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Kurzfassung 

Quantitative Sono-Elastographie ist eine neue Technologie für die Ultraschall Bildge- 

bung, die Radiologen maligne Tumoren ohne Risiko der strahlungsinduzierten Krebs 

(d.h. Mammographie) zu erfassen können. Aufgrund gefunden Rechenkomplexität 

in der aktuellen Algorithmen, Implementierung von Echtzeit-Anwendungen, die Prü- 

fungsverfahren profitieren wurde jedoch noch nicht berichtet. Zusätzlich, aktuelle 

Schätzer für die Darstellung eine Elastizität Bilder vorhanden Artefakte der hohen 

Schätzung Varianz, die die Techniker in die Gegenwart steifer Massen irreführen kön- 

nten und zwar, falsch-positive Diagnose zu erzeugen. 

In dieser Arbeit wird eine GPU-basierte Elastographie-System entwickelt und an 

einem Forschungsultraschallgeräten implementiert. Quantitative Elastizität in Echtzeit 

bei 2 FPS mit einer Verbesserung Rechenzeitfaktor aus 26 wird gezeigt. Validierung der 

Systemgenauigkeit Anzeige wurde, auf Gelatinebasis Gewebe Phantome durchgeführt., 

waren niedrige Vorspannung der Elastizitätswerte berichtet wurde (4,7 %) bei geringe 

Anregungsfrequenzen nachahmt. Ausserdem wird eine neue Elastizität Schätzer auf 

quantitative Sono-Elastographie basiert eingeführt. Ein lineares Problem wurde ent- 

lang der seitlichen Abmessung modelliert und eine Regularisierung Methode wurde 

implementieren. Elastizität Bilder mit niedriger Vorspannung wurde darstellen (1,48 

%) sowie seine Leistung in einer Brust kalibrierte Phantom mit verbesserter CNR (47,3 

dB) im Vergleich mit anderen Schätzer ausgewertet sowie die Verringerung Seiten Arte- 

fakte bereits erwähnt in der Literatur (PD: 22,7 dB, 1DH 28,7 dB) gefunden. Diese 

zwei Beitrag profitieren, die Umsetzung und Entwicklung weiterer Elastographie Tech- 

niken, die eine verbesserte Qualität der Elastizität Bilder liefern könnten und somit 

eine verbesserte Genauigkeit der Diagnose. 



 

 

 

 

 

 

 
 

Abstract 

Quantitative sonoelastography is an alternative technology for ultrasound imaging 

that helps radiologist to diagnose malignant tumors with no risk of radiation-induced 

cancer (i.e. mammography). However, due to the high computational complexity 

found in the current algorithms, implementation of real-time systems that could ben- 

efit examination procedures has not been yet reported. Additionally, elasticity maps 

depicted from current estimators feature artifacts of high estimation variance that 

could mislead the technician into the presence of stiffer masses, generating false posi- 

tive diagnosis. 

In this thesis, a GPU-based elastography system was designed and implemented on 

a research ultrasound equipment, displaying quantitative elasticity in real-time at 2 

FPS with an improvement computational time factor of 26. Validation of the system 

accuracy was conducted on gelatin-based tissue mimicking phantoms, where low bias 

of elasticity values were reported (4.7%) at low excitation frequencies. Additionally, 

a new elasticity estimator based on quantitative sonoelastography was developed. A 

linear problem was modeled from the acquired sonolastography data along the lateral 

dimension and a regularization method was implemented. The resulting elasticity 

images presented low bias (1.48%), enhanced CNR and reduced lateral artifacts when 

evaluating the algorithm’s performance in a breast calibrated phantom and comparing 

it with other estimators found in the literature. These two contribution benefit the 

implementation and development of further elastography techniques that could provide 

enhanced quality of elasticity images and thus, improved accuracy of diagnosis. 
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1 Introduction 1 

1 Introduction 

1.1 Motivation 

In this chapter, a brief description of the current situation of breast cancer in Peru 

is exposed. Likewise, the technological evolution of the methods and state of art 

equipment used to detect and diagnose tumors worldwide are presented. 

1.1.1 Cancer in Perú 

Breast cancer is one of the most common malignancies in Peru. In recent decades, the 

incidence has increased considerably, reaching similar frequency than prostate cancer 

cases as well as surpassing stomach and lung cases. In 2014, the Ministry of Health 

conducted a study of cancer registration during 2004-2005 in the capital, Lima, where 

33.8% of tumors in 16,319 women with cancer were located in the breast. Furthermore, 

the mortality rate found for breast cancer was 10.7 per 100,000 females, higher than the 

cervical cancer (7.9 per 100,000 females) as well as stomach cancer (10.1 per 100,000 

females) [dEN14]. Globally, the incidence and mortality rate for 2010 was 39% and 

12.5% respectively, while in Latin America was 39.7% and 12.4% [FSB+08]. 

In Peru, the late diagnosis of this disease is the leading cause of death in breast can- 

cer patients. According to the Instituto Nacional de Enfermedades Neoplásicas, 90% 

of patients are hospitalized with a tumor above stage I, reaching a considerable size 

and demonstrating the need for early detection to treat it on time [Pro98]. Among 

the most used diagnostic tools, mammography is an imaging technique where the 

mammary structure is exposed to X-ray dose, obtaining a craniocaudal and mediolat- 

eral oblique image of it which aids the radiologist to localize abnormalities or tumors 

therein [Gue11]. This procedure has been widely used worldwide, presenting an 96% 

accuracy of detecting cancerous lesions. Hence, mammography examinations are usu- 

ally included in the regular checkups for women of middle and advanced age [GH12]. 

Factors contributing to the cumulative risk of developing breast cancer (3.69% up to 

74 years) typically involve obesity, late menopause, family history and early menarche 
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[dEN14]. However, radiation-induced mammography, despite being regulated at low 

exposure levels, increase the possibility of generating breast cancer [YM12]. Moreover, 

mammogram tests induce as well discomfort and pain to the patient due to the pressure 

exerted on the breast structure, being more severe in smaller busts. While these 

tests focus on the detection and diagnosis of microcalcifications that might develop 

into malignant lesions, breast density could severely affects the visualization of such 

structures. Therefore, an alternative method less susceptible to the change of breast 

density is required for such cases. 
 

Figure 1.1: The most frequent cancer sites. Extracted from [dEN14] 

 

1.1.2 Ultrasound and Elastography for tumor detection 

In the field of medical imaging, mammography correspond to a modality of x-ray ex- 

amination oriented to breast tissue. Over the past few decades, due to the emergence 

of new technologies of stimulate the tissue, the research of new methods to represent 
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physical properties of an examined mass has increased considerably [OAG+99]. Cur- 

rently, computed tomography (CT) and magnetic resonance imaging (MRI) provide 

improved spatial resolution and tissue differentiation but require high implementation 

cost as well as long examination time (i.e. 20 min) in the case of MRI. On the other 

hand, Ultrasound Imaging (US) stand out for being a remarkably lower cost technol- 

ogy that induces the patient with non-ionizing radiation, contrary to mammography. 

However, statistics from recent years show that the effectiveness of US to detect small 

(less than 0.5 cm) lesions in the breast is still lower than those found on mammography 

or MRI exams [GH12] [GSD+04]. 

Likewise, a modality labeled as elastography has been developed for MRI, optical 

tomography and US systems in order to estimate the elasticity of a body when sub- 

jected to excitation. Since two decades, several quantitative and qualitative elasticity 

techniques have been formulated and developed [PTG05]. In the case of US, these 

techniques consist on exciting the tissue with a certain mechanical force and analyze 

the tissue response over a period of time with ultrasonic pulse-echo data in order to 

depict an elasticity map of the examined region [CORP13]. Among these techniques, 

quantitative approaches help the radiologist to establish an even more accurate diagno- 

sis since they do not depend heavily on the interpretation of the results or specialist’s 

expertise but only on the numerical values of the properties provided in the elasticity 

image [CAW+09]. 

Elasticity imaging methods based on US often require several acquisition of radio- 

frequency data to assess the behavior of the tissue due to mechanical vibrations. While 

current US systems features models of quantitative and qualitative elasticity, new elas- 

ticity algorithms are commonly structured with numerous filtering and reconstruction 

stages. Thus, the long computational time for generating a single elasticity image 

greatly affects the implementation of suchs techniques on commercial US equipment. 

To overcome this problem, ultrafast acquisition procedures such as synthetic aperture 

imaging [YTY11] as well computation enhancement with Graphics Processor Units 

(GPUs) have been proposed and implemented on US-based elastography methods 

[TF14]. 

Over the past five years, in the Laboratory of Medical Imaging of Pontificia Univeris- 

dad Católica del Perú (PUCP), the Crawling-Wave Sonoelastography (CWS) technique 

has been used to depict quantitative elasticity images of an examined tissue. However, 

to date it has not been reported the implementation of parallel processing algorithm 

of this technique with the aid of GPUs, allowing real-time visualization of elasticity 

images. This is one of the aspects that serves as the motivation of the current master 
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Figure 1.2: Example of elasticity image. (Left) Strain elasticity image of breast tissue. 
(Right) B-mode image of the same region. Extrated from [GSB11] 

 
thesis. 

On the other hand, in order to measure local shear wave speed (SWS) and recon- 

struct an elasticity image for CWS, a wide number of estimators have been reported 

in the literature. However, the presence of artifacts at the boundary regions as well as 

high estimation variance are still been observed in most of the reconstructed elasticity 

images. These artifacts might mislead the technician into the presence of stiffer masses, 

which compromise the accuracy of diagnosis. Therefore, a more robust algorithm for 

SWS estimation is constantly been researched, serving likewise as motivation of this 

study. 
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1.2 Objetives 

Main 

The main objective of the current thesis is the development and implementation of a 

quantitative imaging technique for generating elasticity images based on CWS in real 

time. 

 

Specific 

• Design a software featuring a Graphical User Interface (GUI) where elasticity 

estimates are displayed in real time. 

• Use parallel processing capabilities of a GPU to improve performance of the 

algorithm and increase the number of frames per second. 

• Implement the technique in an ultrasound research equipment and validate the 

results with gelatin-based elasticity phantoms. 

• Develop a new SWS estimator and test its feasibility on simulated tissue phan- 

toms and implement an optimization method for parameter determination of the 

new estimator 

• Evaluate of both contributions (GUI and new SWS estimator) in gelatin-based 

phantoms generated in the lab. 

• Evaluate of both contributions in calibrated elasticity phantom of homogeneous 

and inhomogeneous media. 
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2 Ultrasound Elastography 

 

2.1 Introduction to Elastography 

Elastography approaches are based on the elasticity equations derived from Hooke’s 

law for a deformable body in order to measure the stiffness of a certain material. 

From the continuum mechanics theory, the conservation of momentum is presented on 

a certain volume of density ρ considering the surface forces T and body forces b as 

follows: 

d ∫∫∫ 

 
ρu̇dV  = 

∫∫
 T (n)dS + 

∫∫∫
 
 
ρbdV, (2.1) 

 

   

where u is the displacement vector and T (n) = σ · n the traction vector expressed with 

the normal unit n and Cauchy stress tensor σ. Since body forces b slightly influence 

the estimation of stiffness, it can be removed from Eqn. 2.1. Then, the differential 

form of Eqn. 2.1 using the divergence theorem for the surface forces term is: 

 

ρü = ∇ · σ (2.2) 

Following the constitutive equations of linear elasticity and considering an isotropic 

homogeneous media, the Cauchy stress tensor σ is defined as the inner product of the 

infinitesimal strain tensor ε and the fourth-order stiffness tensor C : 

σij = Cijklεij (2.3) 

εij = 
2 

(ui,j + uj,i) (2.4) 

Cijkl = Kδijδkl + µ(δikδjl + δilδjk − 
3 
δijδkl), (2.5) 

where δij is the Kroneker delta and K and µ are the bulk and shear modulus, re- 

spectively. Then, combining the last three equation results in a simplified version (i.e. 

Hook’s Law) presented as follows: 

V S V 

dt 
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c2 
. 

E 

3 

≈ 

. 

 

 

σij = λεkkδij + 2µεij, (2.6) 

where λ is the first Lamé parameter. By replacing Eqn.2.6 in Eqn.2.1, a generalized 

equation for the dynamic response of a medium under any type of excitation force is 

derived: 
 

ρü = (λ + µ)∇(∇ · u) + µ∇2u. (2.7) 

Most of the elastography approaches focuses on the measurement of shear waves that 

propagate within a homogeneous material. In such cases, movement of shear waves 

are perpendicular to the displacement vector and thus, no deformation of volume is 

present, that is ∇ · u = 0. Therefore, the dynamic response in terms of shear wave 

speed c2 is: 

 1 
ü = ∇2u (2.8) 
 

 
  

c = 
µ 

. (2.9) 
s 

ρ
 

 

Finally, the shear wave modulus is related to the Young’s modulus E and Poisson’s 

ratio v, where this last parameter is typically found between 0.49 and 0.5 on biological 

tissues. Assuming v = 0.5, an approximation of the SWS is established for stiffness 

determination of a certain material: 

 
 

µ = 
2(1 + v) 

=
 

E 
(2.10) 

 
  

E 
cs 

3ρ 
(2.11) 

This Young modulus E, like the Poisson’s ratio v and viscosity, is one of the biome- 

chanical properties that is affected due to pathologies in an examinad tissue, which 

provides useful clinical information such as the mass density and stiffness [Duc90]. 

Among these changes of properties, increased stiffness are commonly related to ab- 

normalities in soft tissue, leading to benign tumors or cancer. For those pathologies, 

conventional diagnosis procedures often appeal to palpation routines where technicians 

qualitatively evaluate the relative stiffness of a tissue region from its vicinity [GPAL95]. 

By applying a controlled pressure in the overlaying tissue, physicians have widely used 

this technique for centuries as a reliable tool for tumors and cancer detection. In 

s 
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particular cases, however, this might be challenging task due to the lesions disperse 

morphology, small size and/or deep location, leading to assessment errors [GFI03]. In 

addition, the diagnosis accuracy is directly correlated with the physician’s background 

expertise which could underestimate or overestimate malignant structures. 

The goal of elastography is, therefore, to provide accurate Young’s modulus infor- 

mation in an elasticity map, overcoming the limitations described above. Likewise, 

imaging new biomechanical properties combined with existing modalities in several 

medical imaging systems, such as MRI, CT and US, would be beneficial for diagnosis 

improvement and reliability. 

 

2.2 Methods of Ultrasound Elastography 

During the past two decades, several qualitative and quantitative methods of tissue 

elasticity techniques have been formulated and developed [PTG05]. For instance, qual- 

itative approaches such as strain elastography produce a relative elasticity image where 

accuracy of the estimation is strongly dependent on an excitation force controlled by 

the radiologist [CORP13]. In contrast, as mentioned in Chapter 1, quantitative elastic- 

ity imaging techniques benefits diagnosis accuracy by overcoming estimation errors pro- 

duced by manual excitation or mislead interpretation of elasticity estimates[CAW+09]. 

Table 2.1 present the current quantitative techniques developed for ultrasound elas- 

tography. 

Most quantitative techniques estimate the Young’s modulus in relation to the SWS 

(typically between 1 m/s to 10 m/s) which propagates transversely to the direction of 

the force that is applied to the tissue. For instance, Shear Wave Elasticity Imaging 

(SWEI) induces acoustic radiation forces generated by a focused beam in the ultrasonic 

transducer as the vibration source and thereby the velocity of shear waves is estimated 

[RPR+12]. Supersonic Shear Imaging (SSI) techniques increase the speed of the su- 

personic wave excitation level in order to increase the propagation of shear wave and 

thereby improve the spatial resolution along the axial axis [BTF04]. Other methods, 

such as Transient Elastography (TE) measure the tissue response after applying an 

impulsive force, avoiding bias errors which are typically found in phase velocity esti- 

mation in external vibrations approaches [CWF99]. Likewise, bias are diminished in 

Single Tracking Location Acoustic Radiation Force Imaging (STL-ARFI) due to shear 

wave tracking in a single location using normalized cross-correlation [EM13]. 

While the excitation sources mentioned above originate from the transducer, pro- 

longed exposure of high energy could develop into heating and cavitation in the ex- 
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Table 2.1: Main quantitative ultrasound-based elastography techniques developed in 

recent decades 

Technique 
Number of 

sources 
Excitation type 

Evaluated 

parameter 

Shear Wave Elastography 

(SWE) 

 

1-internal acoustic radiation force SWS 

Vibro-acustography (VA) 1-external acoustic radiation force ALRa
 

Transient Elastography 

(TE) 

Crawling Wave Sono- 

elastography (CWS) 

Supersonic Shear Imaging 

(SSI) 

1-external transient mechanical SWS 

2-external sinusoidal vibration SWS 

1-internal radiation force SWS 

Vibro-elastography (VE) 1-external multi-freq vibration LFb 

STL-ARFIc 1-internal acoustic radiation force SWS 
a Acoustic Local Response 
b Local Frequency 
c Single Tracking Location Acoustic Radiation Force Imaging 

 
amined area. In contrast, Vibro-acoustography [FG99], Vibro-elastography [TSR06] 

and Crawling Wave sono-elastography (CWS) [WTRP04] techniques use external vi- 

bration sources of relatively low amplitude (5um - 1 mm) and frequency (20 Hz - 500 

Hz). As stated in Chapter 1, research on CWS has been conducted in the Laboratory 

of Medical Imaging of the Pontifical Catholic University of Peru for the past five years. 

Following this framework, the CWS method is selected for quantitative elastography 

estimation as further contribution to the research group in the current thesis work. 

 

2.3 Crawling Wave Sono-elastography 

This technique, proposed by Wu et al., estimates the shear wave speed of a material 

by the analysis of a moving interference pattern generated from the opposition of 

two mechanical vibration sources. The main advantage of CWS is that the SWS  

can be scaled and controlled by the offset frequency between the sources, allowing its 

visualization on commercial US systems in the Color Doppler modality [WTRP04]. 

Studies of CWS feasibility and performance has been validated in several ex vivo 

experiments. For instance, Castaneda et al. [CAW+09] reported stiffness differentia- 
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tion between cancerous and normal tissue in prostate with 80% accuracy. Likewise, 

Hoyt et al. [HCP08] generated 3D reconstruction of porcine liver with consistent lesion 

boundaries. Additionally, CWS has proven appreciable differentiation of shear mod- 

ulus in relaxed and contracted human skeletal muscle, making it feasible for in vivo 

characterization [HCP07] 

 

2.3.1 Theory 

The conventional CWS setup applied in a tissue-mimicking phantom is showed in Fig. 

2.1. Two mechanical sources are placed on opposite lateral sides of an examined tissue. 

Sinusoidal vibrations with relative low amplitude (1um - 5 um) and frequency (150 

Hz - 500 Hz) are induced through medium, parallel to the transducer beam direction, 

with an offset frequency ∆f between the sources. 
 

Figure 2.1: Conventional CWS setup. (a) Ultrasonic transducer, (b) Tissue mimicking 
phantom and (c) Vibration sources. 

 

Considering a large distance between the sources and the Region of Interest (ROI), 

plane wave condition is achieved and the shear wave behavior for each source along 

the lateral axis x is described as follows: 

 
S (x, t) = e−αc( D +x)e−i(k(x+ D )−ωt) (2.12) 

r 2 2 

S (x, t) = e−αc( D −x)e−i((k+∆k)(x+ D )−(ω+∆ω)t) (2.13) 
l 2 2 

∆k = 
∆ω

 
cs 

(2.14) 

where D is the distance between the sources, αc the attenuation of the medium, k the 

wave number, ω the vibration frequency in rad/s and ∆ω the offset frequency between 
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the sources. With the superposition of both signals, the resulting envelope |u(x, t)|2 of 

the interference pattern is: 

 

|u(x, t)|2 = 2e−αcD[cos(2k + ∆k)x + ∆ωt] (2.15) 

 

 

 

 

 

 

 

Figure 2.2: Crawling waves pattern in an medium with homogeneous stiffness 

From Eqn.2.15 it can be derived that the spatial frequency of the crawling waves in 

homogeneous (∆k = 0) and static condition (t = 0) is 2k, which represents half of the 

wavelength λ between peaks. Then, the shear wave velocity is calculated as: 

cs = λf (2.16) 

 

Given that ∆ω is positive and orders of magnitude lower than ω, the interference 

pattern (see Fig.2.2) moves towards the source with lower frequency at an apparent 

speed vp proportional to the shear wave speed cs. Furthermore, this approximation is 

also achievable at local regions, allowing the generation of a SWS image (proportional 

to the Young Modulus E) in a medium with increased stiffness. 

∆ω 

vp ≈ 
2ω 

cs ω >> ∆ω (2.17) 
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∫ 

θj(x) 

 

2.3.2 Shear Wave Speed Estimators 

A large variety of SWS estimators have been developed for CWS. Initially, Wu et al. 

[WTRP06] applied a local frequency estimator (LFE) based on filter banks to assess 

CrW spatial frequency while Zhang et al. [ZCW+07] calculated it with an implemented 

semi-automatic interface based on pattern recognition, where the user inputs a desired 

ROI and the software calculates the spatial displacement of CrW. Similarly, other 

estimators focus on phase derivation measurements along slow time (i.e. a certain 

number of acquired frames) [LMRT10] and lateral dimension [HHM+12] to compute 

1-D velocity maps. The Phase Derivative (PD) estimator proposed by Hah et al. 

consists of assessing the wave number k(x) of Equ.2.15 by recovering the phase θ(x) 

pixel-wise through the slow time dimension: 
 

x 

θ(x) = 2 
0 

k(x)dx + constant (2.18) 

k(x) = 
2 

, ω0 = 2π(f + ∆f ) (2.19) 

cs(x) = 
2ω0Tx 

θj(x) = 
2(2π(f + ∆f ))Tx 

θj(x) 
(2.20) 

where Tx is the pitch or the lateral sampling of the transducer. Likewise, Hoyt et al. 

proposed a real-time 2-D and 1-D based on autocorrelation techniques [HCP08]. The 

1-D estimation takes into account the converted analytic signal û(x) from the Hilbert 

transform H(u(x)) along the lateral dimension in order to acquire the local phase θ 

over a windows N with a lag-1 autocorrelation function: 

1 
û(x) = H(u(x)) = u(x)(1 + 

N −nj−1 

j) (2.21) 
πx 

γ̂(nj, n) = 
n

Σ

=0 
û(n)∗û(n + nj), nj = 1 (2.22) 

Im[γ̂(1, x)] 
cs(x) = |2π(2f + ∆f )Tx/arctan( 

Re[γ̂(1, x)] 
)|, (2.23) 

where ∗ denotes the complexo conjugation operator. 

2.4 GPU Applications 

Due to the high demand of processing performance and visualization in the video game 

industry, the parallel computing potential is massively increasing in current processors, 
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both in PC and specialized equipment of the automation [XPKB09], spatial location 

and medical industry [SDS14]. These new parallel processing units (i.e. GPUs) feature 

thread execution with thousands of cores simultaneously, since the data to be processed 

is distributed to a large number of processors unlike the previous scheme where a single 

processor performed reconstruction of the entire image. 

Given that applications of new imaging modalities in ultrasound systems signifi- 

cantly benefit several clinical procedures and diagnosis, research on real-time elastog- 

raphy systems development has been widely studied and reported in the literature 

[ADP12][MTB+09]. Particularly, strain elastography as well as Acoustic Radiation 

Force Imaging (ARFI) have been successfully implemented and standardized on well- 

known ultrasound equipments [RBF+08][YDR11]. Similar to ARFI, algorithms of high 

computational complexity found in other approaches suchs as vibroelastography and 

CWS require fast computing architectures that can cope with the acquisition rate 

provided by the imaging equipment to allow the develpment of real-time applications. 

In the last ten years, the medical imaging has been enhanced with new methods of 

parallelism using GPUs, featuring thread execution with thousands of cores simulta- 

neously and thus, increasing the temporal resolution of the reconstructed images. For 

instance, multiple GPUs were programmed in the framework of Yiu et al. in order to 

beamform Plane Wave Compounding (PWC) and Synthetic Aperture Imaging (SAI) at 

an ultra-fast frame rate of 3000 fps [YTY11]. Likewise, they presented real-time opera- 

tional feasibility of Minimum Variance (MV) beamforming with a GPU-based imaging 

system [YY15]. Computing enhancement was also reported in other ultrasonic tech- 

niques such as Tridimensional Ultrasonic Computed Tomography (3D USCT), where 

Birk et al. developed a heterogeneous hardware conformed of ten FPGA and six GPU 

to accelerate the processing time by a factor of 7 [BKF+13]. Regarding elasticity 

imaging modalities, Idzenga et al. evaluated the performance of normalized cross cor- 

relation algorithms, widely used in strain elastography, implemented on GPUs and 

OpenMP (multiple CPU’s) and obtained an improvement factor that ranged from 132 

to 376 [IGV+14]. Furthermore, 3D remote reconstruction of strain elastography was 

reported in Chen et al. [CCH16] with the aid of graphics cards. Rosenzweig et al. 

used GPU’s to reduce the processing time Loupas’s auto-correlator, generating ARFI 

in real time [RPN11]. In similar techniques, Baghani et al. built a vibro-elastography 

"free-hand" system in real-time using commercial GPUs, reporting an improvement 

of 32 in computational time rate [BEW+12]. Finally, in CWS, Hoyt et al. recently 

presented a new method to generate images with reduced computational time while 

maintaining the image quality [HPR07]. However, to date it has not been reported the 
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implementation of parallel processing algorithm of this last technique, which is yet to 

be adapted in practice. 
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3 Methodology 

In this chapter, the complete methodology for the GUI implementation, SWS estimator 

and phantom generation for validation experiments is presented. 

 

3.1 Graphical User Interface for Real-Time 

Quantitative Elastography 

A quantitative elastography imaging system was implemented on a commercial US 

scanner using GPU resources in a C++ environment. The system was initially ori- 

ented to characterization of tissue elasticity in regions where normal or conventional 

excitation for crawling wave generation is feasible (such as breast or muscle tissue). 

 

3.1.1 Hardware Configuration 

The  interface  was  programmed  in  a  SonixTouch  research  US  system  (Ultrasonix§R 

S.A., British Columbia, Canada), which featured the typical imaging modalities used 

in clinical procedures: B-mode for acoustic impedance of tissue in real-time, Power 

Doppler for blood flow imaging, Pulsed Wave Doppler for cardiac cycle monitoring 

and M-Mode for structure movement over time. Likewise, a linear array transducer 

(L14-5/38) was connected to the US equipment, generating focused ultrasound beams 

and receiving the backscatter signal of the examined tissue, which are delivered to 

the US system and processed in order to depict an image. Hardware specifications of 

the SonixTouch and transducer are presented in Table 3.1 and Table 3.2. Then, in 

order to enhance the system processing speed of image reconstruction, a GTX 750M 

(NVIDIA, Santa Clara, California, USA) was installed and replaced for the default 

display adapter on the CPU, enabling parallel execution of a set of instructions (see 

specifications on Table 3.3). 
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Table 3.1: Hardware features of SonixTouch 

Parameter Value Units 

Processor clock 3.10 GHz 

Random Acces Memory 2.99 GB 

Number of cores 4 - 

Cache Memory 4 MB 

Screen resolution 1280 x 1024 pixels 

 
Table 3.2: Hardware features of trans- 

ducer L14-5/38 

 

 

 

 

 

 

 

Doppler Frequency  4 MHz 

Focal range 2 - 9  cm 

 

3.1.2 Software Design 

Currently, the SonixTouch features WindowsXP embedded operating system (32-bits). 

Therefore, most of the applications for GUI design are limited and require certain 

downgrade due to the compatibility. In this work, the following tools were used for 

the GUI programming. 

• Cmake 3.2.0: cross-platform, open-source build system that generates visual 

studio 2010 solutions. 

• Visual Studio 2010 Professional: robust application development tool for 

C-based (CUDA) and C++ programs compilation and debugging. 

• QT 4.8.6: application development tool that offers build-in libraries for graph- 

Parameter Value Units 

Frequency range 14 - 5 MHz 

Central frequency 7 MHz 

Number of elements 128 - 

Pitch 0.308 mm 

Geometric focus 16 mm 

Elevation Aperture 4 mm 

Physical Foot Print 4 x 39 mm 

Steered Angle 17.5 ◦ 

 



Tesis de Maestría Eduardo González 

3 Methodology 17 
 

 

 

Table 3.3: Hardware features of GTX 750M 

 

Parameter Value Units 

Processor clock 941 MHz 

Random Acces Memory 2048 MB 

Number of cores 384 - 

Memory Clock 1250 MHz 

Compute Capability 3.0 - 

Memory Bandwidth 80 GB/sec 

 
ical user interface. 

• SonixRP 6.0.7: software development kit that enables communication and 

control of the imaging parameters, elements and buffer of the ultrasound system. 

• CUDA 4.0: C programming model designed for graphical processing units. 

• Matlab 8.5.0.197613 (testing and validation): technical-computing environ- 

ment suitable for algorithm simulation, modeling and matrix operation. 

The layout of the GUI is presented in Fig. 3.1 as a Windows application form and 

the generalized main flowchart is showed in Fig. 3.2. Three main buttons controlled 

the imaging flow (see Fig. 3.1.A). The initialization button set up the firmware and 

license file in order to open communications with the US system as well as initialize 

classes and variables of the main function. Once the initialization is complete, a set 

of probes currently installed will be displayed at the left side (see Fig. 3.1.B). By 

selecting the probe, the default preset configuration is loaded and the thread instance 

for US control (drived by the SDK Porta) is started. The start button initiates a  

loop sequence of color radio frequency (CRF) data acquisition. Then, kernel functions 

defined in the GPU are called in order to process each step of the crawling wave 

sonoelastography algorithm using the phase derivative (PD) estimator. The resulting 

SWS image is depicted in the center of the GUI (see Fig. 3.1.C) where the user is able 

to establish the ROI around the imaging zone. Since memory allocation is executed 

at the initalization of the GUI for efficiency purposes, modification of US parameters 

that might change the buffer size is allowed only when the system is not imaging or 

capturing data; thus, it is necessary to stop the imaging first. Additionally, the idle 

state offers storage options for each of the processing stages of CWS (described in the 
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following subsections), saving the data in binary files which can be later analyzed in 

the MATLAB environment. 
 

Figure 3.1: GUI for quantitative ultrasound elastography. A: Initialization, Start 
and Stop button. B: Probe selection and default preset configuration. 
C:Display of elasticity images in duplex mode with B-Mode acquisitions. 
D: Control parameters. 
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Figure 3.2: Main flowchart of the quantitative elastography GUI 

 
3.1.3 In-phase Quadrature process 

A CRF frame is conformed from a set of scan lines, each of them recorded several 

times in an ensemble package over a short period of time for tracking purposes. This 

CRF frame is acquired from the Sonixtouch and stored in a host computer buffer with 

a M x N format, where M  represent the number of axial samples acquired and N 

is the number of scan lines multiplied times the ensemble package. The first stage 

consist on converting the radio-frequency signals to complex signals (i.e. In-phase 

Quadrature or IQ data) using a Hilbert transform. Due to the limitations on the 

maximum number of threads per blocks, the data is distributed in N Blocks of M 

threads each (see Fig.  3.3) for faster computation.  The reason behind this is that  

in IQ processing, lines are independent from each other as well multiple acquisition 

of each (ensemble), so they can be put in separate blocks, otherwise synchronization 

would be more resource-consuming. Moreover, a low pass filter used at the end of the 

process requires synchronization between each sampling along a single line. Hence, all 

samples of a single line should be loaded in threads of the same block. 
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Figure 3.3: In-phase Quadrature process: GPU distribution 

 
The IQ processing in the GPU is presented in Fig. 3.4. Inside each thread the 

signal is down-mixed into a complex signal, which is achieved by multiplying it with 

two sinusoidal signals phased 90◦ between each other: −sin(2πfdtn) and cos(2πfdtn), 

where fdown is the down-mixing frequency, set equally to the transmit color frequency 

(i.e 6.6 MHz), and tn is the time of flight consumed by the signal to reach the scatter 

n, which is calculated from the distance of the scatter to the transducer (r(n)) and 

speed of sound in the medium (c = 1540 m/s): tn = 2r(n)/c. These parameters are 

constantly being refreshed by the ultrasound system in every acquired CRF frame. 

Then, a low pass filter (LPF) is applied using zero-phase filtering on both direction 

in order to remove the negative spectrum and noise outside the bandwidth. The 

LPF coefficients (b0, b1, b2) are obtained from the design of a 2nd order FIR filter 

using Hamming windows with cut-off frequency set to 60% of the signal bandwidth. 

However, since the LPF is applied along a single CRF line, all samples must have been 

already converted to complex signal. To ensure this assumption, a synchronization 

step is added before the LPF filter. 
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Figure 3.4: In-phase Quadrature process: Flow diagram 
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3.1.4 Spectral Doppler variance estimator 

In order to visualize the interference patterns and generate a sono-elasticity video, 

the spectral variance spectrum (σ2) in an ensemble package of size P is calculated for 

every pixel of each acquired frame. Since the operation is conducted inside an ensemble 

package and independently through pixels, each ensemble vector of a pixel smn is send 

to a block in the GPU architecture, running M x N blocks, where M and N are the 

number of CRF samples and lines (ensemble excluded), respectively. 
 

IQi (CPU) Sono process (GPU) 

 
 

Figure 3.5: Sonoelastography process: GPU distribution 

 
Here, the spectral moment estimator proposed by Miller et al. [MR72] is computed 

at the pulse repetition period (PRP) of the analytic IQ data, which is inputed as a 

complex s(m, n) matrix. Prior to the calculation, a wall filter (wf = [0.525, −0.475]) 

is applied to reduce the DC level. The algorithm is presented as follows: 

u[m, n] = σ2(m, n) =
  2 

(1 − 
|RP RP (m, n)| 

) (3.1) 

P RP 2 R0(m, n) 

being R0 and RP RP are correlation functions and at lag t = 0 and lag t = P RP , 

respectively, defined as: 
 

1 P −1 
RP RP (m, n) = 

P 
 

R0(m, n) = 
2P

 

smn[p]smn[p + 1]∗ (3.2) 
p=1 
P −1 

[ smn[p] + smn(p + 1)  ] (3.3) 
p=1 

smn = in[m] + j.qn[m] (3.4) 

 

where P is the ensemble length once the wall filter is applied, ∗ the complex conjugation 

operator, and smn the complex vector at pixel in sample m and line n. 

ens. p 

IQ 

process 

Block mn 

smn[p] Thread p 
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3.1.5 Sonoelastography filtering 

Sonoelastograms obtained from Miller’s estimator are further processed with a [3x3] 

median filter (see Alg.1)for noise reduction. However, extrapolation at boundary re- 

gions were not taken into consideration in order to reduce computation time in the 

GPU. The filtered sonoelastograms are then stored in a circular buffer, which is located 

in the host computer and is initialized with a fixed number of I frames (i.e. 50 frames). 

Once the buffer has been completely filled, a normalization stage is conducted over the 

complete sonoelastography video. 

 

 

u[m, n, i] 
   

−u[m, n] 

 
1 

uNI [m] û[m, n, i] 

 

Kernel 1 Kernel 2 Kernel 3 

 
Figure 3.6: Filtering process: Flow diagram 

 

Algorithm 1: Median filter of kernel 3 x 3 computed in each thread 

Input : index: sample m, line n 

Output: Median value in a 3 x 3 grid 
around input index 

w[0...8], i 0 
for x = m 1 m + 1 1 
do if x > 1 x < M then 

for y = n 1 n + 1 1 
do if y > 1 y < N then 

w[i] u[x, y]; 
i i + 1; 

end 

end 

end 

end 

for j = 0 4 1 do 
i j; 
for l = j + 1 8 1 do 

if w[l] < w[i] then 
i l; 

end 

end 

t w[j]; 
w[j] w[i]; 
w[i] t; 

end 

û[m, n] ← w[4]; 

 
  

 

For every depth, a slice of N (lines) x I (frame) pixels is taken and processed. First, 

the DC component of each lateral pixel is removed by calculating the mean vector of 

the slice along the slow time and subtracted from it. Then, normalization is conducted 

over the entire slice. However, due to limitations in the number of threads per block 

that the current GPU provides, the total number of elements on each slice is usually 

AvgI M 
axI 

M axN 
uI[m, n] 
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higher than the maximum block size, restricting the whole synchronization between 

threads. Hence, the normalization process is divided in three kernels (grids) in order 

to properly calculate the maximum value of each slice. Calculation of average and 

maximum value of a vector is achieved using a well-known parallel reduction process 

[RK10]. Fig. 3.7 depicts the first step of average estimation where the new result is 

stored in the first half of the vector. Therefore, after log2N steps, the final result is 

read from the first sample. As observed in Fig. 3.7 for instance, average of a certain 

vector is calculated as: AvgN = x1/N . 

 

 

Figure 3.7: One step of summation reduction, storing each sum on elements of the 

same vector 

 
3.1.6 Phase derivative estimator 

In this part, the SWS values are calculated using the phase derivative estimator. First, 

the sonoelasticity video is reordered according to the index of the last acquired frame, 

which is constantly read from the system and send to the GPU kernel function. Then, 

the Fast Fourier Transform (FFT) Ψmn is computed over the signal ψmn in the slow 

time dimension (frames) employing build-in CUDA libraries for each pixel in the M x 

N grid. Since the whole interference patterns moves at a constant speed proportional 

to the offset frequency ∆f , the FFT displays a peak temporal frequency where the 

initial angle of the current pixel can be estimated a θ = arctan(Img(Ψmn[ft ∗ I])/ 

Re(Ψmn[ft ∗ I])). This temporal frequency ft is defined as: 

ft = ∆f /Tn (3.5) 

X1 X2 XN/2−1 XN/2 XN/2+1 XN/2+2 XN −1 XN 

X1 X2 XN/2−1 XN/2 



Tesis de Maestría Eduardo González 

3 Methodology 24 
 

 

← c 0 

← − 

← | | 
← 

← 

← 

← 

− 

i 

n 

 

where Tn is the frame rate, given by the research ultrasound system. The sonoelasticity 

video is therefore reduced to a M x N 2-D phase map θ(m, n), from which the SWS 

values are inversely proportional to the spatial derivative of the phase along the lateral 

direction:  
cs[n, m] = 

   2(2π(f + ∆f ))Tx 

θ[m, n] − θ[m, n + 1] 

 
. (3.6) 

In order the properly compute the denominator in Eqn. 3.6, function θ needs to 

remain continuous along the lateral direction. Hence, an unwrap process is conducted 

before the SWS estimation in every depth of the 2-D phase map, removing leaps 

between maximum and minimum phase and generating a continuous slope function θ 

(see Alg. 2). 

Algorithm 2: Unwrap filter computed in each thread 

Input : index: sample m, line n 

Output: unwraped phase θ[m, n] 

∆θ ← θ[m, n] − θ[m, n − 1] 

if ∆θ < 0 then 
s[m, n] 1; 
∆θ ∆θ ; 

end 
else 
s[m, n] 1; 

end 

if ∆θ >= π then 

p[m, n] 1; 
end 
else 
p[m, n] 0; 

end 

Synchronize(); 
for j = 1 n 1 do 
c c + 2πs[m, j]p[m, n]; 
end 

θ[m, n] ← θ[m, n] + c; 
 
 

  

 

In spite of the previous filter applied to the CrW data in Section 3.1.5, θ is usually 

coupled with noise, requiring some degree of additional smoothing to avoid amplified 

errors in the lateral derivative [HHM+12]. Here, a local regression algorithm is im- 

plemented element-wise using the weighted coefficients and a 2nd order polynomial 

fit. 
 

w = (1 (
|xi − xn| 

)3)3 (3.7) 
i 

h
 

h2 

β̂  = argmin 
Σ 

wi[θi − (β0 + β1xi + 1/2β2x2)]2 (3.8) 
β0,β1,β2 i=h1 

h = h2 − h1 (3.9) 

θ̂n  = β̂0 + β̂1xn + 1/2β̂2x2 (3.10) 



Tesis de Maestría Eduardo González 

3 Methodology 25 
 

 

B 

M agenta 

(1, 0, 1) 

Y ellow 
Green 

(0, 1, 0) 
 

Red 

R 

tt 

1 

1 

Σ Σ Σ 
w xi 

Σ 
w xi 

Σ 
w xi 

Σ Σ 
w x y P  =i i 

 7 

Σ 

e 

 

Taking the partial derivatives ∂/∂βi from Eqn.3.10, a system of equation is generated 

and the optimal fitting coefficients are estimated as: 

 

ˆ = 
P 2P2P6 − P1P 2P5 + P0P2P3P5 − P0P 2P6 + P 3P7 − P1P2P3P7 

 
  

(3.11) 
β2 

1 
4 

2 
2 2 

2 2
 2 

β̂1 

β̂0 

P2 − P0P2 P4 − 2P0P2 P3 + P 2P2P4 + P0P2P3 

=  
P1P7 − P0P5 − 1/2(P1P2 − P0P3)β̂2 

P 2 − P0P2 

=  
P7 − 1/2P2β̂2 − P1β̂1 

P0 

 
(3.12) 

 
(3.13) 

where: 
 

P0 = 
h2 

wi P1 = 
i=h1 
h2 

h2 

wixi P2 = 
i=h1 
h2 

h2 
2 
i 

i=h1 
h2 

P3 = 
h2 

3 
i 

i=h1 
h2 

(3.14) 

P4 = 4 
i 

i=h1 
P5 = wixiyi P6 = 

i=h1 

2 
i 

i=h1 
wiyi (3.15) 

i=h1 
 

3.1.7 Color pixel mapping 

Once the elasticity map is constructed, shear wave speed values are normalized over a 

user-defined dynamic range delimited by a maximum (eh) and a minimum (el) SWS 

value (i.e. el = 2 m/s, eh = 6 m/s) and indexed to the hot-to-cold color map based 

on the RGB color space [Bou95], as showed in Fig. 3.8. Then, the SWS map is scaled 

in order to fit the screen resolution using nearest neighborhood interpolation. Finally, 

a post-processing median filter of kernel [3 x 3] is applied to the reconstructed image, 

reducing the artifacts produced by crawling waves of low SNR. 
 

Cyan (0, 1, 1) W hite (1, 1, 1) 

 
 
 

Blue 
(0, 0, 1) 

eh+3el 
el 4 

eh+el 
2 

3eh+el 
4 h 

(1, 1, 0) 
Blue Cyan Green Yellow Red 

Black 
(0, 0, 0) (1, 0, 0) 

Figure 3.8: Hot and cold colormap based in the RGB colorspace 
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3.2 Regularized Wavelength Average Velocity 

Estimator 

The proposed and developed SWS estimator, namely Regularized Wavelength Average 

Velocity Estimator (R-WAVE), is based on the conventional CWS setup and process 

the CrW video generated from the Spectral Doppler variance estimation (described 

in Chapter 2). The proposed estimator provides a resulting lateral vector of local 

SWS values by analyzing the displacement of the interference pattern in a lateral 

profile. Therefore, R-WAVE is computed over each slice across the lateral and temporal 

dimension in order to generate a complete SWS image. 

Two of the most used shear wave speed estimators, the Phase Derivative (PD) 

and 1-D Hoyt (1DH), calculate the spatial frequency phase θ through autocorrelation 

windows in a single CrW frame and FFT in the slow time dimension, respectively. 

However, both presents limitations in their SWS estimation. On one hand, PD is 

sensitive to small errors in θ since it computes instantaneous change of θ along the 

lateral dimension. On the other hand, while 1DH estimate a more robust θ, it likewise 

reduce the effective size of the output SWS image due to the use of autocorrelation 

windows. Instead, R-WAVE measures the interference pattern wavelength directly 

through peak detections algorithm, reducing estimation variance of the final cs map. 

 

3.2.1 Moving Filter 

As a pre-processing stage, a moving filter is implemented on each slide of depth (see 

Fig. 3.9) for signal-to-noise ratio (SNR) enhancement and suppression of reflection 

artifacts, following the framework of Castaneda et al. [CAW+09]. The filter is designed 

as a 2D bandpass centered at the normalized temporal frequency ft and a selected 

spatial frequency range fk. The first frequency depends on the offset frequency ∆f and 

frame rate Tn, while the second is set according to the desired elasticity limits el and 

eh as well as the lateral resolution Tx (pitch) and vibration frequency f . Additionally, 

it is worth highlighting the fact that fk is actually the wavenumber of interference 

pattern, λ/2, as explained in section 2.3.1, thus the factor of 2 in Eqn. 3.17. 

∆f 
ft = 

Tn 
 

  
fk = [Tx  Tx 

eh  el 

(3.16) 

 
] (3.17) 

2f 2f 
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Figure 3.9: Moving Filtering. (a) Simulated sonoelasticity movie showing the interfer- 
ence pattern with a 40% added noise. (b) 2D FFT of a slice selected in 
(a). (c) Motion filter with the desired special and temporal frequency. (d) 
Filtered sonoelasticity movie with reduced noise. 

 

3.2.2 Linear Problem 

The final step consist of finding the local cs(i, j) along the ROI for each i and j 

of the lateral and axial axis, respectively. From Eqn. 2.16, shear wave speed cs 

can also be described as: cs = λf , where f is the vibration frequency induced into 

the tissue and λ is two times the lateral distance between peaks of the interference 

pattern which is assumed to be parallel to the axial axis. First, let xj be an array of 

unknown cs values at a certain depth j in the sonoelasticity movie along the lateral 

dimension. Then, analyzing the signal amplitude and inflection points, peaks are 

detected and indexed, thus the wavelength λ/2 is measured. In this process, the 

motion filter applied previously greatly benefits the accuracy of peak recognition and 

wavelength measurement. Through the analysis of Eqn.2.15 in a two-phase medium, 

the estimated shear wave speeds obtained from the measured wavelength λ/2 can be 

approximated to a linear fit as a weighted sum of the SWS elements contained in- 

between (see Appendix 1 for the detailed demonstration), as shown in Fig.3.10. 

For every average cs an equation is generated containing the involved elements x. 
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Figure 3.10: Interference pattern along the lateral dimension at a selected depth and 
frame. The distance between peaks is equal to half the wavelength of the 
weighted average shear wave speed 

 
Boundary regions with no detected peaks in-between are filled with extrapolated cs 

of the lateral profile. Repeating the same process over time acquisitions, the equation 

system is reduced to the form: 

Axj = Sav, A ∈ RM xN , xj ∈ R1xN , Sav ∈ RM x1 (3.18) 

where A is the weighted coefficient matrix map, Sav the weighted average speeds and 

xj the unknown shear wave speeds at depth j. For simplification purposes, let A be 

an equally distributed weighted coefficient matrix along the lateral dimension or rows 

(i.e. from Fig. 3.10: a5 = a6 = a7 = a8 = a9, the real weighted values are calculated 

and explained later in section 3.2.4). Usually, the number of color frames acquired 

contains more than one cycle of the crawling pattern over the ROI. Therefore more 

equations than variables are found and an overdetermined system is generated. 
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3.2.3 Quadratic Programing and regularization 

A useful approach to solve this problem is the quadratic programming (QP), which 

minimize an objective function from least square optimization (LSO) method: 
 

QPx (Axj = Sav) : minx ||Axj − Sav||
2 = xj

T AT Axj − 2AxjSav + S2 (3.19) 
j j av 

min   ||Ax  − S || = [x (A A)x ] − [(S A)T ]T x 
 

(3.20) 
xj j av 2 j 

j av j 

min ||Ax − S || = x Hx − fx (3.21) 
xj j av 

2  j j j 

where ||.|| is the euclidian norm, and H and f are know as the Hessian operator and 

linear term, respectively, which are constructed by the sum of the partial H and f 

from each row of A matrix and Sav : 

M −1 

H = [am1am(N 1)]T [am1am(N 1)] (3.22) 
m=0 
M −1 

f = Savm[am1am(N 1)] (3.23) 
m=0 

For each depth j of the sonoelastography video, the QP approach will look for the 

solution xj subject to equations/inequations restrictions (if any) under a determined 

number of iterations or if a tolerance condition is reached. The only restriction available 

for the present linear problem are the upper and lower bound of x, since the data has 

already been filtered by the desired SWS examination range in the pre-processing 

stage: 

2f 
xj ≤ Tx 

e
 

2f 
xj ≥ Tx 

e
 

 
(3.24) 

(3.25) 

 

However, performance of QP in a quick simulation (see Table 3.4) of a homoge- 

neous and inhomogeneous media using Eqn. 2.15 shows that the linear system is 

ill-conditioned and presents amplified noise in the solution (see Fig. 3.11). This is 

understandable since the exact position of each peak is rounded to the nearest index 

in the lateral vector, whose resolution is linked to the transducer pitch. The inaccurate 

peak location adds noise to the system and increase the conditional number of matrix 

A. Therefore, a regularization approach is required for stabilizing the solution. 

One of the commonly used methods for regularization is the Tikhonov approach, 
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Table 3.4: Simulation Setup 

Parameter Symbol Value Units 

Vibration frequency f 200 Hz 

Vibration offset frequency ∆f 0.4 Hz 

Pitch Tx 4.08 mm 

Frame rate Tn 8 Hz 

Frames acquired N 50 - 

Elements / lateral samples X 128 - 

Axis samples Z 1 - 

Tissues shear wave velocity SW Sl, SW Sh [1;5], [3;3] m/s 

Distance between sources D 50 mm 

Attenuation coefficient αc 0.1 dB/MHz/cm 

Cut-off SWS in motion filter el, eh [0.5; 6] m/s 

SNR of added white noise v 25 dB 

 

Figure 3.11: QP solution from simulated inhomogeneous (left) and homogeneous media 
(right) generated from Table 3.4 using Eqn. 2.15 

 
which adds a penalty constrain in the minimization of the squared residuals of a linear 

system. Including this regularization term in the QP setting results: 
 

minx [||Axj − Sav||
2 + ||Γxj||

2] = xj
T AT Axj − 2AxjSav + S2 + xj

T ΓT Γxj (3.26) 
j av 

min  [||Ax  − S  ||  + ||Γx || ] = [x (A  A + Γ  Γ)x ] − [(S 
 
A)T ]T x (3.27) 

xj j av 
j 2 j 

j av j 

Similar to Eqn. 3.19, the constant S2 is removed since it does not influence the 
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minimization process. Here, the new Hessian operator is AT A+ΓT Γ, where Γ is known 

as the Tikhonov matrix. Usually, the Tikhonov matrix is defined as a scaled identity 

matrix αI, adjusting the penalty with the regularization parameter α. However, since 

the elasticity of a certain tissue within a ROI remains uniform, a scaled high-pass 

operator (i.e. gradient operator ∇) is more suitable for the current ill-posed problem. 

Hence: 

H = AT A + α2∇T ∇ (3.28) 

Repeating the previous simulation, the QP solution is improved by selecting α = 

1. Still, the algorithm fails to properly optimize the solution for a sonoelastography 

simulation produced by a step function (i.e. inhomogeneous media). The main cause 

is the inadequate selection of weighted coefficient matrix A, which affects the average 

SWS between peaks of different tissue elasticity in-between; otherwise it is indifferent, 

as observed in the homogeneous medium. 
 

Figure 3.12: Regularized QP solution from simulated inhomogeneous (left) and homo- 
geneous media (right) generated from Table 3.4 using Equ. 2.15 

 
3.2.4 Estimation of weighted coefficients 

Initially, a theoretical estimation of the weighted coefficients was conducted for a two- 

phase medium (see Appendix 1). However, the simulations showed an underdamped 

response in the step function of elasticity, requiring a more accurate fitting. In order to 

solve A, several CrW simulations are conducted, each of them using a fixed x matrix 

and a measured Sav vector. The full procedure is described below: 

1. A set of two-tissue medium vectors x, composed by regions A and B, is generated 

at random cA and cB SWS values. 
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   1  , if an, an−1 ∈ medium A or B 

 

2. Each medium is excited with a random frequency fe to generate a CrW using 

Eqn.2.15, where a single equation is acquired from the peaks surrounding both 

tissue regions. 

3. In order to construct a system of equations that features the same number of 

variables a, only those equations that meet a N number of variables are kept. 

4. In a CrW segment that surrounds two different elasticity regions, let θ be the 

phase that delimits the boundary between these two regions. A high spatial fre- 

quency (low elasticity region) would contribute less than a low spatial frequency 

(high elasticity region) in the total width of the average wavelength and vice 

versa. This property affects the value of the a coefficients found in equations at 

different θ. However since the medium is already know, θ can be estimated for 

each equation and select only those that meet the condition θ = θb, where θb is 

a fixed given value. 

5. To avoid the extensive computational time that takes to satisfy θ = θb, a range 

of tolerance is established as well: θb − δ ≤ θ ≤ θb + δ. 

6. Finally, after M equations are collected, the QP is used to solve A: 

QPA(xA = Sav) : minA||xA − Sav||2 = 1 AT HA − f A 
 

Constrains 

The difference between coefficients in the same elasticity region is smaller than the 

allowed difference between coefficient in different elasticity regions. Therefore an in- 

equality restriction using a gradient operator is added to the QP optimizer. 

 

|an − an−1| ≤ 
N (N −1) 
(N −1)2−1 otherwise 
N (N −1) 

(3.29) 

An equation restriction is also added due to the property of weighted sum: 

N −1 

an = 1 (3.30) 
n=0 

 
Since the coefficients are related to the elasticity values, they must be positive and 

different than 0: 

an > 0 (3.31) 
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Varying θb 

A first set of simulations was conducted while varying θb from 0.15(2π) to 0.85(2π) in 

0.01(2π) steps. Each simulation computed M = 100 equations of N = 36 variables 

each, with δ = 0.02(2π) and the same number of variables for each region (NA = 18, 

NB = 18). Results from a single simulation (i.e θb = 0.7(2π)) are presented in Fig.3.13. 

Then, a linear fit was computed for the mean value of the weighted coefficients of each 

region A and B (separately) versus the vector θ as showed in Fig.3.14. 
 

Figure 3.13: QP simulation for determine the weighted coefficients in an inhomoge- 
neous medium.(A) Set of pair elasticity values for each equation.(B) Av- 
erage SWS for each equation.(C) Calculated weighted coefficient.(D) Sim- 
ulated Sonoelasticity signal where one equation was generated, showing 
the boundary phase θ = 0.7(2π) between medium. 

From Fig.3.14, the linear fits showed that the average weighted coefficient is directly 

proportional to θ/2π and 1 − θ/2π in region A and B, respectively. Both of those 

fits showed a proportional coefficient of a = 0.055845, approximately, which is very 

similar to the inverse of the number of elements for each region (NA = NB = 18). 

Since the simulations results suggested that average weighted coefficient was inversely 
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Figure 3.14: Linear fit for the mean solution of the a coefficients in region A (left) and 
region B (right) while varying θ 

 
proportional to the number of elements of each region, an additional set of simulations 

was conducted for validation. 

 

Varying NA and NB 

A second set of simulations was conducted while varying the number of elements of each 

region in a fixed number of variables N = 36. This was accomplished by initializing the 

elasticity medium with a shifted boundary between region A and B, and then iterating 

new mediums with a shift vector. Each simulation computed M = 100 equation with 

θb = 0.35(2π) and δ = 0.02(2π). The results are presented in Fig.3.15. Here, the 

linear model of f (x) = a(x)−1closely follows the average coefficient with by a factor of 

a = 0.3783 and a = 0.6766 in region A and B, which is also similar to θb/(2π) = 0.35 

and (1 − θb/(2π)) = 0.65, respectively. 

From the analysis of the two set of simulations, the weighted coefficient can be 

estimated with the following empirical fit: 

 
a = [ 

 
a0, ..., ab, ab+1, ..., aN−1] 

= 
 
2
θ , if i ≤ b 

 
(3.32) 

2π  θ otherwise 
π(N −b 

where b is the boundary index that divide the regions. It is deduced that this algorithm 

takes an additional assumption since the interference pattern can contain no more than 

two different elasticity regions between its peaks. In order to achieve this condition, a 

higher vibration frequency may be needed to shorten the CrW’s wavelength. For the 

estimation of θ, the Hilbert transform is performed in each of the wavelength segments 

ai 
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Figure 3.15: Linear fit for the mean solution of the a coefficients in region A (left) and 
region B (right) while varying NA and NB 

 
(see Fig. 3.13.D). Then, the inflection point of the phase function is detected, a peak 

detector finds the highest value of the second derivate from the calculated phase vector, 

obtaining the boundary phase θ and the index b. 
 

Figure 3.16: Regularized QP solution with modified coefficient matrix A from sim- 

ulated inhomogeneous (left) and homogeneous media (right) generated 

from Table 3.4 using Equ. 2.15 

 
The experiment showed in Fig. 3.6 is repeated one more time with the addition of 

weighted coefficient estimation process. As expected, the final results (see Fig. 3.16) 

depicted an improvement on the step function (inhomogeneous media) with a regular- 

ization parameter α = 1 while maintaining the performance in the constant function 

(homogeneous). Therefore, the regularized QP method is a viable option for solving 

Axj = Sav, where the weighted coefficient map A is estimated with the boundary phase 
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i=1 
j i 2 

j 2 

 

and index between different tissues. 

 

3.2.5 Generalized Iterative Tikhonov Regularization 

This method uses an expanded regularization term in the norm-2 least square mini- 

mization. The function to minimize is defined as: 
 

x̂ = argmin[||Ax − S ||2 + α2 
Σ

(|(Γx ) |2 + β) 
k 

] (3.33) 
 

Based on Lavarello et al. framework [LKO06], a generalized form of the Tikhonov 

regularization method presents an explicit solution of xj: 

x(n+1) = [(AT A + α2ΓT W (x(n))Γ)−1AT ]Sav (3.34) 
j j 

 

Likewise, Γ is defined as the Tikhonov matrix equals to a gradient operator (∇), α is 

known as the regularization parameter and: 

W (x(n)) = 
k 

diag[(|Γx(n)|2 + β)1−k/2. (3.35) 
j 2 i 

While increasing α enhance robustness of A by reducing its condition number, it neg- 

ative influence the spatial resolution. The stopping criteria of the iterative solution is 

defined by. The stopping criteria of the iterative solution is defined by: 

||x(n+1)  − x(n)||2 
 

δ > j ( 
j 2 , (3.36) 

||x 
n+1)

||2 

where δ is the regularization tolerance. Although repeating the simulation with GTR 

at α = 1 improved estimation results (see Fig.3.17), sensibility of the regularization 

coefficient in GTR is higher than the previous approach (i.e. for α = 4, comparable 

results were found using the regularized QP). However, GTR was chosen as the opti- 

mizer for the solution of x due to the continuity of each xj along the lateral dimension 

without additional constrains and to the full control of the implemented algorithm 

(QP was used as a build-in Matlab function). Finally, the solution procedure for xj is 

repeated for every depth j until the full shear wave speed image is reconstructed. 

av 



Tesis de Maestría Eduardo González 

3 Methodology 37 
 

 

 
 

 
 

Figure 3.17: Generalized Tikhonov Regularization solution with modified coefficient 
matrix A from simulated inhomogeneous (left) and homogeneous media 
(right) generated from Table 3.4 using Equ. 2.15 

3.3 Simulation and validation setup 

In order to assess the performance of the proposed SWS estimator, crawling wave 

simulation on elasticity tissue as well as experiments on tissue mimicking phantoms 

were conducted with two SWS estimators found in the literature: the Phase Derivative 

(PD) estimator and the one-directional Hoyt estimator (1DH). 

As described in chapter 2, the PD estimates the local spatial frequency k along each 

lateral profile of the crawling wave video. For each pixel, the phase of the interference 

patter is calculated by analyzing the peak frequency of the DFT along the slow time 

domain (i.e. ∆f/Tn). Then, after unwrapping the signal along the lateral dimension, 

the lag-1 derivative of the phase is computed in order to obtain the spatial frequency 

k. Since k is inversely proportional to the final shear wave speed cs, a small distur- 

bance in continuity of the slope function would result in an amplified error in the 

reconstructed image, increasing the estimation variance. Therefore, a non-parametric 

regression (LOESS) process is often implemented before differentiating the phase func- 

tion, smoothing the signal. The LOESS method takes as input parameter the size of 

the kernel wl (i.e. 40% from the total number of samples of the input signal) that 

computes the regression for a single value along the phase function. While increasing 

the kernel size could benefit the reduction of the estimation variance, it compromise 

the lateral resolution as well as increase the presence of artifacts at boundary regions. 

Likewise, the 1DH computes k directly by converting the lateral profile to an analytic 

signal (Hilbert transform) for later process it with a lag-1 autocorrelation function. 
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Similar to PD, 1DH controls the estimation accuracy of k by the size of the kernel 

(wa) for autocorrelation. However, increasing this parameter reduce the width of the 

reconstructed image while increasing bias on the estimation. 

 

3.3.1 Simulation setup 

Simulations of heterogeneous and homogeneous media were performed for each of the 

proposed methods with the parameters described on Table.3.4, following the frame- 

work of Hoyt et. al. [HCP08]. Since all estimators compute the SWS along each 

lateral profile independently, only a single vector of elasticity value is required for the 

simulation. Additionally, the evaluation was repeated for several vibration frequencies, 

starting at 120 Hz to 500 Hz in 20 Hz step, as well as varying the smoothing parameter 

of each estimator at several set of two-phase mediums (see Table 3.5). 

 
Table 3.5: Simulation Setup for performance evaluation 

Parameter 
Lower

 
limit 

Upper 

limit 
Step Units 

 
  

Vibration frequency 120 500 20 Hz 

Regularization coefficient (α) 0.3 1.6 20 - 
 

l 
samples 

 

 

 

 

 

 

 

 

 

 

 

3.3.2 Tissue Mimicking Phantom generation 

Evaluation of both contributions (GPU implementation and SWS estimator) was con- 

ducted on tissue mimicking phantoms. The elaboration procedure follows the recipe 

LOESS kernel size (w ) 5 70 
d 

% of total 
    

Autocorrelation kernel size (wa) 8 46 2 samples 

Two-phase medium 1 1 5 - m/s 

Two-phase medium 2 2 4 - m/s 

Two-phase medium 3 1.5 1.5 - m/s 

Two-phase medium 4 3 3 - m/s 

Two-phase medium 5 4.5 4.5 - m/s 
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of Hah. et. al [HHM+12], specifying the inputs quantity as: 

 

G[g] = 
1 − x 

H[ml] (3.37) 

N aCl[g] = 0.009H[ml] (3.38) 

A[g] = 0.0015H[ml] (3.39) 

C[g] = 0.02H[ml] (3.40) 

 

where H is deionized water, G dry gelatin (300 Bloom Pork Gelatin, Gelatin In- 

novations. Inc), N aCl salt, A agar (DifcoTM Agar Technical, Becton, Dickinson and 

Company, Sparks, MD, USA) and C cornstarch. The dry gelatin and agar concentra- 

tion controls the Young modulus of the tissue, while the salt and cornstarch controls 

the sound of speed and scatter concentration, respectively. The mixture was heated 

to 90 ◦C at 1200 RPM using a Robax§R    M6 (Schott, Mainz, Germany) on a beaker. 

Then, after cooling it to 30 ◦C for approximately 10 min, the mixture was poured in a 

cubic container and allowed to rest at 4 ◦C overnight. For homogeneous medium, three 

phantoms of 12% (P1), 10% (P2) and 8% (P3) gelatin concentration were elaborated. 

Likewise, three heterogeneous phantom with a cylindrical inclusion were fabricated. 

A phantom with an inclusion of 7 mm diameter (P4) and 12% gelatin concentration 

simulated a small lesion in a background of 10% gelatin. Another phantom (P5) with 

the same concentration rates was generated but with a inclusion diameter of 12 mm. 

Finally, a 12 mm inclusion phantom (P6) was elaborated with 10% and 8% gelatin con- 

centration for inclusion and background regions, respectively. Assessment of the true 

SWS vales was performed by several Time of Flight (ToF) acquisition. This procedure 

consisted of placing the mini-shakers at opposites sites of the phantom and generate 

an impulse signal from one of the mini-shaker that pass through the material and is 

received on the other one. Registered signals are then correlated in order to measure 

the delay shift between them (ToF), where the shear wave speed can be estimated 

by dividing the traveled distance and ToF. Several ToF experiments were conducted 

through all lateral sides of the phantom in order to avoid outliers measurements. In 

this study, the true SWS of the 12%, 10% and 8% concentration homogeneous phan- 

toms were 4.95 ± 0.31 m/s, 4.08 ± 0.34 m/s and 3.43 ± 0.28 m/s, respectively. Table 

3.6 summarizes the specifications of each elaborated phantom. 
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Table 3.6: Specifications of elaborated gelatin based phantoms 

Index Type Inc. d (mm) B.Conc (%) I.Conc (%) True SWS (m/s) 
  

P1 Homogeneous - 12 - 4.95 ± 0.31 

P2 Homogeneous - 10 - 4.08 ± 0.34 

P3 Homogeneous - 8 - 3.43 ± 0.28 

P4 Heterogeneous 7 10 12 - 

P5 Heterogeneous 12 10 12 - 

P6 Heterogeneous 12 8 10 - 

 

3.3.3 Acquisition setup 

The conventional crawling wave setup was implemented on all gelatin phantoms, as 

described in section 2.3.1. Two mechanical mini-shakers (4810 Brüel & Kjaer, Naerum, 

Denmark) were placed at opposite lateral sides of the material (see Fig. 3.18). The 

excitation signals, with sinusoidal form and differentiated by 0.4 Hz, were generated 

with a dual channel function generator (AFG3022B, Tektronix, Beaverton, OR, USA) 

and an amplifier (5530, AE Techron, Elkhart, IN, USA). For acquisition, color radio 

frequency (CRF) data was acquired using two ultrasound systems: a linear transducer 

M12L (GE Healthcare, Wauwatosa, WI, USA) connected to a GE LOGIQ 9 (GE 

Healthcare, Wauwatosa, WI, USA), and a linear transducer L14-5/38 (Ultrasonix, 

British Columbia, Canada) connected to a SonixTouch (Ultrasonix, British Columbia, 

Canada). The last one was used for testing the GUI of the PD estimator, implemented 

with GPU acceleration. The pitch of the M12L and L14-5/38 were 4.08 mm and 3.08 

mm, respectively. 

 

3.3.4 Quantitative measurements 

The quality of the reconstructed SWS images was compared using conventional metrics 

found in the literature. 

 

Signal-to-noise ratio 

The Signal-to-noise ratio (SNR) of a specific evaluation region was used to assess the 

homogeneity of the SWS estimates and was defined as [LBHY04]: 

SNR = 20log10(µR/σR) (3.41) 
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Figure 3.18: CWS using parallel excitation setup. (a) Mini-shakers. (b) Homogeneous 
gelatin-based phantom. (c) Ultrasound Transducer L14-5/38 

 
where µR and σR were the mean and standard deviation of the calculated SWS of the 

region, respectively. 

 

Contrast 

Likewise, for heterogeneous media, Contrast (CR) was used and presented as: 

 

CR = 20log10(µI/µB) (3.42) 

 

where µI and µB were the mean SWS values of the inclusion and the background, 

respectively. 

 

Contrast-to-noise ratio 

Additionally, the Contrast-to-noise ratio (CNR) assess the mean difference in two 

examined regions and the relationship towards their combined noise, which is expressed 
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λ1 λ2 

 

by the following formula [LBHY04]: 

 
CNR = 20log10 

 

2(µh µl)2 

σ2 + σ2 

 
 

(3.43) 
h l 

 

Spatial resolution 

Spatial resolution (SR) of SWS images for heterogeneous phantom was calculated by 

fitting the lateral profile across the inclusion with a double sigmoid function [RWPN12], 

given by:   1    1  
c(x) = (ch − cl)( 

1 + e 
x1−x )( 

1 + e 
x−x2 ) + cl (3.44) 

where ch and cl are the SWS of inclusion and background, x1 and x2 are the edge 

location indexes, and λ1 and λ2 represents the transition width at the lateral sides 

of the inclusion, respectively. Then, the spatial resolution SR2080 (simplified as SR), 

is defined as the average of the λ distances for a 20% to 80% transition of the SWS, 

therefore [RWPN12]: 

SR = ln(4)(λ1 + λ2). (3.45) 

This fitting process was repeated for 20 lateral profiles across a user-defined region of 

evaluation, where the final SR was obtained from the median value of the SR vector. 

 

Bias and Coefficient of variation 

Estimation accuracy can also be defined relative to the true value of the SWS estimates. 

The bias of an estimations indicates how far the calculated mean differs from the true 

mean value, expressed as: 
 

Bias = 100(|(µc − µi)|/µi). (3.46) 

where µc and µi are the calculated mean and ideal mean of the estimates, respectively. 

Similarly, the coefficient of variation (CV) takes into consideration the standard devi- 

ation relative to the true mean value and is defined as: 

CV = 100(σ/µi). (3.47) 
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4 Experiments and Results 

 

4.1 GUI: Evaluation of Crawling Wave Quality vs IQ 

filter order 

Typically, after the low pass filter in the IQ process is performed, analytic data is 

decimated by a factor proportional to the ratio between the signal bandwidth and 

sample frequency, both being constant parameters in the present study. For instance, 

in the Matlab environment decimation is computed with an 8th order Chebyshev IIR 

filter enhancing stop-band response and noise suppression. With only a 2nd order FIR 

filter, sonoelastography images generated with the Miller’s algorithm present poorly 

defined interference patterns (CNR: -44dB), which translates into increased phase error 

and high SWS standard deviation (0.76 m/s). Therefore, acquired CRF data from 

an homogeneous phantom (P2) was processed with several FIR filters to determine 

the optimal filter order that balance CNR, SWS STD and excecution time. Fig. 4.1 

depicts interference patterns at different FIR filter order, specifying regions for CNR 

assessment. Measured CNR as well as standard deviation of SWS, using the PD 

estimator, are presented in Fig. 4.2. From this results, a filter order of 6 was chosen 

since higher order filters didn’t significantly improved neither the CNR (less than 

0.5dB) nor further reduced the STD of the reconstructed SWS images. 
 

Figure 4.1: Interference pattern of homogeneous media (P1) using (a) 2nd order, (b) 
3rd order and (c) 6th order low pass FIR filter in the IQ process. 
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Figure 4.2: Low pass FIR filter performance in the IQ process while increasing the 
filter order. (a) Crawling Wave CNR from regions specified in Fig. 4.1. (b) 
STD of the reconstructed homogeneous SWS images. 

4.2 GUI: SWS estimation on gelatin-based phantoms 

Fig.4.3 shows the SWS images of an homogeneous phantom (P3) with 8% gelatin 

concentration (3.43 ± 0.28 m/s) with the mini-shakers operating at 200 Hz (200 Hz 

and 200.4 Hz) and 300 Hz (300 Hz and 300.4 Hz). It can be appreciated that both 

SWS images generated with the PD estimator exhibit lateral artifacts, as reported in 

the literature. However, accuracy of the algorithm is validated since the average SWS 

estimation at low (3.68 ± 0.17 m/s, SNR: 26.61 dB at 200 Hz) and high frequencies 

(3.78 ± 0.13 m/s, SNR: 29.19 dB at 300 Hz) are within 7% of the ground truth values 

obtained from mechanical measurements. 

Similarly, Fig.4.4 shows the SWS images of an inclusion phantom (P5) with 10% 

gelatin concentration in background (4.08 ± 0.32 m/s) and 12% in the inclusion re- 

gion (4.95 ± 0.31 m/s), excited with the same pair of vibration frequencies. Then, 

quantitative measures were calculated form evaluations regions of the background and 

inclusion (labeled in Fig.4.4) and are presented in Table 4.1. At 200 Hz, background 

and inclusion estimates were in good relation to the SWS ground truth values (B: 3.96 

m/s and I: 5.18 m/s). Additionally, while increasing the vibration frequency slightly 

enhanced the CNR, CR and SNR, a trade off was observed due to the SR degradation 

as wells as overestimation of both inclusion and background regions. Still, the GUI 

implementation successfully differentiated heterogeneous media with low estimation 

variance on the SWS values (STD <0.28 m/s). 
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Figure 4.3: SWS results of an homogeneous phantom (P3). (a) B-mode image. (b) 
Crawling waves at 200 Hz. (c) SWS images at 200 Hz and (d) 300 Hz. 
Evaluation box is labeled in (a) and wl = 33 was used for both cases. 

 

Figure 4.4: SWS results of an heterogeneous phantom (P5). (a) B-mode image. (b) 
Crawling waves at 200 Hz. (c) SWS images at 200 Hz and (d) 300 Hz. 
Evaluation boxes are labeled in (a) and wl = 33 was used for both cases. 
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Table 4.1: Quantitative measurements of a 10 mm diameter inclusion phantom (P5) 

Parameter f = 300 Hz f = 200 Hz Unit 

Mean B: 4.213 I: 5.646 B: 3.958 I: 5.183 m/s 

STD B: 0.187 I: 0.275 B: 0.183 I: 0.145 m/s 

SNR B: 26.240 I: 31.386 B: 31.067 I: 34.828 dB 

CNR 27.048 26.707 dB 

CR 2.544 2.342 dB 

SR 4.822 1.802 mm 

 

4.2.1 Adjusting the LOESS kernel size 

Estimation of SWS in the small-lesion phantom (P4) was conducted while varying 

the LOESS kernel size (wl) and results are presented in Fig. 4.5. As mentioned in 

Chapter 2, increasing wl benefits the smoothing of the phase function θ and thus, 

increase the signal rejection from the noise in the SWS image, which is appreciated as 

enhanced CNR and SNR following a linear progression in Fig.4.6. However, increasing 

this parameter also compromises spatial resolution (see Fig.4.6.e) as well as generates 

artifacts at the boundaries of the SWS images. Furthermore, the processing time con- 

sumed in the PD estimator stage was also increased (see Fig.4.7.), which compromises 

the feasibility of CWS in real-time. While a delay of 123.50 ± 1.46 ms was reached 

at wl = 33 with the maximum examination window size, real-time imaging was still 

accomplished below this threshold at 2 Frames Per Second (FPS). Here, evaluation 

regions were previously filtered by keeping the 95 percentile of the SWS values in the 

evaluation region, avoiding outliers of several order of magnitudes (i.e 1.3E5 m/s) that 

might severely affect mean and STD estimations. 
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Figure 4.5: SWS images of a 7 mm diameter inclusion phantom (P4) varying wl. (a) 
B-mode image at 50 dB dynamic range. SWS images are displayed with (b) 
7, (c) 15 and (d) 33 samples of wl. Blue and yellow labeled regions were set 
for quantitative measurements of inclusion and background, respectively 

 

 

 

Figure 4.6: Quantitative measures vs LOESS kernel size wl 
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Figure 4.7: Processing time consumed on the PD estimator stage with different wl 
 

Figure 4.8: Curve fitting for estimation of lateral resolution using (a) wl = 7 and (b) 

wl = 33 samples in a small lesion phantom (P4) 

 

4.2.2 Comparison with MATLAB implementation 

In order to achieve a frame rate suitable for real-time imaging, the CWS algorithm was 

adapted for parallel computing while optimizing the transfer memory between the host 

and the device (GPU). This last feature was accomplished by processing each stage of 

the algorithm with simplified variable types, such as int-16, float and short, consuming 

less memory. Since subsequent truncations of processed data often lead to inaccurate 

results, SWS estimates obtained from the GUI were compared with the ones obtained 

from a MATLAB implementation (offline mode), considering as input data for the 

latter the CRF signals acquired from the GUI. Fig.4.9 shows the SWS estimation of 

an heterogeneous phantom (P5) calculated from each implementation. Initially, by 
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setting the same LOESS kernel (i.e. wl = 33 samples), image quality of the MATLAB 

environment appeared as inferior in comparison with the GUI image. For instance, 

subtracting one SWS image from the other and removing the 5 and 95 percentile of 

the difference resulted in 0.4632 ± 0.1938 m/s. However, when wl was increased in the 

MATLAB algorithm (i.e. wl = 51), SWS values were found to be quite similar (0.0888 

± 0.0724 m/s). This results could suggest that the order of the programmed local 

regression filter was higher than the in-build smooth function used in the MATLAB 

environment. Nevertheless, as observed in Fig.4.9, both of them successfully detects 

the inclusion with well-defined edges. 
 

Figure 4.9: Comparison of CWS implementation in the GUI and MATLAB enviro- 
ment. (a) B-mode image. (b) SWS image from GUI at wl = 33. (c) SWS 
image from MATLAB at wl = 33 and (d) wl = 51 

 
 

4.3 GUI: Processing time performance 

Synchronization of data acquisition and computing time for real-time feasibility highly 

depended on the color box size (ROI) and the raw data frame rate. The first param- 

eter affected the total amount of data to process in the GPU while the other one was 

controlled by the ensemble package, Pulse Repetition Frequency (PRF) and imaging 
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depth of the ROI. In the architecture of parallel computing, if the number of samples 

in a vector is higher than the number of threads found in the device, kernel are exe- 

cuted piece-wise and multiple times, significantly lowering the processing frame rate. 

Therefore, a maximum ROI of 19.64 x 38.7 mm was set in order to avoid this condition. 

Likewise, the CRF frame rate provided by the SonixTouch automatically varied when 

imaging at different depths, changing the ensemble package and/or PRF. For instance, 

synchronization was not achieved with the current ROI in depths near the phantom 

surface (i.e. <5mm), ensemble package smaller than 10 or PRF higher than 1.3 KHz. 

Hence, a fixed frame rate of 2 Hz was established for CRF data acquisition, lowering 

the transfer speed of the host to the GPU and thus, allowing the processing frame 

rate to match with the raw data frame rate. The execution time of each process of 

the quantitative sonoelastography algorithm implemented in the GPU was measured 

with the CUDAEventRecord function, located in the CUDA runtime library. In order 

to compare the performance with a typical computer implementation, each function 

was serialized and programmed in the host computer as well, measuring the execution 

time using the time.h library. Then, the speedup of an algorithm is presented as the 

ratio of execution times in the GPU and CPU: 

Speedup(f ) = 
TCP U (f )

 
TttPU (f ) 

(4.1) 

Specifications of the acquired data for performance evaluation is described in Table 

4.2. The complete method was divided in 8 processes: Radio frequency signals to 

in-phase quadrature data (IQ, <short>), analytic data to spectral frequency variation 

data (Sono,<int16>), processing the sonoelastography data with a [3x3] median fil- 

ter (Sono-M <int16>), normalization and DC filtering of the sonoelastography data 

(Sono-F <float>), reordering the sonoelastography video according to the last ac- 

quired frame index (Reorder, <float>), computing the Fast Fourier Transform along 

the temporal dimension (FFT, <float>), phase derivative estimator and color index- 

ing (PD, <float>) and post-processing the reconstructed image with a [3x3] median 

filter (SWS-M, <unsigned char>). Then, Fig. 4.10 shows the comparison of execution 

time for GPU and CPU, while Table 4.3 presents the detailed evaluation results for 

each algorithm. Measurements of execution time for both GPU and CPU processes 

were repeated for 10 set of data, enhancing precision and reducing outliers generated 

from cache memory access. For the FFT function, evaluation was conducted using 

well-know libraries for GPU (cuFFT) and CPU (FFTW). 
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Table 4.2: Parameters of the acquired data for perfor- 

mance evaluation 

Parameter Symbol Value Unit 

Scan lines x 128 samples 

Ensemble package e 14 samples 

Axial samples z 1020 samples 

Acquired frames p 50 - 

Local regression kernel kl 9 samples 

Depth offset Z0 11 mm 

Lateral pixels w 230 pixels 

Axial pixels h 169 pixels 

Pulse Repetition Frequency P RF 600 Hz 

Frame rate F R 2 Hz 

 

Figure 4.10: Performance of each process of the quantitative sonoelastography algo- 
rithm. (a) Execution time on GPU and CPU, (b) Speedup. 

 
Table 4.3: Execution time of the quantitative sonoelastography processes 

Process TttPU (ms) TCP U (ms) Speed-up 

IQ 19.47 ± 0.07 738.62 ± 0.80 37.93 ± 0.13 

Sono 39.47 ± 0.14 421.05 ± 1.91 10.67 ± 0.04 

± 0.65 

± 0.04 

± 0.74 

± 0.09 

± 0.33 

± .35 

 Sono-M 0.52 

Sono-F 30.93 

Reorder 1.42 

FFT 6.30 

PD 38.11 

SWS-M 0.82 
   

 

0.01 24.33 ± 

0.15 249.99 ± 

0.01 109.29 ± 

0.01 62.55 ± 

0.25 1874.86 ± 

0.01 30.96 ± 

 

0.35 46.52 ± 

0.42 8.08 ± 

0.49 76.71 ± 

0.59 9.92 ± 

1.53 49.21 ± 

0.33 37.59 ± 0 
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4.4 R-WAVE: Crawling wave simulation 

Estimation results of homogeneous and heterogeneous medium are presented in Fig.4.12, 

4.13, 4.14 for all vibration frequencies. Spatial resolution on two-phase medium was 

calculated as the rising time of a fitted step response using an in-build MATLAB es- 

timator. Regarding the estimation accuracy, the resulting SWS signal was splitted in 

two at the center value of the lateral vector, where the ideal boundary was located. 
 

Figure 4.11: Crawling wave simulation in different media at 260 Hz vibration frequency. 
Left: Simulated sonoelasticity image. Right: Lateral profile for SWS 
estimation. Top: [1 5] m/s SWS media. Center: [2 4] m/s SWS media. 
Bottom: [3 3] m/s SWS media (homogeneous). 

 

where h and t subindex stand for high and low SWS regions, respectively. 

As observed in Fig. 4.12, R-WAVE outperformed the others estimators in homoge- 

neous media at all frequencies, presenting the lowest bias (PD: 0.32%, 1DH: 2.12%, 

R-WAVE: 0.009%) and CV (PD: 2.10%, 1DH: 0.83%, R-WAVE: 0.19%). While PD 

showed comparable performance at 360 Hz or higher (4.503 ± 0.024 m/s), overesti- 

mation and increase of estimate variance was present at lower frequencies. Likewise, 

1DH underestimated the homogeneous SWS at frequencies below 250 Hz (4.295 ± 

0.072 m/s), improving it principally by increasing the autocorrelation kernel, since no 

significant change was appreciated at higher frequencies. In the first two-phase media 

(see Fig. 4.13), R-WAVE present enhanced CNR at frequencies higher than 250 Hz 

(PD: 36.95 dB, 1DH: 30.75 dB,R-WAVE: 41.68 dB) while keeping the lowest SR (PD: 



4 Experiments and Results 53 

Tesis de Maestría Eduardo González 

 

 

 
 

 
 

Figure 4.12: Mean and STD values of SWS estimation in homogeneous media of 4.5 
m/s SWS. Top: PD. Center: 1DH. Bottom: R-WAVE 

 
4.24 mm, 1DH: 6.32 mm, R-WAVE: 3.07 mm). Although increasing the smoothing 

parameters degraded CNR and SR on all estimators, R-WAVE was the least affected 

among the three. For instance, at 300 Hz, difference of CNR and SR using the lowest 

and highest smoothing parameter for each estimator was [7.08 mm; 11.12 dB], [7.11 

mm; 16.17 dB] and [3.29 mm; 3.13 dB] for PD, 1DH and R-WAVE, respectively. In 
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Figure 4.13: Spatial resolution and CNR of two-phase media with 2 m/s and 4 m/s 
SWS. Top: PD. Center: 1DH. Bottom: R-WAVE 

 
comparison with PD and 1DH smoothing parameter’s range, however, it is worth men- 

tioning that the typical α used in experimental data range from 0.5 to 3. Hence, a 

regularization coefficient of 7 is unlikely to be used in practice. Similarly, comparison 

of estimation results in the second two-phase media (see Fig.4.14) benefit R-WAVE 

at frequencies higher than 180 Hz in CNR (PD: 30.19 dB, 1DH: 25.77 dB,R-WAVE: 
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Figure 4.14: Spatial resolution and CNR of two-phase media with 1 m/s and 5 m/s 
SWS. Top: PD. Center: 1DH. Bottom: R-WAVE 

 
46.53 dB) and SR (PD: 3.36 mm, 1DH: 4.33 mm, R-WAVE: 1.16 mm). For instance, 

at 300 Hz, variation of CNR and SR was [5.48 mm; 11.82 dB], [6.61 mm; 17.27 dB] 

and [0.44 mm; 1.92 dB] for PD, 1DH and R-WAVE, respectively. 
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Figure 4.15: Estimated SWS profile of a heterogeneous (left) medium of [1 5] m/s SWS 
and homogeneous (right) medium of 4.5 m/s SWS. Results computed with 
f @ 260 Hz, PD @ 35.3% wl, 1DH @ 22 wa and R-WAVE @ 1.36 α. 

 

Figure 4.16: Estimated SWS profile of a heterogeneous (left) medium of [2 4] m/s SWS 
and homogeneous (right) medium of 1.5 m/s SWS. Results computed with 
f @ 260 Hz, PD @ 35.3% wl, 1DH @ 22 wa and R-WAVE @ 1.36 α. 

4.5 R-WAVE: Experiments on elasticity phantoms 

In this section, results on elaborated elasticity phantoms as well as calibrated tissue 

mimicking phantom are presented. For all experiments, CrW were processed with a 

fixed moving filter of [2 6] m/s elasticity range. Furthermore, each estimator computed 

the SWS images with a corresponding fixed smoothing parameter, which was calibrated 

from CrW data provided by the University of Rochester, USA. In an heterogeneous 

phantom of 3 m/s background and 5 m/s inclusion of 12 mm (P7), selection of the 

optimal parameter was conducted by minimizing the bias function of the mean SWS 
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from the inclusion region at 360 Hz vibration frequency. The calculated smoothing 

parameter were: α = 1.2, wl = 30% of the total lateral samples and wa lateral samples 

for R-WAVE (GTR), PD and 1DH, respectively. 

 

4.5.1 Gelatin-based phantoms 

Homogeneous phantoms 

Fig.4.17 presents the estimation result for the 10% concentration homogeneous phan- 

tom (P2) with a vibration frequency of 250 Hz. While all estimators successfully asses 

the SWS true value (4.08 ± 0.34 m/s), estimation results of R-WAVE showed better 

performance due to its slightly reduced STD ( PD: 4.02 ± 0.19 m/s, 1DH: 3.76 ± 0.12 

m/s, R-WAVE: 3.91 ± 0.09 m/s). Likewise, the same experiment was conducted on the 

stiffest tissue elasticity phantom (P1: 4.95 ± 0.31 m/s), where results (see Fig.4.18) 

followed the same trend (PD: 5.17 ± 0.12 m/s, 1DH: 5.00 ± 0.08 m/s, R-WAVE: 5.16 

± 0.06 m/s). However, SWS underestimation is observed on all estimators at the top 

corners of the reconstructed images (4.4 ± 0.29 m/s). The main cause is the low CNR 

of the CrW due to reflection at the phantom borders and/or weak coupling. Since this 

artifacts are related to the CrW quality and not to the performance of the estimators, 

they were not included in the evaluation region. 

 

Heterogeneous phantoms 

SWS plots for the heterogeneous phantom of 8% (3.43 ± 0.28) and 10% (4.08 ± 0.34) 

gelatin concentration (P6) are shown in Fig.4.19. Similar to experiments of inclusion 

phantom using the GUI (see Fig.4.4), two square windows of 10 mm (see Fig.4.19.a) 

were used to quantify mean SWS, STD and quantitative measures of background 

and inclusion regions, which are displayed in Table 4.4. Again, despite the accurate 

estimation of both background and inclusion regions of the three estimators, R-WAVE 

presented higher CNR in comparison with the other ones. Likewise, underestimation 

is visualized in all cases due to reduced quality of the CrW. 

In order to evaluate the influence of the vibration frequency on R-WAVE perfor- 

mance in comparison with the other estimators, data from CWS experiments on a 

heterogeneous phantom (P7) was processed. A cylindrical lesion of 10 mm diameter 

was placed at 25 mm depth and multiple acquisitions were conducted at several vi- 

bration frequencies, ranging from 140 Hz to 360 Hz in 20 Hz step with a ∆f of 0.4 

Hz. Additionally, ground truth values were estimated with mechanical measurements 
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Figure 4.17: Estimated SWS profile of an homogeneous phantom (P2). (a) B-mode 
image. SWS images using (b) PD, (c) 1DH and (d) R-WAVE. 

 

Figure 4.18: Estimated SWS profile of an homogeneous phantom (P1). (a) B-mode 
image. SWS images using (b) PD, (c) 1DH and (d) R-WAVE 
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Figure 4.19: Estimated SWS profile of an heterogeneous phantom (P6). (a) B-mode 
image. SWS images using (b) PD, (c) 1DH and (d) R-WAVE 

 
Table 4.4: Quantitative measurements of the P6 phantom 

Est. SWSi [m/s] SWSb [m/s] CNR [dB] CR [dB] SR [mm] 

PD 4.25 ± 0.19 3.51 ± 0.15 25.02 1.66 1.91 

1DH 4.24 ± 0.12 3.63 ± 0.12 28.91 1.36 2.664 

R-WAVE 4.31 ± 0.11 3.59 ± 0.09 34.90 1.58 2.83 

 

(MM) applied in homogeneous phantom from each region (Background: 8%, Inclu- 

sion: 13%), following the framework of Rojas et al. [ROS+13]. A QT/5 mechanical 
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device (MTS Systems Co., Eden Prairie, MN, USA) with a 5 N load cell was used to 

test the cylindrical samples of each concentration phantom. Then, the Kelvin Voigt 

Fractional Derivative (KVFD) model was implemented for fitting each of the acquired 

stress-relaxation curves. Then measured SWS of the 8%, 13% gelatin phantoms were 

approximately 3.5 m/s and 5 m/s, respectively. Fig.4.20 shows the quantitative mea- 

sures from the generated SWS images along the frequency range while Fig.4.21 depicts 

the comparison of the SWS images between each estimator at a specific frequency. The 

results closely followed the trend deduced in simulations, since R-WAVE showed the 

lowest bias of the inclusion SWS at frequencies higher than 200 Hz (PD: 3.34%, 1HD: 

5.64%, R-WAVE: 1.48%), which is reflected on CNR, . Furthermore, SR of R-WAVE 

slightly changed while increasing the vibration frequency (3.54 ± 1.59 mm), which was 

not the case for PD (8.86 ± 4.89 mm) nor 1DH (6.80 ± 3.14 mm). On the other hand, 

crawling waves with vibration frequencies below 200 Hz adversely affected accuracy of 

all estimators for both inclusion (PD: 12.62%, 1HD: 15.38%, R-WAVE: 10.04%) and 

background regions (PD: 9.78%, 1HD: 8.27%, R-WAVE: 8.10%). 
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Figure 4.20: Quantitative measurements of each estimator in a heterogeneous phantom 

(P7). (a) Inclusion SWS, (b) Background SWS, (c) CNR, (d) CR, (e) SR. 
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Figure 4.21: SWS images of an inclusion phantom (P7) of 5m/s and 3.5 m/s back- 
ground SWS. (a) B-mode image. (b) Lateral profile of reconstructed SWS 
images at 25 mm depth. SWS images using (c) PD, 1DH (d) and (e) R- 
WAVE 

 

4.5.2 Breast elasticity phantom 

Performance of the R-WAVE in comparison with the other estimators was conducted 

on  a  calibrated  breast  elasticity  phantom  QA  059  (CIRS§R ,  Virginia,  USA),  which 

simulated the biomechanical properties of a human breast. The phantom featured 

spherical lesions of different diameter size (3 mm - 10 mm) and which were randomly 

distributed in an homogeneous media of 20 ± 5 KPa (2.582 ± 0.346 m/s). According 

to the technical specifications, inclusion elasticities were guarantied to be higher than 
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twice the elasticity of the background (i.e. 4.08 m/s).  For  this CWS experiment,  

the normal excitation setup was used instead of the parallel setup due the coupling 

limitations that the latter provides. A vibration module for a vibroelastography system 

was configured for CWS excitation and attached to the ultrasound transducer (see 

Fig.4.22). Here, the generated interference pattern is not presented as vertical lines 

but curved. Therefore, compensation on reconstructed SWS images of all estimators 

is required, which was computed using Partin et al. framework [PHB+13]. 
 

Figure 4.22: Normal excitation setup for CWS experiments on a breast phantom. (a) 
L14-5/38 transducer. (b) QA 059 breast phantom. (c) Vibration module 
from a vibroelastography system 

 

Fig.4.23 and Fig.4.24 presents estimation results from two homogeneous regions 

acquired at 185 Hz and 333 Hz of vibration frequency, respectively. In both cases, 

all estimators successfully assess the elasticity in the background region since SWS 

values located between the tolerance of the background regions (PD: 2.30 m/s, 1DH 

2.31 m/s, R-WAVE: 2.30 m/s). Still R-WAVE presented lower standard deviation 

from the estimates (PD: 0.103 m/s, 1DH 0.065 m/s, R-WAVE: 0.039 m/s). In all 

images, artifacts located at lower and upper boundaries are related to the low CNR 

of the CrW (see Fig.4.23.b), which are produced due to penetration limitations of the 

normal excitation as well as inaccurate coupling. 

Similarly, Fig.4.25 and Fig.4.26 present estimation results from two lesions acquired 

at 185 Hz and 260 Hz of vibration frequency, respectively. Here, an underestimation 
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Figure 4.23: SWS images of the first homogeneous region in the breast phantom. (a) 
B-mode image. (b) CrW image. SWS images using (c) PD, (d) 1DH and 
(e) R-WAVE 

 

Figure 4.24: SWS images of the second homogeneous region in the breast phantom. 
(a) B-mode image. (b) CrW image. SWS images using (c) PD, (d) 1DH 
and (e) R-WAVE 

 
of the lesion for all estimators is evident at 185 Hz (see Table 4.5), which is slightly 

corrected at higher frequencies (see Table 4.6). While the PD yields the lowest in- 

clusion bias among the three, presence of high estimation artifacts in the lateral sides 

contributes to added noise in the evaluation region, severely affecting the CNR. Results 
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on the calibrated phantoms suggest that R-WAVE outperforms PD as well as 1DH in 

CNR and CR, while no definitive conclusion can be stated regarding the SR. 
 

Figure 4.25: SWS images of the first lesion in the breast phantom. (a) B-mode image. 

(b) CrW image. SWS images using (c) PD, (d) 1DH and (e) R-WAVE 

 
 

Table 4.5: Quantitative measurements of the first lesions in the breast 
phantom 

Est. SWSi [m/s] SWSb [m/s] CNR [dB] CR [dB] SR [mm] 

PD 3.39 ± 0.13 2.18 ± 0.44 22.68 3.85 2.04 

1DH 3.16 ± 0.07 2.28 ± 0.23 28.68 2.87 4.82 

R-WAVE 3.23 ± 0.04 2.22 ± 0.08 47.31 3.26 3.94 
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Figure 4.26: SWS images of the second lesion in the breast phantom. (a) B-mode 

image. (b) CrW image. SWS images using (c) PD, (d) 1DH and (e) R-

WAVE 

 

Table 4.6: Quantitative measurements of the second lesions in the breast 
phantom 

Est. SWSi [m/s] SWSb [m/s] CNR [dB] CR [dB] SR [mm] 

PD 3.92 ± 0.41 2.84 ± 2.02 -5.56 2.74 1.80 

1DH 3.61 ± 0.23 2.73 ± 0.17 24.96 2.41 1.94 

R-WAVE 3.64 ± 0.18 2.46 ± 0.18 32.37 3.41 1.49 
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5 Discussion 

 

5.1 GUI for real-time CWS 

Despite modifying the IQ filter order from 2 to 6 in the GUI implementation, speckle 

noise was still found in the reconstructed interference pattern. Although this artifacts 

could negatively influence the CrW’s normalization and DC filtering, most of them 

are removed with the [3x3] median filter. Hence, estimation errors are not perceived 

when comparing the final SWS images with the ones obtained from MATLAB imple- 

mentations. Likewise, increasing the vertical size of this median filter could further 

enhance CNR of CrW. However, depending on the CWS excitation setup (normal or 

parallel) and the distance between the sources (D), size limitations must be adjusted 

since CrW might not present the parallel behavior. 

Due to the temperature conditions in the experimental environment, data acquisi- 

tion from gelatin-based phantoms for ground truth values and GUI estimations were 

conducted at different days. The main reason was the low lifetime of the material, 

requiring constantly storage and freezing in order to cope with the high temperature 

and humidity. Therefore, given the cumulative water and increased stiffness from day 

to day, the mimicking tissue varied its local SWS through the experiment, resulting in 

SWS estimation errors. This was also the case for R-WAVE experiments on gelatin- 

based phantoms. 

Accuracy estimation on homogeneous as well as heterogeneous phantoms was nega- 

tively affected when operating at a higher excitation vibration frequency. For instance, 

bias in the P3 phantoms increased from 7.29% to 10.20% at 200 Hz and 300 Hz, re- 

spectively. Likewise, bias of the inclusion region in the P5 phantom increased from 

4.71% to 14.06% operating at the same frequencies. This is understandable since imag- 

ing tissues using high excitation frequencies develop into shorter interference patterns, 

where differentiation of the phase function is more sensitive due to the low resolution 

of the crawling waves. Hence, a single phase step along the lateral dimension could 

be rounded up (or rounded down) resulting in biased SWS estimation accuracy, which 

is verified by the given estimation results. Likewise, lateral artifacts reported in the 
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literature of PD estimator were as well visualized in the reconstructed SWS images. 

However, they did not significantly affected differentiation of the examined inclusion 

from the background region nor the computation of the quantitative measurements. 

Instead, artifacts of high estimation variance were found through the entire image 

due to bad coupling of the mini-shakers that were later corrected by increasing the 

excitation amplitude, improving the SNR of the CrW. 

A fixed ROI of was established for the feasibility of CWS in real-time. With the 

current imaging area, a lesion width a maximum diameter d of 19.64 mm could be 

detected. Since CWS as well as most elastography techniques are aimed to early 

detection of tumors, this is not a limitation. For instance, breast cancer lesion of size 

smaller than 20 mm are commonly classified in the T1 stage group, where most of 

the elastography-aided diagnosis cases usually fall. However, further classification into 

T1a (d < 1 mm),  T1b (1 mm < d < 5 mm),  T1c (5 mm < d < 10 mm) and T1d      

(10 mm < d < 20 mm) subclasses is still not possible given the estimation results 

on elasticity phantoms. Although the lateral resolution reported (2.19 ± 0.63 mm) 

was comparable with the performance of CWS in previous studies (2.38 ± 0.51 mm), 

overestimation is appreciated near boundary regions of the inclusion in SWS images of 

small diameter (see Fig. 4.5), where the maximum diameter found was 4.8 mm larger 

(11.8 mm) than the true diameter of the lesion (7 mm). 

Several real-time systems of quantitative elastography techniques has been reported 

in the literature. However in most of these studies, feasibility of such imaging sys- 

tems is demonstrated by analyzing the acquisition and processing rate in offline mode 

implementations. Then, if the processing rate outperforms the raw data acquisition 

rate, real-time imaging is assumed as achieved. In contrast, this study evaluates the 

physical implementation of the CrW algorithm in a real ultrasound scanner, where 

the technical characteristic of the processor, memory bandwidth as well as delay gen- 

erated by running multiple applications in the operating system are also considered. 

It is worth mentioning that in the present thesis, the concept of real-time imaging is 

referred to the possibility of depicting a series of images during a standard examination 

procedure, allowing the technician to correct and acquire new images if complications 

are encountered. 

While a frame rate of 2 Hz allowed real-time visualization of elasticity estimates, 

several sonoelastography images are required in order to depict a single SWS frame. 

Therefore, the frame rate reported did not represent the update of the SWS images 

when moving to a different region of the tissue, changing the vibration frequency or 

turning on/off the exciters. In the FFT, at ∆ f = 0.4 Hz, quality of the θ function 
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estimation and thus, detection of the inclusion was appreciated after approximately 

17 new acquired frames of filtered CrW. Therefore, the true update rate when chang- 

ing imaging regions was around 8.5 s. This is still comparable with other real-time 

implementations such as the case of vibroelastography [BEW+12], where a delay of 

approximately 5 to 7 seconds is to be expected before displaying an image in order to 

stabilize the autocorrelation function used for speckle tracking. Moreover, enhance- 

ment of the final image is achieved by averaging previously processed SWS values, 

lowering the frame rate as well. 

The reported speedup (26.16 ± 0.22) is comparable with the framework of Baghani 

et al., where an average speedup of 32 was achieved for an implementation of freehand 

vibroelastography system [BEW+12] using a CUDA supporting graphics card (GTX 

580 NVIDIA). Regarding the computing architecture, it is worth mentioning that the 

current work was conducted on a single GPU of relatively standard computing features 

(GTX 750 NVIDIA). Hence, increasing the number of GPU as well as enabling multi- 

thread processing in the host computer could significantly improve the speed up, which 

develops into higher frame rates of displayed SWS images, as reported in previous 

contributions [YTY11]. 

 

5.2 R-WAVE performance 

Simulation results at lower frequencies severely degraded the performance of the three 

estimators. In the case of R-WAVE, imaging tissues with low excitation frequencies 

produces fewer interference patterns in a single frame, detecting one or two pairs of 

peaks at most. Therefore, the overdetermined system of equations initially assumed 

is not necessary achieved due to missing local SWS values, which worsen the ill-posed 

problem and generates high estimation errors in the solution of the x vector. On 

the other hand, in comparison with the other estimators that are more sensible to 

estimation errors at higher frequencies, wavelength of the CrWs are shortened and 

more interference patterns are visualized. Thus, more equations can be processed in 

a single frame, reducing the condition number of total matrix A and improving the 

CNR (+4.3 dB from 200 Hz to 450 Hz at α =1) as well as spatial resolution (-3.8 mm 

from 200 Hz to 450 Hz at α =1). 

Although variation of the smoothing parameters was not evaluated in tissue mim- 

icking phantoms, simulation results showed that increasing this parameter for PD and 

1DH compromised the CNR as well as the lateral resolution, while R-WAVE perfor- 

mance was slightly affected even when considering α values far superior than the ones 
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usually selected for SWS estimation. The degradation of CNR in PD is related to 

the increase of lateral artefacts that are produced at higher LOESS kernel size, which 

affects the STD of both high and low elasticity regions. Likewise, while 1DH present 

SNR enhancement by increasing the autocorrelation kernel size, SWS underestimation 

of region is also observed, severly affecting the CNR. 

Results from homogeneous phantoms indicates that R-WAVE provide robust assess- 

ment of homogeneous medium due to it CV in soft (PD: 4.7%, 1DH: 2.9%, R-WAVE: 

2.2%) and stiffer (PD: 2.4%, 1DH: 1.6%, R-WAVE: 1.2%) tissues. Likewise R-WAVE 

performance on the P7 heterogeneous phantom while varying the vibration frequency 

indicates a favorable accuracy for both inclusion and background regions except for 

frequencies below 200 Hz due to the low quantity of peaks along the lateral profile, as 

noted in the previous discussion. In practice, limitations of R-WAVE applications may 

be found on stiffer lesions or regions where typical excitation frequency is set under 

200 Hz, such as prostate cancer or ablation liver for ex-vivo experiments. 

One of the advantages of the R-WAVE method in comparison with PD method is the 

reduction of artifacts in the boundaries of the ROI. While artifacts in the lateral sides 

were severely diminished mostly as a result of the wavelength extrapolation, artifacts 

at top and bottom regions were also reduced. In practice, these artifacts with high 

values of shear wave speed might mislead the technician into the presence of stiffer 

masses. Thus, the accuracy of diagnosis is undermined due to false-positive lesions, 

which are suppressed by the R-WAVE method. Similar to this artifacts, reduction 

of the image width is produced due to the increment the smoothing parameter wa 

of the 1DH estimator. In contrast, R-WAVE maintains the effective ROI for SWS 

reconstruction when operating at a high regularization coefficient α. 

Finally, experiments conducted on homogeneous regions from the calibrated breast 

phantom showed favorable results for all estimators in successfully assessing the true 

SWS values. However, despite the boundary artifacts in all images due to the CrW 

low SNR, R-WAVE provided more robust elastograms which are related to a lower CV 

(PD: 4.5%, 1DH: 2.8%, R-WAVE: 1.7%). For lesion experiments, PD presented the 

smallest bias in the SWS estimates compared to the true value stated by the provider 

(PD: 3.92%, 1DH: 11.52%, R-WAVE: 10.78%). Still, images generated from R-WAVE 

depicted reduced artifacts and well-defined homogeneous regions, surpassing the other 

ones in locating the lesion . One possible cause of the underestimation in inclusion 

regions is the distortion of the crawling waves due to multiples reflections produced by 

near lesions in a confined space. For instance, when displaying a B-mode image where 

no apparent lesion is observed, crawling waves of certain circular curvature could still 
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be visualized, which are further processed and converted in a lesion. Similarly, crawling 

wave acquisition from the current inclusion experiments might be affected by reflection 

of other lesion located along the azimuthal direction of the transducer, stretching or 

compressing the wavelength the projected crawling waves in the ROI and thus, adding 

bias to the results. However, validation of this hypothesis is yet to be tested and will 

be conducted in future works. 

From all the experiments conducted it can be concluded that the regularized method 

outperforms the other estimators in CNR and estimation accuracy. Although an im- 

proved lateral resolution was achieved in R-WAVE simulations, experiments on tissue 

mimicking phantoms did not completely reflected this trend. Hence, no definitive 

conclusion can be stated regarding this last metric. 
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6 Conclusion 

In this study, a real-time graphical user interface for quantitative elastography based 

on GPU parallel processing was successfully implemented on a research ultrasound 

system. Experiments on tissue mimicking phantoms have demonstrated good perfor- 

mance on the accuracy of the shear wave speed estimates while also allowing the user 

to adjust, in real-time, display parameters that could improve the quality of the re- 

constructed elasticity images. On the other hand, a novel shear wave speed estimator 

has been proposed and tested on simulation, gelatin-based phantoms and calibrated 

tissue mimicking phantoms. The performance comparison with other estimators found 

in the literature suggest that the new estimator demonstrates significant artifact re- 

duction, CNR enhancement and improved estimation accuracy of SWS images while 

maintaining the effective ROIs. This two contribution benefits the implementation and 

development of further elastography techniques that could provide enhanced quality 

of elasticity images and thus, improved accuracy of diagnosis. 
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A R-WAVE: Weighted coefficient 

estimation analysis 

A.1 Wavenumber model 

Let A and B be regions of different elasticity located in a CrW segment (between two 

peaks) generated by a frequency f and f + ∆f , as presented in Fig. A.1. The sinus 

segments for each region are obtained using Eqn. 2.15 and wavenumber KA and KB, 

with no attenuation (αc = 0) and no movement (t = 0). For simplification purposes, 

both regions are composed of one element each, an equivalent region Eq is estimated 

by measuring the distance between peaks. 
 

Figure A.1: Theoretical setup for two regions located in a CrW segment 

 

At the beginning and end of each peak, both curves −sin(KAx) and −sin(KBx) 

converge with −sin(Keq), therefore: 
 

x = α : −sin(KAα) = −sin(Keqα), ⇒ KAα − Keqα = 2πn (A.1) 

x = β : −sin(KBβ) = −sin(Keqβ), ⇒ KBβ − Keqβ = 2πm (A.2) 
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Summing Eq.A.1 and Eq.A.2: 

 

KAα + KBβ − Keq(α + β) = 2πl, l = n + m (A.3) 

α 

α + β 

 
KA + 

β 

α + β 

 
KB = Keq + 

2πl 

α + β 

 
(A.4) 

Since the number of cycles in the equivalent medium is not greater than 1, l = 0. The 

relationship obtained in Eqn. A.4 can be used in the regularized method (i.e. GTR) 

as Axj = Kav, where Kav is the average wavenumber measured between peaks. The 

resulting SWS values can be later obtained by computing c = 2πf/k. However, a 

quick simulation (see Fig. A.2) shows that the Wavenumber Model (WM) presents an 

under-damped response in a step function of elasticity compared with the Empirical 

Model (EM) described in section 3.2.4. Since the optimization variable of the the EM 

(c) differs from the WM (k), a different regularization coefficient is used for the latter. 

The simulation setup is detailed in Table 3.4. 
 

Figure A.2: Solutions from a simulated inhomogeneous media using the Wavenumber 
Model and the Empirical Model with different α 

 
 

A.2 Shear wave speed model 

Another solution is recasting the optimization problem in terms of the variable c to 

further reduce the error amplification in c = 2πf/k, as stated in the last approach. 

Using k = 2πf/c in Eqn. A.4 results: 

    α 2πf 
+

   β 2πf 
= 

2πf 
 

(A.5) 
α + β CA α + β CB Ceq 
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f (C1, C ) = (α + β) 0 = C (A.9)2  
 0 

0 

0 

0 

0 

 

(α + β)
  CACB 

= C (A.6) 
αCB + βCA 

Since this is a non-linear problem, the Taylor series is used to approximate it to a 1st 

order linear equation around a fixed SWS value C0 for both CA and CB: 

f (CA, CB)|C1,C2 ≈ f (C1, C2) + 
∂f (C1, C2) 

∂CA 
(CA − C1) + 

∂f (C1, C2) 

∂CA 
(CB − C2) (A.7) 

Estimating each term in Eqn. A.6 
 

f (C , C ) = (α + β)
  CACB 

 
 

(A.8) 

αCB + βCA 

  C2 

C0(α + β) 
∂f (C1, C2)

(
 

) = 
C0(αC0 + βC0) − βC2 

(
 

 
  

) = 
α 

( 
 

  

) (A.10) 

∂CA 
CA − C1 (α + β)C2 

CA − C0 α + β CA − C0 
∂f (C1, C2)

(
 

) = 
C0(βC0 + αC0) − αC2 

(
 

 
  

) = 
β 

( ) 
 

  

∂CB 
CB − C2 (α + β)C2 

CB − C0 α + β 
CB − C0  

(A.11) 
 

Then, replacing each term in Eqn. A.7 
 

α β 

f (CA, CB)|C1,C2 ≈ 
α + β 

CA + 
α + β 

CB (A.12) 

From Eqn. A.12 it can be observed that the Taylor approximation is very similar to 

the WM. However, since the Shear Wave Speed Model (SWSM) is expressed in terms 

of the shear wave speed c, no additional inversion steps are required to find c, avoiding 

computation errors. Similar to the previous model, simulations were conducted for 

both SWSM and EM in inhomogeneous media (see Fig. A.3). Although both models 

presented similar responses at the same regularization coefficient, the EM exceed the 

SWSM in lateral resolution and estimation accuracy, even when increasing α in the 

SWSM. Hence, EM is selected for the estimation of the weighted coefficients in the 

R-WAVE algorithm of the current thesis work. 

A B 

eq 
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Figure A.3: Solutions from a simulated inhomogeneous media using the Shear Wave 
Speed Model and the Empirical Model with different α 
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