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ASESOR
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Abstract—Tumor-infiltrating lymphocytes (TILs) have re-
ceived considerable attention in recent years, as evidence
suggests they are related to cancer prognosis. Distribution
and localization of these and other types of immune cells
are of special interest for pathologists, and frequently involve
manual examination on Immunohistochemistry (IHC) Images.
We present a model based on Deep Convolutional Neural
Networks for Automatic lymphocyte detection on IHC images
of gastric cancer. The dataset created as part of this work is
publicly available for future research.
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I. INTRODUCTION

Gastric Cancer is one of the five most common types
of cancer among men and women according to the World
Health Organization. It represents 7% of all cases and 9%
of all deaths among cancer patients.[1]. With 12 months
of disease-specific survival and 90% of all cases dying
within the first five years, it is one of the most aggressive
and deadliest types of cancer. Therefore it is of interest
for medical professionals to accurately estimate patients’
prognoses.

Current evidence suggests that TILs may have an asso-
ciation with the prognoses and clinical features of cancer
patients. In some scenarios, high concentrations of Cytotoxic
T Cells and Memory T cells (T-Mem) are associated with
favorable results, whereas elevated levels of Regulatory T
Cells (T-Reg) may contribute to the pathogenesis[2].

However, there are other scenarios in which this relation
changes drastically. For example, in the specific case of
gastric cancer of the cardia, high levels of tumor-infiltrating
macrophages are favorable for carcinogenesis, whereas ele-
vated levels of T-Reg lead to better clinical results.

Moreover, not only the type of immune cells but also their
location is of interest for pathologists, as the concentration
of tumor-infiltrating T-Reg is only relevant to the prognosis
if found in the tumor stroma[3].

*Supplementary material is available at https://github.com/grpiaa-
pucp/prisma-public/tree/master

Over the last years, increasing computer power has been
enabling considerable improvements in different areas of
machine learning. Multilayered Neural Networks are mak-
ing impressive progress in computer vision tasks[3]. There
are even cases where convolutional neural networks have
achieved better performance than humans[4, 5].

In this paper, we present an approach to automatically
detect and count TILs on IHC images of gastric cancer using
Deep Convolutional Neural Networks. We also describe an
innovative approach to label images for the training and
testing sets using a piece of software built in-house. One of
the contributions of this work is its validated methodology
and results, as no previous work has been found related
to gastric cancer. Another significant contribution is the
lymphocyte images dataset which can be downloaded and
used for further research and improvements in the area. The
proposed software has a great potential to be used as a tool
for helping medical professionals and researchers in further
cancer studies.

We organized the rest of this paper as follows: we in-
troduce Deep Learning and Convolutional Neural Networks
along with related work in Section 2, the Methodology
applied is described in Section 3, and Experiments are
presented in Section 4. Finally, we present discussion, con-
clusions and future work in Section 5.

II. PREVIOUS AND RELATED WORK

The idea of replacing hand-engineered features with
multilayer networks existed since a long time in pattern
recognition[6, 7]. However, a working solution for training
multilayered architectures with simple stochastic gradient
descent was not developed until the 1970s and 1980s[8,
9, 10]. Later, it was about in 2006 that the field regained
attention as Deep Learning and became an important area
in Machine Learning.

Deep Learning techniques allow machines to identify
patterns and recognize images and voices. Its goal is for
machines to be able to learn without needing prior prepara-
tion of training data (manual feature extraction)[11]. In the
last few years, it has changed the way of working in signal
processing considerably[12].

https://github.com/grpiaa-pucp/prisma-public/tree/master
https://github.com/grpiaa-pucp/prisma-public/tree/master


Advances in signal processing research, big data, and
the drastic increment of computing power in CPU and
GPU have made popular the use of Deep Learning. Con-
sequently, there are also substantial improvements in the
applications of Deep Learning for computer vision and
object recognition. Examples of successful applications in-
clude supervised and non-supervised feature extraction and
classification tasks[13].

In 2011, Cirean et al. achieved better performance than
humans for the first time with an object recognition task[4].
Later, in February 2012, he reported a new error rate
of 0.23% in the MNIST handwritten digit recognition
problem[13]. The same year Krizhevsky et al. won the Im-
ageNet competition by combining convolutional neural net-
works and max-pooling with graphic processing units[14].

Later in 2015, Delahunt et al. built a device named
Autoscope that enables users to diagnose malaria using
a digital microscope and a combination of algorithms for
computer vision and image classification[15].

Recently, in March 2016, Abdel-Zaher and Eldeib
achieved 99.68% of accuracy in breast cancer classification.
These results were very promising compared to previous
work[16]. Similarly, other works that have used Deep Learn-
ing techniques outperformed previous studies in the areas of
prediction and detection in medicine[17, 18, 19].

In biological and medical fields, Pan et al. presented an
average accuracy of 78.6% for detection of lung cancer cells,
whereas Chen and Chefd’hotel reported to achieve a coeffi-
cient correlation between manual and automated counting of
up to 99.49% using image decomposition and convolutional
neural networks[20, 21]. Several other achievements in med-
ical and microscopy image analysis made possible by deep
learning have also been reported in literature, showing that
CNNs are the most popular among other types of models in
this type of applications[22].

III. METHODOLOGY

A. Overview

An overview of our model is presented in 1. Gastric
cancer biopsy tissue was scanned at 40x magnification. The
acquired images were later used to extract smaller patches
for single cells. Each of the single-cell samples received
a positive/negative label and was used to create test and
training sets.

The training data was feed into a Deep Convolutional
Neural Network to learn classifying single images as positive
or negative whether they are lymphocyte cells or not.

After training the network, we evaluated individual
patches from test images using a sliding window algorithm.
Next, we calculated the final output by applying non-
maximum suppression to all single classifications in the
previous step.

Figure 1. Overview of the proposed model.

B. Labeling tool

Due to the difficult on extracting and labeling cell patches
manually, we provided a web application that allows for
image visualization with a frame-like cropping tool and
asked experts to label the patches by themselves. The process
was as simple as identifying a cell and double-clicking on
it. The labeling tool in reference is shown in Figure 2.

Figure 2. Labeling tool.

C. Deep Convolutional Neural Network

Our Deep Convolutional Neural Network (DCNN) has
nine layers, excluding input, which are arranged in three
convolutional layers (C1, C2, and C3), three max-pooling
layers (MP1, MP2, and MP3), and two fully connected
layers (FC1 and FC2) with dropouts. The output layer is
a fully-connected layer using the softmax function as the
activation function; it outputs two classes (lymphocyte or
non-lymphocyte). We show the complete network architec-
ture in Figure 3.

The convolutional layers C1, C2, and C3 use 3x3 kernels
with strides = [1, 1, 1, 1] and their outputs are passed to



Figure 3. Deep Convolutional Neural Network Architecture.

the max-pooling layers MP1, MP2, and MP3 which have
kernel size and strides = [1, 2, 2, 1]. The number of features
in each pair of convolutional and max-pooling layers are
64, 128, and 256 respectively. We later reshape the output
of the 3rd max-pooling layer to a vector. Finally, in both
fully connected layers, FC1 and FC2, we have 2048 feature
vectors.

We used rectified linear units (ReLU), dropouts and
batch normalization as it is known that they are useful
for overfitting reduction and performance improvement with
unseen data[23, 24]. For optimization, we used the ADAM
algorithm, which was originally proposed by Kingma and
Ba in [25].

IV. EXPERIMENTS

In this section, we describe the dataset and experiments
setting. We also validate the proposed algorithm and com-
pare it to medical professional output.

A. Data Set

A clinical dataset containing gastric cancer tissue samples
was used to test the proposed model. All IHC images were
acquired using an Olympus BX63 Microscope and CD3
stains.

We extracted the data from 10 biopsy micrographs of the
cancerous gastric tissue scanned at 40x magnification using
a software utility developed as part of this work. Another
35 additional 600x500 pixel images were used to compare
against the results provided by human pathologists.

For training, pathologists extracted and labeled 70x70
pixel patches containing individual cells from IHC images.
All cells stained with CD3 that were identified as lympo-
hcytes by the human pathologist were labeled as Positive
whereas all other cells including contrast stained cells were
labeled as Negative. Then, we trained a convolutional deep
neural network to make binary classifications for inputs of
the same size.

After extracting individual cell patches, the database con-
sisted of 3,257 images (70 x 70 pixel each). Then, we
used data augmentation techniques such as rotation and
reflection to increase the dataset size and got a total of 10868
individual cell patches. The distribution of the dataset for
training and testing is shown in Table I.

Table I
DESCRIPTION OF THE DATA SET

Set Quantity
Before data augmentation 3257
After data augmentation 10868
Positive Train Samples 4437
Negative Train Samples 4257
Positive Test Samples 1143
Negative Test Samples 1031

B. Experiment Setting

Before experiments, the training set was divided into
subsets (train and validation) in order to execute cross-
validation for each of the parameter configurations. Elements
for each subset were chosen randomly.

We used a random search approach to test several param-
eter configurations. The rules for each of the parameters are
described in Table II below:

Table II
RANDOM SEARCH CRITERIA FOR PARAMETERS

Parameter Value Range
Training Steps 500 - 18,000
Learning Rate 10−3.5− 10−1.5
Regularization Strength 10−3.5− 10−2
Early Stoping Rounds 200-300

The experiments goal was to maximize precision and
we used an early stopping rule to stop training when the
model didn’t show improvement over the last 200-300 steps.
We also used Softmax Cross Entropy as the cost function.
For validation, we used three specific metrics: Accuracy,
Precision and Recall.

C. Performance on single-cell images

In training and validation, our best model achieved near
98.2% accuracy after 1,000 iterations with no significant im-
provements until iteration 2,000. Figure 4 shows the Training
Loss (a), Validation Accuracy (b), Validation Precision (c),
and Validation Recall (d) for our best model.

In the test set, the model achieved an overall 94% Pre-
cision, 95.83% F-score, and 92% Recall. These values are
shown in Table III.

Table III
PERFORMANCE IN TEST SET

Accuracy Precision F-score Recall
94.0 95.83 93.88 92.0

Of the actual positive samples in the test set, 92% were
correctly classified while 96% of the total classifications
were correct for negative samples.



(a) Training Loss (b) Validation Accuracy

(c) Validation Precision (d) Validation Recall

Figure 4. Training and Validation Metrics.

Figures 5 and 6 show the normalized confusion matrix
and Receiver operating characteristic curve respectively.

Figure 5. Confusion matrix.

D. Comparison against human experts

We used 35 images, 600 x 500 pixel each, to compare the
model results against human pathologists. These validation
images were randomly selected them from new full-sized
IHC micrographs. Samples of classification outputs are
shown in Figure 7.

When analyzing results using data augmentation, 17 im-
ages out of 35 had an output difference in terms of detected
cells equal to or lower than 5, whereas a total of 29 had a
count difference equal to or lower than 11. Therefore, only
six images had a count difference higher than 11.

If we compare our best model using data augmentation
(Model A) against our best model without data augmentation
(Model B), better results are seen in Model A.

Figure 6. ROC curve.

Figure 7. Classification on 600 x 500 pixel images

Figure 8. Behavior in counting differences between augmented and non-
augmented datasets

However, both models present the same behavior: as the
difference between numbers of human and algorithm outputs
increase, the number of images exhibiting those differences
decrease. Figure 8 explains this relationship in a more visual
fashion.

V. DISCUSSION AND CONCLUSIONS

We present an approach for automatic TILs detection
and counting on IHC images of gastric cancer using Deep
Convolutional Neural Networks. Our experiments produced
an acceptable 94% Accuracy and 95.83% Recall. It is also



valuable that our work received exhaustive validation with
the pathologist. A similar work was found in the literature
[21], but we enhanced the segmentation and labeling pro-
cess. While Chen and Chefd’hotel applied a semi-automatic
segmentation of cells, we implemented a fully automated
segmentation and labeling process. We also developed an
innovative approach to collect images for the training set
using a piece of software built in-house. Another significant
difference is the number of instances for the training set,
while Chen and Chefd’hotel extracted manually 491 posi-
tives and 539 negative samples, we extracted 1395 positive
and 1322 negative samples, this new dataset is a significant
contribution to the scientific community and is available as
supplementary material. Other works and methods can also
use the new dataset created as part of this work to continue
improving the accuracy in lymphocyte detection. Finally,
the provided software, which made the patches extraction
easier, can also be used to create datasets for other types
of cells or images. While there is room for improvement,
the proposed method has potential to be used as a resource
for helping medical professionals and researchers in further
cancer studies.
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