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Resumen

La conjetura de Fermat fue uno de los acertijos matemáticos más misteriosos
hasta 1995. El problema fue formulado en 1637 por Pierre de Fermat. Él
afirmó saber cómo resolverlo, sin embargo, no pod́ıa mostrar la prueba de-
bido a que el espacio en el margen de su copia de Arithmetica de Diofanto
era insuficiente. Desde entonces mucho misticismo rodeó a la conjetura.
Mientras tanto, independientemente, nuevas ramas de las matemáticas se
desarrollaban. La geometŕıa algebraica y el análisis complejo permitieron a
Andrew Wiles resolver finalmente la conjetura. La solución involucra, entre
otras herramientas, el uso de curvas eĺıpticas. Esto es suficiente motivo para
estudiarlas.

En lineas generales las curvas eĺıpticas son polinomios cúbicos no singu-
lares en dos variables con un punto especial de coordenadas racionales en los
que podemos establecer una estructura de grupo. Para manipular las opera-
ciones cómodamente transformamos la ecuación de la curva eĺıptica en una
más apropiada con menos términos. Para lograr esto exploramos los aspectos
fundamentales de los espacios proyectivos que facilitarán la transición.

Como ya es conocido, existen casos en las matemáticas en los que hay un
intercambio entre simpleza y elegancia. Uno debe profundizar un poco para
alcanzar la estética. Nuestro objetivo es probar la propiedad de asociativi-
dad del grupo en las curvas eĺıpticas por medio del grupo de Picard de una
variedad algebraica asociada. Esto provee una prueba alternativa de dicha
propiedad y reemplaza los cálculos engorrosos de la prueba directa que usa
solo la definición de la operación del grupo. Para lograr esto desarrollamos la
teoŕıa de divisores. Esto nos conduce al estudio de funciones racionales sobre
las curvas y de este modo nos enfrentamos a uno de los resultados más im-
portantes de la geometŕıa algebraica: el teorema de Riemann-Roch. Basados
en esto probamos que las curvas eĺıpticas sobre los cuerpos de caracteŕıstica
cero tienen genero uno.

Finalmente definimos el grupo de Picard. Este grupo mide el grado de
cuánto del conjunto de divisores no tiene origen en las funciones racionales.
Luego establecemos un homomorfismo entre este grupo y la curva eĺıptica:



esta es en una manera elaborada de afirmar que la asociatividad de una
estructura se preserva en la otra.
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Introduction

The Fermat conjecture was one of the most mysterious puzzles of mathemat-
ics until 1995. The problem was formulated in 1637 by Pierre de Fermat.
He claimed that he knew how to solve it, but was however unable to exhibit
the proof because of the lack of space on the margin of his copy of Diophan-
tus’s Arithmetica. Since then a lot of mysticism surrounded the conjecture.
Meanwhile, independently, new branches of mathematics were developed.
Algebraic geometry and complex analysis allowed Andrew Wiles to finally
solve the conjecture. The solution involves, among other tools, the use of
elliptic curves. That is enough reason for their study.

Roughly speaking elliptic curves are non-singular cubic polynomials in
two variables with a special point of rational coordinates where a group
structure can be set. In order to handle computations comfortably we trans-
form the equation of the elliptic curve into an appropriate one with fewer
terms. To achieve this goal we explore fundamental aspects of projective
spaces which facilitate the transition.

As it is known, in some cases there is a trade-off in mathematics between
simplicity and elegance. One must dig a little deep to reach aesthetics. We
aim to prove the associativity law of the group on elliptic curves by means of
the Picard group of an associated algebraic variety. This provides an alterna-
tive proof of the property and replaces the usual burdensome computations
of the straight proof by definition of the group operation. In order to achieve
this, we develop the theory of divisors. This leads us to the study of ratio-
nal functions on curves, and thus face one of the crucial results of algebraic
geometry: the Riemann-Roch theorem. Based on this we prove that elliptic
curves over fields of characteristic zero have genus one.

Finally we define the Picard group. This group measures the extent of
how much of the set of divisors fails to have its origin on rational functions.
Then we establish a homomorphism between this group and the elliptic curve:
this yields a fancy way of saying that associativy of one structure is preserved
in the other.
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Chapter 1

Non singular cubics

In this chapter we introduce elliptic curves and the equations that represent
them. We also treat the basic and necessary aspects of projective spaces in
order to simplify their representation.

1.1 Preliminaries

We consider a quadratic polynomial in Q[X, Y ], and call its locus a curve,
which we denote by C. A dichotomy appears here: there is a pair of rational
numbers that satisfies the equation, or there are not such pairs. The knowl-
edge of a rational point over a curve will automatically reveal many of them.
In order to justify this assertion, we fix a point O ∈ Q×Q on the curve to-
gether with a line L with coefficients in Q. The idea is to parametrize the rest
of the rational points on C through the rational points of L. Each rational
point on L along with O determines a unique line, obviously rational. If C is
irreducible, this line intersects C in exactly two points by Bezout’s theorem.
Of course one of them is O and the other P , say. To find numerically the
coordinates of P one must set a pair of quadratic equations with rational
coefficients. If one of the solutions is rational, the other will also be rational,
thus P is rational. On the other hand, every rational P ∈ C determines along
with O a rational line which intersects with L at a rational point (if P = O
the line is the tangent to C at O). In this way we have established a one to
one correspondence between the rational points on C and the rational points
on L. We state this fact as a proposition.

Proposition 1.1. The locus of an irreducible quadratic polynomial in Q[X, Y ]
with at least one rational point is equivalent to the rational line. �

Next we consider cubics of the form y2 = f(x), where f(x) ∈ Q[X] with
deg(f) = 3. We say that the curve has a singular point at (x0, 0) if x0 ∈ Q
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is a root of f(x) = 0 with multiplicity at least 2. The equation can then be
expressed as y2 = λ(x − x0)

2(x − x1). We claim that these curves reduce
to a line as previously explained for curves of genus zero. Taking a rational
line y = m(x− x0) through (x0, 0), we observe that the third meeting point
between the line and the cubic is a rational point. Considering all the rational
lines through this singular point and again projecting them stereographically
to a rational line L we obtain a one to one correspondence between the
rational points of the cubic and the line. We have proved the following.

Proposition 1.2. Rational cubics of the form y2 = f(x) with a singular
rational point are equivalent to rational lines. �

Now we take a polynomial relation of degree 3 with coefficients in an
arbitrary field K such as

ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx+ iy + j = 0. (1.1)

We call a point (x, y) ∈ K × K that satisfies the equation a K-rational
point.

Curves f(x, y) = 0 and F (X, Y ) = 0 are called equivalent if there exists
rational functions a, b, A, B with rational coefficients which satisfy

x = a(X, Y ),

y = b(X, Y ),

X = A(x, y),

Y = B(x, y)

except for a finite number of points.
Consider the cubic curve

y2 = P (x), (1.2)

where P (x) is polynomial of degree 3, and define F (x, y) = y2−P (x). If the
point (x0, y0) satisfies

∂F

∂x
(x0, y0) =

∂F

∂y
(x0, y0) = 0, (1.3)

then we have y0 = 0 and P ′(x0) = 0. Evaluating at (x0, y0), this means that
we have P (x0) = 0, so it is a solution with multiplicity at least 2. In the
other direction, if x0 is a solution of P (x) with multiplicity at least 2, then
it must satisfy Relation (1.3).
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In general, let P (x, y) be a polynomial in K[X, Y ]. We say that the point
(x0, y0) is a singular point of the curve P (x, y) = 0 if we have also

∂P

∂x
(x0, y0) =

∂P

∂y
(x0, y0) = 0.

The exclusion of singular points in the definition of the curve represented by
Equation (1.2) will allow us to diversify in the algebraic aspect and regularize
in the geometric sense.

Proposition 1.3. A polynomial P (x) ∈ K[X] of degree 3 has different roots
if and only if at every point on the curve y2 = P (x) it is possible to define
the tangent. �

We can now introduce our object of study. By an elliptic curve over
the field K we mean a non-singular cubic in K[X, Y ] which has at least one
K-rational point.

1.2 Projective space

One of the biggest concerns of renaissance art was the analysis of perspectives;
an obsession that motivated the foundations of projective geometry. We will
recall the concepts and relevant results of this theory in order to manipulate
elliptic curves on projective spaces.

We call projective space of K, and denote it by P2(K), the set of
equivalent classes of the quotient of P2[K] = {(a : b : c) : a, b, c ∈ K} \ {(0 :
0 : 0)} modulo the equivalence relation ∼ given by (a : b : c) ∼ (a′ : b′ : c′)
when there is some t 6= 0 such that a′ = at, b′ = bt, c′ = ct.

The sum of points in this “plane”, as in a vector space, is senseless. For
instance it has no meaning to try to compute (0 : 1 : 0) + (1 : 1 : 1). At
first glance the result must be (1 : 2 : 1), nonetheless these elements are
equivalence classes, so by taking other representatives for each point, say
(0 : 4 : 0) and (2 : 2 : 2), we obtain (2 : 6 : 2), which is not equivalent
to the previous (1 : 2 : 1). Therefore the sum, coordinate by coordinate, is
meaningless in this object.

In order to set a relationship between projective space and the affine
universe we look at the application

A2(K)→ P2(K)

(x, y) 7→ (x : y : 1).

This map is injective with inverse (x : y : z) 7→ (x/z, y/z) for z 6= 0. Because
of this, the affine space can be construed as embedded in the projective
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space. The points that do not belong to the affine space (those with Z = 0)
are called points at infinity.

If our purpose is to study elliptic curves in projective space, we consider
other kind of polynomials. A homogeneous polynomial of degree d is a
polynomial F (x, y, z) ∈ K[X, Y, Z] which satisfies F (tx, ty, tz) = tdF (x, y, z).

Now consider a polynomial f(x, y) =
∑
ai,jx

iyj in K[X, Y ] of degree d.
The homogenization of f in P2(K) is the formal sum

F (X : Y : Z) =
∑
i,j

ai,jX
iY jZd−i−j. (1.4)

It is clear that the homogenization of a polynomial is a homogeneous
polynomial in one more variable.

On the other hand, by handling and reorganizing the variable Z at the
right hand side of the equation we get the following.

Proposition 1.4. The homogenization of f(x, y) is equal to

Zdf(X/Z, Y/Z). (1.5)

Thus f(X/Z, Y/Z) is the quotient of two polynomials of the same degree. �

This expression helps us return to the affine plane. Let F (X : Y : Z)
be the homogenization of f(x, y). We call the dehomogenization with
respect to Z the polynomial

F (X : Y : 1). (1.6)

Homogeneous polynomials are the only ones that allow us to maintain
certain coherence when working in projective space. Let F (X : Y : Z) be
a homogeneous polynomial of degree d. By definition we have then F (tX :
tY : tZ) = tdF (X : Y : Z). If F (X0 : Y0 : Z0) = 0, then necessarily every
element (X1 : Y1 : Z1) in the equivalence class of (X0 : Y0 : Z0) also satisfies
F (X1 : Y1 : Z1) = 0.

Another important feature is that although it seems mystic to grab the
infinite and reach it at the line Z = 0, this does not make the variable Z
a distinguished one. One must understand that the dehomogenization of a
curve in projective plane can take three different roads, namely Z = 1, Y = 1
and X = 1. Thus taking Z = 1 only means that we are going to work with
certain coordinates of projective space. Most probably, picking Z = 1 is the
most natural one if we started with x, y in the affine plane.

Singularities can also be defined in the projective plane in the same way
as in the affine case. Let F (X : Y : Z) be a polynomial in P2(K). The point
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P = (X0 : Y0 : Z0) is a singular point on the curve F (X : Y : Z) = 0 if
it satisfies

∂F

∂X
(P ) =

∂F

∂Y
(P ) =

∂F

∂Z
(P ) = 0.

Proposition 1.5. If F (X : Y : Z) is a homogeneous polynomial of degree d,
then each partial derivative is a homogeneous polynomial of degree d− 1.

Proof. From the definition we have

t
∂

∂X
F (tX : tY : tZ) =td

∂

∂X
F (X : Y : Z),

and the result follows. We use the same argument for the other coordinates.

We analyze the relationship between a singular point in an affine curve
and its homogenized version in projective space.

Proposition 1.6. The point (x0/z0, y0/z0) in the curve f(x, y) in the affine
plane is singular if and only if the corresponding point (X0, Y0, Z0) with Z0 6=
0 is singular in the homogenization F (X : Y : Z).

Proof. By Equation (1.5) we have F (X : Y : Z) = Zdf(X/Z, Y/Z). Differ-
entiating with respect to X, Y, Z we obtain

∂F

∂X
(X : Y : Z) =Zd−1 ∂f

∂X
(X/Z, Y/Z),

∂F

∂Y
(X : Y : Z) =Zd−1 ∂f

∂Y
(X/Z, Y/Z),

∂F

∂Z
(X : Y : Z) =dZd−1f(X/Z, Y/Z) −

− Zd−2(X
∂f

∂X
(X/Z, Y/Z) + Y

∂f

∂Y
(X/Z, Y/Z)).

The stated equivalence is now clear.

The equation of the tangent line to a curve defined by means of a homo-
geneous polynomial has a simple form.

Proposition 1.7. Let F (X : Y : Z) be a homogeneous polynomial of degree
d with a non-singular point P . Then a homogeneous tangent line at P is
given by

∂F

∂X
(P )X +

∂F

∂Y
(P )Y +

∂F

∂Z
(P )Z = 0. (1.7)
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Proof. First notice that F must be non-constant, as otherwise all points are
singular; thus we take d > 0 without further comment. From the definition
of homogeneous polynomial we have

F (tX : tY : tZ) = tdF (X : Y : Z). (1.8)

Differentiating the left hand side with respect to t we get[
∂F

∂X
(tX : tY : tZ)

∂F

∂Y
(tX : tY : tZ)

∂F

∂Z
(tX : tY : tZ)

]
[X Y Z]T .

By Proposition 1.5 the partial derivatives are homogeneous polynomials of
degree d− 1. Therefore this side of the equation has the form

td−1
[
∂F

∂X
(X : Y : Z)

∂F

∂Y
(X : Y : Z)

∂F

∂Z
(X : Y : Z)

]
[X Y Z]T .

Differentiating the right hand side of (1.8) and comparing it with the left
hand side we obtain

∂F

∂X
X +

∂F

∂Y
Y +

∂F

∂Z
Z = d · F (X : Y : Z).

Finally we evaluate at P and achieve the desired result.

We state a crucial theorem that we have used before without proof. For
further details see [8, page 237].

Theorem 1.8. (Bezout) For projective curves C1 and C2 without common
factors, we have ∑

P∈C1∩C2

I(C1 ∩ C2, P ) = (degC1)(degC2). (1.9)

Here I(C1 ∩ C2, P ) stands for the multiplicity of P at the intersection of
C1 and C2 which can be interpreted as the degree of tangency of both curves
at P . So, if we have a line and a cubic curve with two distinct points of
intersection then a third point of intersection necessarily pops.

1.3 Weierstrass normal forms

By a Weierstrass normal form we mean any of the following polynomial
relations

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (1.10)

y2 = x3 + ax2 + bx+ c, (1.11)

y2 = x3 + ax+ b. (1.12)
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Every elliptic curve can be transformed into one of these forms depending
on the characteristic of the defined ground field.

First we reveal the universal nature of the point O = (0 : 1 : 0) over the
homogenized version of the curve (1.10). For that we first homogenize

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3. (1.13)

Next we need the tangent line at O: following Proposition 1.7 we find the
partial derivatives

∂F

∂X
(O) = 0,

∂F

∂Y
(O) = 0,

∂F

∂Z
(O) = 1.

We conclude easily that Z = 0 is the tangent line at O. Next we intersect the
curve in projective space with the projective line Z = 0 at infinite, the result
being X3 = 0; that is, the point O has a triple contact, which by definition
is called an inflexion point.

Proposition 1.9. Every elliptic curve can be transformed into a Weierstrass
normal form.

Proof. Suppose an elliptic curve has a rational point P . By the theorem of
Bezout, the tangent at this point meets three times the curve. Two options
emerge: the tangent line contacts three times the point P , and so is an
inflexion point, or the line contacts P two times and one time a different
point in the curve.

In the first case we want to resettle the point P in O and carry the tangent
line at P to the line Z = 0. For this purpose we change coordinates through
a linear inversible transformation. In this way we obtain the equation

aX3+bX2Y +cXY 2+dY 3+eX2Z+fXY Z+gY 2Z+hXZ2+iY Z2+jZ3 = 0

with d = 0 because the point (0 : 1 : 0) belongs to the curve. Moreover, as
the tangent line at this point is Z = 0, we find the partial derivatives

∂F

∂X
= 3aX2 + 2bXY + cY 2 + 2eXZ + fY Z + hZ2,

∂F

∂Y
= bX2 + 2cXY + fXZ + 2gY Z + iZ2,

∂F

∂Z
= eX2 + fXY + gY 2 + 2hXZ + 2iY Z + 3jZ2

8



and evaluate at O to obtain

∂F

∂X
(O) = c,

∂F

∂Y
(O) = 0,

∂F

∂Z
(O) = g.

In this way the tangent line is

cX + gZ = 0.

We get c = 0 and g 6= 0. Evaluating the curve at Y = 1 and Z = 0 gives us

X2(aX + b) = aX3 + bX2 = 0.

In order to obtain a triple contact we must have b = 0 and a 6= 0. So far the
equation of the curve reduces to

gY 2Z + fXY Z + iY Z2 = −aX3 − eX2Z − hXZ2 − jZ3.

Changing the variables from X to −agX and Y to a2gY and returning to
the affine space through the immersion Z = 1 we obtain

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

as desired.
Suppose now P is not an inflexion point. In this framework the tangent

line has a double contact and intersects transversally the curve at Q, another
rational point. If Q is an inflexion point, we start all over again using the
just described method and proceed accordingly. Therefore we assume it is
not an inflexion point. Then we trace the tangent at Q and by Bezout obtain
the point R on the elliptic curve. As the three points P , Q, and R are not
colinear, we can define a linear invertible transformation which carries P , Q
and R to (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1), respectively. Let the equation

F (X, Y, Z) = aX3+bX2Y + cXY 2 + dY 3 + eX2Z+

+ fXY Z + gY 2Z + hXZ2 + iY Z2 + jZ3

describe the transformed elliptic curve. The coefficients a, d and j are null
since the points (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1) belong to the curve.
Then the equation simplifies to

F (X, Y, Z) = bX2Y + cXY 2 + eX2Z + fXY Z + gY 2Z + hXZ2 + iY Z2.

By the nature of the construction of P , Q and R, the tangent line at P will
be carried to the line that passes through (1 : 0 : 0) and (0 : 1 : 0); this

9



is Z = 0. By the same reason the tangent line at Q is carried to X = 0
through the linear transformation. Setting these conditions in the curve, the
coefficients of the tangent at (1 : 0 : 0) become

∂F

∂X
((1 : 0 : 0)) = 0,

∂F

∂Y
((1 : 0 : 0)) = b,

∂F

∂Z
((1 : 0 : 0)) = e;

hence we get b = 0 and e 6= 0. The coefficients of the tangent line at (0 : 1 : 0)
are

∂F

∂X
((0 : 1 : 0)) = c,

∂F

∂Y
((0 : 1 : 0)) = 0,

∂F

∂Z
((0 : 1 : 0)) = g;

so we get g = 0 and c 6= 0. The defining polynomial is now

F (X, Y, Z) = cXY 2 + eX2Z + fXY Z + hXZ2 + iY Z2. (1.14)

We use the non linear transformations

α(X, Y, Z) =(XZ : XY : Z2),

β(X, Y, Z) =(X2 : Y Z : XZ)

that take rational points into rational points. The compositions α ◦ β and
β ◦ α work as the identity except for the points (1 : 0 : 0), (0 : 1 : 0) and
(0 : 0 : 1). Multiplying Equation (1.14) by XZ2 and changing the variables
to U = XZ, V = XY and W = Z2, we obtain

cV 2W + eU3 + fUVW + hU2W + iV W 2 = 0.

Dividing by e and replacing W by W/c, we obtain the Weierstrass form

V 2W + a1UVW + a3VW
2 = U3 + a2U

2W.

Finally we set W = 1, and conclude the proof.
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Working in a field K with charK 6= 2 allows us to accomplish the extra
change of variable y by y − (a1x + a3)/2, and we obtain the equation y2 =
x3 + ax2 + bx+ c. If the field is also such that charK 6= 3, we can make the
further change of x by x− a/3 and obtain the equation y2 = x3 + ax+ b.
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Figure 1.1: y2 = x3 − x
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Figure 1.2: y2 = x3 + x
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Figure 1.3: y2 = x3 − x2
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Figure 1.4: y2 = x3
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Figure 1.5: y2 = x3 + x2

1.4 Examples

Example 1.10. Take the Fermat’s elliptic curve x3+y3 = 1 of a field K with
charK 6= 2, 3. We will obtain the three versions of the Weierstrass normal
form.

The homogenized version of the curve is X3 + Y 3 − Z3 = 0. The point
(1 : −1 : 0) is an inflexion point with tangent line X + Z = 0. Applying the
projective linear transformation (X, Y, Z) 7→ (Z −X − Y,X +Z,X + Y ) we
get

3Y 2Z + 6XY Z − 3Y Z2 = −X3 + 6XZ2.

Changing the variables X to −3X and Y to 3Y results in the equation

Y 2Z − 2XY Z − 1

3
Y Z2 = X3 − 2

3
XZ2,

whose affine representation is given by

y2 − 2xy − 1

3
y = x3 − 2

3
x.

Then we change the variable y to y + x+ 1
6
. After some toiling we obtain

y2 = x3 + x2 − 1

3
x+

1

36
.

Finally we replace the variable x by x− 2 to get

y2 = x3 − 2

3
x+

23

108
.
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Figure 1.6: x3 + y3 = 1
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Figure 1.7: y2 − 2xy − 1
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Figure 1.8: y2 = x3+x2− 1
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Figure 1.9: y2 = x3 − 2
3
x+ 23

108

Example 1.11. Consider the non-singular cubic equation x3 +y3 +x2−y2 +
1 = 0, whose homogenized version is X3 + Y 3 +X2Z − Y 2Z + Z3 = 0. The
point (1 : −1 : 0) is an inflexion point of the curve. We apply the projective
linear transformation (X, Y, Z) 7→ (X + Y + Z,−X − Y,X) and obtain

3Y 2Z + 8XY Z + 3Y Z2 = −X3 − 5X2Z − 4XZ2 − Z3.

Changing the variables X to −3X and Y to 3Y , we get

Y 2Z − 8/3XY Z + 1/3Y Z2 = X3 − 5/3X2Z + 4/9XZ2 − 1/27Z3
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whose representation in the affine plane is given by

y2 − 8

3
xy +

1

3
y = x3 − 5

3
x2 +

4

9
x− 1

27
.

Replacing y by y − (−8/3x+ 1/3)/2 results in

y2 = x3 +
1

9
x2 − 1

108
;

and replacing x by x− 1/27 results in

y2 = x3 − 1

243
x− 721

78732
.
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Figure 1.10: x3+y3+x2−y2+
1 = 0
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Figure 1.11: y2 − 8
3
xy + 1

3
y =

x3 − 5
3
x2 + 4

9
x− 1

27
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Figure 1.12: y2 = x3+ 1
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Chapter 2

Groups over elliptic curves

In the present chapter we are concerned with the structural aspects of elliptic
curves from the purely algebraic point of view. In particular we define a group
over its set of rational points.

2.1 Preliminaries

An easy application of Bezout’s theorem states that every line over K[X, Y ]
that intersects an elliptic curve twice in fact cuts it a third time. This is the
starting point to set a group structure in an elliptic curve.

As before, we are going to work with elliptic curves of the form

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3 (2.1)

with a preferred point O = (0 : 1 : 0), which happens to be an inflexion point
and the unique point of the curve at infinity.

We state the following proposition about a defining property of the pro-
jective lines that meet the curve at infinity.

Proposition 2.1. The projective lines of the form X = x0Z are the only
ones different from Z = 0 that cut the curve at infinity.

Proof. In general a projective line has the form α1X + α2Y + α3Z = 0.
As O is the only point of the curve at infinity, then O must belong to the
projective line, therefore we get α2 = 0. Also as we are not considering Z = 0
we must have α1 6= 0, so we get X = −α3/α1Z. By setting x0 = −α3/α1

and dehomogenizing we obtain the result.

Next take points P and Q on the elliptic curve C. Recalling Bezout’s
theorem we know that if we draw the line through P and Q, this line must
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intercept the curve at another point: call this point P ∗ Q (compare Figure
2.1). In this way the operation ∗ : C × C → C is established. Notice that
there is no extra burden in finding a third point if we have P = Q: it simply
happens that the line becomes the tangent line. Also, as O is an inflexion
point we have O ∗ O = O. To familiarize ourselves with ∗ we state the
following preliminary result.

Proposition 2.2. Take points P,Q in the elliptic curve. The operation ∗ is
commutative and satisfies (P ∗Q) ∗ P = Q.

Proof. Commutativity follows inmediately by definition because the line from
P to Q is the same as the line from Q to P . The other claim is clear because
P ∗ Q is the third point on the curve resulting from the intersection of the
line that joins P and Q and the curve. Focusing on P ∗ Q and P now the
third point must be Q.

P Q
P*Q

-2 -1 0 1 2

-2

-1

0

1

2

X

Y

Figure 2.1: P,Q and P ∗Q

P Q
P*Q

P+Q
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0
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Y

Figure 2.2: P +Q

2.2 Sum of points

Take points P,Q on the elliptic curve C. We define the sum of P and Q to
be

P +Q = (P ∗Q) ∗O. (2.2)

It turns out that this simple operation satisfies several important rela-
tions.

Proposition 2.3. Take points P,Q,R on the elliptic curve. Then the sum
+ must satisfy the following properties:
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1. P +Q = Q+ P ,

2. P +O = P ,

3. if the points P,Q,R are colinear, then

(P +Q) +R = O, (2.3)

4. there exists a point −P of the curve which satisfies

P + (−P ) = O. (2.4)

Proof. As the operation ∗ is commutative we have P ∗Q = Q ∗ P . Thus we
get P +Q = (P ∗Q) ∗O = (Q ∗P ) ∗O = Q+P . By definition of + we have
P +O = (P ∗O) ∗O. Again by the commutativity of the operation ∗ we get
(P ∗O)∗O = (O∗P )∗O. Thus by Proposition 2.2 we obtain (P ∗O)∗O = P ,
which is equivalent to P + O = P . Next, if P,Q,R are colinear we get
P +Q = (P ∗Q) ∗O = R ∗O. In this way (P +Q) +R = ((R ∗O) ∗R) ∗O.
From Proposition 2.2 we know that (R ∗ O) ∗ R = O holds, and this yields
(P + Q) + R = O ∗ O = O. Finally take O,P,R colinear. By the preceding
item we have (P +O) +R = O, therefore it is enough to set R = −P .

In the next chapter, we develop the theory of divisors in order to proof
the associative property; this gives us an elegant proof of this fact. If we take
this for granted, then the preceding proposition shows that the K-rational
points together with + ensemble a group on elliptic curves.

2.3 Explicit expression of the sum

We find the explicit expression for the sum of points over an elliptic curve of
the form y2 + a1xy+ a3y = x3 + a2x

2 + a4x+ a6 in K[X, Y ]. To achieve this
goal we take the line y = αx + β that passes through the distinct rational
points P = (x1, y1) and Q = (x2, y2), where α = (y2 − y1)/(x2 − x1) and
β = (y1x2 − x1y2)/(x2 − x1). We plug in the equation of the line in the
equation of the elliptic curve and obtain the cubic equation

x3 + (a2 − α2 − a1α)x2 + (a4 − 2αβ − a1β − a3α)x+ a6 − β2 − a3β = 0,

whose solutions represent the x-coordinates of the three points of intersection
of the line with the curve. In particular we realize that x3 + x2 + x1 =
−a2 + α2 + a1α holds, and so we have

x3 = α2 + a1α− a2 − (x1 + x2),

y3 = α3 + a1α
2 − (a2 + x1 + x2)α + β.
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We replace x3 in the equation of the elliptic curve in order to obtain

y2 + (a1x3 + a3)y − (x33 + a2x
2
3 + a4x3 + a6) = 0. (2.5)

In view of the K-rational nature of one solution of the latter equation,
the other one must also be K-rational. In addition, the sum of the solutions
of this equation is equal to the negative of the associated coefficient of y.
Thus the second solution is precisely ỹ3 = −y3 − (a1x3 + a3). According to
Proposition 2.1 the point (x3, ỹ3) represents P +Q.

2.4 Examples

Example 2.4. For the elliptic curve

y2 = x3 + 17, (2.6)

the points P = (4, 9) and Q = (8, 23) are points within. We want to find −P
and −Q. According to the previous explanation this is an easy task. We just
have to find the points P ∗O and Q∗O on the curve. As mentioned early, this
is equivalent to find the other points of intersection of the curve and the lines
x = xP , x = xQ, respectively. Since this elliptic curve is symetrical respect
to the x-axis, the points −P and −Q are (4,−9) and (8,−23), accordingly.

Another interesting computation is associated to the double of a point.
Now we are looking for the point 2P , which must lay on the curve. As we
are performing the sum P + P , this means that the intersecting line is now
the tangent line to the curve on P , which is

3y − 8x+ 5 = 0. (2.7)

The resulting equation that expresses this intersection is

9x3 − 64x2 + 80x+ 128 = 0. (2.8)

So we have xP∗P = 64/9− 2× 4 = −8/9, and thus also yP∗P = −109/27. We
finally get 2P = (−8/9, 109/27) by intersecting the curve with the vertical
line x = −8/9 or just reflecting P ∗ P along the x-axis.

Next we compute P + Q following the previously explained algorithm.
First, we note that the equation of the line that passes through P and Q is

14x− 4y − 20 = 0. (2.9)
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Then we get the x-coordinate of P ∗ Q by intersecting it with the elliptic
curve in order to get the system

y2 − x3 − 17 = 0,

14x− 4y − 20 = 0.

Replacing y in the first equation we obtain

x3 − (7/2)2x2 + 35x− 8 = 0. (2.10)

Then we get

xP∗Q = 49/4− (xP + xQ)

= 49/4− (4 + 8)

= 1/4.

We replace xP∗Q in the equation of the line and obtain yP∗Q = −33/8.
Therefore, we have P ∗Q = (1/4,−33/8). Finally we get P+Q by intersecting
the elliptic curve with x = 1/4, and so we end up with P +Q = (1/4, 33/8).

P

Q
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Figure 2.3: Curve y2 = x3 +17
and points P,Q
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Figure 2.4: Curve y2 = x3 +17
and point P ∗Q

Example 2.5. Another interesting example is the elliptic curve y2 = x3 +
1, which has P = (2, 3) as rational point. According to the method just
described we obtain 2P = (0, 1). Adding P + 2P we get 3P = (−1, 0).
Performing the sum repeatedly we have 4P = (0,−1) and 5P = (2,−3). We
notice the equality 5P = −P , so 6P = P + 5P = P − P = O. Therefore the
set {O,P, 2P, 3P, 4P, 5P} is a subgroup of the set of rational points on the
elliptic curve.

19



P

Q

P*Q

P+Q

-20 -10 0 10 20

-20

-10

0

10

20

X

Y

Figure 2.5: Curve y2 = x3 +17
and point P +Q
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Figure 2.6: Curve y2 = x3 +17
and points −P,−Q
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Figure 2.7: Curve y2 = x3 +17
and point 2P
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Figure 2.8: Curve y2 = x3 + 1 and the orbit of the point
P = (2, 3); the iterate 6P = O is at infinity.
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Chapter 3

Associativity

In the previous chapter we learned how an inflexion point within an elliptic
curve allows us to define a “sum”. We showed that this structure satisfies
all group properties but associativity. In this chapter we are concerned with
this delicate task. To accomplish it we need the help of a tool from algebraic
geometry: divisors. We are going to introduce key results about them that
will help us build a proof.

Because of technical reasons, from now on we will focus in the case of
fields of characteristic 0.

3.1 Divisors

A function f with poles in a finite set S ⊂ X is called meromorphic if f is
holomorphic on X \ S. We take a meromorphic function f , and denote the
order of f at the point P as ordP (f). If ordP (f) > 0 then f has a zero at
P ; if ordP (f) < 0, then f has a pole at P . For the sake of completeness we
write ordP (0) = +∞.

Proposition 3.1. Let f, g be two meromorphic functions. Then the order at
a point P satisfies the inequality

ordP (f + g) ≥ min{ordP (f), ordP (g)}.

Proof. This is clear by writing f and g in coordinates.

Another helpful fact is the logarithmic behavior of the order of a function
at a point. This will help us provide a group structure in a set of divisors
associated to rational functions.
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Proposition 3.2. Take f and g meromorphic functions. The order of a
function at a point P satisfies

ordP (fg) = ordP (f) + ordP (g). (3.1)

Proof. Again, this must be clear enough.

A fundamental element in algebraic geometry is the concept of formal
sum. A divisor is a formal sum of points∑

P∈X

nPP. (3.2)

Here all the coefficients are in Z and only a finite number of them are non-
zero.

We impose an algebraic structure on this new set of elements.

Proposition 3.3. The set of divisors with sum defined as

D1 +D2 =
∑
P∈X

(nP +mP )P, (3.3)

where D1 =
∑

P∈X nPP and D2 =
∑

P∈X mPP , forms a group.

Proof. Clear; in fact, this group is abelian and free.

We define an important homomorphism to be used later. Take a divisor
D =

∑
P∈X nPP . By the degree of the divisor D we mean the sum of its

coefficients, this is, the integer

deg(D) =
∑
P∈X

nP . (3.4)

Now we provide another structural feature that would allow us compare
two divisors in a similar fashion as how we compare a pair of natural numbers.
However, in our case, the comparison will not be available for every pair
of divisors. Let D1 and D2 be two divisors with coefficients nP and mP ,
respectively. An order ≥ is defined in the set of divisors by setting

D1 ≥ D2 (3.5)

whenever nP ≥ mP for every P .
Fix a point P , and note that the divisor P is always greater than the

divisor −P . Anyhow, here we are unable to compare the divisors D1 = P−Q,
D2 = −P +Q even in this case in which we have D1 = −D2.
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Now let f be a meromorphic function. By the divisor of f we mean the
sum

div(f) =
∑
P∈X

ordPf · P. (3.6)

Similarly, we define an induced order: take two functions f and g and write

div(f) ≥ div(g) (3.7)

if ordPf ≥ ordPg for every P .
A rational function is the quotient of two polynomials. We call a divisor

principal if it is the divisor of a rational function in the curve.
For the following examples consider the elliptic curve

y2 = (x− x1)(x− x2)(x− x3), (3.8)

with x1, x2, x3 different.

Example 3.4. Take the rational function given by

x− x1. (3.9)

(Actually, for this to be a rational function, we must express it in projective
coordinates). We are looking for zeros and poles of this function. For this
purpose we pass to projective coordinates and obtain

Y 2Z = (X − x1Z)(X − x2Z)(X − x3Z), (3.10)

for the elliptic curve, and
X − x1Z

Z
, (3.11)

for the rational function. Handling the equation of the elliptic curve we get

Y 2

(X − x2Z)(X − x3Z)
=
X − x1Z

Z
. (3.12)

This sets an equivalence between the analyzed function on the right hand side
and another rational function on the left side. The equation also provides
an example of the fact that a rational function on an elliptic curve does not
have a unique presentation. Thus we can take advantage of this phenomenon
and evaluate points where we feel more comfortable.

The left hand side can be expressed as

Y

X − x2Z
× Y

X − x3Z
(3.13)
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where each factor has a simple pole at (0 : 1 : 0) and a zero at (x1 : 0 : 1).
Writing P1 = (x1 : 0 : 1), P2 = (x2 : 0 : 1) and P3 = (x3 : 0 : 1), we conclude
that the divisor of the rational function is given by

div(x− x1) = 2P1 − 2O. (3.14)

Example 3.5. Consider the rational function

y

x− x1
, (3.15)

with projective version equal to

Y

X − x1Z
. (3.16)

Again, handling the equation of the elliptic curve we arrive at

Y

(X − x1Z)
=

(X − x2Z)(X − x3Z)

Y Z
. (3.17)

If we evaluate the points (x2 : 0 : 1) and (x3 : 0 : 1) on the right hand side we
obtain 0/0, yet the left side indicates us that these points are different zeroes
of the rational function. In a similar manner we conclude that the poles are
precisely (x1 : 0 : 1) and (0 : 1 : 0). Thus we get

div(y/(x− x1)) = P2 + P3 − P1 −O. (3.18)

Example 3.6. Given the rational function x we want to find its poles.
Expressing the elliptic curve as y2 = x3 + ax2 + bx + c we obtain
x = (y2 − c)/(x2 + ax+ b). Passing to projective coordinates we have

X

Z
=

Y 2 − cZ2

X2 + aXZ + bZ2
=

Y 2 − cZ2

(X + dZ)(X + eZ)
. (3.19)

The conclusion is that x has zeroes at (0 : ±
√
c : 1) as well as a pole of order

two at (0 : 1 : 0).

Notice that in all our examples the degree of the divisor was zero. As we
will show briefly, this is not mere coincidence.

Proposition 3.7. For f, g meromorphic functions, we have

div(fg) = div(f) + div(g).
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Proof. This is a direct consequence of the formula ordP (fg) = ordP (f) +
ordP (g) of Proposition 3.2.

Proposition 3.8. The set of principal divisors forms a subgroup of the di-
visor group.

Proof. This is clear from Proposition 3.2 since fg is a meromorphic function
that satisfies

D1 +D2 =
∑
P∈X

ordP (fg)P, (3.20)

while the inverse of an element, say D1, is just
∑

P∈X(ordPf
−1)P =∑

P∈X −(ordPf)P .

Next we disclose a relevant property valid for rational functions.

Proposition 3.9. The degree of every principal divisor is zero.

Proof. Consider the rational function f = g/h. Set G/H a projective version;
here G and H are polynomials of the same degree in projective space. By
Bezout, as none of the polynomials can have common factors with the elliptic
curve, each one must intersect the elliptic curve an equal number of times, say
3m. As the divisor of f is div(f) = div(G) − div(H), we get deg(div(f)) =
3m− 3m = 0.

Divisors provide another interpretation of intersection of curves. For ex-
ample take two curves C1 and C2 with no common factor represented by
polynomials in two variables. Take f for the curve C2. We analize the divi-
sors associated to f on the first curve. Passing to the projective plane, by
definition we have

div(f) =
∑
P∈C1

(nP )P. (3.21)

But the zeroes of f are the points at which both curves intersect each other,
and by Bezout, we know this number. Hence we can write alternatively

div(f) =
∑

P∈C1∩C2

I(P ) · P −
∑

Q∈T∩C2

nQQ, (3.22)

where I is the index function as in the Bezout theorem and T is the set of
poles of f , each element counted with multiplicity nQ.

Our next concern is divisor classification. For this we establish a crite-
rion to determine equivalence among divisors. Two divisors D1 and D2 are
equivalent, and we write D1 ∼ D2, if D1 −D2 is principal.
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Example 3.10. Take the points P , Q, P +Q and O on a fixed elliptic curve.
Define the divisors D1 = P + Q and D2 = (P + Q) + O and set L1 to be
the projective line that passes through P and Q, and L2 the one that passes
through P +Q and O. By the imposed group structure, L1 and L2 intersect
the elliptic curve at a common point R = P ∗ Q. Let L1 and L2 be the
equations of the corresponding projectives lines. Then div(L1) = P +Q+R
and div(L2) = (P + Q) + R + O. We define the rational function f on the
elliptic curve as L1/L2. Thus we obtain

div(f) = div(L1)− div(L2),

= P +Q− (P +Q)−O,
= D1 −D2.

We conclude that D1 = P +Q and D2 = (P +Q) +O are equivalent.

3.2 Canonical divisors

We present 1-forms on curves. These elements enrich the structure by adding
differentiable features to curves. We will focus on extending the concepts
defined for divisors to the vector space of 1-forms.

We denote K̄(C) the field of rational functions on the elliptic curve C with
coefficients in K̄, an algebraic closure of K.

We call uniformizer of C at P a generator of the maximal ideal at P of
the coordinate ring.

Fix an elliptic curve C and consider the K̄(C)-vector space generated by
the forms df , where f ∈ K̄(C). The following basic relations are satisfied:

1. d(f + g) = df + dg, for all f, g ∈ K̄(C),

2. d(fg) = fdg + gdf , for all f, g ∈ K̄(C),

3. dα = 0, for all α ∈ K̄.

We call this vector space the space of differential forms on C and we
denote it by ΩC.

We require two results in order to continue (the second one without proof
since its justification involves a broader view of algebraic geometry and is
outside the scope of these notes. For more details we refer to [7, page 31]).

Proposition 3.11. The space ΩC is a K̄(C)-vector space of dimension 1.

27



Proof. In some sense it is clear that the space ΩC lies inside the two dimen-
sional space spaned by dx and dy because in affine space we have dz = 0.
We make this precise first.

Notice, as in the previous sections, that the rational function x only makes
sense as X/Z, while y is really a shorthand for Y/Z. For them we have

dx =
dX

Z
− XdZ

Z2
, dy =

dY

Z
− Y dZ

Z2
.

Because the curve interects the line at infinity at a single point, it is triv-
ial to see that all rational functions on C can be expressed as a quotient
F (X/Z, Y/Z)/G(X/Z, Y/Z) for suitable chosen polynomials F and G. A
straight-forward calculation yields then

d

(
F

G

)
=
Fx

G
dx+

Fy

G
dy − F

G2
(Gxdx+Gydy),

which clearly belongs to the K(C)-span of dx and dy as F (X
Z
, Y
Z

), G(X
Z
, Y
Z

),
Fx(X

Z
, Y
Z

) and Gx(X
Z
, Y
Z

) are rational functions on C. Thus dx and dy are
enough to generate ΩC.

For F (x, y) = 0, the equation of the curve, we get dF = ∂F
∂x
dx + ∂F

∂y
dy.

However we have dF = 0, and thus also dy = ∂F
∂x
/∂F

∂y
dx, which is well defined

because the curve is nonsingular. Therefore we need dx alone in order to
generate ΩC.

Proposition 3.12. Fix the curve C together with a point P in it. For a
uniformizer t ∈ K̄(C) at P , we have the following.

• There exists a unique function g ∈ K̄(C) for each differential form
ω ∈ ΩC (which depends on ω and the uniformizer t) that satisfies

ω = gdt. (3.23)

This function g will be symbolized by ω/dt.

• Take ω ∈ ΩC, with ω 6= 0. The quantity

ordP (ω/dt) (3.24)

depends only on ω and P in the sense that it is independent of the
uniformizer t. We call this value the order of ω at P and denote it
by ordP (ω).
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• For f ∈ K̄(C) and P such that x(P ) = 0 we have

ordP (fdx) = ordP (f) + ordP (x)− 1. (3.25)

�

Consider a differential form ω ∈ ΩC. Define its associated divisor as

div(ω) =
∑
P∈C

ordP (ω)(P ). (3.26)

From Proposition 3.11, as ΩC is a one dimensional vector space in K̄(C), any
given two forms ω1 and ω2 are related by ω2 = fω1, for a certain f ∈ K̄(C).
In such case we have

div(ω2) = div(f) + div(ω1). (3.27)

We call canonical divisor class the class on ΩC of the divisors of the differ-
ential forms modulo principal divisors and its elements canonical divisors.

Example 3.13. The differential form dx/y on an elliptic curve has associated
the canonical divisor div(dx/y).

From Formula 3.27 we conclude that all canonical divisors have the same
degree.

3.3 Riemann-Roch

We will face one of the main theorems in algebraic geometry, the Riemann-
Roch theorem. In order to understand its details we need a profound knowl-
edge of the topic, which is out of our scope. The interested reader can take
a look at [9] for a deeper insight.

Take a divisor D, and define the Riemann-Roch space of D as the set

L(D) = {g ∈ K̄(C)∗ | div(g) +D ≥ 0} ∪ {0}, (3.28)

where K̄(C)∗ is the set of non-zero elements of the function field of rational
functions on C over K̄, an algebraic closure of K.

Proposition 3.14. For a divisor D, the set L(D) is a K̄(C)-vector space.
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Proof. Let D =
∑
nPP . For rational functions f, g ∈ L(D) and λ a non

zero constant, by Proposition 3.7, we have div(λf) = div(λ) + div(f). But
as we have div(λ) = 0, we get then div(λf) = div(f); hence λf ∈ L(D). By
Proposition 3.1 we know that ordP (f + g) ≥ min{ordP (f), ordP (g)} holds,
and by hypothesis we have min{ordP (f), ordP (g)}+nP ≥ 0. Putting together
these two facts we achieve ordP (f + g) + nP ≥ 0, and this boils down to
f + g ∈ L(D).

Proposition 3.15. For D1 and D2 divisors subject to D1 ∼ D2, the spaces
L(D1) and L(D2) are isomorphic.

Proof. By hypothesis we have D1 = div(f) + D2 with f a rational func-
tion on the curve. For g ∈ L(D1), this is, with div(g) + D1 ≥ 0, we get
div(gf) +D2 ≥ 0, and so we have gf ∈ L(D2). In the same way we show
that g ∈ L(D2) implies g/f ∈ L(D1). In this way the isomorphism is clearly
established.

Notice that the last proposition delivers the following result in particular:
canonical divisors have assigned isomorphic Riemann-Roch spaces.

Proposition 3.16. If D is a divisor subject to deg(D) < 0, we have
L(D) = {0} for its Riemann-Roch space.

Proof. Suppose we have deg(D) ≤ 0 and that there exists a non null rational
function f ∈ L(D). By definition of the Riemann-Roch space for the divisor
D, we have div(f) +D ≥ 0. Then, applying the homomorphism deg, we get
deg(div(f)) + deg(D) = deg(D) < 0. This is a contradiction to f ∈ L(D);
hence the result.

Set l(D) for the dimension of L(D).
Notice that if KC is a canonical divisor L(KC) might depend on our choice.

However, Proposition 3.15 makes it clear that the number l(KC) is indeed
canonical.

To keep things in perspective, we state the following theorem without
proof (compare Zuñiga [9]).

Theorem 3.17. (Riemann-Roch theorem) Let C be a smooth curve and
KC a canonical divisor on C. Then there is an integer g ≥ 0, which we call
the genus of C, that satisfies the relation

l(D)− l(KC −D) = deg(D)− g + 1

for all divisors D. �
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Corollary 3.18. For a fixed curve C we have

1. l(KC) = g,

2. degKC = 2g − 2,

3. if deg(D) > 2g − 2, then l(D) = deg(D)− g + 1.

Proof. 1. The result follows by taking D = 0, as L(0) is the space of con-
stants.

2. Taking D = KC in the Riemann-Roch theorem, we have l(KC) − 1 =
deg(KC)− g + 1. By the previous item we get then degKC = 2g − 2.

3. If deg(D) > 2g − 2, then deg(−D) + 2g − 2 < 0. By previous item we
get deg(KC − D) < 0. By Proposition 3.16 we obtain then l(KC − D) = 0.
Using the Riemann-Roch we achieve the desired result.

For the following statement we rely in most properties of the theory of
divisors developed so far.

Proposition 3.19. The genus of the elliptic curve

C : y2 = (x− x1)(x− x2)(x− x3) (3.29)

is 1.

Proof. Key here is to show that the canonical divisor div(dx/y) is equal to
0 and then apply the Riemann-Roch theorem to it.

By definition we have div(dx/y) = div(dx)−div(y). In this way we focus
on calculating simpler divisors.

Taking the divisor operator on both sides of the equation of the elliptic
curve we get

div(y2) = div(x− x1) + div(x− x2) + div(x− x3). (3.30)

As we have div(y2) = 2div(y), by Example 3.4 this reduces to

2div(y) = 2P1 + 2P2 + 2P3 − 6O; (3.31)

hence we get
div(y) = P1 + P2 + P3 − 3O. (3.32)

Now, for dx notice the equality dx = d(x−x1). So from Proposition 3.12,
third part, and Example 3.4 we get

ordP1d(x− x1) = ordP1(1) + ordP1(x− x1)− 1

= 0 + 2− 1

= 1.
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Similarly for ordP2d(x − x2) and ordP3d(x − x3). Also, since we have
dx = −x2d(1/x), from Example 3.6 we obtain

ordO(−x2d(1/x)) = ordO(−x2) + ordO(1/x)− 1,

= 2ordO(x) + ordO(1/x)− 1,

= 2ordO(x)− ordO(x)− 1,

= ordO(x)− 1,

= −2− 1

= −3.

Thus we get
div(dx) = P1 + P2 + P3 − 3O, (3.33)

which conduces to div(dx/y) = 0, as claimed.
Then the class of the canonical divisors is trivial and we can take KC = 0

as a representative. Finally by Corolary 3.18, part one, we obtain g = 1.

As elliptic curves have genus 1, the following corollary follows from the
Riemann-Roch theorem.

Corollary 3.20. In an elliptic curve the condition deg(D) > 0 implies

l(D) = deg(D). (3.34)

Proof. We obtain the result directly by item 3 of Corollary 3.18 because of
g = l(KC) = l(0) = 1.

3.4 The Picard group

Quotients are important in algebra and from this perspective we define a tool
that measures the extend of the failure of the set of principal divisors to be
the whole set of divisors. The Picard group of the curve C, denoted Pic(C),
is the quotient of the group of divisors on C modulo the subgroup of principal
divisors. We denote Div0(C) the set of divisors with degree zero and Pic0(C)
the quotient between Div0(C) and the group of principal divisors.

Proposition 3.21. Let P and Q be two points on the elliptic curve C. Then
P ∼ Q if and only if P = Q.

Proof. If we suppose P ∼ Q, then we have div(f) = P − Q for a certain
f ∈ K̄(C). We can write div(f) + Q = P > O, so by definition we get
f ∈ L(Q). By Corollary 3.20 we have l(Q) = degQ = 1. As the vector space
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of constant functions is included in L(Q) and is one dimensional, both are
equal. Therefore f is constant and we get div(f) = 0, so P = Q.

The reciprocal is trivial.

Proposition 3.22. Let D be a degree 0 divisor. There exists a point P on
the elliptic curve which satisfies

D ∼ P −O. (3.35)

Furthermore, this point is unique.

Proof. By hypothesis we have deg(D+O) = deg(D) + deg(O) = 1. Then by
Corollary 3.20 we get l(D + O) = 1. In this way L(D + O) is generated by
one element. Take f non trivial in this vector space. Then, by definition we
get div(f) ≥ −D−O, which implies div(f) = −D−O + P for certain P as
we have deg(div(f)) = 0. By definition we obtain D ∼ P −O.

For uniqueness, let P̃ be a point with P̃ ∼ D + O so that P̃ ∼ P . Then
Proposition 3.21 implies P̃ = P .

Now we define a map σ : Div0(C) → C which sends D to P according
to the last proposition. Here Div0(C) is the set of zero degree divisors on
C. Take an arbitrary point P ∈ C. Trivially we have P − O ∼ P − O, and
therefore σ(P −O) = P . Hence σ is surjective.

Proposition 3.23. Take D1, D2 ∈ Div0(C). We have σ(D1) = σ(D2) if and
only if D1 ∼ D2.

Proof. Let P = σ(D1) and Q = σ(D2) with D1, D2 ∈ Div0(C). We have then
D1 ∼ P −O and D2 ∼ Q−O, so by definition we have div(f1) = P −O−D1

and div(f2) = Q − O − D2 for some rational functions f1, f2 on C. These
expressions together mean div(f1/f2) = div(f1)−div(f2) = P−Q−(D1−D2);
hence we get P − Q ∼ D1 − D2. The rest is easy. If σ(D1) = σ(D2), we
have P = Q and therefore D1−D2 ∼ 0. And reciprocally, if D1 ∼ D2 we get
P −Q ∼ O, and Proposition 3.21 yields P = Q.

The previous proposition says in simple terms that σ induces a bijection
σ̃ : Pic0(C)→ C with an inverse k : C → Pic0(C) that maps P to the divisor
class of P −O.

Theorem 3.24. There exists a homomorphism between the elliptic curve C
and Pic0(C).
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Proof. Fix P,Q ∈ C and call L1 the line through them. This line intersects C
at a third point R. Let L2 be the line through R and O. By Equation (1.13)
Z = 0 intersects C with multiplicity three. Then div(L1/Z) = P+Q+R−3O
and div(L2/Z) = R+ (P +Q) +O−3O = R+ (P +Q)−2O hold. Therefore
we get

div(L1/L2) =div(L1/Z)− div(L2/Z)

=P +Q+R− 3O −R− (P +Q) + 2O

=P +Q− (P +R)−O.

As L1/L2 is a rational function we have div(L1/L2) ∼ 0. Thus we obtain
P −O+Q−O− (P +R) +O = 0. Finally from the definition of k, this last
relation is equivalent to k(P ) + k(Q) = k(P +Q).

As a consequence of this theorem the associativity of the operation on
the elliptic curve holds. To see this take points P , Q and R on the elliptic
curve and do as follows:

k((P +Q) +R) = k(P +Q) + k(R),

= k(P ) + k(Q) + k(R),

= k(P ) + k(Q+R)

= k(P + (Q+R)).

Taking inverses we obtain

(P +Q) +R = P + (Q+R),

as we aimed to prove.
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