ESTUDIO DE LA INFLUENCIA EN LA RESISTENCIA Y DUCTILIDAD DE LAS FIBRAS DE CARBONO UTILIZADAS COMO REFORZAMIENTO DE VIGAS DE CONCRETO ARMADO

Tesis para optar el Título de Ingeniero Civil, que presenta el bachiller:

ALEGRE GAGO, GIANFRANCO

ASESOR: ING. CHRISTIAN ALBERTO ASMAT GARAYCOCHEA

Lima, Julio 2017
A Dios; a mis padres Rubén y Miryam; a mi hermano Fabricio; y al resto de personas que me brindaron su apoyo en todo momento.
AGRADECIMIENTOS

Agradezco a mis padres y a mi hermano, por su constante interés y apoyo en mi crecimiento profesional y personal durante todo este tiempo.

A mi asesor de tesis, Ing. Christian Asmat, por su asesoramiento y conocimientos, sin su gran apoyo no hubiera sido posible el desarrollo y culminación de esta tesis.

A la PUCP y sus profesores, por contribuir con mi formación profesional y humana.

A todos ellos, mi más sincero agradecimiento.
RESUMEN

El reforzamiento de estructuras o elementos de concreto armado es practicado cuando se presentan déficit en alguna de las propiedades de dichas estructuras o elementos de concreto armado respecto a una nueva solicitación de su vida útil. Generalmente estas nuevas solicitudes se presentan por el aumento en su carga de servicio, problemas de durabilidad debido a materiales de construcción pobres e inapropiados, cambios en el ambiente omitidos en el estudio y diseño inicial, incremento de cargas originada por el cambio de uso de la estructura o incremento de la vida útil de la estructura.

En los últimos años con la aparición de nuevas metodologías de refuerzo de elementos estructurales de concreto armado han surgido mayores alternativas de solución que nos permiten “reforzar” elementos de concreto armado que son sometidos a mayores cargas luego de haber alcanzado su periodo de servicio, así mismo nos permite comparar en cuanto a costo las diversas alternativas que existen en el mercado. El uso de materiales compuestos como reforzamientos estructurales cada vez es más utilizado, por ejemplo, el uso de la fibra de carbono brinda seguridad a la estructura, aumenta su resistencia y además mitiga los efectos de las fallas producidas por flexión y por corte.

El presente proyecto tiene como objetivo principal estudiar el comportamiento elástico e inelástico de vigas de concreto armado reforzadas con fibras de carbono sometidas a flexión. Para lo cual se analizarán vigas de concreto armado reforzadas con acero y con fibras de carbono (CFRP), empleando diferentes cuantías de cada una. Se estudiará el comportamiento de cada caso mediante diagramas momento – curvatura y se comparará el aporte del uso de fibra CFRP tanto para la ductilidad como resistencia de las vigas de concreto armado sometidas a flexión. Se realizará el análisis comparativo para determinar las ventajas y desventajas del uso de este método de reforzamiento. Finalmente se presentarán las principales conclusiones y recomendaciones obtenidas del análisis empleado, brindando las consideraciones básicas para el uso de CFRP como reforzamiento de elementos estructurales.
ÍNDICE

CAPÍTULO 1: PRESENTACIÓN ... 1
 1.1. INTRODUCCIÓN ... 1
 1.2. OBJETIVOS .. 2
 1.2.1. OBJETIVO GENERAL .. 2
 1.2.2. OBJETIVOS ESPECÍFICOS ... 2
 1.3. JUSTIFICACIÓN Y ALCANCES .. 3

CAPÍTULO 2: MARCO TEÓRICO .. 4
 2.1. ANTECEDENTES ... 4
 2.2. CONCEPTOS BÁSICOS .. 9
 2.2.1. RESISTENCIA .. 9
 2.2.2. RIGIDEZ .. 10
 2.2.3. DUCTILIDAD ... 11
 2.3. REHABILITACIÓN DE ESTRUCTURAS DE CONCRETO ARMADO .. 13
 2.3.1. INTRODUCCIÓN ... 13
 2.3.2. DAÑOS SOBRE LAS ESTRUCTURAS DE CONCRETO ARMADO 14
 2.4. REFORZAMIENTO CON FIBRA DE CARBONO (CFRP) .. 20
 2.4.1. CONFIGURACIÓN ... 21
 2.4.2. PROCESO DE FABRICACIÓN DE LA FIBRA DE CARBONO ... 21
 2.4.3. PROPIEDADES ... 24
 2.4.4. APLICACIONES Y USOS DE LA FIBRA DE CARBONO .. 25
 2.4.5. METODOLOGÍA DE INSTALACIÓN DE FIBRA DE CARBONO COMO REFORZADOR
 ESTRUCTURAL ... 26

CAPÍTULO 3: MARCO NORMATIVO .. 27
 3.1. REQUISITOS DE DISEÑO DE VIGAS DE ACUERDO AL REGLAMENTO PARA
 CONCRETO ESTRUCTURAL (ACI 318S-14) .. 27
 3.2. GUÍA DE DISEÑO Y CONSTRUCCIÓN SISTEMAS DE FRP PARA EL
 FORTALECIMIENTO DE ESTRUCTURAS DE CONCRETO (ACI-440.2R-08) 30
 3.2.1. CONSIDERACIONES GENERALES DE DISEÑO ... 31
 3.3. NORMA E-030 ... 34
 3.3.1. REQUISITOS GENERALES ... 34
 3.3.2. ESTADOS DE DESEMPEÑO ... 35
 3.3.3. DAÑO ESTRUCTURAL ASOCIADO A LA DERIVA DEL EDIFICIO 35

CAPÍTULO 4: METODOLOGÍA DE DISEÑO CON REFORZAMIENTO DE FIBRA DE CARBONO
 (CFRP) .. 37
 4.1. CONSIDERACIONES GENERALES ... 37
 4.2. PREDIMENSIONAMIENTO DE FIBRA CFRP .. 38
 4.3. METODOLOGÍA DE DISEÑO DE FLEXIÓN DEL REFORZAMIENTO CFRP EN UNA VIGA
 RECTANGULAR REFORZADA CON ACERO ... 38
 4.3.1. DEFINICIONES PRELIMINARES ... 38
 4.3.2. MATERIALES Y PROPIEDADES .. 39
 4.3.3. HÍPÓTESIS BÁSICAS PARA EL ANÁLISIS Y DISEÑO POR FLEXIÓN 42
4.3.4. **BLOQUE DE COMPRESIONES DE CONCRETO – MODELO HOGNESTAD**......... 43
4.3.5. **DISEÑO POR FLEXIÓN – ESTADO DE AGRIETAMIENTO**.......................... 45
4.3.6. **DISEÑO POR FLEXIÓN – ESTADO DE SERVICIO**.................................. 47
4.3.7. **DISEÑO POR FLEXIÓN – ESTADO DE FLUENCIA**............................... 49
4.3.8. **DISEÑO POR FLEXIÓN – ESTADO DE ROTURA**................................. 52
4.4. **CUADRO COMPARATIVO DE CONDICIONES DE DISEÑO DE LA SECCIÓN** 55
4.5. **DISEÑOS DE SECCIONES SOMETIDAS A FLEXIÓN**................................. 56

CAPÍTULO 5: ANÁLISIS COMPARATIVO DE LA INFLUENCIA DEL REFORZAMIENTO CON CFRP .. 58

5.1. **CONTRIBUCIÓN A LA RESISTENCIA DE LA SECCIÓN POR PARTE DEL REFORZAMIENTO CON CFRP** ... 58
5.2. **CONTRIBUCIÓN A LA DUCTILIDAD DE LA SECCIÓN POR PARTE DEL REFORZAMIENTO CON CFRP** ... 62
5.3. **ANÁLISIS COMPARATIVO DE COSTOS DEL REFORZAMIENTO DE SECCIÓN DE VIGA MEDIANTE MÉTODO DE “ENCAMISETADO” Y REFORZAMIENTO CON FIBRA DE CARBONO (CFRP)** .. 63

CAPÍTULO 6: CONCLUSIONES Y RECOMENDACIONES .. 67

CAPÍTULO 7: BIBLIOGRAFÍA .. 69
CAPÍTULO 1: PRESENTACIÓN

1.1. INTRODUCCIÓN

El reforzamiento estructural de una edificación es empleado para aquellas estructuras o elementos que por alguna razón presentan déficit en alguna de sus propiedades respecto a una nueva solicitación de su vida útil. Generalmente estas nuevas solicitaciones se presentan por el aumento en su carga de servicio, problemas de durabilidad debido a la utilización de materiales pobres e inapropiados durante la etapa de construcción, inadecuado diseño o construcción, cambios en el ambiente omitidos en el estudio y diseño inicial, incremento de cargas originada por el cambio de uso de la estructura o incremento de su vida útil para afrontar el deterioro de la edificación.

Asimismo es importante para la Ingeniería Civil conocer las distintas metodologías y materiales empleados en el reforzamiento estructural que tiene como finalidad contrarrestar las falencias estructurales que presenta una edificación. Por ejemplo el reforzamiento mayormente utilizado mediante el uso de concreto y acero de refuerzo o de reforzamientos estructurales utilizando materiales compuestos por fibras poliméricas, fibras de vidrio, fibras de carbono, etc.

La fibra de carbono (CFRP) es un material compuesto esencialmente de átomos de carbono, constituido por pequeñas fibras de 50-100 micras (μm) de diámetro. Los átomos de carbono que conforman las fibras de carbono se encuentran entrelazadas entre sí a través de cristales, los cuales están alineados paralelamente al eje longitudinal de la fibra, lo cual le produce a la fibra una alta resistencia en relación a su tamaño (Ojeda, 2011).

Entre las principales propiedades que poseen las fibras de carbono es que son materiales muy flexibles, son altamente resistentes, son elementos livianos y de baja densidad en comparación al acero, son resistentes a altas temperaturas y baja expansión térmica, poseen un bajo costo de instalación y una rápida puesta en servicio; estos beneficios las hacen muy conocidas en la industria aeronáutica, de la construcción, automovilística, etc. (Ojeda, 2011). En la Figura 1 se muestra la comparación esquemática de las dimensiones de diámetro en un registro escala de varios tipos de carbonos fibrosos.
En el Perú, históricamente, el reforzamiento estructural que se ha venido utilizando a lo largo de los años ha sido de manera convencional, ya sea agregando elementos estructurales como columnas o placas, incrementando las dimensiones de las secciones transversales o instalando elementos metálicos que ayuden a soportar las cargas solicitadas en la edificación. Sin embargo, en los últimos 10 años cada vez es más frecuente en el Perú el uso de sistemas de reforzamiento estructural basados por materiales compuestos de alta tecnología que presentan innumerables ventajas frente a los métodos convencionales; como por ejemplo, la fibra de carbono, el cual es un polímero 10 veces más resistente a la tracción que el acero (35 500 kg/cm² vs. 4 200 kg/cm²) y mucho más liviano (Flores, 2013).

1.2. OBJETIVOS

1.2.1. OBJETIVO GENERAL

Determinar el comportamiento elástico e inelástico de vigas de concreto armado sometidas a flexión y reforzadas con fibras de carbono.

1.2.2. OBJETIVOS ESPECÍFICOS

- Diseñar una serie de vigas de concreto armado reforzadas con fibras de carbono.
- Comprender el criterio básico de la colocación de las fibras de carbono para resistir la flexión en las vigas de concreto armado.
• Identificar la historia de comportamiento de una viga reforzada con fibra de carbono mediante la construcción del diagrama momento - curvatura.
• Analizar la resistencia y ductilidad de secciones de vigas de concreto armado sometidas a flexión, en función de la cuantía de acero de refuerzo y de la cuantía de fibra de carbono.
• Analizar la eficiencia del reforzamiento con fibras de carbono cuando se instalan sobre los elementos en estado fisurado y no fisurado.

1.3. JUSTIFICACIÓN Y ALCANCES

El presente estudio utilizará como materia de investigación la metodología del reforzamiento de fibra de carbono utilizado como refuerzo estructural. Se estudiará y determinará el comportamiento y la contribución que brinda el reforzamiento de fibra de carbono en la ductilidad y resistencia a flexión de la estructura, por ello se analizarán secciones de vigas de concreto armado reforzadas con fibras de carbono y sometidas a flexión. Se presentarán modelaciones de vigas con la finalidad de realizar análisis comparativos y determinar ventajas y desventajas del uso de este método de reforzamiento.

En el presente proyecto se considerará que se cumple la hipótesis de Navier, caras planas permanecen planas, y además que las vigas son sometidas a flexión. Asimismo no se consideran fuerzas axiales y las vigas son rectangulares.
CAPÍTULO 2: MARCO TEÓRICO

2.1. ANTECEDENTES

La industria de la fibra de carbono comenzó en 1956 cuando la empresa Union Carbide abrió su Centro Técnico de Parma a las afueras de Cleveland. El complejo fue uno de los principales laboratorios del programa de investigación. En 1956 el físico Roger Bacon desarrolló las primeras fibras de carbono en el Centro Técnico de Parma. Cuando Bacon se encontraba trabajando con un arco de carbono a altas temperaturas y presiones tratando de determinar el punto triple (Equilibrio térmico entre el estado gaseoso, sólido y líquido de un elemento) del “grafito”. Cuando Bacon disminuyó la presión en el arco, notó que el carbono sufría un cambio de la fase de vapor a la fase sólida, formando un filamento muy delgado. Encontró que estos filamentos eran sólo una décima parte del diámetro de un cabello humano, pero se podían doblar y no eran frágiles (American Chemistry Society, 2003).

Al producir los “bigotes” o filamentos de fibra de carbono (Ver Figura 2), Bacon descubrió fibras de alta resistencia que eran a su vez moldeables sin presentar fragilidad. Sin embargo tenía un problema, estas fibras eran todavía un material solo desarrollado en el laboratorio, no habían tenido un desarrollo práctico. El costo que le tomó fabricar las fibras de carbono fue de $10 millones de dólares. Para aprovechar todo su potencial los fabricantes necesitaban encontrar una manera barata y eficiente de producir las fibras de carbono. (American Chemistry Society, 2003).

Mientras Bacon desarrollaba filamentos de fibras de carbono, en Japón, el científico Akio Shindo, del Instituto de Investigaciones Industriales del Gobierno de Osak, fabricó fibras de carbono basadas en poliacrilonitrilo (PAN) en el laboratorio con un módulo de Young de más de 140 GPa, aproximadamente tres veces más que las fibras de carbono desarrolladas. El Dr. Shindo descubrió que el poliacrilonitrilo tiene una sorprendente estabilidad térmica, lo cual hace que el PAN pueda retener un alto porcentaje de carbono en su constitución posterior a la carbonización, lo cual genera un producto fibroso resultante más fuerte, más flexible y tiene una mejor resistencia al calor en comparación a otra forma de fibra de carbono. (Organización Mundial de la Propiedad Intelectual, s/f).
Años posteriores en Inglaterra, William Watt inventó una fibra de módulo aún más alto de PAN. Las fibras británicas se pusieron rápidamente en producción comercial. Tanto en Japón como en Inglaterra, los investigadores tuvieron acceso al PAN puro, con una estructura polimérica que proporcionó un excelente rendimiento después del procesamiento. La cadena continua de átomos de carbono y nitrógeno condujo a capas de tipo grafito altamente orientadas, eliminando la necesidad de estiramiento en caliente. (American Chemistry Society, 2003).

En los inicios, la fabricación de la fibra de carbono era utilizado principalmente en aplicaciones militares, debido a su gran resistencia al calor y propiedades anticorrosivas. Sin embargo entre los años 70’s y 80’s, la empresa japonesa Toray transformó la fibra de carbono en un producto que tuviera aplicaciones comerciales más generales. La industria aeroespacial comercial se aprovechó de las ventajas de las fibras de carbono. El uso de fibras de carbono basadas en poliacrilonitrilo (PAN) se desarrolló en mayor escala y empezó a comercializarse en productos como chalecos antibalas, cuerdas de pescar, aros de bicicletas, neumáticos de autos, guantes de protección, etc.(Organización Mundial de la Propiedad Intelectual, s/f). Por ejemplo, en la Figura 3 se muestra los filamentos fabricados de fibra de carbono utilizados en la fabricación de los autos BMW en su planta automotriz Moses Lake (EEUU).
Por otro lado, en la industria aeronáutica y espacial, la demanda en el uso de fibras de carbono se ha incrementado principalmente debido a la necesidad de aumentar la eficiencia en la utilización del combustible, reducción del peso de los aviones, reducción en el ruido de los motores, lo cual mejora el desempeño aerodinámico de los aviones, por lo que los diseñadores han buscado alternativas diferentes del uso tradicional de aluminio en el diseño de los aviones. (BBC Mundo, 2014)
En la aviación comercial la utilización de la fibra de carbono implementa importantes mejoras permitiendo aviones más ligeros y con diseños aerodinámicos que permiten realizar vuelos más cortos y seguros. Asimismo permite mejores diseños interiores en los aviones, ya sea en los asientos de pasajeros, cabina del piloto, pasillos más amplios, etc. (BBC Mundo, 2014). En la Figura 4 y Figura 5 se observa cómo se fabrican las alas y armazón de la estructura aerodinámica que cuentan los nuevos aviones que utilizan fibra de carbono en su fabricación.

El uso de materiales compuestos en los aviones se remonta a fines del siglo XX cuando la compañía Boeing empezó a emplear la fibra de carbono en uno de sus modelos. En los primeros diseños la fibra de carbono se implementó en el 1% de los materiales utilizados, predominando otros elementos como el aluminio, acero y titanio. (BBC Mundo, 2014)

Actualmente, la industria aeronáutica utiliza hasta un 50% de fibra de carbono en el ensamblaje de sus nuevos aviones de última generación, implementando la mayor parte del material compuesto en la cabina y alas. En consecuencia, el consumo de combustible en cada vuelo desciende hasta un 20% en comparación con otros aviones y el mantenimiento es más económico. Por ejemplo, la compañía europea Airbus ha implementado la fibra de carbono en la fabricación de sus nuevos aviones. En el modelo A-380, un avión muy grande, gracias a la implementación del material esta aeronave puede albergar un máximo de 800 personas e incluir dentro de la aeronave ascensores, sauna, gimnasio, guardería entre otras comodidades para sus usuarios. (BBC Mundo, 2014)
Del mismo modo, el uso de la fibra de carbono es cada vez más utilizado en el automovilismo debido a que hoy en día se fabrican autos cada vez más livianos e igual de resistentes que los modelos pasados. Los autos modernos que son más livianos, tienen una mayor aceleración y un mejor manejo, además que consumen menos combustible. La fibra de carbono es utilizada ampliamente en los autos de carrera de alta competencia como los que se ven en la Fórmula 1 (Kelly, 1999).

En la Figura 6 se muestra el neumático de un automóvil, el cual ha sido reforzado por laminado de fibra de carbono formado por las entrelazadas cuerdas dentro del caucho.

![Fibra de carbono utilizada en los neumáticos autos de Fórmula 1. (Kelly, 1999)](image)

Hoy en día, la comercialización de la fibra de carbono se encuentra en un inminente crecimiento. Su uso tiene muchas aplicaciones en muchas industrias, siendo la industria aeronáutica y automovilística las más solicitadas. En el sector del transporte ha empezado a incrementar su uso en la fabricación de barcos y bicicletas. También se ha extendido en la fabricación de otros artículos de consumo como raquetas de tenis, laptops, cañas de pescar, etc. (Kelly, 1999).

Actualmente, las fibras de carbono son comercialmente más utilizadas a nivel mundial, siendo sus principales productores Japón, Corea del Sur, India, China y USA (Doris, 2013). La demanda mundial proyectada de fibra de carbono para el año 2020 alcanza 220,000.00 toneladas (Ver Figura 7).
2.2. CONCEPTOS BÁSICOS

2.2.1. RESISTENCIA

Dentro de la ingeniería la resistencia de un elemento cualquiera se define como la capacidad para soportar esfuerzos y fuerzas aplicadas sin llegar al estado de rotura, adquiriendo deformaciones temporales o permanentes (Ottazzi, 2004).

Sin embargo dentro del diseño de elementos de concreto armado podemos encontrar varias definiciones de acuerdo al tipo de carga aplicada, al tipo de ensayo realizado, tipo de diseño, etc. Por lo tanto, como parte del alcance del presente trabajo de investigación, consideraremos las siguientes definiciones generales de la siguiente manera:

A) RESISTENCIA REQUERIDA
La resistencia requerida es la resistencia que un elemento o sección transversal debe tener para resistir las cargas amplificadas o los momentos, fuerzas internas y combinaciones de cargas correspondientes según lo estipulado en la Normativa Vigente (Norma peruana E.060 Concreto Armado y Norma ACI 318 14).

B) RESISTENCIA NOMINAL

La resistencia nominal es la resistencia de un elemento o una sección transversal calculada con las disposiciones, los límites e hipótesis del método de diseño por resistencia según lo estipulado en la Normativa Vigente (Norma peruana E.060 Concreto Armado y Norma ACI 318 14), antes de aplicar cualquier factor de reducción de resistencia.

C) RESISTENCIA DE DISEÑO

La resistencia de diseño es la resistencia nominal multiplicada por el factor de reducción de resistencia ϕ que corresponda, según lo estipulado en la Normativa Vigente (Norma peruana E.060 Concreto Armado y Norma ACI 318 14).

El factor de reducción de resistencia (ϕ) es un factor menor que la unidad que reduce la resistencia para considerar las incertidumbres en los materiales y en las dimensiones (Norma peruana E.060 Concreto Armado y Norma ACI 318 14). La determinación de los factores de reducción de resistencia hay que tener en cuenta lo siguiente:

- La probabilidad de existencia de miembros con una resistencia baja debida a variaciones en la resistencia de los materiales y las dimensiones.
- Las inexactitudes en las ecuaciones de diseño.
- Reflejar la ductilidad disponible y la confiabilidad requerida para el elemento sometido a los efectos de carga en consideración
- Reflejar la importancia del elemento en la estructura.

2.2.2. RIGIDEZ

La rigidez se puede definir como la propiedad que tiene un material para oponerse a la deformación. La rigidez del material se cuantifica mediante el módulo de elasticidad o de Young (E). Ante un mismo esfuerzo, el material
con mayor E se deforma menos, obedeciendo la Ley de Hooke (Ottazzi, 2004).

$$E = \frac{\sigma}{\varepsilon}$$

La Norma permite adoptar cualquier suposición razonable para la estimación de la rigidez en flexión (EI) y en torsión (GJ) de las columnas, vigas, muros, etc. Las suposiciones que se hagan deberán ser consistentes a lo largo de todo el análisis.

Las rigideces EI y GJ que se adopten para el análisis estructural, idealmente deberían reflejar:

- El grado de fisuración y de acción inelástica a lo largo de cada elemento antes de la fluencia.
- El efecto de la duración de la carga. Cargas de corta duración y cargas sostenidas que producen fluencia plástica (creep) en el concreto comprimido.

2.2.3. DUCTILIDAD

La ductilidad se define como la propiedad de la estructura de soportar deformaciones una vez alcanzado su límite elástico; es decir, la capacidad de deformarse en el rango inelástico sin colapsar. (Ottazzi, 2004)

La ductilidad es una de las propiedades más importantes en el comportamiento de las edificaciones de concreto armado ante sismos severos y poco frecuentes. El comportamiento dúctil de una sección de concreto armado se logra principalmente por la ductilidad del acero de refuerzo, permitiendo alcanzar grandes deformaciones luego de superar el límite de elasticidad. Caso contrario sucede con el concreto, el cual es un material frágil y con poca resistencia a la tracción. (Wendel y Keller, 2013).

La ductilidad de una estructura permite la predicción de la capacidad última de una estructura, que es el criterio más importante para el diseño de estructuras bajo cargas convencionales. En la práctica del diseño resistente a los terremotos, el término ductilidad se utiliza para evaluar el comportamiento sísmico de estructuras, mediante la indicación de la cantidad de energía sísmica que puede ser disipada mediante deformaciones plásticas (Gioncu, 2000).
Los tipos de ductilidad que se utilizan son los siguientes (Gioncu, 2000):

- Ductilidad del material o ductilidad axial, que caracteriza a las deformaciones plásticas del propio material.

- Ductilidad de la sección transversal, o ductilidad de curvatura, que se refiere a las deformaciones plásticas de la sección transversal, teniendo en cuenta la interacción entre las partes que componen la sección transversal en sí.

- Ductilidad del elemento, o la ductilidad de rotación, cuando se consideran las propiedades del elemento.

- Ductilidad de la estructura, o ductilidad de desplazamiento, que considera el comportamiento de toda la estructura.

<table>
<thead>
<tr>
<th>Ductility types</th>
<th>Schematic representation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material (axial) ductility</td>
<td></td>
<td>[\mu_\varepsilon = \frac{\varepsilon_u}{\varepsilon_y}]</td>
</tr>
<tr>
<td>Cross-section (curvature) ductility</td>
<td></td>
<td>[\mu_\chi = \frac{\chi_u}{\chi_y}]</td>
</tr>
<tr>
<td>Member (rotation) ductility</td>
<td></td>
<td>[\mu_\theta = \frac{\theta_u}{\theta_y}]</td>
</tr>
<tr>
<td>Structure (displacement) ductility</td>
<td></td>
<td>[\mu_\delta = \frac{\delta_u}{\delta_y}]</td>
</tr>
</tbody>
</table>

Figura 8 Tipos de ductilidad, gráficas y definiciones (Gioncu, 2000)
En la **Figura 8** se muestra los gráficos representativos y fórmulas de definición de acuerdo al tipo de ductilidad seleccionada, se debe tomar en cuenta que el subíndice \(\mu \) se refiere a la deformación máxima (deformación, la curvatura, la rotación o desplazamiento), mientras que el subíndice \(\gamma \) indica la deformación correspondiente por primera flexible.

2.3. REHABILITACIÓN DE ESTRUCTURAS DE CONCRETO ARMADO

2.3.1. INTRODUCCIÓN

A lo largo de los años, el concreto armado ha demostrado ser el material más apropiado para la construcción de edificaciones en zonas de alta sismicidad. A comparación de otros materiales ha demostrado mejores resultados sobre otras alternativas como el acero, madera, adobe, etc., debido a que sus propiedades físicas y mecánicas han contribuido a un mejor comportamiento de las edificaciones durante los movimientos sísmicos.

Sin embargo, es preciso señalar que como cualquier material, con el transcurso del tiempo y a la exposición natural del material a la intemperie, pueden las estructuras disminuir la capacidad máxima de sus propiedades físicas y químicas al verse expuesto ante problemas patológicos. En general, los problemas patológicos presentan manifestaciones externas características, a partir de las cuales se deducen cuál es la naturaleza, origen y los fenómenos involucrados, además de estimar sus probables consecuencias. Dichos síntomas, daños o manifestaciones patológicas, pueden ser descritos y clasificados, para luego realizar un diagnóstico inicial (Helene, 2003).

Es por ello que es de mucha importancia generar mecanismos de control que permitan detectar oportunamente las fallas, deterioros o problemas patológicos presentados en las estructuras. Mientras la intervención sea más temprana es decir se ejecute oportunamente, las correcciones serán más duraderas, efectivas y económicas. Como se muestra en la **Figura 9**, la Ley de Sitter estima los costos crecientes según una progresión geométrica en el tiempo de acuerdo a la etapa constructiva del proyecto (Helene, 2003).
2.3.2. DAÑOS SOBRE LAS ESTRUCTURAS DE CONCRETO ARMADO

Las edificaciones con el pasar de los años pueden sufrir el deterioro parcial o total de sus estructuras producto de diversos factores que actúan sobre las estructuras de concreto armado, tal como se muestran a continuación:

a) Corrosión de armaduras

Los daños causados por la corrosión del acero se presentan a través de fisuras en el concreto armado paralelas a la dirección de los refuerzos, delaminación y/o desprendimientos del recubrimiento (Ver Figura 10). En elementos estructurales que están expuestos a un alto contenido de humedad, los daños por corrosión afectan la capacidad portante de los elementos estructurales afectados, debidos fundamentalmente a la disminución de sección transversal de las armaduras, la pérdida de adherencia entre el acero y el concreto y a la fisuración del mismo (Helene, 2003).
b) Acción de las Cargas Exteriores

La acción de las cargas exteriores en una estructura se puede producir por diversos factores como la omisión de algún estado de carga durante el diseño, estimación errónea de cargas no previstas superiores a las del diseño, cambios de uso de la edificación, lo cual implica sobrecargas mayores, etc.

En algunos casos las acciones de las cargas externas producidas en una estructura de concreto armado se manifiestan a través de una configuración de fisuras que dependerá del tipo de solicitud aplicada. Existen muchas configuraciones de fisuras en las estructuras de concreto armado, las cuales pueden ser generadas por diferentes solicitudes, ya sean simples o compuestas. En la Figura 11 se muestra un esquema de como la carga distribuida influye en la aparición de fisuras en las vigas.

Asimismo en la Figura 12 se muestra como la carga distribuida aplicada en un pórtico produce momentos positivos y negativos en las rótulas elásticas que se forman en dicho pórtico.

Las fisuras más frecuentes en vigas son generadas por flexión, pueden aparecer a partir de una solicitud de flexión pura o por una combinación de flexión y corte. La posición e inclinación de las fisuras dependerá de relación de ambos esfuerzos (flexión y corte). Asimismo la cantidad y cercanía entre las fisuras dependerá si el acero utilizado es de alta adherencia. (Helene, 2003).
Figura 11 Representación esquemática de las fisuras observadas en vigas de concreto armado (Helene, 2003)

Figura 12 Pórtico típico- Estructura concreto armado en la que se aprecian las fisuras formadas debido a los esfuerzos generados por la carga aplicada (Helene, 2003)
Para efectos del presente trabajo de investigación se tomará en cuenta las cargas de flexión simple aplicadas en vigas de concreto armado.

c) Cambios de temperatura y humedad

Los cambios de temperatura producen variaciones de volumen en el concreto, ya que el concreto tiende a dilatarse cuando aumenta su temperatura y tiende a contraerse cuando disminuye su temperatura. Del mismo modo sucede con los cambios en el contenido de humedad en el concreto, el concreto tiende a expandirse cuando aumenta su contenido de humedad y tiende a contraerse cuando disminuye su contenido de humedad.

Las grandes edificaciones están diseñadas con volúmenes muy grandes de concreto, lo cual genera que se produzcan vaciados de concreto en grandes cantidades, sin embargo esto genera dificultades durante su colocación en obra. “Los grandes volúmenes de concreto tienen gran dificultad para disipar el calor, por lo que la temperatura aumenta a causa del calor generado en las reacciones de hidratación del cemento. En el proceso de enfriamiento se pueden producir esfuerzos, tanto por vínculos externos o internos, que fisuran el concreto” (Helene, 2003: 22).

d) Acciones que generan desintegración del Concreto Armado

Estos daños están relacionados con el efecto que producen agentes externos y su influencia en la degradación y desintegración del concreto. Entre los principales agentes tenemos los siguientes:

- Efecto de ciclos de congelamiento y deshielo: El concreto sufre un deterioro debido a que su volumen sufre numerosos ciclos de congelamiento y deshielo generando mayores esfuerzos internamente.

- Acción del fuego sobre las estructuras de concreto armado: El concreto es un material que no es muy resistente a altas temperaturas. El efecto del fuego produce en el concreto que sus componentes reaccionen de diferentes maneras, además de afectar sus propiedades, dependiendo del grado de temperatura alcanzado, del tiempo de exposición y de la constitución del concreto.

- Acción de los sulfatos: El concreto expuesto a sulfatos en el ambiente produce que este concreto tenga reacciones expansivas que pueden deteriorar las edificaciones expuestas. La concentración
de ión de sulfato en la superficie de contacto es determinante para determinar la severidad del ataque a las estructuras o elementos estructurales. Por ejemplo el agua de mar contiene un alto contenido de iones de sulfato, puede generar corrosión de armaduras, disminución de su resistencia, etc.

- Reacciones deletéreas de los agregados: Se trata de una reacción álcali-agregado que generan mecanismos internos dentro del concreto produciendo reacciones expansivas que pueden deteriorar el concreto.

- Abrasión y desgaste: Las acciones vinculadas a esfuerzos que provocan un deterioro de la superficie de contacto del concreto se pueden clasificar como fenómenos de abrasión y desgaste.

- Lixiviación y eflorescencia: Las eflorescencias del concreto suceden cuando el agua percola a través de su superficie de manera permanente o continua, o cuando una cara expuesta sufre humedecimiento. Esto fenómeno produce que se formen sales en el concreto, las cuales se cristalizan luego de la evaporación del agua o por la interacción con el dióxido de carbono de la atmósfera generando deterioro en la superficie de contacto del concreto. Entre las sales típicas podemos mencionar los sulfatos y carbonatos de sodio, potasio o calcio.

e) Asentamientos

Los asentamientos en una edificación se generan cuando los desplazamientos verticales son diferentes en los apoyos de su estructura. Estas diferencias en el comportamiento de los apoyos de la estructura generan un estado tensional adicional que puede producir fisuramiento no deseado e incluso la rotura de algún elemento estructural (Ver Figura 13 y Figura 14).
Figura 13 Diagrama de momentos correspondiente al asentamiento diferencial producido en la columna central de un pórtico (Helene, 2003)

Figura 14 Asentamiento en estructuras y muros (Helene, 2003)
f) Fallas Constructivas típicas

Durante la etapa de construcción se deben controlar que los procesos constructivos sean ejecutados correctamente, caso contrario estos podrían tener incidencia en la resistencia y durabilidad de la edificación. Por ejemplo, procesos constructivos como colocación de acero, colocación y curado de concreto, retiro de puntales de losas y vigas, etc. deben ser de manera apropiada y cumpliendo estándares de calidad.

g) Acción sísmica

Durante un sismo o terremoto se produce una liberación de energía, la cual es propagada mediante ondas vibratorias y a través de la roca de la corteza terrestre, atravesando los estratos superficiales del suelo y llegando a las cimentaciones de las construcciones. La intensidad de la vibración producida depende de 2 factores importantes: Las características del tipo de movimiento producido en el terreno y de propiedades dinámicas de la estructura (Helene, 2003).

Las fuerzas de inercia producidas durante los movimientos sísmicos se transmiten a la estructura a través de las cimentaciones, siguiendo trayectorias que dependen de su configuración (Helene, 2003), pudiendo provocar los siguientes efectos en la edificación:

- Generar deformaciones y esfuerzos que generen daños en elementos no estructurales.
- Comprometer la estabilidad de la totalidad o de partes de la estructura (deslizamiento, vuelco).
- Alcanzar los estados límites de fisuración, estabilidad elástica, resistencia y/o de ductilidad de la estructura o elemento estructural de la edificación.

2.4. REFORZAMIENTO CON FIBRA DE CARBONO (CFRP)

La fibra de carbono (CFRP) es un material compuesto constituido por filamentos fibrosos muy pequeños de 50-10 micras (μm) de diámetro. Los átomos de carbono que conforman las fibras de carbono se encuentran entrelazadas entre sí
a través de cristales, los cuales están alineados paralelamente al eje longitudinal de la fibra, dándole a la fibra una alta resistencia en relación a su tamaño (Ojeda, 2011).

Entre las principales propiedades que poseen las fibras de carbono es que son materiales muy flexibles, son altamente resistentes, son elementos livianos y de baja densidad en comparación al acero, son resistentes a altas temperaturas y baja expansión térmica, poseen un bajo costo de instalación y una rápida puesta en servicio (Ojeda, 2011).

2.4.1. CONFIGURACIÓN

Las fibras de carbono en el transcurso de los años han ido modificando su configuración según se han ido desarrollando industrialmente. Hoy en día alrededor del 90% de las fibras de carbono producidas están hechas de poliacrilonitrilo (PAN). El 10% restante se hace de rayón o de petróleo. Todos estos materiales son polímeros orgánicos, caracterizados por largas cadenas de moléculas unidas entre sí por átomos de carbono. La composición exacta de cada materia prima utilizada para fabricar las fibras de carbono varía de una empresa a otra y generalmente se considera un secreto comercial (ZOLTEK, 2017).

2.4.2. PROCESO DE FABRICACIÓN DE LA FIBRA DE CARBONO

Durante el proceso de fabricación de la fibra de carbono, se utilizan una variedad de gases y líquidos. Algunos de estos materiales están diseñados para reaccionar con la fibra para lograr un efecto específico. Otros materiales están diseñados para no reaccionar o evitar algún tipo de reacciones con la fibra de carbono (ZOLTEK, 2017).

La fabricación de las fibras de carbono sufre por procesos químicos y mecánicos. Las materias primas utilizadas en la fabricación de la fibra son impulsadas a hilos o fibras largas y luego calentadas a una temperatura muy alta impidiendo que entren en contacto con oxígeno. La fibra al no entrar en contacto con oxígeno no puede quemarse. Al contrario, la alta temperatura hace que los átomos de la fibra vibren bruscamente hasta que la mayoría de los átomos que no sean de carbono sean expulsados dejando una fibra compuesta de largas cadenas de átomos de carbono estrechamente inter-bloqueadas, expulsando casi todos los átomos que no son de carbono (ZOLTEK, 2017).

Por otra parte, al igual PAN (poliacrilonitrilo) que es utilizado como materia prima para la fabricación de fibras de carbono, también se utilizan materias
primas como el rayón, proveniente de la celulosa y materias primas provenientes de alquitrán, las cuales son relativamente más baratos que el PAN pero menos efectivos. Cada tipo de materia prima tiene su técnica de procesamiento, sin embargo todos siguen casi una misma secuencia, teniendo como base el proceso de fabricación utilizando PAN (Ver Figura 15 y Figura 16).

A continuación se muestra una secuencia típica de procesos utilizados durante la fabricación de fibras de carbono a partir de poliacrilonitrilo (ZOLTEK, 2017):

- **Spinning**: También conocido como el proceso de “Hilado”. En primer lugar, el polvo de plástico de acrilonitrilo mezclado con otro plástico, como acrilato de metilo o metacrilato de metilo, y reacciona como un catalizador en un proceso de polimerización en suspensión o en solución convencional para formar un plástico de poliacrilonitrilo. El paso de hilado es importante porque la estructura atómica interna de la fibra se forma durante este proceso. Seguidamente las fibras se lavan y se estiran hasta el diámetro de fibra deseado. El estiramiento ayuda a alinear las moléculas dentro de la fibra y proporciona la base para la formación de los cristales de carbono estrechamente unidos después de la carbonización.

- **Stabilizing**: También conocido como el proceso de “Estabilización o Oxidación”. Antes de que las fibras sean carbonizadas, necesitan ser químicamente alteradas para convertir su unión atómica lineal a una unión térmicamente más estable. Esto se logra calentando las fibras en aire a aproximadamente 390-590 ° F (200-300 ° C) durante 30-120 minutos. Esto hace que las fibras capten moléculas de oxígeno del aire y reorganicen su patrón de unión atómica. Las reacciones químicas estabilizantes son complejas e implican varios pasos, algunos de los cuales ocurren simultáneamente. También generan su propio calor, que debe ser controlado para evitar el sobrecalentamiento de las fibras.

- **Carbonizing**: También conocido como el proceso de “Carbonización”. Una vez estabilizadas las fibras, se calientan a una temperatura de aproximadamente 1.830-5.500 ° F (1.000-3.000 ° C) durante varios minutos en un horno relleno con una mezcla gaseosa que no contiene oxígeno. La falta de oxígeno evita que las fibras se quemen a temperaturas muy altas. La presión del gas dentro del horno se mantiene más alta que la presión del aire exterior y los puntos donde las fibras entran y salen del horno se sellan para evitar la entrada de oxígeno. A medida que las fibras se calientan, comienzan a perder átomos que no son de carbono; a medida que los átomos de carbono no son expulsados, los átomos de carbono restantes forman cristales...
de carbono estrechamente unidos que están alineados más o menos paralelos al eje largo de la fibra.

- **Treating the surface:** También conocido como el proceso de “Tratamiento de la superficie”. Después de la carbonización, las fibras requieren tener una superficie que se adhiere bien con los epóxidos y otros materiales utilizados en materiales compuestos. Por ello para mejorar las propiedades de unión, la superficie debe estar ligeramente oxidada. El proceso de tratamiento superficial debe ser cuidadosamente controlado para evitar la formación de pequeños defectos superficiales, que podrían causar fallas en las fibras.

- **Sizing:** También conocido como el proceso de “Modelamiento”. Después del tratamiento superficial, las fibras se recubren para protegerlas de daños durante el enrollado o el tejido. Los materiales de recubrimiento se eligen para ser compatibles con el adhesivo utilizado para formar materiales compuestos. Los materiales de revestimiento típicos incluyen epoxi, poliéster, nailon, uretano y otros. Las fibras revestidas se enrollan sobre cilindros llamados bobinas. Las bobinas se cargan en una máquina de hilar y las fibras se retueren en hilos de diversos tamaños.

![Diagrama del proceso de fabricación de fibra de carbono](Universidad de Oviedo, s/f)

Figura 15 Esquema del proceso de fabricación de fibra de carbono (Universidad de Oviedo, s/f)
2.4.3. PROPIEDADES

La fibra de carbono se distingue de otros materiales compuestos por tener características específicas. Las propiedades principales de la fibra de carbono son las siguientes:

- **Baja densidad**, convirtiéndolo en un material más ligero en comparación con otros materiales compuestos. Por lo general, varía en el rango de 1.8 a 2.2 g/cm³.

- **Tienen un coeficiente de dilatación muy bajo**, lo que permite una gran estabilidad dimensional a las estructuras y una conductividad térmica elevada.

- **Es buen conductor eléctrico y de baja conductividad térmica.**

- **Gran capacidad de aislamiento.**

- **Resistencia a las variaciones de temperatura**, conservando su forma.

- **Resistencia a ambientes alcalinos y externos susceptibles de corrosión.**
• De sección delgada, pueden ser fácilmente cruzadas y traslapadas. Facilidad de instalación y cambios de diseños.

• Elevada resistencia mecánica, con un módulo de elasticidad elevado.

• Alta rigidez en comparación al acero.

• Tiene gran resistencia a la fatiga.

2.4.4. APLICACIONES Y USOS DE LA FIBRA DE CARBONO

El uso de la fibra de carbono se ha vuelto tan conocido que transcien de a muchas industrias, teniendo diversas aplicaciones y llegando a ser comercializado en todo mundo. Las principales aplicaciones e industrias en las que las podemos encontrar que se utilice la fibra de carbono son las siguientes (Miravete, 2001):

• Industria aeronáutica: Diseño de cabinas y alas.

• Industria automovilística: Diseño del chasis, volante, llantas, cascos utilizados en el automovilismo de alta competencia.

• Industria naval: En mástiles y cascos de barcos y buques.

• Industria del deporte: Utilizada en el diseño de chasis de bicicletas, raquetas de tenis, cascos, cañas de pescar, etc.

• Industria de la construcción: Es empleado como refuerzo estructural antisísmico, para reparaciones de estructuras, implementación en puentes.

• Industria musical: En el diseño del cuerpo y cuerdas de las guitarras y bajos.

• Industria de las telecomunicaciones: Computadoras portátiles, teléfonos, trípodes.

• Equipamiento militar: Utilizado en el diseño de armas, cascos, etc.
2.4.5. METODOLOGÍA DE INSTALACIÓN DE FIBRA DE CARBONO COMO REFUERZO ESTRUCTURAL

Existen varias metodologías para colocar láminas de fibra de carbono como refuerzo estructural. La metodología para la colocación de la fibra de carbono en vigas de concreto armado es la siguiente (Helene, 2003):

- En primer lugar se debe limpiar la superficie de contacto del concreto, esta superficie debe estar libre de aceites, grasas, polvo, pinturas, etc. Se debe realizar una limpieza integral eliminando las partículas sueltas como el polvo para evitar una mala adherencia entre el concreto y el reforzamiento de fibra de carbono.

- Seguidamente se aplica una capa de imprimante epóxico con rodillo, cuya finalidad es proveer una lámina de adherencia a la superficie del concreto. Posteriormente se rellenan con masilla o pasta epóxica los huecos que pudiera tener la superficie de contacto. En el caso de cangrejeras o fisuras profundas se deberá utilizar con mortero como relleno.

- Luego de preparar la superficie de concreto se envuelve la superficie con un saturante epóxico para humedecer las fibras secas y conservarla correcta dirección y posición de las fibras. Debido a su alta viscosidad, permite el fácil manejo de la fibra y su correcta aplicación. Además dicho saturante distribuye los esfuerzos en las fibras y ayuda a protegerlas de las condiciones ambientales y la abrasión.

- Seguidamente se cortan y preparan a medida las láminas de fibras de carbono según el diseño de la sección, luego se colocan sobre la superficie de contacto, lo que permitirá que las láminas de fibras de carbono y el comiencen a absorber el saturante.

- Luego que la lámina absorba la primera capa de saturante, se aplica una segunda capa de saturante para cubrirla.

- Finalmente, se aplica una capa de acabado que cubre totalmente el reforzamiento con fibra de carbono, logrando una apariencia similar al concreto y protegiendo a la fibra de carbono de agentes externos.
CAPÍTULO 3: MARCO NORMATIVO

3.1. REQUISITOS DE DISEÑO DE VIGAS DE ACUERDO AL REGLAMENTO PARA CONCRETO ESTRUCTURAL (ACI 318S-14)

El uso de elementos estructurales reforzados con fibra de carbono dispone de parámetros de diseño establecido en la Normativa Vigente como la ACI 318S-14, dichos normas constituyen reglamentos para establecer los requisitos mínimos para el diseño y construcción del concreto estructural, así como para la aprobación del diseño y construcción de estructuras de concreto por parte de la autoridad competente o de sus representantes. Dentro de las consideraciones generales bajo la Normativa Vigente (ACI 318S-14 y Norma Peruana E.060), en la presente tesis se tomará en cuenta lo siguiente:

- Resistencia especificada a la compresión del concreto (f'_{c}):

 Los requisitos establecidos por para mezclas de concreto se basan en la filosofía de establecer parámetros que permitan que el concreto mantenga una resistencia y durabilidad adecuada. La Norma ACI 318S-14 define un valor mínimo de f'_{c} para concreto estructural; sin embargo, no existe un límite para el valor máximo de f'_{c}. (American Concrete Institute, 2015)

 El valor de f'_{c} debe ser especificado en los documentos de construcción y debe estar acuerdo a la Tabla 1 como se muestra a continuación:

<table>
<thead>
<tr>
<th>Aplicación</th>
<th>Concreto</th>
<th>f'_{c} Mínimo, MPa</th>
<th>f'_{c} Máximo, MPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>Peso normal y liviano</td>
<td>17</td>
<td>Ninguno</td>
</tr>
<tr>
<td>Porticos especiales resistentes a momentos y muros estructurales especiales</td>
<td>Peso normal</td>
<td>21</td>
<td>Ninguno</td>
</tr>
<tr>
<td></td>
<td>Liviano</td>
<td>21</td>
<td>35 [1]</td>
</tr>
</tbody>
</table>

[1] Este límite puede ser excedido cuando la evidencia experimental demuestre que los elementos estructurales hechos con concreto liviano proporcionan una resistencia y tenacidad iguales o mayores que las de elementos comparables hechos con concreto de peso normal de la misma resistencia.

Tabla 1 Límites para f'_{c} (American Concrete Institute, 2015)

En el caso de elementos de concreto resistentes a fuerzas inducidas por sismo la Norma Peruana E.060 establece que la resistencia especificada a la compresión del concreto, f'_{c}, no debe ser mayor que 55 MPa.
• Módulo de Elasticidad del concreto (Ec):

El módulo de elasticidad del concreto (Ec) se define como la pendiente de la línea trazada desde un esfuerzo nulo hasta un esfuerzo de comprensión de 0.45 f’c. El módulo de elasticidad del concreto es dependiente del módulo de elasticidad de los agregados utilizados y la dosificación de la mezcla de concreto (American Concrete Institute, 2015). Para el cálculo del módulo de elasticidad (Ec) se emplean dos formas:

1. Para valores de wc entre 1440 y 2560 kg/m3
 \[E_c = 0.136(w_c)^{1.5} \sqrt{f'c} (kg/cm^2) \]

2. Para concretos de peso normal (aproximadamente 2300 kg/m3
 \[E_c = 15000 \sqrt{f'c} (kg/cm^2) \]

• Módulo de ruptura del concreto (fr):

El módulo de ruptura, fr, para concreto se calcula de la siguiente manera:

\[fr = (0.62\lambda)\sqrt{f'c} (kg/cm^2) \]

Donde el valor de \(\lambda \) se calcula mediante la Tabla 2.

• Concreto liviano:

Para considerar las propiedades del concreto de peso liviano, se debe emplear el factor de modificación \(\lambda \) como multiplicador de raíz cuadrada de f’c en todos los requisitos aplicables de este Reglamento. El valor de \(\lambda \) debe estar basado en la composición del agregado en la mezcla de concreto de acuerdo a lo establecido en la Tabla 2.

Para el cálculo del factor de modificación \(\lambda \) se utiliza la resistencia promedio a tracción por hendimiento del concreto liviano, f$_{ct}$ de acuerdo con la ASTM C330 (American Concrete Institute, 2015) y los correspondientes valores de f$_{cm}$ mediante la siguiente fórmula:
Tabla 2 Factor de modificación λ del concreto (American Concrete Institute, 2015)

- Deformación unitaria de fluencia del acero:

Para el caso de refuerzos corrugados, se presume que el esfuerzo es proporcional a la deformación unitaria para esfuerzos menores que la resistencia de fluencia especificada f_y. El aumento en la resistencia debido al efecto de endurecimiento por deformación del refuerzo se descarta en los cálculos de resistencia (American Concrete Institute, 2015). En los cálculos de resistencia nominal, la fuerza que se desarrolla en el refuerzo sometido a compresión o a tracción se calcula como:

Si $\varepsilon_s < \varepsilon_y$ (deformación unitaria de fluencia)

$$A_s f_s = A_s E_s \varepsilon_s$$

Si $\varepsilon_s \geq \varepsilon_y$

$$A_s f_s = A_s f_y$$

Donde ε_s es el valor en el diagrama de deformaciones unitarias en el lugar donde está ubicado el refuerzo.
• Deformación unitaria a tracción del concreto:

La resistencia nominal de un elemento sometido a un momento, fuerza axial o a una combinación de ambas se logra cuando la deformación unitaria en la fibra extrema en compresión es igual al límite de deformación unitaria, en este caso el valor de 0.003. La deformación unitaria neta a tracción es la deformación unitaria a tracción que sufre el refuerzo extremo a tracción en el estado de resistencia nominal, (Ver Figura 17), la cual se determina a partir de una distribución de deformaciones unitarias lineal en el estado de resistencia nominal (American Concrete Institute, 2015).

Figura 17 Distribución de la deformación unitaria y deformación unitaria neta de tracción en un elemento no preesforzado (American Concrete Institute, 2015)

Asimismo, “la deformación unitaria neta de tracción en el refuerzo extremo a tracción se determina a partir de una distribución de deformaciones unitarias lineal en el estado de resistencia nominal” (American Concrete Institute, 2015).

3.2. GUÍA DE DISEÑO Y CONSTRUCCIÓN SISTEMAS DE FRP PARA EL FORTALECIMIENTO DE ESTRUCTURAS DE CONCRETO (ACI-440.2R-08)
3.2.1. CONSIDERACIONES GENERALES DE DISEÑO

3.2.1.1. CONSIDERACIONES DE SELECCIÓN DE RECUBRIMIENTO DE PROTECCIÓN

La selección del grosor y tipo de recubrimiento reforzamiento de fibra de carbono debe basarse en los requisitos que demanda la reparación de material compuesto; resistencia a efectos ambientales tales como la humedad, el agua salada, temperatura extremos, fuego, impacto, y la exposición de radiación ultravioleta UV. Los recubrimientos son eficaces para retardar la degradación de las propiedades mecánicas de los sistemas de FRP. Los recubrimientos deben ser periódicamente inspeccionados y mantenidos para asegurar la eficacia del sistema FRP (Ver Tabla 3).

<table>
<thead>
<tr>
<th>Exposure conditions</th>
<th>Fiber type</th>
<th>Environmental reduction factor C_F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interior exposure</td>
<td>Carbon</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>Glass</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>Aramid</td>
<td>0.85</td>
</tr>
<tr>
<td>Exterior exposure (bridges, piers, and unenclosed parking garages)</td>
<td>Carbon</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>Glass</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>Aramid</td>
<td>0.75</td>
</tr>
<tr>
<td>Aggressive environment (chemical plants and wastewater treatment plants)</td>
<td>Carbon</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>Glass</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Aramid</td>
<td>0.70</td>
</tr>
</tbody>
</table>

Tabla 3 Factor de reducción ambiental para varios sistemas de FRP y condiciones de exposición (American Concrete Institute, 2008)

3.2.1.2. PROPIEDADES DE LOS MATERIALES DE DISEÑO

Las propiedades de la fibra de carbono, tales como la resistencia a la tracción, normalmente no tienen en cuenta la exposición a largo plazo para el medio ambiente condiciones y deben ser considerados como propiedades iniciales.

Dado que la exposición a largo plazo a varios tipos de entornos puede reducir las propiedades de tracción y fluencia-ruptura y fatiga resistencia de los laminados de FRP, las propiedades del material...
utilizado en las ecuaciones de diseño deben reducirse en base a la condición de exposición ambiental.

La resistencia de diseño máxima tracción debe ser determinada usando el factor de reducción ambiental dado en la Tabla 3 para el tipo de fibra adecuada y condición de exposición, tal como se muestra en las fórmulas a continuación:

\[
f_{tu} = C_1 f_{tu}^*
\]

\[
\varepsilon_{tu} = C_1 \varepsilon_{tu}^*
\]

3.2.1.3. RESISTENCIA NOMINAL (VIGAS)

La resistencia a la flexión nominal de los elementos del concreto reforzado con el FRP puede determinarse basándose en la compatibilidad de deformación, fuerza equilibrio interno, y el modelo de control de falla o rotura. En los elementos de concreto con acero pretensado sin adherencia, no se aplica la compatibilidad de deformación. Asimismo el esfuerzo acero pretensado sin adherencia depende de la deformación total del elemento estructural (viga) suponiendo que es aproximadamente el mismo en todas las secciones (American Concrete Institute, 2008).

\[
\varepsilon_{jd} = 0.083 \frac{f_{cr}}{nE_{j}t_{j}} \leq 0.9 \varepsilon_{tu} \quad \text{in\-in\-lb units}
\]

\[
\varepsilon_{jd} = 0.41 \frac{f_{cr}}{nE_{j}t_{j}} \leq 0.9 \varepsilon_{tu} \quad \text{in\ SI units}
\]

Nivel de deformación en el refuerzo FRP:

Es importante para determinar el nivel de deformación en el refuerzo de FRP en el estado límite último. Debido a que los materiales de FRP son elásticos lineales hasta el estado de falla o estado de rotura, el nivel de deformación en el FRP determinará el nivel de esfuerzo desarrollado en el FRP. El nivel de deformación máxima que se puede alcanzar en el refuerzo de FRP dependerá del nivel de deformación desarrollado en el FRP en el punto en que el concreto entra en un estado de rotura o el punto en el que el FRP se desprende del sustrato (American Concrete Institute, 2008). El nivel de deformación eficaz en
el refuerzo de FRP en el estado límite último se determina a partir de la siguiente ecuación:

$$\varepsilon_{fe} = \varepsilon_{c,d} \left(\frac{d-\bar{c}}{c} \right) - \varepsilon_{bi} \leq \varepsilon_{jd}$$

Nivel de esfuerzo en el refuerzo FRP:

El nivel de esfuerzo efectivo en el refuerzo de FRP es el nivel máximo de esfuerzo que se puede desarrollar en el refuerzo de FRP antes de que se produzca la falla de flexión de la sección. Este nivel de esfuerzo efectivo se puede determinar a partir del nivel de esfuerzo en el FRP suponiendo un comportamiento perfectamente elástico.

$$f_{fe} = E_f \varepsilon_{fe}$$

Factor de reducción de la fuerza:

El uso del refuerzo de FRP unido externamente como el refuerzo en flexión de una sección de viga de concreto armado reducirá la ductilidad de la sección original. En algunos casos, la pérdida de ductilidad es insignificante. Sin embargo, las secciones que experimentan una pérdida significativa de ductilidad deben ser tratadas. Para mantener un grado suficiente de ductilidad, debe comprobarse el nivel de deformación en el acero en el estado límite último (Ver Figura 18). Para elementos de concreto armado con refuerzo de acero no pretensado, se puede obtener una ductilidad adecuada si la deformación en el acero en el punto de trituración o falla del FRP, incluyendo la delaminación o desprendimiento alcanza al menos el valor de 0,005, de acuerdo con la definición como se indica en el ACI 318-05 (American Concrete, 2008)
3.3. NORMA E-030

3.3.1. REQUISITOS GENERALES

En concordancia con los principios de diseño sismorresistente establecidos en la Norma Peruana E-030 se acepta que las edificaciones tendrán incursiones inelásticas frente a solicitudes sísmicas severas. Por tanto las solicitudes sísmicas de diseño se consideran como una fracción de la solicitación sísmica máxima elástica. El análisis podrá desarrollarse usando las solicitudes sísmicas reducidas con un modelo de comportamiento elástico para la estructura (Ministerio Vivienda, Construcción y Saneamiento, 2006)
3.3.2. ESTADOS DE DESEMPEÑO

El desempeño de una edificación se describe en función del comportamiento del sistema estructural y de las instalaciones y elementos no estructurales en general. En la Tabla 4, que se muestra a continuación resume la propuesta del comité Visión 2000 (SEAOC, 1995).

<table>
<thead>
<tr>
<th>Nivel de desempeño</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completamente Operacional (OC)</td>
<td>Daño estructural y no estructural despreciable o nulo. Los sistemas de evacuación y todas las instalaciones continúan prestando servicio.</td>
</tr>
<tr>
<td>Operativo (O)</td>
<td>Agrietamiento en elementos estructurales. Daño leve y moderado en elementos arquitectónicos. Los sistemas de evacuación y seguridad funcionan con normalidad.</td>
</tr>
<tr>
<td>Cerca al Colapso (CC)</td>
<td>Daños severos en elementos estructurales. Fallo de elementos secundarios, no estructurales y contenidos. Puede llegar a ser necesario demoler el edificio.</td>
</tr>
<tr>
<td>Colapso (C)</td>
<td>Pérdida parcial o total de soporte. Colapso parcial o total. No es posible la reparación.</td>
</tr>
</tbody>
</table>

Tabla 4: Niveles de desempeño y descripción de acuerdo a la clasificación del SEAOC

3.3.3. DAÑO ESTRUCTURAL ASOCIADO A LA DERIVA DEL EDIFICIO

De acuerdo a la Norma E-030 los límites que establece (Ver Figura19) como máximos desplazamientos laterales permisibles se definen según el tipo de estructura. Por ejemplo para edificios de concreto armado el límite es 0.7% de altura de entrepiso y para edificios de albañilería es de 0.5%.

Asimismo los desplazamientos de entrepiso se obtienen en base a los desplazamientos esperados en régimen inelástico. Po lo tanto los
desplazamientos obtenidos del análisis elástico lineal con solicitudes reducidas, deben amplificarse previamente por 0.75R.

Figura 19 Límites para el desplazamiento de entrepiso
CAPÍTULO 4: METODOLOGÍA DE DISEÑO CON REFORZAMIENTO DE FIBRA DE CARBONO (CFRP)

4.1. CONSIDERACIONES GENERALES

Las recomendaciones generales de diseño que serán tomadas en cuenta en el desarrollo de este capítulo se basan en el principio de diseño tradicional de concreto armado que figura en los requisitos de diseño normados en la Norma ACI 318-05, Norma Peruana E.060 y el conocimiento del específico comportamiento mecánico del refuerzo CFRP.

El Reforzamiento de fibra de carbono (CFRP) deberá estar unido a las superficies de las vigas para mejorar el diseño resistencia a la flexión de las secciones, asimismo actuando como armadura de tracción adicional. Este análisis de la sección se basa en la fuerza de equilibrio y compatibilidad tensión entre el concreto, el refuerzo de acero y el material CFRP. (Fyfe, 2010)

Asimismo para el desarrollo de la presente tesis se definirá como la sección de análisis (Ver Figura 20), vigas rectangulares de concreto reforzadas con acero. En el diseño se considerará solamente la influencia del acero de tracción. Del mismo modo para el diseño de las fibras de CFRP, se considerarán fibras colocadas en la sección en la que trabaje el acero de tracción de la viga.

Por otra parte para el diseño del diagrama de momento – curvatura se utilizará el modelo de Hognestad en el bloque de compresiones del concreto. Asimismo para el cálculo de las deformaciones unitarias del concreto se utilizará la ecuación de la curva de Hognestad.
4.2. PREDIMENSIONAMIENTO DE FIBRA CFRP

Previamente al diseño de las fibras de carbono utilizadas como reforzamiento estructural, se procede a realizar el predimensionamiento de las secciones de diseño. La finalidad de realizar un predimensionamiento es calcular dimensiones tentativas de las secciones transversales de vigas que sirven como base para el cálculo de las dimensiones definitivas de las secciones. Para fines del presente estudio se realizará solamente predimensionamiento de vigas rectangulares de concreto armado sometidas a flexión.

Se calcula el área de la fibra de carbono en función de la capacidad última que puede resistir la viga y las dimensiones de las vigas, de la siguiente manera:

\[A_f = \frac{\Delta M_u}{\varnothing \ast f_f \ast 0.9 \ast h} \] (cm²)

Dónde:
\(\Delta M_u \) : Diferencia entre la capacidad última que resiste la viga con y sin CFRP
\(f_f \) : Esfuerzo de la fibra de carbono (CFRP)

4.3. METODOLOGÍA DE DISEÑO DE FLEXIÓN DEL REFORZO CFRP EN UNA VIGA RECTANGULAR REFORZADA CON ACERO

4.3.1. DEFINICIONES PRELIMINARES

NOMENCLATURA CONCRETO

<table>
<thead>
<tr>
<th>Variable</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>Ancho de viga de concreto</td>
</tr>
<tr>
<td>h</td>
<td>Altura de viga de concreto</td>
</tr>
<tr>
<td>d</td>
<td>Peralte efectivo de viga de concreto</td>
</tr>
<tr>
<td>f'c</td>
<td>Resistencia a la compresión del concreto</td>
</tr>
<tr>
<td>f_y</td>
<td>Esfuerzo de fluencia del acero</td>
</tr>
<tr>
<td>E_c</td>
<td>Módulo de elasticidad del concreto</td>
</tr>
<tr>
<td>E_s</td>
<td>Módulo de elasticidad del acero</td>
</tr>
</tbody>
</table>
n = Relación modular

NOMENCLATURA MATERIAL CFRP

\[n_c = \text{Número de capas de CFRP} \]
\[b_f = \text{Ancho de la capa de CFRP} \]
\[t_f = \text{Espesor por capa de CFRP sección compuesta} \]
\[A_f = \text{Área del refuerzo de CFRP} \]
\[f_{fu} = \text{Resistencia de tensión última típica de ensayo} \]
\[\varepsilon_{fu} = \text{Deformación unitaria de ruptura típica de ensayo} \]
\[E_f = \text{Módulo de elasticidad de las láminas de FRP típica de ensayo} \]
\[C_E = \text{Factor de reducción por exposición al medio ambiente} \]
\[F_{fu'} = \text{Resistencia de tensión última de diseño} \]
\[E_{fu'} = \text{Deformación unitaria de ruptura de diseño} \]

4.3.2. MATERIALES Y PROPIEDADES

Se ha realizado el análisis de secciones de vigas rectangulares de concreto armado reforzadas y no reforzadas con fibras de carbono, para lo cual se calculan previamente las propiedades del concreto y acero utilizado en las vigas de diseño.

En primer lugar se definen las dimensiones y geometría de las vigas de diseño. Asimismo se definen las propiedades básicas del concreto y acero utilizados en las vigas tal como se muestra en la Tabla 5.
Para el cálculo del módulo de elasticidad del concreto (E_c), el cual se define como la relación entre el esfuerzo normal y la deformación unitaria correspondiente, para esfuerzos de tracción o compresión menores que el límite de proporcionalidad del material (American Concrete Institute, 2015), se utilizará la siguiente fórmula:

$$E_c = 15000 \sqrt{f'_c} \ (kg/cm^2)$$

Del mismo modo se selecciona el diámetro y el número de barras de acero de refuerzo utilizadas en los diseños de las vigas de concreto armado. Para los diseños empleados en la presente tesis se utilizaron 2, 4 y 6 barras de acero de 1” de diámetro.

El ACI y la Norma Peruana, definen el Módulo de Rotura del concreto como una medida indirecta del esfuerzo de tracción del acero. El ACI utiliza la siguiente ecuación para el cálculo de deflexiones en elementos de concreto armado:

$$f_r = 2 \sqrt{f'_c} \ (kg/cm^2)$$

Por otro lado en relación a las propiedades del reforzamiento CFRP, se definen el número, ancho y espesor de las capas de CFRP. Para los diseños empleados en la presente tesis se utilizaron diseños de 0, 1, 2 y 3 capas.
Tabla 6 Propiedades del reforzamiento de fibra de carbono (CFRP)

Asimismo se definen las propiedades básicas del reforzamiento de fibra de carbono (CFRP) utilizados en las vigas tal como se muestra en la **Tabla 6**. Para el cálculo del área de refuerzo de CFRP se utiliza la siguiente fórmula:

\[A_f = n_c \times b_f \times t_r \ (cm^2) \]

Para la selección del Factor de Reducción (\(C_E \)) por exposición al medio ambiente, serán tomando en cuenta lo dispuesto en el Capítulo 9 ACI 440.2R-08 (Ver **Tabla 3**), es por ello que para el cálculo de la resistencia de tensión última de diseño y deformación unitaria de ruptura de diseño se emplearán las siguientes fórmulas:

\[f_{fu}' = C_E \times f_{fu} \ (kg/cm^2) \]

\[\varepsilon_{fu}' = C_E \times \varepsilon_{fu} \]

La resistencia a la flexión de una sección de concreto depende del control de la falla de la sección. Un modo de falla por flexión es causado por el aplastamiento del concreto en compresión antes de la fluencia del acero de refuerzo. Se supone que el aplastamiento del concreto se produce si la deformación por compresión en el concreto alcanza su máxima deformación útil (\(\varepsilon_c = \varepsilon_{cu} = 0,003 \)). Asimismo la ruptura de la fibra de carbono FRP unida externamente ocurre si la deformación en la fibra de carbono alcanza su deformación de ruptura de diseño (\(\varepsilon_f = \varepsilon_{fu} \)) antes de que el concreto alcance su máxima deformación utilizable (American Concrete Institute, 2008).
La delaminación de la cobertura o desprendimiento de FRP puede ocurrir si la fuerza en el FRP no puede ser sostenida por el sustrato (Ver Figura 21). Por lo tanto considerando que esta separación produce agrietamiento en la sección, la deformación efectiva de la fibra de reforzamiento CFRP debe limitarse al nivel de deformación en el cual se puede producir pérdida de adherencia (American Concrete Institute, 2008). La deformación de delaminación de la fibra CFRP se define por la siguiente ecuación:

\[
\varepsilon_{fd} = 0.41 \frac{f'c}{n_c \cdot E_f \cdot t_f} \leq 0.9 \cdot \varepsilon_{fu} \quad \text{(en unidades SI)}
\]

Figura 21 Diagrama y proceso de separación y delaminación de los sistemas unidos de CFRP

4.3.3. HIPÓTESIS BÁSICAS PARA EL ANÁLISIS Y DISEÑO POR FLEXIÓN
El diseño de secciones de concreto reforzado considera cuatro hipótesis básicas para determinar la resistencia en flexión, siempre y cuando el elemento de análisis sea esbelto. Sin embargo, las Normas suelen introducir hipótesis adicionales, conocidas también como hipótesis simplificadoras (Ottazzi, 2004). Para el desarrollo de la presente tesis se contemplará las siguientes hipótesis:

- Las secciones planas permanecen planas (Hipótesis de Navier), aplicable en vigas esbeltas.
- No hay deslizamiento entre el acero y concreto que lo rodea, por lo que las deformaciones en el acero y concreto circundante son iguales.
- Se puede despreciar la resistencia en tracción del concreto en los cálculos de la resistencia de una sección.
- Los esfuerzos en el concreto y acero pueden ser calculados a partir de las deformaciones utilizando las relaciones constitutivas del acero y concreto.

4.3.4. BLOQUE DE COMPRESIONES DE CONCRETO – MODELO HOGNESTAD

El diseño de elementos de concreto armado se constituye en el equilibrio, la compatibilidad de deformaciones y en las leyes constitutivas de los materiales. Se emplean modelos matemáticos simples para representar el comportamiento de los materiales. La curva de esfuerzo-deformación se obtiene de forma experimental mediante mediciones de deformaciones unitarias de ensayos en cilindros de concreto con una edad de veintiocho días, los cuales son sometidos a compresión uniaxial con una velocidad de carga moderada (Ottazzi, 2004).

Uno de los modelos más utilizados y aceptados es el propuesto por Hognessatd tal como se muestra en la Figura 22. Es aplicable tanto para secciones circulares como para secciones rectangulares o cuadradas. Asimismo para el cálculo de las deformaciones unitarias del concreto se utilizará la ecuación de la curva de Hognessatd descrita en la Figura 23.
Figura 22 Bloque de compresiones de concreto - Modelo Hognestad

Figura 23 Gráfica Resistencia de compresión (f‘c) vs deformación (ε) y ecuación de la curva de Hognestad

VALORES DE k_1 Y k_2

$0 \leq \varepsilon \leq \varepsilon_0$:

$$k_1 = \frac{\varepsilon - \varepsilon_0^2}{3 \cdot \varepsilon_0^2}$$

$$k_2 = \frac{4 \cdot \varepsilon_0 - \varepsilon}{3 \cdot \varepsilon_0 - \varepsilon_0}$$

$\varepsilon_0 \leq \varepsilon \leq \varepsilon_u$:

$$k_1 = \frac{1}{120} \cdot \left[-40 \cdot \varepsilon_0 \cdot \varepsilon_u + 31 \cdot \varepsilon_0^2 + 120 \cdot \varepsilon_u \cdot \varepsilon_u - 102 \cdot \varepsilon_u \cdot \varepsilon_0 - 9 \cdot \varepsilon_u^2 \right] \cdot \varepsilon_u \cdot \left(\varepsilon_u - \varepsilon_0 \right)$$

$$k_2 = \frac{1}{\varepsilon_u} \cdot \left[-40 \cdot \varepsilon_0 \cdot \varepsilon_u \cdot \varepsilon_u + 31 \cdot \varepsilon_u^2 \cdot \varepsilon_u - 60 \cdot \varepsilon_u^2 \cdot \varepsilon_u - 51 \cdot \varepsilon_u^2 \cdot \varepsilon_u - 3 \cdot \varepsilon_u^3 + 10 \cdot \varepsilon_u^2 \cdot \varepsilon_u - 7 \cdot \varepsilon_u^3 \right]$$
4.3.5. DISEÑO POR FLEXIÓN – ESTADO DE AGRIETAMIENTO

El estado de agrietamiento del concreto ocurre cuando la sección excede la resistencia en tracción del concreto. Los esfuerzos de tracción en la sección de concreto se transfieren en su totalidad al acero de refuerzo. A partir de ese instante el concreto en tracción no contribuye con la resistencia en flexión de la sección (Ottazzi, 2004).

En la sección de concreto se analiza el comportamiento previo a la fisuración del concreto por efecto de la tracción por flexión. En la Figura 24 se muestra el diagrama de esfuerzos y deformaciones en la sección un instante antes de la fisuración del concreto de la sección de análisis.

Los esfuerzos en el concreto, acero y refuerzo de fibra de carbono son calculados mediante las deformaciones utilizando las relaciones constitutivas y la compatibilidad (secciones permanecen planas) del concreto, acero y refuerzo de fibra de carbono, como se muestra en la siguiente fórmula:

\[
\frac{\varepsilon_c}{c} = \frac{\varepsilon_f}{h + h_f - c} = \frac{\varepsilon_s}{d - c}
\]
\[h_f = \frac{n_c * t_f}{2} \]

Dónde:

\(\varepsilon_c \) = Deformación del concreto

\(\varepsilon_f \) = Deformación de la fibra de carbono (CFRP)

\(\varepsilon_s \) = Deformación del acero

\(h_i \) = Distancia entre las fibras extremas en compresión al centroide de la fibra de carbono (CFRP)

Para el cálculo del esfuerzo del concreto en compresión, se utiliza en modelo de Hognestad, como se muestra en la Figura 23. Primero se calculará el bloque de compresiones de concreto y luego se ubicará el punto de aplicación de la resultante de compresiones.

Asimismo para el cálculo de la fuerza y momento que se producen en el concreto en compresión producido durante la instalación de la fibra de carbono y antes de que se produzca el agrietamiento del concreto, para lo cual utilizamos las siguientes fórmulas:

\[T_i = \frac{(f_r * (h - c) * b)}{2} \quad \text{(ton)} \]

\[M_i = T_i * \left(h - \frac{h - c}{3} \right) \quad \text{(ton - cm)} \]

Para realizar el cálculo de la ubicación del eje neutro “c”, se realiza el equilibrio de las fuerzas actuantes en dicha sección de viga, tal como se muestra en la siguiente fórmula:

\[0 = C_c - T - T_f - T_i \]
Dónde:

\(C_c = \) Fuerza de bloque de compresiones

\(T = \) Fuerza de tracción del acero

\(T_f = \) Fuerza de tracción de la fibra de carbono (CFRP)

\(T_i = \) Fuerza producida en la cara interior al momento de instalación de CFRP antes del agrietamiento del concreto

Luego del cálculo de la ubicación del eje neutro “c”, calculamos el Momento de Agrietamiento \((M_{cr}) \) empleando las fuerzas actuantes en la sección y la curvatura \((\varphi_{cr}) \) utilizando las siguientes ecuaciones:

\[
M_{cr} = (-C_c * y_c + T * d + M_i) \quad (ton - m)
\]

\[
\varphi = \varepsilon_c / c
\]

4.3.6. DISEÑO POR FLEXIÓN – ESTADO DE SERVICIO

En la sección de concreto se analiza el comportamiento sometido bajo cargas de servicio. Existe variación de esfuerzos en el concreto, además el esfuerzo del acero de tracción se encuentra por debajo del esfuerzo de fluencia del acero \(f_y \) (Ottazzi, 2004).

Cuando el acero de refuerzo alcanza su esfuerzo admisible, la sección de concreto ya se encuentra agrietada por flexión, por lo que el aporte del concreto en tracción se desprecia. En la Figura25 se muestra el diagrama de esfuerzos y deformaciones en la sección sometida bajo cargas de servicio.
Figura 25 Deformaciones y esfuerzos en la sección sometida bajo cargas de servicio

Los esfuerzos en el concreto, acero y refuerzo de fibra de carbono son calculados mediante las deformaciones utilizando las relaciones constitutivas y la compatibilidad (secciones permanecen planas) del concreto, acero y refuerzo de fibra de carbono, como se muestra en la siguiente ecuación:

\[
\varepsilon_c = \varepsilon_f + \varepsilon_{bi} + \frac{\varepsilon_s \cdot d - c \cdot f_s}{h_f} = \frac{\varepsilon_s \cdot d - c \cdot f_s}{h_f}
\]

Dónde:

- \(\varepsilon_c \): Deformación del concreto
- \(\varepsilon_f \): Deformación de la fibra de carbono (CFRP)
- \(\varepsilon_s \): Deformación del acero
- \(\varepsilon_{bi} \): Deformación unitaria en la cara inferior al momento de instalación de la fibra de carbono (CFRP) \(\approx 65\% \varepsilon_{bs} \)
- \(h_f \): Distancia entre las fibras extremas en compresión al centroide de la fibra de carbono (CFRP)

Para el cálculo del esfuerzo del concreto en compresión, se utiliza en modelo de Hognestad, como se muestra en la Figura 23. Primero se calculará el bloque de compresiones de concreto y luego se ubicará el
punto de aplicación de la resultante de compresiones. Asimismo para el cálculo del esfuerzo efectivo de la fibra de carbono (CFRP) y de la fuerza que contribuye la fibra de carbono (CFRP) utilizaremos las siguientes ecuaciones:

\[f_f = E_{fu} \times \varepsilon_f \ (kg/cm^2) \]

\[T_f = f_f \times A_f \ (kg/cm^2) \]

Para realizar el cálculo de la ubicación del eje neutro “c”, se realiza el equilibrio de las fuerzas actuantes en dicha sección de viga, tal como se muestra en la siguiente ecuación:

\[0 = C_c - T - T_f \]

Donde:

\[C_c = \text{Fuerza de bloque de compresiones} \]

\[T = \text{Fuerza de tracción del acero} \]

\[T_f = \text{Fuerza de tracción de la fibra de carbono (CFRP)} \]

Luego del cálculo de la ubicación del eje neutro “c”, calculamos el Momento de Servicio \(M_s \) empleando las fuerzas actuantes en la sección y la curvatura \(\varphi_s \) utilizando las siguientes ecuaciones:

\[M_s = \left(-C_c \times y_c + T \times d + T_f \times (h + \frac{n_c \times t_f}{2}) \right) \ (ton - m) \]

\[\varphi_s = \frac{\varepsilon_c}{c} \]

4.3.7. DISEÑO POR FLEXIÓN – ESTADO DE FLUENCI

El estado de fluencia de una sección de concreto armado, es aquella correspondiente al inicio de la fluencia del acero de refuerzo. Este estado precede al estado último o de falla de la sección. El esfuerzo del acero de tracción es igual al esfuerzo de fluencia del acero \(f_y \) (Ottazzi, 2004). En la
\[\varepsilon_c = \varepsilon_f + \varepsilon_{bi} = \varepsilon_s \]

Dónde:

- \(\varepsilon_c \): Deformación del concreto
- \(\varepsilon_f \): Deformación de la fibra de carbono (CFRP)
- \(\varepsilon_{bi} \): Deformación unitaria en la cara inferior al momento de instalación de la fibra de carbono (CFRP) \(\approx 65\% \varepsilon_{bs} \)
- \(h_f \): Distancia entre las fibras extremas en compresión al centroide de la fibra de carbono (CFRP)
Para el cálculo del esfuerzo del concreto en compresión, se utiliza en modelo de Hognestad, como se muestra en la Figura 23. Primero se calculará el bloque de compresiones de concreto y luego se ubicará el punto de aplicación de la resultante de compresiones. Asimismo para el cálculo del esfuerzo efectivo de la fibra de carbono (CFRP) y de la fuerza que contribuye la fibra de carbono (CFRP) utilizaremos las siguientes ecuaciones:

\[f_f = E_{fu} \cdot \varepsilon_f \ (kg/cm^2) \]

\[T_f = f_f \cdot A_f \ (kg/cm^2) \]

Para realizar el cálculo de la ubicación del eje neutro “c”, se realiza el equilibrio de las fuerzas actuantes en dicha sección de viga, tal como se muestra en la siguiente ecuación:

\[0 = C_c - T - T_f \]

Dónde:

\(C_c \) = Fuerza de bloque de compresiones

\(T \) = Fuerza de tracción del acero

\(T_f \) = Fuerza de tracción de la fibra de carbono (CFRP)

Luego del cálculo de la ubicación del eje neutro “c”, calculamos el Momento de Fluencia \((M_y) \) empleando las fuerzas actuantes en la sección y la curvatura \((\phi_y) \) utilizando las siguientes ecuaciones:

\[M_y = \left(-C_c \cdot y_c + T \cdot d + T_f \cdot \left(h + \frac{n_c \cdot t_f}{2} \right) \right) \ (ton \cdot m) \]

\[\phi_y = \varepsilon_c/c \]
4.3.8. DISEÑO POR FLEXIÓN – ESTADO DE ROTURA

Cuando la sección de concreto armado supera los esfuerzos admisibles de servicio, el valor del momento que produce dicho esfuerzo en el acero no es la capacidad máxima o última de dicha sección, es decir, el valor para el cual se agota la capacidad de la sección. Por el contrario, una vez que se superan los esfuerzos admisibles, la sección no falla, sino dicha sección tiene aún una importante reserva de resistencia que es justamente la que aprovecha el Diseño por Resistencia (Ottazzi, 2004).

Asumiendo que la falla de la sección se producirá por agotamiento del concreto comprimido y que el acero de refuerzo se encuentra en fluencia, se produce una falla dúctil en la sección. Bajo estas suposiciones, en la Figura 27 se muestra el diagrama de esfuerzos y deformaciones en la sección sometida bajo cargas de servicio.

Los esfuerzos en el concreto, acero y refuerzo de fibra de carbono son calculados mediante las deformaciones utilizando las relaciones constitutivas y la compatibilidad (secciones permanecen planas) del concreto, acero y refuerzo de fibra de carbono, como se muestra en la siguiente ecuación:

\[
\varepsilon_c = \frac{\varepsilon_f + \varepsilon_{bi}}{h + h_f - c} = \frac{\varepsilon_s}{d - c}
\]

Figura 27 Deformaciones y esfuerzos en la sección en el estado de rotura
\[h_f = \frac{n_c \cdot t_f}{2} \]

Dónde:

\(\varepsilon_c \) = Deformación del concreto
\(\varepsilon_f \) = Deformación de la fibra de carbono (CFRP)
\(\varepsilon_s \) = Deformación del acero
\(\varepsilon_{bi} \) = Deformación unitaria en la cara inferior al momento de instalación de la fibra de carbono (CFRP) \(\approx 65\% \varepsilon_{bs} \)

\(h_f \) = Distancia entre las fibras extremas en compresión al centroide de la fibra de carbono (CFRP)

Por otro lado para el cálculo de la deformación del concreto (\(\varepsilon_c \)) se establece que el máximo valor que podría tomar dicha deformación es la deformación última del concreto (\(\varepsilon_{cu} \)).

\[
\varepsilon_c = \text{MINIMO} \left(\frac{(\varepsilon_f + \varepsilon_{bi}) \cdot c}{h + \frac{n_c \cdot t_f}{2} - c}, \varepsilon_{cu} \right)
\]

Asimismo para el cálculo de la deformación de la fibra de carbono (\(\varepsilon_f \)) se establece que el máximo valor que podría tomar dicha deformación es la deformación por delaminación de la fibra de carbono (\(\varepsilon_{fd} \)).

\[
\varepsilon_f = \text{MINIMO} \left(\frac{\varepsilon_c \cdot (h + \frac{n_c \cdot t_f}{2} - c)}{c} - \varepsilon_{bi}, \varepsilon_{fd} \right)
\]

La presencia de una falla controlada podría surgir fuera de la sección de concreto donde se coloca la fibra de carbono por causa de la separación de la fibra de carbono con el concreto. Considerando que esta separación produce agrietamiento en la sección, la deformación efectiva de la fibra de reforzamiento CFRP debe limitarse al nivel de deformación en el cual se puede producir pérdida de adherencia (American Concrete Institute, 2008). Por lo tanto, para el cálculo de la deformación por delaminación de la...
fibra de carbono (ε_{fd}) se establece que el máximo valor que podría tomar dicha deformación es el 90% de la deformación unitaria de ruptura de diseño (ε_{fu}).

$$\varepsilon_d = \text{MINIMO} \left(0.41 \times \sqrt{\frac{f'_c}{n_c \times E_f \times t_f}}, 0.9 \times \varepsilon_{fu} \right)$$

El fisuramiento del concreto se produce cuando la deformación por compresión en el concreto alcanza su máxima deformación útil ($\varepsilon_c = \varepsilon_{cu} = 0,003$). Asimismo la ruptura de la fibra de carbono FRP unida externamente sucede cuando la deformación en la fibra de carbono alcanza su deformación de ruptura de diseño ($\varepsilon_f = \varepsilon_{fu}$) antes de que el concreto alcance su máxima deformación utilizable (American Concrete Institute, 2008).

Para el cálculo del esfuerzo del concreto en compresión, se utiliza el módulo de Hognestad, como se muestra en la Figura 23. Primero se calculará el bloque de compresiones de concreto y luego se ubicará el punto de aplicación de la resultante de compresiones. Asimismo para el cálculo del esfuerzo efectivo de la fibra de carbono (CFRP) y de la fuerza que contribuye la fibra de carbono (CFRP) utilizaremos las siguientes ecuaciones:

$$f_f = E_{fu} \times \varepsilon_f \ (kg/cm^2)$$

$$T_f = f_f \times A_f \ (kg/cm^2)$$

Para realizar el cálculo de la ubicación del eje neutro “c”, se realiza el equilibrio de las fuerzas actuantes en dicha sección de viga, tal como se muestra en la siguiente ecuación:

$$0 = C_c - T - T_f$$
Dónde:

$C_c = \text{Fuerza de bloque de compresiones}$

$T = \text{Fuerza de tracción del acero}$

$T_f = \text{Fuerza de tracción de la fibra de carbono (CFRP)}$

Luego del cálculo de la ubicación del eje neutro “c”, calculamos el Momento de Fluencia (M_n) empleando las fuerzas actuantes en la sección y la curvatura (ϕ_n) utilizando las siguientes fórmulas:

$$M_n = \left(-C_c \cdot y_c + T \cdot d + T_f \cdot \left(h + \frac{n_c \cdot t_f}{2} \right) \right) \ (ton - m)$$

$$\phi_n = \varepsilon_c / c$$

Finalmente, la ductilidad de la sección de concreto es el cociente de la curvatura del estado de rotura entre la curvatura del estado de fluencia, tal como se muestra a continuación:

$$\Phi = \frac{\phi_n}{\phi_y}$$

4.4. CUADRO COMPARATIVO DE CONDICIONES DE DISEÑO DE LA SECCIÓN

Durante la instalación y funcionamiento del refuerzo de fibra de carbono, así como en el estado de agrietamiento, fluencia y rotura de la sección de concreto se establecen diferentes condiciones de deformaciones, esfuerzos, equilibrio. En la Tabla 7 se muestra un cuadro comparativo de dichas condiciones en los diferentes estados de la sección de concreto.
<table>
<thead>
<tr>
<th></th>
<th>Agrietamiento</th>
<th>Servicio</th>
<th>Fluencia</th>
<th>Rotura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esfuerzo de rotura del concreto</td>
<td>(f_t = 2 \sqrt{f'_c})</td>
<td>(f_t > 2 \sqrt{f'_c})</td>
<td>(f_t > 2 \sqrt{f'_c})</td>
<td>(f_t > 2 \sqrt{f'_c})</td>
</tr>
<tr>
<td>Deformación del acero de refuerzo</td>
<td>(\varepsilon_s < \varepsilon_y)</td>
<td>(\varepsilon_s < \varepsilon_y)</td>
<td>(\varepsilon_s = \varepsilon_y)</td>
<td>(\varepsilon_s > \varepsilon_y)</td>
</tr>
<tr>
<td>Esfuerzo del acero de refuerzo</td>
<td>(f_s = E_s \cdot \varepsilon_s)</td>
<td>(f_s < f_y)</td>
<td>(f_s = E_s \cdot \varepsilon_s)</td>
<td>(f_s < f_y)</td>
</tr>
<tr>
<td>Compatibilidad de deformaciones</td>
<td>(\varepsilon_c = \frac{\varepsilon_f}{h + h_f - c})</td>
<td>(\varepsilon_c = \frac{\varepsilon_f + \varepsilon_{bl}}{h + h_f - c})</td>
<td>(\varepsilon_c = \frac{\varepsilon_f}{h + h_f - c})</td>
<td>(\varepsilon_c = \frac{\varepsilon_f + \varepsilon_{bl}}{d - c})</td>
</tr>
<tr>
<td>Fuerza y momento producido en la instalación del CFRP</td>
<td>(T_i = \frac{(f_c \cdot (h - c) \cdot b)}{2})</td>
<td>(M_i = T_i \cdot \left(\frac{h - c}{3} \right))</td>
<td>(-)</td>
<td>(-)</td>
</tr>
<tr>
<td>Deformación producida en la instalación del CFRP</td>
<td>(\varepsilon_{bl} \approx 65% \varepsilon_{bs})</td>
</tr>
<tr>
<td>Deformación fibra de carbono por delaminación</td>
<td>(-)</td>
<td>(-)</td>
<td>(-)</td>
<td>(\varepsilon_d = 0.41 \frac{f'_c}{n_c \cdot E_f \cdot t_f})</td>
</tr>
<tr>
<td>Equilibrio de fuerzas</td>
<td>(0 = C_c - T - T_f - T_i)</td>
<td>(0 = C_c - T - T_f)</td>
<td>(0 = C_c - T - T_f)</td>
<td>(0 = C_c - T - T_f)</td>
</tr>
<tr>
<td>Curvatura</td>
<td>(\varphi = \varepsilon_c / c)</td>
<td>(\varphi_s = \varepsilon_c / c)</td>
<td>(\varphi_y = \varepsilon_c / c)</td>
<td>(\varphi_n = \varepsilon_c / c)</td>
</tr>
</tbody>
</table>

Tabla 7 Cuadro Comparativo de las condiciones de deformaciones y esfuerzos en la sección de concreto

4.5. DISEÑOS DE SECCIONES SOMETIDAS A FLEXIÓN

Se realizaron 12 diseños diferentes, utilizando tres cuantías de acero diferentes \((2\Omega1", 4\Omega1", 6\Omega1")\), asimismo para dichas cuantías de acero se diseñaron con diferentes áreas de fibra de carbono \((0 \text{ cm}^2, 2.5 \text{ cm}^2, 5.0 \text{ cm}^2 \text{ y 7.5 cm}^2)\) los cuales se denominaron en la Tabla 8 de la siguiente manera:
<table>
<thead>
<tr>
<th>Cuantía</th>
<th>A_i (cm²)</th>
<th>Diseño</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Ø 1"</td>
<td>0.00</td>
<td>1A</td>
</tr>
<tr>
<td></td>
<td>2.50</td>
<td>1B</td>
</tr>
<tr>
<td></td>
<td>5.00</td>
<td>1C</td>
</tr>
<tr>
<td></td>
<td>7.50</td>
<td>1D</td>
</tr>
<tr>
<td>4 Ø 1"</td>
<td>0.00</td>
<td>2A</td>
</tr>
<tr>
<td></td>
<td>2.50</td>
<td>2B</td>
</tr>
<tr>
<td></td>
<td>5.00</td>
<td>2C</td>
</tr>
<tr>
<td></td>
<td>7.50</td>
<td>2D</td>
</tr>
<tr>
<td>6 Ø 1"</td>
<td>0.00</td>
<td>3A</td>
</tr>
<tr>
<td></td>
<td>2.50</td>
<td>3B</td>
</tr>
<tr>
<td></td>
<td>5.00</td>
<td>3C</td>
</tr>
<tr>
<td></td>
<td>7.50</td>
<td>3D</td>
</tr>
</tbody>
</table>

Tabla 8 Diseños de reforzamiento con fibra CFRP

Los diseños de secciones de vigas con y sin reforzamiento de CFRP se muestran en los Anexos 1-12 de la presente tesis.
CAPÍTULO 5: ANÁLISIS COMPARATIVO DE LA INFLUENCIA DEL REFORZAMIENTO CON CFRP

5.1. CONTRIBUCIÓN A LA RESISTENCIA DE LA SECCIÓN POR PARTE DEL REFORZAMIENTO CON CFRP

Se realizaron 4 diseños con diferentes áreas de refuerzo de fibra para cada uno de las 3 diferentes cuantías utilizadas, tal como se muestra en la Tabla 9:

<table>
<thead>
<tr>
<th>Diseño 1</th>
<th>2 Ø 1"</th>
<th>Cuantía</th>
<th>Aᵉ (cm²)</th>
<th>Mᵣ (ton-m)</th>
<th>Φ (1/m)</th>
<th>Mᵣ'/Mᵣ</th>
<th>Φ'/Φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>30.55</td>
<td>12.47</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.50</td>
<td>39.92</td>
<td>3.30</td>
<td>1.307</td>
<td>0.265</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>45.38</td>
<td>2.73</td>
<td>1.486</td>
<td>0.219</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.50</td>
<td>48.53</td>
<td>2.30</td>
<td>1.589</td>
<td>0.184</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diseño 2</th>
<th>4 Ø 1"</th>
<th>Cuantía</th>
<th>Aᵉ (cm²)</th>
<th>Mᵣ (ton-m)</th>
<th>Φ (1/m)</th>
<th>Mᵣ'/Mᵣ</th>
<th>Φ'/Φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>58.78</td>
<td>5.52</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.50</td>
<td>67.67</td>
<td>3.02</td>
<td>1.151</td>
<td>0.546</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>72.65</td>
<td>2.48</td>
<td>1.236</td>
<td>0.450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.50</td>
<td>75.44</td>
<td>2.09</td>
<td>1.283</td>
<td>0.378</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diseño 3</th>
<th>6 Ø 1"</th>
<th>Cuantía</th>
<th>Aᵉ (cm²)</th>
<th>Mᵣ (ton-m)</th>
<th>Φ (1/m)</th>
<th>Mᵣ'/Mᵣ</th>
<th>Φ'/Φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>84.71</td>
<td>3.33</td>
<td>1.000</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.50</td>
<td>92.76</td>
<td>2.92</td>
<td>1.095</td>
<td>0.878</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.00</td>
<td>97.55</td>
<td>2.39</td>
<td>1.152</td>
<td>0.719</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.50</td>
<td>100.32</td>
<td>2.01</td>
<td>1.184</td>
<td>0.603</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 9 Resumen de influencia del reforzamiento con CFRP en la sección.

En donde:

- $Aᵉ$ = Área de refuerzo de fibra de carbono (cm²)
- $Mᵣ$ = Resistencia última de la sección de concreto (ton·m)
- $Φ$ = Ductilidad de la sección de concreto (1/m)
- $Mᵣ'/Mᵣ$ = Relación entre la resistencia de la sección reforzada con CFRP y la resistencia de la sección no reforzada con CFRP
\(\Phi_n' / \Phi_n = \) Relación entre la ductilidad de la sección reforzada con CFRP y la ductilidad de la sección no reforzada con CFRP

Como se puede observar en la Figura 28 correspondiente a la gráfica de Momento vs Curvatura de los diseños con acero de refuerzo de 2Ø1”, los diseños sin reforzamiento con fibra de carbono (CFRP) alcanza una curvatura mayor que los diseños reforzados con fibra de carbono (CFRP). Por otro lado, sucede todo lo contrario con la resistencia adquirida a lo largo del tiempo, ya que los diseños reforzados con mayor área de fibra de carbono alcanzan mayor resistencia en su estado de rotura, en comparación de los diseños con menor área de fibra de carbono o el diseño sin reforzamiento con fibra de carbono.
Asimismo se puede observar en la Figura 29 correspondiente a la gráfica de Momento vs Curvatura de los diseños con acero de refuerzo de 4Ø1", tal como la gráfica anterior mostrada en la Figura 28, los diseños sin reforzamiento con fibra de carbono alcanza una curvatura mayor que los diseños reforzados con fibra de carbono. Igualmente los diseños reforzados con mayor área de fibra de carbono alcanzan mayor resistencia a lo largo del tiempo, en comparación de los diseños sin reforzamiento o con menor área de fibra de carbono.

Sin embargo comparando las dos gráficas anteriores, al aumentar la cuantía de acero de refuerzo en la sección aumenta la resistencia de la sección reforzada y no reforzada con fibra de carbono. De la misma los diseños sin reforzamiento con acero de refuerzo de 4Ø1" alcanza menor curvatura en comparación de los diseños sin reforzamiento con acero de refuerzo de 2Ø1". En el caso de los diseños con refuerzos de fibra de carbono para ambas cuantías de acero los valores alcanzados son similares.
Finalmente la Figura 30 corresponde a la gráfica de Momento vs Curvatura de los diseños con acero de refuerzo de 6Ø1”. Sin embargo comparando las dos gráficas anteriores, al aumentar la cuantía de acero de refuerzo en la sección aumenta la resistencia de la sección reforzada y no reforzada con fibra de carbono. De la misma los diseños sin reforzamiento de fibra de carbono (CFRP) pero con acero de refuerzo de 6Ø1” alcanza menor curvatura en comparación de los diseños sin reforzamiento con acero de refuerzo de 2Ø1” y 4Ø1”. Además los diseños con refuerzos de fibra de carbono para ambas cuantías de acero los valores alcanzados son similares. Por lo que concluimos que al aumentar el área de acero de refuerzo, reducimos la curvatura pero aumentamos la resistencia.

En la Figura 31 se muestra una gráfica comparativa entre los 3 diseños con diferentes cuantías de acero de refuerzo, en relación a la resistencia que le aporta el uso de la fibra de refuerzo.
De la gráfica anterior se observa que el aporte de la fibra de carbono incrementa la resistencia de la sección. El incremento de la resistencia alcanza un valor de 58.9% para la sección con menor cuantía de acero, y en el caso de la sección de mayor cuantía de acero, el incremento de la resistencia alcanza un valor de 18.4%.

Se puede verificar que la fibra de refuerzo CFRP, aumenta la resistencia cuando se diseña con menor acero de refuerzo, debido que para la fibra de carbono, este material posee una rigidez similar a la del acero, pero con una resistencia mucho más alta. Su comportamiento es prácticamente lineal hasta llegar a la falla, lo cual lo convierte en un material frágil. (Benzaid y Mesbah, 2013)

5.2. CONTRIBUCIÓN A LA DUCTILIDAD DE LA SECCIÓN POR PARTE DEL REFORZAMIENTO CON CFRP

En la Figura 32 se muestra una gráfica comparativa entre los 3 diseños con diferentes cuantías de acero de refuerzo, en relación a la ductilidad que le aporta el uso de la fibra de refuerzo.
Figura 32 Influencia en la resistencia de la sección reforzada con fibra de carbono

Los índices de ductilidad dependen en gran medida no sólo del tipo y la cantidad del refuerzo externo y de los sistemas de anclaje utilizados, sino también de la resistencia del concreto y las condiciones internas de refuerzo de la viga no-reforzado. En general, la ductilidad de curvatura es más variable, ya que depende en gran medida de las mediciones de deformación, las mismas que están muy influenciadas por el agrietamiento del concreto (Spadea, 2015).

Se puede observar claramente que la ductilidad de la sección de concreto armado se ve afectada por el refuerzo del CFRP, debido a que mientras mayor sea el área de refuerzo de la fibra utilizada, la ductilidad disminuye en relación a la ductilidad que se obtiene al no emplear fibra de refuerzo.

De la gráfica anterior se observa que el aporte de la fibra de carbono disminuye la ductilidad de la sección. Se observa que la sección con menor cuantía de acero alcanza un valor de 18.4% de su ductilidad inicial, y en el caso de la sección con mayor cuantía alcanza un valor de 60.3% de su ductilidad inicial. Por lo que se concluye que a mayor acero de refuerzo (6 Ø 1”), se utilice la ductilidad disminuye en comparación a un diseño con menor acero de refuerzo (2 Ø 1”).

5.3. ANÁLISIS COMPARATIVO DE COSTOS DEL REFORZAMIENTO DE SECCION DE VIGA MEDIANTE MÉTODO DE “ENCAMISETADO” Y REFORZAMIENTO CON FIBRA DE CARBONO (CFRP)
Como parte complementaria al análisis realizado del aporte de la fibra de carbono a la resistencia y ductilidad de una sección de concreto armado, a continuación se muestra un comparativo de costos de una viga reforzada mediante el incremento de su sección con concreto armado en comparación de una viga reforzada mediante el recubrimiento con fibra de carbono.

- Refuerzo de viga peraltada de concreto armado, mediante el incremento de la sección de concreto armado.

<table>
<thead>
<tr>
<th>Código</th>
<th>Unidad</th>
<th>Descripción</th>
<th>Cantidad</th>
<th>Precio Unitario</th>
<th>Precio Parcial</th>
</tr>
</thead>
<tbody>
<tr>
<td>ma01</td>
<td>kg</td>
<td>Adhesivo tixotrópico de dos componentes a base de resina epoxi sobre superficie de concreto endurecido</td>
<td>1.000</td>
<td>32.21</td>
<td>32.21</td>
</tr>
<tr>
<td>ma02</td>
<td>m³</td>
<td>Concreto f’c=315 kg/cm² (31 MPa), no expuesto a ciclos de congelamiento y deshielo, exposición a sulfatos insignificante, sin requerimiento de permeabilidad, no expuesto a cloruros, tamaño máximo del agregado 12.5 mm, premezclado en planta.</td>
<td>0.085</td>
<td>280.00</td>
<td>23.80</td>
</tr>
<tr>
<td>ma03</td>
<td>kg</td>
<td>Acero corrugado, Grado 60 (fy=4200 kg/cm²), de varios diámetros según diseño</td>
<td>5.275</td>
<td>2.99</td>
<td>15.77</td>
</tr>
<tr>
<td>ma04</td>
<td>kg</td>
<td>Alambre galvanizado para atar, de 1,30 mm de diámetro.</td>
<td>0.057</td>
<td>3.15</td>
<td>0.18</td>
</tr>
<tr>
<td>ma05</td>
<td>m²</td>
<td>Sistema de encofrado compuesto de: puntales metálicos telescópicos, sopandas metálicas y superficie encofrante de madera tratada reforzada con varillas y perfiles, hasta 3 m de altura libre de planta.</td>
<td>0.650</td>
<td>68.75</td>
<td>44.69</td>
</tr>
</tbody>
</table>

Subtotal materiales: 116.65

<table>
<thead>
<tr>
<th>Código</th>
<th>Unidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>mo01</td>
<td>h</td>
</tr>
<tr>
<td>mo02</td>
<td>h</td>
</tr>
<tr>
<td>mo03</td>
<td>h</td>
</tr>
<tr>
<td>mo04</td>
<td>h</td>
</tr>
</tbody>
</table>

Subtotal mano de obra: 44.81

<table>
<thead>
<tr>
<th>Código</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
</tr>
</tbody>
</table>

Subtotal herramientas: 3.23

Costos directos (1+2+3): S/. 164.69

Tabla 10 Análisis de precio unitario de reforzamiento de viga de concreto armado mediante incremento de sección (Costo en Nuevos Soles X Metro Lineal)

- Refuerzo de viga de concreto armado con laminado de fibra de carbono MasterBrace "BASF".
Tabla 11 Análisis de precio unitario de reforzamiento de viga de concreto armado mediante refuerzo de fibra de carbono CFRP (Costo en Nuevos Soles X Metro Lineal)

A partir del análisis de costos tal como se muestra en la Tabla 10 y Tabla 11, se puede apreciar que el costo unitario del reforzamiento de viga utilizando fibra de carbono es mayor que el reforzamiento de viga mediante el incremento de su sección. Sin embargo se debe considerar que el reforzamiento de una estructura mediante el método de “emcamisetado” (incremento de sección de viga de concreto armado) genera otros costos indirectos relacionados a la ejecución de su partida.

Por ejemplo, el vaciado de concreto armado genera una mayor limpieza del lugar del trabajo, el tiempo de ejecución de la instalación es mucho mayor que el
sistema de reforzamiento con fibra de carbono, el uso de puntales genera “espacios muertos” o espacios que no pueden ser usados por un determinado tiempo (tiempo de apuntalamiento), a diferencia del sistema con reforzamiento con CFRP.

En el caso de construcciones como centros comerciales, edificaciones, oficinas, etc. donde se requiera reforzamiento en las vigas de los sótanos, se debe tomar en cuenta las alturas entre pisos, ya que el ensanchar o incrementar las secciones de las vigas podrían afectar la altura mínima requerida en estacionamientos (H=2.10 m) de acuerdo a la Norma Peruana A.0.10 en el Capítulo X del Reglamento Nacional de Edificaciones.

Del mismo modo sucede en el caso del reforzamiento de columnas en sótanos, en el caso de incrementar sus secciones con concreto armado, esto podría afectar el área destinada para un estacionamiento, ya que de acuerdo a la Norma Peruana A.0.10 en el Capítulo X del Reglamento Nacional de Edificaciones, indica que los elementos estructurales pueden ocupar como máximo el 5% del ancho del estacionamiento respetando las dimensiones mínimas.

Para ambos casos el reforzamiento con fibra de carbono ayudaría a mejorar la resistencia de la estructura y a la vez cumpliría los requisitos mínimos exigidos por el Reglamento Nacional de Edificaciones, por ello no sólo se debe considerar el costo del reforzamiento sino también sus otros beneficios.
CAPÍTULO 6: CONCLUSIONES Y RECOMENDACIONES

- Se comprobó que el refuerzo de fibra de carbono (CFRP) aumenta la resistencia de las secciones de concreto armado sometidas a flexión. En el caso de secciones con menor cuantía de acero, la fibra de carbono tiene una mayor influencia en el incremento de su resistencia, debido a que la fibra de carbono y el acero poseen una rigidez muy parecida. El incremento de la resistencia a flexión alcanza un valor de 58.9% para la sección con menor cuantía de acero, y en el caso de la sección de mayor cuantía de acero, el incremento de la resistencia alcanza un valor de 18.4%. Se comprobó que el comportamiento del CFRP es prácticamente lineal hasta llegar al estado de falla, por lo que es considerado un material frágil.

- Se verificó que el refuerzo de fibra de carbono (CFRP) disminuye la ductilidad de la sección. Se comprobó que la sección con menor cuantía de acero alcanza un valor de 18.4% de su ductilidad inicial, y en el caso de la sección con mayor cuantía de acero alcanza un valor de 60.3% de su ductilidad inicial. Por lo que se concluye que en secciones de mayor acero de refuerzo, la reducción de la ductilidad inicial (diseño sin reforzamiento) es mayor que en una sección con menor acero de refuerzo. Asimismo se verificó que al reforzar las secciones de concreto armado con mayor fibra de carbono, la ductilidad disminuye en relación a la ductilidad que se obtiene al no emplear fibra de refuerzo.

- En el diseño de la sección se ha considerado el efecto de delaminación o separación de la lámina de fibra de carbono con el concreto en la instalación del reforzamiento de CFRP. Por lo tanto considerando que esta separación produce agrietamiento en la sección, la deformación efectiva de la fibra de reforzamiento CFRP debe limitarse al nivel de deformación en el cual se puede producir pérdida de adherencia. Para el diseño de las secciones de vigas de concreto armado se consideró el efecto de delaminación durante la instalación del refuerzo de fibra de carbono, sin embargo no se ha considerado el comportamiento de dichas secciones luego de la delaminación del reforzado de fibra de carbono.

- Se recomienda que el reforzamiento de vigas de concreto armado con fibra de carbono (CFRP) se deba utilizaren vigas con baja responsabilidad sísmica. Del mismo modo se debe utilizar el refuerzo en zonas de momento positivo luego de haber redistribuido la resistencia negativa en los extremos de la viga, para conseguir que la influencia de la reducción de ductilidad en la sección sea menor y no amerite un mayor análisis. Por lo que se recomienda evaluar la capacidad de redistribución de momentos en la sección de concreto armado, tal como se indica en el artículo 8.4. de la Norma Peruana E.060.

- Por otro lado la Norma Peruana E.060 y la Norma ACI-318.14 aceptan diversos modelos equivalentes del bloque de compresiones de concreto. Sin embargo, se recomienda utilizar el modelo de Hognestad, el cual describe de manera simplificada el diagrama de esfuerzos en el concreto.
• En cuanto al análisis comparativo de costos, si bien es cierto el reforzamiento de fibra de carbono tiene mayor costo que el reforzamiento por “encamisetado” (incremento de sección de viga de concreto armado), se debe considerar los costos indirectos que se generan durante su instalación, así como los beneficios que la fibra de carbono nos otorga.

• Como consecuencia del desarrollo de la construcción en el mundo moderno han aparecido diversas tecnologías como solución para el reforzamiento o reparación de edificaciones, la aparición de la fibra de carbono como reforzamiento nos permite utilizar dicho refuerzo de manera eficiente y cumpliendo con los requisitos que exigen las Normas del Reglamento Nacional de Edificaciones del Perú.
CAPÍTULO 7: BIBLIOGRAFÍA

AMERICAN CHEMISTRY SOCIETY
https://www.acs.org/content/acs/en/education/whatischemistry/landmarks/carbonfibers.html

AMERICAN CONCRETE INSTITUTE
2015 ACI 318S-14 Requisitos de Reglamento para Concreto Estructural (Versión en español y en sistema métrico SI). Segunda Edición

AMERICAN CONCRETE INSTITUTE

BBC MUNDO
http://www.bbc.com/mundo/noticias/2014/01/140129_tecnologia_aviones_fibra_carbono

BELTRAN, Andrés Arturo

BENZAID, Riad y Habib-Abdelhak MESBAH.
2013 Circular and Square Concrete Columns Externally Confined by CFRP Composite: Experimental Investigation and Effective Strength Models.

CORNEJO, Laureano
2015 La nanotecnología y los materiales de construcción.
http://nuevastecnologiasymateriales.com/la-nanotecnologia-y-los-materiales-de-construccion/

DESIGN STUDIOS 5555
https://www.youtube.com/watch?v=A2pfzASB8iM#action=share

DORIS, Karl y Jahn BERNHARD
FLORES TANTALEÁN, Luis

FYFE CO.LLC
2010 Design Manual for the TYFO Fibrwrap Systems. (Rev. 9)

GIONCU, V.

HELENE, Paulo y Fernanda PEREIRA
2003 Manual de Rehabilitación de Estructuras de Hormigón. CYTED.

KELLY, Tony y Bill CLYNE

LLANO, Carolina

MATTHEWS, F.L. y R.D. RAWLINGS
1999 Composite Materials: Engineering and Science

MINISTERIO VIVIENDA, CONSTRUCCIÓN Y SANEAMIENTO

MINISTERIO VIVIENDA, CONSTRUCCIÓN Y SANEAMIENTO

MIRAVETE, Antonio
2001 Hacia la fibra de carbono en la construcción. Universidad de Zaragoza. España

ORGANIZACIÓN MUNDIAL DE LA PROPIEDAD INTELECTUAL

OJEDA, Mariano
OTTAZZI, Gianfranco

SEBASTIAN, Wendel y Thomas KELLER
2013 Ductility of civil engineering structures incorporating fibre reinforced polymers (FRPs). Elsevier

SPADEA, Giuseppe y otros

UNIVERSIDAD DE OVIEDO

WANG, Huanzi y Abdeldjelil BELARBI
2010 Ductility characteristics of fiber-reinforced-concrete beams reinforced with FRP rebars. Elsevier

ZOLTEK, Toray Group