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Abstract

The aim of this master thesis is to design a control system based on model predictive
control (MPC) with sensor data fusion for obstacle avoidance. Since the amount of
obtained data is larger due to multiple sensors, the required sampling time has to be
larger enough in comparison with the calculation time of the optimal problem. Then
it is proposed a simplification of the mobile robot model in order to reduce this opti-
mization time.

The sensor data fusion technique uses the range information of a laser scanner and
the data of a mono-camera acquired from image processing techniques. In image pro-
cessing different detection algorithms are proposed such as shape and color detection.
Therefore an estimation of the obstacles dimension and distance is explained obtaining
accurate results.

Finally a data fusion for obstacle determination is developed in order to use this
information in the optimization control problem as a path constraint. The obtained
results show the mobile robot behavior in trajectories tracking and obstacle avoidance
problems by comparing two different sampling times. It is concluded that the mobile
robot reaches the final desired position while avoiding the detected obstacles along the
trajectory.



Kurzfassung

Ziel dieser Masterarbeit ist, einen Steuerungsentwurf auf Basis der modellprädiktiven
Regelung (MPC) mit Sensordatenfusion und zur Hindernisvermeidung. Da die Menge
der erhaltenen Daten aufgrund mehrerer Sensoren größer ist, muss die erforderliche
Abtastzeit im Vergleich zur Rechenzeit des optimalen Problems größer sein. In der
Arbeit wird eine Vereinfachung des mobilen Robotermodells vorgeschlagen, um diese
Optimierungszeit zu reduzieren.

Die Sensordaten-Fusionstechnik verwendet die Bereichsinformation eines Laserscan-
ners und die Daten einer Monokamera, die durch Bildverarbeitungstechniken gewon-
nen werden. Bei der Bildverarbeitung werden verschiedene Erfassungsalgorithmen
vorgeschlagen, wie z. B. Muster- und Farbdetektion. Eine Schätzung der Hindernis-
dimension und -distanz wird erklärt, um genaue Ergebnisse zu erzielen.

Schließlich wird eine Datenfusion zur Hindernisbestimmung entwickelt, um diese In-
formation im Optimalsteuerungsproblem als Pfadbeschränkung zu nutzen. Die erziel-
ten Ergebnisse zeigen das Verhalten des mobilen Roboters bei Trajektorienverfolgungs-
und Hindernisvermeidungsproblemen, indem zwei verschiedene Abtastzeiten verglichen
werden. Es wird gefolgert, dass der mobile Roboter die endgültige gewünschte Posi-
tion erreicht, während die erkannten Hindernisse entlang der Trajektorie vermieden
werden.
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1 Introduction 1

1 Introduction

1.1 Motivation
In today’s world, it is seen that the technology has evolved in an exponential manner
over the years. That is to say, the case that human intervention performs various
activities is declining, either to reduce the execution time of a job or the difficulty of
controlling a system. Because of this phenomenon, corresponding technology has been
introduced as well to industries as to the daily life of people.

In the field of engineering, these technological changes can be seen. Since the begin-
ning of the last century systems have been implemented which exclusively relied on
the management of human beings, but in the last decades, ways were sought that
these systems are intelligent, i.e., they can function on their own without or very lit-
tle human intervention, and this is how the concept of artificial intelligence was created.

If one talks about artificial intelligence, there is by definition a system that has to make
a decision to reach some goals under consideration of its situation and environment.
That system can tend to create an autonomous system. Autonomous systems have
been used in various fields of application with regard to civil, rural, military areas, etc.
Thus, unmanned vehicles whether on land, sea and air begin to play an important role
in the execution of various tasks and they are developed further. Specifically, if there
is an unknown area, these unmanned vehicles must behave autonomously, i.e., that the
control system must capable of performing the sensing, processing and decision-making
tasks in real-time considering the characteristics of the system itself, the existing con-
straints and physical resources.

Talking about exploration, the environment in which they move greatly influences the
performance of the task. Ground vehicles have problems regarding the geography of
the terrain and obstacles along the way. Tracking trajectories and obstacle avoidance
are the most common tasks of these ground vehicles, i.e. the vehicle goes from an ini-

1



1 Introduction 2

tial position to a final position avoiding all the stationary and moving obstacles that
are in the unknown area.

Many control strategies and techniques have been implemented for solving these prob-
lems like Model Predictive Control (MPC) that is a robust and reliable advanced
control strategy that can handle dynamic Multiple Inputs Multiple Outputs (MIMO)
systems. It is shown to be more effective than classical control methods because the
main feature of MPC is that the desired behavior as well as the constraints on the
system can be directly specified in the problem formulation.

In trajectories tracking the external constraints are defined as the stationary or moving
unknown obstacles, then it is important and necessary to capture all the information
coming from these unknown obstacles in order to avoid them and achieve the goal
position. By adding devices and fusing the sensors data one can improve the obstacle
identification.

Sensor fusion refers to the synergistic use of information from different sensors so that
the system can achieve a required task. Fusion of data is especially important in any
application where a large amount of data must be combined, merged and grouped to
obtain the appropriate quality and integrity of the decisions to be made. The ad-
vantages of multi-sensor data fusion are redundancy of the information can reduce
uncertainty, increase of the accuracy and increase of the reliability in case of sensor
failure. Thus the data fusion process allows to combine the measurements and infor-
mation in order to deliver the sufficient knowledge to achieve the required task.

For these reasons, the central goal of this thesis is the implementation of a sensor fusion
algorithm for obstacle identification and application of MPC for trajectories tracking
and obstacle avoidance with the mobile robot SUMMIT. Since sensor fusion sometimes
requires a large computation time due to the data processing of each sensor, then the
problem to compensate this computation time arises. Because of this, a mathematical
3-state model is proposed to simplify the system behavior.

2
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1.2 Previous works and initial situation
As mentioned before, recently the number of applications of autonomous mobile robots
has been increasing noticeably in scientific research. Because of this the necessity of
sensors arises, such as laser scanners and cameras. The possibility of extracting basic
information from the robot environment by means of small and low-power integrated
triangulation laser scanner was demonstrated by (Fu, Corradi, Menciassi, & Dario,
2011). Also a method which uses an angle histogram to create a path to improve
the accuracy of navigation in a corridor environment by using a laser scanner was
proposed by (J. K. Park, Kim, & Park, 2015). On the other hand, talking about
obstacle detection, (Hussin, Juhari, Kang, R.C.Ismail, & Kamarudin, 2012) presented
color processing techniques as primary filtering and Circular Hough Transform (CHT)
as a shape detection technique, (Lee, Yi, & Cho, 2016) used the inverse perspective
mapping (IPM) method and (T.N.R.Kumar, 2015) proposed a real time approach for
road boundary and lane detection, and also pothole and object detection in a road
by using Hough transform (HT). Often when using image processing techniques some
parameters of the camera must be determined, i.e. the case in (Zhang, 2000) and
(Heikkilä & Silvén, 1997) where different calibration techniques and procedures are
proposed.

Mobile robots have not only to execute predefined programmed tasks, but also they
must explore the unknown working environment. A new model for mobile robot 3D
environment using a mono-vision system was proposed, implemented and tested by
(Al-Jarrah, 2016). Some conditions for modeling the environment are the obstacles
dimensions and the distance estimation between these obstacles and the mobile robot.
A measuring system based on a single non-metric CCD camera and a laser projector
was implemented by (Wang, Lu, Wang, & Tsai, 2007). A measurement estimation
algorithm for two cases of obstacles width by using the detected lane information and
a pinhole camera model was applied by (Han, Heo, Park, Kee, & Sunwoo, 2016). A
vision-based Adaptive Cruise Control (ACC) system for computing range and range-
rate from a single camera was described by (Stein, Mano, & Shashua, 2003). Also
(Mrovlje & Vrancic, 2008) used a stereoscopy technique in order to create an illusion
of the depth using two pictures taken at slightly different positions. A Markov ran-
dom field-based obstacle segmentation using IPM results to estimate distances was
performed by (Lee et al., 2016), while a range estimation method with a monocular
camera considering the pitch angle due to vehicle motion and road inclination was
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proposed by (K.-Y. Park & Hwang, 2014).

In general, since the combination of data from both sensors is required, there has been
research also in this area. An approach to fuse 3D and 2D information in a driver
assistance setup to perform obstacle detection and tracking was presented by (Gruyer,
Cord, & Belaroussi, 2013), while (Mahajan, Bhosale, & Kulkarni, 2013) proposed a
cooperative system based on a mono-vision camera and laser scanner in order to detect
the obstacles more precise and accurate.

Finally in previous works with the mobile robot SUMMIT there have been important
contributions in contemplation of making the robot autonomous. A non-linear single
track model of the mobile robot was designed, parametrized and validated, and an
optimization algorithm based on collocation method and multiple shooting for time
and energy optimal control problems was applied by (Müller, 2013). The efficiency
of MPC for tracking trajectory and obstacle avoidance problems were improved by
(Thieme, 2014). The obstacles (detected by a laser scanner and described by ellipses)
as constraints was introduced, and the optimization problem using the optimizer tool
Ipopt was solved by (Drozdova, 2015). The position determination of the mobile robot
by using Kalman filter and a neural network was improved by (Belgradskaia, 2016).

1.3 Objective of the work
As has been mentioned, several previous works dealt with the modeling, parameter
estimation, obstacle detection using laser scanner data, constraint formulation of ob-
stacles, and application of MPC avoiding obstacles. The main focus in the proposed
master thesis lies on the involvement of camera data for obstacle detection and de-
scription as well as the fusion with the laser scanner data to aim at a better and
more reliable description of the obstacles to be avoided within an autonomous driving
using MPC. Different driving scenarios will be investigated and practically tested at
the mobile robot SUMMIT. To accomplish this objective the following topics will be
thoroughly examined in the work presented:

• Improve the mobile robot SUMMIT mathematical model based on a counter-
steering driving model, correct the control variables and estimate the state vari-
ables due to this modeling.

• Acquire, analyze and process the data obtained from the laser scanner and also
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1 Introduction 5

from the video camera in order to use sensor fusion technique and get a better
information about the position and dimension of the obstacles in the unknown
environment.

• Propose the new optimization problem to be solved based on the previously
processed data of the environment and use MPC in order to accomplish the
avoidance of all obstacles along the way.

• Embed the extensions (sensor data fusion) and improvements in the control sys-
tem of the mobile robot SUMMIT and analyze its behavior by testing in different
situations.

• Make conclusions about the upgrade of the system and propose future works to
look at.

1.4 Outline of the chapters
The content presented in this thesis is organized as follows:

• Chapter 2 describes the mobile robot SUMMIT technical specifications, and the
sensors characteristics and functioning. Likewise, the development of 3-state
mathematical model is explained as well and its validation by comparing it with
the previously used mathematical state model.

• Chapter 3 presents the correction of the control variables velocity and steer-
ing angle by using a linear approximation and a neural network, respectively.
Moreover the estimation of the state variables is proposed by the approach of
the Extended Kalman Filter (EKF). Simulation and experimental tests are per-
formed in order to test the accuracy of the proposed techniques.

• Chapter 4 introduces the concepts of computer vision, and presents the detec-
tion and cluster classification processes. In the first process, the shape and color
detection algorithms are explained. Then in the second process the cluster clas-
sification techniques are considered for obstacle detection. Experimental tests
are performed in order to validate the image processing algorithms.

• Chapter 5 presents the data acquisition of the laser scanner and the 2D camera.
Also, the concept of the pinhole camera model is introduced. Then the estimation
of the obstacle width and height are explained and developed. For obstacle

5
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avoidance an ellipse form is proposed and its parameters are described based on
data fusion of both sensors. Experimental tests are performed in order to test
the precision of the obstacle determination.

• Chapter 6 presents the application of MPC considering the trajectory tracking
and obstacle avoidance problems. The chapter starts with a the definition of the
continuous nonlinear optimal control problem. Then a solution using multiple-
shooting and collocation methods with MPC is proposed. Experimental tests
are performed in order to test the accuracy and the efficiency of the optimization
control problem.

• Chapter 7 concludes the thesis with a summary of the main results and discusses
the outlook for possible future topics of research.

6



2 Description of the Mobile Robot SUMMIT 7

2 Description of the Mobile Robot
SUMMIT

The SUMMIT is a medium-sized autonomous robot with high mobility and it is ideal
for both indoor and outdoor applications. It has Ackerman (car-like) kinematics and
a crawler chassis design specially suited for rough outdoor terrain. Also it has a me-
chanical system that is equivalent to a 4x4 remote control car and uses a high quality
aluminum chassis. Both front and rear axles are has a counter-steerable behavior in
order to have a greater rotation angle. To further improve it’s stability, each wheel has
a drive motor mounted on each axis with an independent damping system and pen-
dulum counterweight. Fig. 2.1 and 2.2 (obtained from (Robotnik Automation, S.L.L,
2012b)) show the SUMMIT robot and its most important components.

Figure 2.1: Main parts of the SUMMIT robot

The main parts of the robot are:

• Housing: Holds the upper and rear covers. The electrical components are placed
inside, while the motor drivers are the only components that are outside.

7
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• Upper Cover: Allows the access to the interior of the robot where some of the
control components are placed.

• Rear Cover: Holds the control panel, buttons and the WiFi antenna.

• Pendulum Wheels: Aluminum wheels with removable pendulum weights.

• Batteries: 4 LiFePO4 3.2 V, 16 Ah cells.

• Chassis: Aluminum chassis with strong shock absorbers.

• Motors: Two brushless motors, one in the front axle and the other in the rear
axle.

• Steering Servo: HITEC HS-7980TH servo with 38 Kg/cm torque at 6.0 V in each
axle.

• PTZ Camera: Logitech Sphere AF camera with microphone and protected by a
replaceable dome.

• Hoyuko Laser Range Finder: Laser range scanner with the specific adaptor.

• Encoder: High-speed rotary magnetic encoder designed for use in harsh environ-
ments.

Figure 2.2: Main parts of the SUMMIT robot (rear view)

Every main piece of the robot and more detailed description of it can be found in
(Robotnik Automation, S.L.L, 2012b).

8



2 Description of the Mobile Robot SUMMIT 9

2.1 Technical specifications
The robot comes with operating system (Linux Real Time) and complete software
architecture and tools, fully installed and working. Complete installation of a new
system starting from scratch can be found on (Robotnik Automation, S.L.L, 2012c).
The robot has its own WiFi network, this allows to communicate with the PC via
TCP/IP protocol. In order to control the robot the Player/Stage software is used. It
allows to send and receive control and sensor data signals using C++ language. In
general, Player provides a network interface to a variety of robot and sensor hardware.
The Player/Stage architecture and information can be found in (Robotnik Automation,
S.L.L, 2012a) and (Hedges et al., 2006), respectively. All the programming was made
in Ubuntu version 1.0, QtCreator 1.3, Player version 2.0 and Stage version 3.2.1.
Then the main specifications can be seen in Tab. 2.1, while in Fig. 2.3 (obtained from
(Robotnik Automation, S.L.L, 2012b)) it is shown the dimensions in frontal, lateral
and top views.

Mechanical

External dimensions 570 x 345 x 320 mm
Weight 12.9 Kg
Speed 3 m/s
Traction system 4 wheels
Batteries 4 x 3.3V LiFePO4
Traction motors 2 brushless motors
Kinematics Dual or single axis Ackerman steering

Control

Controller Player/Stage Embedded PC with Linux Real Time
Communication WiFi 802.11n

Table 2.1: Technical specifications of the SUMMIT robot

Since the main objective of the work is sensor fusion for obstacle identification and
avoidance, it is necessary to detail the function of the elements involved in the fusion
algorithm. So in this work the laser scanner and the PTZ camera (Pan-Tilt-Zoom
camera) are used for this task. In the next subsections are detailed the characteristics
and functioning of them, respectively.

9
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Figure 2.3: External SUMMIT robot drawings

2.1.1 Laser Scanner

One of the main elements or devices that the robot has is the laser range finder or
usually called laser scanner. The Hokuyo URG-04LX-UG01 scanning laser range-finder
is a small, affordable and accurate laser scanner that is perfect for robotic applications.

Figure 2.4: Laser scanner and PTZ camera mounted on the SUMMIT robot

10
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As can be seen from Tab. 2.2, the total scan angle is 240◦. So for this scan angle,
the scan point goes from 1 to 682. Since the goal of the robot is to move forward
detecting and avoiding obstacles ahead, the whole scanning range is not necessary, for
this reason in this work 120◦, is used as the scan angle (scan point from 170 to 511).
The default detection range of the laser scanner is 5.6 m, but for practical reasons 3.3
m is used.

Laser Scanner

Model No. URG-04LX-UG01
Power Source USB Bus power
Light Source Semiconductor laser diode λ=785nm;Laser safety class 1
Measuring area 20 to 5600mm, 240◦

Angular resolution Step angle: approx. 0.352◦(360◦/1024 steps)
Scanning time 100 ms/scan
Weight Approx. 160 g

Table 2.2: Laser scanner specifications

Figure 2.5: Laser scanner selected area (angle and range)

11
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2.1.2 PTZ Camera

The other main element that the robot has is the PTZ camera. The Logitech Sphere
AF is a 2D mono-camera with 2 Megapixels of maximum resolution, it has up to 30fps
and RightLight 2 Teechnology which adjusts intelligently to produce true-to-life clear
images in dim or poor backlight settings.

In Tab. 2.3 most of the camera specifications can be seen. In this work, the 2D mono-
camera is used for taking pictures while the robot is moving (working together with
the laser scanner). The resolution selected for every picture is 320 x 240 pixels in order
to have less computation time for the image processing algorithm that will be seen in
chapter 4.

Figure 2.6: PTZ camera mounted on the SUMMIT robot

PTZ Camera

Motorized tracking 189◦horizontal and 102◦vertical
Focus system Autofocus lens
Resolution 2-megapixel sensor
Color depth 24-bit true color
Video capture Up to 1600 by 1200 pixels (HD quality)
Frame rate Up to 30 frames per second
Focal length 3.7 mm

Table 2.3: PTZ Camera specifications

12
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2.2 Mathematical model

2.2.1 Establishment of the mathematical model

A mathematical model based on a single-track model was developed and validated in
(Thieme, 2014) and (Müller, 2013). So the state and control variables are defined as,

x =



x1

x2

x3

x4

x5


=



β

ψ̇

xpos

ypos


, u =

u1

u2

 =
v
δ

 (2.1)

where β is the side slip angle, the yaw angle, ψ̇ the yaw angular velocity, xpos and
ypos are the position coordinates in the XY-plane. v is the velocity of the robot and δ
is the steering angle. Then the dynamics of the SUMMIT robot are governed by the
following equations,

ẋ1 =
cα cos(δ)

(
− 2β + ψ̇

v
(lr − lf )

)
mv cos(β) − ψ̇

ẋ2 = ψ̇

ẋ3 =
cα cos(δ)

(
δ (lr + lf ) + β (lr − lf )− ψ̇

v
(l2r + l2f )

)
J

ẋ4 = v cos(β + ψ)

ẋ5 = v sin(β + ψ)

(2.2)

where cα is the cornering stiffness, m is the mass of the vehicle, J is the inertia mo-
ment, lf is the distance from the COG to the rear axle and lr is the distance from the
COG to the front axle. All these parameters are numerical values and are calculated
in (Thieme, 2014). This mathematical model can be used, but since the robot’s ve-
locity is relatively low, the side slip angle β is considered to be near 0, i.e. that a new
mathematical model based on its dynamics must be proposed.

First of all, the SUMMIT robot moves in XY-plane, and it is important to consider that
it has a counter-steering wheel’s system. So the mobile robot moves with a velocity
and a steering angle that affects both front and rear wheels. In Fig. 2.7 the first sketch
of the mobile robot and the system variables that influence the robot’s movement can
be observed and are considered in the new model.
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Figure 2.7: Counter-steering wheel’s system behavior in the XY-plane

Fig. 2.8 is more detailed and in it can be observed that the system will be analyzed
in the discrete time interval [k, k + 1]. Later it will be seen that analyzing the robot
movement from one position to another will help to get all the system equations.

Figure 2.8: Mobile robot movement in discrete time interval [k, k + 1]
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From Fig. 2.8a and 2.8b it can be observed that the rear wheel moves a distance rR
and the front wheel moves rF .

(a) Rear wheel

(b) Front wheel

Figure 2.8: Wheels position due to the movement

Thus the traveled distance in the XY-plane in the time interval [k, k + 1] can be
determined as follows,

∆xF = rF cos(ψk + δF )

∆yF = rF sin(ψk + δF )

∆xR = rR cos(ψk − δR)

∆yR = rR sin(ψk − δR)

(2.3)
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It can be observed that the traveled distances depend on the actual value of ψ. Also,
since the steering angle in both axles are equal, then the traveled distances by the
front and rear wheels are the same.

ψ = ψk (2.4)

δ = δF = δR (2.5)

r = rF = rR (2.6)

i.e. that the robot wheels move ∆x and ∆y in the X and Y-direction, respectively, in
the discrete time interval [k, k + 1]. Thus from (2.3),

∆x = r
(cos(ψ + δ) + cos(ψ − δ)

2

)
∆y = r

(sin(ψ + δ) + sin(ψ − δ)
2

) (2.7)

Then by trigonometric identity,

∆x = r cos(ψ) cos(δ)

∆y = r sin(ψ) cos(δ)
(2.8)

Now transforming from discrete time to continuous time (dividing both sides by ∆t),
the first 2 state equations are found,

ẋ = v cos(ψ) cos(δ) (2.9)

ẏ = v sin(ψ) cos(δ) (2.10)

where the position coordinates can be written as ẋ = ẋpos and ẏ = ẏpos.

Now, it is necessary to find the third state equation. So from Fig. 2.8 it can be seen
that a and b determine the length between both axles in the time instant k, while c
and d determine the same length but in the time instant k + 1.

L = a+ b = c+ d (2.11)

2L = (a+ d) + (b+ c) (2.12)
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Since the robot is moving forward, the yaw angle changes.

∆ψ = ψk+1 − ψk (2.13)

where ∆ψ is the difference between the yaw angle in the time interval [k, k + 1].

The relationship between the length of the mobile robot and ∆ψ can be obtained from
Fig. 2.8 by looking at the movement of the front and rear wheels in the time interval
[k, k+1] respect to the body of the mobile robot. Then for the front wheels movement
one has the following relationship,

2b cos(∆ψ) + rF cos(δF ) = d (2.14a)

b sin(∆ψ) = rF sin(δF ) (2.14b)

as well for the rear wheels movement one has the following

2c cos(∆ψ) + rR cos(δR) = a (2.15a)

c sin(∆ψ) = rR sin(δR) (2.15b)

Taking (2.14a) and (2.15a), and considering that ∆ψ is relatively small, one gets the
following equation,

(b+ c) + rF cos(δF ) + rR cos(δR) = (a+ d) (2.16)

Then replacing (2.5), (2.6) and (2.12) in (2.16),

(b+ c) = L− r cos(δ) (2.17)

Now by taking (2.14b) and (2.15b),

(b+ c) sin(∆ψ) = rF sin(δF ) + rR sin(δR) (2.18)

And replacing (2.5), (2.6), (2.16) in (2.18),

(L− r cos(δ)) sin(∆ψ) = 2 r sin(δ) (2.19)

Since the mobile robot is moving from one position to another (distance r) in a very
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short time interval and also considering that ∆ψ is nearly 0, then

L∆ψ = 2 r sin(δ) (2.20)

And the final state equation is,

ψ̇ = 2 v
L

sin(δ) (2.21)

Finally the state variables and control variables are shown in (2.22)

x =


x1

x2

x3

 =


xpos

ypos

ψ

 , u =
u1

u2

 =
v
δ

 (2.22)

where xpos and ypos are the position coordinates in the XY-plane, and ψ the yaw
angle. v is the velocity of the robot, δ is the steering angle. Then the dynamics of the
SUMMIT robot are governed by,

ẋ1 = v cos(ψ) cos(δ)

ẋ2 = v sin(ψ) cos(δ)

ẋ3 = 2 v
L

sin(δ)

(2.23)

where L is the length of the mobile robot and is defined as follows,

L = lF + lR

= 0.1776m+ 0.1924m

= 0.37m

(2.24)

As it can be seen, (2.2) refers to the previous mobile robot’s model (the system has 5
state variables), while (2.23) refers to the new mobile robot’s model (the system has
3 state variables). This reduction of the states entails less computational time and
effort.

2.2.2 Validation of the model

In order to validate the new mobile robot’s model, a comparison between the 3-state
and 5-state models was made using MATLAB R©1. In case 1 (v = 1m/s and δ = 10◦),

1MATLAB R©is a registered trademark of The Mathworks Inc.
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both the velocity and steering angle are constant. In Fig. 2.9a it is observed that the
position in the XY-plane for both models are very similar but with a little deviation.
Also in Fig. 2.9b it can be seen that the state variables are very similar. Finally in
Fig. 2.9c the error of every state variable is shown, where the resulting error values
are increasing due to the dynamics of the mobile robot. Nevertheless the mean-square
errors (MSE) and the root-mean-square errors (RMSE) are relatively low for a long
time horizon.

Case 1

v 1 m/s (constant)
δ 10◦ (constant)

MSE RMSE

xpos 175.7459 13.2569
ypos 10.7929 3.2853
pos 3.3390 1.8273

Table 2.4: MSE and RMSE for case 1
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(a) Robot trajectory in XY-plane
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Figure 2.9: Results for case 1 (v = 1 m/s and δ = 10◦)
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In case 2, now the velocity is reduced (v = 0.5m/s and δ = 10◦) and both control
variables are constant. In Fig. 2.10a it is observed that the position in the XY-plane
for both models are more accurate i.e. the error deviation between both models is less.
Also in Fig. 2.10b it can be seen that the state variables are more accurate as well.
Finally in Fig. 2.10c the error of every state variable is shown, where the resulting
values are lower in comparison with the previous case due to the reduction of the
velocity, i.e. that the side slip angle is nearly zero.

Case 2

v 0.5 m/s (constant)
δ 10◦ (constant)

MSE RMSE

xpos 1.5960 1.2633
ypos 8.5378 2.9220
ψpos 1.1290 1.0625

Table 2.5: MSE and RMSE for case 2

x
pos

 [m]
-1.5 -1 -0.5 0 0.5 1 1.5

y po
s [m

]

0

0.5

1

1.5

2

2.5
Robot trajectory (v = 0.5 m/s , δ  = 10°)

3-state model
5-state model

(a) Robot trajectory in XY-plane

21



2 Description of the Mobile Robot SUMMIT 22

0 5 10 15 20 25 30 35 40 45 50

x po
s [m

]

-2

0

2
State variables (v = 0.5 m/s , δ  = 10°)

3-state model
5-state model

0 5 10 15 20 25 30 35 40 45 50

y po
s [m

]

0

2

4

Time [sec]
0 5 10 15 20 25 30 35 40 45 50

ψ
 [r

ad
]

-5

0

5

(b) State variables

0 5 10 15 20 25 30 35 40 45 50

x po
s [m

]

-0.1

0

0.1
Absolute errors (v = 0.5 m/s , δ  = 10°)

RMSE = 1.2633

0 5 10 15 20 25 30 35 40 45 50

y po
s [m

]

-0.1

0

0.1

RMSE = 2.922

Time [sec]
0 5 10 15 20 25 30 35 40 45 50

ψ
 [r

ad
]

-10

0

10

RMSE = 1.0625

(c) Absolute and RMS errors

Figure 2.10: Results for case 2 (v = 0.5 m/s and δ = 10◦)
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In case 3, now the steering angle is reduced (v = 1m/s and δ = 3◦). In Fig. 2.11a it is
observed that the position in the XY-plane for both models are more accurate than the
case 1 but not as the case 2. Also in Fig. 2.11b it can be seen that the state variables
are accurate as well but again with a very little deviation. Finally in Fig. 2.11c the
error of every state variable is shown as well, where the resulting values are greater
than case 2 and lower than case 1 due to the reduction of the steering angle, i.e. that
reducing the steering angle is not as relevant as reducing the velocity.

Case 3

v 1 m/s (constant)
δ 3◦ (constant)

MSE RMSE

xpos 61.1445 7.8195
ypos 25.2590 5.0258
ψpos 5.7378 2.3954

Table 2.6: MSE and RMSE for case 3
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Figure 2.11: Results for case 3 (v = 1 m/s and δ = 3◦)
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In case 4, now the steering angle is not constant (v = 1m/s and δ = sine). In
Fig. 2.12a it is observed that the position in the XY-plane comparing both models is
accurate. Also in Fig. 2.12b it can be seen that the state variables are very similar.
Finally in Fig. 2.12c the error of every state variable is shown, where the resulting
error values are increasing due to the dynamics of the mobile robot. Nevertheless the
RMS errors are relatively low for a long time horizon. In conclusion, after all the tests
were made the 3-state model is validated due to the results observed in every case.

Case 4

v 1 m/s (constant)
δ 3◦ sin(wt) (variable)

MSE RMSE

xpos 255.1136 15.9723
ypos 284.9554 16.8806
ψpos 0.4791 0.6921

Table 2.7: MSE and RMSE for case 4
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Figure 2.12: Results for case 4 (v = 1 m/s and δ = sine)
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3 Correction of control variables and
estimation of states

In the previous chapter from the system equations it was shown that the robot will
move depending on the value of the control variables (velocity and steering angle).
Since one is working in a real environment, the position coordinates in the XY-plane
and yaw angle depend also on the data of the sensors (given by the encoders) and
mechanical inaccuracies related to its construction. So first, it is necessary to check
that the transmitted control variables (written values in the program) are the same as
the real control variables (received values of the mobile robot), i.e. that a correction
of factors must be applied. And second, the data given by the sensors may not be
as exact as expected. Therefore, an estimation of the state variables is proposed in
order to get a better accuracy. Solving these problems will lead to reduce the error
between the calculated and the real positions, i.e. that it will be possible to determine
the mobile robot state variables as expected by testing the correction of the control
variables in different cases.

3.1 Correction of control variables
During real test executions it was found that the transmitted values of the velocity
and the steering angle were not the same as the real received values by the mobile
robot. As described below, the velocity has a direct linear relation, while the steering
angle has a non-linear relation.

3.1.1 Determination of the velocity

Since the transmitted and real robot’s velocity do not match, it is necessary to find a
correction factor. For determining this, different test were made using different speed
values. So the transmitted velocity (vtrans) is the one that is given by the program,
and the real velocity (vreal) is based on real measurements in distance and time. So
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the real velocity is defined as follows,

vreal = xreal
treal

(3.1)

where vreal is the real velocity, xreal is the traveled distance in X-direction and treal is
the total time of the travel. In Fig. 3.1 it is shown the relation between both velocities
and also the approximation line which gives the correction constant.
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Figure 3.1: Relation between velocities and its linear approximation

kv = vreal
vtrans

= 1.3875 (3.2)

From (3.2), the constant value is approximately 1.4 and it is the correction factor of
the velocity. So this value must be applied in the program,

vreal ≈ 1.4 vtrans (3.3)
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3.1.2 Determination of the steering angle

As well as the velocity correction factor, different tests were made using different
steering angle values. So the transmitted steering angle (δtrans) is the one that is given
by the program and the real steering angle (δtrans) is based on real measurements.
In Fig. 3.2 the relation between both steering angle is shown. It can be seen that
the relation in this case is non-linear. Thus a solution based on neural networks is
proposed as explained also in (Belgradskaia, 2016). Is important to notice that the
mobile robot is not affected for small values of the steering angle.
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Figure 3.2: Relation between steering angles

An artificial neural network is able to recognize complex dependencies between the
input and output data, based on a learning process. This process consist in determining
certain weighting factors for each neuron. Each layer is composed by an artificial
neuron. The structure of this neuron can be seen in Fig. 3.3. The inputs of the neuron
are the weighting values from previous ones, these values are added together and finally
the result enters to the activation function. This activation function is a hyperbolic
tangent function (non-linear function) because the steering angle has both positive and
negative values.
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Figure 3.3: Structure of an artificial neuron

The structure of the chosen neural network is the multilayer perceptron (MLP) with
a neuron in the input and output layer and six neurons in the hidden layer. So the
structure of the entire neural network is as follows,

Figure 3.4: Structure of the neural network

The proposed solution deals with the learning method of backpropagation. First, an
input value is applied to the neural network and passes through it (from the input
layer to the output layer). Then the output value is compared with the desired value,
so the deviation between these two values is regarded as the error. This error is now
propagated from the output layer to the input layer (backwards), this is the so called
backpropagation method. So the weighting factors are altered due to the influence of
the error and finally the output value is obtained (δreal). This process is constantly
repeated until the error leads to 0. More detailed information in (Haykin, 2011), (Du
& Swamy, 2013) and (Gurney, 2003). Thus as observed in Fig. 3.4, having δtrans as the
input of the neural network, δreal is obtained at the output. Then this obtained result
needs to be transmitted to the mobile robot in order to achieve the desired steering
angle.

δreal = F (u) = F (δtrans) (3.4)

30



3 Correction of control variables and estimation of states 31

3.1.3 Results using correction of speed and steering angle

After the explanation of the correction of the speed and steering angle, different tests
were done in order to see the accuracy of the mobile robot trajectory. In case 1, the
reference trajectory is a sine function with amplitude of 0.3 m and correction of the
control variables is not considered. It can be seen from Fig. 3.5 that the mobile robot
tends to go to the left direction and this happens due to its mechanical construction
and dynamics.

Case 1

Reference 0.3 sin(wt)
trajectory

Correction

v No
δ No

Table 3.1: Considerations for case 1
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Figure 3.5: Robot trajectory in the XY-plane for case 1
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Similarly, in case 2 the reference trajectory is a sine function with amplitude of −0.3 m
and correction of the control variables is not considered. It can be seen from Fig. 3.6
that first the mobile robot tends to go to the right and the ends turning to the left.
As same as case 1, this happens due to its mechanical construction and dynamics.

Case 2

Reference -0.3 sin(wt)
trajectory

Correction

v No
δ No

Table 3.2: Considerations for case 2
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Figure 3.6: Robot trajectory in the XY-plane for case 2
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In case 3 the reference trajectory is a sine function with amplitude of 0.3 m and now
the correction for both control variables is considered. In Fig. 3.7a the correction of the
control variables is shown. In Fig. 3.7b it can be seen that the real trajectory now has
the sine form. In Fig. 3.7c the position in the X-direction is equal, while the position
in the Y-direction and the yaw angle are not as exact, i.e. that the state variables need
to be estimated in order to get an accurate solution.

Case 3

Reference 0.3 sin(wt)
trajectory

Correction

v Yes
δ Yes

Table 3.3: Considerations for case 3

0 5 10 15 20 25

v 
[m

/s
]

0

0.5

1

1.5
Control variables

Uncorrected
Corrected

Time [sec]
0 5 10 15 20 25

δ
 [r

ad
]

-0.2

-0.1

0

0.1

0.2

(a) Corrected and uncorrected control variables

33



3 Correction of control variables and estimation of states 34

x
pos

 [m]
0 2 4 6 8 10 12 14 16

y po
s [m

]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Robot trajectory

Reference
Real

(b) Robot trajectory in the XY-plane

0 5 10 15 20 25

x po
s [m

]

0

10

20
State variables

Reference
Real

0 5 10 15 20 25

y po
s [m

]

-1

0

1

Time [sec]
0 5 10 15 20 25

ψ
 [r

ad
]

-1

0

1

(c) State variables

Figure 3.7: Mobile robot behavior results for case 3

34



3 Correction of control variables and estimation of states 35

In case 4 the reference trajectory is a sine function with amplitude of −0.3 m and now
the correction for both control variables is again considered. In Fig. 3.8a the correction
of the control variables is shown. In Fig. 3.8b it can be seen that the real trajectory
has the sine form and is more accurate than the case 3. In Fig. 3.8c the position in the
X-direction is equal, while the position in the Y-direction and the yaw angle are almost
equal. In order to get an accurate solution the state variables need to be estimated.
Finally, it can be seen from all the cases that correcting the control variables improve
the behavior of the mobile robot.

Case 4

Reference -0.3 sin(wt)
trajectory

Correction

v Yes
δ Yes

Table 3.4: Considerations for case 4
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Figure 3.8: Mobile robot behavior results for case 4
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3.2 Estimation and prediction using Extended Kalman
Filter

As commented in the initial part of this chapter, another task that arises is that the
data of the sensors must be corrected because it affects the position determination.
A suitable solution is to use filters. The extended Kalman filter (EKF) will leads to
improve the accuracy of mobile robot position.

3.2.1 Main idea of the Extended Kalman Filter

The Kalman filter is an algorithm developed by Rudolf E. Kalman in 1960 and it helps
to identify that non-measurable states of a dynamic system, also can have statistical
noise and other inaccuracies. This filter is a recursive filter that uses a series of mea-
surements observed over time, containing statistical noise and other inaccuracies. It
produces a more precise estimation of the unknown variables in comparison with the
ones that were just measured alone. The Kalman filter has many applications, but
commonly it is often used in guidance, navigation, and control of vehicles. More infor-
mation available in (Zarchan & Musoff, 2000), (Haykin, 2004), (Grewal & Andrews,
2001) and (Simon, 2006).

Figure 3.9: Structure of the EKF

The algorithm works in two steps. The first step is the prediction, where the Kalman
filter produces estimates of the current state variables, along with their uncertainties.
The second step is the correction, where the estimates are updated using a weighted
average using the measured data from sensors. The algorithm is recursive. It can run
in real time, using only the present input measurements, the previously calculated state
and its uncertainty matrix, so the advantage is that no additional past information is
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required. The EKF is an extension of this method, and is the nonlinear version of the
Kalman filter which linearizes about an estimate of the current mean and covariance.

3.2.2 Extended Kalman Filter applied to the mobile robot

In the EKF, the state transition and observation models don’t need to be linear func-
tions of the state but may instead be differentiable functions. So (3.5) and (3.6) show
the relationship between the states variables and the measured values in the time
interval [k − 1, k].

xk = f(xk−1, uk−1) + wk (3.5)

zk = h(xk) + pk (3.6)

where xk is the vector of actual states, zk is the vector of measured values, wk and pk
are the process and observation noises (zero mean value) with covariance matrices Qk

and Rk, respectively, f(xk−1, uk−1) is the system function based on previous state and
control values and h(xk) is the function that relates the vector of actual states with
the vector of measured values.

Regarding the 3-state model described in (2.22) from chapter 2, the state and control
variables vectors in the time instant k are,

xk =


xk

yk

ψk

 , uk =
vk
δk

 (3.7)

Then using the mathematical model described in (2.23) with (3.7), the state variables
vector in the instant time k is determined as follows,

xk = f(xk−1, uk−1) =


xk−1 + ∆t vk−1 cos(ψk−1) cos(δk−1)
yk−1 + ∆t vk−1 sin(ψk−1) cos(δk−1)

ψk−1 + ∆t 2 vk−1
L

sin(δk−1)

 (3.8)

where ∆t is the step size of the time interval [k − 1, k].

The algorithm of the EKF is as follows. First in the predictive stage, two predicted
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vectors need to be calculated,

x̂k|k−1 = f(x̂k−1|k−1, uk−1) (3.9)

Pk|k−1 = Fk−1 Pk−1|k−1 F
T
k−1 +Qk−1 (3.10)

where x̂ is the predicted state estimate vector, P is the predicted covariance matrix,
and F is the state transition matrix.

In the EKF equations the Jacobian is used with the current predicted states at each
time step in order to linearize the nonlinear function around the current state. Then
the Jacobian is defined by,

Fk−1 = ∂f

∂x

∣∣∣∣∣
x̂k−1|k−1,uk−1

(3.11)

then,

F =


1 0 −v sin(ψ̂) cos(δ)∆t
0 1 v cos(ψ̂) cos(δ)∆t
0 0 1

 (3.12)

Also from (3.10), the covariance matrix Q is by,

Q =


0.1 0 0
0 0.1 0
0 0 50

 (3.13)

After all the prediction calculations were made, the next step is to measure the states,
find the Kalman gains and correct updating all the state values. So starting with the
measurement residual vector and the residual covariance matrix,

ỹk = zk − h(x̂k|k−1) (3.14)

Sk = Hk Pk|k−1 H
T
k +Rk (3.15)

where H is the observation matrix and is defined also by the Jacobian as follows,

Hk = ∂h

∂x

∣∣∣∣∣
x̂k|k−1

(3.16)

But since the values for all the state variables (position in the XY-plane and yaw angle)
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are given by the mobile robot, it is not necessary to calculate them again, this means
that

h(xk) = xk (3.17)

then,

H =


1 0 0
0 1 0
0 0 1

 (3.18)

Also from (3.15), the covariance matrix R is defined by,

R =


1 0 0
0 1 0
0 0 1

 (3.19)

It is important to remark that both covariances matrices Q and R were defined empir-
ically. The criterion used for the choice of values of the diagonal of the weight matrix
Q depended on the system response and the performance index value. In the case of
the matrix R, the same weight was placed on the velocity and steering angle.

So the optimal Kalman gain matrix needs to be calculated as follows,

Kk = Pk|k−1 H
T
k S

−1
k (3.20)

And finally it is needed to update the values of the estimated state vector and the
estimated covariance matrix,

x̂k|k = x̂k|k−1 +Kk ỹk (3.21)

Pk|k = (I −KkHk)Pk|k−1 (3.22)

3.2.3 Results using Extended Kalman Filter

As same as previous results using just correction of control variables, different tests
were needed in order to see the accuracy of the mobile robot trajectory applying the
EKF explained previously.

In case 1 a simulation of the mobile robot behavior is presented, where the velocity is
constant, the steering angle is a sine function (see Fig. 3.10a), and noise from sensors
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is not considered in the system. From Fig. 3.10b and 3.10c it can be observed that
the estimated and real state variables are equal, i.e. that the errors between these
variables converge to zero. Is important to notice that the initial states influence on
the mobile robot behavior, for this case the mobile robot has all its initial states in
zero.

Case 1 (Simulation)

v 0.5 m/s
δ 10◦ sin(wt)
Noise No

Initial States

xpos,0 0 m
ypos,0 0 m
ψ0 0◦

Table 3.5: Considerations for case 1

0 5 10 15

v 
[m

/s
]

-0.5

0

0.5

1

1.5
Control variables

Time [sec]
0 5 10 15

δ
 [r

ad
]

-0.2

-0.1

0

0.1

0.2

(a) Control variables

41



3 Correction of control variables and estimation of states 42

x
pos

 [m]
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

y po
s [m

]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Robot trajectory

Real
Estimated

(b) Robot trajectory in the XY-plane

0 5 10 15

x po
s [m

]

0

5
State variables

Real
Estimated

0 5 10 15

y po
s [m

]

0

5

Time [sec]
0 5 10 15

ψ
 [r

ad
]

0

1

2

(c) State variables

Figure 3.10: Mobile robot behavior results for case 1
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In case 2 a simulation of the mobile robot behavior is presented as well, where the
velocity is constant, the steering angle is a cosine function (see Fig. 3.11a), and now
noise from sensors is considered in the system due to behavior in a real environment.
From Fig. 3.11b and 3.11c it can be observed that estimated state variables follow very
well to the real trajectory even the initial state variables are different from zero.

Case 2 (Simulation)

v 0.5 m/s
δ 10◦ cos(wt)
Noise Yes

Initial States

xpos,0 1 m
ypos,0 1.5 m
ψ0 5◦

Table 3.6: Considerations for case 2
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Figure 3.11: Mobile robot behavior results for case 2
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In case 3 a real test of the mobile robot behavior is presented, where the reference
trajectory is a sine function with amplitude of 0.3 m. For this case the control variables
are not constant (see Fig. 3.12a). From Fig. 3.12b it can be seen that the data given
by the sensor has the same form as the reference trajectory. From Fig. 3.12c it can be
seen that the position in the X and Y-directions are accurate, while the yaw angle has
some differences between the real and the reference values due to the dynamics of the
mobile robot.

Case 3 (Real)

Reference 0.3 sin(wt)
trajectory

Initial States

xpos,0 0 m
ypos,0 0 m
ψ0 0◦

Table 3.7: Considerations for case 3

0 5 10 15 20 25

v 
[m

/s
]

0

0.5

1

1.5
Control variables

Uncorrected
Corrected

Time [sec]
0 5 10 15 20 25

δ
 [r

ad
]

-0.2

-0.1

0

0.1

0.2

(a) Control variables

45



3 Correction of control variables and estimation of states 46

x
pos

 [m]
0 2 4 6 8 10 12 14 16

y po
s [m

]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Robot trajectory

Sensor data
Reference
Real

(b) Robot trajectory in the XY-plane

0 5 10 15 20 25

x po
s [m

]

0

10

20
State variables

Reference
Real

0 5 10 15 20 25

y po
s [m

]

-0.5

0

0.5

Time [sec]
0 5 10 15 20 25

ψ
 [r

ad
]

-0.5

0

0.5

(c) State variables

Figure 3.12: Mobile robot behavior results for case 3
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In case 4 a real test is presented as well, where the reference trajectory is a sine
function with amplitude of -0.3 m. For this case the control variables are not constant
(see Fig. 3.13a). From Fig. 3.13b it can be seen that the data given by the sensor
has the same form as the reference trajectory. From Fig. 3.13c it is observed that the
position in the X and Y-directions are accurate, as well as the yaw angle. Finally it is
demonstrated that using EKF for prediction and estimation helps to get an accurate
estimation of the state variables.

Case 4 (Real)

Reference -0.3 sin(wt)
trajectory

Initial States

xpos,0 0 m
ypos,0 0 m
ψ0 0◦

Table 3.8: Considerations for case 4
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Figure 3.13: Mobile robot behavior results for case 4
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4 Computer vision

Computer vision is a scientific discipline that includes different methods e.g. acquire,
process, analyze and understand real-world images in order to produce numerical or
symbolic information so that they can be manipulated by a computer. As humans use
their eyes and brains to understand the world around them, computer vision tries to
produce the same effect so that computers can perceive and understand an image or
sequence of images and behave as appropriate in a given situation. This understand-
ing is achieved through different fields such as geometry, physics, statistics, and other
disciplines. In general, the acquisition of data is achieved by various means such as
image sequences, views from several video cameras or multidimensional data from a
medical scanner (in the medicine’s field). There are many technologies that use com-
puter vision, among which are the recognition of objects, the detection of events, the
reconstruction of a scene (mapping) and the restoration of images. Nowadays image
processing is bringing great contributions to actual technology e.g. in mobile robot’s
autonomous driving.

In this chapter, it will be discussed the recognition of obstacles along the desired tra-
jectory of the mobile robot. Later it will be seen that this information will be combined
with the laser scanner data in order to get a better knowledge and information about
the characteristics of these obstacles. Since there are many ways to detect obstacles,
in this work the process for identifying them is divided in two steps. The first step is
the detection process, as its name says, an algorithm is applied here (shape detection,
color detection or the combination of both) for detecting the obstacle in an image.
The second step is the cluster classification process, where all the detected obstacles
in the image are separated by clusters or groups based on Euclidean distance algo-
rithm. Fig. 4.1 shows a block diagram of the entire process for identifying an obstacle.
OpenCV2 library version 3.2 is used for image processing. More information detailed
in (Kaehler & Bradski, 2016) and (OpenCV Library, 2017).

2OpenCV is a library of programming functions mainly aimed at real-time computer vision
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Figure 4.1: Block diagram for identifying an obstacle

4.1 Detection process
The detection process is the first step for identifying obstacles. The most used al-
gorithms are the shape and color detection that are discussed in this sub chapter.
The shape detection algorithm has the advantage that detects all the shapes that are
present in the image including shadows. The disadvantage is that depends on the
environment because it can detect some shapes that are not wanted or expected. On
the other hand, the color detection algorithm has the advantage that detects more ac-
curate the desired obstacles based on a predefined color. Since previously it is needed
the color information, the disadvantage is that this information may not be available.

Advantages Disadvantages

Shape Detects all May fail
detection kind of objects due to lighting

Color Detects objects Predefined color
detection more accurate is needed

Table 4.1: Comparison of detection algorithms
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In Tab. 4.1 it is shown the main advantages and disadvantages of the shape and color
detection algorithm, respectively. Looking at the given information, one can use on
of these algorithms or the combination of them in order to have a more accurate result.

Although the camera has a long range resolution, the minimum resolution was chosen
in order to use less image processing time. In Tab. 4.2 it can be seen the image
information to be processed.

Image Data

Width 320 pixels
Height 240 pixels
Size 230400 pixels
Format RGB (8 bits per color)

Table 4.2: Image information

Figure 4.2: Image taken by the 2D camera

4.1.1 Shape detection algorithm

In order to detect any object by using the shape detection algorithm, first it is necessary
to pass the image by a filter and then get a blurred image. The filtering is done by
making a convolution between every part of the image and an operator, this operator is
the so called kernel matrix. A kernel matrix is essentially a fixed-size array of numerical
coefficients along with an "anchor point" in that array, which is typically located at
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the center. So this kernel matrix is defined by,

kernel =


0 −1 0
−1 2 −1
0 −1 0

 (4.1)

Then with the filter2D() function and the kernel specified in (4.1) and applying the
difference between the original image and the filtered image, one can get a blurred
image that specifies the objects borders as shown in Fig. 4.3.

Figure 4.3: Blurred image of the obstacle

Then the image is converted into a gray-scale image using cvtColor() function and
reducing noise with blur() function.

Figure 4.4: Blurred image in grayscale
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As it can be seen in Fig. 4.4, the obstacle is almost clear in comparison from the
original figure, then the problem to detect just the edges of this obstacle arises and
the Canny algorithm is proposed.The Canny edge detector is an operator developed
by John F. Canny in 1986 that uses a multi-stage algorithm for detecting a wide range
of edges in images (Mokrzycki & Samko, 2012). The general criteria for edge detection
includes:

• Detection of edge with low error rate, which means that the detection should
accurately catch as many edges as possible shown in the image.

• The edge point detected from the operator should accurately be localized on the
center of the edge.

• A given edge in the image should only be marked once, and where possible, image
noise should not create false edges.

In order to satisfy these requirements Canny algorithm uses the calculus of variations,
finding the function which optimizes a given functional. So basically the process for
the Canny edge detection algorithm has 5 steps:

• Remove the noise by applying a Gaussian filter to smooth the image.

• Find the intensity gradients of the image.

• Get rid of fake response to edge detection by applying non-maximum suppression
(edge thinning technique).

• Determine the potential edges by applying double threshold.

• Finalize the detection of edges by suppressing all the other edges that are weak
and not connected to strong edges (edge tracking by hysteresis).

The function Canny() is the algorithm for the Canny edge detector and one can
choose the kernel size, the low and high thresholds. The kernel size is chosen of
size 3 and the thresholds values are not chosen manually, instead they are chosen
depending on the image characteristics. The better way to do this is by using Otsu’s
thresholding (Greensted, 2010). In simple words with this method the threshold values
are calculated automatically based on an image histogram. Then after all the shape
detection algorithm, the final obtained image is as shown in Fig. 4.6.
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Figure 4.5: Block diagram for shape detection algorithm
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Figure 4.6: Image with detected edges

4.1.2 Color detection algorithm

The color detection algorithm is simpler than the shape detection algorithm. First it
is needed to reduce the noise of the original image with the blur() function and then
using cvtColor() function the image is changed from RGB (Red-Green-Blue) to HSV
(Hue-Saturation-Value) color as shown in Fig. 4.7.

Figure 4.7: Image in HSV values

Then with the function inRange() the elements of the array that don’t lie between
the minimum and maximum HSV threshold values are discarded. As was said before,
these threshold values are predefined since the characteristic of the desired objects are
known, i.e. if the color of the desired object changes then it is necessary to adapt new
minimum and maximum HSV threshold values.
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Figure 4.8: Block diagram for color detection algorithm
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Figure 4.9: Image with detected obstacles

4.2 Cluster classification process
The cluster classification process is the second step for identifying obstacles. Since the
final image obtained in the previous process is a black and white image with a lot of
detected obstacles and points, one needs to filter it and classify how many obstacles are
in there. Therefore the proposed algorithm is the Euclidean distance. In mathematics,
the Euclidean distance is the straight line between two points in Euclidean space. In
Fig. 4.10 it can be seen an example of an Euclidean space with random points.

Figure 4.10: Random points in the Euclidean space

Every point has its coordinates in the XY-plane, i.e. pi = (xi, yi) where i = 1...7.
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Then the distance between two points is given by

d(pi, pj) =
√

(xi − xj)2 + (yi − yj)2 (4.2)

It can be seen that (4.2) is equivalent to the Pythagoras theorem. The distances
between points will help to determine whether a point belongs to a cluster or not by
defining a euclidean distance threshold.

Figure 4.11: Points classified in clusters in the Euclidean space

From Fig. 4.11 it can be observed that there are four clusters, instead of one and are
the following,

C1 = {p1 , p2 , p3}

C2 = {p4 , p5}

C3 = {p6}

C4 = {p7}

(4.3)

So the solution begins first by getting all non black points from the black-white output
image obtained in the previous process. After this the image pixels are partitioned
and analyzed with respect to the other ones. Then the euclidean distances between
points are calculated and each pixel is assigned to its respective cluster according
to the predefined euclidean distance threshold. Experimental values give the best
results with a euclidean distance of 15 pixels. This threshold value should not vary so
much even if the environment conditions change since the tested environment is very
abstract. It is important to clarify that apart from the Euclidean distance threshold,
the cluster information depends almost from the previous process, i.e. if the color or
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shape detection are not accurate, then the obtained clusters may be not accurate as
well.

(a) Using shape detection algorithm (b) Using color detection algorithm

Figure 4.12: Cluster classification

In order to improve the results of the final obtained clusters, two considerations had
been taken into account:

• Neglect little clusters based on their sizes. This can be done by choosing a
threshold size based of the amount of pixels.

• Neglect all clusters above the horizon line. To be above the horizon line means
that the obstacles are too far.

The horizon line is assumed to pass through the center of the image, if the camera is
parallel to a flat terrain. Finally with the desired information and since the maximum
and minimum pixels of the clusters are known, one can now obtain the obstacle width
and height in pixels of every obstacle.

(a) Using shape detection algorithm (b) Using color detection algorithm

Figure 4.13: Detected obstacle
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Figure 4.14: Block diagram for obstacle clusters classification
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4.3 Results for more than one obstacle
In case 1 the shape detection algorithm is used in scenario A. It can be seen that both
obstacles and the tree are detected. Then they are separated into clusters and so the
tree cluster is rejected because is above the horizon line. Finally the width and height
of the obstacles are calculated.

Case 1

Algorithm Shape
Scenario A

Width Height

1st obstacle 24 pixels 76 pixels
2nd obstacle 24 pixels 78 pixels

Table 4.3: Considerations for case 1

(a) Original Image (b) Shape detection

(c) Detected clusters (d) Detected obstacles

Figure 4.15: Image processing for case 1 (Scenario A)
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In case 2 the color detection algorithm is used in scenario A. It can be seen that now
just the two obstacles are detected. In the cluster detection process these detected
obstacles are separated into clusters. Then the width and height of the obstacles are
calculated as well. Finally comparing both the shape and color detection algorithms
for this scenario, the results are mostly equal and accurate.

Case 2

Algorithm Color
Scenario A

Width Height

1st obstacle 27 pixels 78 pixels
2nd obstacle 30 pixels 80 pixels

Table 4.4: Considerations for case 2

(a) Original Image (b) Color detection

(c) Detected clusters (d) Detected obstacles

Figure 4.16: Image processing for case 2 (Scenario A)
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In case 3 the shape detection algorithm is used in scenario B. It can be seen that both
obstacles and the tree are detected. Then they are separated into clusters and so the
tree cluster is rejected because is above the horizon line. Is important to notice that
the obstacles shadows are detected as well, this may lead to a not so accurate result.
Finally the width and height of the obstacles are calculated.

Case 3

Algorithm Shape
Scenario B

Width Height

1st obstacle 50 pixels 95 pixels
2nd obstacle 37 pixels 58 pixels

Table 4.5: Considerations for case 3

(a) Original Image (b) Shape detection

(c) Detected clusters (d) Detected obstacles

Figure 4.17: Image processing for case 3 (Scenario B)
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In case 4 the color detection algorithm is used in scenario B. It can be seen that just the
two obstacles are detected. In the cluster detection process these detected obstacles
are separated into clusters. Then the width and height of the obstacles are calculated
as well. Finally comparing both the shape and color detection algorithms for this
scenario, using color detection is more accurate due to the obstacle shadows.

Case 4

Algorithm Color
Scenario B

Width Height

1st obstacle 33 pixels 82 pixels
2nd obstacle 19 pixels 48 pixels

Table 4.6: Considerations for case 4

(a) Original Image (b) Color detection

(c) Detected clusters (d) Detected obstacles

Figure 4.18: Image processing for case 4 (Scenario B)
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5 Sensor fusion for obstacle
determination

In previous works like (Belgradskaia, 2016), (Drozdova, 2015), (Müller, 2013), (Thieme,
2014) and (Correa, 2016), the mobile robot SUMMIT used just the laser scanner for
obstacle identification. Using laser scanner is the easiest way to know that something
is in front of the mobile robot but it doesn’t give a deep information about the envi-
ronment surrounding it. Because of this, sensor fusion arises and then one can get a
better information about the detected obstacle as mentioned in (Mahajan et al., 2013).
Sensor fusion is the combination of data derived from different sources or sensors such
that the resulting information is more accurate (less uncertain),in comparison, if these
sources or sensors were individually used (Mitchell, 2007). The data sources may not
be from identical sensors, so one can distinguish two kind of fusions:

• Direct fusion: uses a set of heterogeneous or homogeneous sensors, soft sensors
and history values of sensor data.

• Indirect fusion: uses information sources like a priori knowledge about the envi-
ronment and human input.

In this chapter the main task is to determine the obstacle position and dimensions via
direct fusion based on the information of the 2D camera and the laser scanner. The
laser scanner gives the obstacle position and width information, while the 2D camera
gives the obstacle width and height information. Since the camera is a mono camera,
the depth information is no available but there are some methods and approaches that
help to estimate the distance from the camera to the obstacle.

5.1 Data acquisition by the laser scanner
As it was described in Fig. 2.5 from chapter 2, the selected detection range is 3.3 m
and the scan angle is 120◦. So the laser scanner detects all the obstacles that are inside
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this area. Fig. 5.1a and 5.1b show the laser scanner detected points in the predefined
area.
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Figure 5.1: Data acquired by the laser scanner
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If the laser scanner detects more than one obstacle, depending on the distance between
them one can take two obstacles as one.

x
obs

 [m]
-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

y ob
s [m

]

-3

-2

-1

0

1

2

3

Robot

Laser scanner detection

Detection area
Detected points

(a) For a distance between obstacles > 1.2 m
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Figure 5.2: Data acquired by the laser scanner
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The distance that defines if two obstacles are considered as one is the distance in the
XY-plane between the most right point of the first obstacle and the most left point
of the second obstacle. In Fig. 5.2a it can be seen that the distance between both
obstacles is greater than 1.2 m, i.e. it is considered just the first obstacle. On the
other hand, in Fig. 5.2b it can be seen that the distance between both obstacles now
is less than 1.2 m, i.e. both obstacles are considered as one.

The most left point coordinate is defined as (xobs,1, yobs,1), while the most right point
coordinate is defined as (xobs,f , yobs,f ). Then the relative position of the obstacle in the
XY-plane is obtained as follows,

xrel,las = xobs,1 + xobs,f
2

yrel,las = yobs,1 + yobs,f
2

(5.1)

5.2 Data acquisition by the 2D camera
As it was described in chapter 4, the final information that is obtained from the image
after the detection and cluster classification processes is the obstacle width and height
in pixels. So there is the necessity to transform this obstacle dimensions from pixels
to a real measure, in this case meters.

Therefore first the pinhole camera model is explained in order to understand the later
estimations of distance and obstacle dimensions that can be seen in (Han et al., 2016)
and (K.-Y. Park & Hwang, 2014). Then the estimation of the distance, height and
width are explained as well. Finally some results for different images are shown.

5.2.1 Pinhole camera model

The pinhole camera model describes the mathematical relationship between the coor-
dinates of a point and its projection onto the image plane of an ideal pinhole camera.
Since the pinhole camera has no lenses and just a tiny aperture, the model does not
include geometric distortions or blurring. Its validity depends on the camera quality.
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Figure 5.3: Pinhole camera model

From Fig. 5.3, a pinhole camera model equation can be obtained,

d = f
Ho

hpo
(5.2)

where d is the object distance in the X-direction, f is the focal length of the camera,
Ho is the object height and hpo is the projected object height.

5.2.2 Estimation of the distance to the obstacle

In order to estimate the distance between the obstacle and the mobile robot by using
the pinhole camera model, two methods can be described.

Figure 5.4: Distance estimation method using obstacle image height

The first method uses the obstacle image height and it is described in Fig. 5.4. Thereby
from the equation of the pinhole camera model, an equation of the method using the
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obstacle image height can be derived and it is shown in (5.3).

d = f
Hc

z
(5.3)

where Hc is the camera height and z is the obstacle image height between the horizon
line and the bottom edge of the obstacle. As said before, since the road is assumed to
be plain the optical axis of the camera is parallel to the road surface and the horizon
line is assumed to pass through the center of the image.

The second method uses the obstacle image width and it is described in Fig. 5.5.
Thereby from the equation of the pinhole camera model, an equation of the method
using a obstacle image width can be derived and it is shown in (5.4)

Figure 5.5: Distance estimation method using obstacle image width

d = f
Wobs

ωobs
(5.4)

where Wobs is the obstacle physical width and ωobs is the obstacle image width.

In conclusion with one of the previously presented methods the distance between the
mobile robot and the obstacle can be obtained, but by now from (5.3) and (5.4) the
only known values are Hc and ωobs, respectively.
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5.2.3 Estimation of obstacle width and height

In order to estimate the obstacle width and height a relationship between the previously
methods is described by matching (5.3) and (5.4),

Wobs = ωobs
Hc

z
(5.5)

where Wobs depends on the ωobs, Hc, and z.

From (5.5), the known values are ωobs and Hc, while the unknown value is z. Then
this unknown value z can be represented as,

z = zbottom − zhorizon (5.6)

where zbottom is the bottom edge of the detected obstacle and zhorizon is the horizon
line.

Figure 5.6: Image parameters to find obstacle width

Since both zbottom and zhorizon are known values then replacing (5.6) in (5.5) and
using the known values Hc and ωobs the obstacle width Wobs can be obtained. Finally,
using a cross relation Hobs can be obtained as well.

Hobs = hobs
Wobs

ωobs
(5.7)

where hobs is the obstacle image height and Hobs the obstacle physical height.
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5.2.4 Results for estimation of obstacle width and height

As explained previously, the obstacle width and height can be determined from (5.5)
and (5.7), respectively. In case 1, there is just one obstacle, so the width and height
are calculated and one can see that the final cluster is the obstacle itself.

Case 1 Width Height

Obstacle real measure 19.6 cm 37.4 cm

1st obstacle estimation 13.8667 cm 41.0667 cm
2nd obstacle estimation 0 cm 0 cm

Total cluster estimation 13.8667 cm 41.0667 cm

Table 5.1: Obstacle dimensions for case 1

(a) Original Image (b) Detected clusters

(c) Final detected obstacle

Figure 5.7: Obstacle determination for case 1
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In case 2 there are two obstacles with a distance between them less than 1.2 m, i.e.
that both obstacles are considered as one. The cluster width is calculated with the
most left point of the first obstacle and the most right point of the second obstacle.
Finally the cluster height is calculated from the nearest obstacle.

Case 2 Width Height

Obstacle real measure 19.6 cm 37.4 cm

1st obstacle estimation 13.8667 cm 41.0667 cm
2nd obstacle estimation 13.4737 cm 38.7368 cm

Total cluster estimation 37.8667 cm 41.0667 cm

Table 5.2: Obstacle dimensions for case 2

(a) Original Image (b) Detected clusters

(c) Final detected obstacle

Figure 5.8: Obstacle determination for case 2
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In case 3 there are two obstacles as well, but now the distance between them is greater
than 1.2 m, this leads to consider just the nearest obstacle as the final cluster, i.e. that
the width and height of the final cluster are the dimensions of the nearest obstacle.

Case 3 Width Height

Obstacle real measure 19.6 cm 37.4 cm

1st obstacle estimation 13.6393 cm 40.918 cm
2nd obstacle estimation 12.1379 cm 40.8276 cm

Total cluster estimation 13.6393 cm 40.918 cm

Table 5.3: Obstacle dimensions for case 3

(a) Original Image (b) Detected clusters

(c) Final detected obstacle

Figure 5.9: Obstacle determination for case 3
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In case 4 there are two obstacles with a distance between them less than 1.2 m, i.e.
that both obstacles are considered as one. The cluster width is calculated with the
most left point of the first obstacle and the most right point of the second obstacle.
Finally the cluster height is calculated from the nearest obstacle.

Case 4 Width Height

Obstacle real measure 19.6 cm 37.4 cm

1st obstacle estimation 14.4 cm 41.6 cm
2nd obstacle estimation 15.4839 cm 41.2903 cm

Total cluster estimation 73.2903 cm 41.2903 cm

Table 5.4: Obstacle dimensions for case 4

(a) Original Image (b) Detected clusters

(c) Final detected obstacle

Figure 5.10: Obstacle determination for case 4
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5.2.5 Results for estimation of distance to the obstacle

The distance between the camera and the obstacle can be estimated with the pinhole
camera model equation presented previously, i.e. with the obstacle width or height
information, (5.4) or (5.3), respectively. Nevertheless the focal length value in pix-
els is necessary to calculate this distance. Thus this unknown value can be found
experimentally by making different tests using the following relationship,

f = d
ωobs
Wobs

(5.8)

where d is the measured distance between the camera and the obstacle, ωobs is the
obstacle width in pixels and Wobs is the real obstacle width.

It can be seen from Tab. 5.5 different values for the focal length for each measured
distance. Then the experimental value for the focal length can be defined by the mean
value as follows,

f = 1
N

N∑
i=1

fi = 259.4811 (5.9)

where N is the number of taken data. Now with the value of the focal length is possible
to estimate the distance from the camera to the obstacle using (5.4). The previously
cases are presented as well for distance estimation from the camera to the final cluster.

In case 1 there is just one obstacle, i.e. that the final cluster is the obstacle itself.

In case 2 there are two obstacles with distance between them less than 1.2 m. The
final cluster is a huge obstacle that starts from the most left point of the first obstacle
to the most right point of the second obstacle.

In case 3 there are two obstacles with a distance between them more than 1.2 m. The
final cluster is the nearest obstacle.

In case 4 there are two obstacles with a distance between them less than 1.2 m. The
final cluster is a huge obstacle that starts from the most left point of the first obstacle
to the most right point of the second obstacle.
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i d ωobs Wobs f
(cm) (pixels) (cm) (pixels)

1 70 78 20.9748 260.3123
2 80 63 19.7647 255.0001
3 90 39 13.7143 255.9372
4 100 39 15.2195 256.2502
5 110 34 14.7 254.4217
6 120 31 14.5882 255.0006
7 130 28 14.4516 251.8752
8 140 25 13.7931 253.75
9 150 24 14.2222 253.1253
10 160 21 13.1765 254.9994
11 170 18 12 255
12 180 17 12.0889 253.1247
13 190 15 11.1628 255.3122
14 200 13 10.1463 256.251
15 210 12 9.8461 255.9376
16 220 12 10.1053 261.249
17 230 13 11.5556 258.749
18 240 11 10.0571 262.5011
19 250 10 9.4117 265.6251
20 260 9 8.7272 268.125
21 270 9 9 270
22 280 9 9.2903 271.25
23 290 8 8.5333 271.8751
24 300 8 8.8275 271.8748

Table 5.5: Experimental data for focal length estimation
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Case 1 Wobs ωobs d

Obstacle real measure 19.6 cm - 124.29 cm
Obstacle estimation 13.8667 cm 26 pixels 138.389 cm

Table 5.6: Distance calculation for case 1

Figure 5.11: Final detected obstacle for case 1

Case 2 Wobs ωobs d

1st obstacle real measure 19.6 cm - 124.29 cm
2nd obstacle real measure 19.6 cm - 210.49 cm

1st obstacle estimation 13.8667 cm 26 pixels 138.389 cm
2nd obstacle estimation 13.4737 cm 16 pixels 218.509 cm

Table 5.7: Distance calculation for case 2

Figure 5.12: Final detected obstacle for case 2
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Case 3 Wobs ωobs d

1st obstacle real measure 19.6 cm - 124.11 cm
1st obstacle estimation 13.6393 cm 26 pixels 136.121 cm

Table 5.8: Distance calculation for case 3

Figure 5.13: Final detected obstacle for case 3

Case 4 Wobs ωobs d

1st obstacle real measure 19.6 cm - 123.37 cm
2nd obstacle real measure 19.6 cm - 127.53 cm

1st obstacle estimation 14.4 cm 27 pixels 138.389 cm
2nd obstacle estimation 15.4839 cm 30 pixels 133.925 cm

Table 5.9: Distance calculation for case 4

Figure 5.14: Final detected obstacle for case 4
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5.3 Data fusion of the laser scanner and the 2D
camera

Up to here both the laser scanner and the 2D camera have acquired independent data.
First with the laser scanner it is possible to estimate the obstacle position and width;
and then with the 2D camera it is possible to estimate the obstacle width and height.

Since the main task of these sensors is to detect obstacles, the problem to avoiding
them arises. Then one method for obstacle avoiding is by creating an ellipse around
it, i.e. means that some ellipse parameters must be defined,

• Inclination angle.

• Position in the XY-plane.

• Semi-major axis and semi-minor axes.

5.3.1 Ellipse inclination angle

The first parameter is the ellipse inclination angle and it just depends on the laser
scanner, since the 2D camera does not give depth information. So it is defined as
follows,

Figure 5.15: Inclination angle defined by the laser scanner detected points

where α is the ellipse inclination angle between the first and last detected points. Then
the equation is defined as

α = arctan
(
xobs,1 − xobs,f
yobs,1 − yobs,f

)
(5.10)
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5.3.2 Ellipse absolute position in the XY-plane

The second parameters are the ellipse position in the XY-plane that depends on the
laser scanner and the 2D camera data. It is important to clarify that the information
given by the 2D camera is only used for the distance estimation in the X-direction. So
the obstacle relative position is defined by,

xrel = xrel,las + xrel,cam
2

yrel = yrel,las

(5.11)

where (xrel,las, yrel,las) are the position coordinates in the XY-plane given by the laser
scanner, and xrel,cam is the distance in the X-direction given by the camera. Then the
obstacle absolute position depends on its relative position and mobile robot absolute
position. Fig. 5.16 shows the obstacle and robot position in the XY-plane.

Figure 5.16: Obstacle position in absolute coordinates in the XY-plane
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As a result, the absolute obstacle position coordinates in the XY-plane are defined as,

xobs = xpos + xrel cos(ψ)− yrel sin(ψ)

yobs = ypos + xrel sin(ψ) + yrel cos(ψ)
(5.12)

where xpos and ypos are the robot position, xrel and yrel the relative obstacle position
calculated previously and ψ is the yaw angle.

5.3.3 Ellipse axes

The third parameters are the ellipse semi-major and semi-minor axes depending di-
rectly on the obstacle width information given by the laser scanner and the 2D camera
data.

As described before, the obstacle width using the 2D camera is determined by (5.5)
for each obstacle. Since the mobile robot can detect more than one obstacle on its way
inside the detection range, a solution is presented.

In the first case there is just one obstacle on the image, so this means that the obstacle
width is Wobs as one can see in Fig. 5.17.

Figure 5.17: One obstacle detected by the camera

As said before, since the camera doesn’t give depth information, then the obstacle
width Wobs may not be the real width and this is because of the inclination angle α.
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Therefore two situations can be seen in Fig. 5.18a and 5.18b related to the obstacle
real width.

(a) For α = 0◦

(b) For α 6= 0◦

Figure 5.18: Obstacle real width (one obstacle)

Thus the relation between Wobs and Wreal is,

Wreal = Wobs

cos(α) (5.13)

where Wreal is the obstacle real width and depends on the obstacle width and the
inclination angle. If there is no inclination angle (α = 0◦) then Wreal = Wobs.
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In the second case there is more than one obstacle on the image, so this means that the
obstacle width now depends on each Wobs of each obstacle as one can see in Fig. 5.19.

Figure 5.19: Two obstacles detected by the camera

In the same way as before, the obstacle width Wobs may not be the real width and this
is because of the inclination angle α. Therefore two situations can be seen in Fig. 5.20a
and 5.20b related to the obstacle real width.

(a) For α = 0◦

84



5 Sensor fusion for obstacle determination 85

(b) For α 6= 0◦

Figure 5.20: Obstacle real width (two obstacles)

Thus the relation between Wobs and Wreal is the same as (5.13). Now the ellipse semi-
minor axis can be determined by the laser scanner and the 2D camera. One semi-minor
axis value is calculated for each sensor in order to get an accurate solution. Eq. (5.14)
and (5.15) show these values.

blas = |yobs,1 − yobs,f |+ 0.6 (5.14)

bcam = Wreal + 0.6 (5.15)

where blas is the first calculated semi-minor axis that depends on the first and last
detected points of the laser scanner and bcam is the second calculated semi-minor axis
that depends on the obstacle real width Wreal of the 2D camera. The value of 0.6 was
chosen to ensure that the ellipse is sufficiently large even with small-sized obstacles.
With both semi-minor axes, one can combine these information in order to get a better
result using the mean value. On the other hand, the semi-major axis is also calculated
based on the semi-minor axis.

b = blas + bcam
2 (5.16)

a = 1.3 b (5.17)
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where b is the ellipse semi-minor axis and a is the ellipse semi-major axis. A restriction
must be applied to the ellipse axis to limit the size of the ellipse, then

a =

1.3 b, if b ≥ 1.2

1.2, otherwise
(5.18)

(a) For α = 0◦

(b) For α 6= 0◦

Figure 5.21: Ellipse representation
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5.4 Results of data fusion
In case 1 there is just one obstacle and it is surrounded by an ellipse defined by the
parameters b and a as shown in Tab. 5.10. The values of blas and bcam are almost equal,
i.e. the calculation for each sensor was made correctly. Also it can be seen that xrel,las
and xrel,cam are almost equal as well. The obstacle relative and absolute coordinates
are the same because the robot is in the position (0,0).

Case 1 xrel,las yrel,las xrel,cam xrel xobs yrel yobs

(cm) (cm) (cm) (cm) (cm) (cm) (cm)

130.24 5.26 138.389 134.31 134.31 5.26 5.26

α Wobs Wreal blas bcam b a

(rad) (cm) (cm) (cm) (cm) (cm) (cm)

0.2495 13.87 14.31 70.52 74.31 72.41 120

Table 5.10: Data fusion parameters for case 1
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Obstacle identification with sensor fusion
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Figure 5.22: Obstacle determination and identification with sensor fusion for case 1
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In case 2 there are two obstacles but taken as one and they are surrounded by an
ellipse defined by the parameters b and a as shown in Tab. 5.11. It can be seen that
now the ellipse is bigger due to the distance threshold restriction between obstacles
explained before. The values of blas and bcam are almost equal, i.e. the calculation for
each sensor was made correctly. Also it can be seen that xrel,las and xrel,cam are almost
equal as well. The obstacle relative and absolute coordinates are the same because the
robot is in the position (0,0) of the XY-plane.

Case 2 xrel,las yrel,las xrel,cam xrel xobs yrel yobs

(cm) (cm) (cm) (cm) (cm) (cm) (cm)

171.09 -11.67 178.45 174.77 174.77 -11.67 -11.67

α Wobs Wreal blas bcam b a

(rad) (cm) (cm) (cm) (cm) (cm) (cm)

-0.7854 37.87 53.55 104.39 113.55 108.97 120

Table 5.11: Data fusion parameters for case 2
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Figure 5.23: Obstacle determination and identification with sensor fusion for case 2
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6 Dynamic optimal control problem

The dynamic optimization problem is a problem in which the states and control vari-
ables change over a predefined period of time. The main goal of the optimization
problem, is to minimize the cost function by finding the optimal control values and
taking in account certain equality, inequality and constraints conditions.

6.1 Continuous nonlinear optimal control problem
Since the main task is to minimize the values of the control variables, then the contin-
uous nonlinear optimization problem is defined as follows,

min
u(t)

J = φ(x(tf ), tf ) +
tf∫
t0

f0(x(t), u(t), t)dt

 (6.1)

s.t. ẋ(t) = f(x(t), u(t), t), t ∈ [t0, tf ] (6.2)

0 ≤ g(x(t), u(t), t) (6.3)

x(t0) = x0 (6.4)

xmin ≤ x(t) ≤ xmax (6.5)

umin ≤ u(t) ≤ umax (6.6)

The cost function known as a Bolza problem is shown in (6.1), the system equations in
(6.2), the inequality constraints in (6.3), the initial state in (6.4). The state constraints
in (6.5) and the control constraints in (6.6).

The state and control variables as seen in chapter 2, is defined as follows,

x =


x1

x2

x3

 =


xpos

ypos

ψ

 , u =
u1

u2

 =
v
δ

 (6.7)
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and so the system equations,

ẋ =


ẋ1

ẋ2

ẋ3

 =


v cos(ψ) cos(δ)
v sin(ψ) cos(δ)

2 v
L

sin(δ)

 (6.8)

Then the state constraints are defined according to the real environment,

−∞ ≤x1(t) ≤ ∞

−∞ ≤x2(t) ≤ ∞

−π ≤x3(t) ≤ π

(6.9)

where x1(t) is the position xpos in the X-direction, x2(t) is the position ypos in the
Y-direction, and x3(t) is the yaw angle ψ. It can be seen that the position in the
XY-plane is not limited, because the mobile robot can move in any direction in this
plane.

Also the control constraints are defined as follows,

0.1 m

s
≤u1(t) ≤ 1 m

s

−0.1 rad ≤u2(t) ≤ 0.1 rad
(6.10)

where u1(t) is the velocity v and u2(t) is the steering angle δ. The minimum value of
the speed is different from 0 in order to fix the trajectory if the mobile robot enters to
a constrained area and the maximum value is set as 1 m/s due to the accuracy of the
reduced 3-state model. The values of the steering angle are defined taken into account
the mechanical construction and the correction factors that are needed to be done.

The inequality constraint is defined by the ellipses of the detected obstacles, i.e. if the
robot is moving from the initial to the desired final position and then it detects an
obstacle, the robot must avoid it taking into account the following ellipse equation,

1 ≤ (xpos − xobs)2

a2 + (ypos − yobs)2

b2
(6.11)

where xpos and ypos are the robot position coordinates in the XY-plane, xobs and yobs
are the obstacle position coordinates in the XY-plane, a is the ellipse major axis and
b is the ellipse minor axis. A variation of this ellipse equation can be done by adding
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the inclination angle α (referring to Fig. 5.21b) as follows,

1 ≤

[
(xpos − xobs) cos(α) + (ypos − yobs) sin(α)

]2
a2

+

[
(xpos − xobs) sin(α)− (ypos − yobs) cos(α)

]2
b2

(6.12)

6.2 Transformation into a nonlinear optimization
problem

The optimization problem described previously is a continuous nonlinear optimal con-
trol problem, since it is formulated in the continuous time domain, the complexity in
obtaining the solution to this problem increases considerably. In general, the solu-
tion methods for optimal control problems are divided into three categories: dynamic
programming, indirect methods and direct methods as shown in Fig. 6.1 (Li, 2017).

Figure 6.1: Solution methods for optimal control problems

In summary, dynamic programming method is restricted to small-scale dimension prob-
lems. Indirect methods, cannot solve large-scale problems within an acceptable time,
which is a crucial factor in online optimization. On the other hand, direct methods
can solve the optimal control problem by transforming it into a nonlinear optimization
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problem (NLP) which is then solved using numerical optimization methods. So first
the problem must be discretized, i.e. transform the continuous dynamics of the system
into a series of discrete equations. Then the optimization of the NLP can be done.
Compared to indirect methods, these methods can easily manage linear and nonlinear
inequality constraints, making them very useful for real applications, i.e. direct meth-
ods can solve very large-scale and nonlinear problems by using a wide range of solvers.

In direct methods, the most popular variant of the sequential approach is the direct
single-shooting method, while for the simultaneous approach the collocation on finite
elements,and the multiple-shooting methods are available. This thesis deals with a
solution based on multiple-shooting with a three-point collocation method. More in-
formation and application of this method can be found in (Correa, 2016), (Müller,
2013), (Geletu, 2016) and (Li, 2017). As a result of using the direct methods, the
optimization task is reduced to solving a NLP in order to obtain the optimal control
variables. Then the resulting NLP can be described as follows,

min
w
F (w) (6.13)

G(w) = 0 (6.14)

H(w) ≤ 0 (6.15)

wmin ≤ w ≤ wmax (6.16)

where F (w) is the objective function, G(w) is the equality constraint, H(w) is the
inequality constraint, and w is the vector of the optimization variables which considers
the parametrized control variables and also the approximation of the state variables
at each discrete time.

So first to perform this transformation the time horizon [t0, tf ] must be discretized
into N time intervals, i.e. divide the time horizon in intervals [tk, tk+1] where k =
0, 1, 2, ...N − 1 with three collocation points in each interval.

tk = tk,0 < tk,1 < tk,2 < tk,3 = tk+1 (6.17)

where tk,i for i = 0, ..., 3 are the collocation points.
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Figure 6.2: Collocation points, collocated state and control in time interval [tk, tk+1]

It can be seen from Fig. 6.2 (Drozdova, 2015) that xk,i are the discretized values of
the state trajectory at these collocation points. xk,0 is the initial point of the time
interval [tk, tk+1] and its value is given by the optimization variable x̂k. In a similar
way, xk,3 is the final point of the time interval [tk, tk+1] and its value represents the
value of φk(x̂k, uk). The control variable is constant in each shooting time interval,
while the state variable trajectory is approximated by a linear combination of the
Lagrange polynomials, i.e.,

uk = u(t) , pk(t) =
3∑
i=0

lk,i(t)xk,i (6.18)

k = 0, 1, ..., N − 1

t = [tk, tk+1]

where pk(t) is the approximated polynomial for the time interval [tk, tk+1]. It can be
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seen that this polynomial has the same values of the state trajectory at the collocation
points. Then the Lagrange polynomials are defined as follows,

lk,i(t) =
3∏

i=0,i6=j

(t− tj)
ti − tj

(6.19)

and the time derivative of pk(t) from (6.18) is given by,

ṗk(t) =
3∑
i=0

dlk,i(t)
dt

xk,i (6.20)

Thus using (6.18) in the state equation (6.2), the state variables values xk,i can be
calculated by Newton’s method.

The vector of optimization variables with the previous information can be defined as,

w =
[
x̂0 u0 x̂1 u1 x̂2 u2 . . . uN−1 x̂N

]T (6.21)

Then the inequality constraint H(w) consists of a set of equations that depend on the
variables x̂k and uk.

H(w) =



h(x̂0, u0)
h(x̂1, u1)
h(x̂2, u2)

...

h(x̂N , uN)


≤



0
0
0
...

0


(6.22)

where h is defined as the obstacle ellipse equation shown in (6.12).

For the determination of the equality constraint G(w), first is important to specify
that the state trajectory shown in Fig. (6.2) must be continuous in the time horizon,
i.e. that the initial state value x̂k of each interval must be equal to the final value of
the trajectory of the previous interval.

x̂k+1 = xk(tk+1, x̂k, uk)

= φk(x̂k, uk)
(6.23)

where φk(x̂k, uk) is the value of the polynomial pk(t) at the last collocation point. Then
the equality constraint G(w) is obtained taken into account the initial state x̂0 = x(0)
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and (6.23) with k = 0, ..., N − 1.

G(w) =



x̂0 − x(0)
x̂1 − φ0(x̂0, u0)
x̂2 − φ1(x̂1, u1)

...

x̂N − φ0(x̂N−1, uN−1)


=



0
0
0
...

0


(6.24)

Finally, the cost function is presented as follows,

F (w) = xTN P xN +
N−1∑
k=0

(xTk Qxk + uTk Ruk) (6.25)

with

xN =
[
xpos,N ypos,N

]T
(6.26)

xk =
[
xpos,k ypos,k

]T
(6.27)

uk =
[
vk δk

]T
(6.28)

where P is the weighting matrix for the desired final states, while Q and R are the
weighting matrices for the states and control values during the optimization task, re-
spectively. xN and xk are the vectors of the state variables in the discrete time N
and k, respectively, while uk is the vector of the control variables in the time interval
[k, k + 1]. A detailed procedure of this transformation can be found in (Lazutkin,
Geletu, Hopfgarten, & Li, 2014).

After the transformation of the continuous optimal control problem into an NLP, a
numerical solution is obtained with the numerical solver Ipopt3. More information
about Ipopt can be found in (Wächter & Biegler, 2006).

6.3 Model predictive control
The main idea of the model predictive control (MPC) is that it computes the opti-
mal controls within an control time horizon and predicts the future states/outputs
in the prediction time horizon taking into account the actual states and possibly a

3Ipopt (Interior Point Optimizer) is an open-source software package for solving very large-scale
NLP. It is based on a primal-dual interior-point line-search filter method.
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prediction of disturbances in the prediction horizon. Often the control horizon equals
the prediction horizon. Because of this, MPC provides a quasi-online solution to the
optimization problem. Then the control/prediction horizon is defined as follows,

tc = tp = N ts (6.29)

where N is the number of intervals in the control/prediction horizon and ts is the
sampling time.

Figure 6.3: The MPC principle

Fig. 6.3 based on (Thieme, 2014) shows the MPC principle. So first the state variable
x(k) is measured or estimated at the discrete time k. Then the optimization problem
is solved over the entire prediction horizon considering the constraints. After this, the
calculated optimal control u(k) is applied in the interval [k, k + 1]. Meanwhile the
prediction horizon is shifted to the right by one time interval and the state variable is
again measured or estimated at the discrete time k + 1. Then again the optimization
problem is solved and the new calculated optimal control u(k + 1) is applied in the
interval [k + 1, k + 2]. These steps are repeated until the reference is reached, i.e. the
error between the desired value and the current state is small enough. The advantages
of the MPC are the possibility to determine an optimal control and future behavior of
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the system considering constraints, and to take into account predictable or measurable
disturbances. The disadvantage is the high numerical calculation complexity, but it
is reduced as a result of the combination of mutiple-shooting and collocation method
explained previously.

Figure 6.4: Control variable behavior in the prediction horizon

Fig. 6.4 based on (Belgradskaia, 2016) shows the behavior of the control variable in
the prediction horizon depending on the calculated time topt. So first is calculated the
optimal control variable up1 for the entire prediction horizon p1 due to the mathemat-
ical model. Then in the first time interval [k, k + 1] the optimal control value up1,k is
used. At the end of this time interval, i.e. at the discrete time k+1 the state variables
and the sensor data are obtained. Now, based on this information the optimal control
variable up2 is calculated again for the entire prediction horizon p2. However during
the calculation time topt,k of this new optimal control variable, up1,k is used from the
previous time interval. When topt,k ends, the new calculated control variable up2,k+1 is
used for the rest of the time interval [k+1, k+2]. Finally at the discrete time k+2 the
state variables and the sensor data are obtained again and then the optimal control
variable up3 is calculated. This procedure is repeated until the target is reached. It is
important to notice that topt must be lower than the sampling time ts in order to make
the MPC works as expected.
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6.4 Solution of the optimization problem
The entire control structure of the mobile robot SUMMIT can be seen in Fig. 6.5. The
input of the control system is the reference trajectory or desired final position. Then
in the optimization block the MPC with multiple-shooting and collocation method
are used in order to solve the optimization problem, the constraints are specified by
the sensor fusion data from both the laser scanner and the 2D camera, while the
cost function is predefined by the MPC algorithm. The optimal control values then
are corrected with the linear relationship and the Neural network of the velocity and
steering angle, respectively. Later, these corrected values are sent to the mobile robot
SUMMIT and finally with the EKF one can get the estimated state variables.

Figure 6.5: Block diagram of the control system architecture

As it can be seen the main objective is to reduce the deviation between the input and
the output of the control system via optimization procedures. Thus in order to verify
the accuracy of the MPC, two kind of optimization problems are discussed: trajectory
tracking problem and obstacle avoidance.

6.4.1 Trajectory tracking problem

The trajectory tracking problem is a classic problem in the field of autonomous mobile
robots. This problem consists in finding the optimal control variables in order to
follow a reference trajectory (xref , yref ). Within the scope of MPC, this problem is
solved by minimizing the cost function Jtrack in the prediction horizon, i.e. minimize
the deviation between the current and the reference position in the XY-plane at each
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discrete time k. Then the cost function to be minimized is as follows,

Jtrack =Px (xpos,N − xref,N)2 + Py (ypos,N − yref,N)2

+
N−1∑
k=1

[
Qx (xpos,k − xref,k)2 +Qy (ypos,k − yref,k)2 +Rv v

2
k +Rδ δ

2
k

] (6.30)

where N = 20 is the selected number of time intervals of the prediction horizon. Then
the weights are defined as,

Px Py Qx Qy Rv Rδ

Weights 8.0 8.0 0.7 0.7 0.1 0.1

Table 6.1: Weighting values for trajectories tracking problem

The weights of Rv and Rδ are low because the main goal in this kind of problem is the
reduction of the deviation between the reference and the current position. The values
of Qx and Qy are chosen in order to adjust the current trajectory to the reference.
Finally the values of Px an Py are relatively big for make the current position reach
the last value of the reference trajectory. Thus the resulting NLP is defined as follows,

min
u

Jtrack(x, u)

s.t. x(0) = x0

system equations (6.8)

state constraints (6.9)

control constraints (6.10)

In order to test the performance of the proposed optimization problem, two cases
are presented: case 1 (ts = 0.12 s with sinusoidal reference trajectory), and case 2
(ts = 0.17 s with sinusoidal reference trajectory). Since it is a trajectory tracking
problem, there is no need to use the laser scanner or the camera information. The
value of ts = 0.17 s was choosen because this sampling time was used by (Belgradskaia,
2016), while the value of ts = 0.12 s was choosen because it is a lower value than the
previous one proposed.
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Case 1 is a trajectory tracking problem with a sinusoidal reference trajectory and the
selected sampling time is 0.12 s. Fig. 6.6a shows the real trajectory in the XY-plane,
Fig. 6.6b shows the control variables along the trajectory and Fig. 6.6c shows the
computation time that the solution of the optimal control problem needs to be solved.

Case 1

Type of problem Trajectory tracking
Reference 0.3 sin(wt)
Sampling time ts = 0.12 s

Table 6.2: Considerations for case 1
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(a) Robot trajectory in the XY-plane
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Figure 6.6: Results for case 1. Tracking problem with ts = 0.12 s

101



6 Dynamic optimal control problem 102

Case 2 is also a trajectory tracking problem with the same sinusoidal reference trajec-
tory but now the selected sampling time is 0.17 s. Fig. 6.7a shows the real trajectory in
the XY-plane, Fig. 6.7b shows the control variables along the trajectory and Fig. 6.7c
shows the computation time that the solution of the optimal control problem needs to
be solved.

Case 2

Type of problem Trajectory tracking
Reference 0.3 sin(wt)
Sampling time 0.17 s

Table 6.3: Considerations for case 2
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Figure 6.7: Results for case 2. Tracking problem with ts = 0.17 s
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6.4.2 Obstacle avoidance problem

The obstacle avoidance problem is also a classical problem in the field of autonomous
mobile robots. This problem consists in finding the optimal control variables in order
to reach at a desired final position by following a trajectory (xd, yd) while avoiding all
the obstacles along it. Then the cost function to be minimized is as follows,

Javoid =Px (xpos,N − xend,N)2 + Py (ypos,N − yend,N)2

+
N−1∑
k=1

[
Qx (xpos,k − xend,k)2 +Qy (ypos,k − yend,k)2 +Rv v

2
k +Rδ δ

2
k

] (6.31)

where N = 20 is the selected number of time intervals of the prediction horizon. Then
the weights are defined as,

Px Py Qx Qy Rv Rδ

Weights 0.5 2 0.1 1 0.05 0.05

Table 6.4: Weighting values for obstacle avoidance problem

The weights of Rv and Rδ are low because the main goal in this kind of problem is the
reduction of the deviation between the desired and the current position. The value of
Qy is greater than Qx in order to reduce the movement of the mobile robot in the Y-
direction. Likewise the value of Py is greater than Px in order to penalize the deviation
between the desired and current position in the discrete time N . Thus the resulting
NLP is defined as follows,

min
u

Javoid(x, u)

s.t. x(0) = x0

system equations (6.8)

state constraints (6.9)

control constraints (6.10)

obstacle path constraints (6.12)

In order to test the performance of the proposed optimization problem, four cases are
presented: case 3 (ts = 0.12 s with 3 obstacles), case 4 (ts = 0.17 s with 3 obstacles),
case 5 (ts = 0.12 s with 5 obstacles), and case 6 (ts = 0.17 s with 5 obstacles).
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Case 3 is an obstacle avoidance problem with a fixed end position in the XY-plane and
a selected sampling time of 0.12 s. Fig. 6.8a shows the mobile robot trajectory with
three obstacles along the way in the XY-plane, Fig. 6.8b shows the control variables
along the trajectory and Fig. 6.8c shows the computation time that the solution of the
optimal control problem needs to be solved.

Case 3

Type of problem Obstacle avoidance
Reference (xd, yd) = (20, 0)
Sampling time 0.12 s

Table 6.5: Considerations for case 3
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(a) Robot trajectory in the XY-plane
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Figure 6.8: Results for case 3. Obstacle avoidance with ts = 0.12 s
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Case 4 is also an obstacle avoidance problem with a fixed end position in the XY-
plane but now the selected sampling time is 0.17 s. Fig. 6.9a shows the mobile robot
trajectory with three obstacles along the way in the XY-plane, Fig. 6.9b shows the
control variables along the trajectory and Fig. 6.9c shows the computation time that
the solution of the optimal control problem needs to be solved.

Case 4

Type of problem Obstacle avoidance
Reference (xd, yd) = (20, 0)
Sampling time 0.17 s

Table 6.6: Considerations for case 4
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Figure 6.9: Results for case 4. Obstacle avoidance with ts = 0.17 s

108



6 Dynamic optimal control problem 109

Case 5 is an obstacle avoidance problem with a fixed end position in the XY-plane and
a selected sampling time of 0.12 s. Fig. 6.10a shows the mobile robot trajectory with
five obstacles along the way in the XY-plane, Fig. 6.10b shows the control variables
along the trajectory and Fig. 6.10c shows the computation time that the solution of
the optimal control problem needs to be solved.

Case 5

Type of problem Obstacle avoidance
Reference (xd, yd) = (20, 0)
Sampling time 0.12 s

Table 6.7: Considerations for case 5

x
pos

 [m]
0 2 4 6 8 10 12 14 16 18 20

y po
s [m

]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Robot trajectory

Real trajectory
Obstacles
Constraints

xd = 20

yd = 0

(a) Robot trajectory in the XY-plane

109



6 Dynamic optimal control problem 110

0 5 10 15 20 25 30

v 
[m

/s
]

0

0.5

1

Control variables

Time [sec]
0 5 10 15 20 25 30

δ
 [r

ad
]

-0.1

0

0.1

(b) Control variables

Time [sec]
0 5 10 15 20 25 30

t op
t [m

se
c]

0

10

20

30

40

50

60

70

80

90

100

110
Computation time

(c) Computation time

Figure 6.10: Results for case 5. Obstacle avoidance with ts = 0.12 s
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Case 6 is also an obstacle avoidance problem with a fixed end position in the XY-
plane but now the selected sampling time is 0.17 s. Fig. 6.11a shows the mobile robot
trajectory with five obstacles along the way in the XY-plane, Fig. 6.11b shows the
control variables along the trajectory and Fig. 6.11c shows the computation time that
the solution of the optimal control problem needs to be solved.

Case 6

Type of problem Obstacle avoidance
Reference (xd, yd) = (20, 0)
Sampling time 0.17 s

Table 6.8: Considerations for case 6
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Figure 6.11: Results for case 6. Obstacle avoidance with ts = 0.17 s
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6.5 Evaluation of the results
For the trajectory tracking problem, there are case 1 and 2, where sampling times of
0.12 s and 0.17 s are used, respectively. In Fig. 6.6a one can observe that for the lower
sampling time (120 ms) the mobile robot follows very well the reference trajectory
(sine function). In the first 2 m, the mobile robot tries to follow the trajectory and
because of the fast change of the values in the Y-direction, it fails. Then the mobile
robot is capable of reaching the trajectory and begins to follow it closely until the final
position in the X-direction is reached (15 m). The maximum value of topt for case 1
is approximately 18 ms (shown in Fig. 6.6c), and it is lower than the sampling time
(120 ms). On the other hand, for the greater sampling time (170 ms) the mobile robot
follows not as well as in case 1. In Fig. 6.7a in the first mostly 4 m, the mobile robot
tries to follow the trajectory and because of the fast change of the values in the Y-
direction, it fails. Then the mobile robot is capable of reaching the trajectory but with
more striking deviations due to the longer sampling time. The maximum value of topt
(shown in Fig. 6.7c) is approximately 16 ms, and it is much lower than the sampling
time (170 ms). It can be noticed that for both cases there are some little deviations
between the real and reference trajectories due to the mechanical construction and the
dynamics of the mobile robot.

Tab. 6.9 shows the comparison between the two cases, where topt,max is the maximum
value of the computation time and they are almost equal, but the great difference is
that in case 1, the mobile robot starts following the reference trajectory earlier than
in case 2, i.e. having less sampling time for trajectories problem is more accurate.

Results ts topt,max

Case 1 120 ms 18 ms (started at 2 m)
Case 2 170 ms 16 ms (started at 4 m)

Table 6.9: Results for trajectory tracking problem

For the obstacle avoidance problems, in first scenario (three obstacles) there are case 3
and 4, where sampling times of 0.12 s and 0.17 s are used, respectively. In Fig. 6.8a one
can observe that for the lower sampling time (120 ms) the mobile robot goes from the
initial position to the final desired position avoiding all the obstacles without problem.
In Fig. 6.8c one can observe that there are three peaks of computation time at 5 s, 12 s
and 20 s approximately, each one corresponds to the detection and consideration of
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an obstacle. The maximum value of topt is approximately 100 ms, and it is lower than
the sampling time (120 ms). On the other hand, in Fig. 6.9a for the greater sampling
time (170 ms) the mobile robot also avoids all the obstacles along the way, but in
comparison with case 3, when the mobile robot reaches the first and second obstacle it
moves further in the Y-direction and passes very close to the third obstacle. For this
case looking at the computation time (shown in Fig. 6.9c) one can observe that there
are three peaks of computation time at 5 s, 14 s and 22 s, each one corresponds to
the detection and consideration of an obstacle. The maximum value of topt is approx-
imately 94 ms, and it is lower than the sampling time (170 ms).

Tab. 6.10 shows the comparison between both cases where topt,max is the maximum
peak value of computation time for each detected obstacle. It can also be seen that
the finally reached position is shown. Then, because of the values of computation time
and the final position of the mobile robot, case 4 is more accurate than case 3.

Results ts topt,max,1 topt,max,2 topt,max,3 xpos,N ypos,N

Case 3 120 ms 100 ms 75 ms 78 ms 20 m 0.04 m
Case 4 170 ms 94 ms 76 ms 73 ms 20 m 0.01 m

Table 6.10: Results for obstacle avoiding problem (3 obstacles)

Now for the second scenario (five obstacles) there are case 5 and 6, where sampling
times of 0.12 s and 0.17 s are used, respectively. In Fig. 6.10a one can observe that
for the lower sampling time (120 ms) the mobile robot goes from the initial position
to the final desired position avoiding all the obstacles without problem but when it
reaches the first and second obstacle it moves further in the Y-direction and passes very
close to the third obstacle (too close to the constrained area but without collision). In
Fig. 6.10c one can observe that there are five peaks of computation time at 6 s, 10.5 s,
14.8 s, 20.3 s and 25.2 s approximately, each one corresponds to the detection and
consideration of an obstacle. The maximum value of topt is approximately 101 ms, and
it is lower than the sampling time (120 ms). On the other hand in Fig. 6.11a for the
greater sampling time (170 ms) the mobile robot also avoids all the obstacles along the
way but when it reaches the third and fifth obstacle it moves further in the Y-direction.
In Fig. 6.11c there are five peaks of computation times at 5.2 s, 10.1 s, 12.5 s, 20.2 s
and 27 s approximately, each one corresponds to the detection and consideration of an
obstacle. The maximum value of topt is approximately 80 ms, and it is lower than the
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sampling time (170 ms).

Tab. 6.11 shows the comparison between both cases where topt,max is the maximum
peak value of computation time for each detected obstacle. It can also be seen that
the final reached position is shown. Then, because of the values of computation time
and the final position of the mobile robot, case 6 is more accurate than case 5.

Results ts topt,max,1 topt,max,2 topt,max,3 topt,max,4 topt,max,5 xpos,N ypos,N

Case 5 120 ms 101 ms 69 ms 87 ms 79 ms 93 ms 20 m 0.38 m
Case 6 170 ms 64 ms 79 ms 75 ms 69 ms 80 ms 20 m 0.29 m

Table 6.11: Results for obstacle avoiding problem (3 obstacles)

In conclusion, one can see that from the results and comparison of all the cases, for
the trajectory tracking problem the better results were obtained by using a lower
sampling time (120 ms), while for the obstacle avoidance problem the better results
were obtained (for both scenarios) by using a greater sampling time (170 ms).
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7 Summary, conclusions and outlook

7.1 Summary
In this master thesis the main focus lies on the involvement of camera data for ob-
stacle detection and description as well as the fusion with the laser scanner data to
aim at a better and more reliable description of the obstacles to be avoided within an
autonomous driving using model predictive control.

First the technical specifications of the mobile robot SUMMIT main devices such as
the 2D mono-camera and the laser scanner were presented. Then a 3-state mathemat-
ical model was presented, compared and validated with the 5-state model developed in
(Thieme, 2014) considering some limitations like the velocity maximum value of 1 m/s.
After this a correction of the control variables is explained based on (Belgradskaia,
2016) because the transmitted value of the control variables are not the same as the
one received by the mobile robot due to its mechanical construction and dynamics.
The velocity correction has a linear relationship, while the steering angle correction
has a nonlinear relationship (solved with neural networks). Then the estimation of the
state variables are explained using the extended Kalman filter. It was observed that
after the correction of the control variables and the estimation of the states the mobile
robot behaved very well.

Later, computer vision was explained and applied where one had the first stage that
was the detection process: shape detection algorithm (using Canny edge detection)
and color detection algorithm (using Hue-Saturation-Values). Then, the cluster classi-
fication process based on the Euclidean distance between pixels was performed in the
second stage. Subsequently the data acquisition by the laser scanner and the 2D cam-
era, was explained. The estimation of the obstacle dimensions and the distance were
founded based on the pinhole camera model. Furthermore a sensor fusion technique
for obstacle determination was proposed demonstrating three important parameters:
ellipse inclination angle, ellipse absolute position and its dimensions.
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Finally a continuous nonlinear optimal control problem inlcuding cost functional, state
equations, and constraints was presented. Then a transformation into a nonlinear opti-
mization problem was necessarily explained in order to solve such a complex problem.
The multiple-shooting with collocation method was illustrated and so the model pre-
dictive control principle in order to solve two types of classical problems: trajectory
tracking and obstacle avoidance problems, where very good results were obtained con-
sidering two different sampling times (ts = 0.12 s and ts = 0.17 s).

7.2 Conclusions
Since the 3-state mobile robot’s mathematical model was validated in simulation envi-
ronment by comparing its behavior with the 5-state model, this 3-state mathematical
model is an accurate model for the mobile robot when its maximum speed is limited
to 1 m/s, i.e. using a greater speed may lead to less accurate results. The correction
of the control variables depend on the dynamics of the mobile robot and its mechan-
ical construction. It is important to remark that these corrections were done based
on certain conditions of the mobile robot like the usage, working terrain, mechanical
structure, etc. The estimation of the state variables with the extended Kalman Filter
may affect the results if the covariance values of the matrix Q are modified, i.e. the
most significant weight is the one that belongs to the yaw angle.

Referring to computer vision, the shape and color detection algorithms have their
advantages and disadvantages, depending on the case one should choose the best option
for obstacle determination and identification. On one hand is better to use the shape
detection algorithm to detect different kind of obstacles or objects, but it fails due to
lighting (not usable for very dark environment or when there are shadows). In order to
improve the obstacle identification there are two significant variables, the first one is
the kernel matrix (since it is constructed for image filtering) and the second one is the
threshold and kernel size of the Canny edge detector. In this work the thresholds were
calculated dynamically based on the image histogram. On the other hand is better
to use the color detection algorithm to detect obstacles and objects more accurate
(immune to lightning), but previously it is needed the information about the color.
The most significant variables in this algorithm are the HSV thresholds value that
depends exclusively on the color characteristic. In the cluster classification process
is important to remark the importance of the predefined Euclidean distance and it
depends directly on the camera resolution.
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The obstacle position and dimensions are calculated with a sensor fusion algorithm
based on a data combination from the laser scanner and the 2D camera. Both the
position and dimensions depend on the laser scanner angular resolution, the charac-
teristic of the terrain (in this master thesis it is assumed a flat terrain for practical
purposes), the camera resolution, focal length estimation and external disturbances
e.g. the weather, obstacles material, etc. Finally in the dynamic optimal control prob-
lem, specifically in the trajectory tracking problem, the accuracy of the results and the
computing time depend on the sampling time, the weighting values of the cost function
and the reference trajectory. Besides in the obstacle avoidance problem, the accuracy
of the results and the computing time depend on the sampling time, the weighting
values of the cost function, number of obstacles and used obstacle detection algorithm
(color or shape). For both cases all the previously mentioned variables influence in the
results obtained in this master thesis.

7.3 Future work
Since the 3-state mathematical model is reduced (considering a maximum velocity of
1 m/s), the robot behavior is not described exactly. Therefore in order to achieve a
further improvement of the position determination, more devices such as GPS (Global
Positioning System) receiver, IMU (inertial measuring unit) or infrared cameras can
be added.

Talking about computer vision, two detection algorithms (shape and color) were ex-
plained and tested. It is important to consider a robust detection algorithm for obsta-
cles determination (lighting or darkness immunity). Although in this master thesis, a
mono-camera was used and the distance between the detected obstacle and the camera
was estimated, one can use a stereo-camera or two mono-cameras in order to get the
depth information, and the correct obstacles dimension. The first one can help to con-
struct a 3D environment based on laser scanner information and camera depth data,
while the second one can estimate more precisely the obstacle dimensions by using a
triangulation technique.

Finally in trajectories tracking problems, one can use a lane detection algorithm for
tracking, i.e. using the lane information as a path constraint in the optimization
problem. One can also consider to detect moving obstacles along the desired trajectory.
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