Show simple item record

dc.contributor.advisorGago Medina, Alberto Martín
dc.contributor.authorBustamante Ramírez, Mauricioes_ES
dc.contributor.authorKopp, Joachimes_ES
dc.date.accessioned2016-02-19T15:48:11Zes_ES
dc.date.available2016-02-19T15:48:11Zes_ES
dc.date.created2012es_ES
dc.date.issued2016-02-19es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12404/6506
dc.description.abstractEl presente es el resultado de las investigaciones realizadas durante la maestría en física bajo la supervisión de Alberto Gago. Se discutirán brevemente tres trabajos realizados en este periodo con el fin de obtener el grado de Magíster en Física. Durante la última década y media numerosos experimentos han demostrado que los neutrinos se transforman entre sus diferentes sabores al propagarse. Las evidencias de este fenómeno, denominado oscilaciones de neutrinos por su carácter periódico, favorecen la hipótesis de que los neutrinos tienen masa y que los estados de masa y de sabor están relacionados por una matriz no diagonal. Las oscilaciones de neutrinos están caracterizadas por dicha matriz de mezcla y por las diferencias de masas cuadradas entre los diferentes estados de masa. Las entradas de dicha matriz de mezcla, llamada matriz Pontecorvo-Maki-Nakagawa-Sakata (PMNS), han sido medidas con creciente precisión por los experimentos de oscilación de neutrinos solares, atmosféricos, de reactores y de aceleradores. Recientemente se ha logrado medir todos los ángulos de mezcla involucrados en la rotación de los estados de masa, abriendo la posibilidad de observar una fase de violación de CP diferente de cero. Además, se ha establecido que hay, al menos, dos diferencias de masa cuadradas una correspondiente a la escala de oscilación solar y la otra a la atmosférica. Se sabe el orden entre los estados de masas que participan en la oscilación solar, pero no en el caso de la atmosférica. Futuros experimentos pretenden medir con mayor precisión la matriz de mezcla, determinar la jerarquía entre los estados de masa de neutrinos, la existencia de una fase CP y probar o negar la existencia de más estados de masa. La reciente construcción del telescopio de neutrinos IceCube en el polo sur ha impulsado la búsqueda de física nueva en las fuentes astrofísicas vía el flujo de neutrinos de ultra alta energía. Para ello es importante tener un buen conocimiento del flujo esperado, sobretodo, a altas energías, donde existen menos datos. Entre las fuentes de neutrinos de ultra alta energía más importantes se encuentran los núcleos activos de galaxias (NAG). En este contexto, estudiamos el flujo difuso de neutrinos predicho por dos modelos de producción de neutrinos en NAG. Estos modelos asumen como válida la correlación entre las NAG y la dirección de los rayos cósmicos de ultra alta energía hallada por el observatorio Pierre Auger (OPA) en Argentina. Tal que los datos obtenidos sobre los flujos de rayos cósmicos de alta energía en OPA pueden ser usados para estimar los flujos de neutrinos medidos acá en la tierra. No obstante, la relación entre estos dos flujos no es directa sino que en ella intervienen parámetros que dependen del modelo. En este estudio variamos los parámetros de los modelos y comparamos el número de eventos con los límites recientemente impuestos por IceCube. Encontramos que ambos modelos se encuentras desfavorecidos, por los límites actuales, y que en, caso de ser vistos, ellos podrían ser distinguidos con alta significancia. Otra de las búsquedas realizadas por IceCube, en el régimen de los neutrinos de alta energía, son las señales de aniquilación de materia oscura provenientes del Sol. Una propuesta popular es considerar que la materia oscura es un WIMP (Weakly Interacting Massive Particle : Partículas Masivas de Interacción Débil). En este contexto la materia oscura puede ser caracterizada, en primera instancia, por su sección de choque y su masa. En los modelos donde el WIMP posee una sección de choque dependiente del spín (SD) la interacción de la materia oscura local con el Sol puede ser intensa. Esta interacción causaría una acumulación de materia oscura en el centro del Sol. La cual podría aniquilarse en partículas del modelo estándar las cuales, al decaer o interactuar con la materia solar, darían lugar a un flujo de neutrinos activos. Es la esperanza de experimentos como IceCube que dicho flujo de neutrinos sea observable. Hasta el momento no se ha observado dicho flujo, por lo que IceCube ha puesto limites en la sección de choque de la materia oscura. En este trabajo hacemos notar que dichos limites dependen de la forma de oscilación de los neutrinos; la cual conecta el flujo de neutrinos al salir del Sol con el detectado en la Tierra. En este trabajo consideramos modelos de neutrinos estériles. Estos suponen la existencia de sabores adicionales de neutrinos que no interactúan vía el boson Z, pero si se mezclan con los sabores activos afectando la probabilidad de oscilación. Encontramos que las modificaciones de los límites de materia oscura, en varios de estos modelos, son considerables debido a que aparecen nuevas resonancias, inducidas por la materia solar, que magnifican la transición entre neutrinos activos y estériles. Como se ha hecho notar antes, la presencia de materia puede modificar sustancialmente la probabilidad de oscilación de los neutrinos. Usando esta propiedad planteamos un método para detectar regiones de densidad anómala en la corteza de la Tierra. Consideramos el caso en que los neutrinos provienen de un rayo-beta de alta intensidad y un detector de carbono. Estudiamos la capacidad de esta configuración de descubrir cavidades con alto nivel de confianza. Además, en el caso de poder descubrirlas, estudiamos la capacidad que se tiene para medir sus parámetros, i.e. densidad, tamaño y posición. Para ello estudiamos numéricamente cuatro cavidades inspiradas en casos reales : una con una densidad similar al agua, otra de hierro, otra de metales pesados y otra con una densidad de electrones similar a la que, supuestamente, aparece antes de un sismo. Reconstruimos la cavidad en cada uno de los casos mencionados y analizamos la sensibilidad del método a la variación de los parámetros. Adicionalmente, explicamos el comportamiento de nuestros resultados teóricos con un modelo aproximado, llamado "slabs", en el que consideramos que la densidad es constante por tramos en vez de depender continuamente del radio de la Tierra. Finalmente dotamos de movilidad a nuestro detector y hacemos que nuestra fuente de neutrinos sea un haz orientable con el fin de mover el haz para hacer un barrido de toda la corteza terrestre. En este contexto definimos un parámetro que nos permitiría evaluar fácilmente y con alta confianza la presencia de la cavidad.es_ES
dc.language.isospaes_ES
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.rightsAtribución-NoComercial-SinDerivadas 2.5 Perú*
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/*
dc.subjectNeutrinoses_ES
dc.subjectFísica de neutrinoses_ES
dc.subjectFísica de partículases_ES
dc.titleFísica de neutrinos de fuentes astronómicas y terrestreses_ES
dc.typeinfo:eu-repo/semantics/masterThesises_ES
thesis.degree.nameMagíster en Físicaes_ES
thesis.degree.levelMaestríaes_ES
thesis.degree.grantorPontificia Universidad Católica del Perú. Escuela de Posgradoes_ES
thesis.degree.disciplineFísicaes_ES
renati.advisor.dni07835422
renati.advisor.orcidhttps://orcid.org/0000-0002-0019-9692es_ES
renati.discipline533017es_ES
renati.levelhttps://purl.org/pe-repo/renati/level#maestroes_ES
renati.typehttp://purl.org/pe-repo/renati/type#tesises_ES
dc.publisher.countryPEes_ES
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.03.00es_ES


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Atribución-NoComercial-SinDerivadas 2.5 Perú
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 2.5 Perú