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Abstract

Object recognition in videos is one of the main challenges in computer vision. Several methods

have been proposed to achieve this task, such as background subtraction, temporal differencing, optical

flow, particle filtering among others. Since the introduction of Convolutonal Neural Networks (CNN)

for object detection in the Imagenet Large Scale Visual Recognition Competition (ILSVRC), its use

for image detection and classification has increased, becoming the state-of-the-art for such task, being

Faster R-CNN the preferred model in the latest ILSVRC challenges. Moreover, the Faster R-CNN

model, with minimum modifications, has been succesfully used to detect and classify objects (either

static or dynamic) in video sequences; in such setup, the frames of the video are input “as is” i.e.

without any pre-processing.

In this thesis work we propose to use Robust PCA (RPCA, a.k.a. Principal Component Pursuit,

PCP), as a video background modeling pre-processing step, before using the Faster R-CNN model, in

order to improve the overall performance of detection and classification of, specifically, the moving

objects. We hypothesize that such pre-processing step, which segments the moving objects from the

background, would reduce the amount of regions to be analyzed in a given frame and thus (i) improve

the classification time and (ii) reduce the error in classification for the dynamic objects present in the

video. In particular, we use a fully incremental RPCA / PCP algorithm that is suitable for real-time or

on-line processing.

Furthermore, we present extensive computational results that were carried out in three different plat-

forms: A high-end server with a Tesla K40m GPU, a desktop with a Tesla K10m GPU and the embedded

system Jetson TK1. Our classification results attain competitive or superior performance in terms of F-

measure, achieving an improvement ranging from 3.7% to 97.2%, with a mean improvement of 22%

when the sparse image was used to detect and classify the object with the neural network, while at the

same time, reducing the classification time in all architectures by a factor raging between 2% and 25%.

Keywords

Object detection, convolutional neural networks, Principal Component Pursuit
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Chapter 1

Introduction

Object recognition in videos is one of the main challenges in computer vision and of high importance

for video surveillance, human activity, vehicle counting and others [1]. Several challenges have been

proposed (Pascal [2], COCO [3], ILSVRC [4]) in order to find the best classifier. Through time several

methods and algorithms were proposed, the most remarkable being those that used features extractors,

such as SURF [5], BRISK [6], HOG [7] and SIFT [8], to obtain characteristics of an image and classify

them with a Support Vector Machine (SVM). These models provided an acceptable performance with

TOP-5 errors (i.e. the fraction of test images for which the correct label is not among the five labels

considered most probable by the model), as low as 0.26172 by 2012 [4]. However in 2012 [9] intro-

duced a new model using Deep Convolutional Neural Networks (CNN) (the model proposed can be

seen in Figure (1)) which represented a turning point in image detection and classification. Since that

moment Deep Learning (DL) [10], as shown in Figure 2, has increasingly influenced the field of object

recognition, and, nowadays most classification techniques involve a CNN model [11, 12, 13], achieving

better results in terms of mean Average Precision (mAP) [2], F-measure and error rate .

In order to correctly classify objects over the whole image, it is necessary to segment the regions to

be classified. Most of the work related to object detection and classification attempt to solve the problem

by analyzing all the image and then determining all the objects that are present, some of them based on

Figure 1: Structure of the Alexnet CNN proposed in [9]
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Figure 2: Illustration of a deep learning model. Image from the Deep Learning book [14].

grouping super-pixels, such as Selective Search [15], Contrained Parametric Min-Cuts (CPMC) [16],

and others based on sliding windows such as [17] and [18]. One of the methods that gives high rate of

overlap with respect to the groundtruth is the Selective Search (SS) method [15]. From a general point of

view, the SS method is based on a hierarchical grouping: first initial regions are created, and then via a

greedy algorithm such regions are grouped based on similarities. This process continues until the whole

image is a single region, generating the possible object locations with high box overlapping, achieving a

high recall of MABO1 for their “Fast” and “Quality” methods respectively in the Pascal 2007 test dataset

[2]; however, it must be noted that this method has a high detection time that makes it unsuitable for

real-time processing. This information gathered with the SS method can be used in different types of

classifiers. For instance, [11] made use of the selective search method to find regions which were then

classified by a Convolutional Neural Network. Recently, a Fully Convolutional Network (FCN) for

Semantic Segmentation was introduced in [12]. By adapting the fully connected layer of well known

classifiers, such as LeNet [19], AlexNet [9] among others, into convolutions that covers their entire

input regions they achieved a semantic segmentation of the image, with state-of-the-art segmentation

results for the PASCAL VOC dataset. In [10], the Faster R-CNN model was introduced, which is a

modification of the model used in [11], specifically two changes were made to the model: (i) the SS

method was changed by a Region Proposal Network (RPN) model, which is based on the FCN model,

to generate region proposals and (ii) in order to reduce the computational cost, the features from the

convolutional layers of the CNN were shared with the RPN. The proposed regions returned by the

RPN are used in a ROI Pooling Layer along with the feature maps to classify the objects. With this

approach the Faster R-CNN model achieved state-of-the-art measures in detection and classification as

1Mean Average Box Overlapping
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can be noted in [10]. This model achieved a low classification time, averaging 200ms for 300 proposed

regions (the authors used an NVidia GPU K40 @ 875 Mhz and an Intel Xeon CPU E5-2650 v2 @

2.60GHz). Moreover, several recent works related to object detection in images and videos, are based

on Faster-RCNN model, such as DeepID-Net [13] and the solution proposed by the NUIST team in the

ILSVRC challenge of 2016 [20].

1.1 Description of the proposed method

Although the classification performance of images with CNN achieve state-of-the-art in terms of F-

measure and accuracy, the amount of memory used to classify such images makes it restrictive for

mobile applications [21]. In this regard, a new approach is necessary to solve the classification problem

of moving objects, that can the classification time with a classification performance similar or supe-

rior to the state-of-the-art classifiers and could provide a mean to further reduce the memory footprint.

Several pre-processing techniques have been previously proposed in order to improve the CNN’s per-

formance in image/object classification The most common techniques include mean image subtraction

[22], whitening [23]. Moreover, [24] proposed a method based on dimensionality reduction by applying

Principal Component Analysis (PCA) on the image prior to the classification task. In order to improve

the overall performance of detection and classification of, specifically, the moving objects in a video

sequence, we propose to use a video background modeling pre-processing step. Video background

modeling is a ubiquitous pre-processing step in several computer vision applications, used to detect

moving objects in digital videos. There are several models for this task, e.g. based on the computation

of the median [25] or histograms [26], support vector machines [27], subspace learning [28], neural

networks [29, 30]. More recent models are based in PCP [31, 32] and Outlier Pursuit [33] among other

variants. To the best of our knowledge, no pre-processing techniques have been previously reported

for the case where the objective is to classify the moving objects in video sequences. This motived us

to apply a suitable RPCA/PCP algorithm to perform a video background modeling pre-processing step

and cascade it with the Faster R-CNN. We hypothesize that such pre-processing step, which segments

the moving objects from the background, would reduce the amount of regions to be analyzed in a given

frame and thus (i) improve the classification time, and (ii) reduce the error in classification for the dy-

namic objects present in the video. In particular, we use a fully incremental RPCA / PCP algorithm

[34, 35] that is suitable for real-time or on-line processing.
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Chapter 2

Methodology

In this chapter we summarize the methods that will be used for the proposed model. This chapter is

organized in two sections. Section 2.1 describes the Video Background Modeling pre-processing step,

specifically Principal Component Pursuit in its incremental form, followed by the ghost suppresion

(gs-incPCP) and the ℓ1-ball projection (ℓ1B-PCP) variations. In Section 2.2, we give a description

of Convolutional Neural Networks and their influence in image classification, as well as a detailed

description of the Faster R-CNN model used for the classification step.

2.1 Video Background Modeling via Principal Component Pursuit

In this section we give a brief overview of the RPCA / PCP method, with a particular focus on the

incremental PCP algorithm [34, 35] (which in turn is based on [36]), which is entangled with the Faster

R-CNN in order to improve the overall classification performance.

Video background modeling is a ubiquitous pre-processing step in several computer vision applica-

tions, used to detect moving objects in digital videos. There are several models for this task, e.g. based

on the computation of the median [25] or histograms [26], support vector machines [27], subspace

learning [28], neural networks [29, 30]. More recent models are based in PCP [31, 32] and Outlier Pur-

suit [33] among other variants. To the best of our knowledge, recursive projected compressive sensing

(ReProCS) [37, 38] along with Grassmannian robust adaptive subspace tracking algorithm (GRASTA)

[39], ℓp-norm robust online subspace tracking (pROST) [40], Grassmannian online subspace updates

with structured sparsity (GOSUS) [41] and the incremental PCP (incPCP) [35] are the only PCP-like

methods for the video background modeling problem that are considered to be incremental. However,

except for incPCP, these methods have a batch initialization/training stage as the default/recommended

initial background estimate. GRASTA and GOSUS can perform the initial background estimation in

a non-batch fashion, however the resulting performance is not as good as when the default batch pro-

cedure is used; see [35, Section 6]. pROST is closely related to GRASTA, and it shares the same

restrictions. All variants of ReProCS also use a batch initialization stage.
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2.1.1 Incremental Principal component Pursuit

In particular, PCP was introduced in [31] as the non-convex optimization problem given by (1)

argmin
L,S

rank(L)+λ‖S‖0 s.t. D = L+S , (1)

where D ∈ R
m×n is the observed video of n frames, each of size m = Nr ×Nc ×Nd (rows, columns

and depth or channels respectively), L ∈ R
m×n is a low rank matrix representing the background and

S ∈ R
m×n is a sparse matrix representing the foreground (moving objects).

While most PCP algorithms, including the Augmented Lagrange Multiplier (ALM) and inexact

ALM (iALM) algorithms [42, 43] are directly based on the convex relaxation (2)

argmin
L,S

‖L‖∗+λ‖S‖1 s.t. D = L+S, (2)

this is not the only possible tractable problem that can be derived from (1). As it is shown in [36, 35]

(3) is also proper convex relaxation of (1)

argmin
L,S

1

2
‖L+S−D‖2

F +λ‖S‖1 s.t. rank(L)≤ r . (3)

Furthermore, in [36] the numerical solution for (3) was carried out via the alternating optimization

L
( j+1)
k =argmin

L

‖Lk +S
( j)
k −Dk‖

2
F s.t. rank(L)≤ r (4)

S
( j+1)
k =argmin

S

‖L
( j+1)
k +Sk −Dk‖

2
F +λ‖Sk‖1, (5)

where sub-problem (4) can be solved by computing a partial (with r components) SVD of D−S( j). In

(4) Lk = [Lk−1 lk], Sk = [Sk−1 sk] and Dk = [Dk−1 dk], where dk is the next frame available from the input

video, Lk and Sk are the low-rank and sparse representations respectively. In the first, i.e. j = 0, we can

solve (4) via

L
(1)
k = partialSV D(Dk −S

(0)
k ) (6)

Since Dk−S
(0)
k = [Dk−1−Sk−1 dk] = [Lk−1 dk], and Lk−1 =UrσrV

T
r , (6) can be solved via the incremen-

tal thin SVD procedure. The solution of (5) is found with a shrinkage applied to the current estimate

s
(1)
k = shrink(dk − l

(1)
k ,λ) (7)

where

shrink(x,ε)= sign(x)max{0, |x|− ε} . (8)

and l
(1)
k is the las column of the current estimate L

(1)
k . In the next inner loop ( j = 1) for solving (3) we

will have

L
(2)
k = partialSV D(Dk −S

(1)
k )

= partialSV D([Dk−1 −Sk−1dk − s
(1)
k ]),

which can be computed using the thin SVD replace procedure. A full detail of the Incremental and

rank-1 modifications for thin SVD can be found on [35].
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2.1.2 Ghosting Supression for Incremental PCP

Ghosting is a phenomenon that occurs when an element from the background is assigned to the fore-

ground, or when actual moving objects produce phantoms or smear replicas. In the context of PCP, this

occurs when a moving object suddenly stops, a stationary object suddenly starts moving or a moving

object occludes a high contrast background object. The effect of these phenomena will be noticeable

if a binary mask is computed from the sparse component. To overcome this problem a variant of the

incremental PCP algorithm was proposed in [44]. Given two low-rank components l
(n1)
k and l

(n2)
k , with

n1 ≪ n2 will be different if a video event’s interpretation differs over a given time frame, e.g., but not

limited to, when a moving object suddenly stops. This differences will be shown in the sparse com-

ponents, s
n1

k and s
n2

k , as ghosts. If a binary mask is computed from the each sparse component, i.e.

m
n1

k and m
n2

k , these mask will show the moving objects and the ghosts. As shown in [35], the intersec-

tion of these masks will provide only the moving objects, and the union of the masks complement,i.e.

Bk =∼ m
n1

k ∪∼ m
n2

k , will include the pixels of the background that are not occluded by a moving object.

With Bk we can (i) generate an adaptative λ for each frame k instead of the globally fixed λ from (5) and

(ii) generate a “new” input frame d̂
(n)

= dk⊙Bk+ lnk ⊙(1−Bk), where ⊙ is element-wise multiplication

(Hadamard product), which will be used to replace the effect of the previously processed frame dk with

the use of the downdate modification for the thin SVD. The complete implementation of this can be

found in Algorithm 1 of [35].

2.1.3 Incremental PCP via projections onto the ℓ1-ball

Although a theoretical guidance for selecting an optimal regularization parameter λ is given in [32],

tipically this parameter is chosen heuristically. Recently a novel convex relaxation of (1) was proposed

in [45]

argmin
L,S

1

2
‖L+S−D‖2

F s.t. ‖S‖1 ≤ τ, rank(L)≤ r , (9)

and, as with other incremental PCP algorithms, (9) can be solved in an incremental fashion, and the

parameter τ can be adaptively estimated for every frame. The same approach used in Section 2.1.2 can

be applied to (9) and solve it via an alternating optimization

L
( j+1)
k = argmin

L

‖Lk +S
( j)
k −Dk‖

2
F s.t. rank(Lk)≤ r (10)

S
( j+1)
k = argmin

S

‖L
( j+1)
k +Sk −Dk‖

2
F s.t. ‖Sk‖1 ≤ τ, (11)

where Lk = [Lk−1 lk], Sk = [Sk−1 sk] and Dk = [Dk−1 dk]. The minimization of (10) can be computed via

the incremental thin SVD procedure, while the minimizer of (11) is the projection of (dk − lk) onto the

ℓ1-ball

s
(1)
k = prox

ℓ1−ball,τ

(dk − l
(1)
k ) s.t. ‖S‖1 ≤ τ , (12)

where

prox
ℓ1−ball,τ

(u)=min
x

1

2
‖x−u‖2

2 s.t. ‖x‖1 ≤ τ , (13)

7
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is the projection onto the ℓ1-ball. If ‖u‖1 ≤ τ, then x∗ = u is the solution to (13); however this is rarely

observed in practices, and thus we asume ‖u‖1 > τ. Then the optimal solution ‖x∗‖1 = τ, and the

solution to (13) is given by shrinkage

x∗= shrink(u,λ(τ)) (14)

where λ(τ) is a threshold that depends of τ and is usually found by sorting the elements of u in decreas-

ing order. While there are several algorithms to solve (13), the one proposed in [46] is used since it can

be easily parallelize in several architectures, including CUDA.

2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNN) were introduced in 1989 in [47]. The main difference from

classical neural networks, is the presence of a Convolutional Layer in which three steps are performed:

1. A convolutional operation between the input data and a learned kernel that produces a linear

activation, which in turn

2. The ouput of convolution is applied to a non linear activation function, such as the ReLU (Recti-

fied Linear Unit) and finally

3. A pooling operation is performed in the data obtained from the ReLU. There are several pooling

functions, being the max pooling [48] one of the most used in Convolutional Neural Networks.

A sample model of a CNN can be appreciated in Figure 3 where all the stages mentioned above are

depicted.

Convolutions

Non-Linearity

(ReLU)

Pooling

Convolutional Layer

Input

Feature Maps

Stage 2Stage 1 Stage 3

Figure 3: Example of the stages of a Convolutional Layer

CNN’s were conceived from the work performed in [49, 50, 51]. In these studies, the authors

analized the mammalian visual system behavior and determined that some neurons responded more

strongly to certain type of patterns, such as oriented bars. These neurons belong to the V1 cortex, also

known as primary visual cortex. Here, features are detected hierarchically, i.e., first some coarse features

are detected and more complex features are built based on them. In this sense, CNNs can be compared
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in behavior to the V1 cortex, as the first layer detects basic features and subsequent convolutional

layers detect more complex ones. Nowadays, the state-of-the-art for image classification is achieved by

Convolutional Neural Networks (CNN), as it is shown with the top methods presented in the Imagenet

Large Scale Visual Recognition Challenge (ILSCVR) [4]. In 2012 this approach gained more attention

with the work of [9] where they achieved an outstanding test error rate of 15.4% while the next best

entry in that challenge achieved an error of 26.2% error. Recently, a new model was presented, Faster

R-CNN [10], based on the Fast R-CNN model presented in [52] and proposing a Region Proposal

Network (RPN) for generating the region proposals, instead of the Region of Interest (RoI) pooling

layer of [52]. This particular method will be detailed in following Sections.

2.2.1 Fully Convolutional Neural Network (FCN)

A Fully Convolutional Network (FCN) is a type of neural network in which all the layers perform

convolutional operations. One of the first works to adapt a Convolutional Neural Network (CNN) into a

FCN was presented in [53], where they extended the CNN described in [47] to recognize a complete set

of digits, instead of an isolated digit. It is due to the nature of the Layers of an FCN that it posess some

advantages over traditional CNN. One of these advantages is that an FCN can be trained end-to-end, and

thus, learn features in all the layers. On the other hand, as all the layers of an FCN are convolutional,

the FCN computes a non-linear filter, instead of a non-linear function compared to regural CNNs.

FCN are used in several applications, such as image restoration [54] and Semantic Segmentation

[12]. An example of transformation from a CNN into a FCN to perform Semantic Segmentation can

be noted in Figure 4 where the fully conected layers were changed by convolutional layers. The model

presented in [12] is of special interest since it provides an state-of-the-art segmentation using an FCN,

as can be seen in Figure 5, which will base for the RPN proposed by [10].

t̀abby cat"`

96 256 384
384

256
4096

4096
1000

96

384
256 4096

4096
1000

256
384

tabby cat heatmap

convolutionalization

Figure 4: Example of transformation from a CNN to a FCN by changing the fully conected layers into

convolution layers. Image taken from [12].
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Figure 5: Example of deep prediction using a semantic segmentation performed by an FCN. Image

taken from [12].

conv feature map

intermediate layer

256-d

2k scores 4k coordinates

sliding window

reg layercls layer

k anchor boxes

Figure 6: The RPN model generates k anchors and returns 2k scores and 4k coordinates. Image taken

from [10].

2.2.2 Region Proposal Network (RPN)

The Region Proposal Network (RPN) was first described in [10] and is based on the work of [12]. This

model is a specific type of Fully Convolutional Network which shares a common set of convolutional

layers with the an object detection network. An example of this can be seen in Figure 7. This network

takes as input an n× n window of the input convolutional feature map. Each sliding window will

generate anchors, to determine the location of the region as welll as a probability estimated of an object.

These anchors have 3 different shapes and the test is performed at 3 different scales yielding a total of 9

anchors at each sliding position. Each window will provide k possible regions, the reg layer of the RPN

will provide the bounding boxes coordinates of the regions and the cls layer will provide an estimate

probability of object. The model proposed is shown in Figure 6.
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Figure 7: Model proposed in [10]. The Region Proposal Network shares some convolutional layers

with the CNN.

2.2.3 Faster R-CNN

The Faster R-CNN model proposed by [10] consists of a deep fully convolutional network that proposes

regions, while the second module is a detector based on the Fast R-CNN [52] that base its decision on

the proposed regions of the RPN. This model uses the ZF model [55], which has 5 convolutional layers

that can be shared with the RPN and the VGG-16[56] wich has 13 convolutional layers available for

sharing. Sharing the feature maps between the RPN and the convolutional layers allows a reduction

of computational cost and processing time (These results can be found on Table 5 of [10]) , and an

increment in the classification performance, achieving state-of the art results for object detection and

classification. Figure 7 shows the unified network of the Faster R-CNN.

The Faster R-CNN model has shown great performance in object classification and it has been used

as a basis for new models and techniques ([13]) in the different categories of the ILSCVR challenge,

obtaining state-of-the-art results for detection and classification. Most models focuse in detection and

classification of all the objects in an image, and in the case of videos, this will increase the computa-

tional cost. To solve this problem, we propose the use of PCP as a pre-processing step to perform a

segmentation of the moving objects in videos and reduce the computational cost and classification time,

since less regions are to be found.
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Chapter 3

Proposed Method: Sparse pre-processing

for Convolutional Neural Networks

For the classification of moving objects in videos, the incremental PCP with ghosting suppression algo-

rithm [44] as well as the incremental PCP via projections onto the ℓ1-ball were applied. Assuming that

for any frame k, the low-rank (l) and sparse (s) components satisfy

dk ≈ lk + sk, (1)

then a binary mask mk was automatically computed via an automatic unimodal segmentation [57], since

the absolute value of the sparse representation has an unimodal histogram, from sk. Then, such mask

was applied to the original frame, i.e.

uk = mk ⊙dk, (2)

where ⊙ represents element-wise product. This step can be observed in Figure 8. The images uk were

fed to a pre-trained CNN, specifically, the Faster-RCNN [10] model with the “fast” version of ZF net

[55] that has 5 convolutional layers and 3 fully-connected layers. This scheme can be seen in Figure

10. Although Faster R-CNN can use other models such as VGG-16 [56] for the classification, the ZF

model was chosen due to the hardware restrictions of “Mobile” platform (see Table I). The neural

network returns the bounding boxes of the images detected along with the score of classification for

each bounding box, and the time needed to classify the objects in the image. This information is used

along with the groundtruth for each video to determine the F-measure

F =
2 ·P ·R

P+R
, P =

T P

T P+FN
, R =

T P

T P+FP
(3)

where P and R stand for precision and recall respectively, and TP, FN and FP are the number of true

positive, false negative and false positive pixels, respectively.

Computational Experiments

In order to assess the time performance of the proposed method1, we have run our experiments in three

different hardware platforms, labeled as “Server”, “Desktop” and “Mobile”. While their particular

1To use PCP as a video background modeling pre-processing step, before using the Faster R-CNN model
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Proposed Method: Sparse pre-processing for Convolutional Neural Networks

B����� ��sk mk

O������� ����e dk

S	��
� ���ge sk

Figure 8: Example of the proposed pre-processing step. The sparse image sk is obtained by applying

the binary mask mk to the original frame dk.
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Figure 9: Original Faster R-CNN model. The input image of the CNN is the current frame dk from the

input video.
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Figure 10: Proposed method with the incremental PCP algorithm as a pre-processing step. The input

image uk of the CNN is obtained with (2).

characteristics are listed in Table I, we highlight that the main objective of using these different plat-

forms was to factor out any hardware dependency in our experiments.
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Proposed Method: Sparse pre-processing for Convolutional Neural Networks

Platform CPU Memory GPU

Server

32x Intel R© Xeon
TM

128 GB

2x NVidia Tesla

E5-2640 v2 @ 2.0GHz K40m

20MB cache 12GB

Desktop

8x Intel R© Core
TM

32 GB

2x NVidia Tesla

i7-2600K @ 3.40GHz K10m

7MB cache 8GB

Mobile

ARM R© Cortex
TM

2 GB Tegra K1A15 @ 2.3GHz

32 KB L1 cache /512KB L2 cache

Table I: Hardware used in the experiments. These platform where chosen as they are considered to

be representative architectures for different applications, from high-end Processing (Tesla K40m) to

mobile applications (Tegra K1).

The CDNet2014 [58] dataset was selected for the tests since it comprise of several videos with particular

characteristics that allow tests of moving object detection in different scenarios. We selected seven from

four different categories of the CDNet dataset, some frame samples can be found in Figure 11

• badWeather

– skating: This is a video of people skating in a park in a snowy day. The influence of the

snow cause a low contrast between the objects and the background, this is reflected in the

low classification accuracy.

• baseline

– highway: This simple video of cars circulating in a highway has no many alterations in the

background. The leaves of the trees generates a little of ghosting in the Sparse component

of the PCP algorithm.

– pedestrians: In this video we can observe people walking in a park. The illumination allows

good contrast between the objects and the background.

– PETS2006: This is a benchmark data used to detect abandoned luggage. The high contrast

and steady background allows a good sparse segmentation.

• shadow

– backdoor: This video show people walking in an alley with influence of shadows from

different objects.

– busStation: In this video, we can observe people coming out of a bus station. The shadows

from nearby buildings and from the people affect the computation of the sparse component.

– cubicle: This video show people walking inside an office. The shadows cast from objects

and the people walking by has the same influence as in the other videos of this category.

14



Proposed Method: Sparse pre-processing for Convolutional Neural Networks

(a) Frame 1434 from the skating video (b) Frame 1435 from the skating video

(c) Frame 797 from the highway video (d) Frame 798 from the highway video

(e) Frame 570 from the pedestrians video (f) Frame 571 from the pedestrians video

(g) Frame 115 from the PETS2006 video (h) Frame 116 from the PETS2006 video
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Proposed Method: Sparse pre-processing for Convolutional Neural Networks

(i) Frame 1851 from the backdoor video (j) Frame 1852 from the backdoor video

(k) Frame 1019 from the busStation video (l) Frame 1020 from the busStation video

(m) Frame 2828 from the cubicle video (n) Frame 2829 from the cubicle video

Figure 11: Sample frames of the videos used from the CDNet2014 dataset
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Chapter 4

Results

Three different tests were run in each platform, first the classification was performed on the original

images of the videos, the second classification was performed on the segmented images uk using the

mk from the gs-incPCP algorithm, and a third classification was run over the segmented images uk

obtained with the mk from the ℓ1B-PCP algorithm. The F-measure was calculated for each one of

the videos and for each test. In order to compute the F-measure, first we calculate the overlap ratio

between the groundtruth bounding boxes and the bounding boxes provided by the Classifier using the

Intersection over Union (IoU) method, this ratio allowed us to determine the metrics needed in the

F-measure calculation.

All platforms

Dataset
Original Masked frame Masked frame

frame: dk gs-incPCP: uk (see (2)) ℓ1B-PCP: uk (see (2))

backdoor 0.7755 0.8309 0.8282

busStation 0.1927 0.3801 0.3635

cubicle 0.7505 0.6008 0.6563

highway 0.8383 0.8002 0.8150

pedestrians 0.6094 0.8842 0.8780

PETS2006 0.5068 0.6231 0.6185

skating 0.4690 0.4863 0.3630

Table II: The F-measure computed for the 7 datasets. Results are shown for classification over original

frames (dk) and for masked frames (uk) (see (2))

The performance given by the F-measure are shown in Table II. We first mention that, unsurpris-

ingly, the performance results are the same for all platform. We can note that for most of the videos, the

performance of the F-measure was higher for both pre-processing algorithms, and gs-incPCP achieved

a slightly better performance of the F-measure. In Figure 12 through 15 we can observe some clas-

sification examples comparing the standard classification and the method proposed with the two PCP

algorithms. Although the performance of the proposed method is better for most of the considered

test videos, the “cubicle” and “highway” videos are for which the standard classification gave better

performance. We can note also that for these cases the ℓ1B-PCP showed a better performance than

the gs-incPCP. The average classification time for each video is shown in Table IV the impact on the

time reduction observed when classifying the sparse images over the original images will depend on the
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application. It is worth to mention that PCP time depends solely on the image size and not the content.

These times were reported in [59] and are reproduced in Table III. As can be seen, the overhead time of

the PCP algorithm doesn’t substantially affect the time of the proposed mehtod.

person : 0.988

person : 0.966

person : 0.905

person : 0.894

person : 0.784

Image after binary mask, Frame: 1043

person : 0.991

person : 0.981

person : 0.974

Original image, Frame: 1043

Figure 12: Classification Sample of frame 1099 of the video busStation. The score for the detected

objects improve, and through all the video the classification will provide a better F-measure by only

classifying the moving objects.

person : 0.970

Image after binary mask, Frame: 595
bicycle : 0.938

motorbike : 0.669

person : 0.966person : 0.821

Original image, Frame: 595

Figure 13: Classification Sample of frame 595 of the video pedestrians. In this example, some objects

are misclassified, reducing the F-measure performance.

Dataset
Frame size PCP average time PCP average time

Desktop GPU Jetson TK1

backdoor 320x240 6.0 16.0

busStation 360x240 6.0 16.0

cubicle 352x240 6.0 16.0

highway 320x240 6.0 16.0

pedestrians 360x240 6.0 16.0

PETS2006 720x576 24.0 54.0

skating 540x360 21.0 49.0

Table III: Average PCP procesing times for each video, all times are in milliseconds. This times are

taken from Table 4 in [59].
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Image after binary mask, Frame: 1364

person : 0.984

tvmonitor : 0.863

tvmonitor : 0.577

tvmonitor : 0.513

Original image, Frame: 1364

Image after binary mask, Frame: 1345

person : 0.972

tvmonitor : 0.839

tvmonitor : 0.829

tvmonitor : 0.619
tvmonitor : 0.582

Original image, Frame: 1345

Figure 14: Classification Sample of frames 1345 and 1364 of the video cubicle. It can be noted that due

to the person standing still for a period of time the PCP Algorithm set him as part of the background.

This is a recurrent error where the person stand still for a period of time.

car : 0.994

car : 0.781

Image after binary mask, Frame: 838

car : 0.996

car : 0.996

car : 0.991

car : 0.990

car : 0.975

car : 0.804

car : 0.651

Original image, Frame: 838

car : 0.917

car : 0.874

car : 0.555

Image after binary mask, Frame: 878

car : 0.998

car : 0.998

car : 0.997

car : 0.994
car : 0.578

Original image, Frame: 878

Figure 15: Classification Sample of frames 838 and 878 of the video highway. From frame 8338

through frame 878 some of the objects were not classified of even selected as region proposals. This

behavior was noted in several sections of the video
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Server Desktop Jetson TK1

Dataset
Original Masked frame Masked frame Original Masked frame Masked frame Original Masked frame Masked frame

frame: dk gs-incPCP ℓ1-PCP frame: dk gs-incPCP ℓ1-PCP frame: dk gs-incPCP ℓ1-PCP

backdoor 76.1 68.7 68.7 145.4 123.2 123.0 1024.1 827.4 812.2

busStation 81.2 79.3 76.9 146.2 135.9 133.3 1032.3 958.9 935.3

cubicle 82.1 75.1 71.6 160.4 151.8 123.8 1016.6 890.6 831.6

highway 74.5 73.0 70.4 178.8 175.1 127.3 902.5 867.5 851.0

pedestrians 85.0 74.0 73.0 224.7 166.7 121.5 1085.4 858.2 847.9

PETS2006 83.6 77.9 80.2 195.1 168.4 126.8 983.2 861.3 842.8

skating 80.9 77.8 81.1 140.5 134.9 137.6 919.5 894.2 947.2

Table IV: Average Classification times for each video tested of the CDNet Dataset, all times are in milliseconds. It can be noted that the use of

any variant of the PCP algorithm for segmentation of the background objects allows a faster classification time, achieving a better performance

with the ℓ1B-PCP variant.
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Chapter 5

Discussion

The results from Table II show that independently of the architecture being used, the classification

performance remains unchanged as expected. One of the most remarkable results obtained is that in

most of the cases the F-measure improved when the sparse image was used to detect and classify

the objects with the neural network. The main reason for this is that the neural network finds the

features of only the moving objects, instead of all the image, which decreases the False Positives in the

classification process. This can be noted in Figure 13 where a water hydrant has been misclassified as a

person in the original image while this error was avoided in the Sparse image.

When the main interest is classifying only moving objects in a video, e.g. for video surveillance,

traffic control, etc., it is important that the rate of False Positives, i.e. misclassification of objects as

the objects of interest, is low. In Figure 13 we can appreciate a water hydrant being misclassified as

a person in the original image. This error was appreciated through all the video and thus, decreased

the F-measure for the original video classification. In the case of the classification of the Sparse video,

since only moving objects are depicted in the images, the misclassification of objects is decreased,

giving a better result in means of the F-measure. As can be noted in Table II, this improvement led to

an increase of 45% in the F-measure. shows the classification of the frame 595 of the “pedestrians”

dataset. Here we can observe that in the case of the original image, a water hydrant was classified as

a person, this error was persistent through all the video, decreasing the F-measure. In the case of the

“skating” dataset, the gs-incPCP classification show a slightly better performance than the classification

of the original images, and the ℓ1B-PCP showed a worst performance. This is due to the nature of the

video, where there is presence of artifacts in the image, i.e. snow falling, and the low contrast of the

background, which influenced in both PCP algorithms.

From Table II we can appreciate that two datasets, “cubicle” and “highway”, obtained a better F-

measure. In the case of “cubicle” the people walking by stand still for certain periods of times, and the

PCP algorithm considers them as part of the background as can be seen in Figure 14, this problem is

recurrent over all the video and thus decreases the performance. In the case of the “highway” video,

it can be noted that no regions were proposed for some objects although these have good contrast and

have enough visible features to be classified. In Figure 15, we can note some of the cars not being

classified, or even recognized as a region proposal, being this an issue of the Faster R-CNN model.

For both videos, some of the objects lack good contrast with the background and lose some necessary

features for the classification.
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The classification time also was improved when Images obtained from the sparse component of the

PCP algorithm were used with the neural network. This improvement can be observed in Table IV. We

can note that the classification task performed on the Server had an improvement in the classification

time that ranges from 2% to 13%. For the images classified in the Desktop, the improvement ranged

from 2% to 25% and in the embedded system, Jetson TK1, the reduction in the classification time

ranges from 2% to 21%.

It is worth to mention that the implementation of the Faster R-CNN model used is not optimized

to perform sparse operations. Nevertheless, as can be seen in Figure 16, the memory consumption of

the sparse images is substantially lower than the corresponding consumption of the original images,

obtaining a memory reduction of up to 7x. In the case of the original sequences, the memory consump-

tion remained constant through all the frames, while the memory usage of the sparse images depends

completely of the amount of objects in each frame.
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Figure 16: Memory usage for the “pedestrians” and “PETS2006” sequences. As can be noted, the sparse

images have a considerable lower memory consumption when read as sparse matrix. See Appendix A

for results corresponding to other test videos.
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(a) Frame 477 from the original pedes-

trians video

(b) Frame 477 from the sparse pedestri-

ans video

(c) Frame 690 from the original pedes-

trians video

(d) Frame 690 from the sparse pedestri-

ans video

(e) Frame 149 from the original

PETS2006 video

(f) Frame 149 from the sparse

PETS2006 video

(g) Frame 468 from the original

PETS2006 video

(h) Frame 468 from the sparse

PETS2006 video

Figure 17: Sample frames of the “pedestrians” and “PETS2006” videos. As can be seen, those frames

with more objects in the sparse representation have a higher memory consumption than those that have

less or none objects. In the case of the original videos, the memory usage remained constant through

all the video.
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Conclusions

For certain applications it is important to classify the moving objects in a video, without taking care of

the background, e.g. surveillance, traffic control, etc. It was shown that Convolutional Neural Networks

can provide an accurate classification of images, achieving state-of-the-art results, however, when the

objective is to classify moving objects, current CNN models, such as the Faster-RCNN model, get a

low performance due to different reasons, such as misclassification of static objects, grouping of objects

into one bounding box, etc. To overcome this problems, we have shown that applying a pre-processing

step to segment the moving objects, specifically using the Incremental Principal Component Pursuit

algorithm, we can obtain better results.

From the resource consumption point of view, the proposed model could potentially be beneficial for

mobile applications, this is due to the sparsity nature of the images after the pre-processing step as well

as the reduction of regions or objects to be classified in the image, which leads to an improvement of the

classification time, as can be seen in Table IV, as well as memory usage curves shown in Appendix A.

Alternatively, to further improve the behavior of the model, we think that the usage of more specific

linear algebra libraries focused on solving sparse algorithms could improve the classification time.

Also, a Neural Network that could provide the sparse component alongside with the bounding boxes

of the moving objects could increase the performance of the classification task while reducing the

classification time.
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Memory Usage
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Figure 18: Memory usage for the backdoor sequence
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Figure 19: Memory usage for the busStation sequence

Frames
0 50 100 150 200 250 300 350 400

M
e

m
o

ry
 u

s
a

g
e

 i
n

 k
ilo

B
y
te

s

0

100

200

300

400

500

600

700

Memory Usage of pedestrians video

Sparse images

Original images

Figure 20: Memory usage for the pedestrians sequence
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Figure 21: Memory usage for the PETS sequence
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Figure 22: Memory usage for the cubicle sequence
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Figure 23: Memory usage for the skating sequence
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Figure 24: Memory usage for the highway sequence
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