Show simple item record

dc.contributor.advisorMorán Cárdenas, Antonio Manuales_ES
dc.contributor.authorCalderón Calderón, José Luises_ES
dc.date.accessioned2019-09-23T16:45:12Zes_ES
dc.date.available2019-09-23T16:45:12Z
dc.date.available2019-09-23T16:45:12Zes_ES
dc.date.created2019es_ES
dc.date.issued2019-09-23es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12404/15031es_ES
dc.description.abstractEl principal objetivo del presente trabajo de tesis es diseñar un controlador inteligente, basado en redes neuronales que permita un vuelo autónomo lateralmente estable de una aeronave, para el entrenamiento de los pesos del neurocontrolador se utiliza el algoritmo Dynamic Back Propagation (DBP). El controlador de estabilidad lateral mantiene estable la velocidad de guiñada r y ángulo de resbalamiento β de una aeronave. La velocidad de guiñada está relacionada con mantener el balance de la aeronave en la posición de alas niveladas y el ángulo de resbalamiento tiene que ver con disminuir la presencia de velocidades laterales sobre la aeronave. Para el diseño del neurocontrolador primero se desarrolla un modelo dinámico de la aeronave con seis grados de libertad, basado en leyes físicas, la dinámica del cuerpo rígido y la aerodinámica; como segundo paso, se aproxima la aeronave a un modelo matemático linealizado del movimiento lateral y se utiliza en el desarrollo de las funciones para la actualización de pesos utilizando el algoritmo Dynamic Back Propagation; luego se realiza el entrenamiento de dos neurocontroladores considerando el modelo de la aeronave de seis grados de libertad, el primer neurocontrolador manipula el timón y el segundo los alerones; finalmente se prueba el desempeño de los neurocontroladores para diferentes condiciones de vuelo, incluido perturbaciones debidas al viento, variaciones de la masa de la aeronave, variación de la densidad del aire y variación de parámetros en el modelo de seis grados de libertad. Los resultados de las simulaciones muestran que los neurocontroladores logran estabilidad asintótica aceptable para la velocidad de guiñada r y el ángulo de resbalamiento β para varias condiciones de vuelo y perturbaciones externas, además operan adecuadamente a pesar de errores en el modelado, lo que verifica que se ha logrado entrenar adecuadamente los pesos de los neurocontroladores. Los neurocontroladores han sido entrenados de tal forma que permiten realizar una acción de seguimiento sobre la velocidad de guiñada r, los resultados de las simulaciones muestran que logran realizar un giro coordinado adecuado incluso ante la ocurrencia de perturbaciones externas.es_ES
dc.description.uriTesises_ES
dc.language.isospaes_ES
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rightsAtribución 2.5 Perú*
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/pe/*
dc.sourcePontificia Universidad Católica del Perúes_ES
dc.sourceRepositorio de Tesis - PUCPes_ES
dc.subjectAeronaveses_ES
dc.subjectControladores programables--Redes neuronaleses_ES
dc.subjectNeurocontroladoreses_ES
dc.titleDiseño de un controlador neuronal para la estabilidad del movimiento lateral de una aeronavees_ES
dc.typeinfo:eu-repo/semantics/masterThesises_ES
thesis.degree.nameMagíster en Ingeniería de Control y Automatizaciónes_ES
thesis.degree.levelMaestríaes_ES
thesis.degree.grantorPontificia Universidad Católica del Perú. Escuela de Posgrado.es_ES
thesis.degree.disciplineIngeniería de Control y Automatizaciónes_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess