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Resumen

El control del Momento Angular Orbital (OAM por sus siglas en inglés) de la
luz en sistemas óptico cuánticos puede proveernos de un grado adicional de
libertad, lo cual nos puede permitir muchas aplicaciones en mecánica cuántica
y tecnologias de la comunicación que tengan como eje central la óptica en
su desarrollo. Luz laser con OAM, vórtices ópticos, son generalmente de-
scritos por modos de Laguerre-Gausianos, los cuales tienen una distribución
de intensidad tipo dona, con singularidades de fase en su frente de onda. En
este caso particular los modos son de primer orden y la esfera de Poincaré
da una conveniente representación geometrica para el subespacio expandido
por esta base. Continuando la propuesta teórica hecha por B. Coutinho dos
Santos et al. en 2007 [1], en este proyecto estamos interesados en estudiar de
forma experimental la dinámica de un Oscilador Paramétrico Óptico (OPO)
bajo la inyección de un haz con OAM. El objetivo principal es caracteri-
zar la conservación de OAM en los haces gemelos, nombrados ”signal” y
”idler” por razones históricas, provenientes del OPO inyectado, de acuerdo
a una simetŕıa no trivial en la esfera de Poincaré. Otro objetivo es el estudio
teórico de la dinámica de los haces de luz gemelos, de acuerdo a parámetros
experimentales reales del arreglo usado, y de ese modo mejorar la eficiencia
en la creación de los fotones gemelos, lo cual permitiŕıa el estudio experimen-
tal del entrelazamiento cuántico con este aparato. Tambien, en la mira de
este trabajo se encuentra, la medición y caracterización del ”squeezing” que
fue realizada en el recientemente montado OPO de la UFF.
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Abstract

The control of the Orbital Angular Momentum (OAM) of light in quan-
tum optical system can provide an additional degree of freedom, that can
enable many applications in quantum mechanics and optical communica-
tions. Lasers beams with OAM (optical vortices) are generally described
by Laguerre-Gaussian modes, which have a doughnut intensity distribution
with phase singularities in the wavefront . In the special case of first order
OAM modes, the Poincaré sphere gives a convenient geometrical represen-
tation of those optical vortices . Following the theoretical proposal done by
B.Coutinho dos Santos et. al in 2007 [1], in this project we are interested
in studying experimentally the dynamics of an Optical Parametric Oscillator
under the injection of a seed beam with OAM. The main aim of this project
is to characterize the OAM conservation in the twin beams, namely signal
and idler, coming from the injected Optical Parametric Oscillator, according
to the symmetry in the Poincaré sphere. We aim also at studying theo-
retically the dynamics of the twin beams generated, according to the real
experimental parameters of the setup, to improve the twin beams creation
efficiency, which will enable us to study experimentally quantum entangle-
ment in this apparatus. Also, in the scope of this work, the measurements
and characterization of squeezing was performed in the recent mounted OPO
at UFF.
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Chapter 1

Introduction

The present work is based on the dynamics of optical cavities with the pres-
ence of beams carrying OAM. This is important, due to the ongoing develop-
ments in quantum information science and quantum information technology.
These new approaches to the information transmission and communications
are strongly based on the quantum mechanical principles of the individual
particles or systems.

Quantum mechanics, which was born in the 20th Century, is in some sense
a recent theory, as compared to Newtonian mechanics or thermodynamics.
As I like to emphasize, quantum mechanics is more than just a theory created
to explain certain experiments in the early 1920’s. Quantum mechanics is
rather a framework, because nowadays it is almost impossible to avoid taking
into account its principles in any new theoretical proposal, because quantum
predictions have been confirmed by almost any experiment. The interpre-
tation and philosophical implication are still kind of blurry in the mind of
many but that is something secondary in the path of quantum information
developments.

Perhaps a huge step in the technological revolution was done 55 years
ago [2] with the development of the laser, which led people to perform ex-
periments that could seem very counterintuitive at first sight. Fundamental
experiments that reveal features about superposition or nonlocality which
nowadays are said as day-to-day things were confirmed thanks to these de-
velopments, and constituted one essential step further in quantum communi-
cations, quantum teleportation, quantum cryptography and quantum com-
putation.

Most of these fields use qubits (2 level systems), due to the complexity of
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creating higher dimensional systems. Here is when the OAM shows a great
advantage over other quantities used before by other systems (polarization,
momentum, spin). In principle, the OAM is a discrete quantity (l) that
can be exhibited by photons and classical beams (lasers) that have a field
distribution in the form of Laguerre-Gaussian modes, which do not have an
upper bound.

The study of OAM could help to develop new protocols to encode in-
formation with increased capacity due to the high dimensions that can be
achieved. Also, because it is an electromagnetic field property encoded in
light, it can be transmitted over long distances.

The work performed here, even if it was done with only qubits as the first
approximation, could well scale up into higher dimensional bits (qudits),
being robust under decoherence due to the fact that the output beams are
created in a quantum mechanical regime, but reach macroscopic intensities
due to the amplification process that goes on in the cavity.
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Chapter 2

Theoretical Background

For the sake of completeness, we reproduce here some well-known results
that could be found even at the level of textbooks [3] [4] [5]. However, we
will not dwell on presenting detailed calculations, but focus on those results
concerning, e.g., the intensity distribution across the transverse section of a
laser beam and the like, which are connected with our main concern, namely
those features which are related to the OAM.

2.1 Paraxial Wave Approximation

It is important to mention that in the most general case the whole phenom-
ena of electromagnetism rely on the Maxwell equations that we all know.
However, for our purposes, we can limit ourselves to deal with the paraxial
approximation.

If we do not consider the time dependence of an electromagnetic wave
nor its vectorial character for the moment, and only focus on the spatial
distribution of intensity, we can write its amplitude as:

A(x, y, z) = a(x, y, z)eikz (2.1)

The amplitude function (A) of the field will depend on (x , y , z) , but we
will consider only beams propagating along the z-direction. Here is when the
paraxial approximation comes in handy, if we assume that the beam does not
change its amplitude considerably within a range of propagation of the order
of the wavelength. This means that ∆a � a. We can consider the complex
exponential as a field being modulated by “a” (called spatial mode). Taking
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these considerations into account and inserting them into the classical wave
equation deduced from Maxwell theory, we get the paraxial wave equation
(PWE)

(∇2
⊥ + ikz

∂

∂z
)a(x, y, z) = 0 (2.2)

Here the ∇⊥ means the Laplacian operator over the coordinates on the
transverse plane. These coordinates could be Cartesian coordinates or any
other ones. This feature will be what brings us to the study of different
spatial modes.

2.2 Transverse Spatial Modes

In this section we show the results of solving the PWE in two coordinate
systems, Cartesian and cylindrical. The family of modes that emerges from
these two systems is the one that we use in our experiment.

2.2.1 Hermite Gaussian Modes

This type of modes arises from the solutions of the PWE in Cartesian coor-
dinates [6], and has the form:

HGn,m(x, y, z) = CHGn,m
1

ω(z)
Hn(

√
2x

ω(z)
)Hm(

√
2y

ω(z)
) exp(

ik(x2 + y2)

2R(z)
)

exp(
−(x2 + y2)

ω2(z)
) exp(iφm,n) (2.3)

with the normalization constant

CHGn,m =

√
2√

πm!n!2m+n
(2.4)

The meanings of the parameters are as follows:
ω(z) is the beam diameter that depends on the position along the propagation
axis, in this case the z-axis. It is given by:

ω(z) = ω0

√
1 +

(
z

zr

)2

(2.5)
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where ω0 is the beam diameter at its narrowest point. zr is known as the
Rayleigh length, and is given by:

zr =
πω0

λ
(2.6)

R(z) Is the radius of curvature of the mode, and is given by :

R(z) = z

(
1 +

(
zr
z

2
))

(2.7)

It is worth to mention that it tells us that only when the beam is at the
origin or at infinity (z = 0 or z = ∞ ), the radius will be infinite, which
means the wavefront is a plane. φm,n is called the Gouy phase , and is given
by:

φm,n =

(
1 +

m+ n

2

)
arctan

(
z

zr

)
(2.8)

Finally, what gives these modes their name and characterize the intensity
distribution, are the Hermite polynomials:

Hn = (−1)n exp(x2)
dn

dxn
exp(−x2) (2.9)

For the sake of clarity and to get a feeling for this kind of beams, we plot
the intensity distribution and check the implications of the indexes, n and m
, written above, in Figure 2.1

2.2.2 Laguerre Gaussian Modes

The next mode will be a consequence of solving the PWE with cylindrical
coordinates. They are described by:

LGn,m(r, θ, z) = CLGn,m
1

ω(z)
exp

(
−r2

ω(z)2

)
exp

(
−ikr2

2R(z)

)
exp(−i(n+m+ 1) arctan

(
z

zr

)
) exp(−i(n−m)θ)

(−1)min(n,m)

(
r
√

2

ω(z)

)|n−m|
L
|n−m|
min(n,m)

(
2r2

ω(z)2

)
(2.10)
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Figure 2.1: As we can see here in the table, the index n give us the number of
vertical nodal lines (null intensity) of the beam, while the index m the horizontal
ones.

with normalization constant

CLGn,m =

(
2

πn!m!

) 1
2

min(n,m) (2.11)

Most of the parameters have already being explained. However, this is not
the most common way to write the expression for the Laguerre – Gaussian
beams, but this notation will be useful when we try to show the link with the
Hermite- Gaussian beams later on. It is easy to come up with the standard
way to write the Laguerre – Gaussian beams with the replacement:
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l = m− n
ρ = min(n,m)

(2.12)

Even though it could seem confusing at first sight, the usage of these two
new indexes will prove to be very instructive to label the Laguerre beams as
follows:

LGρ,l(r, θ, z) =

√
2ρ!√

π(|l|+ ρ)!

(√
2r

ω(z)

)|l|
1

ω(z)
exp

(
−r2

ω(z)2

)
exp

(
−ikr2

2R(z)

)
exp(−i(|l|+ ρ+ 1) arctan

(
z

zr

)
) exp(−ilθ)L|l|ρ

(
2r2

ω(z)2

)
(2.13)

where L
|l|
ρ are the Laguerre polynomials :

Llρ(r) = er
r−l

ρ!

dn

drn
(e−rrρ+l) (2.14)

It is also worth to single out the term eilθ , which tells us that the phase
distribution of the wavefront has an angular dependence, giving rise to a
helical phase structure of the wavefront along the propagation axis. Due to
it, there will be a phase singularity at the origin of the beam.

Figure 2.2: a) shows a plane wavefront, while b) shows a helical wavefront corre-
sponding to a wave carrying OAM

The number of times that the helix will achieve a complete twist within
a wavelength will be determined by l , while the sign of l will set the sense of
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the twist (clockwise or counterclockwise). The parameter l is also known as
topological charge, and plays a major role in the following discussion about
Orbital Angular Momentum. The reason to add ρ to label the states of the
Laguerre beams can be seen in Figure 2.3.

Figure 2.3: Here we can see that makes a lot of sense the standard way to write
the Laguerre beams, the index ρ give us the number of radial nodal lines, while the
topological charge the number of twist of the wavefront, of course this is not visible
in intensity plots, as the ones shown in this table
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2.3 Polarization

Up to this point, we have ignored completely the vectorial nature of light, be-
cause we were mainly dealing with intensity distributions (scalar). However,
we should keep in mind that Maxwell equations are vectorial ones.

The polarization of a beam is contained in the transverse plane, so it is a
bi-dimensional vector space. We can choose two orthonormal vectors to be
used as a basis, and depending on the relative phase between them different
kinds of polarization will emerge. To exemplify, let us write our basis and
assume a relative phase difference δ , choosing Cartesian coordinates only for
simplicity.

~eh = Aeiωt~x

~ev = Beiωt+δ~y
(2.15)

The polarization of any beam will be composed by the sum ~eT = ~eh +~ev,
and we can see in Figure 2.4 that different cases arise:

In our experiments, we have used mainly linearly polarized light in the
whole beam. It also deserves attention the case of so-called vector beams.
They show a more complex structure due to the fact that not only their
intensity and phase distribution change across the transverse plane, but also
the polarization at each point. Much research is ongoing, concerning these
topics, but it lies beyond the scope of this work.

2.4 Orbital Angular Momentum (OAM)

The standard definition of total angular momentum derived from classical
electrodynamics is [7]

J =

∫
ε0µ0~r × ( ~E × ~H) dV. (2.16)

Using the identity µ0
~H = ∇ × ~A and Gauss‘ theorem, we can re-write

the total angular momentum as:

~J =

∫
ε0Ei(~r ×∇)Ai dV +

∫
ε0 ~E × ~A dV (2.17)
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Figure 2.4: We will call the cases of equal amplitude: diagonal, left circular, anti-
diagonal and right circular polarization in the same order as presented in the ta-
ble,all of them arise from different relative phases. Lets keep in mind that the
electric fields oscillates over time, always respective to an origin, in the case of
linear polarizations its pretty clear, but the left and right circular polarized is the
direction that follows the circle plotted above. For completeness the second column
shows the case where both amplitudes are different, as can be seen elliptical polar-
ization appears. We must mention that when the A or B are zero, we have vertical
and horizontal polarization respectively.

Where the separation in two parts has clear purposes: the first term of the
sum depends on the coordinate system, while the second one is independent
of it. Let us realize that the second term will never vanish unless ~A or ~E are
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zero, so in that sense we can recognize it as the intrinsic part of the angular
momentum. While the first term has a dependence on the reference system.

Checking this features, and in analogy to quantum mechanics we can
recognize the first term as the orbital part of the angular momentum, while
the second one as the spin part of the angular momentum, and write :

Ĵ = L̂+ Ŝ (2.18)

Here, we still need to remember that Ĵ is the physical quantity that
should be conserved over time, not L̂ or Ŝ , because it is what emerges from
symmetry of rotation in our Lagrangian , or the operator that commutes
with the Hamiltonian [Ĥ, Ĵ ] , depending on what formalism is required, or
more handy to deal with.

Here we are going to be supported by important developments done re-
lated to the OAM, mainly by Allen and Woerdmann [8], who showed that it
is possible to assign a definite discrete value of OAM to beams with a helical
phase structure (i.e. eilθ ) , depending on the number of twists within a wave-
length ( l ). This important fact makes it possible to connect the OAM with
the Laguerre - Gaussian modes studied before. What we called “topological
charge” quantifies the OAM that our beam carries, playing a major role in
the experiments that will be detailed later on.

Finally, I would like to mention that it is also possible that a beam car-
ries fractional values of OAM,even though it was beyond the scope of the
experiments we have performed, it could be an interesting topic to move on
in later research.

2.5 First Order Poincare Sphere

First let us take a look at the polarization system. As already said, it is a
two-dimensional vector space. We defined the orthonormal basis (êh, êv) ,
and it was shown that depending on their amplitudes and relative phase we
can reach different kinds of polarization. It could also be seen as if this two-
dimensional vector space was defined over a complex field. It brings us to
an important way to present polarization states, widely used in polarimetric
experiments: the Poincare Sphere (Figure 2.5).

We are going to deal only with first order Laguerre modes, so it would
be useful to have a representation for them, in a similar fashion to the one
used for polarization. The order of a beam is given by N = n + m for both
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Figure 2.5: Here is the so called Poincare Sphere, that has in the equator the linear
polarizations, any linear combination of horizontal and vertical polarization with
real coefficients, while at the north pole the left circular polarization(clockwise),
and at the bottom the Rigth circular polarization(counterclockwise)

families of modes, but in the standard notation used for Laguerre modes it
will be N = |l|+2ρ .

Following the steps described above for the polarization case, we would
need to pick an orthonormal basis. Using a natural definition for an internal
product in a functional space, as :

〈f(x)|g(x)〉 =

∫ +∞

−∞
f(x)g(x) dx (2.19)

Where we can show using the Hermite polynomial identities that:

〈HGn,m|HGn′,m′〉 = δm,m′δn,n′ (2.20)

As M.W. Beijersbergen [9] pointed out, a Laguerre mode can be written
in terms of Hermite modes of the same order.

LGn,m(x, y, z) =
N∑
k=0

ikb(n,m, k)HGN−k,k(x, y, z) (2.21)
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with real coefficients

b(n,m, k) =

(
(N − k)!k!

2Nn!m!

) 1
2

× 1

k!

dk

dtk
[(1− t)n(1 + t)m]|t=0 (2.22)

Where the ik corresponds to a phase difference of π
2

between successive
modes.

Also with the same coefficients, a Hermite-Gaussian mode that has a
nodal line rotated 45◦, can be decomposed as:

HGn,m(
x+ y√

2
,
x− y√

2
, z) =

N∑
k=0

b(n,m, k)HGN−k,k(x, y, z) (2.23)

with all the HG modes in the sum being in phase between one another.
As these powerful results hold on for any index m and n , we can easily
construct our two-level OAM sphere for modes of order 1 , with HG1,0 and
HG0,1 as the basis, in analogy to êh and êv. So we would have in similar
fashion a representation in a sphere (see Figure2.6)

From this point on, we move on to Chapter 3, in which we will basically
describe the operating principle of the optical resonators, which constitute
the basic structure of the OPO used in this work.
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Figure 2.6: Here is the representation analogous to the Poincare Sphere, this time
for OAM, there the first order Hermite modes, serve as the horizontal and vertical
polarization, in the equator are all linear combination of them with real coefficients,
at the north pole there the Laguerre mode with topological charge +1, in the south
the one carrying -1 , of course its impossible to recognize this phase information
on intensity plots.
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Chapter 3

Optical Cavities or Resonators

In our experiment, the optical resonators were used for two purposes. The
first one is to filter the noise coming from the laser, and the second one is
to amplify the intensity inside the cavity. In that way we can amplify the
non-linear process) generated by the Non linear crystal that we are going to
talk about later on. In the following discussion we will take certain tools to
analyze what happens inside the resonator and its output behavior. Most
of the content of this chapter is based on the text book of Amnon Yariv,
“Quantum Electronics” [10]

3.1 ABCD Law

It is important to first analyze the propagation of an optical ray through
many optical devices, especially through lenses and spherical mirrors

To achieve it, we are going to describe an optical ray by two parameters
r and r′ = dr

dz
assuming the z-axis as the propagation axis. They represent

the distance to the axis of propagation and its slope, respectively.
We would like to see how some optical devices transform these two param-

eters. Let us start by the most common instrument in an optics laboratory:
a lens, and to simplify calculus, a thin lens, which is a very usual assumption
while working on the paraxial regime.

As can be seen from the Figure 3.1 and using the ray method, the new
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Figure 3.1: The deflection of a ray incident from the left side, as we are dealing
with the thin lens the position doesn’t change and using classical ray traces we can
determine the new slope.

parameters are:

rf = ri

r′f = r′i −
ri
f

(3.1)

Of course we can enforce (eq.3.1) to be written in a more compact way if
we build a vector (r, r′)t , so that the transformation can be seen as a matrix
operating over our new vector.(

rf
r′f

)
=

(
1 0
−1
f

1

)(
ri
r′i

)
(3.2)

using the usual conventions in optics, f > 0 for a converging lens and
f < 0 for a diverging one.

By the same token, we can construct the matrices that represent other
optical devices, in particular we are interested in the spherical mirrors, lenses
(already commented) and of course the propagation in a homogeneous medium.

As you can see in Figure 3.2
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Figure 3.2: Here we see the proper matrices that will be very useful in the following
discussion, and a ray representation of changes performed by these 3 optical ele-
ments, all these matrices can be infered by the snell law, and physical consideration
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3.2 Stability

With these tool we can study the dynamics of an optical ray inside a cavity,
we are going to consider a simple resonator, i.e., light confined between two
spherical mirrors. It can also be applied to plane mirrors R −→ ∞,with a
length d . Schematically we are going to perform:

(
ri+1

r′i+1

)
= Mmirror(R2).Mspace(d).Mmirror(R1).Mspace(d).

(
ri
r′i

)
(3.3)

Using the specific matrices, the above expression yields:(
ri+1

r′i+1

)
=

(
1− 2d

R1
d
(

2− 2d
R1

)
−2(−2d+R1+R2)

R1R2

4d2+R1R2−2d(2R1+R2)
R1R2

)
.

(
ri
r′i

)
(3.4)

Here (ri+1, r
′
i+1)t t means the state after a round trip inside the cavity,

from eq.3.4

r′i =
1

d
(

2− 2d
R1

) (ri+1 −
(

1− 2d

R1

)
ri

)
(3.5)

Of course, eq. 3.4 and eq.3.5 are valid for the second round trip
(ri+2, r

′
i+2)t, so we can write:

r′i+1 =
1

d
(

2− 2d
R1

) (ri+2 −
(

1− 2d

R1

)
ri+1

)
(3.6)

Using eq. 3.4 and eq. 3.6, we get an important equation:

ri+2 − 2bri+1 + ri = 0 (3.7)

With

b = 1− 2d

R1

− 2d

R2

+
2d2

R1R2

(3.8)

We can see equation 3.7 in analogy to the differential equation r′′+Ar = 0,
which helps us to get some guide about the solutions. That brings us to
try the very useful “ansatz” or educated guess ri = Aeijα, using j as the
imaginary unit, just to avoid confusions, it leads us to:

e2jα − 2bejα + 1 = 0 (3.9)
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Solving eq. 3.9 as a quadratic equation for ejα, we get:

ejα = b± j
√

1− b2 (3.10)

Taking linear combinations of the ansatz, we can reach the general solu-
tion

ri = rmax sin iα + δ

rmax =
r0

sin δ

tan δ =
r0α

dr′0

(3.11)

Here is clear that cosα = b , if and only if b2 ≤ 1 . This is going to be
our criteria to judge if a ray beam is confined to a region, in this case the
resonator. We want the angle α ∈ R, otherwise the parameter r would keep
growing, and at some point the ray will escape. It also imposes the following
condition over b :

−1 ≤ b ≤ 1 (3.12)

Going back to the parameters of our resonator, eq. 3.8 reads:

−1 ≤ 1− 2d

R1

− 2d

R2

+
2d2

R1R2

≤ 1 (3.13)

If we divide the expression by 2, add 1
2
, and factorizing we get the usual

way to write the stability condition for a resonator made by two spherical
mirrors:

0 ≤
(

1− d

R1

)(
1− d

R2

)
≤ 1 (3.14)

Now we can trace the rays inside the cavity, specifying their coordinates
in a Cartesian system. The X and Y points are independent (see Herriot et
al. [11]), so they emerge in the same form as the solutions of equation 3.11
and we can write them like:

xm = xmax sinnα + δx

ym = ymax sinnα + δx
(3.15)
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Figure 3.3: Here are shown some cavity configurations, that will be discussed latter,
but as we can see they operate in the limit of estability (region blue is the stability
zone according to eq. 3.14 ) so any deviation from the ideal parameters will disrupt
the functioning
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Here n refers to the number of reflections on the cavity suffered by the
beam, and the parameter α is given by:

α =
2lπ

ν
(3.16)

with l and ν that taking any integer values, they tell us that our beam
will come back to the starting point after ν round trips. It means that the
ray is confined inside the cavity of course, because after a finite number of
reflections it will draw a closed curve (do not forget that all rays are straight
lines). We can check the above result by applying it to some simple cases;
see Figure 3.4

Figure 3.4: Here we see a table that plots the index mention at 3.16, the gray
surfaces are the spherical mirrors and the green points the reflections,the index
ν enumerates the number of round trips that the ray need to come back to the
starting point, of course it’s only possible because we respect the stability condition,
otherwise the rays will escape the cavity

3.3 Resonant Frequencies

Now we need to analyze the conditions necessary for the formation of standing
waves inside the cavity in terms of phase or space. Both aspects are anal-
ogous. We can formulate the conditions in terms of the beam’s frequency
or the cavity length. Following the discussion in “Quantum Electronics” by
Yariv [10] we are going to express these relations in frequency, but in the
proper experiment we did not have control over it. We changed the cavity
length to scan the resonances of the system.
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Figure 3.5: : Here some examples of configurations with different kind of mirror
are shown.This figure is taken from “Quantum Electronics” by Yariv.

The resonance’s condition is expressed in terms of the Gouy phase, see
equation 2.8, for our cavity with boundary conditions (mirrors) at z1 and z2

and the phase that arises from the direction of propagation eikz:

φm,n(z2)− φm,n(z1) = qπ (3.17)

Here we defined l = z2 − z1 to get:

kl − (m+ n+ 1)

(
arctan

(
z2

z0

)
− arctan

(
z1

z0

))
= qπ (3.18)

Now let us check the case of two fields of different orders (this analysis
will later prove to be useful). Equation 3.18 holds for any beam order, so
that:

k1l − (m+ n+ 1)1

(
arctan

(
z2

z0

)
− arctan

(
z1

z0

))
= qπ

k2l − (m+ n+ 1)2

(
arctan

(
z2

z0

)
− arctan

(
z1

z0

))
= qπ

(3.19)
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Subtracting the equations in 3.19 and using k1 − k2 = 2∆ν
c

, we obtain:

∆ν =
c

2πl
∆(m+ n)

(
arctan

(
z2

z0

)
− arctan

(
z1

z0

))
(3.20)

This expression is crucial for our purposes, it tells us that the resonance
frequency depends on the order of the mode we are inserting, or thinking in
terms of length, the position of the resonance peaks will differ from order to
order.

3.4 Losses in Optical Resonators

An important parameter used for quantifying how good an optical cavity is,
is the so called “Quality Factor” (Q) , defined by :

Q =
ωE

P
=

ωE

dE/dt
(3.21)

Here E means the energy contained in the cavity, and P the dissipated
power. Many models can be proposed to explain the obvious power dissi-
pation in real cavities. Pointed by Born and Wolf [3] , in his textbook, the
Q-factor relates to the spectral separation of the resonance frequencies, and
can be written as

∆ν =
ν

Q
(3.22)

which could be easily assessed if we know the frequency of the field inside
the cavity ( ν ), and we check the output signal through a oscilloscope.
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Chapter 4

Experimental Procedures

In this section I will discuss many procedures that usually are not mentioned
in publications, or textbooks. However, they are fundamental to make that
the experiments actually work. All these techniques were taught to me by
the laboratory team at UFF. I thus dispense myself

4.1 Mode Matching

Optical cavities are very sensible to any misalignment, including those related
to the wavefront radius of curvature. Here the waist ω(z) and the radius of
curvature R(z) play a major role, because as it is obvious any optical cavity
will have reflective surfaces (usually mirrors) as frontiers to enforce the light
to be most confined.

We achieve the mode matching condition when the form of our wavefront
matches perfectly with the geometry of the reflective surface, because other-
wise no matter how reflective is our surface , the light will star to experiment
successive reflections that will throw it outside the axis of the cavity, reducing
its efficiency.

As we can imagine, it is not always possible to create a cavity of an
arbitrary length due to the fact that the mirrors (usually spherical) available
have fixed radius of curvature, or for any other practical reason we need a
certain length of the cavity. So we require two things, first of all characterize
the beam we are working with, it means to determine the ω0, and, second,
change this parameters to our requirements to achieve the mode matching
condition Rbeam(zmirror) = Rmirror.
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Figure 4.1: Example of a typical wavefront inside a cavity, it will not be plane,so
the radius curvature at the mirror must match, “Mode Matching”

4.2 Characterization

Let us start with a given beam, of ω0 unknown. What we are allowed to
assume is that the beam must follow the equation 2.5, so we would like to
make an appropriate number of measurements and then fit a curve that will
help us to get the value ω0 and its relative position. In our case, we can only
perform intensity measurements. What we did was to take advantage of the
radial symmetry that the fundamental and Laguerre modes exhibit. We can
partially block the beam at two specific points, first at xn,1 = −ω(zn)

2
and

then at xn,2 = −ω(zn)
2

. The beam diameter at an arbitrary point zn will be
given by the difference xn,2 − xn,1 = ω(zn) . The above procedure may seem
to be circular, because we are trying to get ω(z) by intensity measurements at
points that depend on it. However, if we integrate the module of equation 2.3,
which is normalized over the whole plane x – y , for m = n = 0 (fundamental
Gaussian mode), we get:

∫ +∞

−∞

∫ xn,1

−∞
|HG0,0|2 dx dy ≈ 0.8413∫ +∞

−∞

∫ xn,2

−∞
|HG0,0|2 dx dy ≈ 0.1586

(4.1)

As we can see, these values are fractions of the total intensity (normalized to
1), independent of the value and position of the waist. In practice it means
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Figure 4.2: Here the pictures are representations of the transverse section of the
beam, the green area is what the powermeter would measure, the gray area is the
beam section blocked, also the percentages of the whole intensity are shown at
each step. The last image shows the effective diameter of the Gaussian beam, its
important to make emphasis when we say “effective”, because the equations 2.3
and 2.10 never imply a limit in the intensity distribution, they can be consider to
expand over the whole transverse plane of course with smaller values when they
get further away from the origin. In practice is needed a limit, to work with. This
sequence of measurements are done along the axis of propagation to be able to
generate a sensible fit.

that we can mount a beam stopper over a micrometrical displacer and move it
until we measure approximately 84 % of the total intensity, save the position,
and then repeat it to get 16 %, then subtract both positions and obtain a
value for the point ω(zn) . Repeating this procedure an appropriate number
of times, we can fit the data to equation 2.5.

It is important to mention that for a Laguerre mode the intensities will
differ from 84% and 16 %, due to their different radial distribution of inten-
sity, but the new values can be calculated in the same way.

4.3 Manipulation

We are interested in changing the value of ω0, for this we use the formalism
of “ABCD” matrices,also called “ray transfer matrix analysis”, that tells us
the way optical devices change the propagation of beam rays. Let us define
the “complex beam parameter” q(z):
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Figure 4.3: This is one the many characterizations done at the lab during the
experiment. Here the blue points are experimental data, recorder as was described
before, and the green curve is the fit done with Mathematica, it gave us values for
the waist ω0 = 90.10± 2.6µm and the distance to it z0 = 0.43± 0.006m .The last
parameter appears due to the fact that at the beginning of the measurements we
pick an arbitrary origin for z.

1

q(z)
=

1

R(z)
− iλ0

πnω(z)2 (4.2)

Here n does not refer to any mode label (we are still talking about the
fundamental mode), it refers to the refraction index of the medium where
the light is traveling. It also can be reformulated as:

q(z) = z + izr (4.3)

here z is the distance to ω0, and zr the Rayleigh length. Given an initial
complex parameter q0 we can use the ray transfer matrix of our optical system
and compute the resulting qf .

Moptsyst =

(
A B
C D

)
qf =

Aq0 +B

Cq0 +D

(4.4)

The new qf will tell us the new value for the waist and its position. In
these experiments, we will use lenses to get the required waist value. The
transferred ray matrix needed are:
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Mlens =

(
1 0
− 1
f

1

)
Mfree =

(
1 d
0 1

)
Msystem = Mlens.Mfree

(4.5)

Where f is the lens focal length, and d refers to the distance that the
beams travel in free space. As in any formalism that works with non com-
mutative elements, the order is important. We are implying that our beams
first go through the lens, and then propagate. Our resulting complex param-
eter following 4.4 and 4.5 reads:

qf =
f × (q + d)

f − d− q
(4.6)

Usually it is not enough just one lens, due the fact that the focal length
is fixed. In our experiments we needed two lenses to achieve the required
waist. At this section we basically have used this formalism only to change
the beam waist, however the scope of it covers a wide range of usages, as was
said we only need the matrix of a given optical system, that can be anything,
not only lenses. Maybe the most notable application of this formalism is the
calculus of a complex beam parameter for a stable optical resonator or optical
cavity.

4.4 Tilted Lens Method

The experimental results will show features involving topological charge,
which are carried by Laguerre – Gaussian beams. However it is impossible to
determine the index l via intensity measurements, even for our rather simple
space of order 1 modes, due to the fact that the information is encoded in
phase , not in amplitude, in contrast to the Hermite-Gaussian modes. Many
techniques such as interferometry or far field diffraction were develop to mea-
sure accurately the topological charge. The tilted lens [12] is a rather simple
but powerful one. The method consists of putting on a spherical lens at a
certain distance of the beam waist, and give it a tilt, changing the radial
symmetry. It transforms the Laguerre mode to a Hermite one, and the mag-
nitude of the topological charge is shown in the number of nodal lines of the
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Figure 4.4: These are some results reported by P. Vaity et al. [12] On the top row
converted beams carried a topological charge l = −4,−7,−10,−14 , while in the
bottom row l = +4,+7,+10,+14 . I decided not to show results measured in our
experiment because they form part of later discussion.

Hermite mode, while the sign in the inclination, as it was shown with great
success by P. Vaity et al., with beams that carry topological charge up to
|l|= 14

Even when this procedure is very useful, much research is still going on to-
wards a complete protocol to identify an arbitrary mode in the OAM sphere,
in a similar fashion to the usual tomography performed in the polarization
domain via the Stokes parameters.

4.5 Pound Drever Hall Method

Optical cavities for the vast majority of experiments need to work at the
resonant length, which is something extremely hard to achieve due to the
fact that we would require an accuracy in the order of nanometers. Also,
any thermal effect over the air inside the cavity will change the optical path
length followed by the beam. So, in practice we require electronic devices
that can go beyond the human precision, and help us to maintain the cavity
fixed at a given length . The method I am describing is called after their
creators [13], and was used in our experiment more than once. First of all,
we need the cavity to produce a “remaining”, meaning some sort of light that
comes from the cavity and that bring us information about the interference
going on inside, aside from the main output signal . It will depend on the
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Figure 4.5: here we can see 3 signals, the green one is the triangle signal that is
applied to the PZT to scan the resonance lengths of the cavity. The yellow signal is
the output of the cavity, that shows peaks whenever the resonance length is passed
through. Finally the purple one is refered to the error signal, take notice that when
the size of the cavity is aproaching the resonance length the error signal is positive,
while if we already passed the resonance length it’s negative.

specific configuration of our cavity. Also we need to mention piezoelectric
(PZT) devices. They change their length depending on the voltage applied.
Here we are going to mount a mirror on a PZT that will be fed with a triangle
signal, so in that way we are going to be passing through the resonant length
many times, and if we connect the main signal to a oscilloscope we will see
peaks of intensity.

Now, the way to go is take our “remaining signal”, and pass it through
a derivation circuit [13] we get the so-called “error signal”, it is important
that the signal that helps us to stabilize the cavity must be the derivative of
the “remaining signal” because it can tell us if the PZT is pushing too much,
or not the mirror, only using the intensity signal would be useless given its
symmetry respect to the peak.

Fortunately enough, the electronics is fast enough to use the “error signal”
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Figure 4.6: Here we can see how a mechanical disturbance change the intensity
spectrum, but the electronic system corrects it.

and correct constantly the length of the PZT, giving us a very stable cavity
even under some mechanical disturbance.
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Chapter 5

Quantum Correlations of Light

We have arrived at a very important and interesting point not exclusively in
optics, but in the whole physics, and not only for its intriguing implications
but also the applications that are subject of investigation nowadays.

The following discussion will be divided in two parts, the first half will
present the standard notion of “Quantum Correlation” and tests, while the
second one refers to the experimental methods to achieve such correlations.

5.1 Entanglement

This concept was introduced very long time ago, when the basis of quantum
mechanics were still in debate, referred by many as the feature that separates
quantum mechanics from the classical one. Nowadays, using the mathemat-
ical formalism for quantum mechanics we can formulate a clear definition of
entanglement as the impossibility of two systems to be described indepen-
dently of each other or be written as a tensor product.

|ψ1,2〉 6= |ψ1〉 ⊗ |ψ2〉 (5.1)

It has deep implications in many philosophical and practical considera-
tions, because besides the math that is implied to calculate observables, the
result of any measurement done in any constituent of the system will be
correlated with its counterpart.

This could lead us to an even bigger trouble if we consider both systems
arbitrarily far from each other, far enough to not allow any kind of interaction
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after the measurement in one constituent, apparently violating the principle
of relativity (no information can travel faster than light).

This fact was topic of many interesting debates in the history of quantum
mechanics, that reached its peak when Einstein, Podolsky and Rosen tried
to show that quantum mechanics was “incomplete”. It means that the ap-
parent randomness shown by quantum mechanics should be a consequence
of variables that were not considered (“hidden variables”). These variables
defined the initial conditions of the experiment, and as a consequence the
perfect correlation would be natural to be found.

After the publication done by Einstein et al. In 1935 [14], the strongest
reply to their claim was the theorem enunciated by J.S.Bell in 1964 [15],
were he stayed that “No physical theory of local hidden variables can ever
reproduce all the predictions on quantum mechanics”. It was based on a
calculus analogous to the spin correlation (it could be applied to any two-
level system).

The considerations taken were first exist a probability distribution of the
hidden variables that determine the outcome of any observable.∫

ρ(λ) dλ = 1 (5.2)

The second one is to assume that any measurement is independent from
each other:

∫
P (A(λ, a)|B(λ, b))ρ(λ) dλ =

∫
P (A(λ, a))ρ(λ) dλ×

∫
P (B(λ, b))ρ(λ) dλ

(5.3)
Here A and B are the outcomes of the measurement, while the “a” and “b”

the possible configurations of the detectors A and B and the hidden variable
is denoted by λ . Now if we consider dichotomic measurements where the
outcomes will only be ±1 , which are analogous to projective measurements
in quantum mechanics for two-level systems, it is possible to construct Bell
type correlations as:

E(a, b) =

∫
〈A(λ, a)〉〈B(λ, b))〉ρ(λ) dλ (5.4)

As both averages are less than one, and taking into account equations 5.2
and 5.3, it is possible to write the so called CHSH (Clauser-Horn-Shimony-
Holt) [16] inequality:
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|E(a, b)− E(a, b′) + E(a′, b′) + E(a′, b)|≤ 2 (5.5)

This expression gives us a boundary that any local and realistic theory
should respect. If we compare this with the usual way to take correlations
in quantum mechanics:

Q(a, b) = 〈(~σ.~a)1(~σ.~b)2〉 = ~a.~b (5.6)

Where ~σ is the vector made by the Pauli matrices, if we insert 5.6 in
equation 5.5 as the new way to take correlations we can realize that choosing
some vectors we can break the inequality. In fact, it can be shown that:

|Q(a, b)−Q(a, b′) +Q(a′, b′) +Q(a′, b)|≤ 2
√

2 (5.7)

which is known as the Tsirelson’s bound. It is important to see that
as quantum mechanics is able to break 5.5 we can claim that it cannot be
explained by a model of local hidden variables, and in fact nature shows
its quantum behavior in the sense that attains stronger correlations than
classical physics. Such feature nowadays has been explored in many appli-
cations, mainly in the field of communications and information processing.
Our experiment is not an exception, but this is performed not in the way of
a correlation test as Bell inequalities , but it uses the stronger correlations
of quantum mechanics to reduce the noise of signals.

5.2 Parametric Down Conversion

Nowadays technology has evolved greatly in the regard of non - linear optics,
up to the point that the most truthful source of highly correlated photons
are crystals constructed with second order susceptibilities χ(2) that induce
processes where the frequency of the incoming light will not be conserved.

In our experiment we used a KTP( Potassium titanyl phosphate) crystal,
that has the property of converting the incoming pump photon of frequency
corresponding to 532 nm. to a couple of photons of less energy but that must
satisfy the energy conservation. For historical considerations, the photons
generated are called “signal” and “idler”.

ωp = ωs + ωi (5.8)
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Also the generated photons should conserve the momentum. As this
condition has a vectorial nature, there exist many geometrical configurations
for the new photons to propagate. However, the particularity of the KTP
crystal is to make them co-linear with an almost negligible walk-off angle.

~kp = ~ks + ~ki (5.9)

Both 5.8 and 5.9 constitute the so called “phase matching condition”.
The process is called downconversion because the frequencies of the output
photons are lower than the one of the pump.

In our case, the pump photon of 532 nm produces a couple of photons
of 1024 nm. There are two types of down-conversion processes differentiated
by the polarization of the generated photons. When “signal” and “idler”
have the same polarization, they are called of type-I, while when they are
orthogonal, they have the denomination of type – II. Our experiment dealt
with the last kind.
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Chapter 6

Optical Parametric Oscillator

An optical parametric oscillator is just an optical cavity equipped with a
crystal that has non-linear interactions with the electric field, giving rise to
a wide range of new complex and interesting features due to the new fields
that will be generated inside, usually through parametric-down conversion
and their interactions. In this Section, I will discuss briefly general non-linear
phenomena, and the proper parametric oscillator equations that govern the
dynamics of the fields, such as the conditions for their stability.

6.1 Non-linear Susceptibility

As any electromagnetic textbook points out, there exist a relation between
the polarization density and the electric field, which is given by:

~P = χ~E (6.1)

This relation initially operates over the time domain, and hold for any
isotropic material. However, our aim is to see the effects of an-isotropic
materials on the polarization. In this case, the susceptibility is described
by a tensor, while it will be more useful to express the generalization of the
above equation in the frequency domain:

Pi(ω) = χi,j(ω)Ej(ω) + χ(2)
i,j,k(ω, ω

′, ω′′)Ej(ω
′)Ek(ω

′′) + ... (6.2)

We stop the expansion at the second term of the susceptibility , because
in our case higher-order contributions can be neglected . All contributions
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have their own frequencies, e.g.,ω′ and ω′′, which are characteristic of the
materials.

It is important not to loose our physical intuition, and ask ourselves
what should happen if the incident field is − ~E instead of ~E . As it is an
isotropic material, we would expect to get −~P instead of ~P , which means
the there could not be any contribution of second order of the susceptibility,
because as it is shown in 6.2, they carry quadratic terms of the electric field.
In general, any isotropic field cannot have contributions of even order of
the susceptibility. Now let us try to see what kind of processes arise from
the existence of the second order. As was said before, there must be two
frequencies allowed by the material, so let us start assuming the electric field
is a superposition of the following form:

~E = ~E1e
i(~k1.~r−ω1t) + ~E2e

i(~k2.~r−ω2t) + c.c. (6.3)

So the cross terms affected by the second order susceptibility tensor will
be :

~E. ~E = ~E1. ~E1e
2i(~k1.~r−ω1t) + ~E2. ~E2e

2i(~k2.~r−ω2t) + c.c.

~E1. ~E∗1 + ~E2. ~E∗2

~E1. ~E2e
i[(~k1+~k2).~r−(ω1+ω2)t] + c.c.

~E1. ~E∗2e
i[(~k1−~k2).~r−(ω1−ω2)t] + c.c.

(6.4)

The first two terms correspond to the so called “second harmonic gener-
ation”. This name is due to fact that the contributions show the double of
the original frequencies.

The third and fourth terms are called “optical rectification”.
The penultimate term as can be inferred for the resulting frequency, is

called “frequency sum”, and finally the last one is of especial interest for us,
and it is called “frequency subtraction” [17].

The importance of each term will depend directly on the structure of the
material, that is reflected in the form of the second order of the susceptibility
tensor.
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6.2 Subtraction of Frequencies

This process involves the mixture of three waves, where the form of the
susceptibility tensor plays a major role. Of course,
χ(2)(ω1, ω2, ω3 = ω1 − ω2) 6= 0, the non linear polarization induced will have
the form [17] :

Pi(ω3 = ω1 − ω2) = χ(2)
i,j,kE

(1)
jE

(2)∗
k ei[(

~k1−~k2).~r−(ω1−ω2)t] (6.5)

Figure 6.1: Part (a) shows the incoming beams in the process and the constrain for
the generated frequency, part (b) shows the energy diagram of the process. Images
taken from “Nonlinear Optics” by Robert W. Boyd

A very enlightening commentary is made by Boyd in his textbook about
the nature of this process. He points out that the energy conservation of
the process imposes the condition that each photon created at the frequency
ω3 = ω1−ω2 must be a consequence of the destruction of a higher frequency
photon (according to the Figure 6.1 ω1) and a creation of a lower frequency
photon.

In this sense, the process is sometimes called “optical parametric ampli-
fication” due to the fact that the lower frequency signal will be amplified. In
this way we can approach a basic mental picture of what is an Optical Para-
metric Oscillator (OPO) : it will be a subtraction frequency process amplified
by the fact that the non-linear element will be inside an optical resonator.
This will help to build more intense fields (signal e idler) at the price of an
optical source feed (pump field).
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Figure 6.2: Basic dynamicsof the Optical Parametric Oscillator, here we can see
the only one pump field is required (source to destroy the required photon), this
process can take the vaccum as the field to get amplified due to the fact that it’s
not mandatory to have 2 incoming fields to the get the oscillation going. Images
taken from “Nonlinear Optics” by Robert W. Boyd

6.3 Dynamic Equations

So finally we are going to describe the core of our experiment. We are going
to describe the interaction of three fields inside the optical resonator (pump,
signal and idler that will label their fields with the initial letter of their
names), equipped with a non-linear crystal (KTP). The dynamic equations
deduced by Debuisschert et al. [18] are:

∂Ap
∂z

= −αpAp + i
χωp
2ηpc

AsAi

∂As
∂z

= −αsAs + i
χωs
2ηsc

ApA
∗
i

∂Ai
∂z

= −αiAi + i
χωi
2ηic

ApA
∗
s

(6.6)

Here we are assuming the perfect phase matching condition ∆k = ~kp −
~ks − ~ki = 0, with αj the loss coefficient due to the crystal, ηj the refraction
index and χ is the coupling coefficient, j = p, s, i any time that the index j
appears, it means that the equations hold for the three fields.

Now we need to make some approximations to get equations that describe
the dynamics in the time domain. Let us start assuming that the change over
time will be related to the change in space inside the crystal as :
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A′p ≈ Ap + l
∂Ap
∂z

A′s ≈ As + l
∂As
∂z

A′i ≈ Ai + l
∂Ai
∂z

(6.7)

So combining equations 6.6 and 6.7 we can get rid of the spatial depen-
dence. Now analyzing the field in the whole cavity, its change will be given
by:

Ap(t+ τ) ≈ Ap(t)[1− 2αpl −
(
T1,p + T2,p

2

)
+ i∆pτ ]

+ i
χωpl

ηpc
AsAi +

√
T1,pAp,in

(6.8)

The T refers to the transmission coefficient of the mirror, τ the time for
a round trip of the light and Ap , in the initial amplitude of the field entering
the cavity before the reflections. Analogously for the other fields, so in fact
if we approximate the total time derivative as:

dAj
dt
≈ Aj(t+ τ)− Aj(t)

τ
(6.9)

We can write the OPO equations in terms of time as:

dAp
dt
≈ (−γp + i∆p)Ap + i

χωpl

2ηpcτ
AsAi +

√
T1,p

τ
Ap,in

dAs
dt
≈ (−γs + i∆s)As + i

χωsl

2ηscτ
ApA

∗
i +

√
T1,s

τ
As,in

dAi
dt
≈ (−γi + i∆i)Ai + i

χωil

2ηicτ
ApA

∗
s +

√
T1,i

τ
Ai,in

(6.10)

With γj =
T1,j+T2,j+2αj l

τ
and ∆j the detuning of the cavity for each field.

Now a very comfortable re-scaling of the equations will prove to be useful for
numerical simulation later on. So the new equations are:
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dap
dt

= (−γp + i∆p)ap − gasai + ηpap,in

das
dt

= (−γs + i∆s)as − gapa∗i + ηsas,in

dai
dt

= (−γi + i∆i)ai − gapa∗s + ηiai,in

(6.11)

With ap/s =
√
np/s

ωp/s
Ap/s, ai = −i

√
ni

ωi
Ai, aj,in = −i

√
nj

ωj
Aj,in, ηj =

√
Tj

τ
and

g = lχ
cτ

√
ωiωsωp

ninsnp

6.4 Stationary Solutions

We are interested in the stationary solutions, i.e. the solution that does not
depend on time. In order to get an analytical solution, we will take some
considerations:

i)as,in = ai,in = 0

ii)γs = γi = γ

iii)∆p = ∆s = ∆i = 0

(6.12)

The first condition is very natural, as was already stated, we have enough
with only applying the greater frequency field (pump), the nonlinear process
will amplify the fields inside the cavity, but in principle it is possible to take
them into account.

The second condition tells us that the losses are the same for the signal
and idler fields, which is to be expected if we consider both with the same
frequency. The last condition is known as “triple resonant” condition, and
assumes that the cavity is perfectly resonant for the three fields, which can
be achieved in practice if the wavelengths of the fields are integer multiples
of one another.

So the new equations that rule our process are:

0 = −γpap − gasai + ηpap,in

0 = −γas + gapa
∗
i

0 = −γai + gapa
∗
s

(6.13)
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Let us write the fields in the polar form: aj = rje
θj , without losing

generality we can set the phase θp,in = 0 , because the important quantity
is the phase difference, so we take the input field as the reference. Taking
these considerations into account and inserting them into 6.13 we arrive to
a relation between the phases:

θp = 0

θs + θi = 0
(6.14)

It is interesting to see that the phase difference of signal and idler is not
fixed. Now from 6.13 and 6.14 we can deduce:

r2
s = r2

i (6.15)

Equation 6.15 tells us that the intensities will always be the same for
signal and idler (this situation should change if we do not consider i) in
6.12), but also we see that there are two solutions:

The trivial solution rs = ri = 0 that leads us to:

Is = Ii = 0

Ip =

(
ηpap,in
γ

)2 (6.16)

This solution is almost like if there is no crystal, i.e., no amplification.
The second solution, that we are going to call “OPO solution”, is given when
rs = ri = r, this leads us to:

Ip =

(
γ

g

)2

Is/i = I =
1

g

(
ηpap,in −

γγp
g

) (6.17)

The last expression constitutes a very interesting feature of the OPO
system. As we can see, the intensity of the pump field is constant. It stops
to depend from the input field, which tells us that it does not matter if we
inject a high intensity to the cavity. The intensity of the field at the output
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Figure 6.3: This graphic shows the OPO dynamics, where after a threshold value
appears the OPO solution that brings to life the signal and idler fields.

will not grow anymore; of course, the energy should go somewhere, and the
answer is in the second equation of 6.17.

As we know that the intensity should be always be positive, the second
equation of 6.17 gives us a condition for the “OPO solution” to appear:

ap,in ≥
γγp
gηp

(6.18)

This is called the threshold of oscillation, since at this point the amplifi-
cation appears on the signal and idler fields, and the input intensity is totally
employed in the amplification process.

It is important to recall that below the threshold only the trivial solution
is possible. Once we pass this mark, it appears the OPO solution. However,
the trivial solution still is possible, in fact both solutions coexist in this
regime, the solution chosen by the system to operate in, depends on the
stability of each one.

6.5 Stability

Now we are going to make a stability analysis of the OPO dynamics described
by 6.11. We suppose that fields slightly deviate from their steady values :
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aj = aj,0 + δaj

a′j = δa′j
(6.19)

Here aj,0 represents the field in the equilibrium state, so equations in 6.13
only hold for these fields in equilibrium. Inserting 6.19 in 6.11, and omitting
second order terms in the variation, we get a new set of equations:

δa′p = −γpδap − gas,0δai − gai,0δas
δa′s = −γδas − gap,0δa∗i − ga∗i,0δap
δa′i = −γδap − gap,0δa∗s − ga∗s,0δap

(6.20)

Equations in 6.20 are a coupled linear system, the solutions for δaj(t)
should be proportional to exponentials of the form eλt, and the stability
condition will be given by the real part of lambda. If Re(λ) ≤ 0 the system
will oscillate around a stationary value, so that δa′j = λδaj . Now let us try
to decouple the system through:

aj = Xj + iYj

δaj = δXj + iδYj
(6.21)

Using the ansatz described and 6.21 we get two systems of equations
for X and Y, but do not forget that we want to determine the stability
above threshold of oscillation. This implies, according to 6.17 for the “OPO

solution”, that ap,0 = γ
g

and as,0 = ai,0 =
√

ηpap,in
g
− γγp

g2
. The phase relations

described in 6.14 still hold. We are allowed to pick a value θs,0 = θi,0 = 0 due
to the indetermination of the phase difference. Taking these considerations
into account the decoupling will take some specific values:

Xp,0 =
γ

g

Yp,0 = 0

Xs,0 = Xi,0 = r

Ys,0 − Yi,0 = 0

(6.22)
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Using 6.21 and 6.22 we can rewrite 6.20 for the real part X in matrix
form: δX ′pδX ′s

δX ′i

 =

γp −gr −grgr −γ γ
gr γ −γ

 .

δXp

δXs

δXi

 (6.23)

And for the imaginary partδY ′pδY ′s
δY ′i

 =

γp −gr −grgr −γ −γ
gr −γ −γ

 .

δYpδYs
δYi

 (6.24)

Let us call the matrix of coefficients for the real part Mx while for the
imaginary part My. Now our problem has been reduced to find the eigenval-
ues of these two coefficient matrices, which is very easy to perform obtaining
for Mx.

λx,1 = −2γ

λx,2 = −1

2
(γp +

√
γ2

p − 8g2r2)

λx,3 = −1

2
(γp −

√
γ2

p − 8g2r2)

(6.25)

It is obvious that Re(λx,1) ≤ 0 , while for the remaining two if the square
root gives us an imaginary value clearly both Re(λx,2/3) ≤ 0 . In case that
the square root remains real the highest value that can be reached will be γp
so Re(λx,2) = −γp and Re(λx,3) = 0 . For My the eigenvalues are:

λy,1 = 0

λy,2 = −1

2
[(2γ + γp) +

√
(γp − 2γ)2 − 8g2r2]

λy,3 = −1

2
[(2γ + γp)−

√
(γp − 2γ)2 − 8g2r2]

(6.26)

Following the same reasoning described above, we can conclude that both
coefficient matrices fulfill the condition Re(λOPOsol) ≤ 0 , so in fact the “OPO
solution” is stable once we pass the threshold of oscillation.

We can check also the stability of the trivial solution, for which we just
need to rewrite equation 6.20 considering as,0 = ai,0 = 0 and ap,0 =

ηpap,in
γp
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δa′p = −γpδap
δa′s = −γδas + gap,0δa

∗
i

δa′i = −γδai + gap,0δa
∗
s

(6.27)

Now we do not need to focus on the equation related to the pump field
because it is an independent one. We can perform again the decoupling in
terms of X and Y, as was already done, and our coefficient matrices will be
now 2× 2. (

δX ′s
δX ′i

)
=

(
−γ gap,0
gap,0 −γ

)
.

(
δXs

δXi

)
(6.28)

(
δY ′s
δY ′i

)
=

(
−γ −gap,0
−gap,0 −γ

)
.

(
δYs
δYi

)
(6.29)

Both matrices have the same eigenvalues

λ = −γ ± gap,0 (6.30)

The condition Re(λ) ≤ 0 will be only fulfilled for both eigenvalues if
ap,0 ≤ γ

g
, which is the threshold of oscillation. This means that the trivial

solution is stable below the threshold, and unstable above it.
The discussion was intended to show that the OPO is a dynamical system

that works as described by the trivial solution until we pass the threshold of
oscillation. There the system behaves according to the stable solution, which
corresponds to the “OPO solution”.

6.6 Numerical Simulation

Up to this point, we have made various approximations to achieve an analyt-
ical solution, but nowadays there are many softwares like ”Wolfram Mathe-
matica “ or “Matlab” that make numeric analysis much easier and are very
powerful tools to use when we are not able to get an analytical solution.

Now we are going to briefly discuss the implications of ignoring 6.12. This
treatment is not completely rigorous because I am setting the parameters to
real values, without taking care of units or normalizations, even though it
will help us to get a feeling of the qualitative behavior of the system.
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Figure 6.4: Numerical simulation of the dynamic of the OPO, the idler and signal
intensities are overlap because they have the same intensity in the process. This
legend holds for all the other simulations.

First let us see the changes when the coupling constant gets higher. As
it is shown in Figure 6.4 the threshold of oscillation gets lower and lower,
which is intuitively right. We expect that for a very small coupling constant
we would need to apply an enormous energy to achieve an oscillation. This
behavior is expected for any coupled dynamical system.

In this way we can start to vary the parameters, changing the losses of
the signal and idler fields. We can see in Figure 6.5 that the threshold of
oscillations gets higher and the stationary intensity of the pump field is also
higher.

Figure 6.5

Now, if we change the loss coefficient of the pump field, we obtain the re-
sults shown in Figure 6.6. As a consequence, the threshold is higher, because
the energy injected to the cavity is getting scattered.

Now changing ηp, Figure 6.7 shows us that the threshold gets smaller,

which is a very counterintuitive feature, because remember that ηp =

√
Tp

τ
.

The round trip time is a fixed value because it is related to the cavity length,
so the way to get a higher ηp is to use mirrors with higher transmission
coefficient. In fact, it should lead to a lower value for the intracavity energy.
However, the graphics in Figure 6.7 represent the relation written in equation
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Figure 6.6

6.18.

Figure 6.7

Finally I tried to change a parameter that was kind of intriguing for me
at the beginning of this work, which is the detuning parameter, in fact the
experimental work always focus in the alignment of the cavity which of course
means, to work in the resonant regime, but of course this process requires
dexterity and experience. Figure 6.8 shows some interesting features in this
regard.

Figure 6.8

The first graphic shows the typical dynamics, while the third one shows
that the threshold is much higher than in graphic 1. It tells us that the
threshold is very sensitive to detuning of the pump field. The second graphic
is in some sense weird, as it differs from the previous ones because there
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seems to exist two critical points. Because the generated signal and the
pump exhibit two changes in behavior, this is a very interesting feature, and
it is a consequence of the detuning. There seems to exist a bi- stability regime
for some values of the detuning, and the initial conditions will be the only
factor that determines in which way our resonator will oscillate. Of course,
this requires a much more throughout treatment, one that lies beyond the
scope of the present work.
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Chapter 7

Squeezing

Now we are going to review very briefly some aspect about the quantum
harmonic oscillator and coherent states. This will lead us to the uncertainty
relations, which are the target of the squeezing experiment. Much of this
discussion is based on some topics of quantum mechanics that can be found
in textbooks [19].

7.1 Coherent States

Here it is convenient to change the classical notation used for the quantization
of the electromagnetic field, and write Y instead of P . This will prove to be
useful later, so our ladder operator, setting mω = 1 for simplicity, will be :

âµ =
X̂µ + iŶµ√

2~

â†µ =
X̂µ − iŶµ√

2~

(7.1)

The lower index µ labels the mode of the electromagnetic field. Now
using the usual way to calculate the standard deviation for an operator:

∆O =

√
〈O2〉 − 〈O〉2 (7.2)

we can calculate the form of the product of standard deviations for the
canonical variables X and Y . Using the Fock basis:
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(∆X∆Y )n =

(
n+

1

2

)
~ (7.3)

So in the Fock space only the vacuum state has the lowest uncertainty
value ~

2
. Now let us recall the result for the coherent state. It is important

in this work due to the fact that lasers deliver light in an almost coherent
state light, We remind that

â|v〉 = v|v〉 (7.4)

So the new standard deviations are

∆X = ∆Y =

√
~
2

(7.5)

It is clear now that any coherent state works in the lowest value of the
uncertainty relationship, independently of the specific state.

(∆X∆Y )v =
~
2

(7.6)

We can represent the uncertainty relationship as an area in the phase
space, see Figure 7.1.

7.2 Generalized Quadratures

Now we would like to achieve states that still operate in the lowest uncertainty
value, but have different standard deviations for each canonical variable,
called “quadratures”. To get this we need to introduce the squeeze operator.

U(z) = exp zâ2 − z∗â†2 (7.7)

It is easy to verify that is a unitary operator. Now we will define the
squeezed vacuum state as:

U(z)|0〉 = |0, z〉 (7.8)

The first index on the right hand side will be left as zero because it is
designed to change under the displacement operator, which is explained later.
For the explicit calculation of the standard deviations, it will be useful to
have the next term pre-calculated:
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U †(z)âU(z) (7.9)

This is important because the expected values in the quadratures will
involve terms in the form of â†2, â2, ââ† , which can be deduced from 7.9
by taking the complex conjugate and inserting the identity U †.U = 1 in
convenient places. Using the Baker – Hausdorff identity and writing the
complex number in polar form z = reiθ equation 7.9 takes the form

U †(z)âU(z) = â cosh 2r − â†e−iθ sinh 2r (7.10)

From this we can follow the same procedure, and calculate the standard
deviations for X̂ and Ŷ described in terms of the ladder operators in 7.1.
The expected values are:

〈0, z|â|0, z〉 = 〈0|U †(z)âU(z)|0〉 (7.11)

As a consequence:

〈X〉0,z = 〈Y 〉0,z = 0 (7.12)

The lower indexes are only to remember over which state we take the
expected value:

〈X2〉0,z =
~
2
e−2r

〈Y 2〉0,z =
~
2
e2r

(7.13)

Finally, the standard deviations are:

∆X =

√
~
2
e−r

∆Y =

√
~
2
er

(7.14)

With this approach, we could keep the lowest uncertainty value ∆X∆Y =
~
2
while breaking the symmetry in the standard deviations 7.14.
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Now we want to displace this state from the origin, to be able to talk about
quadratures of Phase and Module. We can define generalized quadratures
as:

X̂(θ) = X̂ cos θ + Ŷ sin θ

Ŷ (θ) = X̂ sin θ + Ŷ cos θ
(7.15)

described in terms of ladder operators

X̂(θ) =

√
~
2

(âe−iθ + â†eiθ)

Ŷ (θ) =

√
~
2

(âe−iθ + â†eiθ)

i

(7.16)

With these new quadratures, we want to achieve 〈X〉 6= 0 and 〈Y 〉 6= 0
which is possible only if we squeeze a state that is not the vacuum 7.8. This is
important because as the uncertainty region will not be centered in the origin,
we can talk about a module and phase of the complex number that shifts
the region in the phase space. For this purpose, we define the displacement
operator:

D̂(v) = exp vâ† − v∗â (7.17)

Again, it is illustrative to write the complex number in polar form v =
reiθ, and merging this with 7.16 the displacement operator is:

D̂(v) = e
−i
~ R(θ)Ŷ (θ) ,with r =

R(θ)√
2~

(7.18)

Now it is clear why this is called the displacement operator when we
compare it with the Translation operator T̂ (x) = e

−i
~ P̂ x .In this case, the

translation will be given in the direction of R(θ) . Now the displacement
operates over the vacuum in the following way:

D̂(v)|0〉 = |v〉 (7.19)

which is the last piece we needed. Now we can define the general squeezed
state as

D̂(z)Û(z)|0〉 = |v, z〉 (7.20)
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Figure 7.1: The a) image shows the uncertainty region which is a circle due to
the symmetry in both standard deviations for the Fock space, b) shows the same
uncertainty relation once we apply the squeezing operator to our state and take
the expected values on the coherent state space. Finally c) shows the generalized
quadrature in the phase space, there is important to see that it’s possible to talk
about compression in Amplitude and Phase due to the fact that we are outside the
origin.

7.3 Experimental Results

My work at the UFF was done in collaboration with Prof. Carlos Eduardo
Souza , Prof. Renné Medeiros and the master student Rafael Bellas. They
had already performed the squeezing measurements, so the results that I am
going to show in this section correspond to a re-run of their previous exper-
iment. Rafel Bellas was the main person who manipulated the experiment
due to his experience , He taught me the “know how” of the OPO, something
for which I am very grateful.

Now we follow the work done by A. Heidmann et al. [20] They show
that if a non-linear crystal (as the KTP) is inserted in a optical resonator,
the twin photons generated by the parametric conversion oscillates, as was
already stated in previous sections, but the new feature is that the intensities
of the signal and idler field are better correlated than the Shot Noise Limit
(correlation of two random signals). This kind of correlation is a consequence
of the squeezing of the amplitude difference between the signal and idler
fields. Of course, if we compress the amplitude, we would obtain larger
standard deviations in the phase quadrature, but this work will only show
results in amplitudes.

An intuitive way to understand this phenomenon is in terms of the twin
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photons generated by the KTP crystal. They are highly correlated. However,
they do not go to the last mirror together, they are kept inside the cavity
for a characteristic time, determined by the transmission coefficient of the
mirrors. In this way, it is build an intense beam. Of course, if we diminish
the transitivity of the mirrors, the intensity will be smaller. The threshold
gets higher as eq. 6.18 suggests, but as it is easier for the twin photons to
go outside together they will be more correlated. Of course, if we only pump
the KTP without optical resonator, we would need photo-counters, and the
correlations will be more of the kind discussed in the chapter 5, but this is not
the point, we want to build up a beam with macroscopic intensity properties.
In this sense there is a trade-off between the threshold of oscillation and the
squeezing measurement, both aspects need to be taken into account when we
design the experiment.

The scheme of the squeezing experiment is seen in Figure 7.2. We used as
a pump beam a Nd:YAG laser (Model: Diabolo Innolight Laser) that works
in the TEM0,0 with a wavelength of 530 nm (green line). This laser has a
second output of infrared light at 1064 nm, which is useful in this experiment
to calibrate the shot noise limit (later it will play a major role). The pump
beam first passes through a Fabry – Perot interferometer, to be cleaned in this
locked triangular filter cavity, then passes an optical isolator, which avoids
the return of the pump beam to the laser. Without the latter, the reflection
could damage the laser. The lenses l1 and l2 are used to mode-matching the
pump beam to the OPO cavity. The semi-monolithic OPO consists of a 10
mm long KTP crystal and a spherical mirror with radius of curvature of 5
cm., the input face of the crystal is coated to act as the OPO input coupler
(reflectivity 92 % at 532 nm.) while the other face is AR-coated. The concave
mirror of the OPO cavity is mounted on a piezoelectric transducer (PZT).
The OPO was set in a near concentric configuration with a beam waist of
63 µm, approximately. The OPO cavity is very unstable, so that the crystal
and the mirror are enclosed in a box, and also the crystal has a temperature
control (within a few millikelvin). All the cavities in the experiment have
electronic equipment to apply the Pound-Drever-Hall method, and keep them
stable.

The KTP crystal emits the twin photons with orthogonal polarizations
and in a col-linear configuration. We need then a first a mirror that only
let the signal and idler beams (1024 nm ) pass through, filtering the pump
beam. Then, with a PBS (Polarization Beam Splitter) we can separate the
twin photons. Using the signal that is gotten by the fast detectors (2 and
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3) we can obtain the difference of the intensities with an electronic circuit.
Finally, with a spectrum analyzer we can see the noise reduction.

Figure 7.2: Experimental setup of the squeezing measurement

The resulting spectra are shown in Figure 7.3. There we can see that the
difference of intensity spectrum is under the shot noise level, showing a noise
compression.

Figure 7.3: Spectrum of the intensity difference (dB) in blue, and the shot noise
limit in orange, the important results should be seen after the 4 MHZ, before this
value the electronic noise influence the measurement.

Finally, Figure 7.4 shows us the difference of the spectra in a range of 5
to 9 MHz. It helps us to get a quantitative picture. There we can see that
in the range of 7.4 to 7.8 MHz we obtain the highest compression of noise,
reaching a difference of 2.65 dB.
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Figure 7.4: Here we can see in blue the difference in spectrums, dashed line is the
highest value of the difference, and the orange line is the mean of the difference in
the range of 5 to 9 Mhz.

7.4 Conclusions

Both Figure 7.3 and 7.4 show that we have obtained a notorious noise com-
pression, which lies under the shot noise limit, using a plane – concave con-
figuration for the OPO cavity and the highly correlated beams generated by
the KTP crystal. This is a notorious prove that we have gotten the squeezed
state wanted.
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Chapter 8

Injected Optical Parametric
Oscillator

The present sections are strongly related to the work done by B. Coutinho
et al. [1] . We are interested in the study of the symmetry of the OAM in an
injected OPO. Here we are not interested in working above the threshold of
the OPO, because for this experiment we have a seed beam. This means that
there will be an initial intensity for the signal field carrying OAM. However,
the pump field will still operate in the fundamental mode. The dynamical
equations now should take into account OAM for the injected OPO. They
read

dap
dt

= −(γp + i∆p)ap − g(as+a
i
− + as−a

i
+) + ηpa

p
in

das+

dt
= −(γ + i∆)as+ + g(ai∗−ap) + ηsa

s,in
+

das−
dt

= −(γ + i∆)as− + g(ai∗+ap) + ηsa
s,in
−

dai+
dt

= −(γ + i∆)ai+ + g(as∗−ap)

dai−
dt

= −(γ + i∆)as− + g(as∗+ap)

(8.1)

Most of the parameters were already explained for the OPO in the pre-
vious chapter. The new feature of these equations are the lower indexes
“+” and “-” they are referred to LaguerreGaussian modes with topological
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charges +1 and -1. This is required because we are going to describe the
OAM states in the next way

|θ, φ〉 = cos θ|LG〉+1 + eiφ sin θ|LG〉−1 (8.2)

The θ is the polar angle, while φ is the azimuthal angle, it describes the
states in the OAM sphere discussed previously (with the Laguerre-Gaussian
+1 at north pole, and the -1 in the south), so a field will be represented by
its intensity Ij = (aj−)2 + (aj+)2 and the corresponding spinor |θ, φ〉j

Figure 8.1: Here the OAM sphere shows the parametrization used in equation 8.2
, the north pole has the LG mode +1 while the south pole LG -1

8.1 Free Running OPO

Let us start by reminding some already known results using the following
simplification:
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as,in± = 0

∆ = ∆p = 0
(8.3)

Of course, with it, we are basically in the OPO case where only the
pump field is applied to the cavity. However, we should recall that now the
resonant case is not so trivial, because we are dealing with a fundamental
pump mode and first order modes in the signal and idler fields. As was
mentioned before, the resonant length for modes of different order will not
match. These conditions can only be achieved changing the temperature of
the crystal and playing with the alignment of the crystal.

Let us investigate what new features equations 8.1 bring us. We still want
to check the steady solution. It gives

(as+)2 = (ai−)2

(as−)2 = (ai+)2
(8.4)

The values of each component are not fixed. However, the total intensity
for the idler and signal fields must be the same. Taking again the considera-
tion of φp,in = 0 , which means that all the other fields will have as reference
of phase the pump initial field, this leads us to

φp = 0

φs+ + φi− = 0

φs− + φi+ = 0

(8.5)

Again we do not have a defined phase difference, and the intensities are:

Ip =

(
γ

g

)2

I = |aj−|2+|aj+|2 =
γp
g

(
ηpa

p
in

γp
− γ

g

)
With j=s,i

(8.6)

These results of course were discussed in the OPO section, but this new
treatment help us to analyze the OAM aspect, if we now check the resulting
amplitudes of the fields for the signal and idler
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as+ =
√
I cos

θ

2
eiφ

s
+

as− =
√
I sin

θ

2
eiφ

s
−

ai+ =
√
I sin

θ

2
eiφ

i
+

ai− =
√
I cos

θ

2
eiφ

i
−

(8.7)

It is helpful for the work done to write the phase difference in 8.5 as
φ−

s − φ+
s = φ−

i − φ+
i = φ, because in this way both states in the spinor

notation can be described as:

|ψs〉 = |θ, φ〉
|ψi〉 = |π − θ, φ〉

(8.8)

As a first approach, using 8.4 we see some new features, because equation
8.8 tells us that even when the position of signal and idler in the OAM sphere
is not totally defined, they show a symmetry, with respect to the polar angle.
It does not matter the position of the signal field (seed beam) in the sphere,
the idler field will be in the symmetric position with respect to the equator.

8.2 Injected OPO Dynamics

Now let us see the consequences of the injection of a seed beam as the signal
field. In order to be general enough, let us consider the generalized first order
OAM state |θ0, φ0〉 with

a+
s,in =

√
I ins cos

θ0

2

a−
s,in =

√
I ins sin

θ0

2
eiφ0

(8.9)

In the same way the signal and idler fields can be written like
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as = cos
θ0

2
a+

s + sin
θ0

2
e−iφ0a−

s

ai = sin
θ0

2
eiφ0a+

i + cos
θ0

2
a−

i

(8.10)

This will lead us to the same OPO equations written in 6.11 with ai,in = 0
. Solving these equations we get:

as =
ηpγ
√
Is
in

γ2 − g2|ap2|

ai =
apηpγ

√
Is
in

γ2 − g2|ap2|

(8.11)

This expression constitutes an important practical test to check the am-
plification process. First of all, we can see that if we calculate the intensities
there is no threshold of oscillation, the only condition for amplification of the
idler field is that Is

in 6= 0 . This is a very convenient condition, because we
do not need a high power laser to see the phenomenon taking place, which
sometimes is a very hard difficulty to solve in OPO experiments.

Finally the signal and idler fields as functions of the Laguerre-Gaussian
modes are:

|ψs〉 =
ηpγ
√
Is
in

γ2 − g2|ap2|
× [cos

θ0

2
|LG〉+1 + eiφ0 sin

θ0

2
|LG〉−1]

|ψs〉 =
apηpγ

√
Is
in

γ2 − g2|ap2|
e−iφ0 × [sin

θ0

2
|LG〉+1 + eiφ0 cos

θ0

2
|LG〉−1]

(8.12)

Now it is clear that the symmetry with respect to the equator still holds
in this case, and this was part of the experimental proposal done by the
UFF’s quantum optics team, which I had the pleasure to work with for some
months.

8.3 Experimental Proposal

In the UFF we had an operating OPO cavity, which was used for squeezing
measurements, as described before. This same cavity was the one used to
show the OAM symmetry in great fashion.
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Figure 8.2: These graphics are numerical simulations of the equations 8.1 , here
we can see that in the left side when we insert the signal field with topological
charge -1 we obtain amplification in the idler field with the topological charge +1.
While in the right side ,inserting the signal field +1 we obtain the amplification
in the idler field with -1. These simulations reflect the symmetry discussed in this
chapter

The experimental parameters where mostly the same for the squeezing
measurements, but two more elements were added, as it is shown in the
experimental set up.

The first one is the Mode Preparation Stage (MP Stage). This was de-
signed to the preparation of a generalized qubit in our OAM 2 level space.
It was done using the infrared (1024 nm.) horizontal polarized light coming
from the diabolo laser (before used to calibrate the shot noise), referred in the
Figure 28 as “b1”. It passes through the LG-mask, which is an holographic
mask that created the Laguerre-Gaussian with topological charge +1 in its
first diffraction order. Then it goes through the first Half Wave Plate (HWP)
that changes the polarization, and it enters to a Mach-Zehnder type interfer-
ometer. As shown in the setup, one arm of the interferometer has an extra
mirror. This is used to change the sign of the Laguerre-Gaussian mode [21] .
In that way, at the output of the interferometer we got a superposition of the
two Laguerre – Gaussian modes (+1 and -1) . The relative phase between
them is achieved with the PZT mounted on a mirror of one of the arms.At
the end of the interferometer, a HWP and a PBS are put to balance the
intensities of both arms.

The second difference with the previous squeezing measurement is the
Tilted Lens stage. The lens is put after the OPO cavity and affects the
signal and idler beams by the process that was already explained in the
experimental methods. Once they are transformed to their corresponding
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Figure 8.3: Optical Parametric Amplifier Setup

Hermite-Gaussian modes, a PBS separates both beams due to their orthog-
onal polarizations. Finally, they are recorded in a CCD camera.

We need to mention that mode matching conditions are achieved using a
set of lenses for both beams (“b1” and “b2”). They are coupled by a Dicroic
Mirror (DM1). It works as a mirror for the green light (532 nm) while it
transmits the infrared. The heating control system helped us to control the
simultaneous resonance of the seed and the pump in the OPO cavity.

8.4 Experimental Results

While I was working at UFF, we could realize the experimental proposal.
However, we had not the versatility that the Mode Preparation stage gives
presently, so we made the experiment only with the holographic mask. In
that way, we only checked the case of topological charge +1 for the seed
beam (in consequence, -1 for the idler field) which corresponds to points 1
and 9 in Figure 8.5.

Using the mode preparation stage it is possible to follow the trajectory
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Figure 8.4: This were experimental graphics seen in the oscilloscope , the green
one shows the “Ramp” which is the movement of the PZT mounted on the mirror
of the OPO cavity, the blue line is the signal field, yellow for the pump and red
for the idler. This was the practical test that let us know that the amplification
is going on, in the left side the graphic shows no pump intensity, in consequence
there is not idler field according to equation 8.12 , once we add pump intensity as
is shown in the graphic of the right side inmediatly the idler field appears, which
was the objective of the whole project.
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Figure 8.5: The initial states for the seed beam are the ones above the equator,
from 1 to 5, while the points under the equator correspond to the expected state of
the idler field, the prime number are the theoretical projection done by the tilted
lens method.

shown in Figure 8.5.
Using the setup of the OPA, it was possible to see both signal and idler

before and after the tilted lens easily, the results are shown in Figure 8.6.
They show a behavior that was in accordance with the expected one. Now
we can compare the inclination of the Hermite Modes with the expected one.
Figure 8.7 shows the best fit of the measured points.

8.5 Conclusions

We have shown the symmetry of the OAM in an injected OPO with exper-
imental results that match very good with the theory. The most important
result is that we have explored not only the pure cases of topological charge
that are well defined (the poles of the OAM sphere) but also more complex
superpositions of the OAM space of order 1.

It could be interesting, as a further research along this line, to use a higher
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Figure 8.6: Experimental qualitative results , the top row of signal and idler show
the intensity distribution of the fields, the lower row shows the beams after the
tilted lens transformation.

Figure 8.7: These are quantitative results, the angle α is the inclinations of the
beams after the tilted lens, while the angle θ is the parameter to describe the original
beams in the OAM sphere. The points correspond to the signal beam, while the stars
to the idler one.
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order beam as a seed and explore its implications.
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Chapter 9

Summary and Conclusions

In this thesis we have reviewed important topic from basic electromagnetism
, mainly dealing with the paraxial approximation which lead us to the discus-
sion of Transverse spatial mode, that contained the nowadays very estudied
Laguerre-Gaussian beams as well as the Hermite-Gaussian modes. In this
work we have also pointed out the analogy between the well known Poincare
Sphere (used for polarization) and the 2-level space expanded in terms of the
modes of first order. We have also reviewed the implications of the Orbital
Angular Momentum and why they are linked with the Laguerre-Gaussian
beams.

Related to the optical cavities/resonators this thesis did a review on the
formalism of ABCD law, which is of great importance not only for optical
cavities but in the general approach to deal with large sequences of optical
devices. The stability criterion and typical losses in optical resonators were
also dicussed and the frequency of resonance of these cavities were explained
on the chapter 3.

Chapter 4 talked about the experimental procedures that were used dur-
ing the experiments performed, here I contributed to the work with a program
that was able to calculate the new intensity values required to measure the
waist for the Laguerre-Gaussian modes, it was inspired in the well known
definition of the waist in the case of the fundamental (Gaussian ) mode,
the new method was used to mode-match the beams in the last experiment.
Chapter 5 gave a very brief review of the correlations presented in quantum
mechanics.

The main experiments reported in this thesis were the measurement of
“Squeezing” (Chapter 7) and the “OAM Symmetry” (Chapter 8). The first
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experiment was already performed on the UFF some time before I started
to work there, so in fact the had a Optical Parametric Oscillator (Chapter
6) already working, since I got to the university we performed a second run
of the squeezing experiment, which had a succesfull result showing a noise
compression of 2.65 dB in the range of 7.4 to 7.8 Mhz. In this spirit we
had interest in pumping the OPO with a Laguerre-Gaussian mode instead
of the fundamental mode, however many difficuties aries due to the lack of
laser power, but this would still be a very interesting future experimental
propossal.

The second experiment followed the propossal done by Coutinho et al.
[1] and intended to show the symmetry in the OAM sphere between the
twin photons generated inside the OPO cavity in presence of a seed beam
which was the one who carried the OAM . The experimental results were
very succesful and are presented in the last chapter. The seed beam was a
superposition of the 2 Laguerre-Gaussian modes of first order corresponding
to l = +1 and l = -1, so it was a general OAM qubit , however future research
could move on higher dimensional OAM spaces, and explore its implications
in the twin beams generated. As a result of this work there is a paper under
development that is going to be presented later on, but at this date it is still
being written.
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