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Zusammenfassung (Deutsch) 

In dieser Arbeit werden die optischen Eigenschaften und die Lichtemission der dünnen amorphen 

Schichten AlN, SiN und SiC:H dotiert mit Tb untersucht. Die optische Charakterisierung beschränkt sich 

auf die Bestimmung der Bandlücke, der Urbachenergie und den Urbachfokus. Basierend auf thermischen 

Fluktuationen der Bandlücke wird ein Modell entwickelt, welches die fundamentale Absorption in 

Überlapp mit den Urbachausläufern beschreibt. Es wird die Existenz und die Bedeutung des Urbachfokus 

analysiert und mit dem vorher entwickelten Modell verglichen. Eine der wichtigsten Ergebnisse dieser 

Untersuchungen ist die Fähigkeit dieses Modells, den Urbach-Bereich von dem Tauc-Bereich des 

Abrorptionskoeffizienten zu trennen. Zum Beispiel zeigen dünne Filme aus SiC:H abgeschieden mit 

unterschiedlichen Wasserstoffflüssen unter Verwendung dieses Modells eine Bandlücke, die nicht mit der 

Urbach-Energie korreliert ist. Dies unterscheidet sich typischerweise von der Beobachtung der 

Bandlückenvariation unter Verwendung des Tauc-Modells. Die Untersuchung der Lichtemission 

konzentriert sich auf den Prozess der thermischen Aktivierung, welchen die Seltenerdionen bei 

Ausheilung der Proben erleiden. Der Effekt der Ausheiltemperatur, der Probentemperatur und der 

Konzentration der Seltenen Erden auf die Intensität der Lichtemission wird mit Anregung von Photonen 

und Elektronen untersucht. Es wird ein Änderungsratenmodell der Übergänge verwendet, um die globale 

mit Tb assoziierte Lichtemission der dünnen a-SiC:H:Tb
3+

, Schichten in Abhängigkeit von der 

Konzentration by verschiedenen Ausheiltemperaturen zu modellieren. Es konnte eine 

Aktivierungsenergie der thermischen Aktivierung bestimmt werden. Zuletzt beobachtet man im Falle von 

a-SiC:H:Tb
3+

 eine Verminderung der Unterdrückung der Konzentration, welches ein Hinweis darauf ist, 

dass ein zusätzlicher Mechanismus für die Erhöhung der Lichtemission mit der Tb Konzentration 

verantwortlich ist. 

 

Abstract (English) 

In the present thesis the optical properties and light emission features of Tb-doped amorphous AlN, SiN 

and SiC:H thin films are assessed. The optical characterization is focused in the determination of the 

bandgap, Urbach energy and Urbach focus from optical measurements. A model, based on thermal band-

fluctuations, to describe the fundamental absorption overlapped with Urbach tails is developed. 

Thenceforth, an analysis of the existence and meaning of the Urbach focus is performed and contrasted 

with the latter model. One of the main results in this part is the capability of aforementioned model to 

distinguish the Urbach and Tauc regions of the absorption coefficient. In this matter, a-SiC:H thin films 

grown with distinct hydrogen dilution conditions exhibited an uncorrelated bandgap with the Urbach 

energy when using this model, contrary to what is typically observed after applying the Tauc model. The 

light emission features analysis is concerned with the thermal activation process that rare earth ions suffer 

when annealing the samples. The effect of the annealing temperature, sample temperature and rare earth 

concentration on the light emission intensity is assessed under photon and electron excitation sources. A 

rate equation model is used to fit the overall Tb-related intensity of a-SiC:H:Tb
3+

 versus the Tb 

concentration after different annealing temperatures. An activation energy associated to the thermal 

activation is recovered. Finally, in the case of a-SiC:H:Tb
3+

 a diminution of the concentration quenching 

effect is observed suggesting an additional mechanism to enhance the Tb-related light emission intensity. 

 



Resumen (Español) 

En la presente tesis se evalúan las propiedades ópticas y las características de emisión de luz de películas 

delgadas amorfas de AlN, SiN y SiC:H dopadas con Tb. La caracterización óptica se centra en la 

determinación del ancho de banda, la energía de Urbach y el foco de Urbach a partir de mediciones 

ópticas. Se desarrolla un modelo, basado en fluctuaciones térmicas de la banda, para describir la 

absorción fundamental sobrepuesta con las colas de Urbach. Luego, se realiza un análisis de la existencia 

y significado del foco de Urbach y se contrasta con modelo anterior. Uno de los principales resultados en 

esta parte es la capacidad del modelo antes mencionado para distinguir las regiones de Urbach y Tauc del 

coeficiente de absorción. En este caso, películas delgadas de a-SiC:H depositadas en distintas condiciones 

de dilución de hidrógeno exhibieron un ancho de banda no correlacionado con la energía de Urbach al 

usar este modelo, en contraste a lo que se observa típicamente después de utilizar el modelo de Tauc. El 

análisis de características de emisión de luz se centra al proceso de activación térmica que sufren los iones 

de tierras raras cuando se calientan las muestras. El efecto de la temperatura de recocido, temperatura de 

la muestra y concentración de tierras raras en la intensidad de la emisión de luz se evalúa bajo fuentes de 

excitación de fotones y electrones. Se utiliza un modelo de tasa de transiciones para ajustar la intensidad 

de luz global asociada al Tb en películas delgadas de a-SiC:H:Tb
3+

 frente a la concentración de Tb 

después de diferentes temperaturas de recocido. Se recupera una energía de activación asociada a la 

activación térmica. Finalmente, en el caso de a-SiC: H: Tb
3+

, se observa una disminución del efecto de 

enfriamiento de la concentración, lo que sugiere un mecanismo adicional para aumentar la intensidad de 

emisión de luz relacionada con Tb. 
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Introduction  

The interest on new light sources especially the study of the light emission from rare-

earth (RE) ions has been on a steady growth during the past decades. The trends for this 

are twofold. First, the increasing demand for optical sources and amplifiers operating at 

wavelengths compatible with fiber communications technology has been driving most of 

the research in past years. This is mainly due to the fortunate coincidence between the 

Er
3+

 emission band at 1535 nm and the principal low-loss spectral region in the optical 

absorption of aluminosilicate optical fiber [Ken02, Zav03, Ste99, Abe11]. However, the 

technological interest on RE luminescence reaches applications in displays, laser 

materials, radiation detection and medical applications [Wan09]. Second, there is 

currently a tremendous concern in the application of RE doped materials for solar energy 

conversion. This is owing to the fact that the RE-host and RE-RE interaction opens the 

possibility to processes known as photon up-conversion and photon down-conversion. In 

the latter to low energy photon are absorbed by a single RE to emit a single higher energy 

photon. In the down-conversion case, a high energy photon is absorbed to produce two 

low energy photons. RE doped luminescent materials exhibit unique down-conversion 

and up-conversion properties. They offer the effective use of high-energy photons 

without energy loss upon thermalization and sub-bandgap energy photons that are 

otherwise lost in solar cells. In this way opening the possibility to increase the spectral 

efficiency of silicon based solar cells [Sha07, Wan11, Lia13, Wan14]. In this context, a 

deeper understanding of the activation process, the connection between the thermal 

activation and the effect of the host matrix in the overall efficiency is necessary. 

 

RE elements possess unique optical and electronic properties due to their electronic 

structure. For instance, their light emission spectra do not depend on the host material. 

This fact makes RE-doped materials suitable candidates for light emission applications as 

an alternative to direct electronic transitions devices [Ste99, Ric02, Lee03, Ada07, 

Wak08]. Additionally, wide-bandgap semiconductors are transparent to visible light and 

thus allow the output of the RE emission which can cover the colors blue (Tm), green 
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(Tb), and red (Eu). Moreover, conventional semiconductors like silicon are known to 

quench any RE emission at room temperature, and thus are not suitable for technical 

applications. Wide-bandgap semiconductors are known to overcome the latter problem 

[Zan03]. However, a new channel of light intensity loss is introduced when using RE 

doped semiconductors, the concentration quenching effect. The more close-packed the 

RE ions are, the higher the chance to lose the energy by a non-radiative electronic 

transition. On the other hand, the RE light emission intensity can be enhanced through 

post thermal annealing treatments and/or by bandgap engineering of the host matrix 

[Wei06, Abe11, Gue15]. Concerning the latter matter, the effect of thermal annealing 

treatments on the activation mechanism of RE doped wide-bandgap semiconductors is 

still under discussion [Jan07, Zan09, Abe11, Gue13]. 

 

The present work is divided in two main subjects. The optical properties of amorphous 

SiC:H, AlN and SiN thin films, and the light emission properties of the Tb doped 

versions of the same materials. In the first part, the mayor concern of the study of the 

optical properties is the calculation of the optical bandgap of these three materials in 

amorphous state. The structural dependent and independent parameters such as the 

Urbach energy and Urbach focus are identified in the three materials under study. We try 

to shed some light on the meaning of the Urbach focus and the definition of the bandgap 

of amorphous materials. In order to do so, a new model for the fundamental absorption of 

amorphous semiconductors is proposed. From this model is possible to recover the 

Urbach rule and the Tauc models merged in a single equation. The second mayor part is 

focused on the light emission properties of the Tb
3+

 when embedded in the 

aforementioned materials. The concentration quenching and thermal activation are the 

main interest. The effect of thermal annealing treatments on the optical activation of Tb 

ions is evaluated. Further temperature dependent analysis is presented upon CL and PL 

excitation means in order to develop some insights concerning the principal excitation 

process. 
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General background 

2.1 Sputtering principles 

Sputtering is a physical process in which a material called target is bombarded with 

accelerated ions in order to rip off atoms and molecules from its surface. These ripped 

particles called sputtered particles usually retain the chemical and physical properties of 

the target. The sputtered particles are subsequently thrown to a different surface called 

substrate growing a thin film made of the target’s material. The process can be compared 

to shooting steel balls to a concrete wall which acts as a target. Upon impact, the balls 

tear apart fragments of concrete. On a continuous process, surfaces in the vicinity of the 

impact are covered with a layer of concrete powder. This dust is equivalent in some 

extent to the deposited film. 

The sputtering process takes place in an evacuated chamber with a continuous flow of 

argon (and/or nitrogen) which is then ionized. The typical pressures during the deposition 

process range from 10
-3

 to 10
-1

 mbar. The target is kept at negative potential (cathode) 

relative to the charged ions from the ionized gas. When the ions with a high kinetic 

energy strike the cathode, the collisions sputter material from the target. The basic 

principle of this technique is the momentum transfer from the accelerated ions to the 

target’s surface (see figure 2.1.1). The ions generally do not become implanted in the 

target, but they slam onto it and then return to the chamber atmosphere. The released 

material settles on any surface in the chamber. The plasma is ignited between the cathode 

and anode caused by a high voltage which can be either direct (DC) or alternate (radio 

frequency, RF). Furthermore, a magnetic field (magnetron sputtering) can be used to 

densify the plasma near the target in order to increase the deposition rate. The main asset 

of the RF sputtering over the DC sputtering is the possibility to sputter insulating targets. 

This feature is owned to the fact that in RF sputtering the positive charge build up on the 

target (cathode) is avoided by the alternating potential, whereas in the DC case the charge 

build up reduce considerably the sputtering rate. 
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Additionally, the gas ions can react with the target’s atoms to form a new compound 

different from the target’s material. For instance, if we use Si, Ga, or Al as targets and 

nitrogen as ionized gas, we are able to grow Si3N4, GaN or AlN. The structure and 

stoichiometry of the subsequent thin film will depend besides of the target material, on 

the substrate’s temperature, gas mixtures, gasses partial pressures and sputtering power. 

Finally, sputtering two targets at the same time (co-sputtering) allow for other 

compounds possibilities or even doping (see figure 2.1.1). 

 

Figure 2.1.1. An ion (e.g. Ar
+
) carrying kinetic energy is directed towards the target’s surface (a). The 

impact transfers momentum to the target and releases material that settles on a substrate (b). The 

sputtering process can be reactive if the ionized gas (e.g. N
+
) bonds to the target’s atoms, thus forming a 

different compound (c). 

 

2.2 Optical properties of thin films 

In general, the optical properties of thin films are of substantial importance. The wide use 

of thin films in optics, and in the case of semiconductor thin films in opto-electronic 

devices entails a good understanding of their optical properties. The main macroscopic 

interaction phenomena are reflection, absorption and transmission of the incident light 

onto the layer. When light propagates from one medium  

c)b)a)

Target

Film

Ion

Substrate
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into another i.e. to a medium with a different 

refractive index, a portion of the light intensity is 

reflected, another part is absorbed by the medium and 

finally some of the light radiation is transmitted (see 

figure 2.2.1). During these processes the light 

polarization states may also vary. By the principle of 

energy conservation and ignoring light dispersion due 

to the surface roughness or other micro defects 

(grains, fractures, etc.) in the material, the relation 

between the mentioned intensities can be written as 

shown in the equation 2.2.1. Following the definition 

of the coefficients         for reflectance,   

      for absorbance and         for transmittance 

the equation 2.2.1 can be rewritten as shown in the equation 2.2.2. 

             (2.2.1) 

 

         (2.2.2) 

 

The optical processes within a material involve the interaction of photons with electrons. 

In the ultraviolet (UV) and visible (VIS) light spectral regions the photons interact 

directly with the electrons in the material allowing the characterization of electronic 

energy bands. Whilst in the infrared (IR) light spectral region the interaction of photons 

with the polarization of molecules are dominating, allowing the characterization of 

distinct vibrational states. The optical properties of a material, concerning the light 

absorption and emission can be expounded in terms of the electronic band structure 

which is the result of the assembly of a large number of atoms bonded to form a solid. 

 

For a comprehensive study of the optical behavior of a thin film, knowledge concerning 

the structure of the film’s material is necessary. The layers may found to exhibit for 

instance mono-crystalline, poly-crystalline, amorphous, nano- and/or micro-crystalline 

 

Figure 2.2.1. Part of the incident light 

intensity    is reflected   , absorbed 

   and transmitted    by and through 

the layer, respectively. d denotes a 

finite thickness of the layer. 

AirAir

I
A

I
T

I
R

I
0

Layer

d
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aggregates embedded in an amorphous matrix, etc. The optical properties depend 

considerably on the particular structure of the layer. 

 

2.3 Determination of the optical constants of thin films 

The refractive index      and the extinction coefficient      are the most important 

macroscopic optical constants of any material. They are the respective real and imaginary 

parts of the complex refractive index  ̃    and the latter is the square of the complex 

dielectric constant. From the fundamental and technological point of view, knowledge of 

their dependency with the photon wavelength ( ) is of great interest. For instance, on the 

one hand the refractive index is necessary for the design of optical components like 

coatings and interference filters. Whilst, on the other hand, the extinction coefficient, 

which is linked to the absorption coefficient by               , contains essential 

information of the electronic density of states (DOS) of insulators and semiconductors 

and therefore of the optical energy bandgap. 

 

Consequently, the accurate determination of the optical constants of thin films has been 

an issue for years. Several contributions concerning the improvement of numerical 

methods and models to apply in techniques such as spectroscopic ellipsometry, optical 

transmittance and/or reflectance have been developed [Swa83, Cha97, Cha98, Poe03]. In 

the present work we deal with the determination of the optical constants of dielectric thin 

films grown on transparent substrates by single optical transmittance measurements. For 

this matter we review some features concerning this method. 

 

Spectrophotometry techniques are quite simple because nowadays they are available in 

any material science laboratory. Although their capacity to measure accurately optical 

constants is very well known, the effort in extraction of materials parameters like the 

optical bandgap has been often underestimated. Notwithstanding, they compound an 

effective tool to obtain crucial information of the optical properties of thin films when 

used properly. Now, in order to determine the optical constants from transmittance and/or 

reflectance measurements, it is necessary to know precisely the geometry of the sample, 

and accordingly, adopt a model. We simplify the system by assuming an isotropic, 
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homogeneous, plane-parallel layer which in our case is sufficiently achieved. For 

instance, for normal incidence, the transmittance and reflectance of the system depicted 

in figure 2.2.1 is well described by the following equations in the spectral range of 

interest: 

   
      

  

  
                

 (2.3.1) 

 

   
  [          

 ]

  
                

 (2.3.2) 

 

Here,    is the Fresnel coefficient corresponding to the air-film interface and is defined 

as                 .   is the absorbance of the layer and is defined by   

         .   is the phase shift of the light due to its propagation through the thin film 

taking into account the interference of the multiple reflections inside the layer. It is 

defined as         . 

 

Figure 2.3.1. Simulated transmittance using Airy’s equation for a slightly absorbing layer with 1000 nm 

thickness (a) and 100  m thickness (b). A conventional spectrophotometer is not able to resolve the rapid 

oscillations in the transmittance of thick layers, thus it measures the average 〈 〉 instead of the      .    

and    denote the upper and lower envelopes in the legend. 

 

The equation 2.3.1 is known as Airy’s equation for the case of normal incidence [Kuz09]. 

Both equations can be obtained for instance using the matrix description of optical 

systems [Mac86]. It is important to note that these equations describe the transmittance 
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and reflectance coefficients taking into account the light interference effect due to the 

multiple reflections inside the layer. This effect typically results in oscillations in both the 

transmittance T and reflectance R versus the wavelength. When the layer is thick enough 

the mentioned oscillations become too dense comparing to the spectrometer resolution 

and thus an average is measured (see figure 2.3.1). This average is performed in equation 

2.3.3, where  ̂       is the weighting function (typically a Gaussian curve can be used 

as good approximation). Unfortunately, there is no analytical solution for the integral in 

equation 2.3.3. Nonetheless, a good approximation can be reached by averaging over the 

phase  , as shown in equation 2.3.4. The analytical result of this average over the 

transmittance and reflectance is given in the equations 2.3.5 and 2.3.6. The latter 

expressions are commonly used for describing the transmittance and reflectance of bulk 

samples [Mac86, Gon02]. 

 〈 〉  ∫       ̂         
 

  

 (2.3.3) 

 

 〈 〉  
 

  
∫       

  

 

 (2.3.4) 

 

 〈 〉  
      

  

    
   

 (2.3.5) 

 

 〈 〉  
  [          

 ]

    
   

 (2.3.6) 

 

Notice that the transmittance and reflectance are functions of the wavelength, the 

refractive index, the absorption coefficient and the layer thickness. That is   

                 and                   . Therefore, assuming it is possible to 

obtain the layer thickness by an alternative method, the calculation of      and      

follows by solving either the system of equations 2.3.5 and 2.3.6 for the case of layers 

with a thickness of several hundreds of    or the equations system 2.3.1 and 2.3.2 for the 

case of a thickness in the order of nm or tens of micrometers. Therefore two 

spectroscopic measurements (besides the thickness measurement) are necessary to obtain 
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the wavelength dependency of the refractive index and absorption coefficient. However, 

measuring the reflectance at normal incidence could be a difficult task, thus another 

approach is desirable. For instance measuring the transmittance at two different incident 

angles is a possibility. In this way two independent measurements are obtained from 

which the equations system can be solved [Poe03]. 

Here we use and discuss the method to estimate the optical constants of a thin film from a 

single transmittance spectrum by taking advantage of the interference fringes appearing 

due to the multiple reflections inside the layer. In order to do this we must define the 

envelopes that contain the maxima (  ) and minima (  ) extremes of the transmittance. 

From the Airy’s equation (equation 2.3.1) these are defined by: 

      
      

  

  
           

 (2.3.7) 

 

From the envelopes, the finesse (f) of the interference is calculated (see equation 2.3.8). 

f is independent from the absorbance and thickness, and therefore the refractive index can 

be calculated straightforward following the equations 2.3.9 and 2.3.10. 

   
 

  
 

 

  
 

   

       
 (2.3.8) 

 

         √          (2.3.9) 

 

   
  √  

  √  

 (2.3.10) 

 

The layer thickness can then be estimated from the fact that the phase shift difference    

between two extremes is always    (see equation 2.3.11). By knowing the layer’s 

refractive index and the thickness, the absorption coefficient can be calculated directly by 

solving for instance the equation 2.3.1. Note that in this approach, two virtual 

measurements (the constructed envelopes) were used in order to complete the equations 

system. 
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         (
  

  
 

  

  
) 

      
→      

 

 
(

    

         
) 

(2.3.11) 

 

Typically, a film is grown on a substrate 

and in order to perform spectro-

photometric transmittance measurements 

the substrate must exhibit certain 

transparency in the wavelength range of 

interest. If the goal is to obtain the 

fundamental absorption from such 

measurements, then the optical bandgap 

of the substrate must be larger than that of 

the film. In this sense, the optical 

properties of the substrate must be taken 

into account. 

 

The equation for the transmittance in this case varies from that of the system shown in the 

figure 2.2.1. Nonetheless, in order to retrieve the optical constants we can apply the 

previously described approaches. The corresponding equation that describes in a good 

approximation the system depicted in the figure 2.3.2 is shown in the equation 2.3.12. 

This equation is obtained after performing and average like in equation 2.34 but for the 

substrate induced phase shift only. The use of envelopes described above in this case is 

named the envelope or Swanepoel method [Swa83]. 

 

   
                   

                    √              
 (2.3.12) 

 

      
                   

                    √        
 (2.3.13) 

 

 

Figure 2.3.2. Film substrate system. Typically the 

film thickness is in the order of hundreds of 

nanometers, while the substrate thickness is in the 

order of millimeters. 
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 √    

                  
 (2.3.14) 

 

   (            )
   

 (2.3.15) 

 

The envelopes are defined by the equation 2.3.13. From the envelopes the finess f is 

calculated and related to the layer and substrate refractive indexes (see the equation 

2.3.14). Subsequently, the refractive index      can be found (see the equation 2.3.15, 

here               ) and the film thickness can be calculated by using the 

relation 2.3.11. Finally, by knowing the refractive index and the film thickness the system 

is solved for the absorption coefficient. 

 

The envelope method was developed based on the approach proposed by Manifacier 

[Man76]. The envelope method is a simple straightforward technique that allows for the 

optical constants determination of thin films grown on transparent substrates. An 

extension of the method to work with slightly absorbing substrates has been proposed 

before in [Gon02]. Nonetheless, the method presents some critical drawbacks. First, there 

is no proper way to define and build up the envelopes between the interference extremes 

using only the transmittance spectrum. Second, the envelopes should ideally be 

constructed from the tangent points of the transmittance curve and not from the 

interference extremes. This effect becomes more appreciable in the region where the 

absorption of the film increases dramatically. Third, a large number of interference fringe 

extremes are necessary in order to construct the envelopes and apply the method. This 

condition is only met for films with a sufficient thickness. On the other hand, in order to 

be able to measure the fundamental absorption of the film, the film thickness must be 

sufficiently small leading typically in only a few fringes decreasing the applicability of 

the method [Poe03, Gue10t]. 

 

Aiming to overcome the latter mentioned drawbacks we modified the envelope method. 

In this modification, the refractive index is modeled, whilst the absorption coefficient 

behavior is retrieved by fitting the transmittance spectrum. Further details on this 
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approach and a confident analysis in comparison with the Swanepoel method and the 

PUMA method, which is another well-known technique to obtain optical constants from 

single optical transmittance spectra, can be found in the appendix A1. 

 

2.4 Rare Earth doped materials 

During the last four decades, the interest and applications of RE ions have increased 

significantly. For instance, RE doped materials have found place for applications in 

sensors, waveguides, solid-state lasers, energy-efficient luminescent materials, dopant 

stabilizers for fuel cells, photon up-conversion coatings for improving solar cells spectral 

efficiency, nano-particles radiation and photodynamic therapy for cancer treatment, 

medical imaging, etc. Albeit their potential use, RE commercial applications are still 

limited due to their high price which is comparable to gold. The main reason is that REs 

can be isolated only by using ion-exchange separation techniques which are difficult to 

apply in larger scales. Notwithstanding, RE doped materials continue to be an interesting 

field of study, for instance from the fundamental point of view. In some materials there is 

still not a consensus on what the activation processes for optical emission are. What is the 

role of the host matrix in enhancing or quenching the emission intensity? And finally, 

what excitation mechanisms are the most probable? Altogether, in order to improve the 

light emission intensity, different studies on RE doped semiconductors, isolators and 

other systems have been realized [Gue13q, Ben12, Mir11, Che10, ODo10, Zan09, Loz07, 

Jan03, Lu02]. 

 

The RE luminescence arises from radiative intra-4f electron transitions of the triply 

ionized lanthanides (RE
3+

) doped in host matrices like semiconductors. For instance,     

has an electronic configuration [  ]      , whereas      has an electronic configuration 

[  ]   . The 4f shell remains partially filled, which means that intra f-shell transitions 

are potentially possible, albeit they don’t belong to the outermost shell. Furthermore, 

notice that in REs the 5s and 5p shells shield the 4f electrons from the 6s bonding 

electrons (see figure 2.4.1). The mixing with the 4f electrons is then very low,  
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and thus the effect on the 4f energy levels due 

to the RE bonding with the host matrix atoms 

is weak. Therefore, the weak interaction 

between the 4f electrons and the ion 

environment allows energy levels that are 

relatively insensitive to the host environment, 

and thus narrow spectral lines, and long 

fluorescence lifetimes are expected. In other 

words, the light emission spectra of REs are 

well defined and does not dramatically depend 

on the host matrix. 

 

The optical active transitions under study are parity-forbidden in free ions due to the 

angular momentum conservation      (Laporte’s selection rule). Owing to the local 

crystal field when the ion is surrounded by the host matrix the selection rules of free 

atoms no longer can be applied [Jud62, Ofe62, Hüf78]. In other words, thanks to the 

interaction with the surrounding atoms, the RE observed emission is possible with the 

particular fact that the spectra is practically unaffected by the host. This crystal field must 

be non-centrosymmetric at the equilibrium position in order to have a coupling between 

even and odd wavefunction parity states. Historically, in the 60’s with the independent 

contributions of Judd and Ofelt [Jud62, Ofe62] the understanding of the atomic emission 

spectra of RE in solids started to be finally understood. Before, the RE emission spectra 

was well known but the understanding behind it presented a puzzle that took about 30 

years to be solved [Vle37].  Later on, the race to design light emitting devices using 

various hosts and REs encounter its first drawback. In the early 80’s only semiconductors 

with a small bandgap were available, therefore the applications were limited to infra-red 

light emitting devices. The application was then focused on the infrared emission of Er
3+

 

since the emission corresponding to the       
        

 transition (see figure 2.4.2) 

matches the most pronounced absorption minimum of SiO2 based optical fibers. In fact, 

the study of Er compiles most of the contributions up to day. The light emission 

quenching due to thermal effects drove disappointing results. Nevertheless, the quantum 

 

Figure 2.4.1. Electron orbitals radial distribution 

P
2
(r) for the 4f, 5s, 5p and 6s electrons of Gd

+
 

[Fre62]. 
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efficiency of these systems was somewhat large, opening new and promising research 

paths in the field. 

 

Figure 2.4.2. Energy level diagrams of Eu
3+

, Tb
3+

, Yb
3+

 and Er
3+

. It has been already reported that 

interaction between Eu
3+

, Tb
3+

 and Yb
3+

 allows cooperative up-conversion and down-conversion [Sal03, 

Kir06]. In the case of Er
3+

 cooperative up-conversion between ions of Er
3+

 allows the emission in the red 

[Ken02]. 

 

It was not until the early 90’s that wide 

bandgap semiconductors become sufficiently 

available opening the field for visible light 

emitting devices based on REs. Moreover, 

due to the large bandgap of these hosts the 

phonon energy threshold was sufficiently 

large to avoid the thermal quenching of the 

luminescence at room temperature [Ste99, 

Ken02, Zan03]. These features, plus the 

property that REs can interact with each other, 

open the possibility to produce materials 

which could shift the excitation wavelength to 

higher or lower energies, known as up and 

down conversion (see figure 2.4.2). In summary, different REs exhibit a particular well 
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Figure 2.4.3. CL emission spectra of a/nc-AlN 

doped with different REs Covering the basic 

colors [Wei06]. 
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defined and spectrally sharp luminescence (see figure 2.4.3). Covering for instance the 

basic colors green (Tb
3+

), red (Eu
3+

 or Sm
3+

) and blue (Tm
3+

). The RE light emission 

spectral energy does not depend strongly on the host matrix. However the light emission 

intensity can be enhanced or quenched by the host matrix thus making RE doped 

materials suitable candidates for applications in several fields. 
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Fundamental theory 

3.1 Optical properties of amorphous semiconductors 

The determination of the optical properties of amorphous semiconductors is of great 

interest for technology development and fundamental characterization. This is owing to 

the fact that optical properties are related to structural and electronic properties of any 

solid. Now, the description of the electronic properties of amorphous semiconductors 

begins with the energy distribution of electronic states. In amorphous materials due to the 

absence of long-range order the electronic states are broadened compared to the 

crystalline counterpart and form band-tails at the band edge. Band-tails are also observed 

in the crystalline case with increasing temperature of the material, caused by the phonon 

interaction and broadening of electronic states due to the atomic thermal vibrations. 

Furthermore, there is a complete loss of momentum conservation in the electronic 

transitions in the amorphous case. The effect of these features on the optical properties 

can be evaluated in the analysis of the absorption coefficient and the corresponding effect 

on the optical bandgap. A schematic shape of the absorption coefficient encountered in 

amorphous semiconductors is depicted in figure 3.1.1. Three regions are typically 

assigned and as we will see later, these regions are connected deeply with features of the 

electronic density of states. 

 

In the following sections we will review first the electronic density of states of 

amorphous semiconductors in contrast with the crystalline counterpart in the free electron 

approximation near the band-edges. Second, the defect states that amorphous 

semiconductors experience is revised. Subsequently, we proceed to perform the 

traditional calculation of the fundamental absorption in the one electron approximation at 

cero Kelvin temperature. The Urbach edge is studied and the Urbach focus defined. 

Finally, we develop a model for the absorption coefficient based in thermal fluctuations 

and motivated in the Kubo-Greenwodd formula which takes into account an ensemble of 

electrons at finite temperatures. The consequences of this final calculation are considered 

and contrasted with the Urbach rule and the Urbach focus. 
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Figure 3.1.1. Schematic plot of the typical shape of the absorption coefficient in logarithmic scale of 

amorphous semiconductors in the UV-VIS-NIR spectral region. Three zones can be identified: the deep 

band tail states, the Urbach tail region, and the Tauc region corresponding to the fundamental absorption. 

 

Electronic density of states 

In amorphous semiconductors, it is not possible to define an energy-momentum band 

structure. Due to the lack of translational symmetry the Bloch theorem is not applicable. 

Therefore, the quasi-momentum conservation for transitions (phonon decay, phonon-

photon interaction, etc.) involving reciprocal lattice vectors is no longer valid. Instead of 

using an energy band structure like in the crystalline semiconductor case, we start our 

description with the energy-dependent density of states distribution     . The concept of 

electronic density of states is independent of translational symmetry and therefore 

applicable to amorphous semiconductors [Str91, YuC04]. Furthermore, it has been shown 

that in the amorphous case an energy gap opens. An energy gap is not only related to 

translational symmetry but related to the atomic bonding [Str91]. In summary, 

amorphous semiconductors exhibit electronic states and an energy gap forbidden for the 

electrons. 

 

According to the physical origin, the electronic density of states separates into three 

different energy regions (see i, ii, and iii in figure 3.1.2). First, the conduction and 

valence extended states that are limited by the band edges (or mobility edges) denoted by 

   and    for the conduction and valence regions, respectively. As the name indicates the 
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states are considered to be extended throughout the solid and play a similar role as the 

Bloch states in a crystal. Second, the band tails (or Urbach tail) region overlapping the 

band edges and extending further towards the forbidden gap which represents localized 

electron states, i.e. electrons which cannot contribute to mobility. And finally, the defect 

states region right inside the forbidden gap. 

 

Figure 3.1.2. Scheme of the electronic density of states (DOS) of crystalline (a) and amorphous (b) 

semiconductors. The DOS can be separated in three regions: the conduction and valence bands region (i), 

the band tail states (ii) and the defect states region (iii). 

 

In the crystalline case, the energy band tails are pretty small compared to those observed 

in the amorphous counterpart and are therefore considered absent. The nature of these 

tails is completely thermal and will be explained later. What can be seen from figure 

3.1.2 is that the mobility edges which correspond to the bandgap in the crystalline solid 

do not show up in the density of states of the amorphous solid. The functional behavior 

from the extended states to the localized states (Urbach tail) is rather continuous. These 

features make difficult to define the optical bandgap of an amorphous semiconductor. 

There exist several approaches to define the optical bandgap energy value. What we can 

actually learn from these models and/or definitions may not be an absolute bandgap value 

but rather a representation whose behavior is expected to be similar to that of the real 

bandgap. For instance, when altered by the modification of the Urbach tails or mobility 

edges through thermal annealing treatments and/or passivation of dangling bonds by 

hydrogen or further dilution of nitrogen/oxygen. 
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Defect states in amorphous semiconductors 

Defect states in the forbidden gap influence the electronic properties of the material, 

owing to the fact that their electron occupancy is changed by doping or by trapping 

charge carriers. The energy levels of any defect depend on the local environment. In the 

crystalline case any divergence from the crystalline lattice is a defect, which in fact there 

exist a large amount of defect types in crystalline structures. On the other hand, the 

disorder of a random lattice is an integral part of the amorphous semiconductor, thus 

thinking of the amorphous lattice as a collection of defects is not helpful at all. Hence a 

different definition of defect states is necessary for amorphous materials. 

 

Taking the analogy of the crystalline case, that any departure from the perfect lattice is a 

defect, we can define a defect in an amorphous material as any departure from the ideal 

random network [Str91, Mor99, Sad99, Sin03]. The ideal random network would be a 

continuous and uniform lattice. Understanding by ‘continuous lattice’ that all the bonds 

are saturated in the random network and by ‘uniform lattice’ that there is no actual 

segregation of the species (on the large scale) but the atoms are homogenously distributed 

and therefore a compound and not a composite is formed. 

 

Figure 3.1.3. Schematic representation of the molecular orbit model of the electronic structure of 

amorphous silicon and the corresponding density of states [Str91, Mor99, Sad99]. 
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This approach immediately leads to the idea of a coordination defect in which an atom 

lacks forming a bond [Str91]. Let’s take for instance the case of amorphous silicon (a-Si). 

The s and p orbital states combine to form the sp
3
 hybrid orbital states for the tetrahedral 

bonding. So in a solid formed by an ideal random network of Si atoms, all the atoms are 

tetrahedral coordinated. The sp
3
 orbital states split forming the anti-bonding and bonding 

states which become the valence and conduction bands, respectively in a solid. However, 

in fact not all the sp
3
 orbital states find a neighboring orbital pair to form a bond in an 

amorphous solid. Any non-bonding orbital is not split by the bonding interaction and thus 

give rise to localized states in the gap (see figure 3.1.3). This type of defect is called 

dangling bond and in this particular example is a three-fold coordinated silicon dangling 

bond. 

 

Now, all the electrons in an ideal random network are paired in bonding states. However 

if the local coordination of an atom is one less (or greater) than the ideal, then the neutral 

state of the atom has an unpaired electron forming the dangling bond. The addition of one 

electron into the dangling bond results in paired electrons and a net charge. Therefore, 

this non-bonding state has actually three possible charge states: two electrons D
-
, one 

electron D
0
 and no electron D

+
. The electronic energies of these defects are not the same 

due to the electron-electron interactions. The two electrons (holes) repel each other with a 

Coulomb interaction which is absent in the singly occupied state. Thus the energy levels 

split by the correlation energy    [Str91]. 

    
  

     

 

 
 (3.1.1) 

 

Here   is the effective separation of the two electrons. Consequently, it is roughly the 

localization length of the defect wave-function. It is difficult to calculate the energy value 

exactly, because the wave-function is not known accurately. Nonetheless, a rough 

estimate in the case of amorphous hydrogenated silicon gives            for 

        [Str91]. Notice that the correlation energy is an important fraction of the 

bandgap energy in a-Si:H (          ). 
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The electron-phonon coupling between the 

bonding electrons and the gap-state electrons 

causes the defect structure and energy to 

depend further on the charge state. This effect 

is called lattice relaxation and is generally 

described by a configurational coordinate 

diagram of the type shown in figure 3.1.4. This 

model describes the effect of the electronic 

excitation and the local distortions of the 

bonding. For instance, let’s consider the 

trapping of an electron from the conduction 

band onto a defect. The potential energy of the 

upper state consists of two terms. One of 

which is the energy    of the electron at the bottom of the conduction band and the 

second term is the additional energy of lattice vibrations. These are considered to be 

single vibrational mode described by a configurational coordinate q. For the simple 

harmonic oscillator approximation, it gives and energy      by: 

             (3.1.2) 

 

  is the strength of the network vibrations and the equilibrium state take place at q = 0. 

The solution (quantum mechanical) of the harmonic oscillator gives the phonon energies 

           with the frequency            . This model includes more than one 

vibrational mode. The trapping of an electron releases an energy    and without any 

electron-phonon interaction the energy of the state    is below the upper energy sate. The 

phonon interaction introduces an additional term which couples the energy to the 

configuration coordinate q. At first order this linear coupling results in an energy      

given by: 

     
      

               (3.1.3) 

 

 

Figure 3.1.4. Configuration coordinate diagram 

describing the capture and release of an 

electron from the conduction band into a defect 

state. 
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Here G is the local deformation potential. This solution shows that the defect state has a 

potential minimum at       , rather than at    . The minimum energy of the defect 

is        , where        . The potential well is depicted in the figure 3.1.4. 

The electron-phonon coupling causes the lattice to relax to a new equilibrium 

configuration at a lower energy. The main outcome of the lattice relaxation is that the 

transition energy between two electronic states depends on excitation and relaxation 

process. Thermal excitation requires an energy     , which is the energy difference of 

the potential minima depicted in figure 3.1.4, where there is no change of configuration 

but leaves the upper vibrational state excited. The electron then relaxes to the equilibrium 

state by emitting phonons. The dominant transition from the upper to lower states is also 

vertical and leaves the lower vibrational state excited. Consequently, defect electronic 

transitions are characterized by three energies,   ,      and      . The first and 

third correspond to optical transitions, whilst the second to thermal excitation [Str91]. 

 

In summary, in the amorphous material, small differences in local structure which fall 

within the disorder of the ideal network cannot be meaningfully defined as a defect. Thus 

one expects, contrary to the crystalline case, a few separated classes of defects, but with 

their energy levels broadened by the disorder as illustrated in the figures 3.1.2 and 3.1.3. 

There exist different types of defects in random networks, here we have reviewed some 

features of the dangling bond states which have a well-defined character in the sense that 

they can be separated from the ideal random network. For instance, dangling bonds have 

the distinctive characteristic of either a paramagnetic spin or an electric charge, which 

puts it apart from the electronic states of an ideal random network. Other type of defects 

are possible, nevertheless they have a less well-defined character. For instance a 

hydrogen void in a-Si:H certainly is a defect in the sense that it has a local structure 

different from the rest of the amorphous network. However, from the atomic coordination 

point of view, it is difficult to distinguish a void from the ideal network. If the atoms 

around the void have similar distribution of bonding disorder, then the electronic states 

probably fall within the ensemble of bulk states and are indistinguishable from those of 

the bulk [Str91]. Similar arguments apply to impurity states. Any impurity which is 
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bonded with its optimum valency is expected to form part of the ideal random network 

and contribute only to the conduction and valence bands. 

 

Fundamental absorption in amorphous semiconductors 

Electronic transitions between the conduction and valence extended states are responsible 

for the main absorption and are the measure of the optical bandgap energy. The optical 

data contains information of the DOS, thus of the band tail density of states and the 

optical bandgap. Notwithstanding, the absorption coefficient depends on the convolution 

of conduction and valence band densities of states and also on the transition matrix 

elements and these cannot be separated by optical absorption measurements only. 

 

The absorption coefficient   is related to the electronic transition rate per unit volume 

    due to optical excitation between the extended valence states   ⟩ and conduction 

states   ⟩ by equation 3.1.4. Here c is the speed of light, n the index of refraction,    the 

electric permittivity constant in vacuum and     the electric field amplitude [YuC04]. 

This equation is found after equaling the energy density rate per unit volume absorbed by 

the material          and the energy density rate per unit volume delivered by the 

electromagnetic radiation      〈 〉   . 

   
      

 
           (3.1.4) 

 

The electronic transition rate     between the valence and conduction bands in crystals 

and in the one electron approximation due to the optical excitation of Bloch electrons can 

be written from the Fermi’s Golden Rule as presented in the equation 3.1.5. Here    is 

the electron mass,   the electron charge,   the photon frequency,      and      are the 

electron energy and the electron wave vector, respectively at the conduction (c) and 

valence states (v).       is the transition matrix element in the dipole approximation 

given by           〈       〉, with              the interaction of the 

electromagnetic radiation with the electrons in the solid [YuC04]. 
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 (3.1.6) 

 

From equations 3.1.4 and 3.1.5 the absorption coefficient can be written as shown in 

equation 3.1.6 where naturally both quantities energy and momentum between the 

valence and conduction states are conserved. In general, depending on the band structure 

of the crystalline solid, the electronic transitions with highest probability can be direct or 

indirect. That is, between energy levels with the same electron wave vector k (direct) or 

different wave vectors          (indirect). In the latter case, the remaining 

momentum to maintain the k conservation is delivered by a third interacting particle, i.e. 

phonons, here denoted by        . The electronic transition rate per unit volume     in 

such case must be calculated using the Fermi’s Golden Rule for three interacting 

particles. In this sense the band structure allows the discrimination between two 

categories of crystalline materials, indirect materials and direct materials. 

     
  

  
∫ ∫              (           )      

     

     

        

     

 (3.1.7) 

 

     
   

  
∫                      

  

      

 (3.1.8) 

 

The absorption coefficient can be then written as a function of the valence        and 

conduction        electronic density of states for the case of indirect materials as shown 

in the equation 3.1.7. Or for the case of direct materials as shown in the equation 3.1.8, 

where the          is the density of combined states (or joint density of states) defined 

from the direct transitions energy difference          . In both cases, the transition 

matrix elements       are assumed to change slowly with the energy in the fundamental 

absorption region and therefore it is absorbed along with the rest of the constants in the 

coefficient   . 
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In the amorphous case the picture is quite different. First, in the free electron 

approximation, the energy bands can be written by: 

         
 

   
 
  

  

         
 

   
   

  

(3.1.9) 

 

Here,   
  is the electron effective mass,   

  is the hole effective mass. However this 

approach is no longer applicable in amorphous materials since k is no longer a good 

quantum number. Thenceforth, by taking advantage that the electronic density of states is 

still an applicable concept, from the equation 3.1.6 we can write the absorption 

coefficient in the following form: 

        
  

  
∫ ∫                               (3.1.10) 

 

Here, the conservation of momentum k is relaxed completely so a joint density of states 

cannot be defined. Nonetheless we can assume a shape for the valence and conduction 

electronic density of states. For instance, we can take the shape from the free electron 

approximation obtained from the energy bands in equation 3.1.9 (see equations 3.1.11). 
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(       )

   
 

       √ 
   

    

    
          

    

(3.1.11) 

 

This was the approach proposed by Tauc [Tau68]. By doing so and solving the integral in 

equation 3.1.10 the absorption coefficient can be written as follows: 

           
 

          
 

  
 (3.1.12) 

 

Notice, that it actually looks pretty similar to the solution found after solving the integral 

in the equation 3.1.7 for indirect materials (see equations 3.1.13). Nonetheless, the result 

3.1.12 is fundamentally distinct from the one of the indirect transitions. In the former the 



 
 

30 
 

transitions are assisted by phonons. And even when in both cases the bandgap is defined 

as the separation between the mobility edges in the former these are defined by the 

assumption taken for the electronic density of states in first hand. 

         
 

(        )
 

  
 

         
   (     )

   

  
 

(3.1.13) 

 

Furthermore, the mobility edges in the amorphous case are well merged into the band 

tails and these were not taken into account in the preceding calculation. As we have 

shortly mentioned before, the band tails play an important role on the optical and 

electronic properties of the material and in fact they exhibit a strong influence in the 

optical bandgap calculated by the equation 3.1.12. In this sense, the Tauc-gap is used 

typically as a representative value of the ‘true’ gap. Currently, there is still not an 

adequate formulation of the fundamental absorption in amorphous materials besides the 

Tauc’s approach [Dun83, Dun85, OLe95a, OLe98, Gue13m]. 

 

The Urbach edge 

Localized states have been predicted in the early studies of amorphous semiconductors by 

the Anderson localization theory. Almost sixty years have passed since the publication of 

Anderson in 1958 [And58]. The aforementioned band-tails present in the electronic 

density of states are certainly localized states [Str91]. The influence of electronic 

localized states becomes perceptible in doping, electrical transport, recombination, etc. 

properties of the material. Therefore they establish the main differences between 

amorphous materials and their crystalline counterparts. The origin of the band-tail states 

and how they merge into the extended conduction and valence band states is a 

complicated issue. Most experiments suggest that the band-tails are at least 

approximately exponential. However the underlying reason for this shape is less clear. A 

modest model for random disorder energies is expected to have a Gaussian distribution of 

disorder energies and therefore Gaussian band-tails [Str91, OLe95a, OLe95b, Toy81, 

Sou84, Saj86]. Several attempts have been realized to explain the exponential shape of 
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the band tails. Taking advantage that the shape of the absorption coefficient is closely 

related to the shape of the DOS some models are even specific to the optical absorption 

since it also presents an exponential edge below the mobility edge. 

 

Typically, the band-tail observed in the absorption coefficient can be described 

empirically by an exponential energy dependence in the vicinity of the bandgap energy 

(equation 3.1.14), 

          (
    

  
) (3.1.14) 

 

where the Urbach energy    ranges regularly from ~10 meV to ~200 meV. The 

exponential tail is also known as Urbach edge or Urbach tail after its first observation in 

alakali halide crystals [Urb53] and is found in all amorphous semiconductors. From there 

the name of Urbach rule. Furthermore,    and    denote the Urbach focus coordinate 

[Cod81]. This constant has been reported already in a series of materials, e.g. a-Ge 

[Cod05], LnSe [Aba99], a-SiC [Zha92, Gue11, Guer13m, Mon13], and a-AlN [Gue11, 

Gue13m] and its origin is less clear. 

 

The theoretical approaches of the origin of the nearly universal exponential shape of the 

Urbach tail have gone through a complete transformation over the years. First, the 

possibility that the shape was given by the joint density of states was largely discounted 

in favor of explanations in terms of the energy dependence of the matrix elements 

[Mot79]. This approach was supported by the fact that the similarity of the slope in all 

amorphous semiconductors seemed an unlikely coincidence if it represented the density 

of states. The observation of an Urbach edge in alkali halide crystals is obviously not a 

density of states effect [Str91, Sad99]. The most promising of various models was of an 

exciton transition broadened by random internal fields arising from the disorder [Dow71]. 

This model is able to account for the exponential slope with internal fields which are 

reasonably consistent with the disorder of the amorphous semiconductors. This 

explanation of the Urbach absorption edge has been largely discarded in favor of one in 
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which the shape is simply given by the joint density of states and so reflects the disorder 

broadening of the bands [Sin03]. 

 

Other models attribute the band edge broadening to electron-phonon interactions and/or 

thermodynamic equilibrium occupancy of different possible configurations. Nevertheless, 

despite these theories, the precise relation between structural disorder and the band-tails 

shape remains unclear [Str91].  For instance the Toyazawa’s group [Toy71, Toy81] 

introduced the static disorder effect assuming a Gaussian distribution for thereby random 

site energies into the electronic Hamiltonian, achieving the exponential behavior of the 

band edges. Other contributions, such as the work of Dunstan [Dun83, Dun85], 

Soukoulis, Sajeev, Cohen and Economou [Sou84, Saj86] and later on the contribution of 

the group of O’Leary on understanding and modeling the electronic properties of 

amorphous materials [OLe95a, OLe95b, OLe98, OLe02, OLe04], introduced the effect of 

thermal fluctuations in the band edge (or the band edge fluctuations due to static disorder) 

and calculated the average absorption coefficient obtaining an expression at both the 

Tauc and Urbach regimes [OLe95a]. 

 

Now, since the slope    of the Urbach absorption edge reflects the shape of valence band 

tails, it follows that    varies with the structural disorder. For instance, one measure of 

the disorder is the average bond angle variation, which can be measured from the width 

of vibrational spectra using Raman spectroscopy [Lan82, Lan84] or infrared absorption 

spectroscopy [Mus97]. The defect density is another measure of disorder and it also 

increases along with the band tail slope [Stu89, Jan03, Let10]. 

 

On the origin of the Urbach rule and the Urbach focus 

It is well established that whilst the universally observed exponential shape of the band-

tails is not properly explained yet, its origin lay in the topological disorder and thermal 

vibrations [Toy71, Toy81, Dun83, Sou84, Saj86, OLe95a, OLe95b, Sin03]. The latter is 

normally small and insignificant at low temperatures. However, the fact that both have 

the same functional behavior provides the possibility to model both effects by thermal 

vibrations alone. The physical reason lays in the assumption that a disordered material 
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may be considered as an ordered one at a high (fictive) temperature in which molecules 

are frozen in time (i.e. frozen phonon model). In order to calculate the absorption 

coefficient in such systems we need to calculate the average electronic transition rate     

between the conduction and valence bands due to the optical absorption process of an 

ensemble of electrons in a fictive heat bath. This can be achieved by extending the one 

electron approximation considering the electronic occupation degree in the valence band 

and the available states in the conduction band by using           (       ) and 

                and taking into account the stimulated relaxation process in the 

Fermi’s Goden rule (see equation 3.1.15 and figure 3.1.5). 

 

Figure 3.1.5. Electronic density of states at cero kelvin (black line). Electronic occupation degree in the 

valence band and available states in the conduction band at a finite temperature (red line). Unoccupied 

states in the valence band and occupied states in the conduction band (blue line). Graphs (a) and (b) are 

presented for two different Fermi levels. 
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(3.1.15) 

 

Here,  ̃ is the electric field of the incident.     is the electronic transition matrix element 

between the conduction and valence bands.      is the Fermi distribution.    is the free 

electron mass, and e is the electron charge. Equation 3.1.15 can be further reduced to the 

equation 3.1.16. The latter is known as the Kubo-Greenwood formula, commonly used to 
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describe the temperature dependence of the electrical conductivity of semiconductors. 

The proof can be found by following the approach of Moseley [Mos78]. Here, the 

Kubgo-Greenwood formula defines de average electronic transition rate versus the 

temperature (see equation 3.1.17) [Mot79]. 

        
  

 
(

 ̃ 

    
)

 

∑     
 

     

{           }            (3.1.16) 

 

〈   〉    ∫           {            }    (3.1.17) 

 

 

Figure 3.1.6. Electronic Joint Density of States (     at cero Kelvin (a) and after the proposed average at 

different temperatures (b). 

 

In order to calculate the average electronic transition rate versus the photon energy    

and at different temperatures lets proceed with the following approach. S. K. O’Leary 

proposed to average the Local Joint Density of States (       
       ) with a Gaussian 

distribution so as to account for the thermal fluctuations [OLe95a, OLe95b]. Now, 

motivated by the equation 3.1.17, we see that the transition rate is being averaged with 

                     
as weighting function. Furthermore –        behaves quite 

similarly to a Gaussian type distribution and                      . In this sense 

we propose the average of the Joint Density of States as presented in the equation 3.1.18. 
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The average will look as depicted in figure 3.1.6 producing tails below the bandgap 

energy value. 

〈   〉      ∫                   
 

  

 (3.1.18) 

 

Therefore the average transition rate 〈   〉 under direct transitions (i.e      ) can be 

written as shown in the equation 3.1.19. After integrating (see eq. 3.1.20) and writing the 

〈   〉 in its integral form we are lead to the equation 3.1.21. 

〈   〉  
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∫      
 〈   〉                  

 

      

 (3.1.19) 
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〈   〉     (3.1.20) 
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∫      
         {            }    

 

      

 (3.1.21) 

 

Notice that equation 3.1.21 is identical to the electronic transition rate at cero Kelvin for 

direct transitions except for the Dirac Delta function term that ended up been replaced by 

the Fermi distribution derivative (see equation 3.1.5). We propose to extend this average 

directly to the electronic transition rate     by relaxing the energy conservation term. 

That is by replacing                            either for direct or indirect 

transitions. 

 

From this point on, we follow Tauc’s calculation for amorphous semiconductors, i.e., 

relaxing the conservation of k and write 〈   〉 in its integral form, by using the valence 

       and conduction        electronic density of states in the free electron 

approximation. The absorption coefficient is then obtained as shown in equation 3.1.22, 

where the energy reference is taken so that          and        . 



 
 

36 
 

        
  

  
∫∫√     √    {              }       (3.1.22) 
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Finally, equation 3.1.22 can be written more compactly as presented in the equation 

3.1.23. Here        is the Di-Logarithm function of x: 

        
 

 

  

    
   (          ) 

(3.1.23) 

 

   is defined as         , and    plays the role of a pseudo-chemical potential that 

depends for instance on the matrix doping.           is the definition of the Urbach 

slope. Notice that    enters only as a shift of the bandgap and therefore it can be 

interpreted as the bandgap shift due to the doping effect or other mechanisms that may 

vary the band edges. 
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 (3.1.24) 

 

Asymptotic analysis of equation 3.1.23 leads to the Urbach and Tauc expressions, here on 

called extended Urbach and Tauc equations, respectively as shown in equation 3.1.24. At 

cero Kelvin (or 0 meV Urbach energy) the extended Tauc expression is reduced to the 

traditional Tauc model as expected. On the other hand, the extended Urbach rule behaves 

just like the Urbach rule except for the factor      which becomes evident when 

comparing the absorption coefficient with different slopes.  Furthermore, we obtain 

mathematically the same coefficient    in both regimes. Notwithstanding, physically we 

may allow different coefficients in order to account for the variation of the matrix 

elements       with the photon energy in both regimens.  This result is very similar to the 

obtained by S. K. O’Leary [OLe95a, OLe95b, OLe04]. The main difference lays in the 
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weighting function or the assumption of exponential tails directly in the band edges 

[OLe04]. Here we average the JDOS (     with the Fermi distribution derivative and 

recover analytically the exponential behavior of the band tails afterwards.  

 

Figure 3.1.7. Tauc plot of equation 3.1.23 for a         and     = 200, 350 and 500 meV. The black 

lines correspond to the function in the asymptotic regimen of the Urbach (a) and Tauc (b) regions i.e. 

equation 3.1.24. 

 

The approach here presented predicts and models both the Urbach tail region of the 

optical absorption and the fundamental absorption region. Additionally, by assuming a 

constant       it also models de transition between the Urbach and Tauc regions. In 

contrast to other approaches, it provides a simple an analytical tool which we believe to 

prove of use to the experimentalist since a fit with the equation 3.1.23 is possible. The 

asset of this equation lays in the fact that both Urbach and Tauc regions are merged into 

one single and simple analytical expression relating the bandgap in the absence of 

disorder    with the Urbach energy        in both regimens [Gue16]. 

 

Let us now asses the implications of the equation 3.1.23 and its asymptotic behavior 

(equation 3.1.24). Two features are to be noted. First, the extended Urbach rule does not 

actually predict an Urbach focus. The Urbach focus is a constant typically observed as 

intersection of the absorption coefficients when extrapolating the exponential behavior of 

the Urbach region towards higher photon energies upon different Urbach slopes (see 

figure 3.1.8). The Urbach energy can be modified after thermal annealing treatments or 
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upon different sample temperatures. The nature of the Urbach focus seems to be related 

to the bandgap in the absence of disorder since it is a constant of the material. 

Nevertheless it is calculated using the equation 3.1.14 and therefore assuming its 

existence beforehand [Gue11]. The extended Urbach rule (i.e the equation 3.1.24 for 

energies below   ) predicts the existence of a constant different than the Urbach focus. 

Furthermore, this equation actually predicts a region where the Urbach focus falls 

depending on the dispersion of the Urbach slopes values (see figure 3.1.8.a). An analysis 

to test the existence of the Urbach focus has been developed by F. Orapunt and S. K. 

O’leary [Ora04]. In section 5.1, we perform the aforementioned analysis and extend it to 

the equation 3.1.24 for the materials here under study (i.e. SiN, AlN and SiC:Hx). 

  

Figure 3.1.8. Absorption coefficient of amorphous Si:H exhibiting the Urbach focus at                 

close to the value in the literature that surrounds 2.12 eV [Cod81]. The fits are performed using the equation 

3.1.14 sharing the parameters    and    (a). Absorption coefficient generated using the equation 3.1.23 

(black lines) and their respective asymptotic curves in the Urbach region (red curves), in this plot   = 2.1 

eV was used. Notice that the extended Urbach rule does not merge in a single point but a region (b). 

 

Second, what will we obtain if we fit the common models to the equation 3.1.23. That is 

the Urbach rule (eq. 3.1.14) and the Tauc model (eq. 3.1.12). For this let us generate the 

absorption coefficient by 3.1.23. Such simulation is depicted in the figure 3.1.9 along 

with the corresponding fits for each region. 
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Figure 3.1.9. Absorption coefficient under two representations: logarithm-scale (a) and Tauc-plot (b) of 

equation 3.1.23 for           and     from 10 meV to 190 meV. The red lines correspond to fits using 

the Urbach rule (a) and the Tauc model (b). The Urbach rule fit was performed by sharing the parameters 

   and    for all the curves. The blue circles denote the masked (not-considered) data in each fitting 

procedure. The Urbach focus energy ordinate was found at                   . 

  

 

Figure 3.1.10. Tauc-gap versus the sample temperature (a). Urbach energy versus the sample temperature 

(b). And Tauc-gap versus the Urbach energy (c). These parameters were obtained from the simulation 

shown in figure 3.1.9. Notice that the intercept in (c) matches closely to the Urbach focus energy value. 
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The Tauc-gap and Urbach energy corresponding to the latter fits are depicted in figure 

3.1.10. Here we recover a known behavior: the bandgap shrinking and the Urbach energy 

enhancement due to the increase of the thermal vibrations with the temperature. Both 

parameters seem to follow a linear correlation just as predicted by Cody et al [Cod81] 

(see figure 3.1.10). 

 

Figure 3.1.11. Tauc-gap versus the sample temperature (a). Urbach energy versus the sample temperature 

(b). Tauc-gap versus the Urbach energy of a-Si:H samples were the parameters were obtained after 

varying the disorder through thermal annealing treatments (static disorder variation) and changing the 

sample temperature (thermal disorder variation) (c) [Cod81]. The red lines correspond to fits performed 

with the equations 3.1.30 (a), 3.1.26 (b) and 3.1.31 (c). 

 

The frozen phonon model approach relates the thermal and static disorder to the optical 

absorption spectra through the Urbach energy [Cod81]. For instance, the family of 

absorption curves presented in figure 3.1.8 was obtained at different sample temperatures 

and after different thermal annealing temperatures. As we already mentioned the thermal 

annealing treatments causes fundamentally a variation on the structure of the material, by 

delivering energy to the atoms and therefore allowing them to move sufficiently to reduce 

bond stress and static disorder. In the case of a-Si:H, evidence shows that the Urbach 

energy is enhanced by the hydrogen out-diffusion [Str91, Cod81]. Other hydrogenated 

exhibit a similar behavior [Jan03, Gue16]. Now then, the observation of a single family 

of curves describing the two types of disorder (static and thermal) is indication that both 

types of disorder are alike in terms of their effect in the optical absorption process. That 
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is, increasing the disorder (thermal or static nature) causes the bandgap to decrease and 

Urbach energy to increase. The latter behavior is observed in the experimental bandgap 

and Urbach energy data of a-Si:H depicted in figure 3.1.11. 

 

Standard treatments of the Urbach edge in crystalline semiconductors [Toy71], conclude 

that the Urbach energy    is proportional to 〈  〉 , thermal average of the square of the 

displacement   of the atoms from their equilibrium positions:        〈  〉 . Thus, in 

order to include the effect of the topological (static) disorder in   , we make the plausible 

generalization that 

          { 〈  〉  〈  〉 }, (3.1.25) 

 

where 〈  〉  is the contribution of the static disorder to the mean-square deviation of the 

atomic positions from a perfectly ordered configuration [Cod81]. In order to justify this 

central hypothesis, the dynamic phonon disorder and static topological disorder, in the 

adiabatic approximation, should have similar effects on the electronic band energy levels. 

The temperature dependence of    can be estimated by approximating the phonon 

spectrum of the material by an Einstein oscillator with a characteristic temperature   

[Cod81, Str91]. Here, the Einstein model is a good approximation to a Debye phonon 

spectrum with a Debye temperature         . Thus, in this model the equation 3.1.25 

can be expressed as 

         
 

  
(
   

 
 

 

          
) (3.1.26) 

 

The condition that              while      is imposed and therefore the constant 

  from equation 3.1.25 is absorbed in   , the latter being an Urbach edge parameter of 

order unity. In equation 3.1.26,    〈  〉  〈 
 〉  is a measure of the structural disorder 

normalized to the zero-point uncertainty in the atomic positions 〈  〉 . 

 

Now, in order to relate the temperature dependence of         to the bandgap       we 

separate the temperature dependence of the bandgap in two different components as 
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shown in the equation 3.1.27 [Str91, Cod81, All81]. The first term in the right hand side 

is the explicit temperature dependence of the bandgap which originates from the electron-

phonon interaction through a deformation potential (here named D , whilst the second 

term is the implicit temperature dependence due to the thermal expansion of the network. 

  is the thermal expansion coefficient and   is the material’s compressibility. From the 

known values of   and  , the second term contributes only about 2% to the measured 

temperature dependence setting the explicit temperature dependence as the dominant 

contribution for the temperature dependence of the bandgap [Str91]. 
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 (3.1.27) 

 

The electron-phonon interaction on the temperature dependence of the bandgap in 

crystalline semiconductors can be written as shown in the equation 3.1.28, where       

is the zero-temperature optical bandgap and   the second-order deformation potential. 

Analogously to the equation 3.1.25, equation 3.1.28 can be generalized to the case of 

amorphous materials by introducing the contribution of static disorder as shown in the 

equation 3.1.29. Finally, the mean square lattice displacements in equation 3.1.29 can be 

expressed in terms of the         by using the equation 3.1.25. This result is presented 

in the equation 3.1.30. 

 

              { 〈  〉  〈  〉 } (3.1.28) 

 

                  { 〈  〉  〈  〉  〈  〉 } (3.1.29) 

 

                 〈  〉  (
       

       
  ) (3.1.30) 

 

The above model provides a consistent picture of the effects of static and thermal 

disorder on the bandgap energy and the Urbach tail slope. Moreover, the relation between 
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the bandgap and the Urbach energy are in good agreement with the experimental data of 

a-Si:H. For instance the solid curves in figure 3.1.11 are fits
1
 performed with equations 

3.1.30 and 3.1.26. The best fitted parameters (see figure 3.1.11) are close to the values 

obtained in [Cod81, Str91]. 

 

This result suggest that the optical bandgap of a-Si:H is determined by the degree of 

disorder in the lattice, rather than by the hydrogen content, as it was commonly 

assumed [Str91]. In this model, the hydrogen affects the bandgap only indirectly through 

its ability to relieve strain in the lattice. This result proofs sufficiently that thermal and 

topological disorder affects the bandgap and Urbach energy in the same way [Cod81]. 

Therefore since the Urbach edge represent the JDOS near the mobility edge it is plausible 

to treat the effect of the disorder on the optical absorption by thermal effects only but 

considering that a fictive temperature is also present in order to account for the static 

disorder. This statement establishes the basis of the frozen-phonon approach used 

previously and explains the fact that figures 3.1.10 and 3.1.11 are so similar. In this 

context, from the linear relation between the bandgap and the Urbach energy observed in 

equation 3.1.30 and assuming that the relation depicted in equation 3.1.31 is correct, the 

Urbach focus becomes the addition of the bangap in absence of disorder plus a term 

proportional to the deformation potential            〈  〉   [Cod05]. So the 

affirmation that the Urbach focus is a constant is valid only as far as 〈  〉   is a disorder 

independent constant. Additionally, from equation 3.1.30, the slope of the 

aforementioned linear relation is defined by   〈  〉          . A linear fit of the 

bandgap versus the Urbach energy in the case of a-Si:H is also depicted in figure 3.1.11. 

The Urbach focus found through this linear fit matches indeed with the value obtained 

directly by a global fit of the set absorption coefficients measured at different annealing 

stages and sample temperatures. 

                     (3.1.31) 

 

                                                           
1
More precisely in the present thesis, a single fit of both data sets simultaneously sharing the same parameters in 

both equations achieved by the minimization of the sum of the estimator    of both models and data sets. 
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Finally, the above approach allowed us to relate the Urbach focus with the bandgap in the 

absence of disorder. This relation was somehow also observed by the proposed model in 

equation 3.1.23. Nevertheless, in the latter model the Urbach focus is actually a small 

region than a true constant. The proposed model for the absorption coefficient provides a 

simple equation that describes fully both the Urbach and the fundamental absorption 

regions. In section 5.1 a test to proof the validity of traditional approaches and the early 

proposed equation 3.1.23 is performed for a-Si:H and the materials that compound the 

main study of this thesis (AlN, SiN and SiC:H). 

 

3.2 Luminescent properties of RE doped materials 

When considering the optical emission within a single ion (or group of ions) embedded in 

a solid, it is appropriate to treat an optical transition with a localized model rather than a 

band model. In fact, most phosphors present localized luminescent centers and contain a 

far larger variety of ions than delocalized centers [Yen07]. A luminescent center is a 

localized electronic state capable to produce luminescence after suitable excitation. In 

crystals, luminescence centers arise from defects, such as positive and negative ion 

vacancies or interstitial atoms, or from activators which are specially introduced atoms or 

ions. The most important types of luminescent centers are transition metal ions (TMI) and 

rare earth ions (REI) that have been intentionally doped into a material. The 

luminescence features of these systems depend on the dopant and the host matrix. These 

states are also known as color centers. The host materials for localized, optically active 

centers are usually large bandgap solids. The large gap bestows transparency in the 

visible region to the host, and also prevents electrons from bridging the gap thermally. 

 

As we have shortly reviewed in section 2.4, RE luminescence arises from radiative 

electronic transitions within the 4f-shell of triply ionized lanthanides. This luminescence 

presents remarkable features. First, its occurrence solely is already noteworthy. It was 

first reported by J. Becquerel in 1907 [Bec07], and afterwards it was found that the nature 

of this luminescence is of electric-dipole character. Such discovery was in contrast with 

what electrodynamics predict. More precisely, electrodynamics requires the change of 

parity between the initial and final states of the electron system with a spherically 
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symmetric potential. This requirement is known as Laporte’s selection rule and it 

presented a Puzzle that took about 30 years to be solved [Vle37, Jud62, Ofe62] (see table 

3.2.1). It was not until the independent and almost simultaneous publications of B. R. 

Judd [Jud62] and S. Ofelt [Ofe62] that a solution was found: the admixture of states of 

opposite parity through a crystal field, thus granting radiative electric-dipole transitions 

within the 4f-shell. Since the elaboration of this theory vast efforts have been realized to 

develop a powerful theory based on numerous spectroscopic experiments. This theory 

allows the calculation of transition probabilities and its development has been 

progressing for more than 40 years already. The main reason is that triply ionized 

lanthanides could always contribute to modern research demands. Despite their 

interesting magnetic properties (the most widespread commercial use of RE solids at 

present is the production of super-strong permanent magnets containing Neodymium), 

the application of REs in the field of light emitting devices plays a very important role. 

For instance, an extensive use of Neodymium is the Nd:YAG laser, widely used both at 

its fundamental wavelength of 1064 nm (infra-red) or in the visible when the frequency is 

doubled. 

Table 3.2.1. Multipole operators and selection rules. P electric dipole, M magnetic dipole and Q 

quadrupole operators. M radiation can account for some RE transitions however it represents just a special 

case. Q radiation accounts for all the RE transitions, yet the probability is too low to account for the 

observed intensities. Therefore, P radiation is the only reasonable channel to explain the observed RE 

luminescence intensity. This solution implied a variation of the electronic motion due to crystalline fields. 

Such theory is known as Judd-Ofelt theory. 

Operator     
  

(        , not allowed) 
Parity 

 ̅    ∑  ̅

 

                      opposite 

 ̅   
  

   
∑  ̅     ̅

 

                   same 

 ̅  
 

 
∑( ̅    ̅)  ̅

 

                            same 

 

 

The most remarkable feature of RE spectra is their sharp luminescence lines similar to the 

spectra observed in the case of free ions. This behavior is consequence of the fact that the 
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4f electrons are partially shielded from surrounding crystal fields due to the outer filled 5s 

and 5p shells (see figure 2.4.1). Owing to this shielding, the energy levels of the 4f 

electron systems are almost unaltered, and the spectral line-widths are to some extent 

often only a bit broadened. However the influence of the crystal field on the dynamical 

processes is profound. The crystal field is responsible for the radiative transitions 

between 4f states (i.e. relaxing the Laporte’s selection rules). Additionally it drives the 

non-radiative processes that allow the energy exchange between the host matrix and the 

ion. In the following sections we will develop a condensed approach to the theory up to 

the final solution. This will be done only to certain degree due to its large volume. The 

formal treatment of intensity and energy levels calculations are based on group theory 

(detailed calculations can be found in [Jud97] and [Wyb65]). The subsequent description 

is based in the following references [Gör98, ODo10, Vij06, Hüf78]. 

 

Elementary features 

Partially filled shells are observed usually in transition metal groups which comprise the 

3d iron group, the 4d palladium group, the 4f lanthanide group, and the 5f actinide group. 

In a crystal, luminescent center ions are by no means free but surrounded by a cage of 

ligand atoms. The ligand atoms interact with the luminescent center ions, producing the 

so called crystal field. The small crystal field interaction entails that the RE ions are not 

very sensitive to the motion of the lattice. Consequently     transitions are 

characterized by sharp lines, with typical linewidths around 1 cm
-1

 at low temperatures. 

The energy associated with this interaction varies around 1 to 1000 meV. This energy can 

exceed the spin-orbit interaction, and in some cases the electrostatic interaction with 

other electrons. Thus the crystal field is an additional interaction in an already 

complicated problem. A perturbation approach is necessary in which terms are 

considered in suitable order, for instance by decreasing interaction energy. The crystal 

field interaction is introduced at the appropriate point relative to the sequence of 

interactions internal to the luminescent ion (see figure 3.2.1). In decreasing interaction 

energy order these are [Vij06]: 
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(i) The interaction of an electron with the Coulomb field of the nucleus, modified by 

the repulsion field of the other electrons. With an appropriate mean electronic 

field with central symmetry this interaction ends in the electronic levels grouped 

in configurations. For instance, the ground configuration of      is    , which is 

about 10 000 meV below the first excited configuration        

 

(ii) The residual mutual electrostatic repulsion of the electrons       ∑        , 

not represented by a central field. The Hamiltonian of this interaction is partially 

simplified in the LS-coupling scheme (this scheme is also known as Russel-

Saunders for       ). Where a suitable basis is chosen in order to diagonalize 

the spin orbit coupling in which the orbital angular momentum and the electron 

spin are coupled and give rise to the total angular momentum L and total spin S. 

This coupling produces energy splittings separated about 1000 meV between 

terms of different quantum numbers L and S associated with a determined 

configuration. For example, the ground term of a     configuration is (according 

to the Hund’s rule)   , with       and    , around 1000 meV below    

term, with       and     which belongs to the same     configuration. 

 

(iii) The spin-orbit coupling,         , with       being a good quantum 

number. With the upper and lower sign suitable to electron shells being more or 

less than half-filled, respectively. This interaction splits a given term into a 

multiplet of levels with different  . The components of the multiplets are split by 

about 1000 meV for 4f electrons while about 10meV for 3d electrons. 
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Figure 3.2.1. Crystal field interaction of an ion with     and     for intermediate and weak crystal 

field strength [Pur90]. 

 

The magnitude of the crystal field interaction (CF) relative to the interactions enumerated 

above is different for the various transition groups. This magnitude might conveniently 

be grouped as follows: 

 

(i) Strong crystal field, i.e. CF > LS-coupling. For example the 4d and 5d electron 

systems. 

 

(ii) Intermediate crystal field, i.e. CF ≈ LS-coupling > spin-orbit coupling. Typically 

case found in 3d electron systems. 

 

(iii) Weak crystal field, i.e. CF < spin-orbit coupling. The 4f electron systems exhibit 

this behavior. 

 

Figure 3.2.1 depicts an example of the crystal field interaction effect on the energy level 

scheme of an ion with     and    . The weak (iii) and intermediate (ii) cases are 

shown in the right and left hand, respectively [Pur90]. 
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Figure 3.2.2. Application of the Hund’s rule to trivalent RE ions, here depicted by increasing the number 

of electrons in the f shell. 

 

Besides gadolinium, neutral REs exhibit an electron configuration            , where 

the number N of electrons ranges from 2 for Ce
0
 up to 14 for Yb

0
. The typical oxidation 

state REs are found is 3+, though 2+ is found in some compounds. In the triply ionized 

state the electron configuration becomes           having the number N of electrons 

ranging from 1 for Ce
3+

 to 13 for Yb
3+

. The Hund’s rule describes the filling of the 4f 

shell. It establishes that the term with the highest quantum number S has the lowest 

energy. In the case of several terms with the same S, the one with the highest angular 

momentum quantum number L has the lowest energy. Additionally, due to the spin-orbit 

coupling, the terms 
2S+1

L are split into levels                    , where for 

less than half filled shells the term with the smallest   lies lowest in energy. Otherwise the 

term with the largest   has the lowest energy (see figure 3.2.2). In this way it is possible 

to predict the ground state      
  of RE ions, as it is shown in the table 3.2.2 [Hua10]. 

 

A noteworthy feature of REI is the observed decrease in both the ionic and covalent radii 

and the increase of the Pauling’s electronegativity with increasing the atomic number Z. 

This might be attributed to the poor shielding capabilities of the    electrons causing the 

subsequent shrinking of the radial integrals of the outer    and    electrons with 
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increasing the nuclear charge [Hua10]. This effect is the main reason of the slightly 

different chemistry found in compounds throughout the lanthanide series [Dor13]. 

Additionally, the different ionic radii may also have an impact on the symmetry at which 

REI are found. For instance, the symmetry of      implanted GaN is different from the 

observed in      and     [Gru01,Gru02, Gru02a]. Triply ionized REs are found with a 

large amount of possible coordination numbers, leading to a large number of possible 

symmetries [Gör98, Hua10]. Typically coordination numbers up to 8 and 9 are found, 

nonetheless higher coordination numbers are also possible. This feature is in contrast to 

the limited amount of coordination numbers found in TMI [Vij06]. 

Table 3.2.2. Filling of the 4f shells of RE ions and predicted ground state according to the Hund’s rule 

[Hua10]. 

   ∑   , with        . 

   ∑     

        (less than half-filled sheld),       (otherwise) 

     -3 -2 -1 0 1 2 3            
  

                  1/2 3 5/2       

                   1 5      

                    3/2 6 9/2       

                     2 6 4     

                      5/2 5 5/2       

                       3 3 0     

                        7/2 0 7/2       

                         3 3 6     

                          5/2 5 15/2        

                            2 6 8     

                             3/2 6 15/2        

                              1 5 6     

                               1/2 3 7/2       
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Hamiltonian of a RE ion in a solid 

The treatment of triply ionized lanthanides in solids is dealt according to the Schrödinger 

equation. The Hamiltonian of an optically active RE ion in a solid can be written as 

shown in the equation 3.2.1. Here the    ,     and    are the Hamiltonians for the free 

ion, static crystal field interaction and lattice (electron-phonon) interaction, respectively. 

              (3.2.1) 

 

The free ion Hamiltonian     includes all electric and magnetic interaction in the ion. For 

many-electron atoms this Hamiltonian is quite burdensome. Extensive treatments on the 

various interaction contained in     can be found in [Die68, Mor82]. Now, considering 

only the most relevant interactions,     can be expressed in the following form: 

              . (3.2.2) 

 

Here,    contains the kinetic energy of the electrons   , and the electrostatic interaction 

of each electron with an average potential due to the nucleus and the other electrons    

(see equation 3.2.3). This potential and the kinetic energy have typically a spherical 

symmetry. The sum in equation 3.2.3 runs all over the 4f electrons and   represents the 

atomic potentials screened by the inner electrons.  

           
  

  
∑  

 

 

   

 ∑
   

  

 

   

 (3.2.3) 

 

Solving the Schrödinger equation at this point leads to the approximate solutions 

|         ⟩ characterized by the quantum numbers  ,  ,   ,    shown in equation 3.2.4. 

           
        

 

 
            

        
 (3.2.4) 

 

The eigenstates of    corresponding to a particular configuration (     are degenerate. 

The perturbations are responsible partially for the removal of the degeneracy of the levels 

encountered in equation 3.2.3. 
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   on the other hand accounts for the electrostatic interaction between electrons in the 

unfilled shell. The electrostatic interaction is expanded into Legendre polynomials and 

the spherical-harmonic addition theorem is applied, thus writing    in tensor-operator 

form [Sob72]: 

      ∑∑
 

|     |    
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(3.2.5) 

 

with the   
   

 defined by 

   
       √

  

    
  

          

 

Rewriting equation 3.2.5 in a more convenient form [Jud97]: 

 

      ∑∑
  
 

  
   (  

   
  

   
)〈 ‖    ‖ 〉

     

 

   ∑    
 

         

 

(3.2.6) 

 

Here    are the operators and    are the Slater integrals 

      ∬
  
 

  
          

 (  )      

 

 

 (3.2.7) 

 

This interaction splits the ground configuration into different terms. This terms share 

common values of S and L and are identified by the       notation.    commute with the 
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  ,   ,    and    operators and thus the corresponding quantum numbers L, S,    and 

  , respectively are valid. The energy of each state is independent of    and   , and 

therefore exhibit a degenerance of             . It is not difficult to show that the 

parameter    produced a shift to the whole    configuration energy levels, but with no 

effect on the relative energetic positions. Thus, this parameter is excluded and along with 

other shifting contributions summed up in a parameter here on named      (see equation 

3.2.10). 

 

Lastly, the spin-orbit term is denoted by     in the free ion Hamiltonian (equation 3.2.2). 

For RE ions it is the next most significant interaction followed by the crystal field 

interaction    . This case is known as the weak crystal field scheme. Nonetheless, for 

TM ions     is larger than    , so either the medium or strong field scheme is relevant 

(see figure 3.2.2). It describes the interaction between the spin of the electron and its 

magnetic moment. The Hamiltonian term     is obtained from the non-relativistic form 

of the Dirac equation and takes a known form in the case of spherically symmetric 

electrostatic potential [Sob72]. 

     ∑       
 

 (3.2.8) 

 

Again, the sum in equation 3.2.8 runs over all    electrons. Furthermore, equation 3.2.8 

can be written similarly to the equation 3.2.6 [Jud97]: 

        ∑(  
     

   )〈 ‖ ‖ 〉

 

〈 ‖ ‖ 〉 (3.2.9) 
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Figure 3.2.3. Schematic representation of the energy levels splitting due to the distinct interactions 

included in the free RE ion Hamiltonian (equation 3.2.2).    represents the central field interaction, that is 

the electrons in the field of the nucleus.    denotes the mutual repulsion of electrons solely.     accounts 

for the coupling between spin and orbital angular momentum. This is scheme is known as the LS-coupling 

scheme in which the Coulomb interaction is greater than the spin-orbit interaction. 

 

When including the spin-orbit interaction, the free ion energy levels can no longer be 

categorized by the quantum numbers   and  . In fact this interaction splits each spectral 

term into different levels. These levels are called  -multiplets (or  -manifolds) since     

commutes with       and not with   and   separately. See figure 3.2.3 in which the 

labeling of the states changes from       to      
  after the spin orbit interaction. 

 

The Hamiltonian of the free ion     can be written in the following way: 

          
  

  
∑  

 

 

 ∑
   

  
 

   ∑    
 

       

 ∑       
 

 (3.2.10) 

 

Further corrections to the interactions can be included. For instance, a correction to the 

two-particle Coulomb interaction has been proposed by Rajnak and Wybourne [Raj63]. 

This interaction is named linear configuration interaction     and is parameterized using 

three parameters  ,   and   in the form shown in equation 3.2.11 where   is the total 
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angular momentum operator,       and       are Casimir’s operators for the 

corresponding groups    and   . Another correction that can be taken into account 

besides the aforementioned linear configuration is for the case of more than 12 electrons 

in the 4f shell. It is named non-linear three-particle configuration interaction [Jud66]. 

Notwithstanding these corrections will not alter very much the energy levels calculated 

by solving the Schrödinger equation with the shown     Hamiltonian in the equation 

3.2.10. 

                           (3.2.11) 

 

Crystal field interaction 

Up to this point, in the Hamiltonian of equation 3.2.10 we have only considered the ion 

as free. However as mentioned earlier, RE ions inserted into a crystal matrix experience 

another contribution to the Hamiltonian due to the interaction of the 4f electrons with the 

surrounding crystal field    . For an overview of the calculation of the crystal field with 

the 4f electrons the Crystal field Handbook [New00] is a good alternative among others 

like [Gör98], [Vij06] and [Hüf78]. As we already remarked before, in the free atom there 

is a spherical symmetry and each level is reduced to      degeneracy. Notwithstanding, 

when the ion is placed in a crystal environment the spherical symmetry is broken and 

each level splits. In fact the spherical symmetry is reduced to the point symmetry at the 

ion location. The degree to which the      degeneracy is removed will depend on the 

symmetry surrounding the ion. These features will become clear shortly. 

 

From now on we will follow with the point-charge description. In this scheme point 

charges    will produce a potential    at a distance   . 

         ∑
  

|     |
  

 

 (3.2.12) 

 

The potential       written in the equation 3.1.12 is the potential from all point charges   

within the lattice at a position    of the     4f electron [Gör98, Vij06]. Since the 
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eigenfunctions of the free Hamiltonian possess complete spherical symmetry and can be 

expressed in terms of spherical harmonics we then expand the equation 3.2.12 in 

spherical harmonics as shown in the equation 3.2.13. This procedure is performed by 

expanding the term |     |
  

 into Legendre polynomials, where    is the smaller and    

the larger distance of       . The angle   between   and    is expressed in the polar 

angles   and  , applying the so called spherical harmonic addition theorem. 
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(3.2.13) 
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(3.2.14) 

 

Since   
   

 (see equation 3.2.14) does not act on the 4  wavefunctions whilst the   
   

    

term does the   
   

 operators can be taken outside the crystal field matrix element as 

shown in equation 3.2.15 [Hüf78]. 
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(3.2.15) 
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Notice that when           is satisfied the second 3j-symbol term in the 

equation 3.2.15 is different from zero. This is actually a general selection rule for 

transitions between different crystal field levels. Additionally, the triangle conditions of 

the 3j-symbols require that       . The first 3j-symbol is different to zero only if 

    is even, thus only with an even  . Furthermore, the triangle conditions require 

   . Consequently only the   
   

 with an even   between 0 and 6 are responsible for 

splitting the crystal field levels. In this sense, only the even part of the crystal field 

potential is responsible for the splitting of the   
     levels, while the odd part of the 

crystal field potential is responsible for the intensities of the induced electric dipole 

transitions. The latter features were shown by Judd and Ofelt and will be discussed 

shortly. 

 

Now, if we separate the spherical harmonic by real and imaginary parts, the potential can 

be written as [Hüf78, Gör98, Vij06]: 
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(3.2.16) 

 

with the   
   

 rewritten as follows, 
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Due to the fact that the crystal field Hamiltonian is invariant under all symmetry 

operations of the point group the   
   

 parameters become further restricted. This means 

that only the   
   

 for a specified symmetry will be nonzero and the corresponding   
   

 

will contain the symmetry elements of the point group. These   
   

 terms are typically 

determined experimentally by fitting the measured energy levels to the ones calculated 

theoretically. More specifically, as soon as the point symmetry and the appropriate form 

of the crystal field are known, the crystal field energy matrix is constructed and then 

diagonalized using an estimate set of   
   

 starting parameters. The resultant set of 

theoretical energy levels is compared to the set of experimental levels and then by an 

iterative fitting procedure the   
   

 parameters are adjusted to obtain the best overall fit to 

the experiment [Hüf78]. 

 

The crystallographic point groups can be divided into four general symmetry classes 

[Run56]: 

 

i. Cubic:   ,  ,   ,   ,   

ii. Hexagonal:    ,   ,    ,   ,    ,    ,   ,    ,   ,    

iii. Tetragonal:    ,   ,    ,   ,    ,    

iv. Lower symmetry:    ,   ,    ,    ,   ,   ,   ,    

 

For instance, for the     symmetry, the potential at a 4f electron turns as shown in 

equation 3.2.18 where only the even part (responsible of the energy level splitting) of the 

crystal field is written [Gör98]. In this case we have six fitting parameters. 
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(3.2.18) 

 

On the other hand, the even part of the potential for a 4f electron in the case of     

symmetry looks as shown in the equation 3.2.19 where four fitting parameters are 

necessary [Hüf78]. 

    

       
     

      
     

      
     

      
   (  

       
   ) (3.2.19) 

 

In summary, the positions of the electronic energy levels arise from a combination of the 

Coulomb, spin-orbit and crystal field interactions. The electrostatic interaction leads to 

the       splitting with an energy separation about        . Then the spin-orbit 

interaction splits further the levels into      
  states putting them apart about        . 

Subsequently, the even part of the crystal field potential removes (partially) the 

degeneracy in   producing an energy level separation of about         . The magnitude 

of this separation depends on the crystal field strength. The values for   and   are limited 

by the point symmetry. That is, the number of nonzero terms in the     Hamiltonian 

depends on the point symmetry and thus the crystal field must exhibit the same symmetry 

of the ion. Notwithstanding at present is almost impossible to determine the   
   

 

parameters, therefore the Hamiltonian in equation 3.2.16 is used to parameterize the 

observed crystal field energy levels in terms of the parameters   
   

. If a large number of 

crystal field energy levels have been determined experimentally, these energy levels are 

examined by evaluating the matrix elements of   
   

 and treating the   
   

 as fitting 

parameters [Wyb65, Hüf78]. On the other hand, the nonzero terms corresponding to the 

odd-order of the     Hamiltonian (defined by        ) play a key role in the Judd-

Ofelt theory for induced dipole transitions which we will review shortly. Additionally the 

terms with     and     are spherically symmetric and affect all energy levels by a 

uniform shift in the configuration. 
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Finally, the local environment of a RE ion is roughly the same as that in a crystal, giving 

rise to the known spectrum. However, since the far field is different for every RE ion in 

an amorphous host the spectral lines exhibit a large inhomogeneous broadening, typically 

of the order of 100 cm
-1

. This feature makes the spectra much less useful for an 

investigation of the crystal field features in glasses. Therefore most investigations of the 

optical emission properties of RE-doped glasses deal with the determination of lifetimes 

and oscillator strength [Hüf78]. 

 

Induced electric dipole transitions and radiative lifetimes 

Up to now we have developed the theory of the energy levels of RE ions in solids based 

on the static, free-ion and single configuration approximations. That is, the central ion is 

affected by the surrounding host ions via a static crystal field. This field acts on the free 

ion Hamiltonian and is treated as a perturbation. Finally in the single configuration 

model, the interaction of electrons between configurations is neglected. Now we would 

like to know what happens to the electronic transitions selection rules when incorporating 

the crystal field. For this let us start by the electric multipole tensor operator     
   

 (see 

equation 3.2.20) where the index   denotes the multipolarity of the radiation i.e.     for 

dipole,     for quadrupole, etc. The sum in equation 3.2.20 runs over all 4f electrons 

and    is the position operator of the     electron. 

    
      ∑  

             

 

 (3.2.20) 

 

For the initial ⟨   and final   ⟩ states the matrix element for an electric dipole transition 

fulfills the condition depicted in equation 3.2.21 only if ⟨   and   ⟩ have opposite 

parities. Notice that the parity operator    does not commute with   . Now, we know 

that the lanthanide ions are characterized by the shielded 4  shell (where the atomic like 

transitions take place). Since the 4  states all have the same parity, i.e       ∑     with 

    for lanthanides the probability of this transitions is negligible. Notwithstanding, the 

occurrence of electric dipole transitions can be explained by the admixture of states of 

opposite parity due to the crystal field [Gör98, Jud62, Ofe62]. Here we will follow a brief 

description. 
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 ⟨ |  | ⟩  ⟨ |  
       

   | ⟩       ⟨ |  | ⟩ (3.2.21) 

 

Let us start with an arbitrary initial level ⟨   : 

 ⟨    ∑  ⟨     

 

 (3.2.22) 

 

Where    are expansion coefficients.   stands for all necessary quantum numbers. In 

first-order perturbation theory, the state ⟨    becomes the state ⟨   : 

 ⟨    ∑  ⟨      

 

 ∑             ⟨                  

 

 (3.2.23) 

 

with 

               

 

               
∑  ⟨             

               ⟩

 

 
 

 

Here,      are from other configurations and not from the    shell. Equation 3.2.23 

remarks the fact that an admixture of states is not possible if the odd part of the crystal 

field potential      is zero and in fact this is actually the case of symmetries with an 

inversion center. In the same way the final state     ⟩ is expressed as: 

     ⟩  ∑   
         ⟩

  

 ∑                                ⟩

 

 (3.2.24) 

 

with 

                

 

                
∑    ⟨               

               ⟩
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Combining the initial ⟨    and final     ⟩ states about the electric dipole operator, it is 

clear that the terms   ⟨  |  
   |   ⟩ and ⟨                 |  

   |                 ⟩ are 

equal to cero since dipole transitions are forbidden between states of the same parity.  

The expression for the electric dipole matrix element   is reduced to: 

⟨  |  
   |   ⟩   

∑          

 ⟨     |  
   |       ⟩⟨                 |  

   
|       ⟩

               
          

 

 ∑          

 ⟨     |  
   

|       ⟩⟨                 |  
   

|       ⟩

              
          

 

 

(3.2.25) 

 

The final expression for a single transition between to individual levels is (see [Gör98] 

for more details): 

⟨  |  
   |   ⟩   

∑ ∑                 (
   
        

)

         

⟨  |    
   |  

 ⟩       

 

(3.2.26) 

 

with  

         ∑               

     

  

 

 {
   
    

} (
    

   
) (

    
   

) 

 
⟨         ⟩⟨  |    |    ⟩

       
 

 

 

Here     are the crystal field parameters and are related to the crystal field    parameters 

by: 
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   ∑|   |
  

       
 

 (3.2.27) 

 

Additionally the equation 3.2.26 can be further reduced after taking into account the 

orthogonality condition of the M components depicted in equation 3.2.28. 

∑            

         

          (3.2.28) 

 

On the other hand, magnetic dipole transitions are parity-allowed within the    shell and 

moreover they can occur under inversion symmetry. These can be derived in the same 

way as above. For this, let us introduce the magnetic dipole operator   
   

 defined as: 

  
     

  

    
        

   
  (3.2.29) 

 

Here   and   are the total spin and total orbital angular momentum operators, 

respectively.    is the electron g-factor. Just like before, the matrix element can be solved 

in the following way. 

⟨         |       
   |             

 ⟩   

       (
   

    
) ⟨       ||       

   ||           ⟩ 
(3.2.30) 

 

The reduced matrix element in equation 3.2.30 can be further reduced by splitting the 

independent terms of   and   and for the case of      it becomes: 

⟨ ||         || ⟩   √[      [ ]] (3.2.31) 

 

Here g is the Landé factor. Notice that magnetic dipole transitions are allowed within the 

4f shell although they are about one order of magnitude smaller than induced electric 

dipole transitions. From the above expression of induced electric dipole and magnetic 

dipole transitions the transitions selection rules can be derived. A summary is given in 

table 3.2.3. It is important to remark that these selection rules are applicable only if the 
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corresponding quantum numbers are good enough. For instance, the selection rules on M 

and S break down in the intermediate coupling scheme, whilst the selection rules of J 

breaks down in the case of J-mixing. 

 

Table 3.2.3. Selection rules for induced electric dipole (ED) and magnetic 

dipole (MD) transitions [Gör98] 

 ED MD 

                  

 
           with     

or      
     forbidden 

                   

          0 

   0 0 

   0 0 

      - 
 

 

While magnetic dipole transitions can be calculated without any further parameterization, 

induced electric dipole transitions are parametrized mainly because ab initio calculations 

do not yield reliable results. The dipole strength is calculated as the absolute square of the 

matrix element of the dipole operator. 

  |⟨  |  
   |  

 ⟩|
 

 | 
       
   

|
 

 (3.2.32) 

 

From there the dipole oscillator strength can be calculated by: 

     
     

    
 ̅  (3.2.33) 

 

The total oscillator strength, i.e. including both electric and magnetic dipole transitions 

can be expressed in the following form: 

       
     ̅

          
[           

               ] (3.2.34) 
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Here, m and e are the mass and charge of the electron. c is the speed of light,  ̅ is the 

average frequency at which the transition occur, h the Plack constant and n the refractive 

index.               and        are the Lorentz correction factors, which 

correct the effective field at an active center in a solid, the latter correction is introduced 

because the electric field acting on an impurity in a solid is different from that in vacuum 

owing to the effect of the polarization of the surrounding atoms.      and     are the 

electric and magnetic dipole line strength both defined in the equations 3.2.35 and 3.2.36. 

       
     ∑   |〈 

 [  ] ‖    ‖  [    ]  〉|
 

       

 (3.2.35) 

 

       
   

    

           
 〈  [  ] ‖    ‖  [    ]  〉   (3.2.36) 

 

Equation 3.2.35 is known as the Judd parameterization scheme for lanthanides in a 

solution [Jud62].      are the unitarian tensor operators and    are known as the Judd-

Ofelt parameters. Judd was the first to relate the experimental spectra to the parameters 

  . This equation was derived for a randomly oriented system and without considereing 

transitions between individual Stark levels, i.e. only transitions between LSJ multiples are 

taken into account [Gör98].  

 

Since the electric dipole transitions arise from small crystal field perturbations, the matrix 

elements in equation 3.2.35 are not highly dependent on the host material. A large portion 

of the book “Spectroscopic coefficients of the pn, dn, and fn configurations” by Nielson 

and Koster [Nie63] is dedicated to tabulating matrix elements in the LS-coupling scheme. 

Further efforts must be provided on converting these wavefunctions to the intermediate 

coupling case applicable to RE ions. 

  

The radiative emission probability is given by the Einstein’s coefficient A for 

spontaneous emission and it can be calculated from the oscillator strength as shown in the 

equation 3.2.37,      denotes the transition time from the excited initial state to a final 
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state. Additionally, the absorption cross-section is related to the oscillator strength by the 

equation 3.2.38. The correction factors for the effective field at the ion in the solid are 

already included in the oscillator strength (see equation 3.2.34) however in the case of the 

absorption cross-section an additional      factor must be included [Yen07]. 

    
         

      ̅ 

         
       (3.2.37) 

 

      
    

        

 

  
        (3.2.38) 

 

Finally the Einstein’s coefficient can be written as follows: 

        
      

                
[           

               ] (3.2.40) 

 

Now taking into account all possible radiative channels through which a populated level 

may decay, the lifetime is defines by: 

   
 

∑          

 (3.2.41) 

 

Nonetheless, it is typically found that the experimental lifetimes are smaller than the 

calculated ones. This discrepancy is attributed to non-radiative processes such as energy 

migration between lanthanide ions or energy transfer to the lattice host. Thus the ratio 

between the experimental and calculated lifetime is defined as the quantum efficiency. 

 

Non-radiative decay 

The classical approach describes a non-radiative transition as a process in which an 

excited state relaxes to the ground state by crossing over the intersection of the 

configuration coordinate curve through thermal excitation or other means (see figure 

3.2.4). Let’s recall that the configurational coordinate model is often used to explain the 

effect of lattice vibrations on the optical properties of a localized center. In this model the 
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large amount of actual vibrational modes of the lattice are approximated by a small 

combination of specific coordinates. 

 

Figure 3.2.4. A schematic illustration of the configurational coordinate model. The two curves are 

modified by repulsion near the intersection (point E). Vertical broken arrows A B and C D indicate the 

absorption and emission of light, respectively. After thermal assistance, and excited state can relax to the 

ground state by generating lattice vibrations without an optical emission through the point E. The blue 

region of the potential curves denotes the path followed by the electron after losing energy. 

 

Following the path of the optical transition illustrated in figure 3.2.4, we can assume that 

the bonding force between the luminescent ion and the nearest-neighbor ion is expressed 

by the Hooke’s law.  The deviation from the equilibrium position of the ions is taken as 

the configurational coordinate Q. The total energy of the ground state,   , and the total 

energy of the excited states,   , are given by the equation 3.2.42 and 3.2.43, respectively. 

     

  

 
 (3.2.42) 

 

         

      
 

 
 (3.2.43) 

 

Here    and    are the force constants of the chemical bond,    is the interatomic 

distance from the equilibrium of the ground states, and    is the total energy at     . 
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Naturally, the spatial distribution of an electron orbital is different between the ground 

and excited states thus giving rise to a difference in the electron wavefunction overlap 

with neighboring ions. In figure 3.2.4, optical absorption and emission processes are 

indicated by vertical broken arrows. In this approach the nucleus of an emitting ion stays 

approximately at the same position throughout the optical processes. This is known as the 

Franck-Condon principle. The latter approximation is quite reasonable since an atomic 

nucleus is heavier than an electron by     to     times. At 0 Kelvin, the optical 

absorption proceed from the equilibrium position of the ground state, as indicated by the 

arrow    . The probability for an excited electron to lose energy by emitting phonons 

is about         , whilst the probability for light emission is at most        . Therefore, 

an electron in the state B relaxes to the equilibrium position C before it emits a photon. 

Then the emission process     and the relaxation process     are followed. 

 

Electron states oscillate around the equilibrium position along the configurational 

coordinate curve up to    . The amplitude of this oscillation produces the spectral 

widening of the absorption transition. The intersection of two configuration coordinate 

curves shown in the figure 3.2.4, allows an electron in the excited state to cross the 

intersection assisted by thermal energy and thus reaching the ground sate non-radiatively, 

i.e. a non-radiative relaxation process with an activation energy   , and a transition 

probability N given by the equation 3.2.44 can be assumed. Here s is the product of the 

transition probability between the ground and excited states and a frequency at which the 

excited state reaches the intersection E. The latter quantity can be treated as a constant 

and is called frequency factor usually in the order of        . 

      ( 
  

   
) (3.2.44) 

 

However, it is typically observed that the experimentally determined activation energy of 

a non-radiative process depends on the temperature. This problem has a quantum 

mechanical explanation. An optical transition accompanied by absorption or emission of 

m – n phonons can take place when and     vibrational level of the excited state and an 

    vibrational level of the ground state are located at the same energy. The probability 
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of such transition is also proportional to a product of the Franck-Condon coefficient and 

thermal distribution of population in ground state, giving the required temperature 

dependent probability. In such case, the non-radiative relaxation probability is given by 

[Yen07]: 

         (    〈 〉    )∑
  〈 〉  {    〈 〉 }   

(       )  

 

   

 (3.2.45) 

 

Here,      , 〈 〉 is the mean number of vibrational quanta   at the temperature   

expressed by 〈 〉                ,   is defined by   
 

 

 

  
      

 . The 

notation     stands for the overlap integral of the electron wavefunctions. Notice that the 

temperature dependence of    is included in 〈 〉. Clearly equation 3.2.45 does not have a 

form characterized by a single activation energy. If we write it in a form such as    

   (       )  one gets: 

   (〈 〉  〈 〉)   (3.2.46) 

where 〈 〉    is the mean energy of the excited state subject to the non-radiative 

process.    increases with temperature and at sufficiently low temperatures      . 

 

In the case that       or in other words the electron-phonon interactions is small 

enough, equation 3.2.45 can be further simplified by neglecting all the terms but    . 

That is: 

         {    〈 〉    }{     〈 〉 }     (3.2.47) 

 

In the case of RE ions, the dominating non-radiative relaxation process is the 

multiphonon emission (see appendix A.2). If    is the energy separation between two 

levels, the non-radiative relaxation probability between these levels is given by Kiel 

[Kie65, Yen07]: 

      
    〈 〉   (3.2.48) 
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       (3.2.49) 

 

where    is a rate constant and   is a coupling constant. 

 

Equation 3.2.47 can be shaped to the same form as equation 3.2.48 by the conditions 

   ,    {     〈 〉 }   ,         and       , notwithstanding equation 

3.2.47 was derived independently of the configuration coordinate model. If two potential 

curves in the configurational model have the same curvature and the same equilibrium 

positions they will not cross and there is no relaxation process by thermal activation 

between the two in the framework of the classical theory. Nevertheless, thermal 

quenching of luminescence can be explained for such a case by taking phonon-emission 

relaxation into account, as predicted by Kiel’s equation. 

 

Energy transfer processes 

When more than one optically active center is existent, an excited color center my 

transfer all or part of its energy to a nearby center. This energy transfer process can 

happen radiatively or non-radiatively (see figure 3.2.5). The ion from which the energy is 

being transferred is called sensitizer (S) whilst the ion to which the energy is transferred 

is named activator (A). In the radiative process, the excited ion emits a photon and 

another ion absorbs that photon before it leaves the host matrix. This process has a low 

effect in the lifetime of the radiating state. On the other hand, the most well-known non-

radiative energy transfer process is the Förster Resonant Energy Transfer (FRET). This 

mechanism was first invoked to describe the energy transfer between organic molecules 

in the dipole approximation [För48]. It was further generalized to higher-order 

interactions between dopant ions in inorganic solids by Dexter [Dex53]. There are further 

possibilities in the non-radiative energy transfer process. We will consider three cases: 

resonant, phonon-assisted and cross-relaxation (see figure 3.2.5). 
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Figure 3.2.5. Energy transfer processes: radiative (a), resonant non-radiative (b), phonon-assisted (c), and 

non-radiative cross-relaxation (d).  

 

In the resonant case, the initial state of the system is an excited sensitizer and an activator 

in the ground state. The final sate of the system is a sensitizer in the ground state and an 

activator in excited state. The Hamiltonian is the coulombic interaction between the 

electrons of the sensitizer and those of the activator. Forster [Zim61] and Dexter [Spa90] 

developed an equation to describe the resonant energy migration rate     between S and 

A (see equation 3.2.50) [Vij06]. 

     
  

    
∫

          

  
   (3.2.50) 

 

In equation 3.2.50,   is a constant,    is the area under the absorption band of the 

activator,    is the lifetime of the sensitizer and   is the distance between the sensitizer 

and the activator.    and    are the normalized shape function of the emission bands of 

the sensitirzer and the absorption bands of the activator, respectively. The integral 

includes the overlap of these two functions, and is mainly a conservation of energy 

statement. The    factor is determined by the multipole interaction between S and A. 

Most cases, dipole-dipole (     is the dominant mechanism. However, in cases where 

the dipole-dipole term vanishes due to symmetry, the dipole-quadrupole       or 

quadrupole-quadrupole        terms may dominate. This exchange interaction may 
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drive the energy transfer, but only when S and A are close to one another [Vij06]. 

Phonon-assisted energy transfer highlights because the overlap integral in the equation 

3.2.50 is close to zero, and the energy different between the emission of S and the 

absorption of A must be compensated by the absorption or emission of one or more 

phonons. Two features can be remarked. First, the energy transfer obeys an exponential 

energy gap law if the gap is much larger than the phonon energy. In other words, if more 

than one phonon is required the transition rate decreases exponentially. This situation is 

usually found in RE ions. Second, if     is much larger than the decay rate of the upper 

levels of both S and A, the two levels become thermalized according to Boltzmann 

distribution. Additionally it has been commonly observed that the energy transfer rate 

generally increases with temperature for TM ions. However in the case of RE ions, the 

rate may increase or decreases with temperature depending on the energy levels involved 

[Gal68]. 

 

Figure 3.2.6. Energy transfer processes in Tb
3+

. Non-radiative resonant energy migration (I), cross 

relaxation (II). Co-operative up-conversion in Tb
3+

. Co-operative up-conversion in Er
3+

 (IV). 
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Energy transfer by cross-relaxation (or self-quenching) is also a coulombic interaction 

phenomenon. However in this case the sensitizer and the activator are two identical ions 

in which the first one relaxes to a lower energy state but not the ground state and the 

activator is excited to an intermediate state. The energy between the intermediate and 

ground states of the activator must be equal to the energy between the excited state and 

the lower energy state of the sensitizer. 

 

The energy transfer mechanisms reviewed above open a large amount of possible 

channels for energy migration exhibiting interesting properties. One of this is the 

possibility for energy up-conversion. More details on this feature can be found in the 

appendix A.3. Figure 3.2.6 depicts the possible energy transfer pathways in Tb
3+

. First 

the resonant energy migration between the 
5
D3/

5
D4 states to the ground 

7
F6 state which is 

possible and very likely due to the fact that the energy gap between sates is large enough 

to avoid multiphonon emission before the former process could occur. Second, the cross-

relaxation process is also very likely. It occurs by the electronic transition from the 
5
D3 to 

the 
5
D4 level in the sensitizer and from the 

7
F6 to the 

7
F0 in the activator, the energy of 

this transition rounds about ~0.72 eV. Subsequently, the electron in the 
7
F0 state relax 

non-radiatively increasing therefore the overall population in the 
5
D4 level. On the other 

hand the opposite process to the cross-relaxation, namely cooperative up-conversion is 

also possible, however is pretty unlikely due to the fact that the energy gap between the 

7
FJ sates is in the order of 100 meV and therefore multi-phonon decay becomes the 

dominant relaxation process from the 
7
F0 to the 

7
F6 energy levels, additionally in order to 

have two ions excited one 
7
F0 and other in the 

5
D4 two different excitation sources are 

necessary. Notwithstanding, this behavior has been observed and extensively studied in 

Er
3+

 in which a single excitation wavelength (1550 nm) can excite two nearby Er
3+

 ions 

to the 
4
I13/2 state. Thenceforth, in that case the co-operative energy up conversion is 

possible with a higher probability by transferring the energy of one of the Er ions to the 

other excited one and thus reaching the 
4
I9/2 level [Auz04]. 
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Figure 3.2.7. After the excitation of a RE ion, the energy can migrate to a nearby RE ion successively thus 

increasing the probability to reach a non-radiative recombination channel (a).  An excited RE ion can 

relax radiatively and non radiatively. Taking into account the population variation due to the excitation 

(    ) and relaxation rates (                      ) we are able to write the equation 3.2.57. 

 

Lastly a particular feature and consequence of the energy migration between RE ions that 

will be further studied and characterized in the present work is the concentration 

quenching effect. It consists in the self-quenching of the RE luminescence by enhancing 

the energy loss probability through non-radiative channels due to the increase of the 

energy transfer probability between these ions, see figure 3.2.7. In other words, the 

increase of the probability of an energy transfer between ions, for instance due to the 

reduction of the ion interspace, enhance the possibility of the energy to reach an ion 

which is close to a non-radiative decay channel, for instance a defect. Processes of this 

nature are typically modeled by phenomenological rate equations which describe the time 

dynamics of population densities of RE ions excited in different energy states. If we 

restrict the model to only two states, let’s say for instance in  Tb
3+

 the main representative 

energy transfer mechanism being the cross-relaxation process pointed out lines above 

(see figure 3.2.6), the corresponding rate equation and therefore the variation of the 

intensity can be modeled in the following way: 
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Let      and      be the population of the excited and ground states, respectively. Since 

the total number of active centers is constant,             , the variation of the 

excited state population should match the variation of the ground state population as 

shown in equation 3.2.51. 

  

  
      

 

  
      (3.2.51) 

 

The ground state is continuously excited with an excitation rate      thus reducing its 

population in           , while simultaneously growing in population due to the 

relaxation of ions in the excited state. This relaxation can be either radiative or non-

radiative. The radiative decay is characterized by the transition rate      (equivalent to 

the corresponding Einstein’s coefficient A in    ) while the non-radiative decay is 

described by the addition of the transition rate of two processes. First the non-radiative 

decay rate          due to the energy migration from the excited RE to a non-radiative 

recombination center (e.g. a defect). Second the self-quenching transition rate          

due to the successive energy transfer between RE ions and thus the subsequent energy 

loss into a non-radiative recombination center (see figure 3.2.7). These last two transition 

rates contribute to the light emission quenching. The variation of the ground state 

population then follows as: 

 

  
                                                  (3.2.52) 

  

From this point, the population of the excited state can be solved as function of the 

aforementioned transition rates by solving the corresponding differential equation as 

shown in the equation 3.2.53. Additionally, the light emission intensity is proportional to 

         . Considering only the steady solution after a sufficient long time we obtain 

an equation for the light emission intensity versus the number of active centers (see 

equation 3.2.54). 

 
 

  
                                                     

  
 

  
                                             

(3.2.53) 
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     [   ∑ ] 

 

  
         

                           
 (3.2.54) 

 

On the other hand, the          depends on the distance between the RE ions. There are 

two approaches to describe the energy transfer probability. The approach of Förster 

[För59] based on classical electrostatic interaction (multipole-multipole interaction) and 

the approach of Dexter [Dex53] based on a quantum mechanical exchange interaction. 

Both dependencies are summarized in the equation 3.2.55. 

  

   
             ( 

 

  
)  

   
           (

 

  
)
  

 

(3.2.55) 

 

Here   is the distance between the RE ions,          corresponding to the dipole-

dipole, dipole-quadrupole and quadrupole-quadropole interactions, respectively and    a 

characteristic size threshold of the ions. In order to model the distance dependent 

luminescence intensity the interspace distance average can be used (see equation 3.2.56). 

Nonetheless and average of the 〈        〉 can also be used. More details can be found in 

[Ben13, Hub79,  Spe75]. 

                    〈 〉   (3.2.56) 

 

Finally, the overall intensity can be written as a function of the RE concentration     and 

the mean RE interdistance     (see equation 3.2.57). Notice that these two quantities are 

actually related. For a random distribution of REs in a solid it is possible to directly 

calculate the average ion interdistance from the ion concentration. Details on these 

calculations can be found in appendix A.4. In any case equation 3.2.57 has the shape 

similar to a sigmoidal function multiplied by a line with intercept in the origin. So for low 

concentrations (thus large average ion interdistance) the RE related intensity increases 
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linearly with the concentration. Whilst for larger concentrations the self-quenching 

becomes relevant thus reducing the light emission intensity. Figure 3.2.8 depicts this 

behavior for Tb doped Y2O3 [Mue07, Wan10]. 

       
     

            
 (3.2.57) 

 

 

Figure 3.2.8. Normalized PL integrated intensity of Tb doped Y2O3 versus the Tb concentration (a) and 

mean ion interdistance (b). Here the ion mean interdistance is calculated following the procedure from the 

appendix A.4. The data was taken and normalized from two different references [Mue07, Wan10]. Notice 

that the integrated intentsity increases till a critical concentration value and then the energy transfer 

between REs becomes more likely thus quenching the light emission intensity. 
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Experimental details 

4.1 Deposition 

All films were grown on two side polished crystalline calcium fluoride (CaF2) and 

polished silicon (Si) substrates by radio frequency magnetron sputtering. The pressure 

before the deposition process was lower than 4×10
-6

 mbar. The distance between the 

target and the substrate was fixed to 55 mm. The copper substrate holder and thus the 

substrates were cooled down with a constant water flux at 12°C to ensure the amorphous 

structure of the layers. In the case of the SiC films the deposition was performed in an 

argon-hydrogen atmosphere mixture using a high purity SiC target. This target’s 

dominant impurity was nitrogen with a concentration smaller than 10 ppm wt. The AlN 

and SiN films were grown in an argon-nitrogen atmosphere mixture using high purity 

AlN and Si targets, respectively. The dominating impurity of the AlN target was oxygen 

with a concentration below 90 ppm wt. The doping with Tb was performed during the 

deposition process by using a Tb target attached to a second magnetron. The purity of the 

Tb target was 99.9%. The typical power used to get a suitable amount of Tb in the layer, 

ranged from 1 to 5 Watts. In the case of the a-SiC:H:Tb grown with different Tb 

amounts, a single process was performed in which the magnetrons were hold in such 

position to achieve a gradient in the composition (see figure 4.1.1). The deposition 

conditions for each material are listed in table 4.1.1. 

Table 4.1.1. Deposition conditions 

Sample Ar flow 

(sccm) 

H2 flow 

(sccm) 

N2 flow 

(sccm) 

Power 

(Watts) 

Time 

(min) 

Pressure 

(mbar) 

SiC 50 0 - 120 143 1.5 E-02 

SiC:H(a) 50 5 - 120 270 9 E-03 

SiC:H(b) 35 15 - 120 330 1.2 E-02 

AlN 25 - 25 100 480 9 E-03 

SiN 40 - 10 100 140 1.0 E-02 
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Figure 4.1.1. Magnetrons arrangement in order to obtain a gradient of the Tb  in the SiC:H films (left). 

Photography of the substrate holder exhibiting the Tb characteristic green emission during the deposition 

process of SiC:H:Tb (right). Notice that the region with a larger Tb amount doesn’t exhibit any emission 

due to the concentration quenching effect. 

 

The poly-crystalline AlN samples were grown by reactive DC sputtering from two high 

purity Al targets, each constantly powered with 150 Watts. In order to achieve different 

Tb dopant concentrations the DC power of a Tb target was adjusted between 2 and 44 

Watts. These processes were performed in an argon-nitrogen atmosphere mixture at 

6×10
-3

 mbar. These last samples were grown and provided by the group of Prof. Dr. H. P. 

Strunk in the University of Stuttgart, Germany [Ben13]. 

 

4.2 Optical characterization techniques 

UV-VIS transmittance 

The optical characterization was performed through optical transmittance measurements, 

using a double beam photo-spectrometer model Lambda 2 UV/VIS/NIR from the 

company Perkin Elmer. The transmittance spectra were measured in the wavelength 

range from 190 nm to 1100 nm. In order to obtain the absorption coefficient, the 

refractive index and the film thickness from transmittance data, we applied a slightly 

improved self-consistent method of Swanepoel. The errors obtained for the film thickness 

were less than 5% and were mainly caused by film inhomogeneities and low number of 

interference fringes in the transmission spectra which are crucial for this method in order 

to determine the thickness accurately. For more details concerning this method please 

consult appendix A.1. 
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Light emission characterization 

The light emission characterization of the films was performed upon two types of 

excitation sources, photons (PL) and electrons (CL). Two distinct setups were used in the 

PL case.  

In the PL case the samples excited upon 488 nm excitation wavelength were measured in 

a commercial micro-Raman system. Two systems were actually used, one of the 

company Ranishaw model InVia and another of the company Horiba model 

LabRAM-HR. The PL spectrum was taken in a reflection setup and the excitation source 

was an argon laser. Additionally, monochromatized light from a xenon lamp attached to a 

monochromator was used to excite the samples at different wavelengths. From this setup 

PLE and PL were performed. In the case of PLE (Photoluminescence excitation 

spectroscopy) the spectral bandwidth of the monitored emission line was set to 4 nm. 

The CL was performed using two systems: a Triax Monochromator, Jobin Yvon attached 

to a SEM and a monoCL system of Gatan attached also to a SEM. The CCD camera of 

both systems is capable to cover the wavelength range from 200 nm to 1000 nm. Typical 

size of the excitation area was 200µm×200µm. Suitable beam currents were used and the 

acceleration voltage was kept typically at 20kV. 

Infrared absorption by Fourier transform spectroscopy (FTIR) 

Infrared transmittance measurements taken on the amorphous films were carried by using 

an infrared spectrometer FTIR model Spectrum 1000 from the company Perkin Elmer 

with a resolution of 8 cm
-1

. These spectra were recorded in the spectral region from 400 

cm
-1

 to 4000 cm
-1

 and were corrected for the silicon substrate absorption. Additionally, in 

order to increase the reproducibility of the measurements and to avoid further effects due 

to the films inhomogeneity an aluminum sample holder allowing a light spot of only 2 

mm diameter was used. 

It is important to note that due to the film thickness an interference effect is observed in 

the IR spectra. However the transmittance obtained using a silicon substrate as reference 

exhibits values above 100%. This is cause by the higher refractive index of the Si 
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substrate (~3) in comparison to the film refractive index (~2). This problem is well 

known in the literature and since these values lack of physical meaning an additional base 

line correction is necessary [Raj03]. In order to do so, a polynomial fit of order five is 

performed. Nevertheless a different approach has been taken in [Gue16] for a-SiC:H. 

Subsequently, the absorbance is calculated by applying the Lambert-Beer’s law to the 

corrected transmittance as shown in the figure 4.2.1. 

 

Figure 4.2.1. Measured IR transmittance of a-SiC:H grown on a polished silicon substrate. Due to the 

procedure in the FTIR measurements in which a reference beam is measured and the refractive index of 

the substrate which is higher than of the film, the transmittance exceeds 100% (a). A baseline is calculated 

trough a fit using a polynomial fit of order five. The absorbance is then calculated through the Lambert-

Beer’s Law (b). 

 

Lambert-Beer’s Law can be written as shown in the equation 4.2.1, where      is the 

absorption coefficient versus the wavenumber  ,   is the transmittance related to the 

absorption due to the distinct vibrational modes encountered in the material while    is 

the zero absorption transmittance or base line. The number of bonds   related to the 

observed absorption peak can be estimated through the equation 4.2.2 knowing the 

corresponding inverse absorption cross section for each vibrational mode [Kuz09]. In this 

way it is possible to monitor the variation of the amount of the distinct bonds after for 

instance annealing treatments at different temperatures on the same sample. 

         (
 

  
)     (4.2.1) 
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   ∫
    

 
    (4.2.2) 

 

4.3 Annealing treatments 

The annealing treatments were performed at different temperatures and took place in a 

quartz tube inside a tube oven which could be heated up to 1200 °C. In the case of the u 

undoped samples, the quartz tube was first evacuated down to 10
−6

 mbar and then filled 

with a constant flux of high purity (5N) nitrogen or argon up to a pressure of 10
-2

 mbar.  

The AlN and SiN samples were annealed in a nitrogen atmosphere while the SiC ones 

were annealed in an argon atmosphere. After the operating temperature was reached, the 

quartz tube with the samples under treatment was moved rapidly inside the oven (shock 

tempering). On the other hand, the doped samples were annealed at 1bar pressure and 

under the respective atmospheres. The annealing time for each annealing step was 30 min 

and the same samples were used for the next annealing steps (isochronical annealing). 

 

4.4 Terbium concentration determination 

In order to estimate the Tb concentration of the amorphous hydrogenated SiC thin films 

we cut the sample in 6 equal parts along the Tb amount gradient as it was described 

earlier in section 4.1. Then we label 3 positions equally spaced in each sample piece thus 

making a total of 18 distinct positions in which the Tb amount increase along one 

direction. We performed X-ray photon scattering (XPS) measurements in order to 

determine the Tb concentration of the first 4 pieces. We only measure these 4 sample 

pieces due to resources limitations. An example of the spectrum obtained is depicted in 

figure 4.4.1 and table 4.4.1. Notice the presence of oxygen, mainly due to the affinity of 

Tb to oxidize. The oxygen content is also observed in the FTIR spectra as Si-O bonds 

around 1070 cm
-1

.  

 

Additionally, notice from figure 4.4.2 that the overall IR absorbance spectra of the 

samples decreases along the direction of increasing Tb. This decrease is mainly attributed 

to the reduction of Si-C and Si-O bonds with increasing the dilution of Tb in the host 
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matrix. We take advantage of this fact to calibrate the Tb concentration of the samples in 

the distinct positions with the area below the curve of the FTIR spectra as shown in figure 

4.4.3. 

 

Figure 4.4.1. XPS spectra of Tb doped amorphous hydrogenated SiC. The spectrum of the 4
th

 sample 

piece is shown corresponding to the sample position number 5. The obtained Tb concentration is obtained 

after correcting the base line of the electronic orbitals of each element and then fitting a Gaussian peak. In 

this case the value is of 3.89 at. % of Tb, see table 4.4.1.  

 

Table. 4.4.1. Peak information corresponding to the XPS spectra shown in figure 4.4.1. The total terbium 

amount is calculated by adding the contributions of the distinct binding states. In this case the 3d3 and the 

3d5. 

Name Start (eV) Peak (eV) End (eV) Height (Counts) FWHM (eV) At. % 

Tb 3d3 1285.64 1279.16 1272.13 2691.72 5.75 1.81 

Tb 3d5 1256.05 1244.74 1238.64 3573 7.34 2.08 

C 1s 292.21 286.03 278.5 1585.55 3.8 24.14 

Si 2p 110.32 104.53 100.5 7240.99 2.57 71.98 
 

 

Notice, that these measurements were performed after the samples were annealed at 

1050°C following the procedure described in section 4.3. When taking a close look to the 

variation of the shape of IR absorbance spectra after the thermal annealing it is possible 
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to realize a sharpening of the Si-O related vibrational modes at 454 cm
-1

 and 1070 cm
-1

, 

see figure 4.4.2. Furthermore, this sharpening becomes more prominent for 

concentrations above 1.55 at.%. This effect could be attributed to a RE induced 

crystallization which is not uncommon to occur in these systems. 

 

Figure 4.4.2. FTIR spectra of the six sample pieces. Two distinct annealing temperatures are shown. AG 

stands for the as gown case. TEM revealed that a-SiC:H will become polycrystalline after an annealing 

treatment at 1000°C [Ben13]. The crystallization process seems to be enhanced with increasing the Tb 

amount up to 3.72 at.% since the corresponding absorption peaks become sharper. 

 

It is important to remark that the calibration described in figure 4.4.3 above introduces 

systematical errors. First, the films in each sample piece are not homogeneous thus 
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introducing an error not taken into account when using the area of the absorbance and not 

of the absorption coefficient. Additionally, since we had to extrapolate the concentration 

values for the last 2 sample pieces, that is for the positions 12 to 18, the calibration was 

not performed through a linear fit of the measured Tb concentration versus the inverse of 

the IR absorbance area (see figure 4.4.3), but through an averaged accomplished by 

rescaling the inverse of the IR absorbance area to match each of the 4 measured Tb 

concentration values independently. The four rescaled curves are then averaged. The red 

line depicted in the frame (b) of figure 4.4.3 is the result of this average. 

 

Figure 4.4.3. The IR absorption area are obtained after integrating from 400 cm
-1

 to 1400 cm
-1

 the spectra 

shown in the figure 4.4.2, these areas are plotted along with the measured Tb concentration determined by 

XPS versus the sample position (a). The calibration is performed between the inverse of the 

aforementioned areas and the measured Tb concentration. The blue dashed line is a linear fit with the 

intercept fixed in the origin, while the red line is calculated after averaging the curves obtained after 

scaling the inverse of the IR absorbance area with each measured Tb concentration (b). Schematic of the 

SiC sample positions (c). Resulting estimated Tb concentration for each sample position after the 

calibration (d). The interpolation and extrapolation values are performed linearly. 
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Finally, concerning the Tb concentration values corresponding to the polycrystalline AlN 

grown in the University of Stuttgart, these were determined by a combination of XPS 

measurements and inductively coupled plasma optical emission spectroscopy (ICP-OES), 

the latter sensible to the metal elements only, while the former renders the concentration 

of all the constituents. It was found that the main impurity was oxygen homogeneously 

distributed in the films [Ben13]. 
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Results and discussion 

The experimental results presented here can be organized in two main groups. One part 

treats, the optical characterization, which accounts for the optical bandgap determination 

of the three materials under study, the modification of the bandgap upon iscochronical 

annealing treatments and the relation between the bandgap and the Urbach energy. 

Additionally, the Urbach focus is reported for the three materials and the tailoring of the 

bandgap and the Urbach focus of a-SiC:H under different hydrogen dilution degrees is 

also presented [Gue13m, Gue16]. Finally, the models developed in the section 3.1 are 

brought and tested. 

The other main topic treats the Tb light emission properties, in which features of the Tb-

related spectra are examined upon electron band-to-band excitation and photon sub-

bandgap excitation for the three materials under study. Furthermore, the concentration 

quenching effect is examined for the SiC:H and AlN host matrices upon the two 

aforementioned excitation sources. The thermal activation of the light emission of the Tb 

ions is examined and contrasted with the variation of the optical bandgap and Urbach 

energies after different annealing temperatures. This thermal activation is evaluated 

profoundly in the case of a-SiC:H for the Tb concentration range from ~0.5 at.% to 10 

at.% and has been first reported here revealing valuable information concerning the 

activation process. For instance, the interaction probability between Tb ions seems to be 

quenched with the annealing temperature. Finally, since different host matrices affect the 

RE ions differently by enhancing or quenching the RE-related emission, temperature 

dependent measurements are performed in order to shed light on the possible excitation 

mechanisms that take place. 

 

5.1 Optical characterization of the amorphous AlN, SiN and SiC:Hx thin films 

One important aspect of amorphous semiconductors is the wavelength dependent 

absorption coefficient in the fundamental and adjacent region. The Tauc region describes 

the extended states related transitions, whilst the Urbach region accounts for localized 
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states related transitions, observed as the so called exponential tail in the absorption 

coefficient. The set of three materials (a-AlN, a-SiN, a-SiC:Hx) were characterized by 

means of optical transmittance spectroscopy in order to measure the optical parameters 

such as the refractive index and the absorption coefficient. Details concerning the used 

method to extract the aforementioned optical parameters along with an analysis of its 

accuracy can be found in the appendix A.1. Here we will focus on the fundamental 

absorption and Urbach tail regions of the absorption coefficient. We measure the optical 

bandgap, the Urbach energy and the Urbach focus. Furthermore, the bandgap dependency 

with the annealing treatments and the Urbach Energy is presented. Finally, the variation 

of the Urbach focus of a-SiC:Hx with increasing the hydrogen dilution during the 

deposition process is reported [Gue16]. 

 

Bandgap and Urbach energy 

 

Figure 5.1.1. UV/VIS/NIR transmittance spectra in the wavelength range 200-1100 nm of a-SiN grown on 

quartz. The layer thickness is 420 nm (a). Absorption coefficient in logarithm scale along with the E04 

energy value (b). Tauc-plot showing a good linear relation in the high energy region (c). 

 

It is important to remark that the optical bandgap can be solely calculated from the region 

of the fundamental absorption of the absorption coefficient. In the case of thin films, this 

region can only be observed in sufficiently thin samples [Gue10t] (see appendix A.1). 

Furthermore, there is actually no proper model to accurately determine the optical 

bandgap of amorphous semiconductors from their fundamental absorption spectrum (see 

section 3.1). Nevertheless, the values obtained with the existing models give information 

of the relative behavior of the bandgap. Here we use the E04 iso-absorption gap, the Tauc 

gap (     ) and the Urbach focus minus the Urbach energy (         ) [Gue11, 
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Dun83, Dun85] as representative values of the true bandgap of an amorphous 

semiconductor. The Urbach focus determination is discussed in detail in the succeeding 

section. 

 

Figure 5.1.2. UV/VIS/NIR transmittance spectra in the wavelength range 190-1100 nm of a-AlN grown 

on CaF2. Two samples were grown, one of 500 nm thickness by sputtering an Al target in a nitrogen 

atmosphere and another of 300 nm thickness by sputtering a single-crystal bulk AlN target in a nitrogen-

argon atmosphere mixture (a). Absorption coefficient in logarithm scale along with the E04 energy value 

(b). Tauc-plot showing a good linear relation in the high energy region for the thinner sample (c). 

 

 

Figure 5.1.3. UV/VIS/NIR transmittance spectra in the wavelength range 190-1100 nm of a-SiC and 

a-SiC:H grown on CaF2. The layers thicknesses are 652 nm (without H2), 411 nm (with 5 sccm H2 flux) 

and 435 nm (with 15 sccm H2 flux) (a). Absorption coefficient in logarithm scale along with the E04 

energy value (b). Tauc-plot showing a good linear relation in the high energy region (c). 

 

Figures 5.1.1, 5.1.2 and 5.1.3 depict the UV/VIS/NIR transmittance (a), absorption 

coefficient in logarithm scale (b) and the Tauc-plot (c) of the as grown amorphous thin 

films of SiN, AlN and SiC:Hx, respectively. Notice the good linear relationship of the 

absorption coefficient in the Tauc-plot representation. In the AlN case, films with a 

thickness around or below 300 nm are necessary to be able to observe the fundamental 

absorption region in the Tauc representation [Gue10t]. 
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After the isochronical thermal annealing treatments at different temperatures, a reduction 

of the Urbach energy is observed in the SiN and AlN samples. That is, the diminution of 

the band tail states near the band edge due to the disorder relaxation of the matrix [Str91, 

Ada04]. This effect is also reflected in the optical bandgap as an increase with the 

annealing temperature. In the case of SiC:Hx the bandgap shrinks after reaching a critical 

annealing temperature. We will treat the latter behavior as a separated case. Figures 5.1.4 

and 5.1.5 depict the bandgap, obtained with the aforementioned models, versus the 

annealing temperature and versus the Urbach energy for the a-SiN and a-AlN films, 

respectively. In the case of the AlN sample a linear relation is observed between the 

Tauc-gap and the inverse of the Tauc-slope (1/     ), which is known as a measure of 

the disorder degree [Mor99]. 

 

As it was already presented in the section 3.1, the linear relation between the bandgap 

(Tauc-gap) and the Urbach energy can be explained by the frozen phonon model [Str91, 

Ada04, Cod81]. From the intercept of such relation the bandgap in the absence of 

disorder can be calculated, here named   
      

. From the analysis of several absorption 

coefficients data of a-Si:H, Cody suggested that this intercept value and the Urbach focus 

are actually the same parameter [Cod81]. This linear dependency is not always met. 

Nevertheless, other linear relations between the optical bandgap and a disorder related 

parameter can be expected depending on the position of the Urbach focus, wherever it 

falls in the Urbach tail region or in the fundamental absorption region. Here, we present 

three linear relations which connect the Urbach focus (    with the bandgap. First, the 

equation 5.1.1 which accounts for the frozen phonon model and relates the Tauc-gap with 

the Urbach energy (see equation 3.1.31). Second, the linear relation depicted by equation 

5.1.2, consequence of the empirical Urbach rule and the definition of the     iso-

absorption gap. And third the equation 5.1.3, resulting from the case of the Urbach focus 

energy value    falling in the fundamental absorption region and then modeling the 

fundamental absorption with the Tauc approach [Gue11]. The left upper label denotes the 

origin of the constant   . 
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Figure 5.1.4.      ,     and     of the a-SiN films after different isochronical annealing temperatures 

(a).       and     versus the Urbach energy (b), the red dashed lines are fits using the equations 5.1.1 and 

5.1.2. 

 

By using the equations 5.1.1 and 5.1.2, two distinct values of the Urbach focus energy    

are found for a-SiN, see figure 5.1.4. The obtained   
    

 using the     iso-absorption 

gap match pretty well with the Urbach focus obtained through a global fit of the 

absorption coefficients (see next sub-section), while the obtained   
      

 using the 

      does not. Notwithstanding, the   
      

 match pretty well the value obtained for 

the bandgap in the absence of disorder obtained using an extension of the Urbach rule 

proposed here [Gue13m, Gue16] (see section 3.1). In the AlN case though, the constant 

   obtained with the equations 5.1.1, 5.1.2 and 5.1.3 are pretty close to each other (see 

figure 5.1.5). These values are also close to the one obtained by a global fit of the 

absorption coefficient (see next sub-section). 
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Figure 5.1.5.      ,     and     of the a-AlN films after different isochronical annealing temperatures 

(a).       versus the inverse of the Tauc slope (b).       and     versus the Urbach energy (c). 

 

Whilst in the SiN and AlN cases the bandgap increases with the annealing temperature, in 

the SiC:Hx case it increases till a critical annealing temperature and then it decreases (see 

figures 5.1.6). This differing behavior is typically attributed to the induced effusion of 

hydrogen from the SiC matrix during the thermal treatments [Mon13, Zha92]. The 

quenching of the bandgap of an hydrogenated amorphous semiconductor with the 

annealing temperature has been observed before in a-Si:H [Str91, Mor99] and for SiC:H 

[Mon13, Tes95]. Notwithstanding, we report this behavior also for the non-hydrogenated 

sample, thus exhibiting that the shrinking effect cannot be attributed to the hydrogen out-

diffusion alone. 

  

We examine the latter features in detail for a-SiC:H with different hydrogen dilution 

contents by changing the hydrogen flux during the deposition process. Three samples 

were grown, one without any hydrogen flux (0 sccm), which serves as our reference 

sample, another with 5 sccm hydrogen flux and a last one with 15 sccm hydrogen flux 

during the deposition process. The bandgap versus the annealing temperature of these 

samples are depicted in the figure 5.1.6. The     iso-absorption gap was the only 

parameter that exhibited a well-defined linear relationship with the Urbach energy. The 

corresponding plots are shown in the figure 5.1.7. 
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Figure 5.1.6.      ,     and     of  the a-SiC (a), a-SiC:H grown with 5 sccm H2 flux (b) and a-SiC:H 

grown with 15 sccm H2 flux (c), after different annealing temperatures. The doted lines, denote the 

bandgap of the three main poltypes of SiC. 

 

 

Figure 5.1.7.     iso-absorption gap versus the Urbach energy for a-SiC (a), a-SiC:H grown with 5 sccm 

H2 flux (b) and a-SiC:H grown with 15 sccm H2 flux (c). The increase of the parameter   
    

 with the 

hydrogen dilution content suggests an increase of the energy separation between the mobility edges. Inset 

graphs include the variation of the Urbach energy with the annealing temperature. 

 

Two major features are noted. First, the bandgap increases with the amount of hydrogen 

used during the deposition process, and this difference is kept after the annealing 

treatments independently of the model used for the bandgap calculation (see figure 5.1.6). 

Furthermore, this difference is also observed in the increase of the Urbach focus energy 

   with the hydrogen incorporation, see figure 5.1.7. Second, the bandgap is quenched 

after an annealing temperature around 450°C for all the three samples including the non-

hydrogenated one. In the following paragraphs we’ll try to elucidate the possible 

mechanisms behind the latter behavior. 
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The thermal induced out diffusion of hydrogen from the matrix can be translated in the 

depletion of hydrogen related bonds. Therefore, like in the case of a-Si:H an increase of 

the Urbach energy is expected reducing the bandgap [Str91, Bul87, Mor99]. This 

depletion of hydrogen related bonds can be followed through IR absorption spectroscopy 

[Sum04]. IR absorbance measurements of the three samples were performed, see figure 

5.1.8. The IR absorption spectra of the samples in the range of 400-4000 cm
-1

 consist of 

four main absorption bands at ~790 cm
-1

, ~1000 cm
-1

, ~2100 cm
-1

 and ~2900 cm
-1

 for the 

hydrogenated samples and three bands at ~790 cm
-1

, ~1065 cm
-1

 and ~1190 cm
-1

 for the 

non-hydrogenated one. The bands at 2100 cm
-1

 and 2900 cm
-1

 are attributed to the 

stretching vibration modes of Si-Hn and C(sp
3
)-Hn, respectively [Bul87]. These bands 

decay with increasing the annealing temperature as shown in figures 5.1.9 and 5.1.10. 

 

Figure 5.1.8. IR absorbance spectra of the three as grown a-SiC:Hx thin films with different hydrogen 

fluxes during the deposition process. Three main bands are to be noted. The Si-C stretching mode at 790, 

the Si-CHn 1100 cm
-1

 and the Si-H stretching mode at 2100 cm
-1

. 

 

The Si-Hn IR absorption band disappeared completely at 600°C in agreement with 

[Vas11]. The bands at 790 cm
-1

 and 1000 cm
-1

 correspond to the Si-C stretching vibration 

mode and Si-CH2 rocking/waging modes [Bul87], respectively. Nevertheless, sub-

stoichiometric SiOx (x < 2) structural fragments are known to present a broad absorption 

band at around 1100 cm
-1

 [Kan05]. This band is actually composed by 4 bands from 

which only and average resulting in two peaks at 1065 cm
-1

 and 1190 cm
-1

 are resolved. 
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After annealing at 700°C a Si-O bond related absorption band at 450 cm
-1

 increase slowly 

with the annealing temperature in the non-hydrogenated sample. This band appears after 

800°C annealing in the hydrogenated samples, suggesting that the Si-O stretching modes 

contribute in absorption near 1000 cm
-1

 since residual oxygen contamination is 

considerable during the annealing procedure (see figure 5.1.9). Nevertheless, this 

contribution is very low compared to the main Si-C and Si-CHn absorption peaks. 

 

Figure 5.1.9. Effect of the annealing temperature on the shape of the different absorption peaks in the IR 

spectra of the three SiC:Hx thin films. The blue peaks are Gaussian fits of the corresponding vibrational 

modes while the green curves denote Lorentzian peaks corresponding to the crystallization of SiC. The red 

curves denote the peak sum. Notice the increase of a shoulder at 1190 cm
-1

 in the non-hydrogenated case. 

This shoulder does not appear in the hydrogenated samples, suggesting that the presence of oxygen 

contamination is not measurable by this mean in the hydrogenated samples but in the non-hydrogenated 

one. 

 

It is well known that the area of the IR absorption peaks is directly related to the amount 

of corresponding bonds in the sample [Kuz09]. In order to assess the above mentioned 

variations on the vibrational modes and therefore on the chemical composition of the 

samples under study, the bond density is calculated and plotted versus the annealing 
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temperature as shown in the figure 5.1.10. This calculation is performed by  ∫     

    where   is the inverse absorption cross-section. The absorption coefficient α is 

obtained from the Lambert’s law and the peaks fits shown in figure 5.1.9. The analysis 

reveals for instance that after the Si-Hn bonds are completely depleted at 600°C, the Si-

CHn bonds are quenched with the annealing temperature, whilst the Si-C bonds increase 

[Gue16]. 

 

Figure 5.1.10. Calculated bond densities for each absorption peak obtained from the FTIR measurements 

of the a-SiC:H grown on c-Si with 0 sccm (a), 5 sccm (b), and 15 sccm (c) hydrogen flux during the 

deposition process. The bond density corresponding to the Si-O vibrational mode centered at 1190 cm
-1

 

has been multiplied by 10
4
 (filled blue diamonds) for viewing reasons (a). Note the depletion of hydrogen 

related bond with the annealing temperature. 

 

In the case of the hydrogen doped samples, the bandgap reaches its maximum value at 

around the same annealing temperature for which the Si-H bonds are depleted. The 

bandgap starts decreasing when the Si-CH2 bonds decrease and consequently the amount 

of Si-C bonds increase. This correlation may account for the bangap quenching of 

a-SiC:H due to the out-diffusion of hydrogen and therefore the increase of Si-Si and Si-C 

bonds. However, in the case of the non-hydrogenated sample no significant correlation 

can be observed between the bandgap and the vibrational modes area. Note that we 

cannot see Si’H correlated peak either. Therefore, we can assume the trend of at least two 

different processes which quench the bandgap after a critical temperature in amorphous 

hydrogenated SiC. The effect of the hydrogen related bonds depletion, and the bandgap 

shrinking related to structural features of the material which are triggered with the 

thermal annealing treatments. According to Kityk et al, the latter behavior is observed in 

amorphous SiC [Kit00]. Kityk proposed and supported by ab initio simulations that the 
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bandgap is affected by the formation of nano-composites clusters in the SiC matrix, 

which occurrence are not uncommon. The bandgap is then crystallite and cluster size 

dependent [Kit00]. Furthermore, Kityk calculated the bandgap versus the crystallite size 

and versus the cluster size, predicting an increase and then, after a critical crystallite size, 

a shrinking of the bandgap. Alternatively, the formation of Si-Si and C-C bonds is also a 

common feature in these amorphous systems [Cui01, Lee00]. In fact, Raman analysis on 

RF sputtered a-SiC and a-SiC:H revealed two features. First, a decrease and after a 

critical temperature an increase of the disorder with the annealing temperature, observed 

by measuring the FWHM of the Si-C related vibrational modes [Vas11]. Second, the 

increase of C-C bonds with the annealing temperature in both hydrogenated and non-

hydrogenated a-SiC, reported by Vasin et al [Vas11]. In summary, these effects 

contribute exhibiting the observed features in the bandgap versus the annealing 

temperature. 

 

Figure 5.1.11. Average FWHM of the Si-C, Si-CHn and Si-O bond related IR peaks of the three SiC:Hx 

samples versus the annealing temperature (a). Urbach energy of the same samples versus the annealing 

temperature (b). Notice the good correspondence of both parameters. Additionally, the Urbach energy of 

the three samples is quite similar, thus the bandgap enhancement due to the hydrogen incorporation cannot 

be attributed to the Urbach energy but to the increase of the energy separation of the mobility edges. 

 

In agreement with the results reported by A. V. Vasin [Vas11], the disorder of the SiC:H 

samples studied here is reduced with the annealing treatments till a critical temperature, 

and then an increase is observed. This effect has been measured by the Urbach energy 

    and by the average FWHM of the absorption peaks observed in the IR absorbance 
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spectra (see figure 5.1.11). However, the fact that the Tauc-gap and the iso-absorption 

gap exhibit a correlated behavior with the Urbach energy may actually be a consequence 

of their definition. For instance, the     energy value in this case falls inside the Urbach 

region, thus     is subjected to the Urbach energy through the equation 5.1.2, and any 

increase of the Urbach energy causes a decrease of the bandgap and vice versa. 

Furthermore, the shift observed on the     gap due to the hydrogen incorporation can be 

translated to an increase of the constant  
    

 . Notice, that the disorder, or tails depth, is 

pretty much the same in all three SiC:H samples. On the other hand, it is important to 

emphasis that the Tauc model does not take into account the band tails (tail to tail and 

band to tail transitions), nonetheless the band tails overlap considerably with the so called 

Tauc-region. So even when the relations depicted by the equations 5.1.1 and 5.1.3 are not 

met, any variation of the Urbach energy will affect the Tauc-gap value as well (see figure 

3.1.9). 

 

The shift in the bandgap observed in figure 5.1.6 is band-edge rather than band-tail 

related. This fact is supported by the shift of the constant   
    

 depicted in figure 5.1.7. 

The Tauc-gap and the     iso-absorption gap are subjected to two distinct physical 

parameters: the mobility edges energy gap and the Urbach energy. The former can be 

estimated by the parameter    in the equation 3.1.23. Figure 5.1.12 depicts and compares 

the parameters obtained through the Tauc model and the model depicted by the equation 

3.1.13 (DiLog, band-fluctuations based model, which derivation was explained in chapter 

3). The parameters   ,    and   were estimated by single fits of each absorption 

coefficient using the DiLog model. The main advantage of the latter model is that no 

discrimination must be done between the Urbach and Tauc regions i.e. the admixture 

region is also part of the fitting input. Notice from figure 5.1.12 that contrary to the Tauc-

gap,    is not correlated to the Urbach energy. 
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Figure 5.1.12. Bandgaps    and       (a), scale factors    and      
  (b) and Urbach energy (c), for the 

SiC:Hx samples grown with 0 sccm, 5 sccm and 15 sccm hydrogen flux during the deposition process. 

Notice that the bandgap calculated with the DiLog model has no correlation with the Urbach energy. 

Additional information concerning the electronic transition matrix element is recovered through   . 

 

In summary, the effect of the isochronical thermal annealing treatments on the bandgap 

of a-SiN, a-AlN and a-SiC:Hx has been examined. A reduction of the disorder with the 

annealing temperature is observed by the decrease of the Urbach energy and increase of 

the optical bandgap of the amorphous SiN and AlN matrices due to a thermal induced 

structural relaxation of the matrices. The hydrogenated SiC case is treated separately 

since the bandgap increases till a critical annealing temperature from which afterwards is 

quenched with further annealing treatments at higher temperatures. The matrix relaxation 

solely cannot account for such behavior nor the H2 effusion from the matrix since the 

behavior is also reported in the non-hydrogenated case. The Urbach focus energy    is 
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found by the different linear relations presented. However, not all the linear relations are 

met by the three materials. The bandgap of a-SiC:H increased with the amount of diluted 

hydrogen, suggesting the effective passivation of dangling bonds and therefore the 

widening of the band edges reflected in the increase of the Urbach focus energy   . The 

latter behavior can be understood by taking into account the shrinking of the average 

lattice constant due to the passivation of the dangling bonds by hydrogen atoms which 

occupy a smaller volume [Bul87]. 

 

The approach to explain the quenching of the bandgap of a-SiC:H turned differently to 

what is typically found in the literature [Zha92, Kal94, Cui01]. First the behavior 

observed in       and     versus the annealing temperature is attributed to the behavior 

of the Urbach energy. While the increase of the bandgap with the annealing temperature 

is mainly due to the matrix relaxation, disorder reduction and hence the reduction of 

electronic band tails states, the decrease of the bandgap (increase of the Urbach energy) 

cannot be only due to the hydrogen effusion but probably also related to the formation of 

crystalline clusters in the matrix with the thermal annealing treatments [Lee00, Kit00, 

Raj03]. In fact TEM and electron diffraction revealed that up to 600°C annealing 

temperature the SiC:H matrix is predominantly amorphous, while after 1000°C annealing 

temperature it becomes a polycrystalline structure embedded in an amorphous matrix (see 

figure 5.1.13). Furthermore, the formation of C-C and Si-Si clusters is also a common in 

these disordered systems therefore influencing the bandgap. As reported already by Vasin 

an increase of C-C clusters with the annealing treatment could be a precursor of the 

bandgap quenching [Vas11]. This latter effect has also been reported and characterized 

by Bullot [Bul87]. 
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Figure 5.1.13. TEM images and electron diffraction patterns of a-SiC:H annealed at 600°C (a) and 

1000°C (b). After 600°C the samples are still amorphous, whilst after 1000°C a polycrystalline structure 

embedded in an amorphous matrix is observed. 

 

The Urbach focus and the Orapunt & O’Leary analysis 

As we have already reviewed and discussed in section 3.1, the optical absorption of an 

amorphous material shows a near universal exponential energy dependence in the vicinity 

of the bandgap energy, known as Urbach tail. The current agreement is that this region is 

a measure of the shape of the electronic density of states near  the band edge and the 

nature of this broadening is closely related to the disorder of the material (see section 3.1) 

[Str91, Ada04, Mor99]. The simple an empirical Urbach rule (equation. 3.1.14, here 

renumbered as equation 5.1.4) describes very well this region. 

            (
    

  
) (5.1.4) 

 

Here    is the Urbach energy,    and    are both constants which will denote the 

Urbach focus coordinate        . The Urbach focus has been observed in several 

amorphous materials already. In this work, the Urbach focus is reported in the three 

materials under study SiC:Hx, AlN, SiN. In order to test the existence of the Urbach 

focus, in other words: to prove that the Urbach focus existence is not biased by the 

Urbach rule itself, we will follow up with the analysis proposed by Orapunt and O’Leary 

[Ora04]. Furthermore, we will extend this analysis introducing also the equation 3.1.24 

obtained previously in section 3.1, which predicts the non-existence of the Urbach focus, 

but of another constant with a lower energy value [Gue13m, Gue16]. 
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In order to find the Urbach focus        , a global linear fit of the equation 5.1.4 in 

logarithm scale is performed using various absorption coefficients of the same material at 

different temperatures or treated at different annealing temperatures so as to vary the 

electronic band tails. In this fit the parameters    and    are shared while    is left 

independent. Notwithstanding, sharing the parameters         may introduce a 

numerical bias. For instance, three parallel lines can be easily fitted to 3 lines pivoted in a 

common point and predict a fictive focus [Gue13m]. Therefore, to avoid the above 

mentioned problem in this analysis, linear independent fits per absorption coefficient 

spectrum are performed. The Urbach slope        and the intercept    (  ), are 

calculated for each absorption coefficient independently using the equation 5.1.5, thus 

avoiding any enforcing of the Urbach focus. 

    (  )     (  )     (5.1.5) 

 

    (  )              (5.1.6) 

Subsequently, the Urbach focus can be recovered from the linear relation between the 

intercept    (  ) and Urbach slope  . In order words, if and only if the Urbach focus 

exists, the linear relation in equation 5.1.6 must hold. This asseveration is valid as long as 

the Urbach rule is valid. That is, it is possible to isolate an exponential region of the 

absorption coefficient. 

 

In summary, the simple analysis proposed by Orapunt and O’Leary lead to a 

straightforward calculation of the Urbach focus trough a linear fit of    (  ) versus  . 

The Urbach focus is then obtained directly from the slope and intercept of the equation 

5.1.6. Although in the original paper the fits are actually performed without taking the 

logarithm of the Urbach rule (linear scale), the results do not vary dramatically. Now let 

us introduce the equation 3.1.24 here renumbered as 5.1.7 for the Urbach tail region only. 

This equation is a semi-empirical result (see section 3.1). It is an extension of the 

calculation of the fundamental absorption of amorphous materials obtained after 

averaging the thermal fluctuations in the electronic density of states and then relaxing the 
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conservation of the wave vector  . While this equation does not predict an Urbach focus 

it does predict the disorder independent constants    and   . 

    
 

 

  
 

 
     (

    

  
) (5.1.7) 

 

In order to perform the same previous analysis, independent fits of the absorption 

coefficient in the Urbach region are performed using the equation 5.1.8 which is the 

logarithm of equation 5.1.7. In this case we write    (  )             . Note, that 

the independent fits to acquire    (  ) and   are not truly linear.  

            (  )                (
 

 
 ) (5.1.8) 

 

After the fitting, again if the linear relation between          and   holds, it is thus likely 

that the constants    and    exist within the error of the fit of the equation 5.1.9. 

    (  )               (5.1.9) 

 

In this way, we have shown that the Orapunt and O’Leary analysis can be applied to both 

the Urbach rule and the extended Urbach rule proposed before. The former predicting the 

disorder independent Urbach focus, while the latter predicts no Urbach focus but the 

constants    and   . 

 

Now, before continuing on performing the Orapunt and O’Leary analysis on the materials 

under study, lets first apply it to the case of a-Si:H, reproducing the previous results of 

Orapunt and O’Leary [Ora04]. We take the data of the absorption coefficient of a-Si:H at 

several different annealing temperatures and for various temperatures published by Cody 

[Cod81]. The global fits are performed minimizing the total Chi square 

  (                 ) defined as the sum of the Chi square of each absorption curve 

∑   (            ) .  
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Figure 5.1.14. Optical absorption edge of a-Si:H measured at a couple sample temperatures   , and 

measured at room temperature after several annealing temperatures   . Global fit (a) and independent fits 

(b) using the equation 5.1.5. In the former case (a), the parameters    and    are shared and distinct 

slopes   are retrieved for each absorption coefficient. Whilst in the in independent fits case (b) the Urbach 

slope   and the intercept         are obtained per each absorption coefficient curve. 

 

 

Figure 5.1.15. Optical absorption edge of a-Si:H measured at a couple sample temperatures   , and 

measured at room temperature after several annealing temperatures   . Global fit (a) and independent fits 

(b) using the equation 5.1.8. In the former case (a), the parameters    and    are shared and distinct slopes 

  are retrieved for each absorption coefficient. Whilst in the in independent fits case (b) the Urbach slope 

  and the intercept         are obtained per each absorption coefficient curve. 
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Figure 5.1.16. Intercept    (  ) versus the Urbach slope   for both the Urbach rule and the extended 

Urbach rule of the absorption coefficient of a-Si:H after different annealing temperatures (open symbols) 

and for various temperatures (filled symbols). 

 

Table 5.1.1: Urbach focus         and         for a-Si:H obtained through a global fit and the 

independent fits of the Urbach region in the absorption coefficient. 

a-Si:H Global fit Independent fits 

Urbach rule 
                               

                             

Extended Urbach rule 
                              

                             

 

The global and independent fits are depicted in the figures 5.1.13 and 5.1.14 for the 

Urbach rule and the extended Urbach rule, respectively in logarithm scale. The resulting 

fitted curves are pretty similar in both cases. Two main features are observed. First, 

whilst the global fit shows a convergence point, no convergence point (no focus) is 

noticeable in the independent fits. Second, even when the extended Urbach rule does not 

predict an Urbach focus, the global fit shows that the curves seem to converge in a single 

point or small region (see figure 5.2.15.a). Subsequently, the plots of the intercept 

   (  ) versus the Urbach slope   are presented in the figure 5.1.16 for both the Urbach 

rule and the extended Urbach rule. Notice the good linear relation in both cases 

8 10 12 14 16 18 20
28

24

20

16

12

8

4

0

 l
o

g
(


)

 Urbach rule

 extended Urbach rule

 

 

E
0
 = 2.08 ± 0.06 eV

log(
0
) = 18.66 ± 0.83

Urbach Slope  (eV
-1
)

E
F
 = 2.21 ± 0.06 eV

log(
F
) = 14.21 ± 0.86



 
 

106 
 

predicting the not biased constants    and   . The recovered Urbach focus         and 

the constants         are summarized in the table 5.1.1. 

 

We have reproduced the results of Orapunt and O’Leary [Ora04] using the Urbach slope 

instead of the Urbach energy in order to obtain a simple linear fit. The analysis concludes 

that the Urbach focus of a-Si:H does exist and is not biased by the Urbach rule itself. 

Nevertheless, we have also performed the same analysis using the extended Urbach rule, 

which does not predict the Urbach focus mathematically, resulting also in a good 

agreement with the existence of the constants    and   . It is important to remark that the 

linear fits depicted in figure 5.1.16 actually predict an Urbach focus within a small region 

defined by the confidence of the fitting procedure. Therefore the extended Urbach rule 

allows the existence of the Urbach focus defined in such way.  Before driving any further 

conclusions let us apply the same analysis on the materials studied here. 

 

Figure 5.1.17. Global fit (a), linear independent fits (b) and linear relation between the intercept    (  ) 

versus the Urbach slope   (c) of the a-SiN thin film after various annealing temperatures. The colored 

regions are the ones used for the fit. 

 

Table 5.1.2: Urbach focus         and         obtained through a global fit and the independent fits of 

the Urbach region in the absorption coefficient of a-SiN. 

a-SiN Global fit Independent fits 

Urbach rule 
                               

                             

Extended Urbach rule 
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Figure 5.1.18. Global fit (a), linear independent fits (b) and linear relation between the intercept    (  ) 

versus the Urbach slope   (c) of the a-AlN thin film after various annealing temperatures. The colored 

regions are the ones used for the fit. 

 

Table 5.1.3: Urbach focus         and         obtained through a global fit and the independent fits of 

the Urbach region in the absorption coefficient of a-AlN. 

a-AlN Global fit Independent fits 

Urbach rule 
                               

                             

Extended Urbach rule 
                              

                             

 

 

Figure 5.1.19. Global fit (a), linear independent fits (b) and linear relation between the intercept    (  ) 

versus the Urbach slope   of a-SiC thin film after various annealing temperatures. The colored regions are 

the ones used for the fit. 
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Figure 5.1.20. Global fit (a), linear independent fits (b) and linear relation between the intercept    (  ) 

versus the Urbach slope   of the a-SiC:H thin film grown with 5 sccm H2 during the deposition process 

after various annealing temperatures. The colored regions are the ones used for the fit. 

 

 

Figure 5.1.21. Global fit (a), linear independent fits (b) and linear relation between the intercept    (  ) 

versus the Urbach slope   of the a-SiC:H thin film grown with 15 sccm H2 during the deposition process 

after various annealing temperatures. The colored regions are the ones used for the fit. 
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former case is plotted. The linear relation between the intercept    and the Urbach slope 

  is plotted for both models. 

Table 5.1.4: Urbach focus         and         for a-SiC:Hx obtained through a global fit and the 

independent fits of the Urbach region of the absorption coefficient. The light grayed cells highlight the 

increase of    with the hydrogen incorporation.  

a-SiC:Hx 
 Global fit Independent fits 

H2 flux                                             

Urbach 

rule 

         
     

      

     

      

     

      

     

      

     

      

     

      

   
    

         

    

         

    

         

    

         

    

         

    

         

Ext. 

Urbach 

rule 

        
     

      

     

      

     

      

     

      

     

      

     

      

   
    

         

    

         

    

         

    

         

    

         

    

          

 

As observed from the above results, the    energy value is fundamentally smaller than 

the Urbach focus energy coordinate    as expected after a close inspection of both 

models. In the case of a-SiN and a-AlN, the parameters         and         don’t vary 

considerably when retrieving them either by using the global fit or the independent fits. 

On the other hand, in the particular case of a-SiC:Hx notice that hydrogen incorporation 

has a measureable effect on these parameters. For instance the hydrogen incorporation 

increases the energy of   , see table 5.1.4. This effect accounts for the increase of the 

optical bandgap calculated previously as depicted in the figure 5.1.6. Furthermore, the 

fact that    increases with the hydrogen incorporation strongly suggests the increase of 

the valence and conduction mobility edges separation. Such increase is a consequence of 

the passivation of localized states by hydrogen, resulting in a reduction of their 

occupation volume and has no effect on the Urbach tails as typically stated for this 

material [Zha92, Mag98, Kim02]. This behavior was treated in the previous section. 

 

In summary, both equations the Urbach rule and the extended Urbach rule following the 

previous analysis predict equally the constant pairs         and         for the 

materials presented here without any biasing from the formulas. A plausible explanation 
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of this result is that the extended Urbach rule can be reduced to the Urbach rule always 

and only if there is a low dispersion of the Urbach slope and thus the Urbach focus region 

becomes sufficient small. The latter condition is found in most of the cases here shown. 

Therefore, the Urbach focus can be interpreted also as a small region and not necessarily 

a true constant [Gue13m].  Furthermore, there is actually still no agreement on the 

meaning of the Urbach focus [Cod05, Gue16]. Nevertheless, it is well accepted that the 

fundamental absorption and absorption edge contain information regarding the energy 

separation of the band-edges and the disorder driven band shrinking reflected in the 

Urbach tails, respectively [Mor99, Str91, Ada04]. Here, the extended Urbach rule 

provides direct information concerning the band-edges behavior not only through the 

Urbach energy     but also through the band-edges gap   . For instance, in the case of 

a-SiC:Hx and increase of    is measured due to the hydrogen dilution. This effect is also 

reflected in the Urbach focus. Finally, independent fits using the DiLog model provide 

information of the behavior of the parameters   ,   ,   versus annealing temperature as 

it was shown for the case of a-SiC:Hx, showing that even when the pair (  ,   ) are 

independent of the Urbach energy they are subjected to a thermal-induced modification 

[Gue16]. 

 

5.2 Tb
3+

 doped SiN, AlN and SiC:H light emission properties 

The present work studies systematically the optical properties and light emission features 

of Tb doped SiN, AlN and SiC thin films. The main objective is to correlate the effect of 

thermal annealing treatments on the optical properties and light emission features when 

doped with Tb. In the following sections we will review the emission of the Tb doped 

amorphous SiN, AlN and SiC:H layers at room temperature under band-to-band electron 

excitation (10 kV) and sub-bandgap photon excitation (488 nm). In order to assess the 

different excitation pathways involved PLE spectroscopy measurements were performed 

in the AlN:Tb and SiC:H:Tb samples. Then a systematic analysis of the concentration 

quenching effect of Tb doped poly-crystalline AlN and SiC:H is presented. In the 

subsequent section the optical activation of the Tb ions upon isochronical thermal 

annealing treatments is presented and contrasted with the bandgap and Urbach energy 

evolution of the host matrix upon similar treatments. Such activation is also evaluated for 
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different concentrations. A systematic study of the thermal activation and its effect on the 

shape of the concentration quenching curves is reported for the case of the Tb doped 

amorphous SiC:H thin films. Finally in the last section, temperature dependent PL and 

CL measurements are presented in order to shed some light on the excitation mechanisms 

involved in the Tb
3+

 excitation. 

 

The emission 

The emission of Tb
3+

 doped 

amorphous wide bandgap 

semiconductors like SiN, AlN, SiC, 

GaN has been studied by different 

excitation means [Lu02, Nyk06, 

Wei06, Ada07, Zan07, Zan12]. 

Features of the emission spectra, 

e.g. relative intensity of the 

emission lines and crystal field 

splitting vary depending on the 

chemical and structural properties 

of the host, temperature and 

excitation means. 

 

Figure 5.2.1 depicts the energy levels configuration of Tb
3+

 and their typical observed 

emission transitions. The arrows thicknesses account for the relative intensities observed 

in the materials here studied. The 
5
D4 to 

7
F5 transition is the most intense line, as 

observed in figure 5.2.2. The RE related relative intensity between the different 

transitions is host and excitation source dependent [Lu02, Nyk06, Wei06, Ada07, Jam11, 

Ben12, Gue13, Gue15]. For instance, in some cases even a blue emission corresponding 

to the second excited level decay 
5
D3 → 

7
F4,5,6 is observed with an intensity comparable 

or even greater than the green emission corresponding to the first excited state decay 
5
D4 

→ 
7
F4,5,6 upon impact excitation [Ada07, Loz07, Ben12]. Such blue emission may not be 

observed even upon photon excitation in the same sample [Ben12, Gue13q]. These 

 

Figure 5.2.1. Electronic transitions typically observed in 

Tb
3+

 doped materials. The thickness of the arrows 

corresponds to typical relative transition rate. 
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features for instance make the study of the optical emission properties of Tb doped 

amorphous wide bandgap semiconductors a difficult task. 

 

Figure 5.2.2. PL spectra (right) excited upon an Ar laser (488 nm) and CL spectra (left) excited by an 

electron beam of a SEM (energy 10 keV and current 10 nA) of Tb
3+

 doped SiN, AlN and SiC:H. The 

measurements were performed at room temperature and after an annealing treatment for 15 min at 900°C 

in an argon atmosphere. 

 

The recorded spectra of the Tb doped SiN, AlN and SiC:H films exhibit quite similar 

emission features, see figure 5.2.2. A closer look of the main electronic transition peak 

(
5
D4 to 

7
F5) reveals a crystal field origin splitting of about 30 meV for the three materials. 

This splitting becomes more evident at low temperatures since the peaks become sharper 

due to the freeze out of phonons, see figure 5.2.3. The evolution of the emission and the 

splitting under different temperatures will be presented in the last subsection of this 

chapter. In figure 5.2.3 and example of the resolved splitting is shown for the main 

transition peak in the case of the SiN and AlN samples upon electron excitation. 
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Figure 5.2.3 
5
D4 to 

7
F5 emission line of Tb doped AlN (a) and SiN (b) at 100 Kelvin upon electron 

excitation. The crystal field splitting intensities exhibit different features for different hosts and 

temperatures. The peak-widths are lower than 0.08 meV and 1.45 meV in the AlN and SiN samples, 

respectively. 

 

It can be noted from figure 5.2.2 that upon photon excitation a background emission 

corresponding to the host matrix is recorded in the SiN and AlN samples with an 

exception of the SiC:H layers. This background emission is usually attributed to the 

radiative recombination of electron hole pairs in electronic defects different from the RE. 

The excitation energy in this case is below the bandgap energy value (     = 488 nm, 

    2.54 eV), so we may actually exciting electronic defects directly. On the other hand, 

no background emission is recorded upon the electron excitation case (CL), suggesting 

that a more efficient excitation path takes place. Furthermore, the PL of Tb doped 

hydrogenated SiC does not exhibit any background emission upon photon excitation even 

though SiC has a lower bandgap than SiN and AlN. Figure 5.2.4 depicts the PL-spectra of 

a-SiC, a-SiC:H and a-SiC:H:Tb
3+

 samples annealed at 800°C. As it was reviewed in the 

last section, the hydrogen dilution on SiC effectively passivates dangling bonds with the 

additional consequence of the bandgap increase by widening the mobility edges energy 

separation. Therefore, the 488 nm photons (~2.53 eV) have a higher chance to excite 

electrons in the bandtails of SiC than of SiC:H. In other words, the a-SiC:H seems to be 

transparent to the 488 nm photons in comparison to the undiluted a-SiC. 
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It is widely accepted that RE ions form 

complexes with defects in the host matrix to 

which they interact with [Jan03, Loz07, 

Zan09, Zan12]. For instance, the RE-

structured isovalent trap model (RESI) has 

been thoroughly studied in the crystalline 

AlN doped with different REs [Loz07]. In 

the amorphous case different host defect 

related RE excitation energy transfer 

mechanisms have been reviewed [För59, 

Fuh97, Jan03, Che10, Zan12]. Nonetheless, 

the fact that there is a host matrix emission 

directly below the transition lines of the Tb
3+

 ions, strongly suggest the possibility of a 

defect related energy transfer pathway between the Tb ions and electronic defects [Jan03, 

Nyk06]. Moreover, it is also well accepted that the excitation with 488 nm photons of an 

Ar-ion laser can excite the Tb ions directly by the resonant excitation of the ground state 

7
F6 to the first excited level 

5
D4. Therefore if an energy transfer pathway between the Tb 

ions and electronic defects exists, a back transfer process is also possible [Jan03, Che10, 

Zan12, Gue13, Gue15]. This behavior, as we will see in the last section, can be monitored 

by the effect of the sample temperature on the RE light emission intensity. 

 

So far, from the shown spectra, some questions arise. First, what suppresses the radiative 

electronic recombination in a defect and/or increases the probability of a radiative 

electronic transition in the REs, therefore not exhibiting a background emission with an 

intensity comparable to the RE as already reported for example in Er
3+

 doped a-SiOx:H 

[Jan03]?. Second, why then the Tb doped amorphous SiC:H samples do not show any 

background even when the SiC:H has a lower bandgap than AlN and SiN?. And last, if 

there is an energy transfer pathway between electronic defects and the Tb ions, why there 

is no background emission in the CL spectra?. A glance to the answer of the first question 

will be given in the last section through temperature dependent measurements analysis. 

 

Figure 5.2.4. PL spectra of Tb doped and undoped 

amorphous SiC:H and a reference SiC thin films 

annealed at 800°C. 
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Concerning the second one, the fact that the hydrogen passivates defects seems to be a 

sufficient explanation, however a systematic characterization and understanding of the 

relation between the emission intensity and host defect density is still necessary. For the 

last question, the overall behavior surely is the result of an overlap of different excitation 

mechanisms, which may compete depending on the excitation and host properties. Before 

driving any further discussion we first shortly recall the different excitation processes for 

RE doped materials. 

 

The excitation of RE ions can be generally divided in two categories, direct and indirect 

excitation mechanisms. The direct excitation process occurs with the selective excitation 

of 4f
n
 electrons in the core of the RE. This excitation can be resonant, by photons with an 

energy matching an allowed electronic transition of the RE or by the direct collision with 

hot electrons, e.g. CL and EL. On the other hand, the indirect excitation process occurs 

by the energy transfer from host mediated centers to the 4f
n
 electrons. Several non-

resonant processes can take place in which the host is excited first. These indirect 

mechanisms involve the energy transfer of the recombination energy of electron-hole 

pairs to nearby RE ions. For instance, the excitation of an electronic defect in which the 

recombination occurs and then the energy is transferred to the RE is not an uncommon 

process. In the latter case, a defect related Auger effect (DRAE) may well play a key role 

in some RE doped amorphous semiconductors [Fuhs97]. In general, because of the 

excess of positive charge, trivalent RE ions (as donors) form with acceptors donor-

acceptor pairs (DAP) or larger complexes. Under excitation, an electron is transferred 

from and orbital localized on the acceptor to an orbital on the RE ion. Afterwards, the 

DAP recombines transferring the energy to the RE ion [Bra10]. This excitation scheme is 

the most efficient non-radiative indirect excitation mechanism. The recombination rate 

and the energy transfer efficiency of the DAP depend on the spatial proximity between 

the RE and the acceptor and the spectral overlap between the DAP and the RE absorption 

spectra. 
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Other indirect non-radiative RE excitation 

paths are possible. These involve the 

energy transfer of the electron-hole 

recombination to the RE as bound excitons 

(BE). Additionally, free carriers can be 

trapped by the RE or a nearby defect and 

recombine without the previous formation 

of an exciton. The RE excitation mediated 

by BEs is an extensively discussed 

excitation mechanism in several RE doped 

semiconductors [Loz07, Bra10]. REs can 

also be excited by a ligand-to-metal charge 

transfer (LMCT) changing for a moment 

the valance state of the RE [Dor03]. The 

LMCT transition can be described as the 

promotion of an electron from the valence 

band to a RE ion changing its valence state      to       . Even though the hole is 

delocalized over the ligand, is also bound to the      core forming a charge transfer state 

(CTS). If the CTS is close in energy to the 4f energy levels of the      an intersystem 

crossing to the 4f states will happen being followed by the       emission, see figure 

5.2.5. However, in order to this process to be efficient, the excited state of the      ion 

has to lie below the        CTS. Unfortunately, in the case of AlN, GaN and other 

wide bandgap semiconductors the Tb divalent ground states lie within the conduction 

band (resonant state), and thus the CTS is not stable since the electron will promptly 

autoionize in the conduction band [Dor08]. A summary of these distinct excitation 

mechanisms can be found in [Bra10]. 

 

Figure 5.2.5. Configuration coordinate diagram of 

the excitation by LMCT and CTS. After 

excitation, an electron from the valence band is 

promoted into the CTS by a LMCT process. Then 

a crossover of the CTS with an excited state of the 

     takes place leading to the subsequent decay. 
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Figure 5.2.6. Possible excitation processes. Left: band to band excitation and generation of electron-hole 

pairs (I). Thermalization of the charge carriers which end up in the band tails edge (II). An electron from 

the conduction band-tail is captured by a neutral dangling bond (D
0
) and transfers its energy to the RESI 

(III). Excitation of the RESI by the recombination of an electron-hole pair in deep localized band tail 

states (IV). Energy back transfer process from the RESI to the host matrix (V). Right: resonant direct 

excitation of the 
7
F6 to the 

5
D4 energy level via an Ar-ion laser, or of the 

7
F6 to the 

5
D3  as shown in the 

PLE spectra of figure 5.2.7. The energy levels depicted here are just a schematic representation. For 

energy values of these levels please see figure 5.2.1. 

 

As we already discussed in the present work we performed sub-bandgap excitation by 

using photons with 488 nm wavelength of an Ar-ion laser. The band-to-band excitation 

was performed by an electron beam with 10keV electrons. While the former excitation 

source can excite electrons from the 
7
F6 level to the 

5
D4 level directly as depicted in the 

right scale of the figure 5.2.6, the latter excites band-to-band electrons leading to several 

possible events before the excitation of the RE. The left diagram of figure 5.2.6 depicts 

these events excluding the direct impact excitation with hot electrons. (I) First, an 

electron hole pair is formed by the matrix excitation with energy above the necessary 

threshold to produce the electronic transition. (II) Second, he charge carriers thermalize 

and lose energy by a cascade of multi-phonon process ending up in the band-tails states. 

(III) Then it is possible that an electron from the conduction band tail is trapped by a 

neutral dangling bond and then transfers its energy to the RESI through a DRAE [Jan03, 
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Fuh97]. (IV) Another possibility is that the RE is excited by a dipole mediated resonant 

energy transfer after the recombination of an electron-hole pair in deep localized band tail 

states [Jan03, Gue15]. (V) Finally, after the RE excitation, there exist the possibility of an 

energy back transfer process, which increases the probability of a non-radiative 

recombination. 

 

Figure 5.2.7. PLE spectra of Tb doped polycrystalline SiC:H and AlN annealed at 1000°C, 

λemi = 545 nm (a). Normalized PL under 250 nm excitation wavelength of the same aforementioned 

samples (b). Comparable CL at 20 keV excitation energy, 10 nA and 50 nA beam currents for the SiC:H 

and AlN cases, respectively (c). The distinct Tb related transitions are denoted by the numbers in colors. 

 

In order to have a glance of the possible defect related energy transfer pathways, photo 

luminescence excitation spectra (PLE) measurements were performed on Tb doped 

amorphous SiC:H and polycrystalline AlN annealed at 1000°C with about 1 at.% of Tb. 

Notice that at these annealing temperatures TEM reveals a polycrystalline/amorphous 

structure in the SiC:H samples (see figure 5.1.13). Figure 5.2.7 depicts the PLE spectra 

along with the PL and CL spectra of the same samples. Different features are summarized 

below: 

 

i. The 
5
D4 to 

7
F6 transition is stronger than the 

5
D4 to 

7
F5 in the PL spectrum of 

AlN:Tb (λexc = 250 nm). This is not the case upon electron excitation of the same 

sample, see figure 5.2.7. 
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ii. The 
7
F6 to 

5
D4 direct excitation of the Tb ions is observed as a small peak at 

around 488 nm for both samples in the PLE spectrum, see the inset graph of figure 

5.2.7. This direct selective excitation seems to be much stronger in the SiC:H case 

than the AlN one. 

iii. The SiC:H sample exhibits the 
7
F6 to 

5
D3 direct excitation at around 376.5 nm 

(~3.29 eV) in the PLE spectrum just below the bandgap ~3.33 eV. Whilst the PLE 

spectrum corresponding to the AlN sample shows just a small shoulder at this 

wavelength region. 

iv. The direct excitation of the 
5
L10, 

5
D2,1,0 and 

5
H6,7 levels are noted in the PLE 

spectrum of the SiC:H layer and not present in the AlN one. This result reveals the 

effective excitation of the Tb ions in the SiC:H in contrast to the AlN host. 

v. The AlN sample exhibits two dominant peaks in the PLE spectrum. These are 

observed at 306.1 nm (~4.05 eV) and 260.1 nm (~4.76 eV). Lozykowsky reported 

the PLE of AlN:Tb monitoring at              (
5
D4 to 

7
F6 transition) [Loz07], 

exhibiting the same peaks in agreement with the present result. 

 

Concerning the first feature (i), these relative intensities are typically observed in 

crystalline and polycrystalline annealed Tb doped AlN upon sub-bangap photo excitation 

[Lu02, Ada07, Loz07, Ben13] but not in amorphous annealed Tb doped AlN upon the 

same excitation means [Men06, Wei06, Gue15]. Lozykowsky suggested that this feature 

may support the exciton mediated energy transfer to the Tb ions [Loz07]. However, under 

sub-bandgap excitation Tb doped AlN exhibits typically a host related background 

emission, supporting the lack of an effective energy transfer from the host to the Tb ions. 

 

The direct photon resonant excitation of the 
7
F6 → 

5
D4 transition with 488 nm photons 

has actually a very low cross section. Therefore, the light emission efficiency concerning 

solely this mechanism should be very low.  This is observed for instance in the AlN case 

by the fact that the resonant direct excitation is barely noticeable. In contrast to these 

observations, SiC:H PLE exhibits the energy corresponding to the  
5
D4,3,2,10, 

5
L10, 

5
H7,6 

Tb
3+

 levels, see features (ii), (iii) and (iv). The latter observation suggests that possibly 

the excitation of the SiC host reaches the Tb ions in some other way (since the direct 
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excitation in the AlN host is not appreciable), perhaps through other electronic defects 

and not only the resonant direct excitation of the Tb ions. As we will see in the last 

section this result is supported by temperature dependent measurements. 

 

Regarding the last feature (v), these two peaks have been also reported by Lozykowski et 

al [Loz07] in Tb doped AlN. Lozykowski argues that these two broad peaks are the result 

of the creation of bound excitons to different RESI trap clusters. However, these peaks 

can also be explained by the direct excitation of electronic defects and the subsequent 

energy transfer to the Tb ions. For instance, these defects could be the aluminum vacancy 

with one oxygen attached at ~4 eV (     ) [Bas09] and oxygen-vacancy complexes in 

the range of 4.0 to 4.9 eV (      ) [Bic10]. The peak around 4.8 eV is also present in 

the PLE spectra of AlN doped with Pr
3+

, Eu
3+

 and Tm
3+

 supporting the host nature of this 

electronic defect [Loz07]. 

 

In summary, the fact that even after the direct excitation of the second excited level 
5
D3 in 

the Tb doped SiC:H case, see figure 5.2.7, no comparable emission from the 
5
D3 level but 

from the 
5
D4 is observed, strongly supports the possibility of a non-radiative transition or 

energy migration from the 
5
D3 to the 

5
D4 levels. The energy difference between these 

energy levels is about 0.75 eV and therefore a multi-phonon process is incapable to 

explain the observed efficiency. A cross-relaxation between two nearby Tb ions is 

another possible energy down-conversion mechanism. As depicted in figure 5.2.8, the 

close energy match between the         and         makes this process highly 

effective. This would explain why the     related emission lines are considerably more 

intense than the     related ones after exciting with sufficient energy. Additionally, in 

contrast to the SiC:H case, polycrystalline Tb doped AlN doesn’t exhibit a strong 

resonant excitation of the 
7
F6 to 

5
D3 energy levels nor the 

7
F6 to 

5
D4 direct excitation in 

the PLE spectrum. The latter behavior could be attributed to the energy back transfer to 

deep localized band tail states with a subsequent non-radiative recombination or even 

simply the lack of host mediated centers that could effectively transfer the energy to the 

Tb ions. Finally, it is well accepted that at these concentrations the interaction between 

Tb ions is possible, see figure 5.2.8. The probability of non-radiative transitions after the 
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direct excitation of the 
5
D3 or 

5
D4 levels can be enhanced by the energy migration from 

ion to ion. The host excitation and the subsequent energy transfer to the Tb ions is still 

efficient enough to produce the observed emission lines in SiC:H. 

 

Figure 5.2.8. Cross relaxation process involving two nearby Tb
3+

 ions. An electron in the second excited 

level 
5
D3 drops to the first excited energy level 

5
D4. The energy of such transition is transferred non-

radiatively to a nearby Tb
3+

 ion promoting an electron to the 
7
F0 level (I). The excited electron in the 

7
F0 

level will decay non-radiatively (II). While the electron in the 
5
D4 level will continue with the process 

decaying to one of the 
7
Fi levels radiatively or transferring its energy to another RE or to the host matrix 

(III). 

 

Concentration quenching 

As we already reviewed in the last section, the ion interactions are a possibility even at 

atomic concentrations about 1%. The probability of these interactions to happen is 

proportional to the RE concentration (inverse to the RE interdistance) in the host matrix. 

Furthermore, RE ions can create pairs and higher clusters. These clusters can be formed 

between RE ions and other impurities, e.g. oxygen or transition metals [Jan03, Loz07] 

and they occur more frequently than predicted by a statistical model [Loz07]. The 

concentration quenching of the light emission of RE doped materials is a result of the 

tendency of REs to interact with each other. While the light emission quenching by the 

concentration is well accepted, there are only few characterizations of this process under 

different excitation sources. Recently, S. Chen et al proposed a suppression of the 
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concentration quenching effect in Er doped GaN through CL upon a high excitation 

power density [Che10]. 

In the following section, we report the behavior of the CL and PL spectra of Tb doped 

SiC:H and AlN thin films under different Tb concentrations. The Terbium concentration 

was measured through two complementary techniques. In the case of the AlN:Tb films, 

Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) which detects 

only the metal elements, and X-ray Photoelectron Spectroscopy (XPS) that renders the 

concentration of all constituents, were performed
2
. In the case of the Terbium doped 

SiC:H samples, Fourier Transform Infrared Spectroscopy (FTIR) was used. This 

technique allows the calibration of the integrated area of the Si-C and Si-C:Hn vibrational 

modes with various XPS measurements. The PL spectra of the AlN samples in this 

section were measured using 250 nm excitation wavelength from a monochromatized 

Xenon lamp. The PL spectra of the SiC:H samples were taken under 488 nm excitation 

from an argon laser. All the signals were measured in a reflection setup. More details can 

be found in Chapter 4 and [Ben13]. 

 

Figures 5.2.9 and 5.2.10 depict the normalized integrated PL and CL intensities, 

respectively of the Tb
3+

 doped SiC:H and AlN samples annealed at 1000°C versus 

different doping concentrations. The calculation of the Tb ions mean distance from the 

atomic percentage concentration can be found in the appendix A.4.  Two regions can be 

identified in these figures. First, the light emission intensity in the low concentration 

region increases linearly with the Tb amount. As we will see in the next section, the slope 

of this linear growth varies with the RE activation degree. Second, the light emission in 

the high concentration region shows an exponential decay. This decay is attributed to the 

increased probability of a non-radiative electronic transition due to the interaction 

between the Tb ions. This interaction becomes stronger when the mean ion inter distance 

is reduced. The energy transfer probability can be described by an electrostatic dipole-

dipole interaction, i.e. Förster’s approach [För46]. Dexter generalized the theory to 

higher-order interactions, including a quantum mechanical exchange interaction [Dex53]. 

                                                           
2
 These measurements were performed by the group of Prof. H. P. Strunk of the University of Stutgart in 2012 

[Ben13, Gue13]. 
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Figure 5.2.9. Normalized integrated PL intensity of the 
5
D4 to 

7
F6 emission line of Tb doped SiC:H and 

AlN thin films versus different doping concentrations (left) and Tb ions mean inter-distance (right). 

  

 

Figure 5.2.10. Normalized integrated CL intensity of the 
5
D4 to 

7
F6 emission line of Tb doped SiC:H and 

AlN thin films versus different doping concentrations (left) and Tb ions mean inter-distance (right). 

 

The maximum observed intensity is shifted to lower concentrations upon electron 

excitation for both Tb doped AlN and SiC:H samples. From about 3% down to ~1.2% in 

the SiC:H samples and from ~1.5% to 1% in the AlN samples. The exponential decay 

rate (  ) is faster upon electron excitation than upon photon excitation for the SiC:H 

samples while is slightly slower upon electron excitation than photon excitation in the 

AlN case (see figure 5.2.11 and table 5.2.1). 
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Figure 5.2.11. Normalized integrated CL and PL intensities of Tb doped SiC:H annealed at 1050°C (a). 

Normalized integrated CL and PL intensities of Tb doped AlN annealed at 1000°C (b). Dashed lines are 

simple exponential decay fits with decay rates    summarized in table 5.2.1. 

 

Table 5.2.1: decay rates of the PL and CL concentration 

quenching curves shown in the figure 5.2.9. 

Excitation Host x0 (atm. %) 

PL 
AlN 1.14 ± 0.10 

SiC:H 2.33 ± 0.27 

CL 
AlN 1.33 ± 0.12 

SiC:H 0.71 ± 0.07 

 

The shape of the curves shown in the figure 5.2.11 can be approximately described by the 

equation 5.2.1 which is the result of a two levels rate equation model. Here     denotes 

the Tb atomic concentration.      is the interaction probability between luminescent 

centers. A and B are constants that depend on the excitation probability, Einstein 

coefficient and the non-radiative transitions probability. The derivation of the equation 

5.2.1 can be found in section 3.2 (see equation 3.2.57). 

         
     

             
 (5.2.1) 

 

Even after annealing the samples in similar processes, the activation degree may not be 

necessarily the same. The average environment of the Tb ions may differ from matrix to 
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matrix. For instance, a simple Monte Carlo simulation can demonstrate how the RE 

activation degree affects the concentration quenching curves. For this we assume the 

following: 

 

i) Two interacting REs have a probability to lose the energy by a non-radiative 

transition. In this simulation the probability of losing the energy after the 

interaction is one. In this way we neglect the effect of the intrinsic host electronic 

features. Nonetheless, the simulation can be extended to several energy transfers 

before reaching a sink. 

ii) An optically not active RE is not able to participate in an energy migration 

process. Therefore, a not active RE not only does not emit light but cannot 

interact with other REs. If a RE is not optically active, it is reasonable to assume 

that the electronic transitions involved are parity forbidden due to the lack of the 

appropriate symmetry. 

iii) The host matrix non-radiative paths are the same independently on the RE 

concentration or activation degree. The quenching is solely influenced by the RE 

interaction i.e. by the RE concentration and activation degree. 

 

We performed this simulation by distributing the REs randomly in a 2D matrix. 

Notwithstanding, this simulation can be easily extended to three dimension systems 

[Ben13p]. For the sake of plainness and minimal computational resources the matrix 

sizes used were 50 by 50 atomic cell units (c.u.). Thus, the interaction probability at short 

range distances is given by the equation 5.2.2, obeying the Dexter’s approach for the 

interaction of ions [Dex53]. However, the exponential interaction probability presented in 

the equation 5.2.2 is normalized to a maximum interaction radii, given by              

The minimum distance is             and the used exponential decay rate was    

        Any two REs at the minimum distance interact (    ), while any two REs 

separated a distance equal or greater than      do not interact (    ). The simulated 

intensity is then calculated by counting the number of active and not interacting REs ions 

in a finite matrix, see figure 5.2.12. The procedure is repeated 500 times for each 

activation degree and then simply averaged. 
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 (5.2.2) 

 

Figure 5.2.12 depicts the variation of the shape of the quenching curves upon different 

activation degrees according to the above described simulation. Notice the shift of the 

maximum achievable intensity upon increasing the RE activation degree. The linear slope 

in the low concentration region increases with the activation degree while the exponential 

decay becomes sharper. This behavior reflects a competition between the number of 

active light emitting centers which are also available for interaction and therefore not 

only enhancing the total light emission but also quenching it after a critical concentration. 

 

Figure 5.2.12. Simple Monte Carlo simulation of the concentration quenching effect in two dimensions 

using a normalized interaction probability given by the equation 5.2.2. The solid lines are fits using the 

equation 5.2.1 with                 for simplicity (a). Simulated intensity versus the activation degree 

for 3 different RE concentrations (b). The curves are not normalized, and the intensities are comparable. 

Notice the increase of the slope and the sharpness of the exponential decay upon increasing the activation 

degree. 

 

In summary, the concentration quenching behavior of the light emission of the Tb doped 

samples here studied exhibit host matrix dependent features, such as the maximum 

achievable intensity versus the Tb concentration and the quenching exponential decay 

rate. Therefore displaying the fact that the energy loss mechanisms are mainly host 

material nature and the probability of a non-radiative transition is enhanced by the RE 

concentration. The critical concentration value, before the quenching becomes 
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appreciable, is not the same from host to host. These features are also excitation source 

dependent. After the band-to-band excitation with electrons in both materials, the 

concentration quenching effect is enhanced demonstrating the new paths for energy loss 

which are not present after sub-bandgap excitation. That is for instance, reaching Tb ions 

which are not active upon sub-bandgap excitation but upon band-to-band excitation and 

therefore explaining the observed shift as depicted in the figure 5.2.12. 

 

Thermal activation 

It is well established that not all of the RE ions embedded in a matrix are active for light 

emission. Furthermore, RE ions can be activated after thermal treatments. However, the 

mechanisms of this fact are still controversy discussed [Gue13]. For instance, the 

enhancement of the electronic properties of the host material, i.e. by reducing the 

electronic defects, upon annealing treatments is a possible mechanism for the light 

emission boost with the annealing temperature, mainly due to the reduction of non-

radiative recombination centers. Likewise, the improvement of the RE surrounding 

atomic environment, for example by coordinating with oxygen atoms [Jan03], or the 

rearrangement of the local structure around the RE ions [Men06, Wein06, Zan09] may 

promote the RE activation. The study of the annealing behavior can provide information 

concerning the underlying mechanisms for promoting the activation of RE ions in 

amorphous matrices. However, detailed temperature dependence of the light emission is 

often overlooked. Particularly, a critical annealing temperature between 400°C and 

700°C at which the highest intensity is reached has been reported for Tb doped 

amorphous/nano-crystalline GaN, AlN and SiC [Wein06, Men06, Zan09, Gue15]. This 

behavior has been also reported in other RE doped materials. For instance in Er doped 

amorphous hydrogenated Silica [Jan03], Er2O3 sol-gel Silica [Abe11, Ryu95], Er 

implanted crystalline GaN [ODo10] and Eu doped Al2O3 [Ena08]. 

 

In this section, we review the variation of the light emission of Tb doped amorphous SiN, 

AlN and SiC:H upon isochronal thermal annealing treatments. The effect of the annealing 

temperature on the shape of the so called quenching curves in the case of Tb doped SiC:H 

is presented and evaluated. 
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Figure 5.2.13. Normalized integrated CL and PL (λexc = 488 nm) intensities of Tb doped amorphous SiN, 

AlN and SiC:H thin films, the curves are shifted for clarity reasons only (a). Optical bandgap (b) and 

Urbach energy (c) of the undoped amorpous SiN, AlN and SiC:H thin films [Gue15]. 

 

The variation of the integrated intensity of the Tb doped samples here under study is 

depicted in figure 5.2.13. The samples were doped with about ~1 at. % Tb. The emission 

intensity was taken upon electron and photon excitation. The Tb doped SiN and AlN 

layers exhibit a monotonically increase of the light emission intensity with the annealing 

temperature. The optical emission of the Tb doped SiC:H layer exhibited a critical 

annealing temperature at which the light intensity reaches its highest value before 

decreasing. If we compare this behavior with the variation of the optical bandgap versus 

the annealing temperature, a similar shape between the integrated intensity and the Tauc-

gap is noted, see figure 5.2.13. This effect displays the fact that the thermal annealing 

treatments enhance the light emission of REs by reducing electronic defects. Pointing out 

that the amount of electronic defects, here measured by the Urbach energy, is responsible 

for the non-radiative paths. Therefore, an increase of the electronic defects which is 

translated in a decrease of the Tauc-gap, should develop a decrease of the light emission 

intensity as shown in the SiC:H case. The fact that this correlation between the light 

emission intensity and the optical bandgap exist, strongly supports that 1 at.% doping 

concentration is suitable for a low Ion-Ion interaction and that the optical properties of 

the film are not significantly altered by the doping. At any rate, the RE activation obeys 

other mechanisms which are not related solely to the increase in efficiency due to the 

reduction of non-radiative paths. For instance, the formation of RE structured isovalent 

traps is an extensively well accepted model [Loz07, ODo10]. The formation of such 
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structures can be promoted by the annealing treatments. Additionally, the site a RE 

occupies in a crystalline matrix and the formation of RE clusters can also influence the 

activation degree. 

 

Figure 5.2.14. Thermal activation of Tb doped amorphous SiC:H at different Tb at.% (a). Quenching 

curves of Tb doped amorphous SiC:H after different annealing temperatures (b). Vertical colored lines in 

panel (b) correspond to the intensities plotted in panel (a). 

 

The variation of the RE activation degree in the simple simulation presented in the 

previous subsection showed that the activation behavior of the emission intensity could 

change completely from one concentration to another, see figure 5.2.12. The simulation 

aim was to picture the emission intensity sensitivity under different concentrations and 

activation degrees. Certainly, the considered assumptions do not meet the real case. 

Notwithstanding, we can still obtain some reliable information such as the slope of the 

low concentration region which increases with the activation degree. In this frame we 

study the thermal activation behavior of Tb doped SiC:H at different Tb concentrations. 

Figure 5.2.12 depicts the variation of the integrated light emission intensity of the Tb 

doped SiC:H samples at different Tb at.% concentrations versus the annealing 

temperature. Note that if we increase the Tb concentration the shape of the integrated 

intensity versus annealing temperature curve changes dramatically. The activation curves 

lose their correlation with the Tauc-gap (Urbach energy) by increasing slightly the Tb 

amount, see figures 5.2.12 and 5.2.14. This effect can be attributed to the competition 
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annealing temperature increase in number as revealed by the Urbach energy and the new 

active luminescent centers. 

 

After the thermal annealing treatments, the concentration quenching curves depicted in 

the figure 5.2.14 still exhibit the previously described behavior: a practically linear 

increase followed by an exponential decay after a critical concentration. Hence, three 

main features that can be correlated with the annealing temperature can be recovered 

from these curves. First, we have the slope of the linear increase in the low concentration 

region. Second, the critical concentration at which the quenching becomes more 

significant. And third, the quenching rate of the exponential decay in the high 

concentration region. In order to extract these parameters we fit the quenching curves 

using the equation 5.2.1. For the sake of simplicity, we approach the interaction 

probability to             . Thus the decay rate is given by   , the slope by  , and the 

critical concentration by              . The results of these fits are shown in 

figures 5.2.15, 5.2.16 and table 5.2.2. Additionally, we calculate the slope    by a direct 

linear fit in the low concentration region. 

 

Figure 5.2.15. Integrated PL intensity versus the Tb concentration for different annealing temperatures (a). 

Solid lines are fitted curves using the equation 5.2.1. Inset graph corresponds to the slope A versus   . 

Arrhenius plot of the slopes    and   exhibiting an activation energy of 105.28 meV (b). 
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Figure 5.2.16. Effect of the annealing temperature on the parameter B’, revealing its close relation with the 

host matrix electronic properties, the inset graph correspond the Urbach energy of SiC:H obtained earlier 

(a). Arrhenius plot of the exponential decay rate n0 exhibiting a good linear behavior, the inset graph 

depicts the decay rate in linear scale versus the annealing temperature (b). 

 

Table 5.2.2. Best fitted parameters using the equation 5.2.1.    is the best fitted slope of the linear 

increase at the low concentration region.     and    are the calculated mean distance (nm) based in the 

values of    and    (at.%), respectively. Details on the latter calculation procedure can be found in A.4. 

TA (°C) MA×10
4
 A×10

4
 B’ (at.%) rB’ (nm) n0 (at.%) r0 (nm) 

AG 8.11±0.57 9.31±1.28 3.85 ±0.06  0.44±0.001 0.28 ±0.16 0.89 ±0.11 

300 9.86±0.75 11.06±3.27 2.88 ±0.40 0.47 ±0.01 0.54 ±0.32 0.73 ±0.09 

450 16.11±1.09 18.83±4.16 2.67 ±0.30 0.48±0.01 0.57 ±0.21 0.72 ±0.06 

600 22.66±1.58 31.65±8.19 2.18 ±0.37 0.50±0.02 0.62 ±0.18 0.70 ±0.05 

750 26.05±0.68 33.42±9.08 2.18 ±0.42 0.50±0.02 0.69 ±0.19 0.68 ±0.04 

900 30.63±1.22 33.41±4.11 2.89 ±0.21 0.47±0.008 0.67 ±0.13 0.69 ±0.03 

1050 32.20±2.63 34.62±1.87 3.89 ±0.12 0.44±0.03 0.72 ±0.09 0.67 ±0.02 

 

As described previously, the slope of the linear shape in the low concentration region of 

these curves is directly proportional to the RE activation degree [Gue13]. Figure 5.2.15 

also depicts the Arrhenius plot of the slopes   and    for the different annealing 

temperatures. Notice the good linear relationship for    resulting in an activation energy 

of    = 105.3 meV. The slope   exhibits a similar activation energy, however the error is 

much larger due to the low number of fitting points and a smaller linear region. This is 

the first report of an activation energy obtained in this way for the activation of a Tb 
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doped wide bandgap semiconductor [Gue13]. The 105.3 meV value is in the order of the 

optical phonons energy of the host matrix, thus suggesting that the transition process 

might be phonon-assisted. We will come back to the latter idea in the last section of this 

chapter. 

 

Concerning the other fitted parameters shown in the table 5.2.2, i.e. B’ and n0, since they 

have concentration units (at.%), thus their mean distance counterparts rB’ and r0 are also 

calculated. Figure 5.2.16 depicts the variation of    and    with the annealing 

temperature, both exhibiting the following behavior. First, the critical concentration B’ 

exhibits a similar shape to that of the Urbach energy. This behavior, which was already 

observed in the Tb related integrated light emission intensity at concentrations around 1 

at.%, is then recovered in B’. To understand this, let us recall that the parameter is 

inversely proportional to the probability of a non-radiative recombination as we have 

seen in section 3.2. That is:                             . Thus    behaves 

inversely to   and it is not surprising that it exhibits a similar shape with the Urbach 

energy of the host matrix. An increase of the Urbach energy is translated into an increase 

of non-radiative recombination. 

 

Second, the decay rate n0 presents a different behavior with the annealing temperature. It 

increases with the annealing temperature reaching a saturation value around ~0.75 at.%, 

making the quenching exponential decay less sharp with each annealing step. The 

corresponding Arrhenius plot reveals a process with an activation energy of 30.16 meV. 

This result shows certainly that the concentration quenching exponential decay becomes 

slower when increasing the annealing temperature. The exponential decay rate    is 

directly related to the interaction probability between the Tb ions. Hence in the light of 

the results presented in the figure 5.2.16, it seems reasonable that the interaction 

probability is decreasing with the annealing temperature upon resonant PL excitation 

with 488 nm. However, this result is limited by the rate equation model, and the over-

simplified RE interaction probability used to describe the curves. 
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In summary, in this section the thermal activation of Tb doped amorphous SiN, AlN and 

SiC:H was reported for Tb concentrations around 1 at.% revealing the close relation 

between the light emission intensity and the Urbach energy. The effect of isochronal 

thermal annealing treatments on the behavior of the concentration quenching curves was 

also reported for the case of Tb doped amorphous SiC:H. Three different parameters were 

recovered and related to the variation of the light emission intensity with thermal 

annealing treatments: the slope of the linear increase in the low concentration region, the 

critical concentration               which denotes the inflexion point in the high 

concentration regime, and the exponential decay rate   . It was established previously 

that the slope A is proportional to the RE activation degree and B is related to the non-

radiative recombination (        ) which is in fact associated to localized states. Hence, 

an activation energy of 105.3 meV was obtained from an Arrhenius plot of the slope MA, 

whilst the parameter B’ exhibited a similar behavior than the Urbach energy of the host 

material. The latter behavior is somehow expected since the Urbach energy is also a 

measure of the amount of non-radiative recombination centers. Finally, the exponential 

decay rate exhibited a decrease till a saturation point around n0 = 0.75 at.%, possibly 

attributed to a diminution of the energy transfer probability between Tb ions upon 

resonant excitation of the 
5
D4 energy level, however this behaivor requires additional 

confirmation. 

 

Temperature dependent measurements 

As we have seen already, different atomic environments give rise to slightly different RE-

related emission spectra, see figure 5.2.17. Besides the RE activation, thermal annealing 

treatments can also improve the quality of the electronic properties of the host material 

enhancing the light emission intensity of the RE by reducing the non-radiative 

recombination paths. The special case of Tb doped a-SiC:H revealed the increase of the 

Urbach energy and the decrease of the Tb related light emission intensity after a critical 

annealing temperature. The close relation between the RE-related light emission intensity 

with the host matrix electronic properties are often overlooked [Abe11, Gue15]. The 

temperature quenching of the RE-related luminescence intensity has been studied on 

different matrices and RE ions. For instance, Er-doped compounds exhibit distinct 
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temperature quenching values depending on the host matrix [Zan03, Jan03, Loz07], 

whilst RE-doped AlN exhibit not only different temperature quenching values but 

features at temperatures well below thermal quenching [Loz07]. 

 

Figure 5.2.17. CL spectra (left) and PL spectra (right) of Tb
3+

 doped SiN (upper group) and AlN (lower 

group) for three different sample temperatures. 

 

The role amorphous matrices play in the excitation processes can be examined under 

temperature dependent analysis of the corresponding light emission intensity. 

Temperature dependent PL and CL have been performed in order to assess the light 

emission features upon photon sub-bangap and electron band-to-band excitation under 

conditions where the interaction of the Tb ions with phonons is low. Typically, the 

decrease of lattice vibrations at low temperatures is expected to enhance the RE-related 

350 400 450 500 550 600 650 700 750

A
lN

:T
b

3
+

CL, 10 keV

 

Wavelength (nm)

450 500 550 600 650 700 750

S
iN

:T
b

3
+

PL, 
exc

488 nm

× 5

@ 250 K

@ 150 K

@ 40 K

 

× 2

 × 2

  

× 1

× 1

 

× 1

 

× 1

@ 250 K

@ 150 K

@ 40 K

  
× 1

  

× 1

× 1

× 1

 

× 1

 



 
 

135 
 

light emission intensity. This behavior is attributed to the reduction of phonon-assisted 

processes and therefore the inhibition of the energy migration from the RE ions to the 

host matrix [Zan03, Zan12]. 

 

However, a strong enhancement of the RE-

related light emission intensity with the 

temperature has been reported previously for 

Sm
2+

, Tb
3+

, Tm
3+

 and Ce
3+

, even after up to 

200 degrees above room temperature in 

different amorphous and crystalline hosts 

[Spo79a, Spo79b, Loz07, Zan12, Gue15]. For 

instance, figure 5.2.18 depicts the temperature 

dependence of the RE related light emission 

intensity of different RE doped AlN layers in 

which an exponential increase of the Tb CL 

intensity is observed [Loz07]. Figure 5.2.17 

depicts the Tb
3+

 doped related light emission 

spectra of the SiN and AlN hosts at three 

different temperatures, 40, 150 and 250 Kelvin upon sub-bangap photon excitation and 

band-to-band electron excitation. Some features are noted. First, the Tb-related emission 

spectra intensity increases with the temperature in both CL and PL measurements. 

Second, the PL background emission intensity related to the host matrix decreases 

reciprocally with the temperature, whilst no background emission is recorded in the CL-

spectra. Third, both PL- and CL-peaks exhibit a slight variation in the line width of the 

Tb-related transitions at different temperatures. However, in the PL case this change is 

not sufficiently substantial or appreciable to be quantified. Nonetheless, an increase of the 

broadening with the temperature is measured in the CL-spectra in the whole temperature 

range, with a modification in the relative intensities of the crystal field splitting lines. 

 

In previous sections we have reviewed the different excitation mechanisms of RE-doped 

amorphous semiconductors. It is important to recall that during the photon and electron 

 

Figure 5.2.18. Temperature dependence of the 

light emission of AlN doped with Pr
3+

, Eu
3+

, 

Tb
3+

, and Tm
3+

, from [Loz07]. 
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excitation we have an overlap of these different excitation processes. The direct photon 

resonant excitation with 488 nm excitation wavelength of the 
7
F6 to 

5
D4 energy levels has 

actually a very low cross section. Therefore the light efficiency concerning solely this 

mechanism should be very low in comparison to other excitation paths. Nonetheless, as 

reported previously, the light emission intensity is rather high upon this excitation source 

in distinct materials [Wei06, Zan09, Zan12, Gue13, Gue15]. In this sense, other 

excitation paths beside the direct resonant excitation of the RE must play an important 

role in the sub-bandgap photon excitation. A summary of the possible excitation paths 

was presented in figure 5.2.6. Depending on the electronic structure and the energy level 

location of the RE [Dor08], quasi-resonant energy migration from e-h pairs 

recombination at defects like dangling bond states (path III in figure 5.2.6) or deep band 

tail states (path IV in figure 5.2.6) to the RE is possible [Jan03]. The former may be 

achieved by a defect-related Auger effect (DRAE). Nonetheless this process compels the 

proximity of the REs to dangling-bond defect states [Fuh97]. On the other hand, the 

energy migration from recombination at deep band tail states can be attained by a dipole-

mediated resonant energy transfer, which is efficient for larger distances [För60]. Since 

the aforementioned processes depend on the host matrix, both may compete with 

radiative (and non-radiative) recombination at defect sites. 

 

It is likely that the sub-bandgap photon excitation, excites the matrix and depending on 

the RE and the host matrix i.e. if the RE energy levels match suitable or not with the 

defect states, it is possible to enhance or decrease the light emission intensity of the RE 

with the temperature by a phonon-assisted energy migration between defects and RE 

states [Gue15]. Electron band-to-band excitation would be a more efficient RE excitation 

source since all the excitation paths are overlapped and thus the probability to excite a RE 

ion is much higher. This behavior has been reported previously by Lozykowski for c-AlN 

doped with Eu
3+

, Tb
3+

, Tm
3+

 and Pr
3+

, see figure 5.2.18 [Loz07]. In the case presented 

here, at low temperatures the phonon-assisted energy migration is inhibited, and therefore 

the direct excitation component and the indirect excitation through bound excitons are 

present. The former has a very low efficiency due to the low cross section, while the 

latter is only possible under band-to-band excitation. The host matrix background 
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emission is rather high at these low temperatures due to the fact that even when the RE 

ions are high efficient recombination centers, the electron-hole pairs recombine in the 

defects or deep localized band tail states without the possibility to transfer the energy to 

the Tb ions. Therefore, we can drive the statement that an increase of the Tb-related light 

emission intensity with the temperature strongly suggests a phonon-assisted energy 

transfer mechanism between the host matrix and the Tb ions, enhancing the radiative 

recombination in the latter ones [Gue15]. 

 

Figures 5.2.19 and 5.2.20 depict the Arrhenius plot of the CL and PL integrated intensity, 

respectively versus the sample temperature for the Tb
3+

 doped AlN and SiN thin films. In 

the CL case, the temperature ranged from 34K to 400K, whilst in the PL case the 

temperature ranged from 10K to room temperature due to setup limitations. From these 

plots the activation energies corresponding to the samples annealed at 900°C are 

extracted and exhibited in the table 5.2.3. Note that the activation energies of the CL case 

almost doubles that obtained from the PL measurements in both samples. 

 

Figure 5.2.19. Integrated CL intensity of Tb doped AlN (a) and Tb doped SiN (b) versus the reciprocal of 

the temperature after three different annealing temperatures. The dotted vertical lines denote the room 

temperature at 293.6 K. 
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Figure 5.2.20. Integrated PL intensity of Tb doped AlN (a) and Tb doped SiN (b) versus the reciprocal of 

the temperature after three different annealing temperatures. Unfortunately, below 900°C annealing 

temperature, the AlN:Tb samples didn’t exhibit sufficient signal. 
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Table 5.2.3. Activation energies after an annealing temperature of 900°C, 

obtained from the figures 5.2.17 and 5.2.18. 

Host Exc. Source EA (meV) 

SiN 
PL 17.5 ± 2.56 

CL 33.22 ± 1.21 

AlN 
PL 5.88 ± 0.43 

CL 9.09 ± 0.88 
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to the transition 
5
D4 to 

7
F6 is composed by three lines that are resolved at low 

temperatures only. At higher temperatures, two apparent lines are only visible due to the 

broadening. Figures 5.2.21 and 5.2.22 depict the emission spectra of the 
5
D4 to 

7
F6 

transition for five different sample temperatures of the Tb doped SiN and AlN samples, 

respectively and after an annealing at 900°C. The frame (f) in both figures depicts the 

width of the first peak (centered at ~539 nm) obtained from fits equivalent to the ones 

shown in the figure 5.2.3. We take this peak as representative in order to assess the 

variation of the width with the sample temperature. Moreover, both materials experience 

the relative increase of the second peak, centered at ~547.5 nm, respect to the first one 

when increasing the sample temperature. 

 

Figure 5.2.19. Variation of the emission peak shape of Tb doped a-SiN with the sample temperature (a, b, 

c, d and e). Peak width versus the sample temperature (f). 
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Figure 5.2.20. Variation of the emission peak shape of Tb doped a-AlN with the sample temperature (a, b, 

c, d and e). Peak width versus the sample temperature (f). 
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Summary and concluding remarks 

In this work we have presented a comprehensive study of the effect of thermal annealing 

treatments on the optical properties and luminescence features of Tb doped amorphous 

SiN, AlN and SiC:H. In this frame the RE thermal activation process and the effect of 

temperature on the light emission intensity was evaluated. Furthermore, the concentration 

quenching effect of Tb doped SiC:H upon different annealing temperatures lead to the 

discrimination of the effect of the RE activation from the band-tails variation in the Tb 

related light emission intensity upon thermal annealing treatments. In the present chapter 

the main results are shortly summarized in three parts. 

 

The optical bandgap and the Urbach focus 

The optical bandgap of amorphous systems is typically calculated from optical data by 

the Tauc-model. This model doesn’t take into account band-to-tail and tail-to-tail 

electronic transitions. On the other hand, the band-tails considerably overlap on the 

mobility edges becoming a significant and sometimes indistinguishable part of the 

fundamental absorption in the typical optical measured range. Moreover, the capacity to 

distinguish a linear region in the Tauc-plot becomes in most cases an arbitrary choice.  In 

this frame we proposed and presented a simple and analytical model based on the 

previous works of O’Leary and Dunstan [OLe98, Dun83] from which the Urbach energy 

and the bandgap in the absence of disorder are retrieved from single optical absorption 

coefficient measurements [Gue13m, Gue16]. The first consequence of this model is 

related to the Urbach focus constant. As we know, the absorption coefficient around the 

mobility edges contains two classes of states which overlap, the localized band-tail states 

and the extended states which start in the mobility edges. The band-tail states effect is 

reflected in the Urbach energy, while the extended states effect is typically reflected in 

the Urbach focus. Both contribute to the overall behavior of the Tauc-gap with for 

instance the annealing temperature. However the meaning of the value delivered by the 

Urbach focus energy coordinate is still under discussion [Cod05]. The model here 

proposed reveals that the Urbach focus is actually a small region, and that the true 
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constant is the mobility edges energy gap   , thus giving a new meaning to the Urbach 

focus. In order to test the existence of this constant and contrast it with the Urbach focus, 

we performed the analysis of Orapunt and O’Learty [Ora04] on amorphous Si:H, SiN, 

AlN and SiC:H. This analysis was performed using the traditional Urbach rule and the 

asymptotic behavior of the model proposed here. The results delivered that both 

equations predicted equally the constants pair         and         for the materials 

under study without any biasing from the formulas. A plausible explanation of this result 

is that the extended Urbach rule can be reduced to the Urbach rule always and only there 

is a low dispersion of the Urbach slope. In such case the Urbach focus region becomes 

sufficiently small. Another consequence of this model is the capacity to measure    from 

single measurements of the absorption coefficient. For instance, the Tauc-gap contains 

information of both the Urbach energy and the band-edge energy gap, however the latter 

is implicit and can only be retrieved through the Urbach focus. This fact becomes evident 

in the case of a-SiC:Hx in which the Urbach energy decreases until a critical annealing 

temperature to then increase again. In this case    remained nearly constant while       

behaved inversely to    [Gue16]. 

 

The amorphous SiN and AlN layers exhibited an enhancement of the Tauc-gap followed 

by a reduction of the Urbach energy with the annealing temperature. Different linear 

relations between the bandgap       and     with the Urbach energy    were found. In 

this case, the constants  
    

 ,  
      

  and  
       

  were attained with values in 

agreement with the Urbach focus obtained directly by a global fit of the absorption 

coefficient and by the analysis of Orapunt and O’Leary of each material. However in the 

case of a-SiC:Hx only the  
    

  was retrieved. The linear relations between the Tauc-gap 

and the Urbach energy or the Tauc-slope didn’t realize. Nevertheless, the obtained  
    

   

values were in agreement with the Urbach focus obtained by the global fit and by the 

analysis of Orapunt and O’Leary. A shift enhancing the Tauc-gap and     iso-absorption 

gap was observed upon increasing the hydrogen content during the deposition process. 

The Urbach energy remained similar in all SiC:H samples. This shift is mainly attributed 

to the widening of the band-edges due to the passivation of dangling bonds [Bul87] and is 
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also reflected in the Urbach focus. As expected, this shift was also observed in the    

parameter [Gue16]. 

 

Finally, the explanation of the quenching of the bandgap of a-SiC:H with the annealing 

temperature turned differently to what is typically found in the literature [Zha92, Kal94, 

Cui01] since the behavior is also observed in the non-hydrogenated sample. The increase 

of the Tauc-gap with the annealing temperature is owing to the matrix relaxation. 

However, the decrease of the Tauc-gap cannot be attributed to the hydrogen effusion 

only. It is probably related to the formation of crystalline clusters in the matrix due to 

thermal annealing treatments that may also increase the Urbach energy [Lee00, Kit00, 

Raj03]. Additionally, as reported already by Vasin an increase of C-C clusters with the 

annealing treatment could be also a precursor of the bandgap quenching [Vas11]. 

 

Rare earth thermal activation 

The study of the annealing behavior can help elucidate the underlying mechanism for 

producing the optically active Tb centers in the distinct host matrices. It has been 

reported previously an optimum annealing temperature at which the luminescence 

intensity reach its highest value. For instance between 400°C and 700°C annealing 

temperature Tb doped amorphous/nano-crystalline GaN, AlN and SiC reported this 

behaivor [Wein06, Men06, Zan09, Mon13]. Additionally, around 850°C, Er doped 

amorphous hydrogenated Silica [Jan03], Er2O3 sol-gel Silica [Abe11, Ryu95], Er 

implanted crystalline GaN [ODo10] and Eu doped Al2O3 [Ena08] also exhibit a peak in 

the integrated intensity. Notwithstanding, the variation of the RE related light emission 

intensity with thermal annealing treatments not only obeys the increase of luminesce 

centers by activating more REs in the host matrix. The annealing treatments induce the 

quench or enhancement of non-radiative recombination paths, thus increasing or reducing 

the light emission intensity by energy migration between luminescence centers and the 

host matrix. 

 

In the present work, the thermal activation of Tb doped amorphous SiN, AlN and SiC:H 

was reported for Tb concentrations around 1 at.% revealing the close relation between the 
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light emission intensity and the Urbach energy. However as described above, it is not 

possible to discriminate the effect of the RE activation from the electronic enhancement 

of the material upon thermal annealing treatments only. In this frame, the effect of 

isochronal thermal annealing treatments on the behavior of the self-quenching curves was 

presented for the case of Tb doped amorphous SiC:H. We used a two levels simple rate 

equation to describe the behavior of the curves. Some parameters were recovered and 

subsequently related to the variation of the integrated light emission intensity with the 

annealing temperature. First, from the slope of the self-quenching curves in the low Tb 

concentration regime, an activation energy of 105.28 meV concerning solely to the 

activation of new luminescence centers is reported [Gue13]. This energy value is close to 

the phonon energy threshold in SiC and might give some insights concerning the 

mechanisms involve or necessary conditions for a RE ion to be optically active. 

Additionally, the non-radiative recombination (        ) which is in fact associated to 

localized states is also recovered and contrasted with the Urbach energy, exhibiting a 

good correspondence. This type of analysis is the first of its kind and reveals the 

capability to discriminate both effects. 

 

Temperature dependent luminescence 

It is important to remark that during the photon and electron excitation and overlap of 

distinct excitation processes take place. These processes may or not be phonon-assisted. 

Furthermore, the direct photon resonant excitation of the   
    

  energy levels have 

a very low cross section and consequently the light efficiency concerning solely this 

mechanism is limited. However, as reported here and in [Loz07, Zan09, Zan12, Guer13] 

the light emission intensity upon this excitation source is rather high. In this sense, other 

excitation paths may play a role in the sub-bandgap photon excitation. PLE analysis 

reveal the efficient excitation of Tb doped polycrystalline SiC:H under sub-bandgap 

excitation. However Tb doped polyscrystalline AlN did not exhibit the same behavior. It 

is possible that the sub-bandgap photon excitation, excites the matrix and depending on 

the RE and the host matrix, the effective energy transfer between the RE and host 

mediated centers can enhance or decrease the light emission intensity [Dor13]. 

Furthermore, temperature dependent analysis of the light emission intensity revealed a 
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phonon-assisted energy migration reaching the Tb ions in Tb doped amorphous SiN and 

AlN [Gue15]. More precisely, the Tb related light emission intensity is quenched by 

decreasing the sample temperature. At the same time host related light emission is 

enhanced. This result evidence that at low temperatures phonon-assisted energy 

migration is inhibited, and therefore only the direct excitation component is present with 

a very low efficiency due to its low cross section [Spe75, Spo79b]. The host matrix 

background PL emission which is rather high at these low temperatures in comparison to 

the Tb emission follows the recombination of electron-hole pairs in defects and/or deep 

localized band-tail states without the possibility to transfer the energy to the Tb ions. We 

believe that an increase of the Tb related light emission intensity with temperature 

strongly suggest a phonon-assisted energy transfer mechanism between electronic defects 

and the Tb ions [Spe75, Spo79b, Jan03]. 
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Appendix 

 

A.1 Optical constants and thickness determination of dielectric thin films from 

single optical transmittance measurements 

The accurate measure of wavelength dependent optical constants of dielectric thin films 

is an important issue for research and development of new materials and devices [Mac86, 

Kiy04]. For instance, the charge carrier concentration of wide band-gap semiconductors, 

like silicon carbide can be determined [Wei01, Wei02] or their bandgap can be extracted 

from the region of fundamental absorption. However, the optical constants cannot be 

measured directly since the geometry of the thin film assembly affects strongly the 

transmittance spectra. Therefore numerous methods to determine the optical constants 

have been developed. A comprehensive review can be found in [Poe03].  

 

In the present appendix we develop an improvement of the widely used envelope method 

to retrieve with high accuracy and from a single transmittance measurement the thickness 

and optical constants of dielectric thin films. This method has been used in all the UV-

VIS transmittance analysis previously presented in this thesis. Our method requires 

modeling the refractive index with few fitting parameters only, while the absorption 

coefficient is determined from the transmittance spectrum. The refractive index and 

absorption coefficient as functions of wavelength can be obtained even from spectra that 

have few interference fringes. We use the interference free transmittance curve 

determined from the envelopes, because its construction is highly insensitive to how the 

envelopes are defined and extracted from the measurement data. We have tested the 

method against simulated and real data from thin films covering the spectral range of the 

fundamental absorption. A comparison is made with the methods of Swanepoel [Swa83] 

and Chambouleyron [Cha97, Cha98], and a confidence analysis is performed to assess 

precision and accuracy. 

 

 



 
 

147 
 

 

The thin film assembly 

Our starting point is the standard 

expression of the spectral transmittance of 

a thin homogeneous film on a thick non-

absorbing substrate for normal incident 

light, considering multiple reflections 

from the back part of the substrate (see 

equation A.1.1 and figure A.1.1). Equation 

A.1.1 is found, for instance using the 

matrix description of optical filter systems, 

after averaging the highly oscillatory 

interference pattern (due to multiple 

reflections inside a thick substrate) thereby 

taking into account the finite spectral 

bandwidth of typical spectrophotometers 

[Bar10]. We adopt mainly the 

nomenclature of Swanepoel: the 

coefficients R1, R2 and R3 in equation 

A.1.1 are the Fresnel reflection coefficients of the interfaces air-film, film-substrate and 

substrate-air, respectively. Here, x is the absorbance and ϕ the phase shift of 

monochromatic light. The refractive index, extinction coefficient and thickness of the 

film are denoted by n, k and d, respectively. Equation A.1.1 is valid for the case     

[Swa83, Mac86]. 

       
  

            
 (A.1.1) 

 

The coefficients  ,  ,  ,  ,   ,   ,   ,   and   are defined as follows: 

                     

         

 

 

Figure A.1.1. Thin film assembly: The incident 

beam passes air, film, substrate and air. The 

transmittance coefficient of the whole assembly is T, 

normalized to the incident beam T0. The pair (*, *) 

indicates the extinction coefficient and refractive 

index of the respective material in the assembly. The 

optical constants are the extinction coefficient k and 

refractive index n of the thin film, the refractive 

index s of the substrate and the film thickness d. 
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The envelope method and our improvements 

In this section we shortly review the envelope method after Swanepoel [Swa83] and then 

show our improvements. 

 

Step 1. Determination of the refractive index of the substrate: If the refractive index is 

unknown it can be determined by measuring its transmittance    without the thin film. 

The following well known expression can be used: 

       
 

  
 √

 

  
    

 

Step 2. Determination of the transmittance coefficient: Measure of the spectral 

dependency of the transmittance coefficient        of the whole assembly (thin film 

and substrate). 

 

Step 3. Determination of the envelopes and interference free transmittance: The upper 

(  ) and lower (  ) envelopes of the (in step 2) measured transmittance curve are 

determined (see figure A.1.2). Swanepoel suggests the use of parabolic interpolation 

between adjutants maxima (minima). This is the weak point of the method: any procedure 

used to determine the envelopes is intrinsically arbitrary. Although we cannot remove 

this arbitrariness, we can conveniently modify the procedure. The determination of the 

envelopes is more accurate even for a low number of extremes using spline interpolation 

in the energy representation of the transmittance coefficient. The envelope determination 
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plays an essential role in Swanepoel’s for determining the refractive index and absorption 

coefficient. In our method the envelopes are only needed as a preparative step to get a 

trial function for the fitting procedure. 

 

From the envelopes one calculates the interference free transmittance    √     which 

can be proved to be exact for our thin film assembly model. It is at this point where our 

method starts to differ from Swanepoel’s. The latter continues with 

 

Step 4. Determination of the refractive index: Using the refractive index of the substrate 

determined in step 1 and the envelopes determined in step 3, the refractive index of the 

thin film can be calculated by 

       √  √      

with, 

    
     
    

 
    

 
 

 

Note that in this step the refractive index depends highly on the interpolation procedure 

of the envelopes. 

 

Step 5. Determination of the thickness: The thickness can be either determined by 

adjacent maxima or minima (labeled 1 and 2) using 

  
    

            
 

 

or by fitting a straight line to the relation of the order number l and the number of 

maxima m: 
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Step 6. Determination of the absorbance and absorption coefficient: The absorbance x can 

be determined in three ways, assigned here by               , respectively: from the 

upper envelope   , the lower envelope    

   
   √  

                

            
 

   
    

  
                

   
   √  

                

            
   

   
    

  
               

 

or from their geometric mean   : 

     

√   √  
                 

            
   

   
       

  
                                   

(A.1.2) 

 

Finally, the absorption coefficient is given by 

     
 

 
ln    (A.1.3) 

 

In our method we follow Swanepoels up to step 3 and replace steps 4 to 6 as follows: 

Step 4’. Choose a model for the refractive index: In order to prepare a fitting procedure 

and to overcome the difficulty of solving an underdetermined problem, we have to 

introduce some constraints. For instance one can choose a model for the refractive index. 

In our case (thin film of AlN or SiC) it is convenient to choose the Cauchy series 



 
 

151 
 

       
  

  
 

  

  
   (A.1.4) 

 

instead of a model for the absorption coefficient. This is appropriate since we know that 

in these materials the Cauchy series are in good agreement with experiment and we are 

interested in obtaining the absorption coefficient from experiment without modeling it. 

However, note that this choice is not imperative, depending on the material one can also 

change the model. 

 

The model of the refractive index in step 4’ and the interference free transmittance 

determined by the envelopes in step 3 are inserted in equation A.1.2 for the absorbance x. 

This absorbance is finally inserted in equation A.1.1 in order to obtain a fitting function 

for the transmittance: 

   fit   fit                

 

Note that this function depends on the wavelength and only four fitting parameters, i. e. 

A0, A2, A4 and the thickness d.  

 

Step 5’. Fitting procedure: Now we can apply standard fitting procedures as, e.g., 

Levenberg-Marquardt’s to minimize an estimator like the    ∑  ( measure    

 fit   )
 
 with respect to the fitting parameters A0, A2, A4 and the thickness d. 

 

Step 6’. With the best fitted parameters obtained in step 5’, the refractive index and 

absorption coefficient can be obtained from equations A.1.4 and A.1.3, respectively. 

Note, that we have objective error bars given by the fitting procedure, which are absent in 

the Swanepoel method. 

 

In order to test the accuracy of the proposed method we compare it with the method of 

Swanepoel (SWA) and the widely used method of Chambouleyron, implemented in the 

software PUMA (Pointwise Unconstrained Minimization Approach) [Cha97, Cha98]. 

First, the three methods are compared by applying them to a simulated transmittance 
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curve in order to recover the simulated parameters. Second, we repeat this procedure but 

adding some noise to the simulation in order to test the confidence interval of the 

recovered parameters. Finally, we also apply the above procedure to real thin to real thin 

films of the widebandgap materials a-SiC, a-AlN and the compound a-(SiC)0.53(AlN)0.47. 

 

Simulation of the transmittance curve 

 

Figure A.1.2. Comparison of a simulation of the optical transmittance of a thin film with 250 nm 

thickness on a transparent substrate of 0.5 mm thickness measured with a spectral bandwith resolution 

        (FWHM = 1.77 nm) and the equation A.1.1. The upper and lower envelopes calculated by 

splines are shown as dashed lines (a). Notice that the difference between the simulation and the equation 

1 is lower than 1% (b).  

 

Since we are interested in the fundamental absorption region of amorphous 

semiconductors we choose the Cauchy-Urbach model as a typical model to simulate the 

transmittance curve, describing the extinction and absorption coefficient as 

       
                         (A.1.5) 

 

We describe the refractive index using the Sellmeier model to first order 
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 (A.1.6) 

 

which in addition is expanded as Cauchy series in order to compare the parameters with 

the recovered values. Notice that, while the simulation is performed using the equation 

(A.1.6), the fit is carry out describing the refractive index by the Cauchy expansion in 

order to avoid any possible biasing in the results. The optical parameters of the simulated 

film-substrate assembly are given in table A.1.1 and the results are shown in figure A.1.2. 

We chose typical parameters for a UV/VIS transparent glass substrate [Gon02]. 

Table A.1.1. Selected parameters for the simulation of the thin film substrate assembly. 

Substrate Film 

Cauchy Cauchy-Urbach Sellmeier Cauchy expansion 

        
           

         
                

                                                

                    -                 

 

Recovery of the simulated transmittance and comparison of the three methods 

The Swanepoel (SWA), the Chambouleyron (PUMA) and the here proposed methods are 

applied to the simulation depicted in figure A.1.2. In order to apply the Swanepoel 

method, we construct the envelopes through a spline algorithm reading off the extremes 

from the transmittance spectrum in the photon energy representation. In this way we 

reduce the separation between the extremes, thereby improving the envelope 

construction. Our method uses the same envelopes as in the case of Swanepoel, however 

only to obtain the Tα curve (step 3). The starting values for the fitting procedures can be 

estimated using the Swanepoel’s method. 

 

The Levenberg-Marquardt fit with fitting parameters A0, A2, A4 and d is performed with a 

maximum of 500 iterations. The PUMA method runs in three stages consisting of 3000, 

5000 and 50000 iterations, respectively. The thickness step search is of 20.0, 5.0 and 0.5 

nm, respectively in the present application. No starting values but searching regions are 
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used in the PUMA procedure, which in this case were chosen containing the simulated 

values. 

 

Figure A.1.3. Transmittance fits using the PUMA method and the method proposed here, with the 

respective calculated thicknesses, the fit of PUMA is shifted 0.05 units upwards for viewing reasons (a). 

Relative difference between the fits and the simulated curve (b). 

 

The resultant transmittance curves are shown in figure A.1.3. There is an excellent 

agreement between the fitted transmittance spectra of our proposal and the PUMA 

method. Also the Swanepoel method fits equally well. The latter has not been included in 

the figure for clarity reasons only. The thickness agrees with the simulated value of 250 

nm within error bars for all three methods, but the Swanepoel method shows the largest 

uncertainty. This can be traced back to its critical dependence on the number of fringes in 

the transmittance spectra [Poe03]. Since the PUMA method and the present one are 

largely independent of this feature, the thickness determination produces more reliable 

values with lower uncertainty. In the low wavelength region both methods depart the 

most from the simulated spectrum. Nevertheless, our method shows less deviation, which 

hints at a more reliable thickness determination and a lower overall error, as compared to 

the PUMA method. 
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Figure A.1.4. Calculated refractive index using the three methods (a) and their relative difference with 

the simulation (b). Corresponding calculated absorption coefficients using the three methods (c) and 

their relative difference between the logarithm of the obtained α and the logarithm of the simulated α (d). 

 

In figure A.1.4, upper panels (a) and (c), we show the refractive index and the absorption 

coefficient, respectively. These optical constants were calculated with the three methods 

and are plotted along with the theoretical ones. The lower panels (b) and (d) show the 

deviations of each method from the simulation. Note that the absorption coefficient is 

plotted in logarithmic scale, revealing a strong deviation of all three methods in the long 

wavelength region which cannot be seen in the respective transmittance curves (figure 

A.1.3). This is due to the fact that the absorption coefficient is calculated from equation 

A.1.3, thereby a small error in the vicinity of x near x → 0 or x → 1 tends to become a 

large error in log(α) following                       . This systematic error is 

clearly considerable in the short wavelength and long wavelength regions. However, the 

   curve is exactly the measured transmittance for the regime x → 0 and therefore the 

error in the short wavelength region is attributed to the error of the measurement plus the 

difference between the transmittance equation and the experiment model and the error 

incurred by using a simplified refractive index model. On the other hand, in the long 

wavelength region (x → 1) the    curve also contains the error carried along through the 

estimation of the envelopes. Nevertheless ours and Swanepoel’s method come 

significantly closer to the simulated curve in comparison to the PUMA method. We 
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attribute this to the fact that only the PUMA method models the absorption coefficient 

which is obviously not optimized for very low absorption coefficients. We overcome here 

also the Swanepoel method, since it fails when the number of fringes is low, as already 

stressed. 

 

Although we see a deviation in the retrieving of the absorption coefficient, even more 

remarkable is the deviation in the refractive index. Here we see why it is preferable to 

model the refractive index rather than the absorption coefficient and the related 

advantages of our method. In the case of the Swanepoel method this is to be expected 

since the strong absorption suppresses the interference fringes completely so that this 

method (depending essentially on the fringes) exhibits a break down at short 

wavelengths, as it is seen in the figure A.1.4. 

 

Confidence analysis 

For testing the reliability of the above mentioned methods, we added Gaussian white 

noise with a standard deviation of         to the simulated transmittance spectrum 

(not shown). In this way, our simulation mimics more closely a real measurement. We 

simulated 48 transmittance spectra with same film parameters. The three methods were 

applied to these simulations. Fits on the resulting refractive index and absorption 

coefficient were performed, from which the Cauchy expansion parameters were obtained. 

In the case of the absorption coefficient we recovered the parameters of the Cauchy-

Urbach model. Since it is not possible to determine α0 and E0 independently [Gue11] we 

rewrite equation A.1.5 in the logarithm scale as 

 

         ln   , 

 

where  

 

  ln    and     ln        . 
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The intercept of this curve ψ0 and the Urbach slope β are calculated through a fit. The 

fitted parameters obtained from the calculated curves are used to compare precision and 

accuracy of the methods. 

 

Figure A.1.5. Refractive index (a) and the absorption coefficient (b) parameters for each method, along 

with the confidence regions at 95%. The high dispersion presented by PUMA is most likely due to the 

number of data points used in the optimization process. While in our method the number of data points 

used were 851, i.e. from 250 to 1100 nm with a step of 1 nm, PUMA uses a maximum of 200 points 

equaled spaced only. The theoretical values are denoted by the intersecting dashed lines. 

 

At this point it is important to remark that the maximum number of data points used in 

the optimization process in the PUMA method is limited to 200. The authors recommend 

the use of 100 points. In the case of the Swanepoel method the number of data points 

used in the calculations is limited only by the number of points generated through the 

interpolation of the envelopes. In the case of our method, the number of used data points 

in the fitting procedure is limited only by the measurement itself. These features have an 

impact when comparing the methods. For instance, the confidence regions become 

broader if there are fewer points to fit. 
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Figure A.1.6. Calculated thickness distribution for the 48 simulations (a).  Cumulative relative error 

histograms of the refractive index (b) and absorption coefficient (c). The histograms are generated after 

applying the three methods to the 48 simulations. Additionally, for comparison reasons we apply the 

here proposed method using the Sellmeier equation to recover the refractive index. Notice that even 

when using the Sellmeier model, both the thickness and refractive index exhibit an off shift to the ideal 

value of 0.5 nm and 0.25%, respectively. 

 

The parameters corresponding to the Cauchy model fit and the Cauchy-Urbach model fit 

with confidence regions of 95% are plotted in figure A.1.5. The dashed lines indicate the 

expected parameters. The recovered values should be as close as possible to them. The 

ellipses (closed lines) show the confidence regions at 95% confidence for each method. 

The confidence in a method can be characterized by two indicators: First, the smaller the 

area of the confidence ellipses, the more reliable is the method. Second, the confidence 
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ellipses should be centered at the true value. It is evident that our method overcomes the 

other ones, since it has the smallest confidence ellipses in all cases, especially for the 

parameters of the absorption coefficient. Note that although our method is off-centered 

for the model of the refractive index, it is still closer to the simulated value than in the 

case of the Swanepoel method. It should be mentioned that the PUMA method can be 

enhanced by augmenting the number of iteration loops. Nevertheless, the related increase 

of calculation time makes this approach impractical. The iterations in the present work 

corresponding to 48 fits where performed in a cluster of 48 cores (one fitting procedure 

per core). It took 33 hours and 20 min. A lower number of iteration loops (e.g. 500, 2500 

and 5000 for the respective stage) shortened the calculation time to 20 min 

approximately, thereby reducing the accuracy of the calculation. The fitting procedure 

here proposed takes no more than one minute. The main time-consuming part of the 

proposed method is the estimation of the envelopes. 

 

The results concerning the thickness calculation are depicted in figure A.1.6. Additionally 

in order to go through the behavior of the displayed optical constants recovery shown 

lines above, we construct histograms of the overall relative difference between the 

calculated curves of the refractive index and absorption coefficient with their theoretical 

counterparts (see figure A.1.6). The simulated thickness is 250 nm. Our and the PUMA 

method are well centered at this value. Notice the achieved low dispersion of our method 

in contrast to PUMA and Swanepoel’s. The latter even demonstrates clearly its 

unreliability in the determination of the thickness, mainly due to the low number of 

interference fringes to be used in the thickness calculation procedure. Furthermore, the 

systematical bias of the method proposed here that was noted in figure A.1.5 is also 

recovered in these histograms. 

 

Final remarks 

Finally it is important to remark the reliability of the three methods that have been 

compared above, concerning their capability to measure the Urbach and Tauc regions of 

the absorption coefficient. In order to do so we simulate the absorption coefficient using 
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the equation 3.1.23 proposed in section 3.1 so as to distinguish the Urbach and Tauc 

regions (see figure A.1.7). 

 

Figure A.1.7. Simulated transmittance in which the absorption coefficient was modeled with equation 

3.1.23 (                 ,             and          )  for three different thicknesses 

(a). Recovered absorption coefficient shown in two scales in order to observe the compromise between 

the thickness and the reliability of the methods to extract the absorption coefficient in the Urbach and 

Tauc regions (b) and (c). The shadowed region denotes a fixed sensitivity limit (      ). 

 

Notice that for thicker samples the three methods are able to obtain the absorption 

coefficient with a good reliability, however the sensitivity limit limits the spectral extent 

of the measured absorption coefficient and therefore the fundamental absorption region is 

screened by the absorbance of the film as it is shown by the shadowed region in figure 

A.1.7. This behavior establishes a compromise between the thickness and capability to 

measure the fundamental absorption of thin films. Thenceforth, if we reduce the thickness 

of the film, the number of interference fringes is also reduced and therefore the capability 

of the methods that take advantage of the fringes to calculate the thickness drops 

dramatically (e.g. SWA). Moreover, the fitting methods, PUMA and the here proposed, 
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can still calculate the absorption coefficient. However while PUMA calculates the 

Urbach region robustly it fails in the fundamental absorption region contrary to the 

obtained absorption coefficient by the SWA and the here proposed methods. In this sense 

and based on what is exposed in this appendix we select the method proposed here to 

measure the thickness and fundamental absorption region of the thin films under study. 

 

A.2 Multiphonon transitions 

The static interaction between 4f electrons and the surrounding ions give rise to crystal 

field splitting. Additionally the dynamic crystal field with 4f-electrons produces 

phenomena that should be considered. This interaction is partly responsible for the 

occurrence of the 4f-4f transitions, and is the origin of most of the line widths observed in 

optical spectra. An excited RE can decay via the emission of phonons instead of a 

photon. Such transitions are called multiphonon transitions and are the result of the 

modulations of the crystal field due to vibrations of the ligands. This electron-phonon 

interaction was named    in equation 3.2.1 and corresponds to the dynamic component 

of the crystal field. While the static component was developed in section 3.2 and was 

named     in the Hamiltonian, here is renamed            and we will focus on the 

dynamic component               , see equations A.2.1 and A.2.2. 

                             (A.2.1) 

 

              ∑
  

   
 

                    (A.2.2) 

 

In equation A.2.2   is the potential experimented by the electrons and    are the normal 

vibrational modes. The first and higher order terms describe the modulations of the 

crystal field due to the vibration of the ligands. This couples the motion of the electron to 

the motion of the lattice allowing phonon transitions between electronic states see figure 

A.2.1. 
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Figure A.2.1. Two level system showing the radiative electronic transition (a) and multiphonon 

electronic transition (b). The phonon emission is denoted by a thick gray arrow. The energy difference 

   between states matches with the number   of emitted phonons.    and     stand for the radiative 

and multiphonon electronic transition rates, respectively. 

 

In order to develop an expression for the multiphonon decay rate     one may take the 

first order to the nth term of the perturbation in equation A.2.2 or viceversa. In any case, 

the result takes the form shown in equation A.2.3 where   is a constant much less than 

unity. Equation A.2.3 leads to the energy gap law (see equation A.2.4). 

                   (A.2.3) 

 

                       (A.2.4) 

 

In equation A.2.4,    is a constant,    is the energy difference to the next lowest state 

and   is a constant that describes the ion-lattice coupling strength and is determined 

empirically. The energy gap law has been found to be valid in RE ions [Vij06, Web73]. 

Additionally, an alternative procedure for developing the description of the multiphonon 

decay rate is to express a non-adiabatic interaction Hamiltonian in the adiabatic 

approximation, leading to a similar energy gap law for the case of RE ions. The 

E = n E
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temperature dependence of this process is obviously related to the number of available 

phonons in the host, in particular the high energy phonons. The high energy phonons play 

the dominant role since fewer phonons are required, thus lowering the order of the 

process. The average occupation number of phonons in the ith mode is       

                  , and the emission of a phonon is proportional to          .  

The nth order multiphonon decay rate goes as           . This temperature 

dependence has been verified [Vij06, Moo70]. 

 

Finally, observations have led to the following thumb rule for RE ions: if the energy 

difference    to the next lowest level requires seven phonons or more, the dominant 

decay mechanism is radiative. Otherwise is more likely that the electronic transition 

occurs non-radiatively. 

 

A.3 Up-conversion 

Up-conversion concerns to the processes whereby a system lets say excited with     

photons emits photons with an energy        . Figure A.3.1 depicts the possible up-

conversion paths. These are summarized as follows: 

 

i) The excited state absorption process (ESA) which involves a single ion. In this 

process two photons are absorbed sequentially, the intermediate state should 

remain sufficiently enough till the second photon is absorbed. Er
3+

 is an example 

of this process when excited with a high power density [Ken02]. 

ii) Two-photon absorption (TPA). A single ion is also involved, and in this case, two 

photons are absorbed simultaneously and the intermediate state is actually a 

virtual one. 

iii) Up-conversion by energy transfer (ETU). In this case the activator is initially in 

an excited state and reach a higher energy state after the energy transfer from the 

sensitizer (see figure A.3.1). Additionally there is the possibility of cooperative 

energy transfer upconversion involving more ions, such process has been 

observed but in general is very weak [Auz04]. 
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Upconversion processes are nonlinear due to the fact that they require the absorption of at 

least two photons. ESA and ETU are the most common. Experimentally these two 

mechanisms can be distinguished by examining the system’s response to pulsed laser 

excitation. For instance, in the case of ESA-type upconversion, the rise time is within the 

lifetime of the pump laser pulse. Whilst for the ETU-type the luminescence peak appears 

after the laser pulse is over [Vij06]. 

 

Figure A.3.1. Possible upconversion processes: excited state photon absorption (a), two photon 

absorption (b), two ions upconversion by energy transfer (c), and three ions cooperative energy transfer 

upconversion (d). 

 

A.4 On the conversion of atomic concentration of RE into average ion interdistance 

An increase in the RE concentration in the host matrix can be translated into a decrease of 

the mean RE ion interdistance. In order to calculate this average distance it is first 

necessary to convert the atomic concentration in number density. Thenceforth, using the 

number density and assuming a random distribution of REs in the solid the mean REs 

interdistance is calculated. 

 

On the conversion of the atomic concentration of REs into number density 

The aim is to convert the RE concentration given in atomic % of a host solid with a 

known stoichiometry into number density, that is the number of RE atoms per unit cubic 
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cm. Let us take for example the SiC:Tb material and assume that the ratio of Si and C 

atoms is 1:1 independently of the doping.   is the mass density of the doped film,   the 

total mass within a finite volume   of the film. Within this finite volume we have a total 

number of   atoms which is the sum of the different particles, silicon, carbon and 

terbium: 

     Si   C   Tb (A.4.1) 

 

Dividing by   we obtain the atomic concentration of the individual species: 

  
 Si

 
 

 C

 
 

 Tb

 
  Si   C   Tb    (A.4.2) 

 

Additionally, the total mass can be expressed as a sum of the individual atomic masses: 

     Si Si   C C   Tb Tb (A.4.3) 

 

Now, from equations A.3.2 and A.3.3 we can write 

  

  
 

 
 

 Si Si   C C   Tb Tb

 
 

 
 Si Si   C C   Tb Tb

 

 

 
 

     Si Si   C C   Tb Tb 
 

 
 

(A.4.4) 

 

and thus the total number density 

   ̃  
 

 
 

 

 Si Si   C C   Tb Tb

 (A.4.5) 

 

The terbium number density  ̃    ̃     . Finally by taking the stoichiometry 

information, in this case the assumption of equal number of Si and C atoms we know that 

                         and we obtain the final form for the total and terbium 

number densities shown in equation A.4.6. 
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 ̃  
 

       Tb  Si         Tb  C   Tb Tb

 

 ̃Tb  
 

       Tb  Si         Tb  C   Tb Tb

 Tb 

(A.4.6) 

 

Distribution of the nearest neighbor in a random distribution of particles 

The following section concerns with the 

distribution of the nearest neighbor in a random 

distribution of particles in a defined volume 

[Cha43]. Per definition if we draw a circle with 

center in the particle P and radius the distance 

between the particles P and Q (see figure 

A.4.1), Q is the nearest neighbor of P always 

and only that there is no other particle within the 

circle. Make this geometric analysis for many 

particles and write down the number of particles 

within a distance r and r+dr. Relate this number to the unit line and this is the 

distribution density        of the nearest neighbor of a particle distribution. Notice that 

     is a line density and not a volume density, this makes sense for isotropic 

distributions, e.g. random distributed particles, since the volume distribution can be 

written as            . 

 

The probability of finding at least one nearest neighbor particle within the ring with 

radius r and thickness dr is given by       . Whilst the probability of finding any 

particle within the sphere of radius r is given by ∫         
 

 
 and the probability of 

finding no particle within the same radius is   ∫         
 

 
. Additionally, from the 

random distribution of particles follows that equal part of volumes are filled with equal 

parts of number of particles, thus any volume ratio is equal to the number of particle 

ratios: 

 

Figure A.4.1. Schematic representation of 

the nearest neighbor Q of a particle P. 

dr

r

P

Q
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 (A.4.7) 

 

Therefore we can write the probability of finding at least one nearest neighbor particle 

within the ring with radius r and thickness dr as shown in equation A.4.8, where  ̃  is the 

particle density (or number denstity of particles) defines as   ̃                 . 

  

       (  ∫         
 

  

) shell 

 (  ∫         
 

  

)
 shell

 sphere

 sphere 

 (  ∫         
 

  

)        
      ̃  

 

(A.4.8) 

 

Canceling the term dr in equation A.4.8 we obtain the integral equation for      as 

shown in equation A.4.9. Notice that in the limiting case for the particle radius    then 

                
   ̃ . 

  

     (  ∫         
 

  

)     ̃  

 
    

        
   ̃ 

   ∫         
 

  

 

(A.4.9) 

 

In order to solve the integral equation shown previously, it is convenient to convert it into 

a differential equation (by applying the operator      on both sides) and perform the 

following substitution:  
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)  
 

  
(  ∫         

 

  

)        
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   ̃   

            
   ̃     

(A.4.10) 

 

The standard differential equation can be solved by the procedures of separation of 

variables. It follows as shown in the equation A.4.11, where the limit case           

has been used. 

  

  

 
          

   ̃      ∫
  

 

    

     

     ̃ ∫     

 

  

 

(A.4.11) 
    ln
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  ̃   

    
  ) 

        ( 
 

 
  ̃   

    
  ) 

 

Finally we obtain the unknown distribution as depicted in equation A.4.12. Notice that 

this distribution is asymmetric, therefore the mean distance of the nearest neighbor does 

not coincide with the most probable distance. 

               
    ̃    ( 

 

 
  ̃   

    
  ) (A.4.12) 

 

The mean distance is calculated as: 

  

 ̅  ∫     

 

 

     ∫            
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(A.4.13) 
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While the most probable distance is calculated as the maximum value of the distribution 
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 ⁄  (A.4.14) 
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