir,"archivo 2a-alumno-cicmat.csv",sep="")); names(datos2)

datos3<- read.csv(paste(dir,"archivo 2b-alumno-cicegre-sinrep.csv",sep=""))

datos2_preprocesado <- read.csv(paste(dir,"archivo 2a-alumno-cicmat-preprocesado.csv",sep=""))

#02 - FILTERING DATABASE

#Selecting information from 2004 on out and not including summer schedules

datos = subset(datos,datos$d_cic_1rma!=’2002-1’ & datos$d_cic_1rma!=’2002-2’ & datos$d_cic_1rma!=’2003-1’

& datos$d_cic_1rma!=’2003-2’); table(datos$d_cic_1rma,exclude=NULL)

datos2 = subset(datos2,datos2$cicmat!=’2002-1’ & datos2$cicmat!=’2002-2’ & datos2$cicmat!=’2003-0’

& datos2$cicmat!=’2003-1’ & datos2$cicmat!=’2003-2’ & datos2$cicmat!=’2004-0’)

table(datos2$cicmat,exclude=NULL)

datos2_preprocesado = subset(datos2_preprocesado,datos2_preprocesado$cicmat!=’2002-1’

& datos2_preprocesado$cicmat!=’2002-2’ &

datos2_preprocesado$cicmat!=’2003-1’ & datos2_preprocesado$cicmat!=’2003-2’

& substr(datos2_preprocesado$cicmat,5,6)!=’-0’)

#02 - PREPROCESSING

#Grouping/creating categories

#

table(datos$sexo)

datos$sexo=relevel(datos$sexo,ref="FEMENINO")

#

#table(datos$d_estado_civil_ingreso)

datos$d_estado_civil_ingreso = as.character(datos$d_estado_civil_ingreso)

vector = c("CASADO(A)","CONVIVIENTE","RELIGIOSO(A)","SEPARADO(A)")

datos$d_estado_civil_ingreso[which(datos$d_estado_civil_ingreso %in% vector)] = "OTRO"

table(datos$d_estado_civil_ingreso,exclude=NULL)

datos$d_estado_civil_ingreso=factor(datos$d_estado_civil_ingreso)

datos$d_estado_civil_ingreso=relevel(datos$d_estado_civil_ingreso,ref="SOLTERO(A)")

#

table(datos$d_area_1rma)

datos$d_area_1rma=relevel(datos$d_area_1rma,ref="CIENCIAS")

#

#table(datos$d_tipocol)

datos$d_tipocol = as.character(datos$d_tipocol)

datos$d_tipocol[datos$d_tipocol == "NACIONAL RELIGIOSO"] = "NACIONAL"

vector = c("PARTICULAR LAICO","PARTICULAR RELIGIOSO")

datos$d_tipocol[which(datos$d_tipocol %in% vector)] = "PARTICULAR"

vector = c("FE Y ALEGRIA","FUERZAS ARMADAS")

datos$d_tipocol[which(datos$d_tipocol %in% vector)] = "OTRO"

table(datos$d_tipocol,exclude=NULL)

datos$d_tipocol=factor(datos$d_tipocol)

datos$d_tipocol=relevel(datos$d_tipocol,ref="PARTICULAR")

#
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#table(datos$d_dptocol)

datos$d_dptocol = as.character(datos$d_dptocol)

vector = c(’AMAZONAS’,’ANCASH’,’APURIMAC’,’AREQUIPA’,’AYACUCHO’,’CAJAMARCA’,’CUSCO’,’HUANCAVELICA’,

’HUANUCO’,’ICA’,’JUNIN’,’LA LIBERTAD’,’LAMBAYEQUE’,’LORETO’,’MADRE DE DIOS’,’MOQUEGUA’,’PASCO’,’PIURA’,

’PUNO’,’SAN MARTIN’,’TACNA’,’TUMBES’,’UCAYALI’)

datos$d_dptocol[which(datos$d_dptocol %in% vector)] = "PROVINCIA"

vector = c(’LIMA’,’CALLAO’)

datos$d_dptocol[which(datos$d_dptocol %in% vector)] = "LIMA Y CALLAO"

table(datos$d_dptocol,exclude=NULL)

datos$d_dptocol=factor(datos$d_dptocol)

datos$d_dptocol=relevel(datos$d_dptocol,ref="LIMA Y CALLAO")

#

#table(datos$d_tipo_residencia)

datos$d_tipo_residencia = as.character(datos$d_tipo_residencia)

vector = c(’ALQUILER-VENTA’)

datos$d_tipo_residencia[which(datos$d_tipo_residencia %in% vector)] = "ALQUILADA"

vector = c(’EN CALIDAD DE USO’,’GUARDIANÍA’,’INVASIÓN U OCUPACIÓN PRECARIA’)

datos$d_tipo_residencia[which(datos$d_tipo_residencia %in% vector)] = "OTRO"

table(datos$d_tipo_residencia,exclude=NULL)

datos$d_tipo_residencia=factor(datos$d_tipo_residencia)

datos$d_tipo_residencia=relevel(datos$d_tipo_residencia,ref="PROPIA")

#

table(datos$i_mad_viva,exclude=NULL)

datos$i_mad_viva = ifelse(is.na(datos$i_mad_viva),"1",datos$i_mad_viva)

datos$i_mad_viva=factor(datos$i_mad_viva)

datos$i_mad_viva=relevel(datos$i_mad_viva,ref="1")

#

table(datos$i_pad_vivo,exclude=NULL)

datos$i_pad_vivo = ifelse(is.na(datos$i_pad_vivo),"1",datos$i_pad_vivo)

datos$i_pad_vivo=factor(datos$i_pad_vivo)

datos$i_pad_vivo=relevel(datos$i_pad_vivo,ref="1")

#

#table(datos$d_gradoinstru_madre)

datos$d_gradoinstru_madre = as.character(datos$d_gradoinstru_madre)

vector = c(’POST-GRADO’,’UNIVERSIDAD COMPLETA’,’UNIVERSIDAD INCOMPLETA’)

datos$d_gradoinstru_madre[which(datos$d_gradoinstru_madre %in% vector)] = "UNIVERSITARIA"

vector = c(’TECNICA COMPLETA’,’TECNICA INCOMPLETA’)

datos$d_gradoinstru_madre[which(datos$d_gradoinstru_madre %in% vector)] = "TECNICA"

vector = c(’SECUNDARIA COMPLETA’,’SECUNDARIA INCOMPLETA’)

datos$d_gradoinstru_madre[which(datos$d_gradoinstru_madre %in% vector)] = "SECUNDARIA"

vector = c(’PRIMARIA COMPLETA’,’PRIMARIA INCOMPLETA’)

datos$d_gradoinstru_madre[which(datos$d_gradoinstru_madre %in% vector)] = "PRIMARIA"

table(datos$d_gradoinstru_madre,exclude=NULL)

datos$d_gradoinstru_madre=factor(datos$d_gradoinstru_madre)

datos$d_gradoinstru_madre=relevel(datos$d_gradoinstru_madre,ref="UNIVERSITARIA")

#

#table(datos$d_gradoinstru_padre)

datos$d_gradoinstru_padre = as.character(datos$d_gradoinstru_padre)

vector = c(’POST-GRADO’,’UNIVERSIDAD COMPLETA’,’UNIVERSIDAD INCOMPLETA’)

datos$d_gradoinstru_padre[which(datos$d_gradoinstru_padre %in% vector)] = "UNIVERSITARIA"

vector = c(’TECNICA COMPLETA’,’TECNICA INCOMPLETA’)

datos$d_gradoinstru_padre[which(datos$d_gradoinstru_padre %in% vector)] = "TECNICA"
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vector = c(’SECUNDARIA COMPLETA’,’SECUNDARIA INCOMPLETA’)

datos$d_gradoinstru_padre[which(datos$d_gradoinstru_padre %in% vector)] = "SECUNDARIA"

vector = c(’PRIMARIA COMPLETA’,’PRIMARIA INCOMPLETA’)

datos$d_gradoinstru_padre[which(datos$d_gradoinstru_padre %in% vector)] = "PRIMARIA"

table(datos$d_gradoinstru_padre,exclude=NULL)

datos$d_gradoinstru_padre=factor(datos$d_gradoinstru_padre)

datos$d_gradoinstru_padre=relevel(datos$d_gradoinstru_padre,ref="UNIVERSITARIA")

#

table(datos$nintegrantes_familia,exclude=NULL)

datos$nintegrantes_familia = ifelse(is.na(datos$nintegrantes_familia),"1",datos$nintegrantes_familia)

datos$nintegrantes_familia=factor(datos$nintegrantes_familia)

datos$nintegrantes_familia=relevel(datos$nintegrantes_familia,ref="1")

#

table(datos$i_trabaja_cp,exclude=NULL)

datos$i_trabaja_cp=factor(datos$i_trabaja_cp)

datos$i_trabaja_cp=relevel(datos$i_trabaja_cp,ref="0")

#

#table(datos$D_MODALIDAD)

datos$D_MODALIDAD = as.character(datos$D_MODALIDAD)

vector = c(’DIPLOMAS DE BACHILLERATO’,’EXAMEN DE INGRESO ORDINARIO Y POR EXONERACION’,

’INGRESO BICENTENARIO DE LA INDEPENDENCIA DEL PERU’,

’INGRESO POR CONVENIO COLEGIOS FE Y ALEGRIA’,’INGRESO R.P. JORGE DINTILHAC SS.CC.’,

’PROGRAMA DE EXCELENCIA ESCOLAR’)

datos$D_MODALIDAD[which(datos$D_MODALIDAD %in% vector)] = "ESPECIAL"

table(datos$D_MODALIDAD,exclude=NULL)

datos$D_MODALIDAD=factor(datos$D_MODALIDAD)

datos$D_MODALIDAD=relevel(datos$D_MODALIDAD,ref="EVALUACION DEL TALENTO Y EXONERADOS")

#

table(datos$d_cic_1rma,exclude=NULL)

datos$d_cic_1rma=relevel(datos$d_cic_1rma,ref="2004-1")

table(substr(datos$d_cic_1rma,5,6),exclude=NULL) #Validation only semesters I and II, not summer cycles

#Inputs Generation

temp1 = datos2[substr(datos2$cicmat,5,6)!="-0",]

temp2 = temp1[,c("numsec","cicmat")]

temp3 = cbind(temp2[-2], model.matrix(~0+cicmat,temp2))

#temp4 = head(temp3,2500)

temp4 = temp3

temp5 = do.call("rbind",as.list(by(temp4,list(numsec=temp4$numsec),

function(x){y<-subset(x,select=-numsec);apply(y,2,sum)})))

#temp6 = apply(temp5,1,paste,collapse=" ") #Here we have a life pattern for each individual

temp5 = data.frame(temp5)

temp5.5 = temp5[,names(temp5)[which(substr(names(temp5),11,12) %in% c(".1",".2"))]]

#temp6 = data.frame(str_replace_all(string=apply(temp5.5,1,paste,collapse=" "), pattern=" ", repl=""))

temp6 = str_replace_all(string=apply(temp5.5,1,paste,collapse=" "), pattern=" ", repl="")

temp7 = data.frame(unique(temp4$numsec)); colnames(temp7) = c("numsec"); temp7

temp8 = datos3[,c("numsec","cicegr")] #identifying individuals that finish

temp9 = merge(temp7,temp8,by="numsec",all.x=TRUE)

#temp10= cbind(temp9,str_replace_all(string=temp6, pattern=" ", repl=""),

data.frame(regexpr("100",str_replace_all(string=temp6, pattern=" ", repl=""))[1:nrow(temp9)]))
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temp10= cbind(temp9,str_replace_all(string=temp6, pattern=" ", repl=""),

data.frame(regexpr("100",str_replace_all(string=temp6, pattern=" ", repl=""))[1:nrow(temp9)]),

data.frame(regexpr("100",str_replace_all(string=temp6, pattern=" ", repl=""))[1:nrow(temp9)])-

data.frame(regexpr("1",str_replace_all(string=temp6, pattern=" ", repl=""))[1:nrow(temp9)])+1

)

colnames(temp10) = c("numsec","cicegr","pattern","pospattern","time") #; temp10

temp10$egr = "0"

temp10$egr[which(temp10$numsec %in% temp10$numsec[!is.na(temp10$cicegr)])] = "1" #; temp10

#temp10$time = ifelse(temp10$time!=-1,temp10$time,ifelse(substr(temp10$pattern,21,22)==’10’,

21,22)) #; temp10

temp10$time = ifelse(temp10$time>=0,temp10$time,ifelse(substr(temp10$pattern,21,22)==’10’,21,22)

+temp10$time+1) #; temp10

temp10$censor = "1"

temp10$censor = ifelse(temp10$egr==1,0,temp10$censor)#; temp10

#temp10$censor = ifelse(temp10$pospattern==-1,0,temp10$censor); temp10

temp10$censor = ifelse(temp10$pospattern<0,0,temp10$censor)#; temp10

temp11 = temp10[,c("numsec","pattern","time","censor","egr")]#; temp11 #SAL Y ROSAS

#temp11 = temp10[,c("numsec","pattern","time","censor")]#; temp11

temp12 = datos[,c(’numsec’,’sexo’,’d_estado_civil_ingreso’,’d_area_1rma’,’d_tipocol’,’d_dptocol’,

’d_tipo_residencia’,’i_mad_viva’,’i_pad_vivo’,’d_gradoinstru_madre’,

’d_gradoinstru_padre’,’nintegrantes_familia’,’i_trabaja_cp’,’D_MODALIDAD’,’d_cic_1rma’)]

temp13 = merge(temp11,temp12,by="numsec")

temp13 = merge(temp11,temp12,by="numsec",all.y=TRUE); head(temp13,10); length(temp13); nrow(temp13)

temp13$time = as.numeric(temp13$time)

temp13$censor = as.numeric(temp13$censor)

#KAPLAN-MEIER ESTIMATIONS FOR POPULATION

#Graphic configuration

mp = paste(graph_dir,"01_KaplanMeierEstimation.png",sep = "")

mypath <- file.path(mp)

#jpeg(file=mypath, width = 2300, height = 1400)

jpeg(file=mypath, width = 1800, height = 800)

par(mfrow=c(1,2))

datos = temp13

#Hazard function

mod1 <- survfit(Surv(time,censor)~1,data=datos)

h0 <- mod1$n.event/mod1$n.risk

plot(mod1$time,h0,type="l",ylab="Hazard of dropout",xlab="Time (academic cycles)",ylim=c(0,0.2),

xlim=c(1,17),cex.lab=2.5)

#Survival function

#plot(mod1$time,mod1$surv,type="l",ylab="% Surviving",xlab="Time (academic cycles)",ylim=c(0,1),

xlim=c(1,17),cex.lab=2.5)

plot(survfit(Surv(time,censor)~1,data=datos),conf.int=TRUE,xlab="Time (academic cycles)",

ylab="% Surviving",cex.lab=2.5)
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tab1 <- cbind(time=mod1$time,nriesgo=mod1$n.risk,evento=mod1$n.event,Riesgo=h0,Supevivencia=mod1$surv)

tab1 <- cbind(time=mod1$time,nriesgo=mod1$n.risk,evento=mod1$n.event,Riesgo=h0,Supevivencia=mod1$surv,

CI95low=mod1$lower,CI95up=mod1$upper)

print(xtable(tab1,digits=c(0,0,0,0,3,3,3,3)),include.rownames=FALSE)

summary(mod1)

dev.off()

#INVARIANT DATA:

#gender,area,typeschool,schoolloc,typehouse,status,motheraliv,fatheraliv,

#edlevmoth,edlevfath,numrelativ,working,tadmission,cohort

names(datos)

vector_invariant_data = c("sexo","d_area_1rma","d_tipocol","d_dptocol","d_tipo_residencia",

"d_estado_civil_ingreso","i_mad_viva","i_pad_vivo","d_gradoinstru_madre","d_gradoinstru_padre",

"nintegrantes_familia","i_trabaja_cp","D_MODALIDAD","d_cic_1rma")

#PROPORTIONALITY TEST

#---

#LOGRANK TEST

#defining vector of "survdiff" objects

univariate_logrank = vector("list",length(vector_invariant_data))

for (i in 1:length(vector_invariant_data)){

#logrank

formula = paste("survdiff( Surv(time, censor)","~",vector_invariant_data[i]," , rho = 0,

data=datos)",sep="")

##rho = 0 prueba de Log Rank (por defecto), rho = 1 es la prueba de Gehan-Wilcoxon

logrankfit = eval(parse(text=formula)); print(formula)

univariate_logrank[[i]] = logrankfit

#degrees of freedom

formula = paste("unique(datos$",vector_invariant_data[i],")",sep="")

unique = eval(parse(text=formula)); print(formula)

num_values = length(unique); print(num_values-1) #Showing number of different values minus 1

#p-value

p = 1-pchisq(logrankfit$chisq,df=num_values-1); print(p)

}

#univariate_logrank[[1]]; univariate_logrank[[1]]$chisq;

p = 1-pchisq(univariate_logrank[[1]]$chisq,df=1); p

#---

#COX REGRESSION

#defining vectors of coxph objects

univariate_cox_regression = vector("list",length(vector_invariant_data))

for (i in 1:length(vector_invariant_data)){

#Bivariate regression

formula = paste("coxph(Surv(time,censor)~",vector_invariant_data[i],", data=datos)",sep="")

coxfit = eval(parse(text=formula)); print(formula)

univariate_cox_regression[[i]] = coxfit

summary(univariate_cox_regression[[i]])

}



APPENDIX C. SOURCE CODE 51

#summary(univariate_cox_regression[[1]]);

#exp(summary(univariate_cox_regression[[1]])$coefficients[,1]);

#exp(confint(univariate_cox_regression[[1]]));

#---

#for (i in 1:length(vector_invariant_data)){

# par(mfrow=c(1,2)) #to draw

# formula = paste("unique(datos$",vector_invariant_data[i],")",sep="")

# print(formula)

# unique = eval(parse(text=formula)); #print(formula)

# unique = na.omit(unique)

# num_values = length(unique)

# col_vector = c(1:num_values) #to draw

#

# for (j in 1:num_values){

# print(paste(">",unique[j]))

# }

#}

#HAZARD AND SURVIVAL FUNCTIONS

for (i in 1:length(vector_invariant_data)){

formula = paste("unique(datos$",vector_invariant_data[i],")",sep="")

print(formula)

unique = eval(parse(text=formula)); #print(formula)

unique = na.omit(unique)

num_values = length(unique)

col_vector = c(1:num_values) #to draw

#defining vectors of "survfit" objects

hazardfit = vector("list",length(unique))

for (j in 1:num_values){

#print(paste(">",unique[j]))

#Estimation by groups

#formula_2ndlev = paste("survfit( Surv(time, censor)~ 1, conf.type=’none’,

subset=(",vector_invariant_data[i],"==’",unique[j],"’ & ",vector_invariant_data[i],"!=’NA’),data=datos)",

sep="")

formula_2ndlev = paste("survfit( Surv(time, censor)~ 1, conf.type=’none’,

subset=(",vector_invariant_data[i],"==’",unique[j],"’),data=datos)",sep="")

hazardfit[[j]] = eval(parse(text=formula_2ndlev)); print(formula_2ndlev)

}

#Graphic configuration

mp = paste(graph_dir,"01_KaplanMeierEstimation_byVariables_",vector_invariant_data[i],".png",sep = "")

mypath <- file.path(mp)

jpeg(file=mypath, width = 2000, height = 400) #2100,700

par(mfrow=c(1,3)) #to draw #c(1,2)

#drawing hazard

for (j in 1:num_values){

h <-hazardfit[[j]]$n.event/hazardfit[[j]]$n.risk

plot(hazardfit[[j]]$time,h,type="l",ylab="Estimated Hazard probability",xlab="Semester",ylim=c(0.0,0.2),
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xlim=c(0,18),cex.lab=2.5,col=col_vector[j])

par(new=T)

}

par(new=F)

#drawing logit

for (j in 1:num_values){

h <-hazardfit[[j]]$n.event/hazardfit[[j]]$n.risk

plot(hazardfit[[j]]$time,log(h/(1-h)),type="l",ylab="Estimated Logit",xlab="Semester",ylim=c(-5,-1),

xlim=c(0,18),cex.lab=2.5,col=col_vector[j])

par(new=T)

}

par(new=F)

#drawing survival

for (j in 1:num_values){

plot(hazardfit[[j]]$time, hazardfit[[j]]$surv,type="l",ylab="Estimated Survival

Function",xlab="Semester",ylim=c(0,1),xlim=c(0,18),cex.lab=2.5,col=col_vector[j])

par(new=T)

}

par(new=F)

dev.off()

}

#coxfit <- coxph(Surv(time,censor)~group, data=datos); summary(coxfit)

#logrankfit = survdiff( Surv(time, censor)~ group, rho = 0, data=datos)

#p = 1-pchisq(logrankfit$chisq,df=1); p

#---

#TIME VARYING VARIABLES: use objects "datos" and "datos_timevarying"

datos_timevarying = datos2_preprocesado

datos = merge(datos_timevarying,datos,by="numsec")

temp14 = data.frame(datos); vcount = data.frame(table(temp14$numsec))

names(vcount) = c("numsec","frec")

datos = merge(datos,vcount,by="numsec")

datos$int <- as.numeric(unlist(apply(array(1:nrow(vcount)),1,function(x) c(1:vcount$frec[x]))))

#si es evento y ...

datos$event = ifelse(datos$censor==1,ifelse(datos$time==datos$int,1,0),0)

datos = datos[datos$int<=datos$time,]

#First 30 lines are shown. Check with the pattern of semesters

head(datos,15)

porc_cred_aprob = datos$crapdox/datos$craplex

porc_cred_aprob = porc_cred_aprob

datos = cbind(datos,porc_cred_aprob)

head(datos[,c("crapdox","craplex","porc_cred_aprob")],50)

nivel_aprob = datos$porc_cred_aprob * 100

datos = cbind(datos,nivel_aprob)

head(datos[,c("crapdox","craplex","porc_cred_aprob","nivel_aprob")],50)

#Example time varying for variable GENDER

mod_glm <- glm(event~factor(int)+sexo,family="binomial",data=datos)

summary(mod_glm)
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sum.coef<-summary(mod_glm)$coef; est<-exp(sum.coef[,1])

upper.ci<-exp(sum.coef[,1]+qnorm(0.975)*sum.coef[,2])

lower.ci<-exp(sum.coef[,1]-qnorm(0.975)*sum.coef[,2])

xtable(cbind(est,lower.ci,upper.ci))

#Massive logistic regression

#Logistic model estimation for all covariates fixed and time-varying

univariate_logistic_regression = vector("list",length(vector_invariant_data))

for (i in 1:length(vector_invariant_data)){

#Logistic regression

formula = paste("mod_glm <- glm(event~factor(int)+",vector_invariant_data[i],

",family=’binomial’,data=datos)",sep="")

logisticfit = eval(parse(text=formula)); print(formula)

univariate_logistic_regression[[i]] = logisticfit

summary(univariate_logistic_regression[[i]])

sum.coef<-summary(univariate_logistic_regression[[i]])$coef; est<-exp(sum.coef[,1])

upper.ci<-exp(sum.coef[,1]+qnorm(0.975)*sum.coef[,2])

lower.ci<-exp(sum.coef[,1]-qnorm(0.975)*sum.coef[,2])

}

#summary(univariate_logistic_regression[[1]]);

summary(univariate_logistic_regression[[1]]);

sum.coef<-summary(univariate_logistic_regression[[1]])$coef; est<-exp(sum.coef[,1])

upper.ci<-exp(sum.coef[,1]+qnorm(0.975)*sum.coef[,2])

lower.ci<-exp(sum.coef[,1]-qnorm(0.975)*sum.coef[,2])

xtable(cbind(est,lower.ci,upper.ci))

#MULTIPLE REGRESSION

mod_glm_mult <- glm(event~factor(int)+sexo+d_area_1rma+d_tipocol+d_dptocol+d_tipo_residencia+

d_estado_civil_ingreso+d_estado_civil_ingreso+i_mad_viva+i_pad_vivo+d_gradoinstru_madre+

d_gradoinstru_padre+nintegrantes_familia+i_trabaja_cp+D_MODALIDAD+d_cic_1rma+escala+askrecateg+

tipobenef+ncitas+edad+craest,family=’binomial’,data=datos)

#Baseline: mod_glm_mult2$coefficients[1:18]

# vectorALFAs = mod_glm_mult$coefficients[1:18]

# vectorDsRowByRow = model.matrix(~factor(int)-1,data=datos)

# vectorDs <- apply(vectorDsRowByRow,2,sum)

#mod_glm_mult$coefficients[1:18]

#summary.glm(mod_glm_mult)$coef[1:18,1] #same result former line

#um.coef<-summary(mod_glm_mult)$coef; est<-exp(sum.coef[,1])

#upper.ci<-exp(sum.coef[,1]+qnorm(0.975)*sum.coef[,2])

#lower.ci<-exp(sum.coef[,1]-qnorm(0.975)*sum.coef[,2])

#xtable(cbind(est,lower.ci,upper.ci))

#plot(exp(summary.glm(mod_glm_mult)$coef[1:18,1]))

#head(model.matrix(~factor(int)-1,data=datos),20)

#row.sums <- apply(head(model.matrix(~factor(int)-1,data=datos),20) ,2,sum)

#vectorDsRowByRow = model.matrix(~factor(int)-1,data=datos)

#vectorDs <- apply(vectorDsRowByRow,2,sum)

#vectorALFAs = summary.glm(mod_glm_mult)$coef[1:18,1]

#linear_component <- apply( rbind(vectorDs,vectorALFAs) , 2, prod)

#Multivariate model - var 25% significance
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#MULTIVARIANT MODEL

mod_glm_mult <- glm(event~factor(int)+d_area_1rma+d_tipo_residencia+d_gradoinstru_madre

+D_MODALIDAD+escala+edad+craest+nivel_aprob,family=’binomial’,data=datos)

sum.coef<-summary(mod_glm_mult)$coef; est<-exp(sum.coef[,1])

upper.ci<-exp(sum.coef[,1]+qnorm(0.975)*sum.coef[,2])

lower.ci<-exp(sum.coef[,1]-qnorm(0.975)*sum.coef[,2])

xtable(cbind(est,lower.ci,upper.ci,summary(mod_glm_mult)$coef[,4]))

#MULTIVARIANT EVALUATION

mod_glm_mult_1 <- glm(event~factor(int)+d_area_1rma+d_tipo_residencia+d_gradoinstru_madre

+D_MODALIDAD+escala+edad+craest+nivel_aprob+d_tipocol,family=’binomial’,data=datos)

datos$i_mad_viva = ifelse(is.na(datos$i_mad_viva),"1",datos$i_mad_viva)

mod_glm_mult_2 <- glm(event~factor(int)+d_area_1rma+d_tipo_residencia+d_gradoinstru_madre

+D_MODALIDAD+escala+edad+craest+nivel_aprob+i_mad_viva,family=’binomial’,data=datos)

mod_glm_mult_3 <- glm(event~factor(int)+d_area_1rma+d_tipo_residencia+d_gradoinstru_madre

+D_MODALIDAD+escala+edad+craest+nivel_aprob+nintegrantes_familia,family=’binomial’,data=datos)

#Likelihood ratio test for variables (only test)

library(epicalc)

lrtest(mod_glm_mult,mod_glm_mult_1)

lrtest(mod_glm_mult,mod_glm_mult_2)

lrtest(mod_glm_mult,mod_glm_mult_3)

ci = confint(mod_glm_mult)

exp(ci)

###Controling by ANNO###

datos$anno = substr(datos$d_cic_1rma,1,4)

mod_glm_mult_extra <- glm(event~factor(int)+d_area_1rma+d_tipo_residencia+d_gradoinstru_madre

+D_MODALIDAD+escala+edad+craest+nivel_aprob+anno,family=’binomial’,data=datos)

#Coeff summary(mod_glm_mult_extra)$coef[,1]

#OR exp(summary(mod_glm_mult_extra)$coef[,1])

#P-value summary(mod_glm_mult_extra)$coef[,4]

sum.coef<-summary(mod_glm_mult_extra)$coef; est<-exp(sum.coef[,1])

upper.ci<-exp(sum.coef[,1]+qnorm(0.975)*sum.coef[,2])

lower.ci<-exp(sum.coef[,1]-qnorm(0.975)*sum.coef[,2])

xtable(cbind(est,lower.ci,upper.ci,summary(mod_glm_mult_extra)$coef[,4]))

##########
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