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Abstract

The class of infinite dimensional systems often occurs when dealing with distributed

parameter models consisting of partial differential equations. Although forming a

comprehensive description, they mainly become manageable by finite dimensional ap-

proximations which likely neglect important effects, but underlies a certain structure.

In contrast to common techniques for controlling infinite dimensional systems, this

work focuses on using robust control methods. Thus, the uncertainty structure that

occurs due to the discretization shall be taken into account particularly. Additionally,

optimal performance measures can be included into the design process. The mixed

H2/H∞ control approach handles the inclusion of disturbances and inaccuracies while

guaranteeing specified energy or magnitude bounds.

In order to include various of these system requirements, multi-objective robust control

techniques based on the linear matrix inequality framework are utilized. This offers

great flexibility concerning the formulation of the control task and results in convex

optimization problems which can be solved numerically efficient by semi-definite pro-

gramming.

A flexible robot arm structure serves as the major application example during this

work. The model discretization leads to an LTI system of specified order with an un-

certainty model which is obtained by considering the concrete approximation impact

and frequency domain tests. A structural analysis of the system model relates the

neglected dynamics to a robust characterization. For the objective selection, stability

shall be ensured under all expected circumstances while the aspects of optimal H2 per-

formance, passive behavior and optimal measurement output selection are included.

The undesirable spillover effect is thoroughly investigated and thus avoided.
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1 Introduction 1

1 Introduction

In modern control design various influences that have an impact on the actual system

are taken into account. Control applications have become increasingly complex due to

numerous interconnections and changing plant conditions. Facing these tasks demands

a more detailed and specified controller analysis and synthesis.

On the one hand, there is the challenge of uncertain circumstances occurring either

from inside the system model or from external sources. Those include measurement

noise and physical disturbances as well as reference or excitation signals coming from

another user driven system. On the other hand, there are various objectives or tasks

that have to be fulfilled at the same time due to high security standards or efficiency re-

quirements. This most frequently results in a multiple-input-multiple-output (MIMO)

problem statements, even when considering SISO systems with included signal models

and structuring.

Throughout this work, robust control techniques are used for their ability to simul-

taneously include these considerations into the synthesis process. As one of the most

prominent areas in modern systems theory, robust control theory has lead to an exten-

sive theoretical development. This has resulted in a large number of approaches utiliz-

ing a wide variety of mathematical tools [DP05]. In addition, there has been notable

progress concerning the application of robust design methods to complex problems

such as air-craft guidance or process control. That is why its use seems attractive for

the challenging type of plant with its respective unsatisfying model description in this

work.

In contrast to common linear time-invariant (LTI) systems described by ordinary dif-

ferential equations (ODE), the class of infinite dimensional systems is mainly described

by partial differential equations (PDE) or in functional form [JZ12]. These describe

the distributed effects as for example within the field of fluid dynamics, heat transfer,

multi-agent networks or flexible structures [Meu13]. The distributed parameter sys-

tem of a flexible robot arm forms the core application in this work. Several modeling

and approximation approaches are discussed and especially the modal discretization is
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1 Introduction 2

presented.

The general problem in this case is the resulting infinite dimensional state space as well

as the controller realization, which can hardly be implemented. Therefore, mainly two

different approaches exist [Rod90]. Either an infinite dimensional control synthesis is

performed or the respective optimization problem has to be solved and the result is

approximated finite dimensionally, or the whole problem description is approximated

by a finite dimensional system first and a conventional implementable controller can

be designed with standard techniques. Here, the second approach is dealt with. In

particular, the structure of the simplification due to the neglect of high-frequency dy-

namics shall be included as an uncertainty in terms of the robust control framework.

This promotes an analysis of the error and negative effects occurring on account of the

approximation.

1.1 Task

The main subject of interest and leading example in this work is the control of flexible

robot arm structure with one joint. Especially in the case of long-reach robot arms

the effect of flexibility has to be considered. The increasing number of throughput

requirements has resulted in the use of lighter motion systems causing the flexible

dynamics to become more dominant [Ver09].

This systems can be described in several ways, whether as a distributed parameter

system (DPS) or as a lumped parameter system (LPS). The most frequently used

form is a linear PDE of fourth order. The resulting infinite dimensional dynamics has

to be treated which is mainly done by modal discretization. Due to considering only

certain modes and leaving out the most dominant ones, general problems may occur,

as the respective dynamics eventually lead to significant vibrations and the potential

destabilization of the closed-loop system.

Several works have already been published in connection with robust control. The

flexible arm setup used in this work is presented in [METH96]. There a H∞ control

approach without considering structured uncertainties has been developed. A more

recent literature study about robust flexible structure control was made by [Ver09].

Especially the impact of the so-called spillover effect is pointed out in detail. It is

evident that robust control techniques are an adequate way to achieve a satisfying

performance of the controlled robot arm.

Because of the system structure and the planned approximation, a systematic modeling

error is expected. This can be included into the robust control synthesis. The closed
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1 Introduction 3

loop system shall be stable under these uncertainties and additionally fulfill certain

performance goals. Further aspects about optimal approximation order and optimal

sensor positioning shall be included as well. Thus, the following control requirements

are formulated:

• flexible robot arm description

• system approximation and uncertainty modelling

• assure robust stability (under uncertain conditions)

• guarantee performance objectives (in an energy sense)

• inject damping and avoid spillover effect

In order to achieve these goals, an extensive literature study of robust control theory is

required. In particular the combination of several different control objectives has to be

realized like for the mixed H2/H∞ case introduced in [ZGBD94] and [DZGB94]. This

leads to the formulation of convex optimization problems which have to be treated

numerically.

In the context of controlling distributed parameter systems like the flexible arm, the

current PDE control techniques are investigated. Those are used as a comparison to

the techniques used in this work. Accordingly, it is expected to obtain an impression

of the connection between these control approaches and to compare the respective

results.

1.2 Methodology

Hereinafter some of the common methods to achieve the objectives stated in Sec-

tion 1.1 shall be presented. Combining the different fields of classic robust control,

multi-objective robust control, LMI based optimization via semi-definite programming,

modelling and simulation of a distributed system such as the flexible robot arm and

conventional control of PDE systems require a large collection of fundamentals and

catchy literature. That includes an outline of the most relevant sources used during

this work.

The first steps in robust control in the H2 sense have been made in the 50s with the

LQG idea, whereas the H∞ optimal control theory was introduced in the early 80s by

Zames as collected in [ZDG96]. Since then there have been mathematical and numer-

ical problems concerning the standard frequency domain approaches, especially in the
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1 Introduction 4

MIMO case. This is why the state-space approach plays the dominant role in robust

control since the 70s. The first contributions to the mixed H2/H∞ control problem

have been made in [ZGBD94] and [DZGB94]. Here the nominal control problem was

faced by solving algebraic Riccati equations, well presented for particular problems in

[ZD98] or [SPS98]. Additionally the influence of uncertainties and robust performance

is considered and finally an analytic solution for the joint problem is obtained.

The foundation of modern system theory is built on the Lyapunov stability theory

well presented and explained in [Kha02]. Based on that, simple LMI conditions can

already be formulated for guaranteeing stability. An early Riccati inequality approach

concerning H∞ optimal control can be found in [Sch90] where for example the Bounded-

Real Lemma was used in LMI form. A collection of further LMI conditions such as

the generalized H2 problem or general quadratic constraints (GQC) was presented by

[SGC97]. For linearizing the conditions an inertia preserving transformation of the

matrix inequalities is shown. In some terms the resulting controller can be conserva-

tive but allows the combination of various specifications.

In [Boy94] an overview of LMI techniques used in control theory was given and the

importance and advantages of this framework have been pointed out. Numerically the

arising convex optimization problems can be solved linearly with help of semi-definite

programs. For these, well-established interior-point methods are utilized. In contrast

to that, the recent work of [YYE15] shows the difficulty occurring in mixed H2/H∞

control synthesis when no linearizing transformation is applied. There, an exterior-

point approach is proposed for solving directly a nonlinear and not convex optimization

problem for the simpler state-feedback case. The usefulness of convex optimization in

robust control is emphasized in [DP05].

The whole single link flexible robot arm can be modeled as a composition of a dis-

tributed parameter system, the flexible structure (hyperbolic type, similar to wave

equation), and a lumped parameter system, the actuator system including the con-

troller. Commonly the mechanical model is obtained by applying the Euler-Bernoulli

beam principle like in [PRCF05]. This modal decomposition approach is a special and

simplified case of the Timochenko beam used in [SC96], but still able to model the

system sufficiently well for small stresses and strains. Another modeling idea is built

on the use of the finite element method (FEM) [vDL86] with the help of the Lagrange

equation. Furthermore FEM can practically be used for simulating the corresponding

process adequately.

In [METH96] a robust controller in form of a nominal H∞ control has been applied

Master Thesis Matti Noack



1 Introduction 5

successfully to the robot arm system. A distributed parameter model was used and

later discretized modally. Another important issue of the control problem is faced as

well, the optimal sensor location. As already stated in [KTLK86] the positioning of

the strain gauges is crucial for the detectability of the system. This can be included

as an extra optimization scheme.

The literature review [Ver09] illustrates well the robust control problem of more general

flexible structures. Especially the challenge of avoiding the spillover effect is pointed

out. When the finite approximation is done too roughly some neglected modes may

turn out to be dominant and can result in undesirable oscillations or even unstable

behavior. Another example of applying robust adaptive control to flexible arm struc-

tures was made in [Yos08]. This works follows the idea of designing a finite dimensional

control system based on a finite approximation while considering the effect of infinite

dimensional modes as external disturbances.

To compare the proposed robust control techniques to conventional methods in the

control of distributed systems some basic sources shall be mentioned. The work from

[Meu13] builds a comprehensive basis for PDE control techniques. There the general

focus lies on flatness based approaches. The class notes from the same author [Meu16]

can be considered as an excellent introduction to the field. Another intuitive access to

infinite dimensional system theory was made by [JZ12] with the use of the linear Port-

Hamiltonian system (PHS) framework, which links to the flexible robot arm example.

Additionally PHS take advantage of the physical connection to energetic approaches

and can also be characterized as damped or passive systems.

Beside that, infinite dimensional systems can be treated finitely in the structured man-

ner shown in [Rod90]. There a H∞ model matching problem is introduced and reduced

from an infinite dimensional problem to a sequence of finite dimensional ones. This

results in the inclusion of the reduced model order into the robust optimization scheme.

1.3 Document Structure

The present work is organized in the following way. First a collection of basic and

advanced robust control techniques is given. In the following the system theory of

distributed parameter systems is introduced briefly. Based on these impressions the

flexible robot arm is considered and the adequate modelling and control design are

presented. At the end the control synthesis software is applied to the stated problem

and the results are verified simulatively.

For building the basis of applying robust control methods the fundamental concepts

Master Thesis Matti Noack
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needed for this work are introduced in Chapter 2. There the common notations and

system decomposition are presented in Section 2.1. Then nominal specifications in the

H2 and H∞ sense are reviewed in Section 2.2. This includes basic stability concepts

and common Riccati equation approaches. In Section 2.3 it is shown how to include

uncertainties into the problem formulation and how they can be structured. With

relation to that Section 2.4 introduces the idea of robust performance which considers

the system fulfilling certain specifications under those uncertainties. At the end of the

chapter common robust control synthesis setups and procedures are presented.

As an extension of robust control the multi-objective problem formulation via LMIs

is faced in Chapter 3. After a general introduction to LMIs in Section 3.1 some ways

to state different performance measures are presented in Section 3.2. These include

internal stability, H∞ control, generalized H2 performance, induced passivity and nom-

inal regulation. The resulting optimization problems and inequalities to solve turn out

to be nonlinear. Therefore Section 3.3 introduces a linearizing transformation and

shows how it is obtained. Based on that Section 3.4 sums up the control synthesis

and presents the written software framework (in MATLAB) to solve the problem for

a given plant in state-space form. This is explained and verified in Section ?? by

illustrating the synthesis and specification process with examples.

The main subject of interest, the flexible robot arm, is analyzed in Chapter 4. First

an adequate system model is required which is derived and simulated in Section 4.1.

In Section 4.2 the resulting system is characterized in terms of the regulation specifi-

cations and with respect to the presented control methods during the former chapters.

An optimization approach towards the approximation order determination and the

optimal sensor positioning is discussed in Section 4.2.2.

Finally in Chapter 5 the calculation and verification of the controller for the infinite

dimensional system of the flexible structure is performed. This starts with stating the

control problem properly in Section 5.1. In the following Section 5.2 the application of

the control design methods and their simulation is presented. At the end the results

are evaluated in Section 5.3.

Chapter 6 closes the work with a conclusion statement on the investigations and con-

siderations made as well as on the obtained results. This is completed by an outlook

on possible further steps and improvements.
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2 Robust Control Basics 7

2 Robust Control Basics

In this chapter the preliminaries and basic techniques of robust control are presented.

Feedback control in general is aiming at the regulation of a plant under certain unknown

conditions. A system is robust under a well determined class of uncertainties which

can be characterized in a dynamical or signal based way. Additionally there can be

internal couplings and external influences. In Figure 2.1 a typical system structure and

its interconnections are illustrated exemplary. External influences like disturbances can

SYSTEM

uncertainty

uncertainty

sub
system

sub
system

sub
system

internal
interconnections

tracking
error

reference

characteristic
signals/measurement

perturbations

external
influence

noise

SUPERVISORENVIRONMENT

Figure 2.1: General system interconnections [ZD98]

be seen as signals coming from the surrounding environment or the part excluded from

the system definition respectively. The coupled uncertainties are considered to be part

of system though generating signals from an outside perspective. From an actuator

or human point of view the supervisor receives measurement data from the plant and

processes, for example, the control calculation, state reconstruction or diagnosis.

There are many different kinds of uncertainties. For this work a specification of the

class of not directly known influences is made. The system is considered to be uncertain

in the following way [DP05]:

• bad specified or unknown initial conditions,
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2 Robust Control Basics 8

• the system experiences disturbances from the environment,

• uncertainties occur due to the inaccuracy of system modeling.

The first specification is a common problem faced in all control areas. As it is not

possible to model all the physical effects relevant for a process some influences have to

be neglected or excluded. These are assumed to be external effects. Internally not all

dynamics can be considered, neither can all parameters be determined perfectly. Thus,

more or less structured uncertainties dependent on knowledge about the accuracy of

the model can be included.

The aim of robust control synthesis is to stabilize the system under the class of con-

sidered uncertainties. Additionally certain performance objectives are defined, also

with respect to signal transmission and its influence. These objectives shall also be

accomplished under the mentioned uncertain conditions.

Therefore, after the introduction of common definitions and nomenclature, nominal

control techniques focused on H2 and H∞ norm minimization are presented. Then the

extraction and modeling of uncertainties is demonstrated and consequences for the

controlled system are faced. Finally the overall robust control design is summarized.

2.1 System description

Here the overall subject shall be clarified in form of the common system representation.

First the standard linear system formulation for robust control is presented generally

and then with an example. Some further aspects like system interconnections and the

application to nonlinear systems are discussed.

2.1.1 Linear representation

In this work there is a focus on the state-space based approach. Therefore the consid-

ered system is of the following general linear time-invariant (LTI) form:

ΣLTI







ẋ(t) = Ax(t) + Bu(t) , x(0) = x0

y(t) = Cx(t) + Du(t)
(2.1)

where A ∈ Rn×n, B ∈ Rn×nu, C ∈ Rny×n and D ∈ Rny×nu . Correspondingly the signals

state x, output y and input u are of respective dimension and are functions of the time

t ∈ [0, ∞). The time dependency is dropped in the following because of convenience.
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2 Robust Control Basics 9

According to the solution of the ordinary differential equation (ODE) of system ΣLTI

the output can be calculated with respect to the input as follows:

y(t) = CeAtx0 +
∫ t

0
CeA(t−τ)Bu(τ)dτ + Du(t) . (2.2)

The transfer behaviour can also be characterized in the Laplace domain by the transfer

function G:

G(s) =
y(s)

u(s)
= C(sI − A)−1B + D

with homogeneous initial conditions and y(s) and u(s) representing the respective

Laplace-transformed signals A common notation used in MIMO and robust control for

the transfer function is the following:

G(s) =




A B

C D



 .

Here the matrices A, B, C, D are also called realization of G. For a given G these may

not be unique but play an important role for the implementation. Some techniques

for obtaining such a realization are presented in Appendix ??. A realization is called

minimal if A has minimal dimension. It may be shown that this is the case iff the pair

(A, B) is controllable and the pair (A, C) is observable [ZD98]. Minimal realizations

obtain the minimal number of possible states n.

In addition to the initial system ΣLTI from Equation (2.1) some extra external input

w(t) ∈ Rnw and output signal z(t) ∈ Rnz are considered. In the following y refers

directly to the available measurements and u to the control action. The resulting

system has the form:

Σnom







ẋ = Ax + Bww + Buu , x(0) = x0

z = Czx + Dzww + Dzuu

y = Cyx + Dyww + Dyuu

. (2.3)

In view of neglecting uncertainties into account the system is called nominal and will be

the subject in Section 2.2. With the respective transfer matrix P (s) and the controller

K(s) to be designed the following block diagram in Figure 2.2 illustrates the signal

partition. In principle the controller K only takes the measurement information y and

generates the control signal u dependent on that. Thus in general an output feedback

controller is considered (in comparison to state feedback control).
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P(s)

K(s)

w z

yu

Figure 2.2: Basic system structure with plant and controller

The transfer behaviour can also be written as follows:




z

y



 = P (s)




w

u





with the transfer function realization

P (s) =:




P11(s) P12(s)

P21(s) P22(s)



 =








A Bw Bu

Cz Dzw Dzu

Cy Dyw Dyu








. (2.4)

Often the control objective is to achieve a certain transfer performance from w to z.

So the closed loop transfer behaviour Tzw(s) ∈ Cnz×nw is of interest. It can be stated

utilizing the lower fractional transformation Fl (LFT) in the following way:

Tzw(s) = Fl(P, K) := P11(s) + P12(s)K(s)
[

I − P22(s)K(s)
]−1

P21(s) .

Generally the controller K(s) is also a dynamic system and has its own state space

realization. This is important for the optimization process and the implementation

itself. The measurement signal y forms the control system input and the generated

output is the control action u. In the time domain the following ODE is obtained:

ΣK







ẋK = AK xK + BK y , xK(0) = xK,0

u = CK xK + DK y

with the respective realization

K(s) =




AK BK

CK DK



 (2.5)
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2 Robust Control Basics 11

where matrices AK ∈ RnK×nK , B ∈ RnK×ny , C ∈ Rnu×nK and D ∈ Rnu×ny depend on

the control order nK . Often nK = n is prescribed for simplicity. But for additional

degrees of freedom it is also possible to choose nK > n.

For robust control considerations the dynamic uncertainty structure ∆(s) is added

to the problem formulation. It is introduced in Section 2.3 and its consequences for

control are presented in Section 2.4. To distinguish between control, performance

and uncertainty channels, as for example realized in [Sch00], consider the following

extension of system Σnom from Equation (2.3):

Σrob







ẋ = Ax + B∆w∆ + Bww + Buu , x(0) = x0

z∆ = C∆x + D∆w∆ + D∆ww + D∆uu

z = Czx + Dz∆w∆ + Dzww + Dzuu

y = Cyx + Dy∆w∆ + Dyww + Dyuu

(2.6)

with uncertainty dimension n∆ and the equivalent representation:

P (s) =











A B∆ Bw Bu

C∆ D∆ D∆w D∆u

Cz Dz∆ Dzw Dzu

Cy Dy∆ Dyw Dyu











.

The general system structure with the respective signals is presented in Figure 2.3

(a). It is also possible to maker further signal distinctions. For the purpose of mixed

H2/H∞ control the external input becomes w = (w2, w∞)⊤ and the objective output

is subdivided into z = (z2, z∞)⊤. This is illustrated in Figure 2.3 (b). For this case

let N(s) := Fl(P, K) be the closed control-loop transfer function from (w∆, w)⊤ to

(z∆, z)⊤. The aim is later to guarantee internal stability and performance measures

for the whole system while considering a class of the uncertainties ∆. To analyze the

overall transfer behaviour the upper fractional transformation Fu (UFT), similarly to

the LFT:

T ∆
zw(s) = Fu(N, ∆) := N22(s) + N21(s)∆(s)

[

I − N11(s)∆(s)
]−1

N12(s) .

Evidently the term N11∆ plays the decisive role for the system stability and is a major

subject in Section 2.4.
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P(s)

K(s)

yu

Δ(s)
zΔ

z

wΔ

w

(a) General structure

P(s)

K(s)

z

yu

Δ(s)

2

zΔ

z

wΔ

w2

w

(b) Mixed H2/H∞ channel distinction

Figure 2.3: System structures with uncertainty

2.1.2 Formulation example

To demonstrate the problem formulation of a given system in the introduced frame-

work a mixed-sensitivity example with additive uncertainty is presented. First the

classical SISO (single-input-single-output) control loop composition from Figure 2.4 is

considered. The system contains a closed loop with the controller C(s) and the actual

C(s)
r

n

e

d

H(s)
y

-

Figure 2.4: Standard feedback control loop

plant H(s). It is driven by an external reference signal r and there is additionally a

disturbance on the actuator side d and measurement noise n.

Assume that a plant description G(s) has been obtained by modeling. As all models

it contains approximation errors which eventually can be observed by comparing the

experimental frequency response H(jω) with G(jω). The deviation is characterized

by the uncertainty structure ∆(s) := H(s) − G(s). This case taken from [Sch01] is

presented more detailed in Section 2.3.
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2 Robust Control Basics 13

Now the new objective output signal z is defined. After stabilizing the system the main

goal is to achieve tracking r − y =: e → 0. Thus e is important to be considered as an

objective. Furthermore the control effort u plays an important role for performance

and realizability of the control law and is taken into account as well. In Figure 2.5 the

system composition of the resulting mixed-sensitivity problem is illustrated. Note that

K(s)

G(s)

Δ(s)
r

u

n

zΔ wΔ

e

d

y

H(s)

z1

z2

-

-

Figure 2.5: Mixed-sensitivity control loop and signal definition

some terms have been redefined to put the system into the form Σrob from Equation

(2.6). Here the controller K(s) converts the measurement y, the error between refer-

ence and noisy system output, into the control action u. A general distinction between

the following signal classes is made [Sch01]:

• signals effecting the system from outside and cannot be influenced (r, d, n),

• signals characterizing the design objectives (e),

• actuator/control signal (u),

• available measurement (y).

Thus possible signal definitions are:

w =








r

d

n








, z =




e

u



 .
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Without including the uncertainty for the moment the overall transfer behavior P (s)

from (w, u)⊤ to (z, y)⊤ like in (2.4) can be stated as:








e

u

y








=








1 −G(s) 0 −G(s)

0 0 0 1

1 −G(s) −1 −G(s)








︸ ︷︷ ︸

=P (s)











r

d

n

u











In practice there are often filters added to the considered signals w and z to weight the

performance in a certain frequency range in order to include some signal knowledge

within the design. This procedure extends the transfer function P (s) and is explained

in Section ??.

The closed loop transfer function can easily be obtained by using the relation u =

K(s)y. From the block diagram in Figure 2.5 the auxiliary output ỹ of G(s) is obtained:

ỹ =
GK

1 + GK
r +

G

1 + GK
d − GK

1 + GK
n

and due to that:
e =

(

1 − GK
1+GK

)

r − G
1+GK

d + GK
1+GK

n ,

u = 1
1+GK

(

Kr − GKd − Kn
)

.

Thus with inputs w = (r, d, n)⊤ the objective output z = (e, u)⊤ results in:

z(s) =




(1 + GK)−1 −G(1 + GK)−1 GK(1 + GK)−1

K(1 + GK)−1 −GK(1 + GK)−1 −K(1 + GK)−1





︸ ︷︷ ︸

=Tzw(s)

w(s) .

With defining the following occurred sensitivities:

• sensitivity: S = (I + GK)−1

• complementary sensitivity: T = GK(I + GK)−1

• load disturbance sensitivity: Sd = G(I + GK)−1

• noise sensitivity: Sn = K(I + GK)−1

the closed loop transfer function becomes:

Tzw(s) =




S(s) −Sd(s) T (s)

Sn(s) −T (s) −Sn(s)



 .
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In other cases, like considering output perturbations, more sensitivity functions arise.

The relations e = S(s)r and ỹ = T (s)r are pointed out. They play an important

role for the internal stability and well-posedness of the closed loop and give inside on

particular transfer behaviors.

2.1.3 Interconnecting systems

For the later purpose of considering the connection of plant and controller or extending

the system with filters it is necessary to discuss some special interconnection cases like

done in [ZD98]. These are characterizing the relation between state space and Laplace

domain considerations.

Consider the two transfer functions G1(s) and G2(s). Their state space realizations

shall be

G1(s) =




A1 B1

C1 D1



 , G2(s) =




A2 B2

C2 D2



 ,

that is:

Σ1







ẋ1 = A1x1 + B1u1

y1 = C1x1 + D1u1

, Σ2







ẋ2 = A2x2 + B2u2

y2 = C2x2 + D2u2

. (2.7)

The state-space representation turns out to be helpful when dealing with cascades

of systems. In Figure 2.6 the series interconnection G1G2 is shown. Because of the

G
u1 y1 u2 y2

1

u2 y2 u1 y1

(s)

G2(s)

G2(s)

G1(s)

Figure 2.6: Equivalent series interconnection of two systems

concatenation of two scalar linear systems this is equivalent to G2G1. For obtaining

the state space form of the cascaded system the output of G1 has to be treated as the

input of G2, thus y1 = u2 or respectively y2 = u1. The following result can then be
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obtained easily like derived in [ZDG96]:

G1G2 = G2G1 =




A2 B2

C2 D2



 ·



A1 B1

C1 D1



 =




A1 B1

C1 D1



 ·



A2 B2

C2 D2





=








A1 0 B1

B2C1 A2 B2D1

D2C1 C2 D2D1








=








A1 B1C2 B1D2

0 A2 B2

C1 D1C2 D1D2








The derivation is made by considering the extended system state x̃ := (x1, x2)⊤. It

shows again that the realization itself is not necessarily unique. Both realizations lead

to the same combined transfer function and can also be reordered and rewritten in

many ways.

Another important interconnection is the parallel structure illustrated in Figure 2.7.

Here a much simpler combined realization can be found due to the absence of direct

G
u1 y1

1

u2 y2

(s)

G2(s)

u y

Figure 2.7: Parallel interconnection of two systems

system coupling. The addition of two dynamic systems results in:

G1 + G2 =




A1 B1

C1 D1



+




A2 B2

C2 D2



 =








A1 0 B1

0 A2 B2

C1 C2 D1 + D2








.

After performing some basic connection operations the closed loop interconnection

show in Figure 2.2 shall be calculated. Therefore the realizations for P (s) from Equa-

tion (2.4) and for K(s) from Equation (2.5) are utilized. For simplicity and practica-

bility the feedthrough Dyu = 0 is neglected. The resulting closed loop transfer function
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then has the form:

Tzw(s) =








A + BuDKCy BuCK Bw + BuDKDyw

BKCy AK BKDyw

Cz + DzuDKCy DzuCK Dzw + DzuDKDyw








. (2.8)

These considerations could also be done for putting certain transfer function in series

to just a particular channel, like in the case of input or output filters, but are left out

here and applied when needed.

Some other practical relations for MIMO systems can be found by focussing on basic

matrix operations. First the dual system is defined by the transposed of the transfer

matrix G(s).

G(s)⊤ =




A B

C D





⊤

=




A⊤ C⊤

B⊤ D⊤



 .

The dual system switches the corresponding control and observation problems, which

for example can be applied to obtain the dual to the bounded-real lemma, stated in

Theorem 2.9 , for solving the Riccati equation in the observer case.

Another important operation is the inversion of a transfer function. Consequently the

realization of G changes in the following way:

G(s)−1 =




A B

C D





−1

=




A − BD−1C BD−1

−D−1C D−1



 .

Obviously the feedthrough D has to be a square matrix and non-singular. Inverting

the systems means a switch between input and output. The realization can easily be

obtained by considering the state space equations and solving the output relation with

respect to u.

2.1.4 Nonlinear equation decomposition

After introducing the general formulation framework in terms of LTI systems and get-

ting familiar with the notation one of the main motivations concerning the treatment

of more complex systems shall be outlined here. The idea behind the robust control

approach is to divide a more complicated problem into a composition of simple prob-

lems and perturbations as mentioned in [DP05].
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To show the generality of the concept a nonlinear system of the form

ΣNL







ẋ = f(x, u) , x(0) = x0

y = h(x, u)
(2.9)

with dynamic map f : Rn ×Rnu → Rn and output map h : Rn ×Rnu → Rny sufficiently

smooth is considered. Now a decomposition of the system into a linear dynamical and a

static nonlinearity part is performed. Therefore the Jacobian linearization around the

equilibrium point (x̃, ũ) = (0, 0) (f(0, 0) = 0) is applied and leads to the decomposed

following system equivalent to (2.9):

Σdec







ẋ = Ax + Bu + f̃(x, u) , x(0) = x0

y = Cx + Du + h̃(x, u)
(2.10)

where A, B, C, D represent the linear approximations

A = ∂f
∂x

|[0,0] , B = ∂f
∂u

|[0,0] ,

C = ∂h
∂x

|[0,0] , D = ∂h
∂u

|[0,0] .

Then the separated nonlinearities have the form:

f̃(x, u) = f(x, u) − Ax − Bu ,

h̃(x, u) = h(x, u) − Cx − Du .

Clearly ΣNL and Σdec have equivalent solutions. The system can be further split up

into

ΣsNL







ẋ = Ax + Bu + w1 , x(0) = x0

y = Cx + Du + w2

(2.11)

where external signals w1 = f̃(x, u) and w2 = h̃(x, u) are extracted. Thus system ΣsNL

forms the linear mapping:

P : (w1, w2, u) 7→ (x, u, y) .

From the signal substitution the static nonlinear map

Q : (x, u) 7→ (w1, w2)
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is obtained. So resulting structure shown in Figure 2.8 is similar to the the system

formulations presented in Figure 2.3 and fits with the former problem perspective. The

P(s)u y

(w 
1

w 
2
)

Figure 2.8: Nonlinear system decomposition [DP05]

objective of the consequent uncertainty modelling then is to replace the map Q by a

description which is easier to handle. This is part of Section 2.3.

After presenting how to separate the nonlinear part of a system by a static relation the

much more difficult task to separate some of the system dynamics shall be introduced.

Therefore consider the system partition

Σpart







ẋ1 = f1(x1, x2, u) , x(0) = x0

ẋ2 = f2(x1, x2, u)

y = h(x, u)

(2.12)

with the decomposed state x = (x1, x2)⊤. The aim is to neglect the dynamics ẋ2.

Therefore, similar to decomposition from Equation (2.11), the system is partitioned

in the following way. By applying the Jacobian linearization with respect to the first

states x1 the system

ΣdNL







ẋ1 = A1x1 + B1u + w1 , x1(0) = x1,0

y = C1x + D1u + w2

(2.13)

is obtained. Then one gets the nonlinear composed system part in the following form:

Σ̃dNL







ẋ2 = f2(x1, x2, u) , x2(0) = x2,0

(w1, w2) =
(

f̃1(x1, x2, u), h̃(x1, x2, u)
) . (2.14)
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As before the whole system Σpart has been split apart into a linear system P :

(w1, w2, u) 7→ (x1, u, y) formed by ΣdNL and a dynamic nonlinearity Q : (x1, u) 7→
(w1, w2) based on Σ̃dNL. Thus Q isolates part of the dynamics and the whole system

nonlinearity.

The decomposition just seen in both cases often is made up by a low dimensional linear

part and a potentially nonlinear part of high dimension [DP05]. It is one of the main

ideas of robust control to put the part which is the hardest to model or to describe into

another structure outside of the considered system. Then the approach is to capture

the behaviour of the Q-part by the set of mappings ∆ introduced in Section 2.3. This

set can be much larger then the actual uncertainty but is easier to handle.

2.2 Nominal control & performance

Before treating uncertain systems a control scheme for the conventionally modeled

plant without any uncertainties, the so-called nominal plant, has to be found. First,

a general overview on stability and stabilizing controllers is given. Then performance

measures shall be introduced which lead to define the objectives of robust control in a

H2 and H∞ sense.

2.2.1 Nominal stability & stabilizing controllers

There are many different approaches towards the stability of dynamical systems. Es-

pecially of interest is the stable internal behavior of a system composition related to

its state space form and stability with respect to the input-output connection. Usually

this refers to an equilibrium point. Since the systems considered here are purely linear,

this fact is not mentioned frequently.

Here a focus is kept on the stability theory in the sense of Lyapunov. It is extensively

presented in [Kha02] and shall not be reintroduced. The common Lyapunov function

method is one of the main tools used in this work.

First the general autonomous nonlinear system

ΣaNL : ẋ = f(x) , x(0) = x0 (2.15)

shall be considered. In the following the map f : Rn → Rn is assumed to be Lipschitz

continuous. Also let x = 0 be an equilibrium point of ΣaNL. As a central stability

theorem the following one is well-known:
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Theorem 2.1 Lyapunov function & (asymptotic) stability [Kha02]

Let D ⊂ Rn be a domain containing the equilibrium point x = 0. The scalar valued

function V : D → R shall be continuously differentiable such that

V (0) = 0 ,

V (x) > 0 ∀x ∈ D \ {0} .
(2.16)

Then V is called Lyapunov candidate. If the following holds:

V̇ (x) =
∂V (x)

∂x
f(x) ≤ 0 ∀x ∈ D , (2.17)

the point x = 0 is stable and V is called Lyapunov function. Moreover, if

V̇ (x) =
∂V (x)

∂x
f(x) < 0 ∀x ∈ D \ {0} , (2.18)

then x = 0 is an asymptotically stable equilibrium point of ΣaNL and V is called strict

Lyapunov function.

From this general stability concept for nonlinear systems a lot of useful implicit results

can be found. Here a focus on LTI system ΣLTI from (2.1) is made. In the following

the system is considered to be autonomous, thus u ≡ 0.

Therefore the following Lyapunov candidate approach is made [Kha02]:

V (x) = x⊤Xx , X = X⊤ ∈ R
n×n .

Clearly the matrix X has to be positive definite, written X > 0, to fulfil the first

condition (2.16) from Theorem 2.1. From that the following idea leads to condition

(2.18):

V̇ (x) = ẋ⊤Xx + x⊤Xẋ = x⊤

(

A⊤X + XA
)

︸ ︷︷ ︸

=:−Q

x
!

< 0

This results in the so called Lyapunov equation

A⊤X + XA + Q = 0 (2.19)

where Q = Q⊤ > 0 is some given real matrix of dimension n × n. The solution of this

equation can easily be obtained by calculating [DP05]:

X =
∫ ∞

0
eA⊤τ QeAτ dτ .
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So for LTI systems the task of finding a Lyapunov function for proofing stability is

reduced to calculate a square matrix X from an algebraic equation. This is summarized

by the following theorem statement.

Theorem 2.2 Lyapunov equation & inequality [DP05]

For autonomous LTI system part of ΣLTI the following two stability statements hold:

(i) Let Q = Q⊤ > 0. Then A is Hurwitz if and only if there exists a solution

X = X⊤ > 0 to the Lyapunov equation (2.19).

(ii) The matrix A is Hurwitz if and only if there exists X > 0 satisfying

A⊤X + XA < 0 . (2.20)

The statement (ii) can directly be derived from (i) and forms the first and one of the

most important LMIs in this work as it guarantees the stability of the closed loop

system. Actually the correspondence of LMI techniques to the state space realization

makes these time domain stability considerations so important.

On the other hand the switch between the time and frequency domain perspective

is characteristic for the robust control framework. That is why the connection be-

tween these domains in terms of stability shall be made and some basic frequency

domain tools are revisited.

Now the system ΣLTI is not considered to be autonomous for the characterization of

input-output behavior in the following. Therefore the nominal system Σnom with in-

and outputs from (2.3) shown in Figure 2.2 is of interest. From the interconnection

studies resulting in the closed loop transfer function realization presented in (2.8) it

becomes obvious that the matrix

ACL :=




A + BuDKCy BuCK

BKCy AK





describes the entire dynamics of the closed control loop system. In fact it can be

stated that the controller K(s) stabilizes the internal system dynamics asymptotically

if eig(ACL) ⊂ C− or if a X > 0 can be found fulfilling Theorem 2.2. This connects the

state space theory with the transfer function realization of the system.

After using the state space description, now the input-output description in form of

transfer functions is considered. First some new terms have to be introduced referring

to aspects like the physical realizability of K(s).
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Definition 2.3 Proper transfer matrix & well-posedness [ZD98]

(i) Let G(s) be a transfer matrix. If G(s) is a rational polynomial matrix and can

be decomposed as

G(s) = G(∞) + G̃(s)

where, with defining d(s) = sr + a1sr−1 + . . . + ar−1s + ar as the least common

denominator polynomial of the entries of G(s):

G̃(s) =
1

d(s)
N(s) =

1

d(s)

(

N1s
r−1 + . . . + Nr−1s + Nr

)

,

it is proper and strictly proper in case G(∞) = 0. A proper transfer function is

also referred to as realizable. Usually it occurs that r = ny.

(ii) A feedback interconnection like shown in Figure 2.4 is said to be well-posed if

the closed loop transfer matrices of all sensitivity functions are well-defined and

proper.

With these characterizations now the closed loop interconnection Σnom is considered

again. As a recapitulation the closed loop transfer function is calculated by the LFT:

z(s) =
(

P11(s) + P12(s)K(s)
[

I − P22(s)K(s)
]−1

P21(s)
)

w(s) .

Obviously the existence of a proper inverse of I−P22(s)K(s) is substantial for obtaining

a stable system. Therefore the stability is investigated by looking at Figure 2.9, which

is an augmented version of the system in Figure 2.2 containing all the relevant transfer

functions that have to be tested. The reason for this extended consideration is that

an obtained stable transfer matrix Tzw is not necessarily implying a stabilizable or

detectable closed control loop realization [Sch01]. It turns out that with the auxiliary

signals v, v1, v2 the following can be stated:




z

y



 = P




w

u



 , u = Kv + v1, v = y + v2

⇔








z

v1

v2








=








P11 P12 0

0 I −K

−P21 −P22 I















w

u

v








.

(2.21)
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P(s)

K(s)

w z

y
u1

2

Figure 2.9: Control loop for stability considerations [Sch01]

The system results to be well-posed in case I − P22(∞)K(∞) is non singular. This

result is derived from the lower right block matrix which relates the internal and aug-

mented signals, (u, v)⊤ → (v1, v2)⊤. In particular the condition means that I −DyuDK

has to be invertible. Most practical systems without any in beforehand installed pro-

portional control action, as the one considered in this work, do not contain a control

feedthrough, Dyu = 0. Thus the relevant system interconnection is always well-posed

in that context.

Another important statement concerning the depicted system structure is the follow-

ing:

Theorem 2.4 Stabilizing controller [Sch01]

The controller K(s) stabilizes P (s) in the control loop from Figure 2.9 if and only if

the interconnecting system (2.21) defines a proper transfer matrix

(

w, v1, v2

)
⊤ →

(

z, u, v
)

⊤

and is stable.

So the augmented system seems to be the adequate object of investigating stability for

the input-output system. Referring again to internal stability, like discussed at the end

of the formulation example in Section 2.1, the following statements are summarized:

Theorem 2.5 Internal stability [ZD98]

The system (2.21) from Figure 2.9 is said to be internally stable if the characteristic

transfer matrix




I −K

−P22 I





−1

=




(I − KP22)−1 K(I − KP22)−1

P22(I − KP22)−1 (I − KP22)−1





from (v1, v2) to (u, v) belongs to RH∞ (strictly proper and stable).
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It is interesting to observe that similar important sensitivity functions occur here in

the MIMO case as they did in the SISO case during the formulation example. The

internal stability guarantees all signals in the system to be bounded provided that the

injected signals are bounded (BIBO stable). To state the necessity of avoiding unstable

pole-zero cancellations the following generalization can be found.

Theorem 2.6 Unstable pole-zero cancellation [ZD98] Let mK be the number of open

right-half plane (rhp) poles of K(s) and mP be the number of open rhp poles of P22(s).

Then the system is internally stable if and only if it is well-posed and

(i) the number of open rhp poles of P22(s)K(s) and K(s)P22(s) equals mK + mP ,

(ii) (I − KP22)−1 is stable.

The previous theorem requires just to check one sensitivity function instead of all to

proof internal stability. This makes it convenient to use.

Clearly as one of the basic necessary and sufficient conditions for the existence of an

internally stabilizing controller for the system Σnom is that (A, Bu) is stabilizable and

(A, Cy) is detectable [DP05].

2.2.2 Performance measures & analysis

After discussing the issue of nominal stability, the term of nominal performance shall be

clarified here. It is common in control applications to formulate some objectives beside

the stabilization itself. Usual specification examples are the rise time or overshoot

concerning the step response. Here the techniques used refer to norm specifications.

The performance specifications shall be done for a transfer connection of the form:

z = G(s)w .

Clearly the transfer function G(s) could be seen as the closed loop transfer function al-

ready including the controller and further weighting filter extensions. This corresponds

to G = Tzw for system Σnom from Equation (2.3). The objective is to determine and

analyze the induced specifications of the transfer behavior with respect to the class of

transferred signals. The following part shall motivate the utilized signal classes. Here
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are some exemplary scalar signal types with physical context [SP01]:

Power: BP =

{

w

∣
∣
∣
∣ lim

T →∞

1

2T

∫ T

−T
|w(t)|2dt ≤ 1

}

,

Energie: BL2 =
{

w
∣
∣
∣
∣ ‖w‖2

2 =
∫ ∞

−∞
|w(t)|2dt ≤ 1

}

,

Magnitude: BL∞ =
{

w
∣
∣
∣
∣ ‖w‖∞ = ess sup

t
|w(t)| ≤ 1

}

.

The prefix B indicates the unit boundedness. In fact these are signal types indicating

a bounded power or energy level, or simply a restriction on the magnitude. These are

of practical interest because energy consumption and maximal impact amplitude are

mattering performance factors.

General important signal norms in the time domain, or L norms, are defined over

scalar signals x(t) ∈ C, t ∈ (−∞, ∞):

‖x(·)‖p =
(∫ ∞

−∞
|x(t)|2dt

)1/p

,

or also as frequency domain norms for x(s) ∈ C:

‖x(·)‖p =
(

1

2π

∫ ∞

−∞
|x(jω)|2dω

)1/p

.

These norms form Banach spaces notated by

Lp =
{

x(·)
∣
∣
∣ ‖x‖p < ∞

}

and expressing the characteristic signal classes. For relating the signal attributes to

the respective transfer matrix, inner product spaces can also be defined for matrix

valued functions. Two famous examples in relation with complex-valued matrices

X : C → Cn×m:

L2(jR) =

{

X(jω)
∣
∣
∣

1

2π

√
∫ ∞

−∞
trace (X(jω)∗X(jω)) dω < ∞

}

,

L∞(jR) =
{

X(jω)
∣
∣
∣ ess sup

t
σmax

(

X(jω)
)

< ∞
}

.

These will lead to the Hardy spaces H2 and H∞ in the following subsections where

some of the expressions are explained in detail. Especially in the context of realizable

transfer matrices it makes sense to restrict the spaces:
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• RL2 ⊂ L2: real, rational, strictly proper transfer function with no poles on jR

• RL∞ ⊂ L∞: real, rational transfer functions with no poles on jR

Other useful matrix norms not explained here are for example the Frobenius norm,

the sum norm, the maximum column or row norm.

Now the question of norm induction occurs. More precise this objective can be formu-

lated like this:

‖z‖α ≤ 1 ∀‖w‖β ≤ 1 ⇔ ‖G‖? ≤ 1 ,

meaning "Which output signal specification holds for a certain input signal class equiv-

alently to the wanted transfer matrix norm?". This formulation transfers the signal

performance definition the transfer matrix construction which can actually be manip-

ulated by the control algorithm.

The Table 2.1 sums up sum of the mentioned induced norm relations: For some com-

Power Energy Magnitude Sinusoidal Impulse
w ∈ BP w ∈ BL2 w ∈ BL∞ w = sin(ωt) w = δ(t)

‖z‖P ‖G‖∞ 0 ≤ ‖G‖∞
1√
2
‖G‖∞ 0

‖z‖2 ∞ ‖G‖∞ ∞ ∞ ‖G‖2

‖z‖∞ ∞ ‖G‖2 ‖g(t)‖1 ‖G‖∞ ‖g(t)‖∞

Table 2.1: Signal transmission and induced norms

binations there does not exist a characterization. In the table g refers to the impulse

response for describing the system in the time domain. In this work mainly L2 signals

are of interest and it is one of the main tasks to determine the corresponding closed

loop system realization.

Another commonly used tool for the performance measuring of a transfer matrix are

its maximal and minimal singular values [ZD98]. They can be used as a good mea-

sure of the gain of a transfer matrix in terms of generalizing the gain concept of SISO

systems. In comparison with eigenvalues they have the advantages to be applicable to

non squared systems and are not restricted to its eigenvector components [SP01].

Firstly the singular value for the matrix X ∈ Cn×m is defined as:

σi(X) :=
√

λi

(

X∗X
)

.

By the singular value decomposition (SVD) the matrix X can be split into two unitary

matrices and a matrix containing the singular values. This point of view allows a
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geometric interpretation of the concept. Any complex matrix X may be factorized

into a SVD:

X = UΣV ∗ (2.22)

with U ∈ C
n×n and V ∈ C

m×m being unitary, meaning U∗ = U−1 and V ∗ =

V −1. Furthermore there is the matrix Σ ∈ Cn×m containing a diagonal matrix

Σ̃ = diag(σ1, . . . , σmin(n,m)) where the σi ≥ 0 are arranged in descending order, thus

σ̄ = σ1 and σ = σmin(n,m). Its form then is:

Σ =












Σ̃

0




 : n > m

Σ̃ : n = m
[

Σ̃ 0
]

: n < m

It appears that the unitary matrices U and V form orthonormal bases for the column

space (output) and the row space (input) of respectively. That is why the columns of

U are called output singular vectors (left) and the column vectors of V input singular

vectors (right).

There are further interesting properties and special cases are mentioned in [SP01].

Interestingly the rank of a general non-squared matrix is equivalent to the number of

non-zero singular values. They also help to define the condition number γ(X) := σ̄/σ

which is important concerning numerical issues.

For control application and performance measuring its practicability comes directly

from the geometric interpretation. Supposing vi and ui being the respective column

vectors of V and U with unit norm scaling ‖vi‖2 = ‖ui‖2 = 1 it follows from Equation

(2.22):

XV = UΣ ⇔ Xvi = σiui .

This means considering inputs in the direction vi the output results to be in the

direction ui. Because of the unit scaling the singular value σi gives directly the matrix

gain in this direction:

σi(X) = ‖Gvi‖2 =
‖Gvi‖2

‖vi‖2
.

Beside the adequate gain characterization of a MIMO transfer function the singular

value has the advantage to obtain orthogonal plant directions by the SVD. For the

minimum and maximum singular values σ and σ̄ it is clear that the corresponding
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directions have some significance as well [Rai10]. For example v1 = v̄ corresponds to

the input with the largest amplification and u1 = ū is the output direction in which

inputs are most effective. These refer to the high-gain directions.

The maximum singular values plays an important role for frequency domain perfor-

mance and robustness measure [ZD98]. Considering the sensitivity function, for exam-

ple S = (I − KP22)−1 from Theorem 2.5, the relation e/r can be characterized where

e the output error and r the control reference. Then, based on the former discussion,

the following bounds can be found:

σ
(

S(jω)
)

≤ ‖e(ω)‖2

‖r(ω)‖2
≤ σ̄

(

S(jω)
)

.

For the performance it is seems reasonable to demand a small ratio ‖e(ω)‖2/‖r(ω)‖2,

even for the worst case scenario (high-gain direction). To accomplish that a per-

formance weight WP (jω) is introduced whose inverse shall represent the maximum

allowed amplitude of ‖e‖2/‖r‖2. In other terms the requirement is formulated as:

σ̄
(

S(jω)
) !

<
1

WP (jω)
∀ω

⇔ σ̄
(

WP (jω)S(jω)
)

< 1 ∀ω

⇔ ‖WP S‖∞ < 1 .

Here the used H∞ norm is explained more detailed in the following subsection. The

objective of this technique is to design a controller fulfilling the the bound given in

form of the performance filter WP . This also allows to define a bandwidth for MIMO

systems.

On the other hand there can be complementary design specifications. Other require-

ments for sensitivities could be to make σ̄(K(I + P22K)−1) relatively small for a dis-

turbance compensation at the plant output [ZD98]. That can be achieved by similar

techniques. These procedures are called loop-shaping methods and represent an own

field of control design.

In this part a introduction to nominal performance measures has been given. Specifi-

cation characteristics for MIMO transfer matrices have been given in form of induced

norms and the singular value approach. They connect signal transfer properties di-

rectly to the transfer function structure and its design.
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2.2.3 H2 optimal performance

After introducing more general performance concepts in the former subsection, here

the H2 norm shall be focused on for signal evaluation. The system structure considered

in this case has the form:

G(s) =




A B

C 0



 ,

which means not allowing a feedthrough, D = 0 explicitly. This for example corre-

sponds to the system Σnom form Equation (2.3) in a closed control loop with no direct

relation between the input w and output z, thus Dzw = 0. The following definition

formulates the basis of the H2 analysis.

Definition 2.7 H2 norm and the space H2 [ZD98]

For the transfer function G(s) the H2 norm is defined as:

‖G‖2 :=

√

1

2π

∫ ∞

−∞
trace

(

G(jω)∗G(jω)
)

dω .

The corresponding space H2 is a Hilbert space of the complex matrix functions G(·)
declared on jR in the following way:

H2 :=
{

G : C → C
n×m

∣
∣
∣G(s) analytic ∀s : Re(s) > 0 , ‖G‖2 < ∞

}

.

For G1, G2 ∈ H2 the inner product is given by

〈G1, G2〉 =
1

2π

∫ ∞

−∞
trace

(

G1(jω)∗G2(jω)
)

dω .

Obviously in comparison to the former discussion one can state H2 ⊂ L2(jω). So the

connection to the transfered signal energy is one of the major motivation of using the

H2 framework. These specifications lead to the respective desired transfer matrix class:

RH2 = {G ∈ H2 | G(s) real rational, strictly proper, stable} .

For further characterization of the H2 norm some basic system properties are revisited.

First, instead of representing the transfer behaviour by the transfer function, alterna-

tively the impulse response is can be used. It is obtained by applying the impulse

input u(t) = [δ1(t), . . . , δnu
(t)]⊤ to the system ΣLTI. Assuming the initial condition to

vanish x = 0 and because of the integral property of the delta distribution δi(·) the
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impulse response has the form:

yij(t) =







Cie
AtBj : t > 0

0 : t ≤ 0
⇒ g(t) :=








y11(t) · · · y1nu
(t)

...
. . .

...

yny1(t) · · · ynynu
(t)








,

where Ci describes the i-th row of C and Bj represents the j-th column of B. This

can be derived using the analytic system solution (2.2).

To motivate the H2 norm formulation the following special Lyapunov equations are

considered:

AZ + ZA⊤ + BB⊤ = 0 ⇒ Z =
∫ ∞

0
eAtBB⊤eA⊤tdt , (2.23)

A⊤Y + Y A + C⊤C = 0 ⇒ Y =
∫ ∞

0
eA⊤tC⊤CeAtdt . (2.24)

The solution Z from Equation (2.23) is referred to as Controllability Gramian and

the solution Y from Equation (2.24) is called Observability Gramian. They play an

important role in general control theory. Most significantly, Z has full rank iff (A, B)

controllable, Y is of full rank iff (A, C) observable. Further explanation concerning the

Gramians can be found in Appendix ?? in the context of the Hankel operator.

Now using the Parseval theorem for signal x(t) with its Fourier transformed X(jω)

∫ ∞

−∞
|x(t)|2dx =

1

2π

∫ ∞

−∞
|X(jω)|2dω

the following holds:

‖G‖2
2 =

1

2π

∫ ∞

−∞
trace

(

G(jω)G(jω)∗
)

dω

Parseval
=

∫ ∞

0
trace

(

g(t)g(t)⊤

)

dt

solution
=

∫ ∞

0
trace

[

CeAtBB⊤eA⊤tC⊤

]

dt

Gramian
= trace(CZC⊤) (2.25)

transpose
= trace(B⊤Y B) .

This gives the capability to directly compute the H2 norm of the signal transmission

from u to y just depending on the transfer system realization A, B, C. Here the formu-

lation of Equation (2.25) is used mainly, as well as the corresponding Equation (2.23).
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Now for guaranteeing a certain bound on the H2 performance the Lyapunov equation

for the Gramian is truncated to a Lyapunov inequality [DP05]. It can be seen that a

matrix X = X⊤ ∈ Rn×n satisfying

AX + XA⊤ + BB⊤ < 0 (2.26)

also fulfills X > Z. This implies the following important relation for the H2 norm

bound of the system G(s) for a given ν > 0:

G(s) stable , ‖G‖2 <
√

ν ⇔ ∃X = X⊤ > 0 : (2.26) ∧ trace(CXC⊤) < ν .

Thus a LMI condition on the system could be formulated in terms of H2 performance.

To formulate a more convenient LMI on this the following idea is sketched by using

the Schur complement presented in Appendix ??. Introducing the auxiliary variable

W = W ⊤ ∈ Rny×ny defined as

W := CXC⊤ + εI , ε > 0

⇔ W − CXC⊤ > 0

⇔ W − CXX−1XC⊤ > 0

⇔



W CX

XC X



 > 0 .

This also implies trace(W ) = trace(CXC⊤)+nyε. With ε → 0 the equivalent H2 norm

characterization 


AX + XA⊤ B

B⊤ −I



 < 0 ,




W CX

XC⊤ X



 > 0 , trace(W ) < ν

(2.27)

can be stated. Note that the derivation idea here only demonstrates the necessity of

this equivalence. Often the inverse Lyapunov variable X̃ := X−1 is used as well. The

optimality refers to minimize the bound ν.

Like mentioned in [ZDG96] a direct connection between the H2 control problem of

minimizing ν and the LQG problem can be found. This also gives a stochastic in-

terpretation of the H2 performance. It means that in the presence of Gaussian type

white noise a H2 controller guarantees optimal performance. That is why it is an im-

portant part of the control procedure in this work. Its energy related measure and the
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compatibility with other robust control techniques make it an excellent choice for a

performance characterization.

Nevertheless, the H2 optimal control minimizes the effect of random and thus unstruc-

tured disturbances. Accordingly it does not seem to be appropriate to deal with higher

order terms as they tend to be structured.

2.2.4 H∞ suboptimal performance

The other important performance measure in this work is the H∞ norm. As discussed

at the beginning of this section the maximal transmission of the gain induced by an

input signal can be characterized in a L2 sense. This can be done by using the singular

value to lower maximum gain bounds and trying to make error signals small. It is of

great interest for the controller design to weaken the influence of external perturbations

on the objectives. Another important application is to guarantee the amplification of

a coupled uncertain system part to be beneath a certain threshold.

Here the LTI system G(s) with realization A, B, C, D of the following form shall be

considered:

G(s) =




A B

C D



 .

In this case a feedthrough D 6= 0 is allowed. For the system Σnom this refers to

Dzw 6= 0, which for example could directly describe the influence of the reference

input to the regulation error. The following definition concretes the respective desired

transfer function class.

Definition 2.8 H∞ norm and the space H∞ [ZD98]

For the transfer behaviour z = G(s)w the H∞ norm is defined as:

‖G‖∞ := sup
w∈L2

‖z‖2

‖w‖2

= sup
ω∈R

σ
(

G(jω)
)

= sup
ω∈R

√

λmax

(

G(jω)∗G(jω)
)

.

The corresponding space H∞ is a Banach space of the complex matrix functions G(·)
declared on jR in the following way:

H∞ :=
{

G : C → C
n×m

∣
∣
∣G(s) analytic ∀s : Re(s) > 0 ,

G(s) bounded ∀s : Re(s) = 0 , ‖G‖∞ < ∞
}

.
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As in the H2 case one can also state H∞ ⊂ L∞(jω). Similarly the desired realizable

transfer functions are expected to be in the set

RH∞ = {G ∈ H∞ | G(s) real rational, proper, stable} .

The properness property of the functions contained in H∞ guarantees componentwise

boundedness of G(s) as s → ∞.

Finding conditions and computation methods for the H∞ characterization is often

connected to tools like the Bounded-Real Lemma (BRL) or the Kalman-Yakubovich-

Popov Lemma [DP05]. In the LTI case this mainly results in Algebraic Riccati Equa-

tion (ARE) or Algebraic Riccati Inequality (ARI) problems respectively which can be

treated numerically efficient [Sch90].

Because of the many existing forms and derivation approaches for these results only

some ideas behind the concepts shall be shown instead of presenting entire proofs.

Beside the objective of stabilizing the system G(s) it is aimed for minimizing the max-

imum induced gain ‖G‖∞ , thus the worst case scenario. As the optimal performance

achievement often turns out to be a difficult task and a rather extreme solution, the

suboptimal H∞ problem is addressed here, namely to find the solution for a given

norm bound. Later that bound is objective to a minimization problem. This can be

formulated in the following manner for a given γ > 0:

∀w ∈ L2 : ‖z‖2

!
≤ γ ‖w‖2

⇔ ∀w ∈ L2 : −‖z‖2
2 + γ2‖w‖2

2 ≥ 0

⇔ ∀w ∈ L2 :
∫ ∞

0

(

− (Cx + Dw)⊤(Cx + Dw) + γ2w⊤w
)

dt ≥ 0

⇔ inf
w∈L2

∫ ∞

0




x

w





⊤



−C⊤C −C⊤D

−D⊤C γ2I − D⊤D








x

w



 dt ≥ 0 . (2.28)

So it is a necessary condition for the bound requirement if the matrix occurring in

the center of the integral in (2.28) would be positive definite. This formulation with

including stability also leads to a variant of the LQP problem as shown in [Sch90].

Now it is also clear that since G(∞) = D the restriction ‖G‖∞ ≥ σ̄(D) holds.

One of the major results can be derived by using the theory of dissipative systems,

well introduced in [van96]. Like proven in [DP05] the following storage function can
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be used:

V (x) := x⊤Xx , 0 < X = X⊤ ∈ R
n×n

with the corresponding dissipation inequality

V̇ (x) < γ‖w‖2 − ‖z‖2 .

If this inequality would be fulfilled internal stability could be guaranteed and then, due

to a vanishing V as t → ∞ the desired relation ‖z‖2 ≤ γ‖w‖2 would be accomplished

(integration over inequality). Plugging the system definition into the dissipation in-

equality and separating a quadratic form with respect to (x, w)⊤ results in:

ẋ⊤Xx + x⊤Xẋ + (Cx + Dw)⊤(Cx + Dw) − γ2w⊤w < 0

⇔ x⊤(A⊤X + XA + C⊤C)x + 2w⊤(B⊤X + D⊤C)x + w⊤(−γ2I + D⊤D)w < 0

⇔



C⊤

D⊤





(

C D
)

+




A⊤X + XA XB

B⊤X −γ2 I



 < 0 .

With this idea of constructing matrix inequalities out of norm relations and advanced

stability concepts like dissipativity the H∞ norm characterization can be performed.

The preceding sketch can not serve as an entire proof which can be found in the

respective source of the following theorem.

Theorem 2.9 Bounded real lemma [DP05]

Taking the dynamic system G(s) with realization A, B, C, D into account, the following

conditions are equivalent:

(i) The matrix A is Hurwitz and

‖G‖∞ < γ ,

(ii) ∃X = X⊤ > 0 such that




C⊤

D⊤





(

C D
)

+




A⊤X + XA XB

B⊤X −γ2 I



 < 0 ,

(iii) ∃X = X⊤ > 0 such that








A⊤X + XA XB C⊤

B⊤X −γI D⊤

C D −γI








< 0 .
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The equivalence to (iii) can be obtained by utilizing the Schur complement from Ap-

pendix ??. This theorem is a powerful condition on a dynamic system to be in H∞

with a desired energy amplification bound γ.

To clarify the relation between the H∞ norm of a system G(s) with its realization, the

norm calculation in terms of the matrices A, B, C, D is an important point. When deal-

ing with the H∞ control synthesis one frequently is confronted with Riccati equation

solving problems (Appendix ??). Directly connected to the Riccati equation solution

is the so called Hamiltonian matrix [Sch90]. Similarly this auxiliary matrix can be

used for computing the H∞ norm. Therefore the following major result and defining

the Hamiltonian of interest is needed.

Theorem 2.10 H∞ norm and Hamiltonian [ZD98]

Let γ > 0 and G(s) ∈ RH∞. Defining the matrix

H :=




A + BR−1D⊤C BR−1B⊤

−C⊤(I + DR−1D⊤)C −(A + BR−1D⊤C)⊤





with R = γ2I − D⊤D, the following conditions are equivalent:

(i) ‖G‖∞ < γ,

(ii) σ̄(D) < γ and eig(H) ∩ jR = ∅,

(iii) σ̄(D) < γ and H ∈ dom(Ric) and Ric(H) ≥ 0
(

Ric(H) > 0 if (A, C) observable
)

.

Here another way of characterizing the H∞ sub-optimality is found, in a very similar

way to the BRL from Theorem 2.9. Especially the last point (iii), introducing the

connection to the Riccati framework notationally, gives the connection with the Lya-

punov variable X = Ric(H) for stabilizing solutions.

The idea behind Theorem 2.10 can be given easily by considering the case with D = 0.

Correspondingly the Riccati equation for this example would be of the form:

A⊤X + XA + C⊤C +
1

γ2
XBB⊤X = 0 .

Let an auxiliary system Φ(s) be the following transfer matrix:

Φ(s) := γ2I − G(−s)⊤G(s) =








A 0 −B

−C⊤C −A⊤ 0

0 B⊤ γ2I








.
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By using the techniques for interconnecting systems (addition and multiplication) pre-

sented in Section 2.1 the obtained realization is explained. The expression G(−s)⊤

is called the para-Hermitian conjugate or conjugate system and refers to the complex

conjugate case [DP05]. Additionally, performing an inversion operation on Φ(s) leads

to

Φ(s)−1 =








A 1
γ2 BB⊤ 1

γ2 B

−C⊤C −A⊤ 0

0 1
γ2 B⊤ 1

γ2 I








.

One can find the following relation:

‖G‖∞ < γ ⇔ Φ(jω) > 0 ∀ω ∈ R ⇔ Φ(jω)−1 has no poles on jR .

The firs equivalence directly comes from the H∞ norm Definition 2.8 and its relation

to the singular value. Due to Φ(∞) > 0 and since Φ(·) is a continuous function, the

second equivalence between Φ(jω) > 0 ∀ω and Φ(jω) nonsingular ∀ω, or Φ(jω) has no

imaginary axis zero ("zero crossing") respectively, is valid. This is then directly related

to the poles of the inverse of Φ(jω).

In the extensive case with D 6= 0 the derivation can be drawn similarly but with more

expanded calculations being avoided in this work. Here the property of Φ(∞) = R > 0

and the assumption σ̄(D) < γ are the crucial difference. Additionally the unobservable

modes are of rather technical concerns.

Thus the connection between the Hamiltonian H , which forms the dynamics of the

auxiliary system Φ(s)−1, and the norm calculation is clear. The whole proof can be

found in [ZD98].

For computational issues the Hamiltonian checking tool on the H∞ norm can be used

in form of an iterative algorithm. A classical bisection can be applied in the following

way:

Algorithm:

1. INIT: Choose bounds γl ≤ ‖G‖∞ ≤ γu and tolerance ε > 0

2. IF γu−γl

γu
≤ ε THEN ‖G‖∞ := γu+γl

2
; RETURN;

ELSE γ := γu+γl

2
;

3. IF eig(H) ∩ jR = ∅ THEN γu := γ; //check ‖G‖∞ < γ

ELSE γl := γ;

4. GO TO step 2
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Here the condition on H containing imaginary eigenvalues is used to check the validity

of the current iteration step bound. Dependent on that the bound is increased or

lowered in a mean way. The termination criteria depends on the chosen approximation

tolerance ε.

In this subsection the H∞ norm has been characterized by several criterion mainly

stated in Theorem 2.9 and 2.10. It is an important performance measure for evaluating

the worst case amplification of a system and thus also plays an important role on

describing the influence of uncertainties. Furthermore an algorithmic way of calculating

the norm is presented.

2.3 Uncertainty modelling

For the robustness analysis and treatment the description of a possible uncertainty

class turns out to be the core requirement. It is actually the key feature of robust

control in comparison with other control approaches to guarantee a working system

under concretely specified circumstances of the unknown conditions. Accordingly this

specification shall be addressed in this section. As it can be seen as part of the

mathematical system modelling task, formulating uncertainties is a difficult task and

in general requires skill and experience.

That is why in the following part a bunch of exemplary uncertainty structures are

motivated and presented. The relation to the physical origin and effects is essential

for putting those perturbations into a systematic context. In the end of the modelling

process the aim is to obtain system interconnection reformulation like shown in Figure

2.10. Here the known system part in the center of the loop can be thought of as a

z

(s)

z�w�

w N(s)

Figure 2.10: General system N(s) with separated uncertainty structure ∆(s)

modelled system P (s) combined with the controller K(s), thus N(s) = Fl(P, K). The

procedure of separating the system is also referred to as pulling out the uncertainty.
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Rather than modelling a concrete transfer function for ∆(s) it is desired to find a system

class ∆ with later considering the closed loop Fu(N, ∆) ∀∆ ∈ ∆. While ∆ classifies all

possible uncertainty transfer structures, the set ∆c contains the corresponding complex

values these transfer matrices can obtain. Thus a better problem transformation is

made possible and with additional normalization the sets can be handled in a unified

manner. They are defined as from [Sch01] in the following way:

∆c :=
{

∆c ∈ Cn∆×n∆

∣
∣
∣ ‖∆c‖ < 1

}

∆ :=
{

∆(·) ∈ RH∞
∣
∣
∣∆(jω) ∈ ∆c ∀ω ∈ R ∪ {∞}

} (2.29)

Note that equivalently ∆ = {∆(·) ∈ RH∞ | ‖∆‖∞ < 1}. Now the task is to char-

acterize these sets of interest with respect to the relation w∆ = ∆(s)z∆ for concrete

application problems. A big challenge during this process is to really focus on impor-

tant and realistic uncertainty conditions to include. If the system is forced to handle

too many models which are even senseless it loses a lot of flexibility. This problem is

referred to as conservatism.

2.3.1 Dynamic modeling errors

Continuing the motivating formulation example from Section 2.1 there was the follow-

ing problem setup taken from [Sch01]. The SISO example faces the task of controlling

a real plant H(s) with a slightly inaccurate model G(s). A mathematical model can

only be an approximation of the real system behavior and thus always errors are made.

This approach relies on frequency domain considerations.

Assuming the plant to be stable and of minimum phase the frequency response magni-

tude characterizes the system fully. For example sweep experiments can be made and

the magnitude plot seen in Figure 2.11 (absolute values) can be obtained. For direct

comparison the corresponding plot of the model is shown as well. It can be observed

that the system model is sufficiently accurate for low frequencies but has a high devi-

ation in the high frequency region. This is an actual practical issue and therefore of

interest. Easily it can be seen that the overall magnitude error is always smaller the

one, so the following characterization holds:

|H(jω) − G(jω)| < 1 ∀ω ∈ R ∪ {∞} .
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Figure 2.11: Magnitude comparison of experimental plant H(s) and system model G(s)

This motivates the introduction of the modelling error ∆(s):

∆(s) := H(s) − G(s) ⇒ |∆(jω)| < 1 ∀ω ∈ R ∪ {∞} .

Because of the generally unknown characteristics of the plant the error set ∆ shall

be used. A controller synthesis would be aiming for stabilizing the closed-loop system

for all possible uncertainties ∆ ∈ ∆. In Figure 2.12 some compatible uncertainty

examples (a) and their corresponding plant frequencies responses (b) are presented. It
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(a) Unit uncertainties ∆(s)
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(b) Possible uncertain plants

Figure 2.12: Magnitude plots for uncertainty distribution
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demonstrates the wide range of considered plants a controller has to be designed for.

One can get an impression of the overestimation of possible systems done by that. In

the low frequency range huge deviations occur which change the nature of the system

significantly. One can imagine that treating all those different and mostly unreasonable

possible plants at once leads to the earlier mentioned phenomenon of conservative

solutions. This especially forms a problem in MIMO systems where numerous internal

couplings exist. That is why in practice weighting filters W∆(s) are used for evaluate

the frequency dependency of the expected uncertainty which. Here a high-pass filter

would be reasonable. The filter design problem, one of the core designing tasks in

robust control, is focused on later in Section ??.

The uncertainty fitting with this kind of modeling inaccuracy is clearly additive and

can be reformulated in the following way to pull out the uncertainty structure:

z = G∆w = (G + ∆)w ⇔



z∆

z



 =




0 I

I G








w∆

w



 , w∆ = ∆z∆ .

To analyze the uncertain control loop consider the block diagram drawn in Figure

2.13 with the introduced plant model G(s) and controller C(s). It is assumed that

C(s) G(s)

(s)

-1

-1

u e

z� w�

y

Figure 2.13: Closed loop interconnections with additive uncertainty

a controller stabilizing the nominal closed loop has already been found. As sketched

in the formulating example standard loop structure with uncertainty has now to be

decomposed into the form Σrob from Equation (2.6). The aim is to find the transfer

matrix N(s) introduced in Figure 2.10 in the following way:




z∆

z



 = N(s)




w∆

w



 with N(s) =:




M(s) N12(s)

N21(s) N22(s)



 .
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In this example the objective output is the tracking error z = e and the external inputs

w = (r, d, n)⊤ contain the control reference, the disturbance (not on input side here)

and measurement noise. The upper left block M(s) is of special interest because it

relates w∆ to z∆ and considering the closed loop

Fu(N, ∆) = N22(s) + N21(s)∆(s)
[

I − M(s)∆(s)
]−1

N12(s)

it is evident that it determines the stability of the total system. Analyzing the block

diagram 2.13 one can find these relations:

z∆ = C(s)
(

r − n − d − w∆ − G(s)z∆

)

⇔ z∆ =
(

I + C(s)G(s)
)−1

C(s) (r − n − d − w∆) .

Thus the decisive system part is M = −(1 + CG)−1C. A further block diagram

consideration yields

e = −r +
(

I + G(s)C(s)
)−1(

d + w∆ + G(s)C(s)(r − n)
)

.

Thus the system composition can be expressed with the following transfer function:

N(s) =




−(I + CG)−1C (I + CG)−1C −(I + CG)−1C −(I + CG)−1C

(I + GC)−1 −(I + GC)−1 (I + GC)−1 −(I + GC)−1GC



 .

After formulating the problem structure a stability analysis shall be made. This is

done by applying the Nyquist criterion presented for the general case in Appendix ??

to the inverted term I − M∆. Due to the fact that C(s) is stabilizing M is a stable

transfer function, as well as ∆(s). Then a necessary condition for closed loop stability

is if the curve −M(jω)∆(jω) does not encircle the point −1. This is certainly true if

∀ω ∈ R ∪ {∞}:

|M(jω)∆(jω)| < 1

|∆|<1⇒
∣
∣
∣

(

I + C(jω)G(jω)
)−1

C(jω)
∣
∣
∣ ≤ 1 . (2.30)

So there is a simple condition on checking the stability of the system under all uncer-

tainties ∆ ∈ ∆. This is referred to as robust stability which is introduced formally

in Section 2.4. To apply this to a concrete control example a internally stabilizing

controller has to be found primarily for the nominal system. Without mentioning any
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numerical details Figure 2.14 (a) provides the Nyquist plot for the open loop corre-

sponding to an adequate controller C(s). It can be seen that there are no encirclements

of −1 which means for the stable plant G(s) that the closed loop system is stable in the

nominal case. Even the phase margin of Φm = 60.9◦ and a gain margin Km = 27dB

seem to be sophisticating in terms of robustness expectations.

Now the robust stability test obtained in (2.30) is applied to the respective trans-

fer functions. The second part of Figure 2.14 in (b) illustrates the magnitude plot

|M(jω)|. Additionally the critical magnitude of 1=̂0dB is indicated by a dashed line.

Unfortunately for some frequencies holds |M(jω)| > 1 and thus the condition is vi-
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(a) Nyquist plot of nominal open loop GC
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(b) Robust stability condition check (2.30)

Figure 2.14: Closed loop system robust analysis for additive uncertainty

olated. So stability for all ∆ ∈ ∆ cannot be guaranteed. Although this seems to

be a negative result it still gives important information on the robustness of the

system. First one can observe that the magnitude remains below 1.5≈̂3.5dB, thus

|M(jω)| < 3
2

∀ω. That means that robust stability still holds unrestrictedly for all

uncertainties with |∆(jω)| < 2
3

≈ 0.7 ∀ω. Actually this largest validity bound for still

guaranteeing stability can be characterized in general as ‖M‖−1
∞ .

On the other hand the magnitude information especially of the violated area can be

used for constructing a concrete destabilizing uncertainty like shown in [Sch01].

Summarizing the general procedure for dynamic uncertainties characterized by the

frequency response one can state that in practice plants are treated which are mainly

determined in the frequency domain. Let H(ω) denote a set of complex number for ev-

ery frequency ω corresponding to taken measurements or expected characteristics. This

experiment leads to the conclusion that proper models H(s) satisfying H(jω) ∈ H(ω)
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are appropriate models for the underlying plant.

Since frequency experiments can only be performed at a finite number of points the

description H(ω) turns out to be difficult to use. This dilemma leads to the idea of

robust control to cover uncertain sets or system conditions with a broader class of

transfer behavior much easier to handle. Therefore the following relation is shall be

achieved:

H(ω) ⊂ G(jω) + W (jω)∆c ∀ω ∈ R ∪ {∞}

where G(s) is a real rational proper transfer matrix, W (s) is a real rational weighting

filter and the open set ∆c as defined in Equation (2.29). Graphically this introduces

a disk with the center G(jω) and radius |W (jω)| containing all the elements of H(ω).

The weight W (s) captures the variance of the uncertainty with respect to the frequency.

As shown in the example most models are not good for high frequencies so often a

high-pass filter is used.

The actual set of possible dynamic uncertainties ∆ has also been introduced in (2.29).

Finally, the resulting uncertain system is described by G∆ := G + W∆ with ∆ ∈ ∆.

So a set of systems has been obtained, parameterized by the transfer functions in ∆,

which include the real expected uncertainty. Again one has to pay attention to not

making this class too big, resulting in a loss of flexibility and obtaining conservative

solutions.

2.3.2 Parametric uncertainties

After the introductory example for motivating the different uncertainty aspects more

model related techniques shall be presented in the following. It is well known that dur-

ing the modelling process errors in depicting the right parameters often occur [SP01].

On the one hand this simply comes from parameters of the linear model only known

approximately within a certain range. Furthermore there is the appearance of varying

parameters in the linear model due to the impact of nonlinearities or changing oper-

ating conditions.

These parametric uncertainties may occur in various forms. For example from a state

space perspective it makes a big difference if they are part of the dynamic matrix A or

lie in the input or output channel respectively. That is why two major examples shall

be discussed in this part.
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Input matrix uncertainty

A modern example taken from satellite control concerning uncertainties on the actuator

sight in the MIMO case is presented here [Sch01]. So consider the following system

realization:

G(s) =











0 a 1 0

−a 0 0 1

1 a 0 0

−a 1 0 0











=
1

s2 + a2




s − a2 a(s + 1)

−a(s + 1) s − a2



 .

Here a > 0 is a known parameter. The uncertainty comes into play when looking at

the actuator where certain tolerances have to be taken into account. Accordingly the

input matrix takes the form:

B∆ =




1 + δ1 0

0 1 + δ2



 ,

where δ1, δ2 ∈ R unknown, but within the range of |δ1| < r, |δ2| < r for a known r > 0.

Then the following relation holds because of D = 0:

G∆(s) = C(sI − A)B∆ = C(sI − A)(B + ∆)

=
1

s2 + a2




s − a2 a(s + 1)

−a(s + 1) s − a2







I +




δ1 0

0 δ2









= G(s)
(

I + ∆
)

,

with the uncertainty structure ∆ := diag(δ1, δ2). The real plant H(s) thus is repre-

sented by the system class G∆(s). In comparison to the former example, where the

uncertainty occurred additively, ∆ appears multiplicatively from the Laplace domain

point of view. In this case the uncertainty can be pulled out by redefining channels:

z = G∆w = G(I + ∆)w ⇔



z∆

z



 =




0 I

G G








w∆

w



 , w∆ = ∆z∆ .

For demonstrating the analysis of a control loop a simple controller C(s) = I is taken

here. The system composition is illustrated in the block diagram of Figure 2.15.

Now the system shall be reformulated to obtain the structure of Σrob and finally the

transfer behaviour N(s) shown in Figure 2.10. This results again in finding the relation
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C(s) G(s)
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Figure 2.15: Closed loop interconnections with input multiplicative uncertainty

z∆ = M(s)w∆ determining the stability of the uncertain system. From the block

diagram analysis one obtains:

z∆ = C(s)
(

r − n − d − G(s)(w∆ + z∆)
)

⇔ z∆ = −
(

I + C(s)G(s)
)−1

C(s)G(s)
︸ ︷︷ ︸

=:M(s)

w∆ +
(

I + C(s)G(s)
)−1

(r − d − n) .

Plugging in the system definition the transfer matrix M(s) is given by:

M(s) =
1

s + 1




−1 −a

a −1



 .

As in the former example for stability it has to be checked whether I − M∆ has a

stable and proper inverse for all possible ∆. According to [Sch01] (Lemma 2) this is

the case iff I − M(∞)∆(∞) is non-singular and det(I − M(s)∆(s)) has no zeros in

C+. The determinant of

I − M(s)∆ =




1 + δ1

s+1
aδ2

s+1
−aδ1

s+1
1 + δ2

s+1





can be calculated as

det
(

I − M(s)∆
)

=
1

(s + 1)2

(

s2 + (2 + δ1 + δ2)s + 1 + δ1 + δ2 + (a2 + 1)δ1δ2

)

.
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There are no zeros at ∞ and using the Hurwitz criterion for a polynomial of second

order results in the following stability condition:

2 + δ1 + δ2 > 0 ,

1 + δ1 + δ2 + (a2 + 1)δ1δ2 > 0 .

In Figure 2.16 the respective contour of the region where the condition is violated is

illustrated for the parameter a = 10. Various conclusions can be drawn from analyzing

Figure 2.16: Region of destabilizing parameters (contoured)

this plot. First consider the stability condition for the uncertain parameter δ2 = 0.

Then the system would be stable for δ1 ∈ (−1, ∞) and vise versa for the flipped case.

This makes clear that considering the stability region for only one parameter without

taking the other into account misleads to false impressions. That is why for robustness

analysis especially in MIMO systems the region of common variations plays an impor-

tant role. For the parameter a = 10 the common bound r = 0.1 can be found. One

can suspect from the other plotted contours a ∈ {1, 5} that this bound will decrease

with increasing a.

During the presented procedure the decomposition of a system with input multiplica-

tive uncertainty has been explained. For the output case with including C∆ a very
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similar methodology can be applied. From the transfer function perspective, gain un-

certainties can also easily be brought into this form [SP01].

The presented example is a very special constructed case where such an explicit anal-

ysis of the stability region is possible. In general this will fairly never be the case.

Therefore more universal tools have to be developed for determining robust stability

and performance. These results are presented in Section 2.4.

Dynamic parameterization

Before going into state space form type of parameter description consider firstly a SISO

transfer function with uncertainties regarding the time constants [Rai10]. Considering

the typical mass-spring-damper system of second order

mẍ + dẋ + cx = u ↔ G(s) =
1

ms2 + ds + c

with positive uncertain parameters m ∈ (m1, m2), d ∈ (d1, d2), c ∈ (c1, c2) within their

tolerances. Selecting the respective nominal value as m0 := m1+m2

2
a scaled error can

be introduced:

∆m :=
m − m0

m2 − m0
, ∆d :=

d − d0

d2 − d0
, ∆c :=

c − c0

c2 − c0
.

Clearly ∆m, ∆d, ∆c ∈ ∆ holds. With defining the respective weights Wm := m2 − m0

the frequency domain description of the uncertain plant is obtained by

G∆(s) =
1

(m0 + Wm∆m)s2 + (d0 + Wd∆d)s + (c0 + Wc∆c)

Thus a whole set of uncertain functions could be found parameterized by the uncer-

tainties ∆m, ∆d, ∆c. Another perspective can be chosen from the time constant point

of view like done in [SP01]. In this form the time constants appear multiplicatively in

the transfer function so consider a single uncertain term exemplary given by

G∆(s) =
1

τs + 1
G0(s) , τmin ≤ τ ≤ τmax .

Again with rewriting τ = τ0(1 + r∆) where ∆ ∈ ∆c the model class is converted to

G∆(s) =
G0(s)

1 + τ0s + rτ0s∆
=

G0(s)

1 + τ0s
︸ ︷︷ ︸

=:G(s)

· 1

1 + W (s)∆
, W (s) :=

rτ0s

1 + τ0s
.
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With this system decomposition a multiplicative uncertainty structure could be pulled

out of transfer function due to the multiplicative nature of the time constant form.

Physically it does not make sense for τ to change sign, otherwise that would correspond

to a pole at infinity.

For a more general parameter uncertainty case from the state space perspective a linear

dependency on the parameters is assumed [SP01]. Here system of the following form

is considered:







ẋ = A∆x + B∆u

y = C∆x + D∆u
⇒ G∆(s) = C∆(sI − A∆)−1B∆ + D∆

where the cause of uncertainty is characterized by some parameters δi ∈ R (e.g. tem-

perature, mass, etc.). Then the system matrices can be rewritten into

A∆ = A +
∑

δiAi , B∆ = B +
∑

δiBi , C∆ = C +
∑

δiCi , D∆ = D +
∑

δiDi ,

where A, B, C, D belong to the nominal system model. The corresponding perturba-

tions can be collected in the matrix ∆ containing δi along its diagonal. For example

taking the matrix A∆:

A∆ = A +
∑

δiAi = A + W2∆W1

with the weight matrices W1,2 for generating the diagonal structure of ∆. With the

auxiliary matrix function Ψ(s) := (sI − A)−1 the central part of the transfer function

G∆(s) can be expressed as

(sI − A∆)−1 = (sI − A − W2∆W1)
−1 = (I − Ψ(s)W2∆W1)−1Ψ(s).

This is a common technique to pull known structures out of uncertain compositions.

The resulting uncertainty has the form of an inverse additive interconnection like pre-

sented in Figure 2.17. With this procedure and using the linear fractional transforma-

tion introduced in Section 2.1 uncertainties in all system matrices can be handled. The

challenge then is to pull the uncertainties into a common ∆ structure which can be

technically difficult. A good example for extracting various parametric uncertainties

at the same time can be found in [SP01] (p.287).

One interesting idea of obtaining a direct uncertainty extraction can be obtained by
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(sI-A)
-1

(s)(s)W
2

(s)W
1

Figure 2.17: Inverse additive uncertainty structure from parametric uncertainties

factorization[Sch01].With the notation from above one can state:




A∆ B∆

C∆ D∆



 =




A B

C D



+
∑

i

δi




Ai Bi

Ci Di



 .

Then determine the following factorization:




Ai Bi

Ci Di



 =:




L1

i

L2
i





(

R1
i R2

i

)

where the matrices (L1
i , L2

i )
⊤ and (R1

i , R2
i ) have full column and row rank respectively.

If one is successful to find such a decomposition the uncertain system can be rewritten

in the form:














ẋ

z

z1

...

zk














=














A B L1
1 · · · L1

k

C D L2
1 · · · L2

k

R1
1 R2

1 0
...

...
. . .

R1
k R2

k 0



























x

w

w1

...

wk














,








w1

...

wk








=








δ1I
. . .

δkI















z1

...

zk








with uncertainty index numbering i = 1, . . . , k. Note that the identity matrices in

connection with their respective δi are of different dimension. This form can easily

be transferred into the system form Σrob. It is desired to achieve factorization with

a minimal numbers of columns and rows respectively. Thus the size of the identity

blocks in the uncertainty results to be minimal as well. Arbitrary size factorizations

are possible but turn out to be inefficient.

All the presented cases of parametric uncertainties can be put into a H∞ framework.

However, it is often avoided to introduce parametric uncertainties directly because of

several reasons [SP01]:
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• large effort of modelling parametric uncertainties (usually),

• deceiving in the sense that parametric uncertainty models provide a detailed

description, even though the underlying assumptions concerning the model can

be much less exact,

• exact model structure required (unmodelled dynamics not suitable),

• real perturbations required.

That is why usually more general complex perturbation from the class ∆ although this

might introduce more conservatism to the system. Thus the often "disk-shaped" un-

certainty structure already used in the introductory example turns out to be adequate

for capturing this type of uncertainty as well.

2.3.3 Nonlinearities & higher dynamics

In the Section 2.1 the decomposition of nonlinear systems has been discussed. Follow-

ing these ideas concrete uncertainty structures shall be found for the cases of dealing

with nonlinearities and respective neglected dynamics [DP05].

Formerly a nonlinear structure Q has been separated from the system to obtain an

isolated LTI part. The requirement on the structure class ∆ constructed to capture

the nonlinear behavior is the following:

∃p : q = Q(p) ⇒ ∃∆ ∈ ∆ : q = ∆p .

This means that for every input-output pairing there exists an uncertainty element

generating the same relation. These elements tend to be of much simpler dynamical

structure and are practicable treatable by linear tool, although a quiet huge object of

probable circumstances is generated.

Finally ∆ will contain more elements than required to describe Q so that

{

(p, q) | q = Q(p)
}

⊂
{

(p, q) | ∃∆ ∈ ∆ : q = ∆p
}

which then allows to treat the closed loop Fu(G, Q) with using Fu(G, ∆) instead while

guaranteeing to capture the same input-output relations. Generally speaking the de-

gree of closeness of these sets determines the level of conservatism introduced by the

replacement.
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Static nonlinearity

In a first step by using a linearization approach the general nonlinear system ΣNL from

Equation (2.9) could be split up into a linear part ΣaNL depending on two external

signals w1 = f(x, u) − Ax − Bu and w2 = h(x, u) − Cx − Du representing static

nonlinearities. Suppose the separated nonlinear functions fulfill the sector condition

‖w1(t)‖ ≤ k11x(t) + k12u(t) ,

‖w2(t)‖ ≤ k21x(t) + k22u(t) ,

with constants kij > 0. These parameters can for example be chosen by selecting

the Lipschitz constants of f and g with respect to the corresponding variable locally.

However, this might be a rough sector approximation, so if there is more knowledge

available it should be involved. Then the nonlinearity (w1, w2)⊤ = Q(x, u) like shown

in Figure 2.8 can be stated in the form

w1(t) = δ11x(t) + δ12u(t) ,

w2(t) = δ21x(t) + δ22u(t) ,
(2.31)

where the functions of time δij(·) satisfying δij(t) ∈ [−kij , kij] ∀t ≥ 0. Based on that

the uncertainty structure ∆ can defined as:

∆ =




δ11 δ12

δ21 δ22





with |δij(t)| ≤ 0 ∀t ≥ 0. Thus the more complex nonlinear structure could be captured

by a class of linear ones which can be considered within the stability analysis and

robust control synthesis. After some normalization a class ∆ can be found with the

property that for any given input-output pair satisfying (w1, w2)⊤ = Q(x, u) there

exists one particular uncertainty ∆ ∈ ∆ to meet the relation (2.31).

Neglecting higher dynamics

Another more complicated case occurs when not only separating the nonlinear part of

the system, but whole dynamics is neglected like done for the system Σpart from (2.12)

with decomposing into (2.13) and (2.14). This results in a dynamic extraction Q with

(w1, w2)⊤ = Q(x1, u) and where Q contains of the internal states x2.
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Assume for example that the following rather strong energy inequality holds:

∫ ∞

0
‖w1(t)‖2dt ≤ k1

(∫ ∞

0
‖x1(t)‖2dt +

∫ ∞

0
‖u(t)‖2dt

)

,
∫ ∞

0
‖w2(t)‖2dt ≤ k2

(∫ ∞

0
‖x1(t)‖2dt +

∫ ∞

0
‖u(t)‖2dt

)

,

which is well defined if all the signals are from L2. Then, according to [DP05] an

object ∆ can be defined which consists of linear mappings ∆ : (x1, u)⊤ 7→ (w1, w2)⊤

satisfying the above inequalities for all suitable functions x1, u. It is possible to show

that if (w1, w2)⊤ = Q(x1, u), for some bounded energy functions x1 and u, then there

exists a mapping ∆ ∈ ∆ such that (w1, w2)⊤ = ∆(x1, u)⊤. Thus ∆ can generate any

behavior of Q. With this kind of approach the initial condition of the internal state x2

can be neglected. So there is the requirement of stability in high-order dynamics that

can be isolated in this way.

2.3.4 Structured and unstructured uncertainties

Another and more general perspective on uncertainty objects can be made by divid-

ing them with regards to their structure. This faces the contradiction between two

important aspects in uncertainty modelling [Rai10]:

• the more structured an uncertainty the more complex results the corresponding

perturbation class to be,

• the less structured an uncertainty the less close the approximative system cap-

tures the real behaviour (conservatism).

So there is obviously a trade of to make between the accuracy of an uncertainty object

and its manageability. Well structured uncertainties form a very precise description

of the underlying perturbation, whereas unstructured error models can be integrated

more easily into the control design process.

In the following this distinction is explained more detailed and the former uncertainty

examples are classified. These ideas then help to introduce certain robust analysis

tools presented in Section 2.4.

Unstructured uncertainties

In this general case there does not exist information about concrete perturbation in-

fluences rather then an overall impression of the nature of uncertainty. For MIMO
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systems this for example can be the case when there is just the knowledge about a

good model for low frequency and an inaccurate one for high frequencies, like presented

in first example (additive SISO dynamic uncertainty). The corresponding MIMO rep-

resentation in the frequency domain is [Sch01]:

G∆(jω) = G + W (jω)∆c , ∆c =








∆11 ∆12 · · ·
∆21 ∆22 · · ·

...
...

. . .








with ‖∆c‖ = σ̄(∆c) < 1 and thus clearly ∆c ∈ ∆c, which then can be related to ∆.

So the uncertainty is not expected to have any particular structure. In the exemplary

case the filter W (s) would simply be a high-pass filter. Characteristic for unstructured

uncertainties is the use of one unified filter for all uncertainty components without

structural distinction. This occurs due to the lack of specific information.

Like stated in [Rai10] also the multiplicative uncertainty type is often introduced in

an unstructured way. Another characterization can be done by the so-called factorized

modeling errors. This is based on a (left-) coprime factorization of the plant model

into a nominator and denominator part resulting in a system form:

G = M̃−1Ñ → G∆ = (M̃ + ∆M )−1(Ñ + ∆N) .

Here the transfer form is made up by a simple additive and an inverse additive part

in the end. Then the aim is again to bring the system into the form shown in Figure

2.10.

Generally these unstructured uncertainties are mainly characterized by their maximum

singular value which is an useful tool in some sense but can also produce very strict

results, especially if the considered perturbation class is too conservative. Therefore in

Section 2.4 a more practical characterization in form of the structured singular value

is introduced.

Structured uncertainties

On the other hand with some insight of the plant uncertainty models can be formu-

lated precisely. Like shown in the former examples this is often motivated physically.

The conversion to transfer matrices then usually leads to complicated feasible regions.

These include parametric or particular additive uncertainties like shown before.

The following two dimensional MIMO example from [Sch01] illustrates the typical
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structured framework. Consider the uncertain system

G∆(jω) = G(jω) +




W11(jω)∆11 W12(jω)∆12

W21(jω)∆21 W22(jω)∆22





= G +




W11(jω) 0 W12(jω) 0

0 W21(jω) 0 W22(jω)















∆11

∆21

∆12

∆22











︸ ︷︷ ︸

=∆c











1 0

1 0

0 1

0 1











,

where |∆ij | < 1 with the consequence of ‖∆c‖ < 1 and the filters Wij ∈ RH∞. The

big difference to the unstructured additive example is the fact that there are specific

structural weights for each uncertainty separately.

This motivates to describe the set ∆ generally in a block-diagonal uncertainty form.

Thus the set ∆ from Equation 2.29 is given by specifying the complex valued set ∆c

in the following way:

∆c =







∆c =


















δ1In1

. . .

δrInr

∆1

. . .

∆f


















∣
∣
∣
∣ δi ∈ R, ∆i ∈ C

n∆×m∆ , ‖∆c‖ < 1







.

The upper blocks are distinguished into the real δ parts, corresponding for example to

parametric uncertainties, and the complex ∆ parts, related to dynamic uncertainties.

Then many systems can be decomposed into the form

G∆ = G + W2∆W2

with ∆ ∈ ∆ and and weighting matrices W1, W2 ∈ RH∞ capturing the frequency

dependency of the specific perturbation blocks.

Finally this illustrates the flexibility choosing this type of uncertainty model offers.

It depends a lot on the requirements on refinement with respect to the mentioned

modeling contradiction.
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2.4 Robust stability & performance

The objective of this part is, who to include the uncertainty structures from Section

2.3 into the control design, show for the nominal case in Section 2.2. It is desired to

guarantee certain performance specifications considering the uncertain system under

∆ ∈ ∆. For the closed control-loop Fl(P, K) = N(s) a transfer distinction is made:

N(s) =:




M N12

N21 N22





where the transfer matrix M closes the loop with the internal uncertainty due to

z∆ = M(s)w∆. In comparison to Figure 2.10 the structure presented in Figure 2.18 is

obtained. Then, the resulting closed-loop behavior of the controlled uncertain system

z

(s)

z�w�

w
12

21 22

Figure 2.18: Closed control loop structure with uncertainty ∆(s)

can be expressed as:

Tzw(s) = Fu(N, ∆) = N22 + N12∆(I − M∆)−1N21

by using the LFT. The following introduction to the topic of robust stability and per-

formance and the respective theorems are taken from the comprehensive explanation

in [DP05]. It is assumed that the controller K(s) nominally stabilizes N(s).

2.4.1 Well-connectedness & unstructured uncertainty

The stability of Tzw(s) clearly depends on the term (I − M∆)−1 and its invertability.

If for a given operator M and a set ∆ holds that (I − M∆)−1 is nonsingular ∀∆ ∈ ∆,

the interconnection from Figure 2.18 are called robustly well-connected. Often, this

property is referred to the pair (M, ∆) is equivalent to robust stability.

Intuitively, the property of robust well-connectedness causes a bounded transfer map
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between w and z. As it turns out, this characterization is the central interest in

robustness analysis and design. Even a lot of important problems can be reduced

to that. The application of this concept highly depends on the structuring of the

uncertainty, which was motivated and introduced at the end of Section 2.3.

The first simple case is to consider the general unstructured uncertainty class of ∆ =

{∆ ∈ RH∞ | ‖∆‖∞ ≤ 1}.

Theorem 2.11 Unstructured small gain theorem [DP05]

Let M be an operator and ∆ = {∆ ∈ RH∞ | ‖∆‖∞ ≤ 1}. Then, I−M∆ is nonsingular

∀∆ ∈ ∆ if and only if:

‖M‖∞ < 1 .

Note, that this task then can be treated as a suboptimal H∞ problem for the bound

γ = 1 with respect to the LTI system M(s). Although the robust stability analysis

problem is simple in the unstructured case, there are several reasons adding a certain

structure to the problem. This is discussed in the following part.

In addition to a robustly well-connected (M, ∆) it is desired to keep some performance

measure. Consider the following closed-loop system requirement:

‖Fu(N, ∆)‖∞ < 1 ∀∆ ∈ ∆ .

With the prerequisite of robust stability, the term of robust performance can be intro-

duced as such a desired norm bound on the total closed-loop system. The following

result shows, how this can be related to the well-connectedness of the interconnection.

Theorem 2.12 Problem reduction with additional structure [DP05]

For a set ∆ define the auxiliary perturbation set:

∆p := {∆ = diag(∆u, ∆p) | ∆u ∈ ∆ , ∆p ∈ RH∞ : ‖∆p‖∞ ≤ 1} .

Then (M, ∆) is robustly well connected and ‖Fu(N, ∆u)‖∞ < 1 ∀∆u ∈ ∆ if and only

if I − N∆ is nonsingular ∀∆ ∈ ∆p.

This proposition demonstrates the transformation of a combined robust stability and

performance problem to the H∞ condition of ‖N‖∞ < 1. Nevertheless, this usually

leads to very conservative solutions and is the major motivation for considering struc-

tured uncertainties and derive equivalent conditions for them.
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2.4.2 Block-structured uncertainty

In addition to the former motivation of reducing the conservatism is that when model-

ing the interconnection of different systems, the uncertainties turn out to be naturally

of block-diagonal structure. Like motivated before, an arbitrarily block-structured

uncertainty set of the form:

∆a = {diag(∆1, . . . , ∆d) | ∆i ∈ RH∞ : ‖∆i‖∞ ≤ 1}

is utilized. Note, that every block can be of different dimension. For this special

subset, the general small gain condition ‖N‖∞ < 1 turns out to be very conservative.

The basic idea to reduce conservatism is the introduction of commuting operators Θ

with respect to the perturbations. For example, a commutant of the set ∆a is defined

by:

Θa = {Θ ∈ RH∞ | Θ invertible, Θ∆ = ∆Θ ∀∆ ∈ ∆a} .

For ∆ ∈ ∆a and Θ ∈ Θa, this leads directly to:

Θ(I − N∆)Θ−1 = I − (ΘNΘ−1)∆

⇒
[

I − N∆ singular ⇔ I − (ΘNΘ−1)∆ singular
]

.

Thus, it can be concluded that if there exists a commutant Θ such that:

‖ΘNΘ−1‖∞ < 1 ,

the robust well-connectedness of (N, ∆a) is guaranteed. It can be shown that [DP05]:

Θ ∈ Θa ⇔ Θ = diag(θ1I, . . . , θdI)

with constants θi ∈ C \ {0}. These constant matrices are also referred to as scalings.

Often, the set of positive scalings Θ+
a := {Θ = diag(θ1I, . . . , θdI) | θi ∈ R, θi > 0} is of

interest. These results are summarized in the following theorem.
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Theorem 2.13 Scaled small gain test [DP05]

For an LTI system N with the realization N =




A B

C D



 and with A Hurwitz, the

following statements are equivalent:

(i) (N, ∆a) is robustly well-connected,

(ii) ∃ Θ ∈ Θa : ‖ΘNΘ−1‖∞ < 1,

(iii) ∃ Θ ∈ Θ+
a and ∃X = X⊤ > 0:




C⊤

D⊤



Θ
(

C D
)

+




A⊤X + XA XB

B⊤X −Θ



 < 0 .

The scaled small gain condition turns out to be necessary and sufficient and thus,

eliminates the majority of the conservatism. Additionally, the former theorem offers

an LMI condition for the computation of the scaling Θ ∈ Θ+
a and accordingly, on

robust stability and performance.

2.4.3 Robust synthesis sketch & further tools

These results form the basis of finding a controller K(s) which stabilizes the system

N(s) = Fl(P, K) nominally and guarantees robustness in the form of ‖Fu(N(K), ∆)‖∞ <

1 for ∆ ∈ ∆. The procedure contains briefly of these two major steps:

• for a fixed scaling Θ ∈ Θa the nominal control problem is solved (see Section 2.2

or more specifically Chapter 3),

• for the fixed controller K the robustness analysis over ∆a is performed by uti-

lizing (iii) from Theorem 2.13

In general, this is a difficult task and cannot be solved commonly. There are iterative

algorithms aiming for a approximative solution. As those go to far for the setting of

this work, this shall form a brief overview on the topic.

Further approaches, like shown in the collection [EN00a], make use of uncertainty

multipliers, which can be used for LMI based optimization. There, several ideas for

robust H2 design are proposed. Most commonly, the structured singular value is uti-

lized for robust control synthesis [ZD98]. It turns out to be a useful characterization

and most frequently leads to the D/K algorithm (scaling/controller iteration). Other
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approaches, like in [SP01], aim for robust loop-shaping which consider the respective

sensitivity functions directly.
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3 Multi-Objective Robust Control

The formulation and solution of robust control tasks is generally complicated. As

pointed out in Chapter 2 one of the most common tools to solve classical H2 or H∞

problems are Riccati equations. During the last few decades linear matrix inequalities

(LMIs) have become a common technique for numerous control applications [Boy94].

These inequalities have also been introduced in the previous chapter for simple perfor-

mance specifications.

In the work [Sch90] a focus on Riccati inequalities already has been made and developed

further. Then the aim is to reformulate those into LMIs because of the resulting con-

vex optimization problems which are relatively easy to solve. Especially with interior-

point methods the corresponding semi-definite programs (SDPs) can be treated effi-

ciently [BV09] and it turns out to be an advantage to formulate a task in terms of

LMIs.

In addition to the numerical preferences the LMI framework gives a certain flexibility

in the way problems can be stated. This leads to the term of multi-objective robust

control because of the combination of several conditions on the system performance

at the same instance. Thus for example guaranteeing a certain H2 or H∞ gain, robust

stability and regional pole restrictions at once becomes possible. Even the mixture of

time- and frequency-domain specifications can be realized [SGC97].

An attempt to solve the H2/H∞ problem was made first in [ZGBD94] considering ro-

bust stability and in [DZGB94] continuing with optimal performance. Here a Riccati

equation solution could be found requiring a rather complicated computation. In con-

trast to such closed form solutions, the LMI approach seems to be easier to obtain but

often produces quite conservative results dependent on the accuracy of the respective

problem formulation.

The book [EN00a] forms a great collection on modern LMI techniques and their appli-

cation. It presents deep theoretical aspects as well as practical implementation issues.

Especially in terms of robust performance analysis via LMIs, advanced results are ex-

plained extensively. During its introduction chapter [EN00b] the main advantages of

this approach are the combination of classical control, such as PID, with modern ideas,
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like H2 and LQG. Thus it is referred to as "postmodern" control. Furthermore LMI

techniques are capable of reducing the number of parameters, simplifying the numeri-

cal solutions and providing design guarantees for even competing specifications.

Note that here the control design shall be focused on the output-feedback case, as pure

state-feedback does not seem to fit to the application of this work.

3.1 Introduction to LMI framework

In the book [Boy94] the subject is introduced and presented in context with several

problems. The application summary [VB00] also provides an insight on basic LMI

techniques. An LMI can briefly be defined in the form:

F (x) = F0 +
m∑

i=1

xiFi > 0 (3.1)

with the variable x ∈ Rm and symmetric matrices Fi = F
⊤

i ∈ Rn×n. The inequality

(3.1) notation means positive definiteness of F (x), being equivalent to z⊤F (x)z >

0 ∀z ∈ Rn \ {0}. This can also be expressed as n polynomial inequalities because of

the leading principle minors of F (x) having to be positive.

Here only strict matrix inequalities are considered. The LMI (3.1) forms a convex

constraint as the set {x | F (x) > 0} is convex. This is a big advantage for formulating

convex optimization problems such as linear and quadratic inequalities, matrix norm

inequalities or Lyapunov inequalities [Boy94].

An important property is that multiple LMIs can easily be expressed as a single LMI

by using one block-diagonal structure. Thus there is no distinction made between a set

of LMIs and a single one. Another useful relation is the Schur complement. It allows

to convert nonlinear convex inequalities into LMI form. The basic form is given by:

R(x) > 0 , Q(x) − S(x)R(x)−1S(x)⊤ > 0

⇔



Q(x) S(x)

S(x)⊤ R(x)



 > 0

with matrices R(x) = R(x)⊤, Q(x) = Q(x)⊤ and S(x) of appropriate dimensions.

This is an important technique for transforming characteristic equations into LMI

expressions.

Here we encounter problems containing matrix variables as in the Lyapunov inequality
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case or the more general example:

A⊤P + P A + P BR−1B⊤P + Q < 0

where A, B, Q = Q⊤, R = R⊤ are given and P = P ⊤ > 0 is the variable. Using the

Schur complement this can be transformed into:




−A⊤P − P A − Q P B

B⊤P ⊤ R



 > 0

Due to the matrix variable this still is not of the form (3.1). For saving notation and

efficient computation there is no further transformation made (which can be done by

selecting a proper matrix basis) and the condensed LMI form is used.

A bunch of standard problems can be found in [Boy94]. The basics concerning opti-

mality and the numerical treatment are explained in [BV09].

Before presenting the important LMI conditions for the control design another system

representation has to be introduced. For the multi-objectivity different input-output-

channels are needed to be characterized for applying the respective specification. The

system for the mixed H2/H∞ robust control has the structure shown in Figure 3.1.

Here a channel distinction is made by construction as in the case of system Σrob from

P(s)

K(s)

z

yu

(s)

2

z�

z

w�

w2

w

Figure 3.1: Mixed H2/H∞ system setup
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Equation (2.6). First the LTI system Σ is considered:

Σ







ẋ = Ax + Bww + Buu , x(0) = x0

z = Czx + Dzww + Dzuu

y = Cyx + Dyww

. (3.2)

This is quiet similar to the definitions from Section 2.1. Considering a controller

K(s) =




AK BK

CK DK



 one obtains the closed-loop realization from Equation (2.8). Now

the particular performance channels between input w and output z are distinguished.

Therefor different channels are marked by the index j ∈ {1, . . . , N}. Using the notation

from [SGC97] input and output selection matrices Rj and Lj are chosen in the way:

Tj(s) := LjTzw(s)Rj =








A + BuDKCy BuCK Bj + BuDKFj

BKCy AK BKFj

Cj + EjDKCy EjCK Dj + EjDKFj








=:




Acl Bj

cl

Cj
cl Dj

cl





where Bj := BwRj , Cj := LjCz, Dj := LjDzwRj , Ej := LjDyw and Fj := DzuRj .

This simplifies the problem formulation a lot as input-output pairs can be stated as

(wj , zj) = (R−1
j w, Ljz).

3.2 Design specifications with matrix inequalities

Like already mentioned during the previous chapter there are several ways of formulat-

ing matrix norm specifications utilizing LMIs. In this work, for the closed loop system

the following properties shall be fulfilled:

• internal stability

• H2 optimal performance

• suboptimal H∞ gain (disturbance)

• passive behavior

• no remaining tracking error

• stability under uncertainties
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Guaranteeing all the objectives fully at the same instance turns out to be quiet am-

bitious and most probably leads to conservative results. The aim is to investigate the

combination of these goals and make use of the LMI framework advantage to realize

flexible problem formulations. It adds lots of degrees of freedoms allowing a precise

tuning of complex control synthesis tasks.

The following LMI criteria are based on the extensive listing and explanation from the

work [SGC97].

3.2.1 Internal stability

It is the prior task for the controller to stabilize the closed loop system internally.

This does not necessarily mean that the controller K(s) itself is described by a stable

system. A standard quadratic Lyapunov function ansatz for the homogeneous system

part with:

V (x) := x⊤Xx , X = X⊤ > 0 ,

where x determines the compound closed-loop system state and X the Lyapunov vari-

able, leads to the necessary condition:

V̇ (x) = x⊤

(

A
⊤

clX + XAcl

)

x
!

< 0 ⇔ A
⊤

clX + XAcl < 0 .

This expresses an additional constraint which is included in every LMI optimization

problem for ensuring the stability. Note that Acl contains the control parameters to

be found, but remains independent of the respective channel selections Tj(s).

3.2.2 H2 performance and generalization

During the part 2.2.3 already a derivation for an LMI condition on the H2 norm

minimization has been made. Here, in terms of the j-th channel choice to be the

respective H2 one, the following optimization problem similar to statement (2.27) is

obtained:

min ‖Tj‖2
2 → min

ν,W,X
ν s.t. : trace(W ) < ν




A

⊤

clX + XAcl XBj
cl

(Bj
cl)

⊤X −I



 < 0 ,




X (Cj

cl)
⊤

Cj
cl W



 > 0 , Dj
cl = 0 , X > 0

Note that again there is no feedthrough on the H2 channel allowed, which if possible

can be obtained by an appropriate controller choice of DK . The optimization problem
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contains of the variables ν > 0, X = X⊤, W = W ⊤. Because of the linear cost function

J(ν, X, W ) = ν with LMI restrictions F (ν, X, W ) > 0 it is an excellent SDP example.

Classically the H2 norm minimization guarantees optimality in presence of Gaussian

type disturbances and thus obtains good performance. An extension to this concept

has bee made in [Rot93] by introducing the generalized H2 norm in the form:

‖Tj‖g := sup
{

‖zj(τ)‖
∣
∣
∣ x(0) = 0, τ > 0,

∫ τ

0
‖wj(t)‖2

2 dt ≤ 1
}

.

Minimizing this norm can be interpreted as keeping the peak amplitude of the output

zj over an unit-energy input wj. It can also be referred to the loop gain from L2 to

L∞ being below some specified level. A characterization is obtained by considering

the following approach based on the Lyapunov function V (x) = x⊤Xx, X = X⊤ > 0.

Supposing the following inequalities hold ∀τ ≥ 0 for a given α > 0:

‖zj(τ)‖2
2 ≤ αV (x(τ)) ∧ V (x(τ)) <

∫ τ

0
‖wj(t)‖2

2 dt

the desired relation of ‖zj(τ)‖2
2 < α for ‖wj‖2

L2
≤ 1 is obtained and thus ‖Tj‖g <

√
α.

Minimizing α then leads to the minimal output peak amplitude.

The auxiliary step makes it easy to obtain an LMI characterization in the following

manner. By integrating over

V̇ (x) < w
⊤

j wj ⇔ x⊤

(

A
⊤

clX + XAcl

)

x + x⊤XBj
clwj + w

⊤

j (Bj
cl)

⊤Xx − w
⊤

j Iwj < 0

⇔



A

⊤

clX + XAcl XBj
cl

(Bj
cl)

⊤X −I



 < 0

the second inequality is obtained using x(0) = 0. The firs relation can be written as:

zj(τ)⊤zj(τ) ≤ αV (x(τ)) ⇔ 0 ≤ x⊤

(

X − (Cj
cl)

⊤

(
1

α
I
)

Cj
cl

)

x

⇐



X (Cj

cl)
⊤

Cj
cl αI



 > 0

which utilizes the Schur complement and requires Dj
cl = 0. Finally a similar optimiza-

tion problem as in the H2 case is found. Note that it is a special case with W = αI

allowing an interpretation of the resulting optimization parameter α and creating a

further restriction of the LMI bounds. Thus the generalized H2 norm minimization is
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summarized as:

min ‖Tj‖2
g → min

α,X
α s.t. :




A

⊤

clX + XAcl XBj
cl

(Bj
cl)

⊤X −I



 < 0 ,




X (Cj

cl)
⊤

Cj
cl αI



 > 0 , Dj
cl = 0 , X > 0

Again it can be computed as an SDP using less variables than in the usual H2 case.

3.2.3 H∞ performance

In comparison to the generalized H2 norm, the H∞ norm considers both, input wj and

output zj , to be measured in the L2 norm. It has been introduced in part 2.2.4 where

the bounded real lemma is sketched in Theorem 2.9. This lead to the following LMI

constrained for a given γ > 0:








A
⊤

clX + XAcl XBj
cl (Cj

cl)
⊤

(Bj
cl)

⊤X −γI (Dj
cl)

⊤

Cj
cl Dj

cl −γI








< 0 , X > 0

with the matrix variable X = X⊤. It has been derived by using passive concepts and

can thus be related to general quadratic constraints presented in the following part

3.2.4. The H∞ norm characterization is also crucial for robust stability guaranteeing

shown in the part 3.2.6.

The upper LMI condition ensures the constraint ‖Tj‖∞ < γ to be fulfilled if feasible.

It can be minimized over γ and X for obtaining the optimal H∞ norm. This results

in a so called eigenvalue problem [Boy94]. Nevertheless, often it is not desirable to

get the minimal norm bound because of eventual bad performance or control response,

and in many cases it is simply hard to compute.

That is why most frequently the suboptimal H∞ problem is approached to. This

means to solve the LMI constraints for a specified value of γ obtained by previous

considerations. One possibility is to calculate the optimal gain and take this as a point

of orientation for selecting a bound with satisfying performance. Another choice can

be made by depicting a mixed cost function different robust objectives are combined

and weighted.
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3.2.4 Passivity

The concept of passive and dissipative control is extensively explained in [van96]. Its

advantage is the occurrence of passive behavior in many physical systems, such as

electrical networks or Lagrangian type mechanical systems, which can be connected to

the Hamiltonian framework. There is a strong link to general energy considerations as

passivity makes use of stored internal energy and supply rates.

This concept also has a close relation to the Lyapunov theory and can be seen as an

extension. In the following passivity is defined briefly just utilizing the most important

terminology for this work.

Definition 3.1 Passive system [Kha02]

A general nonlinear system ΣNL from Equation (2.9) with ny = nu is said to be passive

if there exists a positive semidefinite function V ∈ C1(Rn×n,R), called storage function,

such that:

V̇ (x) =
∂V

∂x
f(x, u) ≤ u⊤y , ∀(x, u) ∈ R

n × R
nu .

Moreover, it is said to be strictly passive if there exists a positive definite function Ψ

such that:

V̇ (x) ≤ u⊤y − Ψ(x) .

The bound on the time derivative of the storage function V is referred to as supply

rate.

For the LTI system in this case, using the passivity channel j with nzj
= nwj

, the

standard storage function approach V (x) := x⊤Xx, X = X⊤ > 0 as in the former

cases is made. Then the following LMI condition for a system to be passive can easily

be derived by plugging in the system matrices:

V̇ (x) ≤ w
⊤

j zj ⇒



A

⊤

CLX + XACL XBj
CL − (Cj

CL)⊤

(Bj
CL)⊤X − Cj

CL −
(

(Dj
CL)⊤ + Dj

CL

)



 ≤ 0

Another point of view on passive systems can be made from the frequency domain. For

the closed loop transfer function Tj(s) being positive real, meaning Tj(s) + Tj(s)∗ >

0 ∀s : Re(s) > 0, is equivalent to a passive transfer behavior. This frequency domain

property can be shown by using the positive real lemma (PRL), proven in [Kha02]. An

extension to strict positive realness and thus a strict passive system is obtained with

help of the Kalman-Yakubovich-Popov lemma. The strictness is important because it

is equivalent to asymptotic stability of the system equilibrium.

Interestingly passivity this can be considered as a special case of a general quadratic
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constraint on wj and zj [SGC97]. These are of the form:

∫ τ

0




zj(t)

wj(t)





⊤



Uj Wj

W
⊤

j Vj








zj(t)

wj(t)



 dt < 0

with problem dependent fixed matrices Uj ≥ 0, Vj = V
⊤

j and Wj . Here, strict passivity

corresponds to Uj = 0, Vj = 0, Wj = −I which directly results in the integral form of

the passive definition.

The H∞ problem also forms a particular case of quadratic constraint choosing Uj =

γ−1I, Uj = −γI, Wj = 0. Because of these two objectives being closely related, there

are several common approaches to passive and H∞ control. In [BL07] this forms the

basis of a strategy constructing LMI conditions for this type of mixed objective task.

Especially in this work including passivity into the control design is of interest. The

approach is often used for flexible structures, such as the robot arm presented in Chap-

ter 4, because it is comparable to a damping injection. This yields a good "natural"

performance and guarantees certain robustness.

3.2.5 Nominal regulation

An important objective for control in general is reference tracking. This shall be

achieved by regulating the channel j such that lim
t→∞

zj(t) = 0 ∀wj ∈ Wj . It is required

to know the dynamic system class generating the input signal:

Wj =
{

wj(·)
∣
∣
∣ ẇj(t) = Swj(t) , S ∈ R

nwj
×nwj

}

The method of nominal regulation is based on [Fra76] and follows the internal model

principle. Note that in this case no LMI is formulated but an extension of the controller

structure is made, resulting in a higher order controller K(s). This means that the

disturbance model is included into controller estimate its ... and reject it from the

output zj .

The following assumptions are made to ensure the solubility of the regulation problem:

• Cj = LjCz
!

= Cy,

• Dj = LjDzwRj
!

= Fj = DywRj ,

• Ej = LjDzu
!

= 0,

• the pair








A Bj

0 S



 ,
(

Cy Fj

)



 is detectable.
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Clearly the first three requirements state that zj ≡ y and the last one is necessary

for being able to track the disturbance asymptotically as part of an extended system.

In the case of σ(S) ⊂ C− the input decays naturally lim
t→∞

wj(t) = 0 and thus no real

regulation occurs.

First the control structure is composed into the following parts as shown in [SGC97]:

u =




S 0 I

V I 0








v1

v2



 ,




v1

v2



 =








AK BK

CK1 DK1

CK2 DK2








y =: K̃(s) y .

Thus the two auxiliary signals v1, v2 generated by a conventional control structure feed

the extended control system which can be seen as an estimator of the input wj. This

system has the form:

Σŵ







˙̂wj = Sŵj + v2 , ŵj(0) = ŵj,0

u = v1 + V ŵj

.

It can be interpreted as an input observer which clarifies the detectability requirement.

To determine the output matrix V of the internal model consider the following idea

for constructing a system of equations. The regulation objective with respect to the

augmented system for a pseudo-stationary state x̄ is:

zj = Cjx̄ + Fjwj
!

= 0 .

For ensuring the existence of a solution to the regulation problem x̄ is assumed have

a linear relation to wj:

x̄ =: −Uwj ⇒ (−Cj + Fj)wj = 0 .

Now this is related to the pseudo-stationary dynamic plugging in ẇj = Swj and

Bww = Bjwj :

˙̄x = Ax̄ + Bu(V w̄j + v1) + Bww ⇒ (AU − US)wj = BuV w̄j + Bjwj + Buv1 .
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The compensation goal is obtained for ŵj = wj. In total this leads solving the linear

system equations:

AU + BuV − US = Bj

CyU = Fj

with matrix variables U ∈ R
n×nwj and V ∈ R

nu×nwj for concluding the internal model

approach. Here, we just apply this procedure in case there exists a unique solution

to the problem. If there is an infinite number of solutions, the transformation applied

in Section 3.3 is more difficult to be adapted because of a nonlinear problem arising

[SGC97].

Now consider the extended plant structure including the disturbance model:




z

y



 =











A BuV Bw Bu 0

0 S 0 0 I

Cz DzuV Dzw Dzu 0

Cy 0 Dyw 0 0


















w

v1

v2








.

The auxiliary control structure K̃(s) is designed and such that the extended system is

stabilized and subject to the original design specifications. This guarantees the nomi-

nal regulation criterion to be fulfilled.

A special case which appears commonly in control problems is reference tracking using

integral action. Thus for constant reference signals wj = r = const. the dynamics

clearly are described by S = 0.

There is also the opportunity of extending this concept to robust regulation like men-

tioned in [SGC97]. It is a quiet interesting approach which is going too far for the

application case treated in this work.

3.2.6 Robust stability

As already mentioned in the former part 2.2.4 regarding the H∞ LMI characterization,

it can be used for integrating robust stability into the design procedure. To do so,

recapitulate the small-gain theorem from Section 2.4. The considered uncertainty

∆ ∈ ∆ is assumed to fulfill ‖∆‖∞ ≤ 1. Then, for the closed loop system robust

stability is assured if ‖M‖∞ < 1 with z∆ = M(s)w∆.

In terms of the channel distinction in this chapter for channel j the following LMI
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condition is formulated:








A
⊤

clX + XAcl XBj
cl (Cj

cl)
⊤

(Bj
cl)

⊤X −I (Dj
cl)

⊤

Cj
cl Dj

cl −I








< 0 , X > 0 .

Clearly this is a special form of the H∞ criterion applied for γ = 1. This procedure is

highly dependent on uncertainty modeling and the respective filter choice for normal-

ization.

There are also several approaches to include robust performance as an LMI formulation.

In the work from [YHF00] a robust H2 performance synthesis method is presented. It

makes use of linear multipliers to compute LMI bounds on the uncertainty.

3.3 Linearizing inertia-preserving transform

After characterizing the control specifications for the closed-loop system in form of ma-

trix inequality, the actual optimization parameters have to be taken into account. Con-

sidering one common Lyapunov approach for all criteria results using X ∈ R(n+nK)×(n+nK)

with X = X⊤ > 0. Without the convention it is not possible to apply the upcoming

transformation, which would lead to bilinear matrix inequalities (BMI) where the de-

termination of a global optimal solution can not be guaranteed[Det01]. Unfortunately,

this introduces extra conservatism to the problem as it forms an artificial coupling

between the specifications for the benefit of better solubility. Furthermore, dependent

on the channel, there are several auxiliary variables such as W , α or γ.

Additionally to this matrix variable there is the controller parameterization AK , BK , CK , DK

which has to be determined. From the former derivations it can easily be seen that mul-

tiplications of these objective variables occur, for example in the form of A
⊤

clX + XAcl.

Actually this results in nonlinear terms and of course no LMI condition.

Therefore it is necessary to transform the problems into a linear relation. In terms

of matrix inequalities it is desired to keep the inertia of the descriptive matrix when

transforming. For a quadratic matrix M it is defined by:

inertia(M) :=








#{λ ∈ eig(M) | Re(λ) > 0}
#{λ ∈ eig(M) | Re(λ) < 0}
#{λ ∈ eig(M) | Re(λ) = 0}








.
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For a symmetric positive definite matrix this means to maintain positive definiteness

after applying an inertia preserving transform. This technique is often used in LMI

related control theory because it keeps up the desired property and thus the inequality

relation.

Originally inertia-preserving matrices have been investigated in [BS91] where the ap-

plication to hermitian and symmetric matrices was made clear. This corresponds to

the quadratic forms in LMI theory.

3.3.1 Derivation idea

To introduce the necessary transformation the problem is separated into several steps.

First the Lyapunov variable X = X⊤ shall be partitioned into a system and controller

part in the following way:

X =:




P N

N⊤ P̄



 , X−1 =:




Q M

M⊤ Q̄





where new matrix variables P = P ⊤, M, Q = Q⊤, N are introduced, whereas P̄ , Q̄ do

not play an important role. Thus the original symmetry is maintained. The proposed

structure holds the following relation:

I = XX−1 =




P Q + NM⊤ P M + NQ̄

N⊤Q + P̄M⊤ P̄ Q̄ + N⊤M



 ⇒







P Q + NM⊤ = I

P M + NQ̄ = 0

N⊤Q + P̄M⊤ = 0

(3.3)

which needs X to be invertible, coming from the requirement of X
!

> 0. Now consider

the nonlinear term:

XAcl =




P N

N⊤ P̄








A + BuDKCy BuCK

BKCy AK





The idea is to make use of the identity result just shown in Equation (3.3). This

motivates the proposed transformation matrix T :

T :=




Q I

M⊤ 0



 ⇒ XT =




P Q + NM⊤ P

N⊤Q + P̄M⊤ N⊤



 =




I P

0 N⊤



 .
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Then the transposed transformation matrix is multiplied from the left-hand side:

AclT =




(A + BuDKCy)Q + BuCKM⊤ A + BuDKCy

BKCyQ + AKM⊤ BKCy



 .

Finally it is applied to the whole expression:

T ⊤XAclT =




I 0

P N








(A + BuDKCy)Q + BuCKM⊤ A + BuDKCy

BKCyQ + AKM⊤ BKCy





=




AQ + Bu(DKCyQ + CKM⊤) A + BuDKCy

P (A + BuDKCy)Q + P BuCKM⊤ + NBKCyQ + NAKM⊤ P A + (P BuDK + NBK)Cy





=:




AQ + BuĈ A + BuD̂Cy

Â PA + B̂Cy





where the following substitutions have been made:

Â = P(A + BuDKCy)Q + PBuCKM⊤ + NBKCyQ + NAKM⊤ ,

B̂ = PBuDK + NBK ,

Ĉ = DKCyQ + CKM⊤ ,

D̂ = DK .

The introduction of new variables through substitution of nonlinear terms is common

technique within the LMI framework. In this case linear inequalities are obtained with

the new optimization variables P, Q, Â, B̂, Ĉ, D̂ (marked bold). For the sill remaining

unknown matrices, especially the controller matrices, a system of equations has to be

solved which is shown in Section 3.4.

Other nonlinear terms and transform multiplications occurring in the control specifi-

cations for a particular channel j are:

T ⊤XBj
cl =




I 0

P N








Bj + BuDKFj

BKFj



 =




Bj + BuD̂Fj

PBj + B̂Fj





Cj
clT =

(

Cj + EjDKCy EjCK

)




Q I

M⊤ 0



 =
(

CjQ + EjĈ Cj + EjD̂Cy

)

T ⊤XT =




I 0

P N








Q I

M⊤ 0



 =




Q I

I P




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Now all preliminaries for formulating an LMI optimization problem for the closed-loop

system are made.

3.3.2 Application to control specifications

The actual transformation matrix applied to the symmetric structured inequalities

has the form T̄ := diag(T, I). This is then used to transform the nonlinear matrix

inequalities in the manner T̄ ⊤F (x)T̄ > 0, which maintains the inertia. As a general

requirement arising from X > 0, the first LMI:




Q I

I P



 > 0 (3.4)

must hold. Without extensive derivations the following LMIs are stated with respect

to the considered design specifications from [SGC97]:

• Internal stability:




AQ + BuĈ + QA⊤ + Ĉ⊤B⊤

u Â⊤ + (A + BuD̂Cy)

Â + (A + BuD̂Cy)⊤ PA + B̂Cy + A⊤P + C⊤

y B̂⊤



 < 0

• Generalized H2 performance: min α s.t. α > 0,








AQ + BuĈ + QA⊤ + Ĉ⊤B⊤

u Â⊤ + (A + BuD̂Cy) Bj + BuD̂Fj

Â + (A + BuD̂Cy)⊤ PA + B̂Cy + A⊤P + C⊤

y B̂⊤ PBj + B̂Fj

(Bj + BuD̂Fj)⊤ (PBj + B̂Fj)⊤ −I








< 0 ,








Q I (CjQ + EjĈ)⊤

I P (Cj + EjD̂Cy)⊤

CjQ + EjĈ Cj + EjD̂Cy αI








> 0 , Dj + EjD̂Fj = 0

• Suboptimal H∞ performance: γ > 0,











AQ + BuĈ + QA⊤ + Ĉ⊤B⊤

u Â⊤ + (A + BuD̂Cy) ∗ ∗
Â + (A + BuD̂Cy)⊤ PA + B̂Cy + A⊤P + C⊤

y B̂⊤ ∗ ∗
(Bj + BuD̂Fj)⊤ (PBj + B̂Fj)⊤ −γI ∗

CjQ + EjĈ Cj + EjD̂Cy Dj + EjD̂Fj −γI











< 0
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• Passivity:








−”− −”− (Bj + BuD̂Fj) − (CjQ + EjĈ)⊤

−”− −”− (PBj + B̂Fj) − (Cj + EjD̂Cy)⊤

∗ ∗ −(Dj + EjD̂Fj) − (Dj + EjD̂Fj)⊤








< 0

• Robust stability: for ∆ ∈ ∆











AQ + BuĈ + QA⊤ + Ĉ⊤B⊤

u Â⊤ + (A + BuD̂Cy) ∗ ∗
Â + (A + BuD̂Cy)⊤ PA + B̂Cy + A⊤P + C⊤

y B̂⊤ ∗ ∗
(Bj + BuD̂Fj)⊤ (PBj + B̂Fj)⊤ −I ∗

CjQ + EjĈ Cj + EjD̂Cy Dj + EjD̂Fj −I











< 0

With this catalog of applicable LMI constraints an SDP based optimization algorithm

can be utilized for finding a common controller parameterization fulfilling all desired

objectives (if feasible).

3.4 Multi-objective controller synthesis

Considering the closed-loop system containing a dynamic control structure based on

output feedback and an additional channel distinction for performance objective char-

acterization described by LMIs, the actual synthesis of the controller can be realized.

Here, the main conclusion to the design algorithm is given and practical implementa-

tion issues shall be discussed.

3.4.1 Optimization procedure

After specifying the control objectives and linearizing the matrix inequalities an SDP

optimization problem has to be solved for obtaining the required matrix variables

P, Q, Â, B̂, Ĉ, D̂. First, one has to define the appropriate cost function J to be mini-

mized, min J(. . .) s.t. LMIs. There are the following proposition for adequate choices:

• One-sided control: The most direct way for the upper framework is to use

just one functional dependent on one of the optimization characteristics. This

could be J := α for minimizing the generalized H2 norm or J := γ for obtaining

the optimal H∞ solution. Note that a SDP cost function has to be linear. Thus,

a positiveness condition has to be included and no commonly used quadratic

functions are allowed.
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The one-sided approach is useful in cases where one specific objective is really of

major interest. However, this often leads to significant negative effects at other

aspects, making it impossible to be realized. This holds inn particular if the

control effort is not included.

• Mixed characteristics: To prevent such an unbalanced consideration a more

weighted cost function can be selected. As an example J := c1α + c2γ with

coefficients c1, c2 to be depict dependent on the desired penalizing effect. Here,

the tuning can be an issue while giving additional degrees of freedom.

Additionally one could add the trace of the auxiliary matrix for a conventional

H2 performance or introduce passivity indexes which have not be introduced in

this work.

• Preprocessing: Like in the case of suboptimal H∞ control, where the optimal

value close to a borderline eventual would have lead to unsophisticated behavior,

often a predefined choice of characteristic variables is made. This can happen

based on knowledge about the system and related signals or by preprocessing.

In fact, computing these values using the optimal framework gives an idea about

the range or lower limitation on bounds like α and γ. Then a nearly optimal

constant is depicted.

Practically speaking, there are a lot of tests, synthesis attempts and test simu-

lations involved in finding optimization parameters for the desired performance.

• Numerical conditioning: An alternative to strict cost formulations, eventually

being numerically critical, is to consider the conditioning of the Lyapunov vari-

able separation. Reconsider the constraint (3.4) emerging from the linearization

with a slight modification:



Q tI

tI P



 > 0

where t ≥ 1 represents an additional optimization variable. This is equivalent

to t2I − P Q < 0 and thus maximizing the value t results in a well-conditioned

result as proposed by [SGC97].

Of course this could also be included into a mixed cost function approach.

In [Det01] the following extra step for a reasonable synthesis is proposed. Mini-

mize b subject to:

Q < bI , P < bI ,




bI Ĉ

Ĉ⊤ bI



 > 0 ,




bI D̂

D̂⊤ bI



 > 0 .
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This assures the norms of the matrix variables to be forced into a reasonable

numerical range.

After choosing the appropriate type of cost characterization a numerical solving pro-

cedure has to be set up. In [BV09] a collection of the most important basics on

algorithms with respect to convex optimization and SDPs in particular are presented.

The main advantage of linear optimization problems subject to LMI constraints is the

development of efficient interior point methods twenty years ago.

The work [WB00] introduced a algorithm framework for solving SDPs based on the

works just mentioned. This resulted the MATLAB toolbox cvx [CVX12] which was

used for the investigation during this work. It has the advantage of intuitive problem

formulation and comprehensive output of data about the numerical procedure.

Recently an approach towards an exterior point algorithm for solving the mixed H2/H∞

problem has been presented [YYE15]. Although it just faces the state-feedback design,

the work is capable of treating a nonlinear matrix inequality case. The idea could be

an interesting way of avoiding the conservatism introduced by common methods.

Note that the solution to the mixed-objective robust control synthesis is computed

offline in contrast to other optimal approaches. The result is a dynamical system

which can be implemented easily while fulfilling all design specifications. This allows

several iterations of the same optimization setup with slide changes and for example

enabling mixed integer problems to be solved conventionally. Thus high complexity

formulations become manageable.

3.4.2 Controller reconstruction

In the former Section 3.3 it is shown how to obtain linear inequality constraints for

the respective design objectives. The idea is based on the substitution of nonlinear

terms which have to be related back to the controller realization AK , BK , CK , DK after

solving an SDP for P, Q, Â, B̂, Ĉ, D̂.

First the common Lyapunov variable X shall be reconstructed by using the relation

(3.3) implying:

NM⊤ = I − P Q .

From the LMI condition (3.4) using the Schur complement P > 0 and Q − P −1 > 0

can be concluded, leading to I −P Q < 0 invertible This guarantees the upper equation

in N, M ∈ Rn×nK always to be solvable, though not necessarily unique. The easiest

choice of the controller order is to be equal to the order of the augmented system

nK := n, because it makes N and M square matrices and simplifies the system of
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equations. Then, due to the infinite number of solutions, one matrix can be chosen

nonsingular and the other determined easily. For example:

M := I ⇒ N = I − P Q . (3.5)

The interesting question occurs whether a more sophisticated usage of these additional

degrees of freedom can be made, e.g. an extra optimization step. It is important to

find nonsingular matrices N and M .

Now it is possible to recover the parameterization for the controller K(s) (or K̃(s)

respectively) from the substitute definition:

DK = D̂ ,

CK =
(

Ĉ − D̂CyQ
)

M−⊤ ,

BK = N−1
(

B̂ − PBuD̂
)

,

AK = N−1
(

Â − P(A + BuDKCy)Q − PBuCKM⊤ − NBKCyQ
)

M−⊤ .

For this way of of direct solution it is important that N and M are invertible. In

[SGC97] it is stated that this treatment does not introduce any additional conservatism

to the problem.

3.4.3 Problem solubility

Especially in relation to AREs certain assumptions on the system have to be made,

guaranteeing an analytical solution. Unfortunately, in optimization based numerical

approaches this aspect is often left to the pure feasibility determination of the algorithm

without offering an insight on the origin of the bad conditions. Therefore, some criteria

in connection with the mixed H2/H∞ control developed in [DZGB94] shall be stated.

A output-feedback design for the plant P (s) =








A B2 B∞ Bu

Cz 0 0 Dzu

Cy Dy2 Dy∞ 0








is considered.

The following assumptions have to be made:

(A1) (A, Bu) stabilizable and (A, Cy) detectable

(A2) rankc (Dzu) full with
[

Dzu | D⊥
zu

]

unitary (orthonormal basis)

(A3) rankr (Dy2) full with R0 := Dy2D
⊤

y2 > 0 and R1 := Dy∞D⊤

y∞ > 0
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(A4) rankc




A − jωI Bu

Cz Dzu



 full ∀ω ∈ R

(A5) rankr




A − jωI B2

Cy Dy2



 full ∀ω ∈ R

Mainly, the solubility is related to the corresponding H∞ problem. The first assump-

tion is crucial for stabilizing a system by output-feedback in general. Condition 2

guarantees the control action to be included into the objective output, whereas the

second part is of technical interest. Assumption (A3) is important for the solution of

the H2 part to be nonsingular. The last two points, considering different Rosenbrock

matrices, are necessary for the corresponding Riccati equation to have a stabilizing

solution.

In this work Dz∞ 6= 0 is permitted but was so far not considered to be included into

the assumptions for an analytic solution. But nevertheless, clearly Dz2 = 0 has to be

guaranteed for obtaining a finite dimensional solution. For simplicity the system must

not have a control-measurement feedthrough Dyu = 0, which in case could be enforced

by integral action.

The numerical aspects of obtaining a feasible optimization problem have been in-

vestigated in [Det01]. It turns out that after exceeding a certain number of decision

variables the available LMI solvers suffer of handling the problem form coming from

the linearization approach. Therefor, a variable elimination idea has been established,

capable of dealing with high dimensional problems at the expense of the loss of gener-

ality.

3.4.4 Model extensions and reducing conservatism

A common disadvantage of robust control design, such as H∞ synthesis, is the aug-

mentation of the controller dimension. So far the control system is required to have

the same order as the considered system. This also includes the states of selected input

and output filters, which for too many signals can grow in number quiet rapidly.

Another huge increase of controller states occurs in case of nominal regulation from

part 3.2.5. It adds twice the dimension of the tracked input signal as it is part of the

extended system to be stabilized as well as part of the controller realization in form of

the internal model.

One approach to reduce the system order of the controller K(s) is sketched in [SGC97].

Assume the control dimension to be less than the system dimension, thus nK < n.
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With k := n−nK this results in the matrix variable adaption N, M ∈ Rn×(n−k), where

full column rank is assumed. Thus, for the transformation matrix T ∈ R(2n−k)×2n, in-

troduced in Section 3.3, holds dim
(

ker(T )
)

= k. This leads to all characteristic multi-

plication terms, like T ⊤XAclX, to be zero on this subspace, which results in nonstrict

LMIs at the end. In [Boy94] the impact of strict feasibility and conversion to strict

LMIs is discussed. Generally, an investigation on a unique solution AK , BK , CK , DK

of dimension n − k has to be made in the particular case.

Another possibility is to use more general tools on model reduction, like intensively

explained in [DP05], in beforehand to the controller synthesis. As the extended plant

could possibly be of large dimension, a lower dimensional approximation can be found

and used for designing K(s). This can for example be done by canceling out unob-

servable or controllable system parts while keeping a similar input-output behavior,

measured by an H∞ norm error.

Beside the supposedly high dimensional solution there is the frequently mentioned

problem of conservatism in connection with LMI based control procedures. The thesis

[Det01] is dealing with LMI framework introduced by Carsten Scherer and concen-

trates on the application, practicability and implementation of the approach. This

also includes reducing the conservatism introduced by one common Lyapunov variable

for all specifications. In general the solution to the corresponding ARE X0 forms the

least conservative "bound" (in a symmetric matrix definiteness way) on matrices X

fulfilling the respective ARI. For example considering the Lyapunov equation:

∀X0 : A⊤X0 + X0A + Q = 0 ⇒ X0 < X , ∀X : A⊤X + XA + Q < 0 .

The idea is to introduce a scaling between two Lyapunov variables of the form X2 =

βX1 with the scalar β. Thus, the conservative common Lyapunov assumption is weak-

ened significantly. Obviously this forms another nonlinearity and does no make direct

SDP optimization possible. In that work, an extra line search algorithm over β is

proposed. Although computationally expensive, the offline calculation for such multi-

objective controllers, as already discussed, allows to realize this without too much

additional effort.
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4 Flexible Robot Arm

The aim of this work is to design a controller for a flexible robot arm structure which

basically is represented by a partial differential equation (PDE). It is desired to examine

the structural properties of such an infinite dimensional system and the opportunities

of robust control techniques in this context. This shall be compared to the work from

[METH96] and their results.

Therefore, an LTI model is proposed based on reasonable assumptions which can

be used for the robust control synthesis. Different configurations regarding included

damping effects and the sensor concept are presented whose influence on the resulting

performance is investigated.

All the tests and validation steps are done by simulation using MATLAB Simulink. Al-

though there are no experimental results to varify characteristic effects, different order

models are used for simulation and control design. Utilizing a higher order represen-

tation for the real system as for the control design, allows it to observe the influence

of the simplifications made and eventually leads to undesired vibrations.

4.1 Modeling & simulation

First, an adequate system model has to be obtained that can be utilized for the control

scheme and implemented. As one of the most detailed and profound works on obtaining

and analyzing a distributed parameter model for the robot arm, [Kan90] forms the

basis of this modeling process. In general this is performed in two steps: by using

the Hamilton principle a comprehensive nonlinear system of differential equation is

generated which then is made manageable by linearization and modal analysis.

In terms of partial differential equations it is not as straight forward to solve these

numerically in comparison to ordinary differential equations. Therefore, the modal

analysis is no just necessary for the control methodology, but also crucial for the

simulative realization of the system.
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4.1.1 Beam equation derivation

There are several approaches for modeling such a flexible beam. The two most fre-

quently used ones are the Timoshenko and the Euler-Bernoulli beam, which are both

presented here. The difference between these descriptions depends on the accuracy

required.

Generally, mechanical systems in robotics are often modeled by the Lagrange frame-

work [DL15]. The idea can be derived from the Hamilton principle of virtual displace-

ment which is used here directly obtain the model equations.

System setup

For this work, basically, the simplest case of an one-link flexible robot arm is considered.

The system sketch with all important characteristics is shown in Figure 4.1. For

J

x

L

y(x)
m

J

τ

P

0

p

X

Y

y

Figure 4.1: Structural scheme of one-link flexible arm with virtual displacement

the control purpose the torque u(t) = τ(t), generated by an electrical DC motor, is

utilized for controlling the system. An important, and for rigid robotic systems most

significant, state is the rotation angle θ(t). Usually, this determines uniquely the end-

effector position. However, in the flexible case, the additional beam deformation y(x, t)

with respect to equilibrium line is included into the model.

The important geometric dimensions are the arm length L, load mass m, load inertia
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Jp and the hub inertia J0. Furthermore, there are the material properties such as the

density ρ, the cross-section area A, the elasticity measure Young modulus E and the

cross-section inertia I.

For converting between the global coordinates (X, Y ) and the generalized coordinates

(x, y) the following simple kinematic relation can be found:

P (X, Y ) =




x cos(θ(t)) − w(L, t) sin(θ(t))

x sin(θ(t)) + w(L, t) cos(θ(t))



 .

The deflection y(x, t) is caused by bending w(x, t) and shear s(x, t) with the following

slope description:

y′(x, t) = w(x, t) + s(x, t) .

Because of the cramped beam there are boundary conditions y(0, t) = y′(0, t) = 0.

Typical parameter sets are given in Table 4.1. The values have been taken from the

Symbol Meaning Value Unit

E Young modulus 1.96 · 1011 [N/m2]
I cross-section inertia 2.08 · 10−12 [m4]
A cross-section area 25 · 10−6 [m2]
L arm length 0.25 [m]
Th link thickness 1 · 10−3 [m]
ρ density 10.667 · 103 [kg/m3]
m payload mass 0.2 [kg]
J0 hub inertia 1 · 10−3 [kg m2]

Table 4.1: System parameters for slewing arm model

experimental setup in [METH96].

Kinetic & potential energy

Now physical energy considerations are applied for obtaining a model in terms of

differential equations. Thus, all the different energy types have to be expressed.

The kinetic energy contains three parts T = T1+T2+T3. First, an auxiliary calculation

is performed:

Ẋ = −xθ̇ sin(θ) − ẏ sin(θ) − yθ̇ cos(θ)

Ẏ = xθ̇ cos(θ) + ẏ cos(θ) − yθ̇ sin(θ)
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which leads to:

Ẋ2 + Ẏ 2 = sin2(θ)
(

x2θ̇2 + ẏ2 + 2xθ̇ẏ + y2θ̇2
)

+ cos2(θ)
(

x2θ̇2 + ẏ2 + 2xθ̇ẏ + y2θ̇2
)

+ cos(θ) sin(θ)
(

2xyθ̇2 + 2yẏθ̇ − 2xθ̇2y − 2ẏyθ̇
)

= x2θ̇2 + ẏ2 + 2xθ̇ẏ + y2θ̇2

In the following the arguments are mainly left out for convenience, thus y = y(x, t), w =

w(x, t), s = s(x, t), θ = θ(t). The link energy itself contains of a translatory and a

rotatory part which are integrals over the arm curve:

2T1 = ρA
∫ L

0

(

Ẋ2 + Ẏ 2
)

dx + ρI
∫ L

0

(

ẇ(x, t) + θ̇(t)
)2

dx

= ρA
∫ L

0

(

θ̇2y2 + x2θ̇2 + 2xθ̇ẏ + ẏ2
)

dx + ρI
∫ L

0

(

ẇ(x, t) + θ̇(t)
)2

dx .

As hub is fixed, there is just a rotation energy component:

2T2 = J0θ̇(t)2 .

For the payload, a distinction between translation and rotation is made with respect

to its center of mass:

2T3 = m
[

Ẋ2 + Ẏ 2
]

x=L
+ JP

(

ẇ(L, t) + θ̇
)2

= m
(

θ̇2y(L, t)2 + x2θ̇2 + 2xθ̇ẏ(L, t) + ẏ(L, t)2
)

+ JP

(

ẇ(L, t) + θ̇
)2

.

Here, no gravitational influence is considered. That just leaves the potential energy

component due to elastic deflection:

2V = EI
∫ L

0
(w′)2dx + kGA

∫ L

0
s2dx ,

where additional parameters, k [−] a factor dependent on the cross-section shape and

G [N/m2] the modulus of elasticity in shear, are introduced which will be dropped

later.

Lastly, the work done by the applied input torque is given in form the virtual work:

δW = u(t)δθ ,

where δ denotes the variation operator explained in the following part.
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Hamilton principle

The Lagrange formalism and Hamilton’s principle of virtual displacement are fre-

quently used for the analysis of mechanical systems. In the following the general

concept is introduced and applied to the flexible robot arm.

Therefor a revision of the variation concept and virtual displacement idea is made. In

[Bed85] a comprehensive explanation regarding the subject of applying Hamilton prin-

ciple is given, especially in connection with continuum mechanics. Variational calculus

is based on the minimization of a certain integral defined subject to the considered

problem. Here it is desired that the integral

I =
∫ t2

t1

(T − U + W )dt

to be minimized in the interval [t1, t2] = [0, t]. With the generalized coordinates qk(t)

describing the system state an admissible comparison motion (comparison function) is

defined:

q∗
k(t, ǫ) := qk(t) + ǫηk(t) ,

where ηk ∈ C2([t1, t2]) an arbitrary functions fulfilling ηk(t1) = ηk(t2) = 0. The

principle of Hamilton now states that the upper integral value is stationary when

q∗
k(t, ǫ) = qk(t), which leads to the optimality condition:

[

∂I∗(ǫ)

∂ǫ

]

ǫ=0

!
= 0 .

This motivates the notation of the variaton operater with respect to the comparison

function in the following way:

δ(·) ≡
[

∂

∂ǫ
(·)∗

]

ǫ=0

,

which obviously implies δqk = ηk. Then the final variational condition can be formu-

lated as:
∫ t2

t1

δ(T − V + W )dt
!≡ 0 .

Some important relations for T = T (qk, q̇k), V = V (qk) are:

• δT = ∂T
∂qk

δqk + ∂T
∂q̇k

δq̇k,

• δV = ∂V
∂qk

δqk,
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• δW = Qk δqk with Qk the generalized forces.

From the approach also the Lagrange method can be derived within a few more steps.

Now, the Hamilton technique of virtual displacement shall be applied to the flexible

arm system whose energy have been characterized yet. To prepare the final calcula-

tion, first the term s = y′ − w is substituted into V and the variation operator δ is

applied to the energy terms.

δT1 = ρA
∫ L

0

(

θ̇y2 + x2θ̇ + xẏ
)

dxδ θ̇ + ρA
∫ L

0
θ̇2y δy dx + ρA

∫ L

0

(

xθ̇ + ẏ
)

δẏ dx

+ ρI
∫ L

0

(

ẇ + θ̇
) (

δẇ + δθ̇
)

dx ,

δT2 = J0θ̇ δθ̇ ,

δT3 =
[

m
(

θ̇y2 + x2θ̇ + xẏ
)

δθ̇ + mθ̇2y δy + m
(

xθ̇ + ẏ
)

δẏ + JP

(

ẇ + θ̇
)(

δẇ + δθ̇
)]

x=L
,

δV = EI
∫ L

0
w′ δw′dx + kGA

∫ L

0
(y′ − w)(δy′ − δw)dx ,

δW = u δθ .

The following auxiliary calculations help to put the problem into the proposed form.

Consider the integral:

∫ t2

t1

[

A δθ +
∫ L

0
B δydx +

∫ L

0
C δwdx + D δy(L) + E δw(L)

]

dt
!≡ 0 .

Because of the variations being able to take any values, the coefficients must all be

zero, thus:

A, B, C, D, E
!

= 0 .

Using the original variation condition with the arbitrary closed time interval c:

∫

c
δ(T1 + T2 + T3 − V + W )dt

!≡ 0

and taking the partial integral of terms containing time derivatives of δθ, δy, δw, δy(L), δw(L),

a comparison to the upper form can be made. Examplarily the relation can be found

by using:

∫

c
f(y, ẏ, θ, θ̇, . . .)δθ̇ dt = f δθ

∣
∣
∣
c

−
∫

c
ḟ δθ dt

δθ(∂c)=0
= −

∫

c
ḟ δθ dt .
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This then results in five equations containing an ODE, two PDEs and two boundary

conditions (BC). Plugging in leads to:

(A)→ δθ:

θ̈

(
(

ρIL +
L3

3
ρA + J0 + JP + mL2

)

+ ρA
∫ L

0
y2dx + my(L)2

)

+2θ̇

(

ρA
∫ L

0
yẏ dx + my(L)ẏ(L)

)

+

(

ρA
∫ L

0
xÿ dx + mLÿ(L)

)

+

(

ρI
∫ L

0
ẅ dx + Jpẅ(L)

)

= u

(B)→ ∫

δy:

kGA
(

y′′ − w′
)

− ρA
(

xθ̈ + ÿ − yθ̇2
)

= 0

(C)→ ∫

δw:

EI w′′ + kGA(y′ − w) − ρI(ẅ + θ̈) = 0

(D)→ δy(L):

m
(

Lθ̈ + ÿ(L) − θ̇2y(L)
)

+ kGA
(

y′(L) − w(L)
)

= 0

(E)→ δw(L):

JP

(

ẅ(L) + θ̈
)

+ EI w′(L) = 0

Remember the fixed beam boundary conditions y(0, t) = y′(0, t) = 0 or w(0, t) = 0

respectively, which have been used for partial integration over terms containing δy′

and δw′.

These ordinary equations, partial equations and boundary conditions describe the

robot arm considering deformation under few physical assumptions. This quiet com-

plicated mathematical model is called Timoshenko beam model.

Simplifications

The model shall be used for simulation and control design purposes. To handle the

distributed parameter model in an easier way some simplifications have to be performed

to allow analytical as well as numerical considerations.

First the effect of shearing and the rotation energy of the beam shall be neglected.

This seems reasonable for arms with a small cross-section area and with relative stiff

material, for which the shearing strain does not have to be taken into account. That

means using the relations:
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• s ≡ 0 ⇒ y′ = w,

• kGA
∫ L

0 s2dx ≡ 0 (term in potential energy V ),

• results in (C)-equation terms to be substituted into (B)- and (D)-equation.

With help of that the much shorter nonlinear system of equations:

θ̈

(
(L3

3
ρA + J0 + JP + mL2

)

+ ρA
∫ L

0
y2dx + my(L)2

)

+ 2θ̇

(

ρA
∫ L

0
yẏ dx + my(L)ẏ(L)

)

+

(

ρA
∫ L

0
xÿ dx + mLÿ(L)

)

= u

EI y′′′′ + ρA
(

xθ̈ + ÿ − yθ̇2
)

= 0

EI y(L)′′′ − m
(

Lθ̈ + ÿ(L) − θ̇2y(L)
)

= 0

y′′(L) = 0

is found. This model is referred to as the Euler-Bernoulli beam.

To apply linear system theory methods the nonlinear system equations are linearized

around the operational point of small deflection and angular velocity, thus w, y, θ̇ << 1.

Due to that higher order terms disappear and the following linear model of the flexible

robot arm is obtained:

J θ̈(t) + ρA
∫ L

0
xÿ(x, t) dx + mLÿ(L, t) = u(t) , (4.1)

EI y(x, t)′′′′ + ρA
(

xθ̈(t) + ÿ(x, t)
)

= 0 , (4.2)

with the total inertia J = (ρAL3/3 + J0 + JP + mL2) subject to the BCs:

y(0, t) = y′(0, t) = 0 ,

y′′(L, t) = 0 ,

EI y(L, t)′′′ − m
(

Lθ̈(t) + ÿ(L, t)
)

= 0 .

This is the common linear model used for the flexible arm, well investigated in the

literature [DL15], although sometimes treated with a different BC ansatz. Now a

modal analysis can be performed for analyzing the solution structure of the distributed

parameter model and designing an adequate control procedure.

Sometimes a simpler version of the 1st dynamic equation of the linear representation

can be found without an integral term. First the 2nd dynamic equation is multiplied
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by x and then integrated with respect to x over the interval [0, L]:

ρA
∫ L

0
xÿ dx = −EI

∫ L

0
xy′′′′dx − ρA

∫ L

0
x2 dx θ̈

= −EI xy′′′
∣
∣
∣
∣

L

0
+ EI

(

y′′(L) − y′′(0)
)

− ρAL3

3
θ̈ .

Now plugging in the BCs leads to:

ρA
∫ L

0
xÿ dx = −mL

(

Lθ̈(t) + ÿ(L, t)
)

− EI y′′(0) − ρAL3

3
θ̈ .

Then the integral term in the 1st equation can be replaced which leads, due to canca-

lations, to the much simpler version of Equation (4.1):

(J0 + JP ) θ̈(t) − EI y′′(0, t) = u(t) . (4.3)

Depending on which system of equations seems more adequate for the current purpose,

this or the original version of the linear system can be used.

4.1.2 Modal analysis

In the previous part a linear distributed parameter model has been developed. For

being able to simulate the system and to design a controller it is crucial to know the

form of the solution. Especially for the PDE case this is not as obvious as for ODEs.

This investigation results in an infinite dimensional ODE which is approximated in

terms of a finite representation.

For the flexible robot arm there are two approaches to tackle this problem [BO88].

Choosing the ansatz function for the separation of variables is part of the modeling

procedure itself and depends on which effects are wanted to be investigated on.

In the following part the notation changes slightly due to common literature conven-

tions. For the bending deformation y the variable w is used instead. Reconsider the

system structure shown in Figure 4.2 adapted to the new circumstances. To summarize

possible configurations used in literature to characterize the BCs, Table 4.2 presents

the most significant examples. It is desired to use a solution procedure which is capable

of handling arbitrary BC selections.

For the demonstrations in the following part a normalized, and thus dimensionless,

system is utilized. This leaves the parameters mentioned in Table 4.1 to be treated as

1 and without dimension. Therefore, a qualitative analysis of the modeling approaches
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Figure 4.2: Flexible robot arm sketch for modal analysis

Source Boundary conditions Interpretation

(BC1) [METH96] w(0, t) = w′(0, t) = 0 cramped beam
w′′(L, t) = 0 neglected shear

EI w′′′(L, t) = m
(

Lθ̈(t) + ẅ(L, t)
)

balance of shear forces at tip

(BC2) [DL15] w(0, t) = 0 fixed beam

EI w′′(0, t) = J0

(

θ̈(t) + ẅ′(0, t)
)

− u(t) balance of moments at base

EI w′′(L, t) = −JP

(

θ̈(t) + ẅ′(L, t)
)

balance of moments at tip

EI w′′′(L, t) = mp

(

Lθ̈(t) + ẅ(L, t)
)

balance of shear forces at tip

(BC3) [BO88] w(0, t) = w′(0, t) = 0 cramped beam
w′′(L, t) = w′′′(L, t) = 0 simplicity

Table 4.2: Possible boundary configurations

is performed.

Constrained mode method

The first ansatz is based on the initial assumption of a constrained hub θ̈ ≡ 0 without

actuation u(t) = 0 [Kan90]. Under this condition, from (4.2) the system takes the

form:

w′′′′(x, t) +
Aρ

EI
ẅ(x, t) = 0 , (4.4)

which is a characterized as one linear partial differential equation of 4th order. Because

of the linearity the well known separation of variables can be performed in the following
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manner:

w(x, t) =: φ(x)q(t) ⇒ EI

Aρ

φ′′′′(x)

φ(x)
= − q̈(t)

q(t)
!

= const. =: ω2 .

Choosing a strictly positive coefficient ω2 is related to expected form of solutions.

Thus, the dynamic equations become:

q̈(t) + ω2q(t) = 0 , (4.5)

φ′′′′(x) − Aρ

EI
ω2 φ(x) = 0 . (4.6)

For determining the infinite eigenfrequencies, the BCs have to be included into the

solving process. This results in an eigenfunction problem. The Equation (4.6) forms

a boundary value problem (BVP) of fourth order with the general solution:

φ(x) = A sin(βx) + B cos(βx) + C sinh(βx) + D cosh(βx)

= A sin(βx) + B cos(βx) +
(

C

2
+

D

2

)

eβx +
(

−C

2
+

D

2

)

e−βx

with the eigenvalue β4 := Aρ
EI

ω2. Plugging the general solution into any BCs leads to a

system of equations of the following form with the parameter vector P = [A, B, C, D]⊤:

A(β)P = 0 ⇔ P ∈ ker
(

A(β)
)

with the characteristic matrix A(β). This leads to the so-called transcendental equa-

tion:

det
(

A(β)
)

!
= 0 , (4.7)

which has to be solved for an infinite number of transcendental roots βi and corre-

sponding parameter set basis Pi. Note that Equation (4.7) has no polynomial form an

is highly nonlinear, thus can only be solved numerically. In Figure 4.3 the respective

eigenvalue solutions are plotted for several iterations. The comparison between the

distinct BCs shows slight differences. In the following the results are generated just

for (BC1) from Table 4.2. Generally, there seems to be a constant difference between

to eigenvalues ∆βi = βi+1 −βi as expected. Although, there are some exceptions, these

are considered to be numerical inaccuracies.

Now, for every eigenvalue βi a solution φi can be calculated by determining ker
(

A(βi)
)

.

It has to be mentioned that this task is numerically challenging because of high powers

of βi appearing due two second and third order derivatives. This conditions the ma-
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Figure 4.3: Transcendental roots in constrained mode

trix A very bad which is handled by row-wise normalization effectively. In the works

mentioned in Table 4.2 analytic solutions are given.

Note that these solutions are not unique due to dim ker
(

A(βi)
)

= 1 and could be

chosen in an arbitrary manner. Here, they are normalized such that

‖φi‖2
L2(0,L) = 〈φi, φi〉L2(0,L) =

∫ L

0
φi(x)2dx = 1

and a orthonormal function basis is obtained due to the orthogonality 〈φi, φj〉 = 0 for

i 6= j. The first few, most significant eigenmodes are illustrated in Figure 4.4. Thus
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Figure 4.4: Eigenfunction examples φi(x) for constrained mode
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the solution of (4.4) can be represented as the infinite sum

w(x, t) =
∞∑

i=1

φi(x)qi(t) (4.8)

with respect to the characteristic eigenvalues-eigenfrequency relation ωi =
√

EI
Aρ

β2
i .

Now, a solution for the non-homogeneous system shall be constructed. Therefor the

approach is plugged into the original linear equations. Substituting the deformation

form (4.8) into the dynamic equation (4.1) leads to:

Jθ̈(t) + Aρ
∞∑

i=1

∫ L

0
xφi(x)dx q̈i(t) + mL

∞∑

i=1

φi(L)q̈i(t) = u(t)

⇒ Jθ̈(t) −
∞∑

i=1

ω2
i

(

Aρ
∫ L

0
xφi(x)dx + mL φi(L)

)

qi(t) = u(t) .

Here, equation (4.3) can also be used as an alternative to (4.1), which yet includes

(BC1) for simplifications. Nevertheless, a similar system structure is generated.

Plugging the infinite sum for w(x, t) into the PDE 4.2 and modulating the equation

with φj, j ∈ {1, 2, . . .} over [0, L] using the orthonormality yields:

∞∑

i=1

φ′′′′
i (x)qi(t) + Aρ xθ̈(t) + Aρ

∞∑

i=1

φi(x)q̈i(t) = 0

⇒ Aρ

EI
ω2

j qj(t) + Aρ
∫ L

0
xφj(x)dx θ̈(t) + Aρ q̈j(t) = 0 .

With substituting the coefficients, which can be determined by the knowledge of the

eigenfunctions φi, into constants ai, b, ci, di the infinite dimensional ODE describing

the dynamics has the following form:

θ̈(t) −
∞∑

i=1

aiqi(t) = b u(t)

q̈j(t) + cjqj(t) + dj θ̈(t) = 0 , j ∈ {1, 2, . . .} .

The simulation is performed for finite approximation of order N with the respective

state vector:

z = [θ , θ̇ , q1 , q̇1 , . . . , qN , q̇N ]⊤ .
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where the system dynamics in LTI matrix form ẋ = Ax + Bu are given by:

A =




















0 1 0 0 · · · 0 0

0 0 a1 0 · · · aN 0

0 0 0 1 · · · 0 0

0 0 −(c1 + d1a1) 0 · · · −d1aN

...
...

...
...

. . .
...

...

0 0 0 0 · · · 0 1

0 0 −dNa1 0 · · · −(cN + dNaN) 0




















, B =




















0

b

0

−d1b
...

0

−dNb




















.

Simulating this finite dimensional approximation of the original system with an excita-

tion of the form u(t) = U sin(ωut) leads to the results presented in Figure 4.5 where the

first four mode trajectories are plotted. One can see that the amplitude range highly
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Figure 4.5: Mode solution examples qi(t) for constrained mode

decreases with the mode order. This loss of impact is evident for the approximation

idea to leave higher mode components out. Another important observation is that

because of the vastly coupled system dynamics each mode graph contains of several

frequency components beside the excitation and its own eigenfrequency.
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Finally, the deformation can be simulated using the relation:

w(x, t) =
∞∑

i=1

φi(x)qi(t) ≈
N∑

i=1

φi(x)qi(t)

resulting in the three dimensional plot from Figure 4.6. Some of the BCs, such as the
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Figure 4.6: Resulting bending deformation w(x, t) in constrained mode

crimped beam condition, can easily be recognized to be fulfilled. For referring these

results directly to the flexible arm structure, the basic kinematic relation (X, Y ) =
[

x cos(θ(t)) − w(x, t) sin(θ(t)) , x sin(θ(t)) + w(x, t) cos(θ(t))
]

is applied.

Overall, the constrained mode assumption is relatively strong but leads to simple

precalculations due to the assumption of no direct effect of the deformation on the

rotational hub. This can be interpreted as the result if a high hub inertia. On the

other hand, a lots of couplings in the system dynamics with respect to the mode states

are generated. Accordingly, the system gets complicated and stiff for large scale, thus

hard to simulate. Therefore, this approach is hard to validate and not often used.

Unconstrained mode method

In comparison to the former approach, the unconstrained mode method does not rely

on the fixed hub assumption. Though, the procedure is based on analog ideas. Sim-
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ilarly, the homogeneous system is considered first. The following ansatz for the state

variables is made:

θ(t) =η(t) + γ q(t) ,

w(x, t) =φ(x)q(t) .

The basic assumption is a direct influence of the mode component q on the rotational

angle θ. This introduces an extra degree of freedom in form of the parameter γ. It is

chosen such that:

Jγ + Aρ
∫ L

0
xφ(x)dx + mL φ(L) = 0 ,

which ensures the moment caused by deformation to vanish. Consequently, plugging

this into (4.1) yields:

Jη̈(t) +
[

Jγ + Aρ
∫ L

0
xφ(x)dx + mL φ(L)

]

q̈(t) = u(t)

and thus, also considering (4.2) one gets:

Jη̈(t) = 0 ,

EI φ′′′′(x)q(t) + Aρ
(

xη̈(t) + (γx + φ(x)) q̈(x, t)
)

= 0 .

Applying again the separation of variables principle holds:

⇒ EI

Aρ

φ′′′′(x)

γx + φ(x)
= − q̈(t)

q(t)
!

= const. =: ω2 .

To obtain a homogeneous problem formulation the new variable Φ(x) := φ(x) + γx is

substituted into this relation and the following characteristic ODEs are found:

q̈(t) + ω2q(t) = 0 , (4.9)

Φ′′′′(x) − Aρ

EI
ω2 Φ(x) = 0 , (4.10)

where the BVP is adjusted for the (BC1) from Table 4.2:

Φ(0) = Φ′′(L) = 0 ,

Φ′(0) = γ ,

Φ′′′(L) = −mω2

EI
Φ(L) .
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The 3rd BC shall be reformulated independently of the auxiliary parameter γ. There-

fore first, the new spatial variable Φ shall be related to γ with:

Jγ = − Aρ
∫ L

0
x
(

Φ(x) − γx
)

dx − mL
(

Φ(L) − γL
)

= − Aρ
∫ L

0
xΦ(x)dx + Aρ

L3

3
γ − mLΦ(L) + mL2γ (4.11)

⇒ (J0 + JP ) γ = − EI

ω2

∫ L

0
x Φ′′′′(x)dx − mLΦ(L)

= − EI

ω2

(

xΦ′′′(x)
∣
∣
∣

L

0
−
∫ L

0
Φ′′′(x)dx

)

− mLΦ(L)

= − EI

ω2

(

LΦ′′′(L) − Φ′′(L) + Φ′′(0)
)

− mLΦ(L)

BC
= − EI

ω2

(

− mLω2

EI
Φ(L) + Φ′′(0)

)

− mLΦ(L)

= − EI

ω2
Φ′′(0) (4.12)

Thus, the third BC can be stated easily as:

EI

J0 + JP
Φ′′(0) + ω2Φ′(0) = 0 .

which is referred to as (BC1’). Now, a homogeneous BVP has to be solved, similarly

as for the constrained mode method with slightly changed BCs. The function ansatz

again is:

Φ(x) = A sin(βx) + B cos(βx) + C sinh(βx) + D cosh(βx) ,

where β4 := Aρ
EI

ω2 the eigenvalue. Then the transcendental equation det
(

A(β)
)

= 0

is obtained by plugging this form into the (BC1’). The characteristic roots βi are

obtained as presented in Figure 4.3. With the same L2(0, L) normalization, but in this

case of the respective auxiliary eigenfunctions Φi, where the eigenmodes shown in sub-

figure 4.7 (a) are obtained. To relate these solutions back to the original eigenfunctions

the coefficients γi are computed, either by using directly the definition (4.11) or the

much simpler form (4.12). Those eigenmodes can be seen in sub-figure 4.7 (b).

Then the general solutions have the infinite sum representations:

w(x, t) =
∞∑

i=1

φi(x)qi(t) , θ(t) = η(t) +
∞∑

i=1

γiqi(t)
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Figure 4.7: Eigenfunction examples for unconstrained mode method

with the eigenvalue-eigenfrequency pairing ωi =
√

EI
Aρ

β2
i . Thus, the non-homogeneous

dynamic system formed by (4.1) and (4.2) is considered again with the new solution

forms.

Plugging the solution into the first equation and using the property of γi leads to:

Jη̈(t) +
∞∑

i=1

[

Jγi + Aρ
∫ L

0
xφi(x)dx + mL φi(L)

]

q̈i(t) = u(t) ,

⇒ Jη̈(t) = u(t) ,

and for second dynamic relation one obtains:

EI
∞∑

i=1

φ′′′′
i (x)qi(t) + Aρ

∞∑

i=1

(

γix + φi(x)
)

q̈i(t) + Aρ xη̈(t) = 0 ,

⇒
∞∑

i=1

ω2
i

(

γix + φi(x)
)

qi(t) +
∞∑

i=1

(

γix + φi(x)
)

q̈i(t) = −x

J
u(t) ,

⇔
∞∑

i=1

Φi(x)
(

q̈i(t) + ω2
i qi(t)

)

= −x

J
u(t) .

Modulating the relation with Φj with respect to x over [0, L] and using the orthonor-

mality of the auxiliary eigenfunction 〈Φi, Φj〉 = 0 ∀i 6= j, 〈Φi, Φi〉 = 1, as well as the

definition of γj, the following relation is derived ∀j ∈ {1, 2, . . .}:

q̈j(t) + ω2
j qj(t) = − 1

J

∫ L

0
x Φj(x)dx u(t) = − 1

JAρ

(

EI

ω2
j

Φ′′
j (0) + mLΦj(L)

)

︸ ︷︷ ︸

=:kj

u(t) .
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For realization purposes, a finite approximization of order N is performed resulting in

the following states:

z = [η , η̇ , q1 , q̇1 , . . . , qN , q̇N ]⊤

with the LTI system state space representation:

A =




















0 1 0 0 · · · 0 0

0 0 0 0 · · · 0 0

0 0 0 1 · · · 0 0

0 0 −ω2
1 0 · · · 0

...
...

...
...

. . .
...

...

0 0 0 0 · · · 0 1

0 0 0 0 · · · −ω2
N 0




















, B =




















0

1/J

0

k1

...

0

kN




















. (4.13)

Now, there are no dynamic couplings between the modes, except for the common

control input. Solving this ODE system for an excitation signal u(t) = U sin(ωut)

generates the trajectories presented in Figure 4.8. In this case one clearly notes that
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Figure 4.8: Mode solution examples qi(t) for unconstrained mode
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each mode just contains of the excitation frequency and its eigencomponent due to the

uncoupled linear dynamical blocks in matrix A. As in the former subject, the high

frequency modes lie in a small scale range.

With these numeric solutions the total deformation:

w(x, t) =
∞∑

i=1

φi(x)qi(t) ≈
N∑

i=1

φi(x)qi(t)

can be computed, which has been realized in Figure 4.9. Notably, the constraints due
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Figure 4.9: Resulting bending deformation w(x, t) in unconstrained mode

to the BCs are valid. This time, the oscillation shape is more harmonic in comparison

to Figure 4.6 because of the much simpler system of dynamic equations. The relation

to the flexible arm structure is done by calculating the rotational angle:

θ(t) = η(t) +
∞∑

i=1

γiqi(t) ≈ η(t) +
N∑

i=1

γiqi(t)

and utilizing again (X, Y ) =
[

x cos(θ(t))−w(x, t) sin(θ(t)) , x sin(θ(t))+w(x, t) cos(θ(t))
]

.

The unconstrained mode method is based on the more general assumption of a direct

influence of the elastic deformation modes qi on the rigid body motion represented

by the rotational angle θ [BO88]. After difficult pre-considerations, a relatively simple
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model structure is obtained with purely decoupled mode dynamics, forming oscillatory

blocks in the matrix A. This allows an efficient time simulation even for high model

order.

This approach is most frequently used in the literature seems more reasonable than the

constrained mode one. Therefore, it shall be selected as the utilized system structure

in this work for simulation and control design based on (BC1).

Dynamic extensions

In [METH96] several extensions for the flexible robot arm model are mentioned. The

arm is rotated by a DC motor and the respective back-electromotive force shall be

included into the modelling approach. Consider the input law for the torque:

u(t) =
Kt

Ra

(

v(t) − Keθ̇(t)
)

where Kt the torque constant, Ra the internal resistance and Ke the electromotive

constant. Additionally the viscosity on the motor shaft/spindle Dη̇ and on arm and

payload 2ζiωiq̇i shall be included.

For the unconstrained mode flexible arm model, plugging these extension in holds:

Jη̈(t) +
(

KtKe

Ra
+ D

)

η̇(t) +
KtKe

Ra

∞∑

i=1

γiqi(t) =
Kt

Ra
v(t)

q̈j(t) +

(

KtKe

Ra

∞∑

i=1

γiq̇i(t) + 2ζjωj q̇j(t)

)

+ ω2
j qj = kj

Kt

Ra
v(t) .

Including the motor model and damping considers multiple effects of practical interest.

Nevertheless, it introduces lots of couplings which can lead to problem and it remains

unclear how to choose the mode damping factors ζi.

In several works, such as [Kan90] and [DL15], the extension to multiple link structures

is explained. A similar approach to the Hamilton principle with additional rotational

transformations can be used to obtain a higher order set of ODEs, PDEs and BCs.

This seems very interesting for application issues, but goes too far in terms of this

work, which is interested in investigating basic effects.

4.1.3 Validation

The obtained mathematical model is tested under realistic circumstances and evaluated

for practical use. There is no available experimental data and thus the validation has to
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be done by reason. This includes to use the real parameterization and tryout different

excitation scenarios.

Realistic parameter setting

After the qualitative demonstrations during the modal analysis, a quantitative evalua-

tion of the model is performed. In order to do so, the parameters from the experiment

in [METH96], which are shown in Table 4.1, are plugged into the linear model from

(4.1) and (4.2). Based on that the modal approximation procedure generates an LTI

system representation. In the following, again a sine wave signal u(t) = U sin(t) with

U = 0.05Nm (corresponds to 1V for the DC motor from the article) excites the sys-

tem.

First, the constrained mode method is shown to be inappropriate for this system. In

Figure 4.10 (a) the respective modes qi(t) and (b) the resulting deformation w(x, t)

are illustrated. The caused bending due to the vibrations is clearly negligibly small,
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Figure 4.10: Constrained mode results for real system parameters

as the peak deformation is in the range of 10−8. Remember that the constrained mode

approach requires idealistically a very large hub inertia J0, which is no given in this

case. Thus, it does not serve for investigations on vibrations here.

That is why for this work, only unconstrained mode model has been implemented. As

before, the BVP related to the spatial boundary conditions has to be solved. In Figure

4.11 the auxiliary and original eigenfunctions are plotted for the first five modes. Of

course, the auxiliary functions have been normalized ‖Φ‖L2(0,L) = 1. Note that this

time, the first mode φ1 has an significant impact. To get an impression of the eigendy-

namics, Table 4.3 lists the corresponding eigenfrequencies ωi for the first seven modes,
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Figure 4.11: Unconstrained mode eigenfunction constellations for real parameters

which are obtained by solving the transcendental equation (4.7). The high frequencies

Mode number i 1 2 3 4 5 6 7
Eigenfrequency

ωi [rad/s]
52.7 316.2 996.5 2.1 · 103 3.5 · 103 5.4 · 103 7.6 · 103

Table 4.3: Eigenfrequencies ωi of real flexible arm (unconstrained mode)

in the unnormalized case are likely to lead to stiff systems and cause numerical issues.

Thus, stiff solvers are recommended when implementing a system of higher order.

With respect to these characteristics, the time-dependent eigenmodes qi are calculated

by solving the ODE system (4.13). They are presented in Figure 4.12. The entire

trajectories are shown in (a). In comparison to Figure 4.10 (a), the scale lies within a

realistic margin. Most notably, the excitation frequency can be recognized. The zoom

in part (b) demonstrates the vibrations due to the respective eigenfrequency. Note the

different range of the time axes.

By combining the spatial eigenfunctions φi(x) and time-domain eigenmodes qi(t), the

deformation w(x, t) can be calculated. The deformation plot from Figure 4.13 confirms

the reasonability of the unconstrained approach. With a peak bending deformation of

around 3cm, a significant impact of the flexibility on the actual robot arm is expected.

Still, the deformation is small enough to give admission to the model. This can be

observed more clearly when considering Figure 4.14. It presents the flexible arm work-

ing space in global coordinates (X, Y ) and the position at the end of simulation time

t = 15s. The equilibrium arm position, which forms the reference for the local x axis,

is marked by a dashed line. A noticeable bending is observed considering the elastic
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Figure 4.12: Unconstrained mode eigenmodes for real parameters

arm, which is sampled in blue. Such a result is comprehensible for the applied torque

dimension.

In direct comparison to the referenced work [METH96] one can state, that similar

results are obtained. The eigenfrequencies correspond and the transfer behavior is

just slightly different, because of the considered damping. Here, no damping shall be

included because of simplicity and to investigate the oscillatory effects directly.

Excitation scenarios

Additionally, the obtained system is examined for different test scenarios. The excita-

tion signals simulate real practical conditions, as well as difficult circumstances, which

probably harm the system security.

The first scenario starts with a linearly rising torque applied to the system for the

first few seconds. This is sufficiently smooth for not exciting any oscillations in the

first place, which can be observed in Figure 4.15. Two different mode plots can are

presented. In (a), the input torque is kept constant with u(t) = 0.04Nm ∀t ≥ 10s

instead of continuing to rise linearly. This leads to a steady deformation, which is

illustrated in Figure 4.16. There, the steady state bending is presented for the entire

flexible arm structure.

In opposite to that, Figure 4.15 (b) demonstrates what happens in case of a sudden

break after accelerating. This leaves the modes in a new initial state without exci-

tation, which causes them to oscillate with their eigenfrequency. Such a vibratory

behavior is undesired and thus, unsteady input signals should be avoided. In terms of

the validation, this reflects the sensitive character of undamped system.
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Figure 4.13: Bending deformation w(x, t) for unconstrained mode with real parameters

To take a closer look at the decoupled homogeneous system dynamics, the is excited

by initializing the mode states q0,i 6= 0. The results are presented in Figure 4.17. As

expected, similar eigendynamics are observed in (a). The relatively large frequency

values shown in Table 4.3 result in rapidly oscillating bending deformation as seen in

subfigure (b).

When dealing with undamped systems of second order, resonances can cause large

problems resulting in a destabilization. The infinite dimensional nature of the real

system leads to an infinite number of resonance frequencies that occur as large peaks

in the bode plot. In Figure 4.18 the deformation plots for a resonance excitation with

the first two eigenfrequencies are presented. In both cases an unstably growing ampli-

tude can be noticed. The first mode resonance in (a) is causing larger deformation as

(b), while both are excited with the same amplitude.

The observed reactions towards the proposed excitation signals show that the oscilla-

tion behavior appears, that is desired to be investigated in a control context. Further-

more, a realistic scaling with respect to the physical parameterization can be observed.

Parameter variations

A brief demonstration on the variation of one important parameter is made to com-

plete the validation considerations. The elasticity of the flexible arm is significantly

influenced by the Young modulus E. It represents the structural stiffness against ro-

tation due to bending. Figure 4.19 shows a comparison between the trajectories of the
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Figure 4.14: Flexible arm structure in unconstrained mode after excitation
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Figure 4.15: Eigenmodes for different acceleration scenarios

mode qi(t) for different values of E. It is easy to notice that decreasing the modulus

E leads to less stiffness and stronger vibrations of the first mode. Beside the increased

amplification of the excitation signal, the eigenmodes become more significant as well.

This forms another evidence for the accuracy of the mathematical model.

4.2 Control analysis & objectives

In anticipation of Chapter 5, some control characteristics of the flexible robot arm

shall be discussed. It is pointed out that there is a very close related to the modeling

process in terms of robust control, as it forms the basis for the robustness and uncer-

tainty analysis.
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Figure 4.16: Flexible arm structure after constant torque applied smoothly
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Figure 4.17: Excitation by non-zero initial state z0

Therefor, the different system configurations shall be examined in terms of system

theoretic characteristics. Then, dependent on these results, the control tasks shall be

formulated more detailed. This is accompanied by specifying the possible sensor con-

cepts and formulating related optimization problems, as they are not strictly predefined

in this work.

4.2.1 Controllability & observability

The central system properties for a more sophisticated controller synthesis are con-

trollability and observability. This is especially interesting to be characterized for an

arbitrary order system of dimension N . For the following investigation consider the
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Figure 4.18: Deformation evolution in resonance cases
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dynamic matrices for the unconstrained mode method from (4.13) with its state vector

z containing a finite number of modes qi.

Controllability

A system is said to be controllable if the controllability matrix

C =
[

B, AB, A2B, . . . , A2N+1B
]
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has full rank 2(N + 1). Because of the sparse structure and the special pairing with

the control channels the following symbolic expression for C is determined:

C =




















0 1 0 0 0 0 · · ·
1 0 0 0 0 0 · · ·
0 k1 0 −k1w

2
1 0 k1w

4
1 · · ·

k1 0 −k1w2
1 0 k1w

4
1 0 · · ·

0 k2 0 −k2w
2
2 0 k2w

4
2 · · ·

k2 0 −k2w2
2 0 k2w

4
2 0 · · ·

...
...

...
...

...
...

. . .




















.

That knowledge is used to calculate the determinant of the controllability matrix.

Applying the Laplace expansion for determinants leads to the expression:

det(C) = (−1)N−1





N∏

i=1

kiω
2
i

N∏

j=i+1

(−1)j
(

ωi − ωj

)(

ωi + ωj

)





2

.

The following important conclusions can be draw from that formula:

• The system is always observable under reasonable conditions.

• It is uncontrollable in case ∃i 6= j : ωi = ±ωj. The eigenfunction analysis has

shown that there can only be distinct eigenvalues.

• If there is not enough control impact, that means ∃i : ki = 0, the system naturally

becomes uncontrollable. By construction of these coefficients dependent on the

eigenfunctions this is also not likely to happen.

• Problematic from a numerical perspective are the highly different scalings ωi

which leads to unreasonable for higher order systems.

With these considerations, the controllability is assured for reasonable system condi-

tions.

Observability

Clearly the observability depends on the choice of the system output y. At the begin-

ning, just one basic sensor is considered. For the hub rotation a potentiometer is used

Master Thesis Matti Noack



4 Flexible Robot Arm 111

to measure the rotation angle θ resulting in the output relation:

y1 = θ(t) = η(t) +
N∑

i=1

γiqi(t) =
[

1, 0, γ1, 0, . . . , γN , 0
]

︸ ︷︷ ︸

=:C1

z .

Note that the parameter vector γ = [γ1, . . . , γN ]⊤ plays the central role for observation.

The system is said to be observable if the observability matrix:

O =














C

CA

CA2

...

CA2N+1














has full rank 2(N + 1). With a slight switch of channel pairings in comparison to the

controllability case, the matrix can be stated as:

O =


























1 0 γ1 0 γ2 0 γ3 0 · · ·
0 1 0 γ1 0 γ2 0 γ3 · · ·
0 0 −γ1ω2

1 0 −γ2ω2
2 0 −γ3ω

2
3 0 · · ·

0 0 0 −γ1ω
2
1 0 −γ2ω2

2 0 −γ3ω
2
3 · · ·

0 0 γ1ω
4
1 0 γ2ω

4
2 0 γ3ω

4
3 0 · · ·

0 0 0 γ1ω
4
1 0 γ2ω

4
2 0 γ3ω

4
3 · · ·

0 0 −γ1ω6
1 0 −γ2ω6

2 0 −γ3ω
6
3 0 · · ·

0 0 0 −γ1ω
6
1 0 −γ2ω6

2 0 −γ3ω
6
3 · · ·

...
...

...
...

...
...

...
...

. . .


























.

A dual structure to the first case is found, presented for higher order exemplary. Thus,

the characteristic determinant is expressed analogously:

det(O) =





N∏

i=1

γiω
2
i

N∏

j=i+1

(−1)j
(

ωi − ωj

)(

ωi + ωj

)





2

.

Similarly, the system is always observable under usual circumstances and with γi 6=
0 ∀i. It suffers as well from bad numerical conditioning.

In total, it does not seem to be necessary to check the system for stabilizability nor

detectability. In case of damping it is assured because of the asymptotically stable

system dynamics.
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4.2.2 Optimal sensor concept

To extend the system configuration additional sensors shall be considered beside the

potentiometer. On the actuator side it does not seem possible to add more degrees of

freedom, but it is excepted to improve the performance with additional information

about the system by extra measurement.

Strain gauge

In [METH96] finding the optimal sensor location of one strain gauge is part of the con-

tribution. The strain measures the deformation acceleration in the following manner:

y2 = −Th

2
w′′(x, t) = −Th

2

N∑

i=1

φ′′
i (x)qi(t) =

[

0, 0, µ1(x), 0 . . . , µN(x)
]

︸ ︷︷ ︸

=:C2

z

with the thickness Th already mentioned in Table 4.1 an the substituted coefficients

µj(x) := −Th

2
φ′′

j (x). The dependency on the position x can be used for optimizing the

observability conditioning by choosing the optimal position x∗ maximizing a certain

measure.

In the upper work an observability Gramian based idea is proposed. There the PI

norm is considered in the form:

P I =





2(N+1)
∑

i=1

λi









2(N+1)
∑

i=1

λi





1
2(N+1)

,

where λi ∈ eig(Q) with the Gramian Q being the solution to the Lyapunov equation

A⊤Q+QA+C⊤C = 0. This characteristic value depends on x ∈ [0, L] and is computed

for several values such that a graph is obtained. Based on that, the article recommends

a positioning close to the hub.

In this work, the extra information source shall be included into optimization proce-

dure. The offline computation in connection with the LMI framework introduced in

Chapter 3 gives the opportunity to build an external optimization loop. For sampled

position values a mixed-integer problem is established.

In comparison to the referenced work a direct control performance measure can be

utilized as a cost function. Thus, the whole closed-loop is taken into account and

the optimal sensor location can be linked to a certain robust objective output. For

example, focusing on the end-effector position could possibly result in a strain closer

to end of arm. During the following Chapter 5 this idea is examined in detail.
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Gyroscope

Another promising measurement addition seems the determination of the angular ve-

locity at the hub utilizing a gyro for example. The related measurement output is:

y3 = θ̇ = η̇(t) +
N∑

i=1

γiq̇i(t) =
[

0, 1, 0, γ1, . . . , 0, γN

]

︸ ︷︷ ︸

=:C3

z .

In comparison to y1 all the velocity states have an impact on the output, but with the

same set of coefficients. The motivation for using such a setup is the resulting relative

degree of one with respect to this output. Non of the other two configurations holds

this opportunity.

According to [BL07] this property is a requirement for applying passive control strate-

gies. These fit perfectly into the robust control scheme and seem predestined for

handling flexible structures. This interesting idea is followed up as well in the appli-

cation chapter 5.

Still, one has to beware of increasing the system complexity and order too much. This

aspect has to be kept in mind when adding various features at the same time. An-

other disadvantage in practice is that in general gyroscope data usually is noisier in

comparison to the established sensors.
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5 Control Application

After presenting the multi-objective control framework in Chapter 3 and deriving an

adequate mathematical model of the flexible robot arm in in Chapter 4, these aspects

shall be combined here. The obtained system structure is converted to a general plant

description with its respective objective channel specifications. Therefor, the given

system properties are discussed and a characterization of external disturbances and

internal uncertainties is performed.

Approximating a distributed parameter system and neglecting the high-frequency dy-

namics causes common problems. Undesirable vibrations may occur and could lead to

spillover effects and even destabilization. The investigation from [Ver09] discusses these

aspects and proposes a robust control technique for handling such inconveniences, like

already motivated in this work. An interesting example is the application to vibration

damping in buildings from [ALJB10].

First an analysis of the system structure with regards to performance objectives and

the uncertain influences is made. Based on that, the implementation and different

configurations of interest are examined in detail. Finally, the compound framework is

tested and verified via simulation.

5.1 Problem formulation

The robust control structure has been introduced in Section 2.1 with the channel

distinction in from Section 3.1. Now the model obtained from the unconstrained mode

method in Section 4.1 is formulated in such a way that different objectives can be

included.

With the dynamic matrices from (4.13) the 2(N + 1) dimensional state vector:

x = [η , η̇ , q1 , q̇1 , . . . , qN , q̇N ]T

is considered.
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5.1.1 Output & measurement

Possible measurement outputs have been discussed in 4.2. To express them in a com-

mon way consider the auxiliary state expressions:

η = [1, 0 . . . , 0]
︸ ︷︷ ︸

=c1

x , q =








q1

...

qN








=








0 0 1 0 · · · 0 0
...

...
. . .

0 0 0 0 · · · 1 0








︸ ︷︷ ︸

=c2

x .

Then, with the parameter vector γ = [γ1, . . . , γN ] the main measurement output, or

control input respectively, has the tracking error form:

y = θ − θ∗ = η +
N∑

i=1

γiqi − θ∗ =
(

c1 + γ c2

)

︸ ︷︷ ︸

=Cy

x − r

with r = θ∗ as the rotation angle reference value. Now the control objective outputs

z shall be defined. First of all, it is desired that θ → θ∗ and q → 0 asymptotically

as t → ∞. Speaking, the rotation angle shall take its reference value without any

bending vibrations in the end. This leads to the following objective output selection

for state error:




z1

z2



 :=











θ − θ∗
q1

...

qN











=




c1 + γc2

c2



x +











−1

0
...

0











r .

Another important aspect for the performance of the control system is to include the

control action u as an objective, thus z3 = u. Furthermore, it is interesting to focus

on the end-effector position as well because for robotics this is connected to the main

task and possibly weights the deformation in a more significant way. Considering the

bending at the end w(L, t) to be relatively small the following holds:

z3 = θt − θ∗
t = θ + arcsin

(

w(L)

L

)

− θ∗
t ≈ θ +

w(L)

L
− θ∗

t

= η +
N∑

i

(

γi +
φi(L)

L

)

qi − r =
(

c1 +
(

γ +
1

L
φ(L)

)

c2

)

x − r

The geometric relation is obtained from Figure 4.2 by the trigonometric equation

sin(θt − θ) ≈ w(L)
L

.
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There are still various options for objective definitions but these are the most important

ones to be focused on in this work. The final nominal objective outputs take the

compound structure:











z1

z2

z3

z4











=

















θ − θ∗

q1

...

qN

u

θt − θ∗
t

















=











c1 + γc2

c2

0

c1 +
(

γ + 1
L

φ(L)
)

c2











x+











−1

0

0

−1











r+











0

0

1

0











u = Czx+Dzrr+Dzuu ,

with φ(L) = [φ1(L), . . . , φN(L)].In analogy to that formulation consider the possible

measurement outputs:




y1

y2



 =




θ − θ∗

−Th

2
w′′(p)



 =




c1 + γc2

µ(p)c2



+




−1

0



 r = Cyx + Dyrr ,

where p ∈ (0, L) denotes the selected position of the strain gauge for y2 and µ(p) :=

−Th

2
[φ′′

1(p), . . . , φ′′
N(p)]. For simplicity y3 is not included yet. This forms an imple-

mentation goal for the end configuration dependent on the results obtained by the

extensions.

5.1.2 Channel specification

After clarifying the possibilities of output configurations, the input signals and respec-

tive performance channels are explained. As they are linked to physical circumstances,

the inputs are pretty much fixed in comparison with outputs. The external input vector

w contains of:

w =




r

d



 ,

where d is considered to be an external disturbance on the actuator sight, meaning

Bd = Bu. In this work, no noise is considered for simplicity. Of course this would have

been an interesting practical aspect. Thus, the system is expressed in the form Σnom

from 2.3:






ẋ = Ax + Bww + Buu

z = Czx + Dzww + Dzuu

y = Cyx + Dyww

.
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Now, the central nominal performance specifications introduced in Section 2.2 and

expressed in terms of LMIs in Section 3.2 shall be formulated

• H∞ performance: d → ∆θ = e

This reduces the impact of the external disturbance on the tracking error, which

softens the worst case operation conditions.

• H2 performance: r → u

For an efficient performance of the system the control action is taken into the

H2 channel. Thus, no external signal feedthrough is generated, avoiding com-

plications with basic assumptions. Using the generalized H2 concept gives the

opportunity to include actuator constraints in a soft way and avoid saturation.

This is due to the norm transfer behavior from energy (L2) to amplitude (L∞.)

• Passive transfer behavior: d → θ̇?

To include an adequate damped performance with certain intrinsic robustness

passivity shall be induced. The passivation shall be related to the flexible mode

states.

• Disturbance rejection: lim
t→∞

∆θ(t) = 0 ∀r, d

Of course, it is desired to track the reference signal and therefore solving the

regulation problem for all external influences, if possible.

Then the channel-wise transfer functions of the general open-loop plant can be realized

as:

P∞(s) =








A B∞ Bu

C∞ 0 0

Cy 0 0








, P2(s) =








A 0 Bu

C2 0 D2u

Cy Dy2 0








, Pp(s) =








A B∞ Bu

Cp Dp Dpu

Cy Dyp 0








.

Here, instead of the channel index j, like in Chapter 3, the explicit objective expression

is used. The possibility of choosing arbitrary channel compositions also gives the op-

portunity to leave some out. That is why in the following, not always all configurations

are considered if not useful.

5.1.3 Uncertainty modeling

To guarantee robustness of the closed-loop system, the uncertain structure related to

that has to be modeled. An introduction on this topic has been given in Section 2.3.

The general system here is considered to be uncertain in two ways:
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(a) During the modal analysis in Section 4.1 the high-frequency dynamics of order

N + 1 and higher has been neglected.

(b) Input and output parameters k andγ contain eigenfunction values. This heav-

ily relies on the principle of separation of variables and thus on the linearity

assumption. Further away from the operation point nonlinear effects influence

these parameters.

Uncertainties are often characterized in the frequency domain. The corresponding

system representation of the physical process is given by:




y1

y2



 =




θ − θ∗

−Th

2
w′′(p)



 = Gn(s) u ,

where Gn(s) denotes the nominal plant.

High-frequency component

The neglect of high frequency components can directly be seen considering the output

form:

y1 = θ(t) − θ∗ = η(t) +
∞∑

i=1

γi qi(t) − θ∗ =

(

η(t) +
N∑

i=1

γi qi(t) − θ∗
)

+
∞∑

j=N+1

γj qj(t)

and similarly:

y2 − Th

2
w′′(p, t) =

∞∑

i=1

µi(p) qi(t) =

(
N∑

i=1

µi(p) qi(t)

)

+
∞∑

j=N+1

µj(p) qj(t) .

From the decoupled mode dynamics one easily obtains the following transfer function

representations:

qi =
ki

s2 + w2
i

u .

This allows to explicitly characterize the uncertainties in the way:

∆1(s) =
∞∑

i=N+1

kiγi

s2 + w2
i

, ∆2(s) =
∞∑

i=N+1

kiµi(p)

s2 + w2
i

Now, the aim is it to get the compound system into the form Σrob from (2.6). Therefor

consider the block diagram from Figure 5.1. This can clearly be classified as an additive

uncertainty, similar to the example in Figure 2.13. In state-space form one gets the
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Δ(s)1

Δ(s)2

G(s)n
K(s)

u

d
r

y

zΔ

wΔ1

θ

w''(p)

z1z2

wΔ2

Figure 5.1: Block diagram with high-frequency uncertainties

realization adaption:

z∆ = C∆x + D∆ww + D∆uu =
(

0 1
)

w + 1u ,

B∆ =




0 0

0 0



 , Dy∆ =




1 0

0 1



 , Dz∆ =




1 0

0 0



 .

These are needed for formulating the robust stability condition in terms of an LMI.

A characterization of the uncertainties in terms of the description set ∆ defined in

Section 2.3 can be done by performing a virtual experiment. Via a frequency domain

identification (sweep for example) the bode plot of the uncertainty transfer functions ca

be plotted. This is realized using the representations for ∆1(s) and ∆2(s) with a finite

approximation order N∆ > N . In Figure 5.2 the respective magnitudes are plotted as

the experiment outcome. This obviously shows the dilemma of the undamped system

case as the magnitudes result to be unbounded. At the resonance frequency points it

is impossible to guarantee robust stability because the H∞ norm is not defined there.

Therefore, the more realistic and practical model, proposed at the end of part 4.1.2,

has to be considered. Note, that this changes the transfer function to take the form:

qi =
ki

s2 + 2ζiωis + w2
i

u .

Figure 5.3 illustrates the same magnitude experiment over all frequencies ω for the

damped system. Still there are the typical peaks in the oscillatory case, but dependent
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Figure 5.2: Magnitude plot of uncertainties without damping

on the choice of ζi these are more or less dominant. Here ζi = 0.1 ∀i has been chosen.

Notably, the disturbance on ∆1 potentiometer side is much more significant.

For the framework it necessary to find an uncertainty normalization such that ∆ ∈ ∆

and thus ‖∆‖∞ < 1. To realize that, filters are designed based on the experimental

knowledge. Because of the exemplary damping a low-pass characteristics is recom-

mended. The filters can be selected as an PT1 function:

Wl(s) =
Kl

τls + 1
, l = 1, 2 .

Here, it is proposed to choose the gain slightly higher than the maximum peaks

from |∆l(jω)|, in fact Kl := 1.1 ‖∆l‖∞. The bandwidth has to be selected accord-

ing to the expected low-pass behavior. Then the uncertainties can be expressed as

∆l(s) = Wl(s)∆̄l with assuring ∆̄l ∈ ∆.

Clearly, even in the virtual experiment modes were missing and to cover the expec-

tations one should not be too accurate. A little bit of conservatism has to be taken

into account for guaranteeing the much more important stability under all possible

conditions.

Input parameters

Because of the occurrence of eigenfunction values in the input (and output) parameters

a calculation error has to be taken into account. This results in a well structured
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Figure 5.3: Magnitude plot of uncertainties with damping considered (ζi = 0.5)

uncertainty model. As an example the flexible arm system input matrix has the form:

B∆ =




















0

1/J + δ0

0

k1 + δ1

...

0

kN + δN




















=




















0

1/J

0

k1

...

0

kN




















+




















0 0 · · · 0

w0 0 · · · 0

0 0 · · · 0

0 w1 · · · 0
...

. . . 0

0 0 · · · 0

0 0 · · · wN






























δ0

δ1

. . .

δN











= B + W∆ ,

with weight coefficients wi = 1 in this case, which would later be adapted to guarantee

|δi| < 1 for normalization and can also be set dynamically for frequency weighting.

This clearly leads a multiplicative uncertainty representation as shown in Figure 2.15.

In this work there is a focus on the case of the high-frequency disturbances as they are

considered to be more dominant. Nevertheless, there are interesting works done for

uncertain parameters, especially in connection with LMIs [Sch00]. There, covering the

uncertainty class with the use of multipliers enables the formulation fitting conditions

and is even used in robust H2 performance case.
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5.2 Simulation setup

After defining the control task and characterizing the model structure and considered

influences, the conception for the control synthesis shall be developed. In the following

the fundamental control structure from Figure 5.4 is derived and explained. It is

based on the specifications announced in the previous section. The system contains

z~

WoP(s)

K(s)

y

u

Δ(s)

Δ

wΔ

w

WΔ

WI

Figure 5.4: Control system setup with filters

of the three main components: the plant P (s), defined by the physical model and the

signal composition, the uncertainty ∆(s), the internal disturbance part which harms

stability, and the controller, that shall be designed under the given circumstances and

specifications. On the output side there are signal filters. It would also be possible to

use input side filters which did not seem necessary here. Remember that the damped

system description is used for more realistic results and easier uncertainty handling.

5.2.1 Objective definition & filters

Now, the tasks of the multi-objective control system are defined and their preliminaries

have to be checked. A slide summery of the implemented LMI techniques from Chapter

3 is given.
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Internal stability

Most importantly the closed-loop system is required to be internally stable under all

considered circumstances. For the nominal system this is done by fulfilling the corre-

sponding Lyapunov inequality. The uncertainties due to the high-frequency compo-

nents are included into the plant through its weighting filter W∆(s) := diag(W1(s), W1(s)).

As the ∆ ∈ ∆ holds, the small gain theorem can be applied and H∞ condition with

γ∆ = 1 is included.

Optimization with SDP can produce numerical problems if not programmed with dis-

cipline and caution. The reason for this is that solutions are searched for at the edge of

the feasible region. It may results in destabilizing controllers. This is handled by con-

ditioning of the Lyapunov variable and suboptimal test steps to not produce extreme

solutions.

Reference tracking

The rotation angle θ shall follow the reference value r asymptotically. In Section 3.2

a nominal regulation procedure using the internal model principle was proposed. For

the signal model S = 0 is taken because of a constant reference inputs ṙ = 0. In

case of other signal classes this could be adapted. The first central requirement of

z1 = y1 is fulfilled. Then the detectability condition for








A Br

0 S



 ,
(

Cy1 Dy1r

)





has to be checked. It is due to the integrator (or double integrator in the undamped

case) characteristics of the η dynamics and the fact that r is not part of the dynamics

that detectability is not given. Thus, the procedure is not applicable.

For solving the reference tracking problem the integrating system WI(s) is added to

the measurement channel. It enables the selection of channels to be integrated. Here,

the signal
∫

y1dt is given into the controller whereas y2 goes through directly.

Luckily, the external disturbance d is matched and can directly be compensated by the

controller. This allows all states to be zero which leads to the desired results. Tests

with disturbances attacking just in certain modes show that the aim of ∆θ → 0 is

reached while the whole arm keeps oscillating in pseudo-steady-state.

Performance

The great advantage of the mixed-objective robust control in comparison with the H∞

controller developed in the reference work [METH96], is that a performance measure

in a certain sense can be added. Pure H∞ norm optimization tends to generate unsat-
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isfying control signals.

Here, the generalized H2 norm optimization is used for this purpose. Beside good

performance in the H2 sense, in offers a soft amplitude bound. For a certain energy

level of the reference signals a maximum absolute value which u does not pass, can be

guaranteed. This convenient when dealing with actuator constraints.

Disturbance suppression

The impact of the external disturbance d on the error objective output shall be as

small as possible. Sudden appearances of disturbance impulses must not harm the

system safety. Thus, an H∞ constraint is put on the channel and tried to be lowered

in a sophisticated way.

On the one hand, this could prevent spatial constraints from being violated. It is also

important for the model validity. As a linearization was performed, it is not desirable

to leave the operating point too far. Nonlinear effects could occur and the controller

would possibly not be prepared for that.

Passivation

It would be a nice property for the flexible system to expose a passive behavior. The

injected damping would be able to give a certain robustness to the system with a

natural and thus desirable performance. In [BL07] several passive and robust control

approaches are applied to practical problems.

As a central requirement for passivation, the input-output relation has to have relative

degree on. For that, using the output θ̇ has been proposed. Unfortunately, the LMI

condition turns out to be unfeasible in all applied circumstances. Thus, this approach

cannot be tested. It illustrates one of the problems for LMI procedures, that the

assumptions needed for feasibility are unclear and the interpretation is left to the

numerical solver.

5.2.2 Software framework

For solving the mixed-objective robust control problem a program has been imple-

mented in Matlab to calculate the respective controller realization for a given plant

definition and defined objectives. This includes to compose the system properly, check

all central requirements, build up the optimization procedure, calculate the controller

parameterization, evaluate the resulting performance and adjust the outcome itera-

tively. Then the controller is applied to the simulated system in Simulink. In Figure
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5.5 the implemented procedure is illustrated. For the convex optimization procedure

INPUT

OUTPUT

- plant P(s) & 

channels, lters

- options

- controller K(s)

- optimization 

values

check syntax 

& conditions

build system

( lter, exten-

sions)

build SDP 

& optimize

reconstruct

controller

using

cvx

A
L
G
O
R
I
T
H
M

Figure 5.5: Software scheme for control synthesis

solving the SDP the Matlab toolbox cvx [CVX12] was chosen. The inner iteration loop

refers to the subordinated optimization like finding the optimal strain gauge position.

In the outer loop optimal values are determined, adapted and given into another op-

timization to find a sufficiently good combination of all objective bounds.

The output of the procedure is the controller K(s) and characteristic values such as

H∞ gain γ, generalized H2 gain α or the Lyapunov condition factor t.

5.3 Verification

Now, the procedure shall be executed for the different proposed scenarios. To evaluate

the obtained controller two types of comparison controllers have been chosen. As a

benchmark in industrial control PID controllers are by far the most frequently used.

Here, KPID(s) was designed for compensating the slowest dynamics and guaranteeing

a certain phase margin. This form it can only be used for the SISO control case. The

second referenced controller is based on H2 norm optimization. In order to focus on

the performance, just the control channel is considered. The standard Matlab function

is used, which calculates KH2(s) via an ARE approach.

The main emphasis of this work lies on the usage of the one-mode model as a basis for
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the controller design. As the multi-objective control framework already offers many

degrees of freedom, an additional output filter W0 has not been designed. Thus, the

concrete tuning focus is more compact and comparability is ensured.

5.3.1 Nominal performance

The first step is to obtain a controller that is capable of fulfilling the formulated per-

formance specifications in the nominal case. In order to do so, a mixed H2/H∞ design

procedure is presented step by step. Within this procedure the LMI framework gives

many opportunities for tuning.

The upcoming results are based on a common simulation patter. Every test scenarios

is realized for t ∈ [0s, 30s] with a constant reference r = 1rad applied at t = 2s. After

t = 15s an additional constant disturbance signal of d = 0.02Nm is given into the

system. All controllers are examined towards their actuation performance, as well as

their respective disturbance suppression. Note, that the real constraints on the input

signal would be given by u(t) ∈ [−0.5Nm, 0.5Nm] (equivalent to [−10V, 10V ]).

At the beginning, the LMI based optimization is just searching for feasible solution

that internally stabilizes the closed-loop. This is not expected to fulfill the specifi-

cations with regards to the reference tracking. Thus, an integrator WI(s) is used on

the measurement signal y2 = ∆θ. The improvement can be observed in Figure 5.6.

Beside the reference tracking, the integrator leads to less mode oscillations and a more
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Figure 5.6: Impact of integrator inclusion

reasonable input signal. All of the following controllers include that integral part. The

first performance channel shall be the H∞ bound on the behavior between the distur-
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bance d and the output z∞ = z1 = ∆θ. When searching for the optimal H∞ bound,

γopt = 0.1106 is obtained. This, and values close to that limitation, are numerically

bad conditioned and the obtained controllers do not stabilize the system internally.

Thus, a suboptimal solution is preferred. In Figure 5.7 several system signals are pre-

sented for different H∞ control constellations. In terms of suppressing the disturbance
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Figure 5.7: Evaluate H∞ control performance with z∞ = ∆θ

a large improvement is obtained. This comes with the cost of large oscillations in the

mode state. The rude actuation in the H∞ sense causes vibrations in all states and

requires unreasonable large input signals. Widening the bound γ results in decaying

oscillations, which are still unsatisfying. Furthermore, the reference tracking fails and

a small steady state error remains.

The strong deformations caused by that motivate a change in the objective output.

For comparison, the H∞ channel is modified to concentrate on the mode trajectory q(t)

by setting z∞ = z2 = q. Correspondingly, the optimal bound would be γopt = 0.1158,

which again causes numerical problems. Then, the respective suboptimal performance

comparison is illustrated in Figure 5.8. By changing the objective, the vibrations could

be reduced, but not significantly. The positive effects are that the reference overshoot

is avoided and the desired reference value is tracked, except for some oscillations. In

comparison to the control signal peak, shown in Figure 5.7, the new actuation got

closer to realistic circumstances. The error peak due to the disturbance, is still rela-

tively small and acceptable. Especially the aspect of no remaining offset in the tracking
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Figure 5.8: Comparing H∞ objectives with common γ = 20

error, turns the mode output into an interesting selection.

In order to avoid the undesired oscillations and to improve the performance with re-

spect to the control signal, an H2 component is added to the synthesis process. The

generalized H2 norm puts a soft peak bound
√

α on the input torque u(t). A mixed

H2/H∞ controller is designed for both z∞ output cases. The respective behaviors are

compared in the plots of Figure 5.9. For the first objective case using z1, the config-

uration (γ,
√

α) = (10, 15) has been used and for the second case with z2 the bounds

(γ,
√

α) = (5, 30) have been applied. Very distinct controllers are obtained. The one,

which focuses on the deformation mode, results in excellent vibration avoidance, no

remaining tracking error and very efficient control effort. On the other side, the error

focused approach suppresses the disturbance very good and reacts a lot faster. Both

approaches represent one extreme in the objective choice. One has to select whether

the suppression of oscillations or external disturbances are of more importance. A

combination could be selected to find a compromise.

In order to get impression of the obtained performance, the common comparison con-

trollers shall be applied. Figure 5.10 illustrates their resulting closed-loop trajectories.

The PID and conventional H2 approaches represent two extreme solutions as well. On

the one hand, the benchmark PID controller obtains a fast reaction, good disturbance

rejection and perfect reference tracking. On the other hand, the deformation peaks

are that large, that that the model validity could be doubted, and the control signal is
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Figure 5.9: Performance of mixed H2/H∞ controllers with different objectives

totally out of range. There is the danger of a wind-up effect. The H2 controller with

focus on the actuation signal, obtains reasonable results, although a permanent refer-

ence deviation can be notified and the mode oscillations are also high in amplitude.

All four presented control concepts are put together in Figure 5.11, which directly com-

pares the rotation angle errors. One may note that the disturbance focused H2/H∞

and the H2 controllers are very similar in their overall behavior. The PID controller

represents an idealistic and unrealistic setting because of the bad input signal per-

formance, despite of demonstrating the best reference tracking results. In order to

avoid oscillatory effects, such as the spillover effect, the mode focused mixed H2/H∞

controller is recommended, although its reference reaction could be improved.

The multi-objective robust control method offers so many degrees of freedom, that a

lot more combinations are available. Thus, a lot more performance investigation could

be done.

5.3.2 Measurement extension

In the paper from [METH96] the optimal positioning of a strain gauge for delivering

extra measurement information has been discussed. For a selected position p ∈ [0, L]

and just considering the model including one mode, the additional output becomes:

y2 = −Th

2
w′′(p) = −Th

2
φ′′(p) q =

(

0 0 −Th

2
φ′′(p) 0

)

z ,
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Figure 5.10: PID and H2 comparison controller results

and thus provides additional information on the mode state q. First, the influence on

the closed-loop behavior is evaluated. In order to do so, the mixed H2/H∞ controller

with respect to the H∞ objective output z∞ = q is considered. Figure 5.12 compares

the results for the system with and without additional information. One may note,

that the system response to the reference becomes much slower. This is accompanied

by small mode deflections and low input amplitudes. This illustrates, that a whole new

controller synthesis has to be made for rearranged system. It can not be expected, that

simply giving additional information into the control system, automatically results in

better performance measures for all specifications.

Here, the position is chosen very close to the hub. Nevertheless, changing the strain

location does not lead to significant changes of the system response. The superordi-

nated optimization procedure confirms this impression. A discrete sampling over the

set of possible positions has been performed with the aim to minimize a certain cost

characterization. In this case, J := α is chosen and a optimization of the generalized

H2 norm has been related to the sensor location. The result can be seen in Figure 5.13

(a). Note that the difference between the respective cost values is not that high and

thus, no significant differences resulting from the choice of location can be expected.

In the referenced article, the optimal position has to be close to the hub. This cor-

responds to the results made here, where a minimum lies in the first quarter of the

arm length. It is not surprising that the amount of information seems to be related
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Figure 5.11: Tracking error comparison of multi-objective and test controllers

to weighting factor φ′′(p), whose absolute value is bigger for positions close to the hub

and tends to zero when it gets closer to the end-effector (BC).

5.3.3 Robustness discussion

The robustness analysis in terms of stability and performance makes sense in connec-

tion to the damped system, for which the uncertainties con be modeled appropriately.

In this work, mainly the undamped system is investigated because of the more signifi-

cant oscillation behavior. The corresponding resonances make it impossible to capture

the uncertainty class of the neglected dynamics.

Thus, robust control synthesis would be another extensive topic, which cannot be cov-

ered here. Nevertheless, many preparatory has been done. At the first place, the

robustness characterization becomes a lot easier when just considering one measure-

ment output y1. This results in a one-dimensional uncertainty structure, which does

not require additional scaling and could be treated by the conventional small gain

theorem without introducing too much conservatism.

The uncertainty structure due to the finite dimensional approximation of the dis-

tributed system was the inspiration for applying robust control techniques to this kind

of problem.

Another critical issue in robust and optimal control is fragility, which was introduced

by [KB97]. Basically, this refers to the fact, that optimal controllers often operate

close to the boundary of feasibility. This holds especially for linear convex optimiza-
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Figure 5.12: Performance change due to measurement extension

tion problems. It results in very low phase or gain margins, which make the system

very sensitive to small changes of the controller parameters. Table 5.1 presents the

resulting stability margins for the proposed controller approaches. Some of the con-

Controller Gain margin (abs) Phase margin (deg)

integrator 0.36 29.0
H∞ with z∞ = z1 1.05 1.76
H∞ with z∞ = z2 7.25 63.89
H2/H∞ with z∞ = z1 4.08 36.69
H2/H∞ with z∞ = z2 0.26 26.9
PID 0.027 42.2
H2 4.42 27.6

Table 5.1: Stability margins for fragility characterization

trollers, such as the H∞ with respect to ∆θ, have very low margins which does not

leave much space for variations. Often, this characterization is forgotten because of

the immediate composition of the whole system. This information about the internal

connection is lost then. Thus, the sensibility of the obtained controllers towards their

own parameter changes has to be taken care of.
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Figure 5.13: Indicators for optimization of sensor location
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6 Conclusion

This work deals with the multi-objective controller synthesis the distributed parameter

system of a flexible robot arm. The control design is based on LMI characterizations,

which can be converted to an SDP and solved by convex optimization techniques. The

article [METH96] served as a reference example for robust control of such an elastic

structure.

In order to realize an appropriate design method, the work contains of an extensive

part on theoretical background. This includes the basic nomenclature and theorems

of robust control, the characterization of internal stability and nominal performance,

a catalog of LMI conditions and the basic idea behind them. An extensive derivation

documentation on the mathematical modeling of the flexible robot arm is given. The

profound theoretical basis is complemented by simulations and the validation of the

flexible arm experiment. No real measurement data was available.

At the end, the control design methods are applied to the system structure and its

defined performance specifications. The obtained controllers are compared between

each other, as well as to some benchmark controllers.

6.1 Contribution & discussion

The field of robust control is one of the most extensively documented in control theory.

This work provides an useful collection of fundamental background on the formulation

and solution of robust design problems. It serves as a comprehensive introduction to

the area without requiring a lot of knowledge on the topic in beforehand. The material

collection and explanation forms a core work in this thesis.

Based on the common theoretical part, one of the modern directions in robust con-

trol is introduced in detail. The LMI based optimization approach for solving multi-

objective control problems offers many opportunities and degrees of freedom to tune

the controller more precisely. A further advantage of this method are the availability

of efficient numerical methods for solving the convex optimization programs. However,

this procedure introduces conservatism to the problem, which may result in unsophis-
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ticated performances. Another issue is the numerical conditioning of the obtained

solutions. It remains a matter of investigation, how to apply this method to practical

tasks.

Exemplary for the class of infinite dimensional systems, an one-link slewing robot arm

forms the focus of this work. The derivation of an adequate system model include

the application of the Hamilton principle, as well as a simplification for small deforma-

tions and a modal analysis. It is demonstrated that the constrained mode method does

not serve for the purposes of this investigation, but that the unconstrained approach

delivers reasonable results to be worked with. Although the infinite eigenfrequencies

play an important role for the system behavior, it can be seen that an approximation

with including one mode, is sufficient for describing the main system behavior. That

is why such a model is used for the control synthesis. The model can be extended in

several ways. Here, the undamped model used exclusively, because it is predestined

for investigations on the severe effects of elasticity and vibrations.

In the last chapter, all this preliminary work is put together to design an appropriate

controller for the flexible arm. For the realization, a software framework is created,

that is able of performing the presented design steps for arbitrary systems. This is

combined with the output of the modal analysis algorithm and the obtained eigenfunc-

tions. In the resulting control evaluation a compromise between the several control

objectives of reference tracking, good control performance, disturbance compensation

and robustness has to be made. The proposed mixed H2/H∞ controllers demonstrate

the extremes between vibration rejection and the suppression of external perturba-

tions. It is shown that an extra measurement using a strain gauge does not improve

the performance noticeably.

In total, this thesis forms a comprehensive literature study on robust control techniques

and typical modeling process for flexible structures and infinite dimensional systems.

It requires the implementation of a program framework that includes the flexible for-

mulation and solution of mixed-objective robust control problems as an SDP on the

one side. On the other side, the approximative simulation of an infinite dimensional

system with the use of an automatic procedure is realized. A comparison with common

sources is made for reproducing their results.

Throughout this work, many ideas and possible procedures have been proposed. The

passivity control approach could not be realized due to the unfeasibility of the related

optimization problem. Nevertheless, the combination between passive and robust tech-

niques seems promising for flexible structures. Neither could the nominal regulation

be realized, which utilizes the internal model principle. This appeared because of the
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lack of detectability of the reference.

6.2 Further work

After setting up many so many directions to go, this work can only be understood as a

starting point for further application related investigations. The most important step

would be to complete the robustness considerations. Including robust performance for

structured uncertainties into the design algorithm, can be large extension of the control

framework. Approaches like [Sch00], published beside other useful ideas in [EN00a],

lead to useful LMI conditions on robust H2 performance. The extension of the pro-

posed uncertainty modeling relates directly to the infinite dimensional structure and

could deliver an alternative approach towards classical PDE control.

For checking the validity of the results not just by reason, an experiment with a real

robot arm is recommended. This is also due to the lack of presented results in the

considered literature. Additionally, numerical considerations regarding sensitive algo-

rithms utilized have to be continued. This affects the modal analysis, as well as the

convex programming.

A prior intention of this thesis was the comparison of structured robust control ap-

proaches to common methods for distributed systems. There is an interesting work

from [JZ12], which deals with infinite dimensional systems in a port-hamiltonian con-

text. This relates again to the idea of using passivation control and its connection to

robust design [BL07].

Beside all these open questions, the controller tuning can be continued. Especially

including weighting filters could improve the current results. One has to beware of

obtaining too many degrees of freedom, as they may leave the task confusing and

unstructured. Another interesting remaining task, is the verification of the designed

controllers, based on a low order model, to a higher order system, which could not be

covered here.
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