
Features
• High Performance, Low Power AVR® 8-Bit Microcontroller
• Advanced RISC Architecture

– 131 Powerful Instructions – Most Single Clock Cycle Execution
– 32 ×  8 General Purpose Working Registers
– Fully Static Operation
– Up to 16MIPS Throughput at 16MHz
– On-chip 2-cycle Multiplier

• High Endurance Non-volatile Memory Segments
– 4/8/16K bytes of In-System Self-Programmable Flash Program Memory
– 256/512/512 bytes EEPROM
– 512/1K/1K bytes Internal SRAM
– Write/Erase Cycles: 10,000 Flash/100,000 EEPROM
– Optional Boot Code Section with Independent Lock Bits

• In-System Programming by On-chip Boot Program
• True Read-While-Write Operation

– Programming Lock for Software Security
• Peripheral Features

– Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
– One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture

Mode
– Real Time Counter with Separate Oscillator
– Six PWM Channels
– 8-channel 10-bit ADC

• Temperature Measurement
– Programmable Serial USART
– Master/Slave SPI Serial Interface
– Byte-oriented 2-wire Serial Interface (Philips I2C compatible)
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator
– Interrupt and Wake-up on Pin Change

• Special Microcontroller Features
– Power-on Reset and Programmable Brown-out Detection
– Internal Calibrated Oscillator
– External and Internal Interrupt Sources
– Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby,

and Extended Standby
• I/O and Packages

– 23 Programmable I/O Lines
– 32-lead TQFP, and 32-pad QFN

• Operating Voltage:
– 2.7V to 5.5V

• Temperature Range:
– –40°C to +125°C

• Speed Grade:
– 0 to 8MHz at 2.7V to 5.5V, 0 to 16MHz at 4.5V to 5.5V

• Power Consumption
– Active Mode: 1.4mA at 4MHz 3V 25°C
– Power-down Mode: 0.8µA

8-bit
Microcontroller
with 4/8/16K
Bytes In-System
Programmable
Flash

Atmel
ATmega48PA
ATmega88PA
ATmega168PA

Automotive
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1. Pin Configurations

Figure 1-1. Pinout Atmel® ATmega48PA/88PA/168PA 
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1.1 Pin Descriptions

1.1.1 VCC
Digital supply voltage.

1.1.2 GND
Ground.

1.1.3 Port B (PB7:0) XTAL1/XTAL2/TOSC1/TOSC2
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit).
The Port B output buffers have symmetrical drive characteristics with both high sink and
source capability. As inputs, Port B pins that are externally pulled low will source current if the
pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes
active, even if the clock is not running.

Depending on the clock selection fuse settings, PB6 can be used as input to the inverting
Oscillator amplifier and input to the internal clock operating circuit.

Depending on the clock selection fuse settings, PB7 can be used as output from the inverting
Oscillator amplifier.

If the Internal Calibrated RC Oscillator is used as chip clock source, PB7...6 is used as
TOSC2...1 input for the Asynchronous Timer/Counter2 if the AS2 bit in ASSR is set.

The various special features of Port B are elaborated in “Alternate Functions of Port B” on
page 81 and “System Clock and Clock Options” on page 26.

1.1.4 Port C (PC5:0)
Port C is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
PC5...0 output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,
even if the clock is not running.

1.1.5 PC6/RESET
If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical char-
acteristics of PC6 differ from those of the other pins of Port C.

If the RSTDISBL Fuse is unprogrammed, PC6 is used as a Reset input. A low level on this pin
for longer than the minimum pulse length will generate a Reset, even if the clock is not run-
ning. The minimum pulse length is given in Table 29-5 on page 317. Shorter pulses are not
guaranteed to generate a Reset.

The various special features of Port C are elaborated in “Alternate Functions of Port C” on
page 85.
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1.1.6 Port D (PD7:0)
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit).
The Port D output buffers have symmetrical drive characteristics with both high sink and
source capability. As inputs, Port D pins that are externally pulled low will source current if the
pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes
active, even if the clock is not running. 

The various special features of Port D are elaborated in “Alternate Functions of Port D” on
page 88.

1.1.7 AVCC

AVCC is the supply voltage pin for the A/D Converter, PC3:0, and ADC7:6. It should be exter-
nally connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected
to VCC through a low-pass filter. Note that PC6...4 use digital supply voltage, VCC.

1.1.8 AREF
AREF is the analog reference pin for the A/D Converter.

1.1.9 ADC7:6 (TQFP and QFN Package Only)
In the TQFP and QFN package, ADC7:6 serve as analog inputs to the A/D converter. These
pins are powered from the analog supply and serve as 10-bit ADC channels.



5
9223D–AVR–05/12

Atmel ATmega48PA/88PA/168PA

2. Overview
The Atmel® ATmega48PA/88PA/168PA is a low-power CMOS 8-bit microcontroller based on
the AVR enhanced RISC architecture. By executing powerful instructions in a single clock
cycle, the Atmel ATmega48PA/88PA/168PA achieves throughputs approaching 1 MIPS
perMHz allowing the system designer to optimize power consumption versus processing
speed.

2.1 Block Diagram

Figure 2-1. Block Diagram 

The AVR core combines a rich instruction set with 32 general purpose working registers. All
the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two inde-
pendent registers to be accessed in one single instruction executed in one clock cycle. The
resulting architecture is more code efficient while achieving throughputs up to ten times faster
than conventional CISC microcontrollers.
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The Atmel® ATmega48PA/88PA/168PA provides the following features: 4K/8K bytes of
In-System Programmable Flash with Read-While-Write capabilities, 256/512/512 bytes
EEPROM, 512/1K/1K bytes SRAM, 23 general purpose I/O lines, 32 general purpose working
registers, three flexible Timer/Counters with compare modes, internal and external interrupts,
a serial programmable USART, a byte-oriented 2-wire Serial Interface, an SPI serial port, a
8-channel 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, and five soft-
ware selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM,
Timer/Counters, USART, 2-wire Serial Interface, SPI port, and interrupt system to continue
functioning. The Power-down mode saves the register contents but freezes the Oscillator, dis-
abling all other chip functions until the next interrupt or hardware reset. In Power-save mode,
the asynchronous timer continues to run, allowing the user to maintain a timer base while the
rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O mod-
ules except asynchronous timer and ADC, to minimize switching noise during ADC
conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the
device is sleeping. This allows very fast start-up combined with low power consumption. 

The device is manufactured using Atmel’s high density non-volatile memory technology. The
On-chip ISP Flash allows the program memory to be reprogrammed In-System through an
SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip
Boot program running on the AVR core. The Boot program can use any interface to download
the application program in the Application Flash memory. Software in the Boot Flash section
will continue to run while the Application Flash section is updated, providing true
Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Program-
mable Flash on a monolithic chip, the Atmel ATmega48PA/88PA/168PA is a powerful
microcontroller that provides a highly flexible and cost effective solution to many embedded
control applications.

The Atmel ATmega48PA/88PA/168PA AVR is supported with a full suite of program and sys-
tem development  too ls  inc lud ing:  C Compi lers ,  Macro Assemblers ,  Program
Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.

2.2 Comparison Between Processors
The Atmel ATmega48PA/88PA/168PA differ only in memory sizes, boot loader support, and
interrupt vector sizes. Table 2-1 summarizes the different memory and interrupt vector sizes
for the devices.

The Atmel ATmega48PA/88PA/168PA support a real Read-While-Write Self-Programming
mechanism. There is a separate Boot Loader Section, and the SPM instruction can only exe-
cute from there. In the Atmel ATmega48PA there is no Read-While-Write support and no
separate Boot Loader Section. The SPM instruction can execute from the entire Flash.

Table 2-1. Memory Size Summary

Device Flash EEPROM RAM Interrupt Vector Size

Atmel ATmega48PA/ 4K Bytes 256 Bytes 512 Bytes 1 instruction word/vector

Atmel ATmega88PA 8K Bytes 512 Bytes 1K Bytes 1 instruction word/vector

Atmel ATmega168PA 16K Bytes 512 Bytes 1K Bytes 2 instruction words/vector
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3. Automotive Quality Grade
The Atmel® ATmega48PA/88PA/168PA have been developed and manufactured according to
the most stringent requirements of the international standard ISO-TS-16949. This data sheet
contains limit values extracted from the results of extensive characterization (Temperature
and Voltage).

The quality and reliability of the Atmel ATmega48PA/88PA/168PA have been verified during
regular product qualification as per AEC-Q100 grade 1 (–40°C to +125°C).

4. Resources
A comprehensive set of development tools, application notes and datasheets are available for
download on http://www.atmel.com/avr.

Note: 1.

5. Data Retention
Reliability Qualification results show that the projected data retention failure rate is much less
than 1 PPM over 20 years at 85°C.

6. About Code Examples
This documentation contains simple code examples that briefly show how to use various parts
of the device. These code examples assume that the part specific header file is included
before compilation. Be aware that not all C compiler vendors include bit definitions in the
header files and interrupt handling in C is compiler dependent. Please confirm with the C com-
piler documentation for more details.

For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically
“LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.

Table 3-1. Temperature Grade Identification for Automotive Products

Temperature (°C) Temperature Identifier Comments

-40; +125 Z Full Automotive Temperature Range
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7. AVR CPU Core

7.1 Overview
This section discusses the AVR core architecture in general. The main function of the CPU
core is to ensure correct program execution. The CPU must therefore be able to access mem-
ories, perform calculations, control peripherals, and handle interrupts.

Figure 7-1. Block Diagram of the AVR Architecture 

In order to maximize performance and parallelism, the AVR uses a Harvard architecture – with
separate memories and buses for program and data. Instructions in the program memory are
executed with a single level pipelining. While one instruction is being executed, the next
instruction is pre-fetched from the program memory. This concept enables instructions to be
executed in every clock cycle. The program memory is In-System Reprogrammable Flash
memory.
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The fast-access Register File contains 32 x 8-bit general purpose working registers with a sin-
gle clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In
a typical ALU operation, two operands are output from the Register File, the operation is exe-
cuted, and the result is stored back in the Register File – in one clock cycle.

Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data
Space addressing – enabling efficient address calculations. One of the these address pointers
can also be used as an address pointer for look up tables in Flash program memory. These
added function registers are the 16-bit X-, Y-, and Z-register, described later in this section.

The ALU supports arithmetic and logic operations between registers or between a constant
and a register. Single register operations can also be executed in the ALU. After an arithmetic
operation, the Status Register is updated to reflect information about the result of the
operation.

Program flow is provided by conditional and unconditional jump and call instructions, able to
directly address the whole address space. Most AVR instructions have a single 16-bit word
format. Every program memory address contains a 16- or 32-bit instruction.

Program Flash memory space is divided in two sections, the Boot Program section and the
Application Program section. Both sections have dedicated Lock bits for write and read/write
protection. The SPM instruction that writes into the Application Flash memory section must
reside in the Boot Program section.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on
the Stack. The Stack is effectively allocated in the general data SRAM, and consequently the
Stack size is only limited by the total SRAM size and the usage of the SRAM. All user pro-
grams must initialize the SP in the Reset routine (before subroutines or interrupts are
executed). The Stack Pointer (SP) is read/write accessible in the I/O space. The data SRAM
can easily be accessed through the five different addressing modes supported in the AVR
architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

A flexible interrupt module has its control registers in the I/O space with an additional Global
Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the
Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector
position. The lower the Interrupt Vector address, the higher the priority.

The I/O memory space contains 64 addresses for CPU peripheral functions as Control Regis-
ters, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as the Data
Space locations following those of the Register File, 0x20 - 0x5F. In addition, the Atmel® 
ATmega48PA/88PA/168PA has Extended I/O space from 0x60 - 0xFF in SRAM where only
the ST/STS/STD and LD/LDS/LDD instructions can be used.

7.2 ALU – Arithmetic Logic Unit
The high-performance AVR ALU operates in direct connection with all the 32 general purpose
working registers. Within a single clock cycle, arithmetic operations between general purpose
registers or between a register and an immediate are executed. The ALU operations are
divided into three main categories – arithmetic, logical, and bit-functions. Some implementa-
tions of the architecture also provide a powerful multiplier supporting both signed/unsigned
multiplication and fractional format. See the “Instruction Set” section for a detailed description.
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7.3 Status Register
The Status Register contains information about the result of the most recently executed arith-
metic instruction. This information can be used for altering program flow in order to perform
conditional operations. Note that the Status Register is updated after all ALU operations, as
specified in the Instruction Set Reference. This will in many cases remove the need for using
the dedicated compare instructions, resulting in faster and more compact code.

The Status Register is not automatically stored when entering an interrupt routine and
restored when returning from an interrupt. This must be handled by software.

7.3.1 SREG – AVR Status Register
The AVR Status Register – SREG – is defined as: 

• Bit 7 – I: Global Interrupt Enable
The Global Interrupt Enable bit must be set for the interrupts to be enabled. The individual
interrupt enable control is then performed in separate control registers. If the Global Interrupt
Enable Register is cleared, none of the interrupts are enabled independent of the individual
interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred, and
is set by the RETI instruction to enable subsequent interrupts. The I-bit can also be set and
cleared by the application with the SEI and CLI instructions, as described in the instruction set
reference.

• Bit 6 – T: Bit Copy Storage
The Bit Copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source or des-
tination for the operated bit. A bit from a register in the Register File can be copied into T by
the BST instruction, and a bit in T can be copied into a bit in a register in the Register File by
the BLD instruction.

• Bit 5 – H: Half Carry Flag 
The Half Carry Flag H indicates a Half Carry in some arithmetic operations. Half Carry Is use-
ful in BCD arithmetic. See the “Instruction Set Description” for detailed information.

• Bit 4 – S: Sign Bit, S = N ⊕ V
The S-bit is always an exclusive or between the Negative Flag N and the Two’s Complement
Overflow Flag V. See the “Instruction Set Description” for detailed information.

• Bit 3 – V: Two’s Complement Overflow Flag
The Two’s Complement Overflow Flag V supports two’s complement arithmetic. See the
“Instruction Set Description” for detailed information.

• Bit 2 – N: Negative Flag
The Negative Flag N indicates a negative result in an arithmetic or logic operation. See the
“Instruction Set Description” for detailed information.

Bit 7 6 5 4 3 2 1 0

0x3F (0x5F) I T H S V N Z C SREG

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0



11
9223D–AVR–05/12

Atmel ATmega48PA/88PA/168PA

• Bit 1 – Z: Zero Flag
The Zero Flag Z indicates a zero result in an arithmetic or logic operation. See the “Instruction
Set Description” for detailed information.

• Bit 0 – C: Carry Flag
The Carry Flag C indicates a carry in an arithmetic or logic operation. See the “Instruction Set
Description” for detailed information.

7.4 General Purpose Register File
The Register File is optimized for the AVR Enhanced RISC instruction set. In order to achieve
the required performance and flexibility, the following input/output schemes are supported by
the Register File:

• One 8-bit output operand and one 8-bit result input

• Two 8-bit output operands and one 8-bit result input

• Two 8-bit output operands and one 16-bit result input

• One 16-bit output operand and one 16-bit result input

Figure 7-2 shows the structure of the 32 general purpose working registers in the CPU.

Figure 7-2. AVR CPU General Purpose Working Registers 

Most of the instructions operating on the Register File have direct access to all registers, and
most of them are single cycle instructions.

As shown in Figure 7-2, each register is also assigned a data memory address, mapping them
directly into the first 32 locations of the user Data Space. Although not being physically imple-
mented as SRAM locations, this memory organization provides great flexibility in access of the
registers, as the X-, Y- and Z-pointer registers can be set to index any register in the file.

7 0 Addr.

R0 0x00

R1 0x01

R2 0x02

…

R13 0x0D

General R14 0x0E

Purpose R15 0x0F

Working R16 0x10

Registers R17 0x11

…

R26 0x1A X-register Low Byte

R27 0x1B X-register High Byte

R28 0x1C Y-register Low Byte

R29 0x1D Y-register High Byte

R30 0x1E Z-register Low Byte

R31 0x1F Z-register High Byte
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7.4.1 The X-register, Y-register, and Z-register
The registers R26...R31 have some added functions to their general purpose usage. These
registers are 16-bit address pointers for indirect addressing of the data space. The three indi-
rect address registers X, Y, and Z are defined as described in Figure 7-3.

Figure 7-3. The X-, Y-, and Z-registers 

In the different addressing modes these address registers have functions as fixed displace-
ment, automatic increment, and automatic decrement (see the instruction set reference for
details).

7.5 Stack Pointer
The Stack is mainly used for storing temporary data, for storing local variables and for storing
return addresses after interrupts and subroutine calls. Note that the Stack is implemented as
growing from higher to lower memory locations. The Stack Pointer Register always points to
the top of the Stack. The Stack Pointer points to the data SRAM Stack area where the Subrou-
tine and Interrupt Stacks are located. A Stack PUSH command will decrease the Stack
Pointer.

The Stack in the data SRAM must be defined by the program before any subroutine calls are
executed or interrupts are enabled. Initial Stack Pointer value equals the last address of the
internal SRAM and the Stack Pointer must be set to point above start of the SRAM, see Table
8-3 on page 18.

See Table 7-1 for Stack Pointer details.

The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of
bits actually used is implementation dependent. Note that the data space in some implementa-
tions of the AVR architecture is so small that only SPL is needed. In this case, the SPH
Register will not be present.

15 XH XL 0

X-register 7 0 7 0

R27 (0x1B) R26 (0x1A)

15 YH YL 0

Y-register 7 0 7 0

R29 (0x1D) R28 (0x1C)

15 ZH ZL 0

Z-register 7 0 7 0

R31 (0x1F) R30 (0x1E)

Table 7-1. Stack Pointer Instructions

Instruction Stack pointer Description

PUSH Decremented by 1 Data is pushed onto the stack

CALL
ICALL
RCALL

Decremented by 2
Return address is pushed onto the stack with a subroutine call or 
interrupt

POP Incremented by 1 Data is popped from the stack

RET
RETI

Incremented by 2 Return address is popped from the stack with return from 
subroutine or return from interrupt
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7.5.1 SPH and SPL – Stack Pointer High and Stack Pointer Low Register

7.6 Instruction Execution Timing
This section describes the general access timing concepts for instruction execution. The AVR
CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for
the chip. No internal clock division is used.

Figure 7-4 shows the parallel instruction fetches and instruction executions enabled by the
Harvard architecture and the fast-access Register File concept. This is the basic pipelining
concept to obtain up to 1 MIPS perMHz with the corresponding unique results for functions per
cost, functions per clocks, and functions per power-unit.

Figure 7-4. The Parallel Instruction Fetches and Instruction Executions 

Figure 7-5 shows the internal timing concept for the Register File. In a single clock cycle an
ALU operation using two register operands is executed, and the result is stored back to the
destination register.

Figure 7-5. Single Cycle ALU Operation 

Bit 15 14 13 12 11 10 9 8

0x3E (0x5E) SP15 SP14 SP13 SP12 SP11 SP10 SP9 SP8 SPH

0x3D (0x5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL

7 6 5 4 3 2 1 0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND

RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND RAMEND

clk

1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch

2nd Instruction Execute
3rd Instruction Fetch

3rd Instruction Execute
4th Instruction Fetch

T1 T2 T3 T4

CPU

Total Execution Time

Register Operands Fetch

ALU Operation Execute

Result Write Back

T1 T2 T3 T4

clkCPU
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7.7 Reset and Interrupt Handling
The AVR provides several different interrupt sources. These interrupts and the separate Reset
Vector each have a separate program vector in the program memory space. All interrupts are
assigned individual enable bits which must be written logic one together with the Global Inter-
rupt Enable bit in the Status Register in order to enable the interrupt. Depending on the
Program Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02
or BLB12 are programmed. This feature improves software security. See the section “Memory
Programming” on page 294 for details.

The lowest addresses in the program memory space are by default defined as the Reset and
Interrupt Vectors. The complete list of vectors is shown in “Interrupts” on page 58. The list also
determines the priority levels of the different interrupts. The lower the address the higher is the
priority level. RESET has the highest priority, and next is INT0 – the External Interrupt
Request 0. The Interrupt Vectors can be moved to the start of the Boot Flash section by set-
ting the IVSEL bit in the MCU Control Register (MCUCR). Refer to “Interrupts” on page 58 for
more information. The Reset Vector can also be moved to the start of the Boot Flash section
by programming the BOOTRST Fuse, see “Boot Loader Support – Read-While-Write
Self-Programming” on page 277.

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are dis-
abled. The user software can write logic one to the I-bit to enable nested interrupts. All
enabled interrupts can then interrupt the current interrupt routine. The I-bit is automatically set
when a Return from Interrupt instruction – RETI – is executed. 

There are basically two types of interrupts. The first type is triggered by an event that sets the
Interrupt Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt
Vector in order to execute the interrupt handling routine, and hardware clears the correspond-
ing Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit
position(s) to be cleared. If an interrupt condition occurs while the corresponding interrupt
enable bit is cleared, the Interrupt Flag will be set and remembered until the interrupt is
enabled, or the flag is cleared by software. Similarly, if one or more interrupt conditions occur
while the Global Interrupt Enable bit is cleared, the corresponding Interrupt Flag(s) will be set
and remembered until the Global Interrupt Enable bit is set, and will then be executed by order
of priority. 

The second type of interrupts will trigger as long as the interrupt condition is present. These
interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before
the interrupt is enabled, the interrupt will not be triggered.

When the AVR exits from an interrupt, it will always return to the main program and execute
one more instruction before any pending interrupt is served.

Note that the Status Register is not automatically stored when entering an interrupt routine,
nor restored when returning from an interrupt routine. This must be handled by software.

When using the CLI instruction to disable interrupts, the interrupts will be immediately dis-
abled. No interrupt will be executed after the CLI instruction, even if it occurs simultaneously
with the CLI instruction. The following example shows how this can be used to avoid interrupts
during the timed EEPROM write sequence.
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When using the SEI instruction to enable interrupts, the instruction following SEI will be exe-
cuted before any pending interrupts, as shown in this example.

7.7.1 Interrupt Response Time
The interrupt execution response for all the enabled AVR interrupts is four clock cycles mini-
mum. After four clock cycles the program vector address for the actual interrupt handling
routine is executed. During this four clock cycle period, the Program Counter is pushed onto
the Stack. The vector is normally a jump to the interrupt routine, and this jump takes three
clock cycles. If an interrupt occurs during execution of a multi-cycle instruction, this instruction
is completed before the interrupt is served. If an interrupt occurs when the MCU is in sleep
mode, the interrupt execution response time is increased by four clock cycles. This increase
comes in addition to the start-up time from the selected sleep mode.

A return from an interrupt handling routine takes four clock cycles. During these four clock
cycles, the Program Counter (two bytes) is popped back from the Stack, the Stack Pointer is
incremented by two, and the I-bit in SREG is set.

Assembly Code Example

in r16, SREG ; store SREG value

cli ; disable interrupts during timed sequence

sbi EECR, EEMPE ; start EEPROM write

sbi EECR, EEPE

out SREG, r16 ; restore SREG value (I-bit)

C Code Example

char cSREG;

cSREG = SREG; /* store SREG value */

/* disable interrupts during timed sequence */

_CLI(); 

EECR |= (1<<EEMPE); /* start EEPROM write */

EECR |= (1<<EEPE);

SREG = cSREG; /* restore SREG value (I-bit) */

Assembly Code Example

sei ; set Global Interrupt Enable

sleep; enter sleep, waiting for interrupt

; note: will enter sleep before any pending interrupt(s)

C Code Example

__enable_interrupt(); /* set Global Interrupt Enable */

__sleep(); /* enter sleep, waiting for interrupt */

/* note: will enter sleep before any pending interrupt(s) */
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8. AVR Memories

8.1 Overview
This section describes the different memories in the Atmel® ATmega48PA/88PA/168PA. The
AVR architecture has two main memory spaces, the Data Memory and the Program Memory
space. In addition, the Atmel ATmega48PA/88PA/168PA features an EEPROM Memory for
data storage. All three memory spaces are linear and regular.

8.2 In-System Reprogrammable Flash Program Memory 
The Atmel ATmega48PA/88PA/168PA contains 4/8/16K bytes On-chip In-System Reprogram-
mable Flash memory for program storage. Since all AVR instructions are 16 or 32 bits wide,
the Flash is organized as 2/4/8/16K x 16. For software security, the Flash Program memory
space is divided into two sections, Boot Loader Section and Application Program Section in
the Atmel ATmega88PA and the Atmel ATmega168PA. See SELFPRGEN description in sec-
tion “SPMCSR – Store Program Memory Control and Status Register” on page 292 for more
details.

The Flash memory has an endurance of at least 10,000 write/erase cycles. The Atmel
ATmega48PA/88PA/168PA Program Counter (PC) is 11/12/13/14 bits wide, thus addressing
the 2/4/8/16K program memory locations. The operation of Boot Program section and associ-
ated Boot Lock bits for software protection are described in detail in “Self-Programming the
Flash, Atmel ATmega48PA” on page 269 and “Boot Loader Support – Read-While-Write
Self-Programming” on page 277. “Memory Programming” on page 294 contains a detailed
description on Flash Programming in SPI- or Parallel Programming mode.

Constant tables can be allocated within the entire program memory address space (see the
LPM – Load Program Memory instruction description).

Timing diagrams for instruction fetch and execution are presented in “Instruction Execution
Timing” on page 13.
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Figure 8-1. Program Memory Map Atmel ATmega48PA 

Figure 8-2. Program Memory Map Atmel ATmega88PA, Atmel ATmega168PA 

0x0000

0x7FF

Program Memory

Application Flash Section
 

0x0000

0x0FFF/0x1FFF/0x3FFF

Program Memory

Application Flash Section
 

Boot Flash Section
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8.3 SRAM Data Memory
Figure 8-3 shows how the Atmel® ATmega48PA/88PA/168PA SRAM Memory is organized.

The Atmel ATmega48PA/88PA/168PA is a complex microcontroller with more peripheral units
than can be supported within the 64 locations reserved in the Opcode for the IN and OUT
instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD
and LD/LDS/LDD instructions can be used. 

The lower 768/1280/1280/2303 data memory locations address both the Register File, the I/O
memory, Extended I/O memory, and the internal data SRAM. The first 32 locations address
the Register File, the next 64 location the standard I/O memory, then 160 locations of
Extended I/O memory, and the next 512/1024/1024/2048 locations address the internal data
SRAM.

The five different addressing modes for the data memory cover: Direct, Indirect with Displace-
ment, Indirect, Indirect with Pre-decrement, and Indirect with Post-increment. In the Register
File, registers R26 to R31 feature the indirect addressing pointer registers.

The direct addressing reaches the entire data space.

The Indirect with Displacement mode reaches 63 address locations from the base address
given by the Y- or Z-register.

When using register indirect addressing modes with automatic pre-decrement and post-incre-
ment, the address registers X, Y, and Z are decremented or incremented.

The 32 general purpose working registers, 64 I/O Registers, 160 Extended I/O Registers, and
the 512/1024/1024/2048 bytes of internal data SRAM in the Atmel ATmega48PA/88PA/168PA
are all accessible through all these addressing modes. The Register File is described in “Gen-
eral Purpose Register File” on page 11.

Figure 8-3. Data Memory Map 

32 Registers
64 I/O Registers

Internal SRAM
(512/1024/1024/2048 x 8)

0x0000 - 0x001F
0x0020 - 0x005F

0x02FF/0x04FF/0x4FF/0x08FF

0x0060 - 0x00FF

Data Memory

160 Ext I/O Reg.
0x0100
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8.3.1 Data Memory Access Times
This section describes the general access timing concepts for internal memory access. The
internal data SRAM access is performed in two clkCPU cycles as described in Figure 8-4.

Figure 8-4. On-chip Data SRAM Access Cycles 

8.4 EEPROM Data Memory
The Atmel® ATmega48PA/88PA/168PA contains 256/512/512 bytes of data EEPROM mem-
ory. It is organized as a separate data space, in which single bytes can be read and written.
The EEPROM has an endurance of at least 100,000 write/erase cycles. The access between
the EEPROM and the CPU is described in the following, specifying the EEPROM Address
Registers, the EEPROM Data Register, and the EEPROM Control Register.

“Memory Programming” on page 294 contains a detailed description on EEPROM Program-
ming in SPI or Parallel Programming mode.

8.4.1 EEPROM Read/Write Access
The EEPROM Access Registers are accessible in the I/O space.

The write access time for the EEPROM is given in Table 8-2. A self-timing function, however,
lets the user software detect when the next byte can be written. If the user code contains
instructions that write the EEPROM, some precautions must be taken. In heavily filtered power
supplies, VCC is likely to rise or fall slowly on power-up/down. This causes the device for some
period of time to run at a voltage lower than specified as minimum for the clock frequency
used. See “Preventing EEPROM Corruption” on page 20 for details on how to avoid problems
in these situations.

In order to prevent unintentional EEPROM writes, a specific write procedure must be followed.
Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is read, the CPU is halted for four clock cycles before the next instruction
is executed. When the EEPROM is written, the CPU is halted for two clock cycles before the
next instruction is executed.

clk
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Data
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8.4.2 Preventing EEPROM Corruption
During periods of low VCC, the EEPROM data can be corrupted because the supply voltage is
too low for the CPU and the EEPROM to operate properly. These issues are the same as for
board level systems using EEPROM, and the same design solutions should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too low.
First, a regular write sequence to the EEPROM requires a minimum voltage to operate cor-
rectly. Secondly, the CPU itself can execute instructions incorrectly, if the supply voltage is too
low.

EEPROM data corruption can easily be avoided by following this design recommendation:

Keep the AVR RESET active (low) during periods of insufficient power supply voltage. This
can be done by enabling the internal Brown-out Detector (BOD). If the detection level of the
internal BOD does not match the needed detection level, an external low VCC reset Protection
circuit can be used. If a reset occurs while a write operation is in progress, the write operation
will be completed provided that the power supply voltage is sufficient.

8.5 I/O Memory
The I/O space definition of the Atmel® ATmega48PA/88PA/168PA is shown in “Register Sum-
mary” on page 356.

All Atmel ATmega48PA/88PA/168PA I/Os and peripherals are placed in the I/O space. All I/O
locations may be accessed by the LD/LDS/LDD and ST/STS/STD instructions, transferring
data between the 32 general purpose working registers and the I/O space. I/O Registers within
the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions.
In these registers, the value of single bits can be checked by using the SBIS and SBIC instruc-
tions. Refer to the instruction set section for more details. When using the I/O specific
commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
Registers as data space using LD and ST instructions, 0x20 must be added to these
addresses. The Atmel ATmega48PA/88PA/168PA is a complex microcontroller with more
peripheral units than can be supported within the 64 location reserved in Opcode for the IN
and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the
ST/STS/STD and LD/LDS/LDD instructions can be used.

For compatibility with future devices, reserved bits should be written to zero if accessed.
Reserved I/O memory addresses should never be written.

Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most
other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can there-
fore be used on registers containing such Status Flags. The CBI and SBI instructions work
with registers 0x00 to 0x1F only.

The I/O and peripherals control registers are explained in later sections.

8.5.1 General Purpose I/O Registers
The Atmel ATmega48PA/88PA/168PA contains three General Purpose I/O Registers. These
registers can be used for storing any information, and they are particularly useful for storing
global variables and Status Flags. General Purpose I/O Registers within the address range
0x00 - 0x1F are directly bit-accessible using the SBI, CBI, SBIS, and SBIC instructions.
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8.6 Register Description

8.6.1 EEARH and EEARL – The EEPROM Address Register

• Bits 15:9] – Reserved
These bits are reserved bits in the Atmel® ATmega48PA/88PA/168PA and will always read as
zero.

• Bits 8:0 – EEAR[8:0]: EEPROM Address
The EEPROM Address Registers – EEARH and EEARL specify the EEPROM address in the
256/512/512/1K bytes EEPROM space. The EEPROM data bytes are addressed linearly
between 0 and 255/511/511/1023. The initial value of EEAR is undefined. A proper value must
be written before the EEPROM may be accessed.

EEAR8 is an unused bit in the Atmel ATmega48PA and must always be written to zero.

8.6.2 EEDR – The EEPROM Data Register

• Bits 7:0 – EEDR[7:0]: EEPROM Data
For the EEPROM write operation, the EEDR Register contains the data to be written to the
EEPROM in the address given by the EEAR Register. For the EEPROM read operation, the
EEDR contains the data read out from the EEPROM at the address given by EEAR.

8.6.3 EECR – The EEPROM Control Register

• Bits 7:6 – Reserved
These bits are reserved bits in the Atmel ATmega48PA/88PA/168PA and will always read as
zero.

• Bits 5, 4 – EEPM1 and EEPM0: EEPROM Programming Mode Bits
The EEPROM Programming mode bit setting defines which programming action that will be
triggered when writing EEPE. It is possible to program data in one atomic operation (erase the
old value and program the new value) or to split the Erase and Write operations in two differ-
ent operations. The Programming times for the different modes are shown in Table 8-1. 

Bit 15 14 13 12 11 10 9 8

0x22 (0x42) – – – – – – – EEAR8 EEARH

0x21 (0x41) EEAR7 EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEARL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 X

X X X X X X X X

Bit 7 6 5 4 3 2 1 0

0x20 (0x40) MSB LSB EEDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1F (0x3F) – – EEPM1 EEPM0 EERIE EEMPE EEPE EERE EECR

Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 X X 0 0 X 0
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While EEPE is set, any write to EEPMn will be ignored. During reset, the EEPMn bits will be
reset to 0b00 unless the EEPROM is busy programming. 

• Bit 3 – EERIE: EEPROM Ready Interrupt Enable
Writing EERIE to one enables the EEPROM Ready Interrupt if the I bit in SREG is set. Writing
EERIE to zero disables the interrupt. The EEPROM Ready interrupt generates a constant
interrupt when EEPE is cleared. The interrupt will not be generated during EEPROM write or
SPM.

• Bit 2 – EEMPE: EEPROM Master Write Enable
The EEMPE bit determines whether setting EEPE to one causes the EEPROM to be written.
When EEMPE is set, setting EEPE within four clock cycles will write data to the EEPROM at
the selected address If EEMPE is zero, setting EEPE will have no effect. When EEMPE has
been written to one by software, hardware clears the bit to zero after four clock cycles. See the
description of the EEPE bit for an EEPROM write procedure.

• Bit 1 – EEPE: EEPROM Write Enable
The EEPROM Write Enable Signal EEPE is the write strobe to the EEPROM. When address
and data are correctly set up, the EEPE bit must be written to one to write the value into the
EEPROM. The EEMPE bit must be written to one before a logical one is written to EEPE, oth-
erwise no EEPROM write takes place. The following procedure should be followed when
writing the EEPROM (the order of steps 3 and 4 is not essential):

1. Wait until EEPE becomes zero.

2. Wait until SELFPRGEN in SPMCSR becomes zero.

3. Write new EEPROM address to EEAR (optional).

4. Write new EEPROM data to EEDR (optional).

5. Write a logical one to the EEMPE bit while writing a zero to EEPE in EECR.

6. Within four clock cycles after setting EEMPE, write a logical one to EEPE.

The EEPROM can not be programmed during a CPU write to the Flash memory. The software
must check that the Flash programming is completed before initiating a new EEPROM write.
Step 2 is only relevant if the software contains a Boot Loader allowing the CPU to program the
Flash. If the Flash is never being updated by the CPU, step 2 can be omitted. See “Boot
Loader Support – Read-While-Write Self-Programming” on page 277 for details about Boot
programming. 

Caution: An interrupt between step 5 and step 6 will make the write cycle fail, since the
EEPROM Master Write Enable will time-out. If an interrupt routine accessing the EEPROM is
interrupting another EEPROM access, the EEAR or EEDR Register will be modified, causing
the interrupted EEPROM access to fail. It is recommended to have the Global Interrupt Flag
cleared during all the steps to avoid these problems.

Table 8-1. EEPROM Mode Bits

EEPM1 EEPM0 Programming Time Operation

0 0 3.4ms Erase and Write in one operation (Atomic Operation)

0 1 1.8ms Erase Only

1 0 1.8ms Write Only

1 1 – Reserved for future use
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When the write access time has elapsed, the EEPE bit is cleared by hardware. The user soft-
ware can poll this bit and wait for a zero before writing the next byte. When EEPE has been
set, the CPU is halted for two cycles before the next instruction is executed.

• Bit 0 – EERE: EEPROM Read Enable
The EEPROM Read Enable Signal EERE is the read strobe to the EEPROM. When the cor-
rect address is set up in the EEAR Register, the EERE bit must be written to a logic one to
trigger the EEPROM read. The EEPROM read access takes one instruction, and the
requested data is available immediately. When the EEPROM is read, the CPU is halted for
four cycles before the next instruction is executed.

The user should poll the EEPE bit before starting the read operation. If a write operation is in
progress, it is neither possible to read the EEPROM, nor to change the EEAR Register.

The calibrated Oscillator is used to time the EEPROM accesses. Table 8-2 lists the typical
programming time for EEPROM access from the CPU.

The following code examples show one assembly and one C function for writing to the
EEPROM. The examples assume that interrupts are controlled (e.g. by disabling interrupts
globally) so that no interrupts will occur during execution of these functions. The examples
also assume that no Flash Boot Loader is present in the software. If such code is present, the
EEPROM write function must also wait for any ongoing SPM command to finish.

Table 8-2. EEPROM Programming Time

Symbol Number of Calibrated RC Oscillator Cycles Typ Programming Time

EEPROM write 
(from CPU)

26,368 3.3ms
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Assembly Code Example

EEPROM_write:

; Wait for completion of previous write

sbic EECR,EEPE

rjmp EEPROM_write    

; Set up address (r18:r17) in address register

out  EEARH, r18

out  EEARL, r17

; Write data (r16) to Data Register

out  EEDR,r16

; Write logical one to EEMPE

sbi  EECR,EEMPE

; Start eeprom write by setting EEPE

sbi  EECR,EEPE

ret

C Code Example

void EEPROM_write(unsigned int uiAddress, unsigned char ucData)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEPE))

;

/* Set up address and Data Registers */

EEAR = uiAddress;

EEDR = ucData;

/* Write logical one to EEMPE */

EECR |= (1<<EEMPE);

/* Start eeprom write by setting EEPE */

EECR |= (1<<EEPE);

}
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The next code examples show assembly and C functions for reading the EEPROM. The
examples assume that interrupts are controlled so that no interrupts will occur during execu-
tion of these functions.

8.6.4 GPIOR2 – General Purpose I/O Register 2

8.6.5 GPIOR1 – General Purpose I/O Register 1

8.6.6 GPIOR0 – General Purpose I/O Register 0

Assembly Code Example
EEPROM_read:

; Wait for completion of previous write

sbic EECR,EEPE

rjmp EEPROM_read

; Set up address (r18:r17) in address register

out  EEARH, r18

out  EEARL, r17

; Start eeprom read by writing EERE

sbi  EECR,EERE

; Read data from Data Register

in  r16,EEDR

ret
C Code Example

unsigned char EEPROM_read(unsigned int uiAddress)

{

/* Wait for completion of previous write */

while(EECR & (1<<EEPE))

;

/* Set up address register */

EEAR = uiAddress;

/* Start eeprom read by writing EERE */

EECR |= (1<<EERE);

/* Return data from Data Register */

return EEDR;

}

Bit 7 6 5 4 3 2 1 0

0x2B (0x4B) MSB LSB GPIOR2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x2A (0x4A) MSB LSB GPIOR1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1E (0x3E) MSB LSB GPIOR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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9. System Clock and Clock Options

9.1 Clock Systems and their Distribution
Figure 9-1 presents the principal clock systems in the AVR and their distribution. All of the
clocks need not be active at a given time. In order to reduce power consumption, the clocks to
modules not being used can be halted by using different sleep modes, as described in “Power
Management and Sleep Modes” on page 39. The clock systems are detailed below.

Figure 9-1. Clock Distribution 

9.1.1 CPU Clock – clkCPU

The CPU clock is routed to parts of the system concerned with operation of the AVR core.
Examples of such modules are the General Purpose Register File, the Status Register and the
data memory holding the Stack Pointer. Halting the CPU clock inhibits the core from perform-
ing general operations and calculations.

9.1.2 I/O Clock – clkI/O

The I/O clock is used by the majority of the I/O modules, like Timer/Counters, SPI, and
USART. The I/O clock is also used by the External Interrupt module, but note that start condi-
tion detection in the USI module is carried out asynchronously when clkI/O is halted, TWI
address recognition in all sleep modes.

Note: Note that if a level triggered interrupt is used for wake-up from Power-down, the required level 
must be held long enough for the MCU to complete the wake-up to trigger the level interrupt. If 
the level disappears before the end of the Start-up Time, the MCU will still wake up, but no inter-
rupt will be generated. The start-up time is defined by the SUT and CKSEL Fuses as described 
in “System Clock and Clock Options” on page 26.
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9.1.3 Flash Clock – clkFLASH

The Flash clock controls operation of the Flash interface. The Flash clock is usually active
simultaneously with the CPU clock.

9.1.4 Asynchronous Timer Clock – clkASY

The Asynchronous Timer clock allows the Asynchronous Timer/Counter to be clocked directly
from an external clock or an external 32kHz clock crystal. The dedicated clock domain allows
using this Timer/Counter as a real-time counter even when the device is in sleep mode.

9.1.5 ADC Clock – clkADC

The ADC is provided with a dedicated clock domain. This allows halting the CPU and I/O
clocks in order to reduce noise generated by digital circuitry. This gives more accurate ADC
conversion results.

9.2 Clock Sources
The device has the following clock source options, selectable by Flash Fuse bits as shown
below. The clock from the selected source is input to the AVR clock generator, and routed to
the appropriate modules.

9.2.1 Default Clock Source
The device is shipped with internal RC oscillator at 8.0MHz and with the fuse CKDIV8 pro-
grammed, resulting in 1.0MHz system clock. The startup time is set to maximum and time-out
period enabled. (CKSEL = "0010", SUT = "10", CKDIV8 = "0"). The default setting ensures
that all users can make their desired clock source setting using any available programming
interface.

9.2.2 Clock Startup Sequence
Any clock source needs a sufficient VCC to start oscillating and a minimum number of oscillat-
ing cycles before it can be considered stable. 

To ensure sufficient VCC, the device issues an internal reset with a time-out delay (tTOUT) after
the device reset is released by all other reset sources. “System Control and Reset” on page 47
describes the start conditions for the internal reset. The delay (tTOUT) is timed from the Watch-
dog Oscillator and the number of cycles in the delay is set by the SUTx and CKSELx fuse bits.
The selectable delays are shown in Table 9-2. The frequency of the Watchdog Oscillator is
voltage dependent as shown in “Typical Characteristics” on page 324. 

Table 9-1. Device Clocking Options Select(1)

Device Clocking Option  CKSEL3...0

Low Power Crystal Oscillator 1111 - 1000

Full Swing Crystal Oscillator 0111 - 0110

Low Frequency Crystal Oscillator 0101 - 0100

Internal 128kHz RC Oscillator 0011

Calibrated Internal RC Oscillator 0010

External Clock 0000

Reserved 0001

Note: 1. For all fuses “1” means unprogrammed while “0” means programmed.
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Main purpose of the delay is to keep the AVR in reset until it is supplied with minimum VCC.
The delay will not monitor the actual voltage and it will be required to select a delay longer
than the VCC rise time. If this is not possible, an internal or external Brown-Out Detection circuit
should be used. A BOD circuit will ensure sufficient VCC before it releases the reset, and the
time-out delay can be disabled. Disabling the time-out delay without utilizing a Brown-Out
Detection circuit is not recommended. 

The oscillator is required to oscillate for a minimum number of cycles before the clock is con-
sidered stable. An internal ripple counter monitors the oscillator output clock, and keeps the
internal reset active for a given number of clock cycles. The reset is then released and the
device will start to execute. The recommended oscillator start-up time is dependent on the
clock type, and varies from 6 cycles for an externally applied clock to 32K cycles for a low fre-
quency crystal.

The start-up sequence for the clock includes both the time-out delay and the start-up time
when the device starts up from reset. When starting up from Power-save or Power-down
mode, VCC is assumed to be at a sufficient level and only the start-up time is included.

9.3 Low Power Crystal Oscillator
Pins XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can
be configured for use as an On-chip Oscillator, as shown in Figure 9-2 on page 28. Either a
quartz crystal or a ceramic resonator may be used.

This Crystal Oscillator is a low power oscillator, with reduced voltage swing on the XTAL2 out-
put. It gives the lowest power consumption, but is not capable of driving other clock inputs, and
may be more susceptible to noise in noisy environments. In these cases, refer to the “Full
Swing Crystal Oscillator” on page 30.

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the
capacitors depends on the crystal or resonator in use, the amount of stray capacitance, and
the electromagnetic noise of the environment. Some initial guidelines for choosing capacitors
for use with crystals are given in Table 9-3 on page 29. For ceramic resonators, the capacitor
values given by the manufacturer should be used. 

Figure 9-2. Crystal Oscillator Connections 

Table 9-2. Number of Watchdog Oscillator Cycles

Typ Time-out (VCC = 5.0V) Typ Time-out (VCC = 3.0V) Number of Cycles

0ms 0ms 0

4.1ms 4.3ms 512

65ms 69ms 8K (8,192)

XTAL2 (TOSC2)

XTAL1 (TOSC1)

GND

C2

C1
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The Low Power Oscillator can operate in three different modes, each optimized for a specific
frequency range. The operating mode is selected by the fuses CKSEL3...1 as shown in Table
9-3 on page 29.

The CKSEL0 Fuse together with the SUT1...0 Fuses select the start-up times as shown in
Table 9-4.

Table 9-3. Low Power Crystal Oscillator Operating Modes(3)

 Frequency Range
(MHz)

Recommended Range for 
Capacitors C1 and C2 (pF) CKSEL3...1(1)

0.4 - 0.9 – 100(2)

0.9 - 3.0 12 - 22 101

3.0 - 8.0 12 - 22 110

8.0 - 16.0 12 - 22 111

Notes: 1. This is the recommended CKSEL settings for the difference frequency ranges.

2. This option should not be used with crystals, only with ceramic resonators.

3. If the crystal frequency exceeds the specification of the device (depends on VCC), the 
CKDIV8 Fuse can be programmed in order to divide the internal frequency by 8. It must be 
ensured that the resulting divided clock meets the frequency specification of the device.

Table 9-4. Start-up Times for the Low Power Crystal Oscillator Clock Selection

Oscillator Source / Power 
Conditions

Start-up Time from 
Power-down and 

Power-save

Additional Delay from 
Reset 

(VCC = 5.0V) CKSEL0 SUT1...0

Ceramic resonator, fast 
rising power

258 CK 14CK + 4.1ms(1) 0 00

Ceramic resonator, slowly 
rising power

258 CK 14CK + 65ms(1) 0 01

Ceramic resonator, BOD 
enabled

1K CK 14CK(2) 0 10

Ceramic resonator, fast 
rising power

1K CK 14CK + 4.1ms(2) 0 11

Ceramic resonator, slowly 
rising power

1K CK 14CK + 65ms(2) 1 00

Crystal Oscillator, BOD 
enabled

16K CK 14CK 1 01

Crystal Oscillator, fast 
rising power

16K CK 14CK + 4.1ms 1 10

Crystal Oscillator, slowly 
rising power

16K CK 14CK + 65ms 1 11

Notes: 1. These options should only be used when not operating close to the maximum frequency of 
the device, and only if frequency stability at start-up is not important for the application. 
These options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency sta-
bility at start-up. They can also be used with crystals when not operating close to the 
maximum frequency of the device, and if frequency stability at start-up is not important for 
the application.
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9.4 Full Swing Crystal Oscillator
Pins XTAL1 and XTAL2 are input and output, respectively, of an inverting amplifier which can
be configured for use as an On-chip Oscillator, as shown in Figure 9-2 on page 28. Either a
quartz crystal or a ceramic resonator may be used.

This Crystal Oscillator is a full swing oscillator, with rail-to-rail swing on the XTAL2 output. This
is useful for driving other clock inputs and in noisy environments. The current consumption is
higher than the “Low Power Crystal Oscillator” on page 28. Note that the Full Swing Crystal
Oscillator will only operate for VCC = 2.7 - 5.5V.

C1 and C2 should always be equal for both crystals and resonators. The optimal value of the
capacitors depends on the crystal or resonator in use, the amount of stray capacitance, and
the electromagnetic noise of the environment. Some initial guidelines for choosing capacitors
for use with crystals are given in Table 9-6 on page 31. For ceramic resonators, the capacitor
values given by the manufacturer should be used.

The operating mode is selected by the fuses CKSEL3...1 as shown in Table 9-5.

Figure 9-3. Crystal Oscillator Connections 

Table 9-5. Full Swing Crystal Oscillator operating modes

Frequency Range(1) (MHz)
Recommended Range for 
Capacitors C1 and C2 (pF) CKSEL3...1

0.4 - 20 12 - 22 011

Notes: 1. If the crystal frequency exceeds the specification of the device (depends on VCC), the 
CKDIV8 Fuse can be programmed in order to divide the internal frequency by 8. It must be 
ensured that the resulting divided clock meets the frequency specification of the device.

XTAL2 (TOSC2)

XTAL1 (TOSC1)

GND

C2

C1
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9.5 Low Frequency Crystal Oscillator
The Low-frequency Crystal Oscillator is optimized for use with a 32.768kHz watch crystal.
When selecting crystals, load capacitance and crystal’s Equivalent Series Resistance, ESR
must be taken into consideration. Both values are specified by the crystal vendor. Atmel® 
ATmega48PA/88PA/168PA oscillator is optimized for very low power consumption, and thus
when selecting crystals, see Table 9-7 for maximum ESR recommendations on 6.5pF, 9.0pF
and 12.5pF crystals

Table 9-6. Start-up Times for the Full Swing Crystal Oscillator Clock Selection

Oscillator Source / Power 
Conditions

Start-up Time from 
Power-down and 

Power-save

Additional Delay from 
Reset 

(VCC = 5.0V) CKSEL0 SUT1...0

Ceramic resonator, fast 
rising power

258 CK 14CK + 4.1ms(1) 0 00

Ceramic resonator, slowly 
rising power

258 CK 14CK + 65ms(1) 0 01

Ceramic resonator, BOD 
enabled

1K CK 14CK(2) 0 10

Ceramic resonator, fast 
rising power

1K CK 14CK + 4.1ms(2) 0 11

Ceramic resonator, slowly 
rising power

1K CK 14CK + 65ms(2) 1 00

Crystal Oscillator, BOD 
enabled

16K CK 14CK 1 01

Crystal Oscillator, fast 
rising power

16K CK 14CK + 4.1ms 1 10

Crystal Oscillator, slowly 
rising power

16K CK 14CK + 65ms 1 11

Notes: 1. These options should only be used when not operating close to the maximum frequency of 
the device, and only if frequency stability at start-up is not important for the application. 
These options are not suitable for crystals.

2. These options are intended for use with ceramic resonators and will ensure frequency sta-
bility at start-up. They can also be used with crystals when not operating close to the 
maximum frequency of the device, and if frequency stability at start-up is not important for 
the application.

Table 9-7. Maximum ESR Recommendation for 32.768kHz Crystal

Crystal CL (pF) Max ESR [kΩ](1)

6.5 75

9.0 65

12.5 30
Note: 1. Maximum ESR is typical value based on characterization
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The Low-frequency Crystal Oscillator provides an internal load capacitance, see Table 9-8 at
each TOSC pin. 

The capacitance (Ce + Ci) needed at each TOSC pin can be calculated by using:

where:

– Ce - is optional external capacitors as described in Figure 9-2 on page 28

– Ci - is the pin capacitance in Table 9-8 

– CL - is the load capacitance for a 32.768kHz crystal specified by the crystal vendor 

– CS - is the total stray capacitance for one TOSC pin.

Crystals specifying load capacitance (CL) higher than 6pF, require external capacitors applied
as described in Figure 9-2 on page 28.

The Low-frequency Crystal Oscillator must be selected by setting the CKSEL Fuses to “0110”
or “0111”, as shown in Table 9-10. Start-up times are determined by the SUT Fuses as shown
in Table 9-9.

Table 9-8. Capacitance for Low-frequency Oscillator

Device 32kHz Osc. Type Cap(Xtal1/Tosc1) Cap(Xtal2/Tosc2)

Atmel 
ATmega48PA/88PA/168PA

System Osc. 18pF 8pF

Timer Osc. 18pF 8pF

Table 9-9. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

SUT1...0  Additional Delay from Reset (VCC = 5.0V) Recommended Usage

00 4 CK Fast rising power or BOD enabled

01 4 CK + 4.1ms Slowly rising power

10 4 CK + 65ms Stable frequency at start-up

11 Reserved

Table 9-10. Start-up Times for the Low-frequency Crystal Oscillator Clock Selection

CKSEL3...0
Start-up Time from 

Power-down and Power-save Recommended Usage

0100(1) 1K CK

0101 32K CK Stable frequency at start-up

Note: 1. This option should only be used if frequency stability at start-up is not important for the 
application

C 2 CL× CS–=



33
9223D–AVR–05/12

Atmel ATmega48PA/88PA/168PA

9.6 Calibrated Internal RC Oscillator
By default, the Internal RC Oscillator provides an approximate 8.0MHz clock. Though voltage
and temperature dependent, this clock can be very accurately calibrated by the user. See
Table 29-3 on page 316 for more details. The device is shipped with the CKDIV8 Fuse pro-
grammed. See “System Clock Prescaler” on page 36 for more details.

This clock may be selected as the system clock by programming the CKSEL Fuses as shown
in Table 9-1. If selected, it will operate with no external components. During reset, hardware
loads the pre-programmed default 3V calibration value into the OSCCAL Register and thereby
automatically calibrates the RC Oscillator for 3V operation. If the device is to be used at 5V
then the alternate RC Oscillator 5V Calibration Byte (Table 27-5 on page 286) can be read
from Signature Row and stored into the OSCCAL register by the user application program for
better 5V frequency accuracy. The accuracy of this calibration is shown as Factory calibration
in Table 29-3 on page 316.

By changing the OSCCAL register from SW, see “OSCCAL – Oscillator Calibration Register”
on page 37, it is possible to get a higher calibration accuracy than by using the factory calibra-
tion. The accuracy of this calibration is shown as User calibration in Table 29-3 on page 316.

When this Oscillator is used as the chip clock, the Watchdog Oscillator will still be used for the
Watchdog Timer and for the Reset Time-out. For more information on the pre-programmed
calibration value, see the section “Calibration Byte” on page 297.

When this Oscillator is selected, start-up times are determined by the SUT Fuses as shown in
Table 9-12.

Table 9-11. Internal Calibrated RC Oscillator Operating Modes

Frequency Range(2) (MHz)  CKSEL3...0

7.3 - 8.1 0010(1)

Notes: 1. The device is shipped with this option selected.

2. If 8MHz frequency exceeds the specification of the device (depends on VCC), the CKDIV8 
Fuse can be programmed in order to divide the internal frequency by 8.

Table 9-12. Start-up times for the internal calibrated RC Oscillator clock selection

Power Conditions
Start-up Time from 

Power-down and Power-save
Additional Delay from 

Reset (VCC = 5.0V) SUT1...0

BOD enabled 6 CK 14CK(1) 00

Fast rising power 6 CK 14CK + 4.1ms 01

Slowly rising power 6 CK 14CK + 65ms(2) 10

Reserved 11

Note: 1. If the RSTDISBL fuse is programmed, this start-up time will be increased to 
14CK + 4.1ms to ensure programming mode can be entered.

2. The device is shipped with this option selected.
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9.7 128kHz Internal Oscillator
The 128kHz internal Oscillator is a low power Oscillator providing a clock of 128kHz. The fre-
quency is nominal at 3V and 25°C. This clock may be select as the system clock by
programming the CKSEL Fuses to “11” as shown in Table 9-13.

When this clock source is selected, start-up times are determined by the SUT Fuses as shown
in Table 9-14.

9.8 External Clock
To drive the device from an external clock source, XTAL1 should be driven as shown in Figure
9-4. To run the device on an external clock, the CKSEL Fuses must be programmed to “0000”
(see Table 9-15).

Figure 9-4. External Clock Drive Configuration 

Table 9-13. 128kHz Internal Oscillator Operating Modes

Nominal Frequency(1)  CKSEL3...0

128kHz 0011

Note: 1. Note that the 128kHz oscillator is a very low power clock source, and is not designed for 
high accuracy.

Table 9-14. Start-up Times for the 128kHz Internal Oscillator

Power Conditions
Start-up Time from 

Power-down and Power-save
Additional Delay from 

Reset SUT1...0

BOD enabled 6 CK 14CK(1) 00

Fast rising power 6 CK 14CK + 4ms 01

Slowly rising power 6 CK 14CK + 64ms 10

Reserved 11

Note: 1. If the RSTDISBL fuse is programmed, this start-up time will be increased to 
14CK + 4.1ms to ensure programming mode can be entered.

Table 9-15. Crystal Oscillator Clock Frequency

Frequency  CKSEL3...0

0 - 16MHz 0000

PB7

EXTERNAL
CLOCK
SIGNAL

XTAL2

XTAL1

GND
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When this clock source is selected, start-up times are determined by the SUT Fuses as shown
in Table 9-16.

When applying an external clock, it is required to avoid sudden changes in the applied clock
frequency to ensure stable operation of the MCU. A variation in frequency of more than 2%
from one clock cycle to the next can lead to unpredictable behavior. If changes of more than
2% is required, ensure that the MCU is kept in Reset during the changes.

Note that the System Clock Prescaler can be used to implement run-time changes of the inter-
nal clock frequency while still ensuring stable operation. Refer to “System Clock Prescaler” on
page 36 for details.

9.9 Clock Output Buffer
The device can output the system clock on the CLKO pin. To enable the output, the CKOUT
Fuse has to be programmed. This mode is suitable when the chip clock is used to drive other
circuits on the system. The clock also will be output during reset, and the normal operation of
I/O pin will be overridden when the fuse is programmed. Any clock source, including the inter-
nal RC Oscillator, can be selected when the clock is output on CLKO. If the System Clock
Prescaler is used, it is the divided system clock that is output. 

9.10 Timer/Counter Oscillator
The Atmel® ATmega48PA/88PA/168PA uses the same crystal oscillator for Low-frequency
Oscillator and Timer/Counter Oscillator. See “Low Frequency Crystal Oscillator” on page 31
for details on the oscillator and crystal requirements.

Atmel ATmega48PA/88PA/168PA share the Timer/Counter Oscillator Pins (TOSC1 and
TOSC2) with XTAL1 and XTAL2. When using the Timer/Counter Oscillator, the system clock
needs to be four times the oscillator frequency. Due to this and the pin sharing, the
Timer/Counter Oscillator can only be used when the Calibrated Internal RC Oscillator is
selected as system clock source.

Applying an external clock source to TOSC1 can be done if EXTCLK in the ASSR Register is
written to logic one. See “Asynchronous Operation of Timer/Counter2” on page 155 for further
description on selecting external clock as input instead of a 32.768kHz watch crystal.

Table 9-16. Start-up Times for the External Clock Selection

Power Conditions
Start-up Time from 

Power-down and Power-save
Additional Delay from 

Reset (VCC = 5.0V) SUT1...0

BOD enabled 6 CK 14CK 00

Fast rising power 6 CK 14CK + 4.1ms 01

Slowly rising power 6 CK 14CK + 65ms 10

Reserved 11
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9.11 System Clock Prescaler
The Atmel ATmega48PA/88PA/168PA has a system clock prescaler, and the system clock
can be divided by setting the “CLKPR – Clock Prescale Register” on page 377. This feature
can be used to decrease the system clock frequency and the power consumption when the
requirement for processing power is low. This can be used with all clock source options, and it
will affect the clock frequency of the CPU and all synchronous peripherals. clkI/O, clkADC, clk-

CPU, and clkFLASH are divided by a factor as shown in Table 29-5 on page 317.

When switching between prescaler settings, the System Clock Prescaler ensures that no
glitches occurs in the clock system. It also ensures that no intermediate frequency is higher
than neither the clock frequency corresponding to the previous setting, nor the clock frequency
corresponding to the new setting. The ripple counter that implements the prescaler runs at the
frequency of the undivided clock, which may be faster than the CPU's clock frequency. Hence,
it is not possible to determine the state of the prescaler - even if it were readable, and the
exact time it takes to switch from one clock division to the other cannot be exactly predicted.
From the time the CLKPS values are written, it takes between T1 + T2 and T1 + 2 * T2 before
the new clock frequency is active. In this interval, 2 active clock edges are produced. Here, T1
is the previous clock period, and T2 is the period corresponding to the new prescaler setting.

To avoid unintentional changes of clock frequency, a special write procedure must be followed
to change the CLKPS bits:

1. Write the Clock Prescaler Change Enable (CLKPCE) bit to one and all other bits in 
CLKPR to zero.

2. Within four cycles, write the desired value to CLKPS while writing a zero to CLKPCE.

Interrupts must be disabled when changing prescaler setting to make sure the write procedure
is not interrupted.
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9.12 Register Description

9.12.1 OSCCAL – Oscillator Calibration Register

• Bits 7:0 – CAL[7:0]: Oscillator Calibration Value
The Oscillator Calibration Register is used to trim the Calibrated Internal RC Oscillator to
remove process variations from the oscillator frequency. A pre-programmed calibration value
is automatically written to this register during chip reset, giving the Factory calibrated fre-
quency as specified in Table 29-3 on page 316. The application software can write this
register to change the oscillator frequency. The oscillator can be calibrated to frequencies as
specified in Table 29-3 on page 316. Calibration outside that range is not guaranteed.

Note that this oscillator is used to time EEPROM and Flash write accesses, and these write
times will be affected accordingly. If the EEPROM or Flash are written, do not calibrate to
more than 8.8MHz. Otherwise, the EEPROM or Flash write may fail.

The CAL7 bit determines the range of operation for the oscillator. Setting this bit to 0 gives the
lowest frequency range, setting this bit to 1 gives the highest frequency range. The two fre-
quency ranges are overlapping, in other words a setting of OSCCAL = 0x7F gives a higher
frequency than OSCCAL = 0x80.

The CAL6...0 bits are used to tune the frequency within the selected range. A setting of 0x00
gives the lowest frequency in that range, and a setting of 0x7F gives the highest frequency in
the range.

9.12.2 CLKPR – Clock Prescale Register

• Bit 7 – CLKPCE: Clock Prescaler Change Enable
The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLK-
PCE bit is only updated when the other bits in CLKPR are simultaneously written to zero.
CLKPCE is cleared by hardware four cycles after it is written or when CLKPS bits are written.
Rewriting the CLKPCE bit within this time-out period does neither extend the time-out period,
nor clear the CLKPCE bit.

• Bits 3:0 – CLKPS[3:0]: Clock Prescaler Select Bits 3 - 0
These bits define the division factor between the selected clock source and the internal sys-
tem clock. These bits can be written run-time to vary the clock frequency to suit the application
requirements. As the divider divides the master clock input to the MCU, the speed of all syn-
chronous peripherals is reduced when a division factor is used. The division factors are given
in Table 9-17 on page 38.

Bit 7 6 5 4 3 2 1 0

(0x66) CAL7 CAL6 CAL5 CAL4 CAL3 CAL2 CAL1 CAL0 OSCCAL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value Device Specific Calibration Value

Bit 7 6 5 4 3 2 1 0

(0x61) CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 CLKPR

Read/Write R/W R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description
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The CKDIV8 Fuse determines the initial value of the CLKPS bits. If CKDIV8 is unprogrammed,
the CLKPS bits will be reset to “0000”. If CKDIV8 is programmed, CLKPS bits are reset to
“0011”, giving a division factor of 8 at start up. This feature should be used if the selected clock
source has a higher frequency than the maximum frequency of the device at the present oper-
ating conditions. Note that any value can be written to the CLKPS bits regardless of the
CKDIV8 Fuse setting. The Application software must ensure that a sufficient division factor is
chosen if the selected clock source has a higher frequency than the maximum frequency of
the device at the present operating conditions. The device is shipped with the CKDIV8 Fuse
programmed.

Table 9-17. Clock Prescaler Select

CLKPS3 CLKPS2 CLKPS1 CLKPS0 Clock Division Factor

0 0 0 0 1

0 0 0 1 2

0 0 1 0 4

0 0 1 1 8

0 1 0 0 16

0 1 0 1 32

0 1 1 0 64

0 1 1 1 128

1 0 0 0 256

1 0 0 1 Reserved

1 0 1 0 Reserved

1 0 1 1 Reserved

1 1 0 0 Reserved

1 1 0 1 Reserved

1 1 1 0 Reserved

1 1 1 1 Reserved



39
9223D–AVR–05/12

Atmel ATmega48PA/88PA/168PA

10. Power Management and Sleep Modes
Sleep modes enable the application to shut down unused modules in the MCU, thereby saving
power. The AVR provides various sleep modes allowing the user to tailor the power consump-
tion to the application’s requirements.

When enabled, the Brown-out Detector (BOD) actively monitors the power supply voltage dur-
ing the sleep periods. To further save power, it is possible to disable the BOD in some sleep
modes. See “BOD Disable()” on page 40 for more details.

10.1 Sleep Modes
Figure 9-1  on  page 26 presents  the d i f fe rent  c lock  sys tems in  the Atmel®  
ATmega48PA/88PA/168PA, and their distribution. The figure is helpful in selecting an appro-
priate sleep mode. Table 10-1 shows the different sleep modes, their wake up sources BOD
disable ability(1).

Note: 1. BOD disable is only available for ATmega48PA/88PA/168PA.

To enter any of the six sleep modes, the SE bit in SMCR must be written to logic one and a
SLEEP instruction must be executed. The SM2, SM1, and SM0 bits in the SMCR Register
select which sleep mode (Idle, ADC Noise Reduction, Power-down, Power-save, Standby, or
Extended Standby) will be activated by the SLEEP instruction. See Table 10-2 on page 44 for
a summary.

If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up. The MCU
is then halted for four cycles in addition to the start-up time, executes the interrupt routine, and
resumes execution from the instruction following SLEEP. The contents of the Register File
and SRAM are unaltered when the device wakes up from sleep. If a reset occurs during sleep
mode, the MCU wakes up and executes from the Reset Vector. 

Table 10-1. Active Clock Domains and Wake-up Sources in the Different Sleep Modes.

Active Clock Domains Oscillators Wake-up Sources
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Idle X X X X X(2) X X X X X X X

ADC Noise
Reduction

X X X X(2) X(3) X X(2) X X X

Power-down X(3) X X X

Power-save X X(2) X(3) X X X X

Standby(1) X X(3) X X X

Extended 
Standby

X(2) X X(2) X(3) X X X X

Notes: 1. Only recommended with external crystal or resonator selected as clock source.

2. If Timer/Counter2 is running in asynchronous mode.

3. For INT1 and INT0, only level interrupt.
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10.2 BOD Disable()

When the Brown-out Detector (BOD) is enabled by BODLEVEL fuses - see Table 28-6 on
page 296 and onwards, the BOD is actively monitoring the power supply voltage during a
sleep period. To save power, it is possible to disable the BOD by software for some of the
sleep modes, see Table 10-1 on page 39. The sleep mode power consumption will then be at
the same level as when BOD is globally disabled by fuses. If BOD is disabled in software, the
BOD function is turned off immediately after entering the sleep mode. Upon wake-up from
sleep, BOD is automatically enabled again. This ensures safe operation in case the VCC level
has dropped during the sleep period.

When the BOD has been disabled, the wake-up time from sleep mode will be approximately
60 µs to ensure that the BOD is working correctly before the MCU continues executing code.

BOD disable is controlled by bit 6, BODS (BOD Sleep) in the control register MCUCR, see
“MCUCR – MCU Control Register” on page 45. Writing this bit to one turns off the BOD in rel-
evant sleep modes, while a zero in this bit keeps BOD active. Default setting keeps BOD
active, i.e. BODS set to zero.

Writing to the BODS bit is controlled by a timed sequence and an enable bit, see “MCUCR –
MCU Control Register” on page 45.

Note: 1. BOD disable only available in picoPower devices ATmega48PA/88PA/168PA 

10.3 Idle Mode
When the SM2...0 bits are written to 000, the SLEEP instruction makes the MCU enter Idle
mode, stopping the CPU but allowing the SPI, USART, Analog Comparator, ADC, 2-wire
Serial Interface, Timer/Counters, Watchdog, and the interrupt system to continue operating.
This sleep mode basically halts clkCPU and clkFLASH, while allowing the other clocks to run.

Idle mode enables the MCU to wake up from external triggered interrupts as well as internal
ones like the Timer Overflow and USART Transmit Complete interrupts. If wake-up from the
Analog Comparator interrupt is not required, the Analog Comparator can be powered down by
setting the ACD bit in the Analog Comparator Control and Status Register – ACSR. This will
reduce power consumption in Idle mode. If the ADC is enabled, a conversion starts automati-
cally when this mode is entered.

10.4 ADC Noise Reduction Mode
When the SM2...0 bits are written to 001, the SLEEP instruction makes the MCU enter ADC
Noise Reduction mode, stopping the CPU but allowing the ADC, the external interrupts, the
2-wire Serial Interface address watch, Timer/Counter2(1), and the Watchdog to continue oper-
ating (if enabled). This sleep mode basically halts clkI/O, clkCPU, and clkFLASH, while allowing
the other clocks to run.

This improves the noise environment for the ADC, enabling higher resolution measurements.
If the ADC is enabled, a conversion starts automatically when this mode is entered. Apart from
the ADC Conversion Complete interrupt, only an External Reset, a Watchdog System Reset, a
Watchdog Interrupt, a Brown-out Reset, a 2-wire Serial Interface address match, a
Timer/Counter2 interrupt, an SPM/EEPROM ready interrupt, an external level interrupt on
INT0 or INT1 or a pin change interrupt can wake up the MCU from ADC Noise Reduction
mode.

Note: 1. Timer/Counter2 will only keep running in asynchronous mode, see “8-bit Timer/Counter2 
with PWM and Asynchronous Operation” on page 143 for details.
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10.5 Power-down Mode
When the SM2...0 bits are written to 010, the SLEEP instruction makes the MCU enter
Power-down mode. In this mode, the external Oscillator is stopped, while the external inter-
rupts, the 2-wire Serial Interface address watch, and the Watchdog continue operating (if
enabled). Only an External Reset, a Watchdog System Reset, a Watchdog Interrupt, a
Brown-out Reset, a 2-wire Serial Interface address match, an external level interrupt on INT0
or INT1, or a pin change interrupt can wake up the MCU. This sleep mode basically halts all
generated clocks, allowing operation of asynchronous modules only.

Note: If a level triggered interrupt is used for wake-up from Power-down, the required level must be 
held long enough for the MCU to complete the wake-up to trigger the level interrupt. If the level 
disappears before the end of the Start-up Time, the MCU will still wake up, but no interrupt will 
be generated. “External Interrupts” on page 68. The start-up time is defined by the SUT and 
CKSEL Fuses as described in “System Clock and Clock Options” on page 26.

When waking up from Power-down mode, there is a delay from the wake-up condition occurs
until the wake-up becomes effective. This allows the clock to restart and become stable after
having been stopped. The wake-up period is defined by the same CKSEL Fuses that define
the Reset Time-out period, as described in “Clock Sources” on page 27.

10.6 Power-save Mode
When the SM2...0 bits are written to 011, the SLEEP instruction makes the MCU enter
Power-save mode. This mode is identical to Power-down, with one exception:

If Timer/Counter2 is enabled, it will keep running during sleep. The device can wake up from
either Timer Overflow or Output Compare event from Timer/Counter2 if the corresponding
Timer/Counter2 interrupt enable bits are set in TIMSK2, and the Global Interrupt Enable bit in
SREG is set.

If Timer/Counter2 is not running, Power-down mode is recommended instead of Power-save
mode.

The Timer/Counter2 can be clocked both synchronously and asynchronously in Power-save
mode. If Timer/Counter2 is not using the asynchronous clock, the Timer/Counter Oscillator is
stopped during sleep. If Timer/Counter2 is not using the synchronous clock, the clock source
is stopped during sleep. Note that even if the synchronous clock is running in Power-save, this
clock is only available for Timer/Counter2.

10.7 Standby Mode
When the SM2...0 bits are 110 and an external crystal/resonator clock option is selected, the
SLEEP instruction makes the MCU enter Standby mode. This mode is identical to
Power-down with the exception that the Oscillator is kept running. From Standby mode, the
device wakes up in six clock cycles.

10.8 Extended Standby Mode
When the SM2...0 bits are 111 and an external crystal/resonator clock option is selected, the
SLEEP instruction makes the MCU enter Extended Standby mode. This mode is identical to
Power-save with the exception that the Oscillator is kept running. From Extended Standby
mode, the device wakes up in six clock cycles.
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10.9 Power Reduction Register
The Power Reduction Register (PRR), see “PRR – Power Reduction Register” on page 45,
provides a method to stop the clock to individual peripherals to reduce power consumption.
The current state of the peripheral is frozen and the I/O registers can not be read or written.
Resources used by the peripheral when stopping the clock will remain occupied, hence the
peripheral should in most cases be disabled before stopping the clock. Waking up a module,
which is done by clearing the bit in PRR, puts the module in the same state as before
shutdown. 

Module shutdown can be used in Idle mode and Active mode to significantly reduce the overall
power consumption. In all other sleep modes, the clock is already stopped.

10.10 Minimizing Power Consumption
There are several possibilities to consider when trying to minimize the power consumption in
an AVR controlled system. In general, sleep modes should be used as much as possible, and
the sleep mode should be selected so that as few as possible of the device’s functions are
operating. All functions not needed should be disabled. In particular, the following modules
may need special consideration when trying to achieve the lowest possible power
consumption.

10.10.1 Analog to Digital Converter
If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be dis-
abled before entering any sleep mode. When the ADC is turned off and on again, the next
conversion will be an extended conversion. Refer to “Analog-to-Digital Converter” on page 248
for details on ADC operation.

10.10.2 Analog Comparator
When entering Idle mode, the Analog Comparator should be disabled if not used. When enter-
ing ADC Noise Reduction mode, the Analog Comparator should be disabled. In other sleep
modes, the Analog Comparator is automatically disabled. However, if the Analog Comparator
is set up to use the Internal Voltage Reference as input, the Analog Comparator should be dis-
abled in all sleep modes. Otherwise, the Internal Voltage Reference will be enabled,
independent of sleep mode. Refer to “Analog Comparator” on page 244 for details on how to
configure the Analog Comparator.

10.10.3 Brown-out Detector
If the Brown-out Detector is not needed by the application, this module should be turned off. If
the Brown-out Detector is enabled by the BODLEVEL Fuses, it will be enabled in all sleep
modes, and hence, always consume power. In the deeper sleep modes, this will contribute
significantly to the total current consumption. Refer to “Brown-out Detection” on page 50 for
details on how to configure the Brown-out Detector.
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10.10.4 Internal Voltage Reference
The Internal Voltage Reference will be enabled when needed by the Brown-out Detection, the
Analog Comparator or the ADC. If these modules are disabled as described in the sections
above, the internal voltage reference will be disabled and it will not be consuming power.
When turned on again, the user must allow the reference to start up before the output is used.
If the reference is kept on in sleep mode, the output can be used immediately. Refer to “Inter-
nal Voltage Reference” on page 51 for details on the start-up time.

10.10.5 Watchdog Timer
If the Watchdog Timer is not needed in the application, the module should be turned off. If the
Watchdog Timer is enabled, it will be enabled in all sleep modes and hence always consume
power. In the deeper sleep modes, this will contribute significantly to the total current con-
sumption. Refer to “Watchdog Timer” on page 51 for details on how to configure the Watchdog
Timer.

10.10.6 Port Pins
When entering a sleep mode, all port pins should be configured to use minimum power. The
most important is then to ensure that no pins drive resistive loads. In sleep modes where both
the I/O clock (clkI/O) and the ADC clock (clkADC) are stopped, the input buffers of the device will
be disabled. This ensures that no power is consumed by the input logic when not needed. In
some cases, the input logic is needed for detecting wake-up conditions, and it will then be
enabled. Refer to the section “Digital Input Enable and Sleep Modes” on page 77 for details on
which pins are enabled. If the input buffer is enabled and the input signal is left floating or have
an analog signal level close to VCC/2, the input buffer will use excessive power. 

For analog input pins, the digital input buffer should be disabled at all times. An analog signal
level close to VCC/2 on an input pin can cause significant current even in active mode. Digital
input buffers can be disabled by writing to the Digital Input Disable Registers (DIDR1 and
DIDR0). Refer to “DIDR1 – Digital Input Disable Register 1” on page 247 and “DIDR0 – Digital
Input Disable Register 0” on page 266 for details. 

10.10.7 On-chip Debug System
If the On-chip debug system is enabled by the DWEN Fuse and the chip enters sleep mode,
the main clock source is enabled and hence always consumes power. In the deeper sleep
modes, this will contribute significantly to the total current consumption.
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10.11 Register Description

10.11.1 SMCR – Sleep Mode Control Register
The Sleep Mode Control Register contains control bits for power management.

• Bits [7:4]: Reserved
These bits are unused in the Atmel® ATmega48PA/88PA/168PA, and will always be read as
zero.

• Bits 3:1 – SM[2:0]: Sleep Mode Select Bits 2, 1, and 0
These bits select between the five available sleep modes as shown in Table 10-2.

• Bit 0 – SE: Sleep Enable
The SE bit must be written to logic one to make the MCU enter the sleep mode when the
SLEEP instruction is executed. To avoid the MCU entering the sleep mode unless it is the pro-
grammer’s purpose, it is recommended to write the Sleep Enable (SE) bit to one just before
the execution of the SLEEP instruction and to clear it immediately after waking up.

Bit 7 6 5 4 3 2 1 0

0x33 (0x53) – – – – SM2 SM1 SM0 SE SMCR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 10-2. Sleep Mode Select

SM2 SM1 SM0 Sleep Mode

0 0 0 Idle

0 0 1 ADC Noise Reduction

0 1 0 Power-down

0 1 1 Power-save

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Standby(1)

1 1 1 External Standby(1)

Note: 1. Standby mode is only recommended for use with external crystals or resonators.
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10.11.2 MCUCR – MCU Control Register

• Bit 6 – BODS: BOD Sleep()

The BODS bit must be written to logic one in order to turn off BOD during sleep, see Table
10-1 on page 39. Writing to the BODS bit is controlled by a timed sequence and an enable bit,
BODSE in MCUCR. To disable BOD in relevant sleep modes, both BODS and BODSE must
first be set to one. Then, to set the BODS bit, BODS must be set to one and BODSE must be
set to zero within four clock cycles. 

The BODS bit is active three clock cycles after it is set. A sleep instruction must be executed
while BODS is active in order to turn off the BOD for the actual sleep mode. The BODS bit is
automatically cleared after three clock cycles.

• Bit 5 – BODSE: BOD Sleep Enable()

BODSE enables setting of BODS control bit, as explained in BODS bit description. BOD dis-
able is controlled by a timed sequence.

Note: 1. BODS and BODSE only available for picoPower devices ATmega48PA/88PA/168PA

10.11.3 PRR – Power Reduction Register

• Bit 7 – PRTWI: Power Reduction TWI
Writing a logic one to this bit shuts down the TWI by stopping the clock to the module. When
waking up the TWI again, the TWI should be re initialized to ensure proper operation.

• Bit 6 – PRTIM2: Power Reduction Timer/Counter2

Writing a logic one to this bit shuts down the Timer/Counter2 module in synchronous mode
(AS2 is 0). When the Timer/Counter2 is enabled, operation will continue like before the
shutdown.

• Bit 5 – PRTIM0: Power Reduction Timer/Counter0
Writing a logic one to this bit shuts down the Timer/Counter0 module. When the
Timer/Counter0 is enabled, operation will continue like before the shutdown.

• Bit 4 – Reserved 
This bit is reserved in Atmel® ATmega48PA/88PA/168PA and will always read as zero.

• Bit 3 – PRTIM1: Power Reduction Timer/Counter1
Writing a logic one to this bit shuts down the Timer/Counter1 module. When the
Timer/Counter1 is enabled, operation will continue like before the shutdown.

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) – BODS() BODSE() PUD – – IVSEL IVCE MCUCR

Read/Write R R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x64) PRTWI PRTIM2 PRTIM0 – PRTIM1 PRSPI PRUSART0 PRADC PRR

Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 2 – PRSPI: Power Reduction Serial Peripheral Interface
If using debugWIRE On-chip Debug System, this bit should not be written to one.

Writing a logic one to this bit shuts down the Serial Peripheral Interface by stopping the clock
to the module. When waking up the SPI again, the SPI should be re initialized to ensure
proper operation. 

• Bit 1 – PRUSART0: Power Reduction USART0
Writing a logic one to this bit shuts down the USART by stopping the clock to the module.
When waking up the USART again, the USART should be re initialized to ensure proper
operation.

• Bit 0 – PRADC: Power Reduction ADC
Writing a logic one to this bit shuts down the ADC. The ADC must be disabled before shut
down. The analog comparator cannot use the ADC input MUX when the ADC is shut down.
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11. System Control and Reset

11.1 Resetting the AVR
During reset, all I/O Registers are set to their initial values, and the program starts execution
from the Reset Vector. For Atmel® ATmega168PA the instruction placed at the Reset Vector
must be a JMP – Absolute Jump – instruction to the reset handling routine. For the Atmel
ATmega48PA and Atmel ATmega88PA, the instruction placed at the Reset Vector must be an
RJMP – Relative Jump – instruction to the reset handling routine. If the program never
enables an interrupt source, the Interrupt Vectors are not used, and regular program code can
be placed at these locations. This is also the case if the Reset Vector is in the Application sec-
t ion whi le  the Inter rupt  Vectors  are in  the Boot  sect ion or  v ice versa (Atmel
ATmega88PA/168PA only). The circuit diagram in Figure 11-1 on page 48 shows the reset
logic. Table 29-5 on page 317 defines the electrical parameters of the reset circuitry.

The I/O ports of the AVR are immediately reset to their initial state when a reset source goes
active. This does not require any clock source to be running.

After all reset sources have gone inactive, a delay counter is invoked, stretching the internal
reset. This allows the power to reach a stable level before normal operation starts. The
time-out period of the delay counter is defined by the user through the SUT and CKSEL
Fuses. The different selections for the delay period are presented in “Clock Sources” on page
27. 

11.2 Reset Sources
The Atmel® ATmega48PA/88PA/168PA has four sources of reset:

• Power-on Reset. The MCU is reset when the supply voltage is below the Power-on Reset 
threshold (VPOT).

• External Reset. The MCU is reset when a low level is present on the RESET pin for longer 
than the minimum pulse length.

• Watchdog System Reset. The MCU is reset when the Watchdog Timer period expires and 
the Watchdog System Reset mode is enabled.

• Brown-out Reset. The MCU is reset when the supply voltage VCC is below the Brown-out 
Reset threshold (VBOT) and the Brown-out Detector is enabled.
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Figure 11-1. Reset Logic 

11.3 Power-on Reset
A Power-on Reset (POR) pulse is generated by an On-chip detection circuit. The detection
level is defined in “System and Reset Characteristics” on page 317. The POR is activated
whenever VCC is below the detection level. The POR circuit can be used to trigger the start-up
Reset, as well as to detect a failure in supply voltage.

A Power-on Reset (POR) circuit ensures that the device is reset from Power-on. Reaching the
Power-on Reset threshold voltage invokes the delay counter, which determines how long the
device is kept in RESET after VCC rise. The RESET signal is activated again, without any
delay, when VCC decreases below the detection level.
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Figure 11-2. MCU Start-up, RESET Tied to VCC 

Figure 11-3. MCU Start-up, RESET Extended Externally 

11.4 External Reset
An External Reset is generated by a low level on the RESET pin. Reset pulses longer than the
minimum pulse width (see “System and Reset Characteristics” on page 317) will generate a
reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset.
When the applied signal reaches the Reset Threshold Voltage – VRST – on its positive edge,
the delay counter starts the MCU after the Time-out period – tTOUT – has expired. The External
Reset can be disabled by the RSTDISBL fuse, see Table 28-6 on page 296.

Figure 11-4. External Reset During Operation 
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11.5 Brown-out Detection
The Atmel® ATmega48PA/88PA/168PA has an On-chip Brown-out Detection (BOD) circuit for
monitoring the VCC level during operation by comparing it to a fixed trigger level. The trigger
level for the BOD can be selected by the BODLEVEL Fuses. The trigger level has a hysteresis
to ensure spike free Brown-out Detection. The hysteresis on the detection level should be
interpreted as VBOT+ = VBOT + VHYST/2 and VBOT- = VBOT – VHYST/2.When the BOD is enabled,
and VCC decreases to a value below the trigger level (VBOT- in Figure 11-5 on page 50), the
Brown-out Reset is immediately activated. When VCC increases above the trigger level (VBOT+

in Figure 11-5 on page 50), the delay counter starts the MCU after the Time-out period tTOUT

has expired.

The BOD circuit will only detect a drop in VCC if the voltage stays below the trigger level for lon-
ger than tBOD given in “System and Reset Characteristics” on page 317.

Figure 11-5. Brown-out Reset During Operation 

11.6 Watchdog System Reset
When the Watchdog times out, it will generate a short reset pulse of one CK cycle duration.
On the falling edge of this pulse, the delay timer starts counting the Time-out period tTOUT.
Refer to page 51 for details on operation of the Watchdog Timer.

Figure 11-6. Watchdog System Reset During Operation 
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11.7 Internal Voltage Reference
The Atmel® ATmega48PA/88PA/168PA features an internal bandgap reference. This refer-
ence is used for Brown-out Detection, and it can be used as an input to the Analog
Comparator or the ADC.

11.7.1 Voltage Reference Enable Signals and Start-up Time
The voltage reference has a start-up time that may influence the way it should be used. The
start-up time is given in “System and Reset Characteristics” on page 317. To save power, the
reference is not always turned on. The reference is on during the following situations:

1. When the BOD is enabled (by programming the BODLEVEL [2:0] Fuses).

2. When the bandgap reference is connected to the Analog Comparator (by setting the 
ACBG bit in ACSR).

3. When the ADC is enabled.

Thus, when the BOD is not enabled, after setting the ACBG bit or enabling the ADC, the user
must always allow the reference to start up before the output from the Analog Comparator or
ADC is used. To reduce power consumption in Power-down mode, the user can avoid the
three conditions above to ensure that the reference is turned off before entering Power-down
mode.

11.8 Watchdog Timer

11.8.1 Features
• Clocked from separate On-chip Oscillator
• 3 Operating modes

– Interrupt
– System Reset
– Interrupt and System Reset

• Selectable Time-out period from 16ms to 8s
• Possible Hardware fuse Watchdog always on (WDTON) for fail-safe mode

11.8.2 Overview
The Atmel ATmega48PA/88PA/168PA has an Enhanced Watchdog Timer (WDT). The WDT
is a timer counting cycles of a separate on-chip 128kHz oscillator. The WDT gives an interrupt
or a system reset when the counter reaches a given time-out value. In normal operation mode,
it is required that the system uses the WDR - Watchdog Timer Reset - instruction to restart the
counter before the time-out value is reached. If the system doesn't restart the counter, an
interrupt or system reset will be issued.
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Figure 11-7. Watchdog Timer 

In Interrupt mode, the WDT gives an interrupt when the timer expires. This interrupt can be
used to wake the device from sleep-modes, and also as a general system timer. One example
is to limit the maximum time allowed for certain operations, giving an interrupt when the opera-
tion has run longer than expected. In System Reset mode, the WDT gives a reset when the
timer expires. This is typically used to prevent system hang-up in case of runaway code. The
third mode, Interrupt and System Reset mode, combines the other two modes by first giving
an interrupt and then switch to System Reset mode. This mode will for instance allow a safe
shutdown by saving critical parameters before a system reset.

The Watchdog always on (WDTON) fuse, if programmed, will force the Watchdog Timer to
System Reset mode. With the fuse programmed the System Reset mode bit (WDE) and Inter-
rupt mode bit (WDIE) are locked to 1 and 0 respectively. To further ensure program security,
alterations to the Watchdog set-up must follow timed sequences. The sequence for clearing
WDE and changing time-out configuration is as follows:

1. In the same operation, write a logic one to the Watchdog change enable bit (WDCE) 
and WDE. A logic one must be written to WDE regardless of the previous value of the 
WDE bit.

2. Within the next four clock cycles, write the WDE and Watchdog prescaler bits (WDP) 
as desired, but with the WDCE bit cleared. This must be done in one operation.

The following code example shows one assembly and one C function for turning off the
Watchdog Timer. The example assumes that interrupts are controlled (e.g. by disabling inter-
rupts globally) so that no interrupts will occur during the execution of these functions.
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Assembly Code Example(1)

WDT_off:

; Turn off global interrupt

cli

; Reset Watchdog Timer

wdr

; Clear WDRF in MCUSR

in    r16, MCUSR

andi  r16, (0xff & (0<<WDRF))

out   MCUSR, r16

; Write logical one to WDCE and WDE

; Keep old prescaler setting to prevent unintentional time-out

lds r16, WDTCSR

ori   r16, (1<<WDCE) | (1<<WDE)

sts WDTCSR, r16

; Turn off WDT

ldi   r16, (0<<WDE)

sts WDTCSR, r16

; Turn on global interrupt

sei

ret

C Code Example(1)

void WDT_off(void)

{

__disable_interrupt();

__watchdog_reset();

/* Clear WDRF in MCUSR */

MCUSR &= ~(1<<WDRF);

/* Write logical one to WDCE and WDE */

/* Keep old prescaler setting to prevent unintentional time-out */

WDTCSR |= (1<<WDCE) | (1<<WDE);

/* Turn off WDT */

WDTCSR = 0x00;

__enable_interrupt();

}

Notes: 1. See Section 6. “About Code Examples” on page 7

2. If the Watchdog is accidentally enabled, for example by a runaway pointer or brown-out 
condition, the device will be reset and the Watchdog Timer will stay enabled. If the code is 
not set up to handle the Watchdog, this might lead to an eternal loop of time-out resets. 
To avoid this situation, the application software should always clear the Watchdog System 
Reset Flag (WDRF) and the WDE control bit in the initialization routine, even if the Watch-
dog is not in use.
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The following code example shows one assembly and one C function for changing the
time-out value of the Watchdog Timer. 

Assembly Code Example(1)

WDT_Prescaler_Change:

; Turn off global interrupt

cli

; Reset Watchdog Timer

wdr

; Start timed sequence

lds r16, WDTCSR

ori   r16, (1<<WDCE) | (1<<WDE)

sts WDTCSR, r16

; --  Got four cycles to set the new values from here -

; Set new prescaler(time-out) value = 64K cycles (~0.5 s)

ldi   r16, (1<<WDE) | (1<<WDP2) | (1<<WDP0)

sts WDTCSR, r16

; --  Finished setting new values, used 2 cycles -

; Turn on global interrupt

sei

ret

C Code Example(1)

void WDT_Prescaler_Change(void)

{

__disable_interrupt();

__watchdog_reset();

/* Start timed  sequence */

WDTCSR |= (1<<WDCE) | (1<<WDE);

/* Set new prescaler(time-out) value = 64K cycles (~0.5 s) */

WDTCSR  = (1<<WDE) | (1<<WDP2) | (1<<WDP0);

__enable_interrupt();

}

Notes: 1. See Section 6. “About Code Examples” on page 7

2. The Watchdog Timer should be reset before any change of the WDP bits, since a change 
in the WDP bits can result in a time-out when switching to a shorter time-out period.
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11.9 Register Description

11.9.1 MCUSR – MCU Status Register
The MCU Status Register provides information on which reset source caused an MCU reset.

• Bit 7:4: Reserved
These bits are unused bits in the Atmel® ATmega48PA/88PA/168PA, and will always read as
zero.

• Bit 3 – WDRF: Watchdog System Reset Flag
This bit is set if a Watchdog System Reset occurs. The bit is reset by a Power-on Reset, or by
writing a logic zero to the flag.

• Bit 2 – BORF: Brown-out Reset Flag
This bit is set if a Brown-out Reset occurs. The bit is reset by a Power-on Reset, or by writing
a logic zero to the flag.

• Bit 1 – EXTRF: External Reset Flag
This bit is set if an External Reset occurs. The bit is reset by a Power-on Reset, or by writing a
logic zero to the flag.

• Bit 0 – PORF: Power-on Reset Flag
This bit is set if a Power-on Reset occurs. The bit is reset only by writing a logic zero to the
flag.

To make use of the Reset Flags to identify a reset condition, the user should read and then
Reset the MCUSR as early as possible in the program. If the register is cleared before another
reset occurs, the source of the reset can be found by examining the Reset Flags.

Bit 7 6 5 4 3 2 1 0

0x34 (0x54) – – – – WDRF BORF EXTRF PORF MCUSR

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 See Bit Description
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11.9.2 WDTCSR – Watchdog Timer Control Register

• Bit 7 – WDIF: Watchdog Interrupt Flag
This bit is set when a time-out occurs in the Watchdog Timer and the Watchdog Timer is con-
figured for interrupt. WDIF is cleared by hardware when executing the corresponding interrupt
handling vector. Alternatively, WDIF is cleared by writing a logic one to the flag. When the I-bit
in SREG and WDIE are set, the Watchdog Time-out Interrupt is executed.

• Bit 6 – WDIE: Watchdog Interrupt Enable
When this bit is written to one and the I-bit in the Status Register is set, the Watchdog Interrupt
is enabled. If WDE is cleared in combination with this setting, the Watchdog Timer is in Inter-
rupt Mode, and the corresponding interrupt is executed if time-out in the Watchdog Timer
occurs. If WDE is set, the Watchdog Timer is in Interrupt and System Reset Mode. 

The first time-out in the Watchdog Timer will set WDIF. Executing the corresponding interrupt
vector will clear WDIE and WDIF automatically by hardware (the Watchdog goes to System
Reset Mode). This is useful for keeping the Watchdog Timer security while using the interrupt.
To stay in Interrupt and System Reset Mode, WDIE must be set after each interrupt. This
should however not be done within the interrupt service routine itself, as this might compro-
mise the safety-function of the Watchdog System Reset mode. If the interrupt is not executed
before the next time-out, a System Reset will be applied.

• Bit 4 – WDCE: Watchdog Change Enable
This bit is used in timed sequences for changing WDE and prescaler bits. To clear the WDE
bit, and/or change the prescaler bits, WDCE must be set.

Once written to one, hardware will clear WDCE after four clock cycles.

• Bit 3 – WDE: Watchdog System Reset Enable
WDE is overridden by WDRF in MCUSR. This means that WDE is always set when WDRF is
set. To clear WDE, WDRF must be cleared first. This feature ensures multiple resets during
conditions causing failure, and a safe start-up after the failure.

Bit 7 6 5 4 3 2 1 0

(0x60) WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 WDTCSR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 X 0 0 0

Table 11-1. Watchdog Timer Configuration

WDTON(1) WDE WDIE Mode Action on Time-out

1 0 0 Stopped None

1 0 1 Interrupt Mode Interrupt

1 1 0 System Reset Mode Reset

1 1 1
Interrupt and System Reset 
Mode

Interrupt, then go to System 
Reset Mode

0 x x System Reset Mode Reset

Note: 1. WDTON Fuse set to “0” means programmed and “1” means unprogrammed.
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• Bit 5, 2:0 - WDP[3:0]: Watchdog Timer Prescaler 3, 2, 1 and 0
The WDP[3:0] bits determine the Watchdog Timer prescaling when the Watchdog Timer is
running. The different prescaling values and their corresponding time-out periods are shown in
Table 11-2 on page 57. 

Table 11-2. Watchdog Timer Prescale Select

WDP3 WDP2 WDP1 WDP0
Number of WDT Oscillator 

Cycles
Typical Time-out at 

VCC = 5.0V

0 0 0 0 2K (2048) cycles 16ms

0 0 0 1 4K (4096) cycles 32ms

0 0 1 0 8K (8192) cycles 64ms

0 0 1 1 16K (16384) cycles 0.125s

0 1 0 0 32K (32768) cycles 0.25s

0 1 0 1 64K (65536) cycles 0.5s

0 1 1 0 128K (131072) cycles 1.0s

0 1 1 1 256K (262144) cycles 2.0s

1 0 0 0 512K (524288) cycles 4.0s

1 0 0 1 1024K (1048576) cycles 8.0s

1 0 1 0

Reserved

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1
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12. Interrupts
This section describes the specifics of the interrupt handling as performed in the Atmel® 
ATmega48PA/88PA/168PA. For a general explanation of the AVR interrupt handling, refer to
“Reset and Interrupt Handling” on page 14.

The interrupt vectors in the Atmel ATmega48PA, Atmel ATmega88PA, and ATmega168PA
are generally the same, with the following differences:

• Each Interrupt Vector occupies two instruction words in Atmel ATmega168PA and one 
instruction word in the Atmel ATmega48PA and Atmel ATmega88PA.

• Atmel ATmega48PA does not have a separate Boot Loader Section. In the Atmel 
ATmega88PA, and Atmel ATmega168PA, the Reset Vector is affected by the BOOTRST 
fuse, and the Interrupt Vector start address is affected by the IVSEL bit in MCUCR.

12.1 Interrupt Vectors in Atmel ATmega48PA

Table 12-1. Reset and Interrupt Vectors in ATmega48PA

Vector No. Program Address Source Interrupt Definition

1 0x000 RESET External Pin, Power-on Reset, Brown-out Reset and Watchdog System Reset

2 0x001 INT0 External Interrupt Request 0

3 0x002 INT1 External Interrupt Request 1

4 0x003 PCINT0 Pin Change Interrupt Request 0

5 0x004 PCINT1 Pin Change Interrupt Request 1

6 0x005 PCINT2 Pin Change Interrupt Request 2

7 0x006 WDT Watchdog Time-out Interrupt

8 0x007 TIMER2 COMPA Timer/Counter2 Compare Match A

9 0x008 TIMER2 COMPB Timer/Counter2 Compare Match B

10 0x009 TIMER2 OVF Timer/Counter2 Overflow

11 0x00A TIMER1 CAPT Timer/Counter1 Capture Event

12 0x00B TIMER1 COMPA Timer/Counter1 Compare Match A

13 0x00C TIMER1 COMPB Timer/Coutner1 Compare Match B

14 0x00D TIMER1 OVF Timer/Counter1 Overflow

15 0x00E TIMER0 COMPA Timer/Counter0 Compare Match A

16 0x00F TIMER0 COMPB Timer/Counter0 Compare Match B

17 0x010 TIMER0 OVF Timer/Counter0 Overflow

18 0x011 SPI, STC SPI Serial Transfer Complete

19 0x012 USART, RX USART Rx Complete

20 0x013 USART, UDRE USART, Data Register Empty

21 0x014 USART, TX USART, Tx Complete

22 0x015 ADC ADC Conversion Complete

23 0x016 EE READY EEPROM Ready

24 0x017 ANALOG COMP Analog Comparator

25 0x018 TWI 2-wire Serial Interface

26 0x019 SPM READY Store Program Memory Ready
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The most typical and general program setup for the Reset and Interrupt Vector Addresses in
Atmel® ATmega48PA is:

Address Labels Code Comments

0x000 rjmp RESET ; Reset Handler

0x001 rjmp EXT_INT0 ; IRQ0 Handler

0x002 rjmp EXT_INT1 ; IRQ1 Handler

0x003 rjmp PCINT0 ; PCINT0 Handler

0x004 rjmp PCINT1 ; PCINT1 Handler

0x005 rjmp PCINT2 ; PCINT2 Handler

0x006 rjmp WDT ; Watchdog Timer Handler

0x007 rjmp TIM2_COMPA ; Timer2 Compare A Handler

0x008 rjmp TIM2_COMPB ; Timer2 Compare B Handler

0x009 rjmp TIM2_OVF ; Timer2 Overflow Handler

0x00A rjmp TIM1_CAPT ; Timer1 Capture Handler

0x00B rjmp TIM1_COMPA ; Timer1 Compare A Handler

0x00C rjmp TIM1_COMPB ; Timer1 Compare B Handler

0x00D rjmp TIM1_OVF ; Timer1 Overflow Handler

0x00E rjmp TIM0_COMPA ; Timer0 Compare A Handler

0x00F rjmp TIM0_COMPB ; Timer0 Compare B Handler

0x010 rjmp TIM0_OVF ; Timer0 Overflow Handler

0x011 rjmp SPI_STC ; SPI Transfer Complete Handler

0x012 rjmp USART_RXC ; USART, RX Complete Handler

0x013 rjmp USART_UDRE ; USART, UDR Empty Handler

0x014 rjmp USART_TXC ; USART, TX Complete Handler

0x015 rjmp ADC ; ADC Conversion Complete Handler

0x016 rjmp EE_RDY ; EEPROM Ready Handler

0x017 rjmp ANA_COMP ; Analog Comparator Handler

0x018 rjmp TWI ; 2-wire Serial Interface Handler

0x019 rjmp SPM_RDY ; Store Program Memory Ready Handler

;

0x01ARESET: ldi r16, high(RAMEND); Main program start

0x01B out SPH,r16 ; Set Stack Pointer to top of RAM

0x01C ldi r16, low(RAMEND)

0x01D out SPL,r16

0x01E sei ; Enable interrupts

0x01F <instr>  xxx

  ...  ...    ...  ... 



60
9223D–AVR–05/12

Atmel ATmega48PA/88PA/168PA

12.2 Interrupt Vectors in the Atmel ATmega88PA

Table 12-3 on page 61 shows reset and Interrupt Vectors placement for the various combina-
tions of BOOTRST and IVSEL settings. If the program never enables an interrupt source, the
Interrupt Vectors are not used, and regular program code can be placed at these locations.
This is also the case if the Reset Vector is in the Application section while the Interrupt Vectors
are in the Boot section or vice versa.

Table 12-2. Reset and Interrupt Vectors in the Atmel ATmega88PA 

Vector No. Program Address(2) Source Interrupt Definition

1 0x000(1) RESET
External Pin, Power-on Reset, Brown-out Reset and Watchdog System 
Reset

2 0x001 INT0 External Interrupt Request 0

3 0x002 INT1 External Interrupt Request 1

4 0x003 PCINT0 Pin Change Interrupt Request 0

5 0x004 PCINT1 Pin Change Interrupt Request 1

6 0x005 PCINT2 Pin Change Interrupt Request 2

7 0x006 WDT Watchdog Time-out Interrupt

8 0x007 TIMER2 COMPA Timer/Counter2 Compare Match A

9 0x008 TIMER2 COMPB Timer/Counter2 Compare Match B

10 0x009 TIMER2 OVF Timer/Counter2 Overflow

11 0x00A TIMER1 CAPT Timer/Counter1 Capture Event

12 0x00B TIMER1 COMPA Timer/Counter1 Compare Match A

13 0x00C TIMER1 COMPB Timer/Coutner1 Compare Match B

14 0x00D TIMER1 OVF Timer/Counter1 Overflow

15 0x00E TIMER0 COMPA Timer/Counter0 Compare Match A

16 0x00F TIMER0 COMPB Timer/Counter0 Compare Match B

17 0x010 TIMER0 OVF Timer/Counter0 Overflow

18 0x011 SPI, STC SPI Serial Transfer Complete

19 0x012 USART, RX USART Rx Complete

20 0x013 USART, UDRE USART, Data Register Empty

21 0x014 USART, TX USART, Tx Complete

22 0x015 ADC ADC Conversion Complete

23 0x016 EE READY EEPROM Ready

24 0x017 ANALOG COMP Analog Comparator

25 0x018 TWI 2-wire Serial Interface

26 0x019 SPM READY Store Program Memory Ready

Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader address at reset, see “Boot Loader Sup-
port – Read-While-Write Self-Programming” on page 277.

2. When the IVSEL bit in MCUCR is set, Interrupt Vectors will be moved to the start of the Boot Flash Section. The address of 
each Interrupt Vector will then be the address in this table added to the start address of the Boot Flash Section.
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The most typical and general program setup for the Reset and Interrupt Vector Addresses in
the Atmel® ATmega88PA is:

Address Labels Code Comments

0x000 rjmp RESET ; Reset Handler

0x001 rjmp EXT_INT0 ; IRQ0 Handler

0x002 rjmp EXT_INT1 ; IRQ1 Handler

0x003 rjmp PCINT0 ; PCINT0 Handler

0x004 rjmp PCINT1 ; PCINT1 Handler

0x005 rjmp PCINT2 ; PCINT2 Handler

0x006 rjmp WDT ; Watchdog Timer Handler

0x007 rjmp TIM2_COMPA ; Timer2 Compare A Handler

0X008 rjmp TIM2_COMPB ; Timer2 Compare B Handler

0x009 rjmp TIM2_OVF ; Timer2 Overflow Handler

0x00A rjmp TIM1_CAPT ; Timer1 Capture Handler

0x00B rjmp TIM1_COMPA ; Timer1 Compare A Handler

0x00C rjmp TIM1_COMPB ; Timer1 Compare B Handler

0x00D rjmp TIM1_OVF ; Timer1 Overflow Handler

0x00E rjmp TIM0_COMPA ; Timer0 Compare A Handler

0x00F rjmp TIM0_COMPB ; Timer0 Compare B Handler

0x010 rjmp TIM0_OVF ; Timer0 Overflow Handler

0x011 rjmp SPI_STC ; SPI Transfer Complete Handler

0x012 rjmp USART_RXC ; USART, RX Complete Handler

0x013 rjmp USART_UDRE ; USART, UDR Empty Handler

0x014 rjmp USART_TXC ; USART, TX Complete Handler

0x015 rjmp ADC ; ADC Conversion Complete Handler

0x016 rjmp EE_RDY ; EEPROM Ready Handler

0x017 rjmp ANA_COMP ; Analog Comparator Handler

0x018 rjmp TWI ; 2-wire Serial Interface Handler

0x019 rjmp SPM_RDY ; Store Program Memory Ready Handler

;

0x01ARESET: ldi r16, high(RAMEND); Main program start

0x01B out SPH,r16 ; Set Stack Pointer to top of RAM

0x01C ldi r16, low(RAMEND)

0x01D out SPL,r16
0x01E sei ; Enable interrupts

0x01F <instr>  xxx

Table 12-3. Reset and Interrupt Vectors Placement in the Atmel ATmega88PA(1)

BOOTRST IVSEL Reset Address Interrupt Vectors Start Address

1 0 0x000 0x001

1 1 0x000 Boot Reset Address + 0x001

0 0 Boot Reset Address 0x001

0 1 Boot Reset Address Boot Reset Address + 0x001

Note: 1. The Boot Reset Address is shown in Table 27-7 on page 290. For the BOOTRST Fuse “1” 
means unprogrammed while “0” means programmed.
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When the BOOTRST Fuse is unprogrammed, the Boot section size set to 2K bytes and the
IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most typical
and general program setup for the Reset and Interrupt Vector Addresses in the Atmel® 
ATmega88PA is:

Address Labels Code Comments

0x000 RESET: ldi r16,high(RAMEND); Main program start

0x001 out SPH,r16 ; Set Stack Pointer to top of RAM

0x002 ldi r16,low(RAMEND)

0x003 out SPL,r16
0x004 sei ; Enable interrupts

0x005 <instr>  xxx

;

.org 0xC01

0xC01 rjmp EXT_INT0 ; IRQ0 Handler

0xC02 rjmp EXT_INT1 ; IRQ1 Handler

... ... ... ; 

0xC19 rjmp SPM_RDY ; Store Program Memory Ready Handler

When the BOOTRST Fuse is programmed and the Boot section size set to 2K bytes, the most
typical and general program setup for the Reset and Interrupt Vector Addresses in the Atmel
ATmega88PA is:

Address Labels Code Comments

.org 0x001

0x001 rjmp EXT_INT0 ; IRQ0 Handler

0x002 rjmp EXT_INT1 ; IRQ1 Handler

... ... ... ; 

0x019 rjmp SPM_RDY ; Store Program Memory Ready Handler

;

.org 0xC00
0xC00 RESET: ldi r16,high(RAMEND); Main program start

0xC01 out SPH,r16 ; Set Stack Pointer to top of RAM

0xC02 ldi r16,low(RAMEND)

0xC03 out SPL,r16
0xC04 sei ; Enable interrupts

0xC05 <instr>  xxx

When the BOOTRST Fuse is programmed, the Boot section size set to 2K bytes and the
IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most typical
and general program setup for the Reset and Interrupt Vector Addresses in the Atmel
ATmega88PA is:

Address Labels Code Comments

;

.org 0xC00
0xC00 rjmp RESET ; Reset handler

0xC01 rjmp EXT_INT0 ; IRQ0 Handler

0xC02 rjmp EXT_INT1 ; IRQ1 Handler

... ... ... ; 
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0xC19 rjmp SPM_RDY ; Store Program Memory Ready Handler

;

0xC1A RESET: ldi r16,high(RAMEND); Main program start

0xC1B out SPH,r16 ; Set Stack Pointer to top of RAM

0xC1C ldi r16,low(RAMEND)

0xC1D out SPL,r16
0xC1E sei ; Enable interrupts

0xC1F <instr>  xxx

12.3 Interrupt Vectors in the Atmel ATmega168PA 

Table 12-4. Reset and Interrupt Vectors in the Atmel ATmega168PA 

VectorNo. Program Address(2) Source Interrupt Definition

1 0x0000(1) RESET
External Pin, Power-on Reset, Brown-out Reset and Watchdog 
System Reset

2 0x0002 INT0 External Interrupt Request 0

3 0x0004 INT1 External Interrupt Request 1

4 0x0006 PCINT0 Pin Change Interrupt Request 0

5 0x0008 PCINT1 Pin Change Interrupt Request 1

6 0x000A PCINT2 Pin Change Interrupt Request 2

7 0x000C WDT Watchdog Time-out Interrupt

8 0x000E TIMER2 COMPA Timer/Counter2 Compare Match A

9 0x0010 TIMER2 COMPB Timer/Counter2 Compare Match B

10 0x0012 TIMER2 OVF Timer/Counter2 Overflow

11 0x0014 TIMER1 CAPT Timer/Counter1 Capture Event

12 0x0016 TIMER1 COMPA Timer/Counter1 Compare Match A

13 0x0018 TIMER1 COMPB Timer/Coutner1 Compare Match B

14 0x001A TIMER1 OVF Timer/Counter1 Overflow

15 0x001C TIMER0 COMPA Timer/Counter0 Compare Match A

16 0x001E TIMER0 COMPB Timer/Counter0 Compare Match B

17 0x0020 TIMER0 OVF Timer/Counter0 Overflow

18 0x0022 SPI, STC SPI Serial Transfer Complete

19 0x0024 USART, RX USART Rx Complete

20 0x0026 USART, UDRE USART, Data Register Empty

21 0x0028 USART, TX USART, Tx Complete

22 0x002A ADC ADC Conversion Complete

23 0x002C EE READY EEPROM Ready

24 0x002E ANALOG COMP Analog Comparator

25 0x0030 TWI 2-wire Serial Interface

26 0x0032 SPM READY Store Program Memory Ready

Notes: 1. When the BOOTRST Fuse is programmed, the device will jump to the Boot Loader address at reset, see “Boot Loader Sup-
port – Read-While-Write Self-Programming” on page 277.

2. When the IVSEL bit in MCUCR is set, Interrupt Vectors will be moved to the start of the Boot Flash Section. The address of 
each Interrupt Vector will then be the address in this table added to the start address of the Boot Flash Section.
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Table 12-5 on page 64 shows reset and Interrupt Vectors placement for the various combina-
tions of BOOTRST and IVSEL settings. If the program never enables an interrupt source, the
Interrupt Vectors are not used, and regular program code can be placed at these locations.
This is also the case if the Reset Vector is in the Application section while the Interrupt Vectors
are in the Boot section or vice versa. 

The most typical and general program setup for the Reset and Interrupt Vector Addresses in
the Atmel® ATmega168PA is:

Address Labels Code Comments

0x0000 jmp RESET ; Reset Handler

0x0002 jmp EXT_INT0 ; IRQ0 Handler

0x0004 jmp EXT_INT1 ; IRQ1 Handler

0x0006 jmp PCINT0 ; PCINT0 Handler

0x0008 jmp PCINT1 ; PCINT1 Handler

0x000A jmp PCINT2 ; PCINT2 Handler

0x000C jmp WDT ; Watchdog Timer Handler

0x000E jmp TIM2_COMPA ; Timer2 Compare A Handler

0x0010 jmp TIM2_COMPB ; Timer2 Compare B Handler

0x0012 jmp TIM2_OVF ; Timer2 Overflow Handler

0x0014 jmp TIM1_CAPT ; Timer1 Capture Handler

0x0016 jmp TIM1_COMPA ; Timer1 Compare A Handler

0x0018 jmp TIM1_COMPB ; Timer1 Compare B Handler

0x001A jmp TIM1_OVF ; Timer1 Overflow Handler

0x001C jmp TIM0_COMPA ; Timer0 Compare A Handler

0x001E jmp TIM0_COMPB ; Timer0 Compare B Handler

0x0020 jmp TIM0_OVF ; Timer0 Overflow Handler

0x0022 jmp SPI_STC ; SPI Transfer Complete Handler

0x0024 jmp USART_RXC ; USART, RX Complete Handler

0x0026 jmp USART_UDRE ; USART, UDR Empty Handler

0x0028 jmp USART_TXC ; USART, TX Complete Handler

0x002A jmp ADC ; ADC Conversion Complete Handler

0x002C jmp EE_RDY ; EEPROM Ready Handler

0x002E jmp ANA_COMP ; Analog Comparator Handler

0x0030 jmp TWI ; 2-wire Serial Interface Handler

0x0032 jmp SPM_RDY ; Store Program Memory Ready Handler

;

Table 12-5. Reset and Interrupt Vectors Placement in the Atmel ATmega168PA(1)

BOOTRST IVSEL Reset Address Interrupt Vectors Start Address

1 0 0x000 0x002

1 1 0x000 Boot Reset Address + 0x0002

0 0 Boot Reset Address 0x002

0 1 Boot Reset Address Boot Reset Address + 0x0002

Note: 1. The Boot Reset Address is shown in Table 27-7 on page 290. For the BOOTRST Fuse “1” 
means unprogrammed while “0” means programmed.



65
9223D–AVR–05/12

Atmel ATmega48PA/88PA/168PA

0x0033RESET: ldi r16, high(RAMEND); Main program start

0x0034 out SPH,r16 ; Set Stack Pointer to top of RAM

0x0035 ldi r16, low(RAMEND)

0x0036 out SPL,r16

0x0037 sei ; Enable interrupts

0x0038 <instr>  xxx

  ...  ...    ...  ... 

When the BOOTRST Fuse is unprogrammed, the Boot section size set to 2K bytes and the
IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most typical
and general program setup for the Reset and Interrupt Vector Addresses in the Atmel® 
ATmega168PA is:

Address Labels Code Comments

0x0000 RESET: ldi r16,high(RAMEND); Main program start

0x0001 out SPH,r16 ; Set Stack Pointer to top of RAM

0x0002 ldi r16,low(RAMEND)

0x0003 out SPL,r16
0x0004 sei ; Enable interrupts

0x0005 <instr>  xxx

;

.org 0x1C02

0x1C02 jmp EXT_INT0 ; IRQ0 Handler

0x1C04 jmp EXT_INT1 ; IRQ1 Handler

... ... ... ; 

0x1C32 jmp SPM_RDY ; Store Program Memory Ready Handler

When the BOOTRST Fuse is programmed and the Boot section size set to 2K bytes, the most
typical and general program setup for the Reset and Interrupt Vector Addresses in the Atmel
ATmega168PA is:

Address Labels Code Comments

.org 0x0002

0x0002 jmp EXT_INT0 ; IRQ0 Handler

0x0004 jmp EXT_INT1 ; IRQ1 Handler

... ... ... ; 

0x0032 jmp SPM_RDY ; Store Program Memory Ready Handler

;

.org 0x1C00
0x1C00 RESET: ldi r16,high(RAMEND); Main program start

0x1C01 out SPH,r16 ; Set Stack Pointer to top of RAM

0x1C02 ldi r16,low(RAMEND)

0x1C03 out SPL,r16
0x1C04 sei ; Enable interrupts

0x1C05 <instr>  xxx
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When the BOOTRST Fuse is programmed, the Boot section size set to 2K bytes and the
IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most typical
and general program setup for the Reset and Interrupt Vector Addresses in the Atmel® 
ATmega168PA is:

Address Labels Code Comments

;

.org 0x1C00
0x1C00 jmp RESET ; Reset handler

0x1C02 jmp EXT_INT0 ; IRQ0 Handler

0x1C04 jmp EXT_INT1 ; IRQ1 Handler

... ... ... ; 

0x1C32 jmp SPM_RDY ; Store Program Memory Ready Handler

;

0x1C33 RESET: ldi r16,high(RAMEND); Main program start

0x1C34 out SPH,r16 ; Set Stack Pointer to top of RAM

0x1C35 ldi r16,low(RAMEND)

0x1C36 out SPL,r16
0x1C37 sei ; Enable interrupts

0x1C38 <instr>  xxx

12.4 Register Description

12.4.1 Moving Interrupts Between Application and Boot Space, Atmel ATmega88PA, ATmega168PA
The MCU Control Register controls the placement of the Interrupt Vector table.

MCUCR – MCU Control Register

Note: 1. BODS and BODSE only available for picoPower devices ATmega48PA/88PA/168PA

• Bit 1 – IVSEL: Interrupt Vector Select
When the IVSEL bit is cleared (zero), the Interrupt Vectors are placed at the start of the Flash
memory. When this bit is set (one), the Interrupt Vectors are moved to the beginning of the
Boot Loader section of the Flash. The actual address of the start of the Boot Flash Section is
determined by the BOOTSZ Fuses. Refer to the section “Boot Loader Support –
Read-While-Write Self-Programming” on page 277 for details. To avoid unintentional changes
of Interrupt Vector tables, a special write procedure must be followed to change the IVSEL bit:

a. Write the Interrupt Vector Change Enable (IVCE) bit to one.

b. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE. 

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) – BODS(1) BODSE(1) PUD – – IVSEL IVCE MCUCR

Read/Write R R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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Interrupts will automatically be disabled while this sequence is executed. Interrupts are dis-
abled in the cycle IVCE is set, and they remain disabled until after the instruction following the
write to IVSEL. If IVSEL is not written, interrupts remain disabled for four cycles. The I-bit in
the Status Register is unaffected by the automatic disabling.

Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLB02 is pro-
grammed, interrupts are disabled while executing from the Application section. If Interrupt 
Vectors are placed in the Application section and Boot Lock bit BLB12 is programed, interrupts 
are disabled while executing from the Boot Loader section. Refer to the section “Boot Loader 
Support – Read-While-Write Self-Programming” on page 277 for details on Boot Lock bits.

• Bit 0 – IVCE: Interrupt Vector Change Enable

The IVCE bit must be written to logic one to enable change of the IVSEL bit. IVCE is cleared
by hardware four cycles after it is written or when IVSEL is written. Setting the IVCE bit will dis-
able interrupts, as explained in the IVSEL description above. See Code Example below. 

Assembly Code Example

Move_interrupts:

; Enable change of Interrupt Vectors

ldi  r16, (1<<IVCE)

out  MCUCR, r16

; Move interrupts to Boot Flash section

ldi  r16, (1<<IVSEL)

out  MCUCR, r16

ret

C Code Example

void Move_interrupts(void)

{

/* Enable change of Interrupt Vectors */

MCUCR = (1<<IVCE);

/* Move interrupts to Boot Flash section */

MCUCR = (1<<IVSEL);

}
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13. External Interrupts
The External Interrupts are triggered by the INT0 and INT1 pins or any of the PCINT23...0
pins. Observe that, if enabled, the interrupts will trigger even if the INT0 and INT1 or
PCINT23...0 pins are configured as outputs. This feature provides a way of generating a soft-
ware interrupt. The pin change interrupt PCI2 will trigger if any enabled PCINT[23:16] pin
toggles. The pin change interrupt PCI1 will trigger if any enabled PCINT[14:8] pin toggles. The
pin change interrupt PCI0 will trigger if any enabled PCINT[7:0] pin toggles. The PCMSK2,
PCMSK1 and PCMSK0 Registers control which pins contribute to the pin change interrupts.
Pin change interrupts on PCINT23...0 are detected asynchronously. This implies that these
interrupts can be used for waking the part also from sleep modes other than Idle mode.

The INT0 and INT1 interrupts can be triggered by a falling or rising edge or a low level. This is
set up as indicated in the specification for the External Interrupt Control Register A – EICRA.
When the INT0 or INT1 interrupts are enabled and are configured as level triggered, the inter-
rupts will trigger as long as the pin is held low. Note that recognition of falling or rising edge
interrupts on INT0 or INT1 requires the presence of an I/O clock, described in “Clock Systems
and their Distribution” on page 26. Low level interrupt on INT0 and INT1 is detected asynchro-
nously. This implies that this interrupt can be used for waking the part also from sleep modes
other than Idle mode. The I/O clock is halted in all sleep modes except Idle mode.

Note: Note that if a level triggered interrupt is used for wake-up from Power-down, the required level 
must be held long enough for the MCU to complete the wake-up to trigger the level interrupt. If 
the level disappears before the end of the Start-up Time, the MCU will still wake up, but no inter-
rupt will be generated. The start-up time is defined by the SUT and CKSEL Fuses as described 
in “System Clock and Clock Options” on page 26.

13.1 Pin Change Interrupt Timing
An example of timing of a pin change interrupt is shown in Figure 13-1.

Figure 13-1. Timing of pin change interrupts 
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13.2 Register Description

13.2.1 EICRA – External Interrupt Control Register A
The External Interrupt Control Register A contains control bits for interrupt sense control.

• Bit 7:4 – Reserved
These bits are unused bits in the Atmel® ATmega48PA/88PA/168PA, and will always read as
zero.

• Bit 3, 2 – ISC11, ISC10: Interrupt Sense Control 1 Bit 1 and Bit 0
The External Interrupt 1 is activated by the external pin INT1 if the SREG I-flag and the corre-
sponding interrupt mask are set. The level and edges on the external INT1 pin that activate the
interrupt are defined in Table 13-1. The value on the INT1 pin is sampled before detecting
edges. If edge or toggle interrupt is selected, pulses that last longer than one clock period will
generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level
interrupt is selected, the low level must be held until the completion of the currently executing
instruction to generate an interrupt.

• Bit 1, 0 – ISC01, ISC00: Interrupt Sense Control 0 Bit 1 and Bit 0
The External Interrupt 0 is activated by the external pin INT0 if the SREG I-flag and the corre-
sponding interrupt mask are set. The level and edges on the external INT0 pin that activate the
interrupt are defined in Table 13-2. The value on the INT0 pin is sampled before detecting
edges. If edge or toggle interrupt is selected, pulses that last longer than one clock period will
generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low level
interrupt is selected, the low level must be held until the completion of the currently executing
instruction to generate an interrupt.

Bit 7 6 5 4 3 2 1 0

(0x69) – – – – ISC11 ISC10 ISC01 ISC00 EICRA

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 13-1. Interrupt 1 Sense Control

ISC11 ISC10 Description

0 0 The low level of INT1 generates an interrupt request.

0 1 Any logical change on INT1 generates an interrupt request.

1 0 The falling edge of INT1 generates an interrupt request.

1 1 The rising edge of INT1 generates an interrupt request.

Table 13-2. Interrupt 0 Sense Control

ISC01 ISC00 Description

0 0 The low level of INT0 generates an interrupt request.

0 1 Any logical change on INT0 generates an interrupt request.

1 0 The falling edge of INT0 generates an interrupt request.

1 1 The rising edge of INT0 generates an interrupt request.



70
9223D–AVR–05/12

Atmel ATmega48PA/88PA/168PA

13.2.2 EIMSK – External Interrupt Mask Register

• Bit 7:2 – Reserved
These bits are unused bits in the Atmel® ATmega48PA/88PA/168PA, and will always read as
zero.

• Bit 1 – INT1: External Interrupt Request 1 Enable
When the INT1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the
external pin interrupt is enabled. The Interrupt Sense Control1 bits 1/0 (ISC11 and ISC10) in
the External Interrupt Control Register A (EICRA) define whether the external interrupt is acti-
vated on rising and/or falling edge of the INT1 pin or level sensed. Activity on the pin will cause
an interrupt request even if INT1 is configured as an output. The corresponding interrupt of
External Interrupt Request 1 is executed from the INT1 Interrupt Vector.

• Bit 0 – INT0: External Interrupt Request 0 Enable
When the INT0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the
external pin interrupt is enabled. The Interrupt Sense Control0 bits 1/0 (ISC01 and ISC00) in
the External Interrupt Control Register A (EICRA) define whether the external interrupt is acti-
vated on rising and/or falling edge of the INT0 pin or level sensed. Activity on the pin will cause
an interrupt request even if INT0 is configured as an output. The corresponding interrupt of
External Interrupt Request 0 is executed from the INT0 Interrupt Vector.

13.2.3 EIFR – External Interrupt Flag Register

• Bit 7:2 – Reserved
These bits are unused bits in the Atmel ATmega48PA/88PA/168PA, and will always read as
zero.

• Bit 1 – INTF1: External Interrupt Flag 1
When an edge or logic change on the INT1 pin triggers an interrupt request, INTF1 becomes
set (one). If the I-bit in SREG and the INT1 bit in EIMSK are set (one), the MCU will jump to
the corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared
when INT1 is configured as a level interrupt.

• Bit 0 – INTF0: External Interrupt Flag 0
When an edge or logic change on the INT0 pin triggers an interrupt request, INTF0 becomes
set (one). If the I-bit in SREG and the INT0 bit in EIMSK are set (one), the MCU will jump to
the corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it. This flag is always cleared
when INT0 is configured as a level interrupt.

Bit 7 6 5 4 3 2 1 0

0x1D (0x3D) – – – – – – INT1 INT0 EIMSK

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1C (0x3C) – – – – – – INTF1 INTF0 EIFR

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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13.2.4 PCICR – Pin Change Interrupt Control Register

• Bit 7:3 – Reserved
These bits are unused bits in the Atmel® ATmega48PA/88PA/168PA, and will always read as
zero.

• Bit 2 – PCIE2: Pin Change Interrupt Enable 2
When the PCIE2 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 2 is enabled. Any change on any enabled PCINT[23:16] pin will cause an
interrupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the
PCI2 Interrupt Vector. PCINT[23:16] pins are enabled individually by the PCMSK2 Register.

• Bit 1 – PCIE1: Pin Change Interrupt Enable 1
When the PCIE1 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 1 is enabled. Any change on any enabled PCINT[14:8] pin will cause an inter-
rupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI1
Interrupt Vector. PCINT[14:8] pins are enabled individually by the PCMSK1 Register.

• Bit 0 – PCIE0: Pin Change Interrupt Enable 0
When the PCIE0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), pin
change interrupt 0 is enabled. Any change on any enabled PCINT[7:0] pin will cause an inter-
rupt. The corresponding interrupt of Pin Change Interrupt Request is executed from the PCI0
Interrupt Vector. PCINT[7:0] pins are enabled individually by the PCMSK0 Register.

13.2.5 PCIFR – Pin Change Interrupt Flag Register

• Bit 7:3 – Reserved
These bits are unused bits in the Atmel ATmega48PA/88PA/168PA, and will always read as
zero.

• Bit 2 – PCIF2: Pin Change Interrupt Flag 2
When a logic change on any PCINT[23:16] pin triggers an interrupt request, PCIF2 becomes
set (one). If the I-bit in SREG and the PCIE2 bit in PCICR are set (one), the MCU will jump to
the corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it.

• Bit 1 – PCIF1: Pin Change Interrupt Flag 1
When a logic change on any PCINT[14:8] pin triggers an interrupt request, PCIF1 becomes
set (one). If the I-bit in SREG and the PCIE1 bit in PCICR are set (one), the MCU will jump to
the corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it.

Bit 7 6 5 4 3 2 1 0

(0x68) – – – – – PCIE2 PCIE1 PCIE0 PCICR

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x1B (0x3B) – – – – – PCIF2 PCIF1 PCIF0 PCIFR

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 0 – PCIF0: Pin Change Interrupt Flag 0
When a logic change on any PCINT[7:0] pin triggers an interrupt request, PCIF0 becomes set
(one). If the I-bit in SREG and the PCIE0 bit in PCICR are set (one), the MCU will jump to the
corresponding Interrupt Vector. The flag is cleared when the interrupt routine is executed.
Alternatively, the flag can be cleared by writing a logical one to it.

13.2.6 PCMSK2 – Pin Change Mask Register 2

• Bit 7:0 – PCINT[23:16]: Pin Change Enable Mask 23...16
Each PCINT[23:16]-bit selects whether pin change interrupt is enabled on the corresponding
I/O pin. If PCINT[23:16] is set and the PCIE2 bit in PCICR is set, pin change interrupt is
enabled on the corresponding I/O pin. If PCINT[23:16] is cleared, pin change interrupt on the
corresponding I/O pin is disabled.

13.2.7 PCMSK1 – Pin Change Mask Register 1

• Bit 7 – Reserved
This bit is an unused bit in the Atmel® ATmega48PA/88PA/168PA, and will always read as
zero.

• Bit 6:0 – PCINT[14:8]: Pin Change Enable Mask 14...8
Each PCINT[14:8]-bit selects whether pin change interrupt is enabled on the corresponding
I/O pin. If PCINT[14:8] is set and the PCIE1 bit in PCICR is set, pin change interrupt is enabled
on the corresponding I/O pin. If PCINT[14:8] is cleared, pin change interrupt on the corre-
sponding I/O pin is disabled.

13.2.8 PCMSK0 – Pin Change Mask Register 0

• Bit 7:0 – PCINT[7:0]: Pin Change Enable Mask 7...0
Each PCINT[7:0] bit selects whether pin change interrupt is enabled on the corresponding I/O
pin. If PCINT[7:0] is set and the PCIE0 bit in PCICR is set, pin change interrupt is enabled on
the corresponding I/O pin. If PCINT[7:0] is cleared, pin change interrupt on the corresponding
I/O pin is disabled.

Bit 7 6 5 4 3 2 1 0

(0x6D) PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 PCMSK2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6C) – PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 PCMSK1

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6B) PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 PCMSK0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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14. I/O-Ports

14.1 Overview
All AVR ports have true Read-Modify-Write functionality when used as general digital I/O
ports. This means that the direction of one port pin can be changed without unintentionally
changing the direction of any other pin with the SBI and CBI instructions. The same applies
when changing drive value (if configured as output) or enabling/disabling of pull-up resistors (if
configured as input). Each output buffer has symmetrical drive characteristics with both high
sink and source capability. The pin driver is strong enough to drive LED displays directly. All
port pins have individually selectable pull-up resistors with a supply-voltage invariant resis-
tance. All I/O pins have protection diodes to both VCC and Ground as indicated in Figure 14-1.
Refer to “Electrical Characteristics” on page 313 for a complete list of parameters.

Figure 14-1. I/O Pin Equivalent Schematic 

All registers and bit references in this section are written in general form. A lower case “x” rep-
resents the numbering letter for the port, and a lower case “n” represents the bit number.
However, when using the register or bit defines in a program, the precise form must be used.
For example, PORTB3 for bit no. 3 in Port B, here documented generally as PORTxn. The
physical I/O Registers and bit locations are listed in “Register Description” on page 91.

Three I/O memory address locations are allocated for each port, one each for the Data Regis-
ter – PORTx, Data Direction Register – DDRx, and the Port Input Pins – PINx. The Port Input
Pins I/O location is read only, while the Data Register and the Data Direction Register are
read/write. However, writing a logic one to a bit in the PINx Register, will result in a toggle in
the corresponding bit in the Data Register. In addition, the Pull-up Disable – PUD bit in
MCUCR disables the pull-up function for all pins in all ports when set.

Using the I/O port as General Digital I/O is described in “Ports as General Digital I/O” on page
74. Most port pins are multiplexed with alternate functions for the peripheral features on the
device. How each alternate function interferes with the port pin is described in “Alternate Port
Functions” on page 79. Refer to the individual module sections for a full description of the
alternate functions. 

Note that enabling the alternate function of some of the port pins does not affect the use of the
other pins in the port as general digital I/O.
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14.2 Ports as General Digital I/O
The ports are bi-directional I/O ports with optional internal pull-ups. Figure 14-2 shows a func-
tional description of one I/O-port pin, here generically called Pxn.

Figure 14-2. General Digital I/O(1) 

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O, 
SLEEP, and PUD are common to all ports.

14.2.1 Configuring the Pin
Each port pin consists of three register bits: DDxn, PORTxn, and PINxn. As shown in “Regis-
ter Description” on page 91, the DDxn bits are accessed at the DDRx I/O address, the
PORTxn bits at the PORTx I/O address, and the PINxn bits at the PINx I/O address.

The DDxn bit in the DDRx Register selects the direction of this pin. If DDxn is written logic one,
Pxn is configured as an output pin. If DDxn is written logic zero, Pxn is configured as an input
pin. 

If PORTxn is written logic one when the pin is configured as an input pin, the pull-up resistor is
activated. To switch the pull-up resistor off, PORTxn has to be written logic zero or the pin has
to be configured as an output pin. The port pins are tri-stated when reset condition becomes
active, even if no clocks are running.

If PORTxn is written logic one when the pin is configured as an output pin, the port pin is
driven high (one). If PORTxn is written logic zero when the pin is configured as an output pin,
the port pin is driven low (zero). 
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14.2.2 Toggling the Pin
Writing a logic one to PINxn toggles the value of PORTxn, independent on the value of
DDRxn. Note that the SBI instruction can be used to toggle one single bit in a port.

14.2.3 Switching Between Input and Output
When switching between tri-state ({DDxn, PORTxn} = 0b00) and output high ({DDxn,
PORTxn} = 0b11), an intermediate state with either pull-up enabled {DDxn, PORTxn} = 0b01)
or output low ({DDxn, PORTxn} = 0b10) must occur. Normally, the pull-up enabled state is fully
acceptable, as a high-impedance environment will not notice the difference between a strong
high driver and a pull-up. If this is not the case, the PUD bit in the MCUCR Register can be set
to disable all pull-ups in all ports. 

Switching between input with pull-up and output low generates the same problem. The user
must use either the tri-state ({DDxn, PORTxn} = 0b00) or the output high state ({DDxn,
PORTxn} = 0b11) as an intermediate step.

Table 14-1 summarizes the control signals for the pin value. 

14.2.4 Reading the Pin Value
Independent of the setting of Data Direction bit DDxn, the port pin can be read through the
PINxn Register bit. As shown in Figure 14-2, the PINxn Register bit and the preceding latch
constitute a synchronizer. This is needed to avoid metastability if the physical pin changes
value near the edge of the internal clock, but it also introduces a delay. Figure 14-3 shows a
timing diagram of the synchronization when reading an externally applied pin value. The max-
imum and minimum propagation delays are denoted tpd,max and tpd,min respectively.

Figure 14-3. Synchronization when Reading an Externally Applied Pin value 

Table 14-1. Port Pin Configurations

DDxn PORTxn
PUD

(in MCUCR) I/O Pull-up Comment

0 0 X Input No Tri-state (Hi-Z)

0 1 0 Input Yes Pxn will source current if ext. pulled low.

0 1 1 Input No Tri-state (Hi-Z)

1 0 X Output No Output Low (Sink)

1 1 X Output No Output High (Source)

XXX in r17, PINx

0x00 0xFF
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Consider the clock period starting shortly after the first falling edge of the system clock. The
latch is closed when the clock is low, and goes transparent when the clock is high, as indi-
cated by the shaded region of the “SYNC LATCH” signal. The signal value is latched when the
system clock goes low. It is clocked into the PINxn Register at the succeeding positive clock
edge. As indicated by the two arrows tpd,max and tpd,min, a single signal transition on the pin
will be delayed between ½ and 1½ system clock period depending upon the time of assertion.

When reading back a software assigned pin value, a nop instruction must be inserted as indi-
cated in Figure 14-4. The out instruction sets the “SYNC LATCH” signal at the positive edge of
the clock. In this case, the delay tpd through the synchronizer is 1 system clock period.

Figure 14-4. Synchronization when Reading a Software Assigned Pin Value 

The following code example shows how to set port B pins 0 and 1 high, 2 and 3 low, and
define the port pins from 4 to 7 as input with pull-ups assigned to port pins 6 and 7. The result-
ing pin values are read back again, but as previously discussed, a nop instruction is included
to be able to read back the value recently assigned to some of the pins.

out PORTx, r16 nop in r17, PINx
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SYSTEM CLK

r16

INSTRUCTIONS

SYNC LATCH

PINxn

r17
tpd



77
9223D–AVR–05/12

Atmel ATmega48PA/88PA/168PA

14.2.5 Digital Input Enable and Sleep Modes
As shown in Figure 14-2, the digital input signal can be clamped to ground at the input of the
Schmitt Trigger. The signal denoted SLEEP in the figure, is set by the MCU Sleep Controller in
Power-down mode, Power-save mode, and Standby mode to avoid high power consumption if
some input signals are left floating, or have an analog signal level close to VCC/2.

SLEEP is overridden for port pins enabled as external interrupt pins. If the external interrupt
request is not enabled, SLEEP is active also for these pins. SLEEP is also overridden by vari-
ous other alternate functions as described in “Alternate Port Functions” on page 79.

If a logic high level (“one”) is present on an asynchronous external interrupt pin configured as
“Interrupt on Rising Edge, Falling Edge, or Any Logic Change on Pin” while the external inter-
rupt is not enabled, the corresponding External Interrupt Flag will be set when resuming from
the above mentioned Sleep mode, as the clamping in these sleep mode produces the
requested logic change.

Assembly Code Example(1)

...

; Define pull-ups and set outputs high

; Define directions for port pins

ldi r16,(1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0)

ldi r17,(1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0)

out PORTB,r16

out DDRB,r17

; Insert nop for synchronization

nop

; Read port pins

in r16,PINB

...

C Code Example

unsigned char i;

...

/* Define pull-ups and set outputs high */

/* Define directions for port pins */

PORTB = (1<<PB7)|(1<<PB6)|(1<<PB1)|(1<<PB0);

DDRB = (1<<DDB3)|(1<<DDB2)|(1<<DDB1)|(1<<DDB0);

/* Insert nop for synchronization*/

__no_operation();

/* Read port pins */

i = PINB;

...

Note: 1. For the assembly program, two temporary registers are used to minimize the time from 
pull-ups are set on pins 0, 1, 6, and 7, until the direction bits are correctly set, defining bit 
2 and 3 as low and redefining bits 0 and 1 as strong high drivers.
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14.2.6 Unconnected Pins
If some pins are unused, it is recommended to ensure that these pins have a defined level.
Even though most of the digital inputs are disabled in the deep sleep modes as described
above, floating inputs should be avoided to reduce current consumption in all other modes
where the digital inputs are enabled (Reset, Active mode and Idle mode).

The simplest method to ensure a defined level of an unused pin, is to enable the internal
pull-up. In this case, the pull-up will be disabled during reset. If low power consumption during
reset is important, it is recommended to use an external pull-up or pull-down. Connecting
unused pins directly to VCC or GND is not recommended, since this may cause excessive cur-
rents if the pin is accidentally configured as an output.
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14.3 Alternate Port Functions
Most port pins have alternate functions in addition to being general digital I/Os. Figure 14-5
shows how the port pin control signals from the simplified Figure 14-2 on page 74 can be over-
ridden by alternate functions. The overriding signals may not be present in all port pins, but the
figure serves as a generic description applicable to all port pins in the AVR microcontroller
family.

Figure 14-5. Alternate Port Functions(1) 

Note: 1. WRx, WPx, WDx, RRx, RPx, and RDx are common to all pins within the same port. clkI/O, 
SLEEP, and PUD are common to all ports. All other signals are unique for each pin.
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DIEOExn: Pxn DIGITAL INPUT-ENABLE OVERRIDE ENABLE
DIEOVxn: Pxn DIGITAL INPUT-ENABLE OVERRIDE VALUE
SLEEP: SLEEP CONTROL

Pxn

I/O

0

1

PTOExn

PTOExn: Pxn, PORT TOGGLE OVERRIDE ENABLE

WPx: WRITE PINx

WPx
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Table 14-2 summarizes the function of the overriding signals. The pin and port indexes from
Figure 14-5 on page 79 are not shown in the succeeding tables. The overriding signals are
generated internally in the modules having the alternate function.

The following subsections shortly describe the alternate functions for each port, and relate the
overriding signals to the alternate function. Refer to the alternate function description for fur-
ther details.

Table 14-2. Generic Description of Overriding Signals for Alternate Functions

Signal Name Full Name Description

PUOE
Pull-up Override 
Enable

If this signal is set, the pull-up enable is controlled by the PUOV 
signal. If this signal is cleared, the pull-up is enabled when 
{DDxn, PORTxn, PUD} = 0b010. 

PUOV
Pull-up Override 
Value

If PUOE is set, the pull-up is enabled/disabled when PUOV is 
set/cleared, regardless of the setting of the DDxn, PORTxn, and 
PUD Register bits.

DDOE
Data Direction 
Override Enable

If this signal is set, the Output Driver Enable is controlled by the 
DDOV signal. If this signal is cleared, the Output driver is enabled 
by the DDxn Register bit. 

DDOV
Data Direction 
Override Value

If DDOE is set, the Output Driver is enabled/disabled when 
DDOV is set/cleared, regardless of the setting of the DDxn 
Register bit.

PVOE
Port Value Override 
Enable

If this signal is set and the Output Driver is enabled, the port 
value is controlled by the PVOV signal. If PVOE is cleared, and 
the Output Driver is enabled, the port Value is controlled by the 
PORTxn Register bit.

PVOV
Port Value Override 
Value

If PVOE is set, the port value is set to PVOV, regardless of the 
setting of the PORTxn Register bit.

PTOE
Port Toggle 
Override Enable

If PTOE is set, the PORTxn Register bit is inverted.

DIEOE
Digital Input Enable 
Override Enable

If this bit is set, the Digital Input Enable is controlled by the 
DIEOV signal. If this signal is cleared, the Digital Input Enable is 
determined by MCU state (Normal mode, sleep mode).

DIEOV
Digital Input Enable 
Override Value

If DIEOE is set, the Digital Input is enabled/disabled when DIEOV 
is set/cleared, regardless of the MCU state (Normal mode, sleep 
mode).

DI Digital Input

This is the Digital Input to alternate functions. In the figure, the 
signal is connected to the output of the Schmitt Trigger but before 
the synchronizer. Unless the Digital Input is used as a clock 
source, the module with the alternate function will use its own 
synchronizer.

AIO Analog Input/Output
This is the Analog Input/output to/from alternate functions. The 
signal is connected directly to the pad, and can be used 
bi-directionally.
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14.3.1 Alternate Functions of Port B
The Port B pins with alternate functions are shown in Table 14-3.

The alternate pin configuration is as follows:

• XTAL2/TOSC2/PCINT7 – Port B, Bit 7
XTAL2: Chip clock Oscillator pin 2. Used as clock pin for crystal Oscillator or Low-frequency
crystal Oscillator. When used as a clock pin, the pin can not be used as an I/O pin.

TOSC2: Timer Oscillator pin 2. Used only if internal calibrated RC Oscillator is selected as
chip clock source, and the asynchronous timer is enabled by the correct setting in ASSR.
When the AS2 bit in ASSR is set (one) and the EXCLK bit is cleared (zero) to enable asyn-
chronous clocking of Timer/Counter2 using the Crystal Oscillator, pin PB7 is disconnected
from the port, and becomes the inverting output of the Oscillator amplifier. In this mode, a crys-
tal Oscillator is connected to this pin, and the pin cannot be used as an I/O pin.

PCINT7: Pin Change Interrupt source 7. The PB7 pin can serve as an external interrupt
source.

If PB7 is used as a clock pin, DDB7, PORTB7 and PINB7 will all read 0.

Table 14-3. Port B Pins Alternate Functions

Port Pin Alternate Functions

PB7
XTAL2 (Chip Clock Oscillator pin 2)
TOSC2 (Timer Oscillator pin 2)
PCINT7 (Pin Change Interrupt 7)

PB6
XTAL1 (Chip Clock Oscillator pin 1 or External clock input)
TOSC1 (Timer Oscillator pin 1)
PCINT6 (Pin Change Interrupt 6)

PB5
SCK (SPI Bus Master clock Input)
PCINT5 (Pin Change Interrupt 5)

PB4
MISO (SPI Bus Master Input/Slave Output)
PCINT4 (Pin Change Interrupt 4)

PB3
MOSI (SPI Bus Master Output/Slave Input)
OC2A (Timer/Counter2 Output Compare Match A Output)
PCINT3 (Pin Change Interrupt 3)

PB2
SS (SPI Bus Master Slave select)
OC1B (Timer/Counter1 Output Compare Match B Output)
PCINT2 (Pin Change Interrupt 2)

PB1
OC1A (Timer/Counter1 Output Compare Match A Output)
PCINT1 (Pin Change Interrupt 1)

PB0
ICP1 (Timer/Counter1 Input Capture Input)
CLKO (Divided System Clock Output)
PCINT0 (Pin Change Interrupt 0)
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• XTAL1/TOSC1/PCINT6 – Port B, Bit 6
XTAL1: Chip clock Oscillator pin 1. Used for all chip clock sources except internal calibrated
RC Oscillator. When used as a clock pin, the pin can not be used as an I/O pin. 

TOSC1: Timer Oscillator pin 1. Used only if internal calibrated RC Oscillator is selected as
chip clock source, and the asynchronous timer is enabled by the correct setting in ASSR.
When the AS2 bit in ASSR is set (one) to enable asynchronous clocking of Timer/Counter2,
pin PB6 is disconnected from the port, and becomes the input of the inverting Oscillator ampli-
fier. In this mode, a crystal Oscillator is connected to this pin, and the pin can not be used as
an I/O pin.

PCINT6: Pin Change Interrupt source 6. The PB6 pin can serve as an external interrupt
source.

If PB6 is used as a clock pin, DDB6, PORTB6 and PINB6 will all read 0.

• SCK/PCINT5 – Port B, Bit 5
SCK: Master Clock output, Slave Clock input pin for SPI channel. When the SPI is enabled as
a Slave, this pin is configured as an input regardless of the setting of DDB5. When the SPI is
enabled as a Master, the data direction of this pin is controlled by DDB5. When the pin is
forced by the SPI to be an input, the pull-up can still be controlled by the PORTB5 bit.

PCINT5: Pin Change Interrupt source 5. The PB5 pin can serve as an external interrupt
source.

• MISO/PCINT4 – Port B, Bit 4
MISO: Master Data input, Slave Data output pin for SPI channel. When the SPI is enabled as
a Master, this pin is configured as an input regardless of the setting of DDB4. When the SPI is
enabled as a Slave, the data direction of this pin is controlled by DDB4. When the pin is forced
by the SPI to be an input, the pull-up can still be controlled by the PORTB4 bit.

PCINT4: Pin Change Interrupt source 4. The PB4 pin can serve as an external interrupt
source.

• MOSI/OC2/PCINT3 – Port B, Bit 3
MOSI: SPI Master Data output, Slave Data input for SPI channel. When the SPI is enabled as
a Slave, this pin is configured as an input regardless of the setting of DDB3. When the SPI is
enabled as a Master, the data direction of this pin is controlled by DDB3. When the pin is
forced by the SPI to be an input, the pull-up can still be controlled by the PORTB3 bit.

OC2, Output Compare Match Output: The PB3 pin can serve as an external output for the
Timer/Counter2 Compare Match. The PB3 pin has to be configured as an output (DDB3 set
(one)) to serve this function. The OC2 pin is also the output pin for the PWM mode timer
function.

PCINT3: Pin Change Interrupt source 3. The PB3 pin can serve as an external interrupt
source.
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• SS/OC1B/PCINT2 – Port B, Bit 2
SS: Slave Select input. When the SPI is enabled as a Slave, this pin is configured as an input
regardless of the setting of DDB2. As a Slave, the SPI is activated when this pin is driven low.
When the SPI is enabled as a Master, the data direction of this pin is controlled by DDB2.
When the pin is forced by the SPI to be an input, the pull-up can still be controlled by the
PORTB2 bit.

OC1B, Output Compare Match output: The PB2 pin can serve as an external output for the
Timer/Counter1 Compare Match B. The PB2 pin has to be configured as an output (DDB2 set
(one)) to serve this function. The OC1B pin is also the output pin for the PWM mode timer
function.

PCINT2: Pin Change Interrupt source 2. The PB2 pin can serve as an external interrupt
source.

• OC1A/PCINT1 – Port B, Bit 1
OC1A, Output Compare Match output: The PB1 pin can serve as an external output for the
Timer/Counter1 Compare Match A. The PB1 pin has to be configured as an output (DDB1 set
(one)) to serve this function. The OC1A pin is also the output pin for the PWM mode timer
function.

PCINT1: Pin Change Interrupt source 1. The PB1 pin can serve as an external interrupt
source.

• ICP1/CLKO/PCINT0 – Port B, Bit 0
ICP1, Input Capture Pin: The PB0 pin can act as an Input Capture Pin for Timer/Counter1.

CLKO, Divided System Clock: The divided system clock can be output on the PB0 pin. The
divided system clock will be output if the CKOUT Fuse is programmed, regardless of the
PORTB0 and DDB0 settings. It will also be output during reset.

PCINT0: Pin Change Interrupt source 0. The PB0 pin can serve as an external interrupt
source.

Table 14-4 and Table 14-5 on page 84 relate the alternate functions of Port B to the overriding
signals shown in Figure 14-5 on page 79. SPI MSTR INPUT and SPI SLAVE OUTPUT consti-
tute the MISO signal, while MOSI is divided into SPI MSTR OUTPUT and SPI SLAVE INPUT.
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Table 14-4. Overriding Signals for Alternate Functions in PB7...PB4

Signal
Name

PB7/XTAL2/
TOSC2/PCINT7(1)

PB6/XTAL1/
TOSC1/PCINT6(1)

PB5/SCK/
PCINT5

PB4/MISO/
PCINT4

PUOE
INTRC ×  EXTCK+ 
AS2

INTRC + AS2 SPE ×  MSTR SPE  MSTR

PUOV 0 0 PORTB5  PUD PORTB4  PUD

DDOE INTRC  EXTCK+ AS2 INTRC + AS2 SPE  MSTR SPE  MSTR

DDOV 0 0 0 0

PVOE 0 0 SPE  MSTR SPE  MSTR

PVOV 0 0 SCK OUTPUT SPI SLAVE OUTPUT

DIEOE
INTRC  EXTCK + 
AS2 + PCINT7  
PCIE0

INTRC + AS2 + 
PCINT6  PCIE0

PCINT5  PCIE0 PCINT4  PCIE0

DIEOV
(INTRC + EXTCK)  
AS2

INTRC  AS2 1 1

DI PCINT7 INPUT PCINT6 INPUT
PCINT5 INPUT

SCK INPUT

PCINT4 INPUT

SPI MSTR INPUT

AIO Oscillator Output Oscillator/Clock Input – –

Notes: 1. INTRC means that one of the internal RC Oscillators are selected (by the CKSEL fuses), 
EXTCK means that external clock is selected (by the CKSEL fuses)

Table 14-5. Overriding Signals for Alternate Functions in PB3...PB0

Signal 
Name

PB3/MOSI/
OC2/PCINT3

PB2/SS/
OC1B/PCINT2

PB1/OC1A/
PCINT1

PB0/ICP1/
PCINT0

PUOE SPE  MSTR SPE  MSTR 0 0

PUOV PORTB3  PUD PORTB2  PUD 0 0

DDOE SPE  MSTR SPE  MSTR 0 0

DDOV 0 0 0 0

PVOE
SPE  MSTR + 
OC2A ENABLE

OC1B ENABLE OC1A ENABLE 0

PVOV
SPI MSTR OUTPUT 
+ OC2A

OC1B OC1A 0

DIEOE PCINT3  PCIE0 PCINT2  PCIE0 PCINT1  PCIE0 PCINT0  PCIE0

DIEOV 1 1 1 1

DI
PCINT3 INPUT

SPI SLAVE INPUT

PCINT2 INPUT

SPI SS
PCINT1 INPUT

PCINT0 INPUT

ICP1 INPUT

AIO – – – –
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14.3.2 Alternate Functions of Port C
The Port C pins with alternate functions are shown in Table 14-6.

The alternate pin configuration is as follows:

• RESET/PCINT14 – Port C, Bit 6
RESET, Reset pin: When the RSTDISBL Fuse is programmed, this pin functions as a normal
I/O pin, and the part will have to rely on Power-on Reset and Brown-out Reset as its reset
sources. When the RSTDISBL Fuse is unprogrammed, the reset circuitry is connected to the
pin, and the pin can not be used as an I/O pin.

If PC6 is used as a reset pin, DDC6, PORTC6 and PINC6 will all read 0.

PCINT14: Pin Change Interrupt source 14. The PC6 pin can serve as an external interrupt
source.

• SCL/ADC5/PCINT13 – Port C, Bit 5
SCL, 2-wire Serial Interface Clock: When the TWEN bit in TWCR is set (one) to enable the
2-wire Serial Interface, pin PC5 is disconnected from the port and becomes the Serial Clock
I/O pin for the 2-wire Serial Interface. In this mode, there is a spike filter on the pin to suppress
spikes shorter than 50 ns on the input signal, and the pin is driven by an open drain driver with
slew-rate limitation.

PC5 can also be used as ADC input Channel 5. Note that ADC input channel 5 uses digital
power.

PCINT13: Pin Change Interrupt source 13. The PC5 pin can serve as an external interrupt
source.

Table 14-6. Port C Pins Alternate Functions

Port Pin Alternate Function

PC6
RESET (Reset pin)
PCINT14 (Pin Change Interrupt 14)

PC5
ADC5 (ADC Input Channel 5)
SCL (2-wire Serial Bus Clock Line)
PCINT13 (Pin Change Interrupt 13)

PC4
ADC4 (ADC Input Channel 4)
SDA (2-wire Serial Bus Data Input/Output Line)
PCINT12 (Pin Change Interrupt 12)

PC3
ADC3 (ADC Input Channel 3)
PCINT11 (Pin Change Interrupt 11)

PC2
ADC2 (ADC Input Channel 2)
PCINT10 (Pin Change Interrupt 10)

PC1
ADC1 (ADC Input Channel 1)
PCINT9 (Pin Change Interrupt 9)

PC0
ADC0 (ADC Input Channel 0)
PCINT8 (Pin Change Interrupt 8)
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• SDA/ADC4/PCINT12 – Port C, Bit 4
SDA, 2-wire Serial Interface Data: When the TWEN bit in TWCR is set (one) to enable the
2-wire Serial Interface, pin PC4 is disconnected from the port and becomes the Serial Data I/O
pin for the 2-wire Serial Interface. In this mode, there is a spike filter on the pin to suppress
spikes shorter than 50 ns on the input signal, and the pin is driven by an open drain driver with
slew-rate limitation. 

PC4 can also be used as ADC input Channel 4. Note that ADC input channel 4 uses digital
power.

PCINT12: Pin Change Interrupt source 12. The PC4 pin can serve as an external interrupt
source.

• ADC3/PCINT11 – Port C, Bit 3
PC3 can also be used as ADC input Channel 3. Note that ADC input channel 3 uses analog
power.

PCINT11: Pin Change Interrupt source 11. The PC3 pin can serve as an external interrupt
source.

• ADC2/PCINT10 – Port C, Bit 2
PC2 can also be used as ADC input Channel 2. Note that ADC input channel 2 uses analog
power.

PCINT10: Pin Change Interrupt source 10. The PC2 pin can serve as an external interrupt
source.

• ADC1/PCINT9 – Port C, Bit 1
PC1 can also be used as ADC input Channel 1. Note that ADC input channel 1 uses analog
power.

PCINT9: Pin Change Interrupt source 9. The PC1 pin can serve as an external interrupt
source.

• ADC0/PCINT8 – Port C, Bit 0
PC0 can also be used as ADC input Channel 0. Note that ADC input channel 0 uses analog
power.

PCINT8: Pin Change Interrupt source 8. The PC0 pin can serve as an external interrupt
source.
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Table 14-7 and Table 14-8 relate the alternate functions of Port C to the overriding signals
shown in Figure 14-5 on page 79. 

Table 14-7. Overriding Signals for Alternate Functions in PC6...PC4(1)

Signal
Name PC6/RESET/PCINT14 PC5/SCL/ADC5/PCINT13 PC4/SDA/ADC4/PCINT12

PUOE RSTDISBL TWEN TWEN

PUOV 1 PORTC5  PUD PORTC4  PUD

DDOE RSTDISBL TWEN TWEN

DDOV 0 SCL_OUT SDA_OUT

PVOE 0 TWEN TWEN

PVOV 0 0 0

DIEOE
RSTDISBL + PCINT14 ×  
PCIE1

PCINT13 ×  PCIE1 + ADC5D PCINT12 ×  PCIE1 + ADC4D

DIEOV RSTDISBL PCINT13 ×  PCIE1 PCINT12 ×  PCIE1

DI PCINT14 INPUT PCINT13 INPUT PCINT12 INPUT

AIO RESET INPUT ADC5 INPUT / SCL INPUT ADC4 INPUT / SDA INPUT

Note: 1. When enabled, the 2-wire Serial Interface enables slew-rate controls on the output pins 
PC4 and PC5. This is not shown in the figure. In addition, spike filters are connected 
between the AIO outputs shown in the port figure and the digital logic of the TWI module.

Table 14-8. Overriding Signals for Alternate Functions in PC3...PC0

Signal
Name

PC3/ADC3/
PCINT11

PC2/ADC2/
PCINT10

PC1/ADC1/
PCINT9

PC0/ADC0/
PCINT8

PUOE 0 0 0 0

PUOV 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 0 0 0

PVOV 0 0 0 0

DIEOE
PCINT11 ×  PCIE1 +
ADC3D

PCINT10 ×  PCIE1 +
ADC2D

PCINT9 ×  PCIE1 +
ADC1D

PCINT8 ×  PCIE1 +
ADC0D

DIEOV PCINT11 ×  PCIE1 PCINT10 ×  PCIE1 PCINT9 ×  PCIE1 PCINT8 ×  PCIE1

DI PCINT11 INPUT PCINT10 INPUT PCINT9 INPUT PCINT8 INPUT

AIO ADC3 INPUT ADC2 INPUT ADC1 INPUT ADC0 INPUT
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14.3.3 Alternate Functions of Port D
The Port D pins with alternate functions are shown in Table 14-9.

The alternate pin configuration is as follows:

• AIN1/OC2B/PCINT23 – Port D, Bit 7
AIN1, Analog Comparator Negative Input. Configure the port pin as input with the internal
pull-up switched off to avoid the digital port function from interfering with the function of the
Analog Comparator.

PCINT23: Pin Change Interrupt source 23. The PD7 pin can serve as an external interrupt
source.

• AIN0/OC0A/PCINT22 – Port D, Bit 6
AIN0, Analog Comparator Positive Input. Configure the port pin as input with the internal
pull-up switched off to avoid the digital port function from interfering with the function of the
Analog Comparator.

OC0A, Output Compare Match output: The PD6 pin can serve as an external output for the
Timer/Counter0 Compare Match A. The PD6 pin has to be configured as an output (DDD6 set
(one)) to serve this function. The OC0A pin is also the output pin for the PWM mode timer
function.

PCINT22: Pin Change Interrupt source 22. The PD6 pin can serve as an external interrupt
source.

Table 14-9. Port D Pins Alternate Functions

Port Pin Alternate Function

PD7
AIN1 (Analog Comparator Negative Input)
PCINT23 (Pin Change Interrupt 23)

PD6
AIN0 (Analog Comparator Positive Input)
OC0A (Timer/Counter0 Output Compare Match A Output)
PCINT22 (Pin Change Interrupt 22)

PD5
T1 (Timer/Counter 1 External Counter Input)
OC0B (Timer/Counter0 Output Compare Match B Output)
PCINT21 (Pin Change Interrupt 21)

PD4
XCK (USART External Clock Input/Output)
T0 (Timer/Counter 0 External Counter Input)
PCINT20 (Pin Change Interrupt 20)

PD3
INT1 (External Interrupt 1 Input)
OC2B (Timer/Counter2 Output Compare Match B Output)
PCINT19 (Pin Change Interrupt 19)

PD2
INT0 (External Interrupt 0 Input)
PCINT18 (Pin Change Interrupt 18)

PD1
TXD (USART Output Pin)
PCINT17 (Pin Change Interrupt 17)

PD0
RXD (USART Input Pin)
PCINT16 (Pin Change Interrupt 16)
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• T1/OC0B/PCINT21 – Port D, Bit 5
T1, Timer/Counter1 counter source. 

OC0B, Output Compare Match output: The PD5 pin can serve as an external output for the
Timer/Counter0 Compare Match B. The PD5 pin has to be configured as an output (DDD5 set
(one)) to serve this function. The OC0B pin is also the output pin for the PWM mode timer
function.

PCINT21: Pin Change Interrupt source 21. The PD5 pin can serve as an external interrupt
source.

• XCK/T0/PCINT20 – Port D, Bit 4
XCK, USART external clock.

T0, Timer/Counter0 counter source. 

PCINT20: Pin Change Interrupt source 20. The PD4 pin can serve as an external interrupt
source.

• INT1/OC2B/PCINT19 – Port D, Bit 3
INT1, External Interrupt source 1: The PD3 pin can serve as an external interrupt source.

OC2B, Output Compare Match output: The PD3 pin can serve as an external output for the
Timer/Counter0 Compare Match B. The PD3 pin has to be configured as an output (DDD3 set
(one)) to serve this function. The OC2B pin is also the output pin for the PWM mode timer
function.

PCINT19: Pin Change Interrupt source 19. The PD3 pin can serve as an external interrupt
source.

• INT0/PCINT18 – Port D, Bit 2
INT0, External Interrupt source 0: The PD2 pin can serve as an external interrupt source.

PCINT18: Pin Change Interrupt source 18. The PD2 pin can serve as an external interrupt
source.

• TXD/PCINT17 – Port D, Bit 1

TXD, Transmit Data (Data output pin for the USART). When the USART Transmitter is
enabled, this pin is configured as an output regardless of the value of DDD1.

PCINT17: Pin Change Interrupt source 17. The PD1 pin can serve as an external interrupt
source.

• RXD/PCINT16 – Port D, Bit 0
RXD, Receive Data (Data input pin for the USART). When the USART Receiver is enabled
this pin is configured as an input regardless of the value of DDD0. When the USART forces
this pin to be an input, the pull-up can still be controlled by the PORTD0 bit.

PCINT16: Pin Change Interrupt source 16. The PD0 pin can serve as an external interrupt
source.
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Table 14-10 and Table 14-11 relate the alternate functions of Port D to the overriding signals
shown in Figure 14-5 on page 79. 

Table 14-10. Overriding Signals for Alternate Functions PD7...PD4

Signal
Name

PD7/AIN1
/PCINT23

PD6/AIN0/
OC0A/PCINT22

PD5/T1/OC0B/
PCINT21

PD4/XCK/
T0/PCINT20

PUOE 0 0 0 0

PUO 0 0 0 0

DDOE 0 0 0 0

DDOV 0 0 0 0

PVOE 0 OC0A ENABLE OC0B ENABLE UMSEL

PVOV 0 OC0A OC0B XCK OUTPUT

DIEOE PCINT23 ×  PCIE2 PCINT22 ×  PCIE2 PCINT21 ×  PCIE2 PCINT20 ×  PCIE2

DIEOV 1 1 1 1

DI PCINT23 INPUT PCINT22 INPUT
PCINT21 INPUT
T1 INPUT

PCINT20 INPUT
XCK INPUT
T0 INPUT

AIO AIN1 INPUT AIN0 INPUT – –

Table 14-11. Overriding Signals for Alternate Functions in PD3...PD0

Signal
Name

PD3/OC2B/INT1/
PCINT19

PD2/INT0/
PCINT18

PD1/TXD/
PCINT17

PD0/RXD/
PCINT16

PUOE 0 0 TXEN RXEN

PUO 0 0 0 PORTD0 ×  PUD

DDOE 0 0 TXEN RXEN

DDOV 0 0 1 0

PVOE OC2B ENABLE 0 TXEN 0

PVOV OC2B 0 TXD 0

DIEOE
INT1 ENABLE + 
PCINT19 ×  PCIE2

INT0 ENABLE + 
PCINT18 ×  PCIE1

PCINT17 ×  PCIE2 PCINT16 ×  PCIE2

DIEOV 1 1 1 1

DI
PCINT19 INPUT
INT1 INPUT

PCINT18 INPUT
INT0 INPUT

PCINT17 INPUT
PCINT16 INPUT
RXD

AIO – – – –
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14.4 Register Description

14.4.1 MCUCR – MCU Control Register

Note: 1. BODS and BODSE only available for picoPower devices ATmega48PA/88PA/168PA

• Bit 4 – PUD: Pull-up Disable
When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn and
PORTxn Registers are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See
“Configuring the Pin” on page 74 for more details about this feature.

14.4.2 PORTB – The Port B Data Register

14.4.3 DDRB – The Port B Data Direction Register

14.4.4 PINB – The Port B Input Pins Address

14.4.5 PORTC – The Port C Data Register

14.4.6 DDRC – The Port C Data Direction Register

14.4.7 PINC – The Port C Input Pins Address

Bit 7 6 5 4 3 2 1 0

0x35 (0x55) – BODS(1) BODSE(1) PUD – – IVSEL IVCE MCUCR

Read/Write R R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x05 (0x25) PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 PORTB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x04 (0x24) DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 DDRB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x03 (0x23) PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 PINB

Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A

Bit 7 6 5 4 3 2 1 0

0x08 (0x28) – PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 PORTC

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x07 (0x27) – DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 DDRC

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x06 (0x26) – PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 PINC

Read/Write R R R R R R R R

Initial Value 0 N/A N/A N/A N/A N/A N/A N/A
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14.4.8 PORTD – The Port D Data Register

14.4.9 DDRD – The Port D Data Direction Register

14.4.10 PIND – The Port D Input Pins Address

Bit 7 6 5 4 3 2 1 0

0x0B (0x2B) PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 PORTD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x0A (0x2A) DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 DDRD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x09 (0x29) PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 PIND

Read/Write R R R R R R R R

Initial Value N/A N/A N/A N/A N/A N/A N/A N/A
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15. 8-bit Timer/Counter0 with PWM

15.1 Features
• Two Independent Output Compare Units
• Double Buffered Output Compare Registers
• Clear Timer on Compare Match (Auto Reload)
• Glitch Free, Phase Correct Pulse Width Modulator (PWM)
• Variable PWM Period
• Frequency Generator
• Three Independent Interrupt Sources (TOV0, OCF0A, and OCF0B)

15.2 Overview
Timer/Counter0 is a general purpose 8-bit Timer/Counter module, with two independent Out-
put Compare Units, and with PWM support. It allows accurate program execution timing
(event management) and wave generation. 

A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 15-1. For the actual
placement of I/O pins, refer to “Pinout Atmel® ATmega48PA/88PA/168PA” on page 2. CPU
accessible I/O Registers, including I/O bits and I/O pins, are shown in bold. The device-spe-
cific I/O Register and bit locations are listed in the “Register Description” on page 104.

The PRTIM0 bit in “Minimizing Power Consumption” on page 42 must be written to zero to
enable Timer/Counter0 module.

Figure 15-1. 8-bit Timer/Counter Block Diagram 
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15.2.1 Definitions
Many register and bit references in this section are written in general form. A lower case “n”
replaces the Timer/Counter number, in this case 0. A lower case “x” replaces the Output Com-
pare Unit, in this case Compare Unit A or Compare Unit B. However, when using the register
or bit defines in a program, the precise form must be used, i.e., TCNT0 for accessing
Timer/Counter0 counter value and so on.

The definitions in Table 15-1 are also used extensively throughout the document.

15.2.2 Registers
The Timer/Counter (TCNT0) and Output Compare Registers (OCR0A and OCR0B) are 8-bit
registers. Interrupt request (abbreviated to Int.Req. in the figure) signals are all visible in the
Timer Interrupt Flag Register (TIFR0). All interrupts are individually masked with the Timer
Interrupt Mask Register (TIMSK0). TIFR0 and TIMSK0 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source
on the T0 pin. The Clock Select logic block controls which clock source and edge the
Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inactive when
no clock source is selected. The output from the Clock Select logic is referred to as the timer
clock (clkT0).

The double buffered Output Compare Registers (OCR0A and OCR0B) are compared with the
Timer/Counter value at all times. The result of the compare can be used by the Waveform
Generator to generate a PWM or variable frequency output on the Output Compare pins
(OC0A and OC0B). See “Using the Output Compare Unit” on page 121. for details. The com-
pare match event will also set the Compare Flag (OCF0A or OCF0B) which can be used to
generate an Output Compare interrupt request.

15.3 Timer/Counter Clock Sources
The Timer/Counter can be clocked by an internal or an external clock source. The clock
source is selected by the Clock Select logic which is controlled by the Clock Select (CS02:0)
bits located in the Timer/Counter Control Register (TCCR0B). For details on clock sources
and prescaler, see “Timer/Counter0 and Timer/Counter1 Prescalers” on page 140.

15.4 Counter Unit
The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Fig-
ure 15-2 shows a block diagram of the counter and its surroundings.

Table 15-1. Definitions

BOTTOM The counter reaches the BOTTOM when it becomes 0x00.

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP
The counter reaches the TOP when it becomes equal to the highest value in the count 
sequence. The TOP value can be assigned to be the fixed value 0xFF (MAX) or the value 
stored in the OCR0A Register. The assignment is dependent on the mode of operation.
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Figure 15-2. Counter Unit Block Diagram 

Signal description (internal signals):

count Increment or decrement TCNT0 by 1.

direction Select between increment and decrement.

clear Clear TCNT0 (set all bits to zero).

clkTn Timer/Counter clock, referred to as clkT0 in the following.

top Signalize that TCNT0 has reached maximum value.

bottom Signalize that TCNT0 has reached minimum value (zero).

Depending of the mode of operation used, the counter is cleared, incremented, or decre-
mented at each timer clock (clkT0). clkT0 can be generated from an external or internal clock
source, selected by the Clock Select bits (CS02:0). When no clock source is selected
(CS02:0 = 0) the timer is stopped. However, the TCNT0 value can be accessed by the CPU,
regardless of whether clkT0 is present or not. A CPU write overrides (has priority over) all
counter clear or count operations.

The counting sequence is determined by the setting of the WGM01 and WGM00 bits located
in the Timer/Counter Control Register (TCCR0A) and the WGM02 bit located in the
Timer/Counter Control Register B (TCCR0B). There are close connections between how the
counter behaves (counts) and how waveforms are generated on the Output Compare outputs
OC0A and OC0B. For more details about advanced counting sequences and waveform gener-
ation, see “Modes of Operation” on page 98.

The Timer/Counter Overflow Flag (TOV0) is set according to the mode of operation selected
by the WGM02:0 bits. TOV0 can be used for generating a CPU interrupt.

15.5 Output Compare Unit
The 8-bit comparator continuously compares TCNT0 with the Output Compare Registers
(OCR0A and OCR0B). Whenever TCNT0 equals OCR0A or OCR0B, the comparator signals a
match. A match will set the Output Compare Flag (OCF0A or OCF0B) at the next timer clock
cycle. If the corresponding interrupt is enabled, the Output Compare Flag generates an Output
Compare interrupt. The Output Compare Flag is automatically cleared when the interrupt is
executed. Alternatively, the flag can be cleared by software by writing a logical one to its I/O bit
location. The Waveform Generator uses the match signal to generate an output according to
operating mode set by the WGM02:0 bits and Compare Output mode (COM0x1:0) bits. The
max and bottom signals are used by the Waveform Generator for handling the special cases
of the extreme values in some modes of operation (“Modes of Operation” on page 98).
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Figure 15-3 shows a block diagram of the Output Compare unit. 

Figure 15-3. Output Compare Unit, Block Diagram 

The OCR0x Registers are double buffered when using any of the Pulse Width Modulation
(PWM) modes. For the normal and Clear Timer on Compare (CTC) modes of operation, the
double buffering is disabled. The double buffering synchronizes the update of the OCR0x
Compare Registers to either top or bottom of the counting sequence. The synchronization pre-
vents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output
glitch-free.

The OCR0x Register access may seem complex, but this is not case. When the double buffer-
ing is enabled, the CPU has access to the OCR0x Buffer Register, and if double buffering is
disabled the CPU will access the OCR0x directly. 

15.5.1 Force Output Compare
In non-PWM waveform generation modes, the match output of the comparator can be forced
by writing a one to the Force Output Compare (FOC0x) bit. Forcing compare match will not set
the OCF0x Flag or reload/clear the timer, but the OC0x pin will be updated as if a real com-
pare match had occurred (the COM0x1:0 bits settings define whether the OC0x pin is set,
cleared or toggled). 
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waveform generation. Similarly, do not write the TCNT0 value equal to BOTTOM when the
counter is downcounting.
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The setup of the OC0x should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OC0x value is to use the Force Output Com-
pare (FOC0x) strobe bits in Normal mode. The OC0x Registers keep their values even when
changing between Waveform Generation modes.

Be aware that the COM0x1:0 bits are not double buffered together with the compare value.
Changing the COM0x1:0 bits will take effect immediately.

15.6 Compare Match Output Unit
The Compare Output mode (COM0x1:0) bits have two functions. The Waveform Generator
uses the COM0x1:0 bits for defining the Output Compare (OC0x) state at the next compare
match. Also, the COM0x1:0 bits control the OC0x pin output source. Figure 15-4 shows a sim-
plified schematic of the logic affected by the COM0x1:0 bit setting. The I/O Registers, I/O bits,
and I/O pins in the figure are shown in bold. Only the parts of the general I/O port control reg-
isters (DDR and PORT) that are affected by the COM0x1:0 bits are shown. When referring to
the OC0x state, the reference is for the internal OC0x Register, not the OC0x pin. If a system
reset occur, the OC0x Register is reset to “0”.

Figure 15-4. Compare Match Output Unit, Schematic 

The general I/O port function is overridden by the Output Compare (OC0x) from the Waveform
Generator if either of the COM0x1:0 bits are set. However, the OC0x pin direction (input or
output) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direc-
tion Register bit for the OC0x pin (DDR_OC0x) must be set as output before the OC0x value is
visible on the pin. The port override function is independent of the Waveform Generation
mode.

The design of the Output Compare pin logic allows initialization of the OC0x state before the
output is enabled. Note that some COM0x1:0 bit settings are reserved for certain modes of
operation. See “Register Description” on page 104.
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15.6.1 Compare Output Mode and Waveform Generation
The Waveform Generator uses the COM0x1:0 bits differently in Normal, CTC, and PWM
modes. For all modes, setting the COM0x1:0 = 0 tells the Waveform Generator that no action
on the OC0x Register is to be performed on the next compare match. For compare output
actions in the non-PWM modes refer to Table 15-2 on page 104. For fast PWM mode, refer to
Table 15-3 on page 104, and for phase correct PWM refer to Table 15-4 on page 105.

A change of the COM0x1:0 bits state will have effect at the first compare match after the bits
are written. For non-PWM modes, the action can be forced to have immediate effect by using
the FOC0x strobe bits.

15.7 Modes of Operation
The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins,
is defined by the combination of the Waveform Generation mode (WGM02:0) and Compare
Output mode (COM0x1:0) bits. The Compare Output mode bits do not affect the counting
sequence, while the Waveform Generation mode bits do. The COM0x1:0 bits control whether
the PWM output generated should be inverted or not (inverted or non-inverted PWM). For
non-PWM modes the COM0x1:0 bits control whether the output should be set, cleared, or tog-
gled at a compare match (See “Compare Match Output Unit” on page 97.).

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 102.

15.7.1 Normal Mode
The simplest mode of operation is the Normal mode (WGM02:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bot-
tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV0) will be set in the
same timer clock cycle as the TCNT0 becomes zero. The TOV0 Flag in this case behaves like
a ninth bit, except that it is only set, not cleared. However, combined with the timer overflow
interrupt that automatically clears the TOV0 Flag, the timer resolution can be increased by
software. There are no special cases to consider in the Normal mode, a new counter value
can be written anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the
Output Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

15.7.2 Clear Timer on Compare Match (CTC) Mode
In Clear Timer on Compare or CTC mode (WGM02:0 = 2), the OCR0A Register is used to
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the coun-
ter value (TCNT0) matches the OCR0A. The OCR0A defines the top value for the counter,
hence also its resolution. This mode allows greater control of the compare match output fre-
quency. It also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 15-5. The counter value (TCNT0)
increases until a compare match occurs between TCNT0 and OCR0A, and then counter
(TCNT0) is cleared.
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Figure 15-5. CTC Mode, Timing Diagram 

An interrupt can be generated each time the counter value reaches the TOP value by using
the OCF0A Flag. If the interrupt is enabled, the interrupt handler routine can be used for
updating the TOP value. However, changing TOP to a value close to BOTTOM when the
counter is running with none or a low prescaler value must be done with care since the CTC
mode does not have the double buffering feature. If the new value written to OCR0A is lower
than the current value of TCNT0, the counter will miss the compare match. The counter will
then have to count to its maximum value (0xFF) and wrap around starting at 0x00 before the
compare match can occur. 

For generating a waveform output in CTC mode, the OC0A output can be set to toggle its log-
ical level on each compare match by setting the Compare Output mode bits to toggle mode
(COM0A1:0 = 1). The OC0A value will not be visible on the port pin unless the data direction
for the pin is set to output. The waveform generated will have a maximum frequency of
fOC0 = fclk_I/O/2 when OCR0A is set to zero (0x00). The waveform frequency is defined by the
following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV0 Flag is set in the same timer clock cycle that
the counter counts from MAX to 0x00.

15.7.3 Fast PWM Mode
The fast Pulse Width Modulation or fast PWM mode (WGM02:0 = 3 or 7) provides a high fre-
quency PWM waveform generation option. The fast PWM differs from the other PWM option
by its single-slope operation. The counter counts from BOTTOM to TOP then restarts from
BOTTOM. TOP is defined as 0xFF when WGM2:0 = 3, and OCR0A when WGM2:0 = 7. In
non-inverting Compare Output mode, the Output Compare (OC0x) is cleared on the compare
match between TCNT0 and OCR0x, and set at BOTTOM. In inverting Compare Output mode,
the output is set on compare match and cleared at BOTTOM. Due to the single-slope opera-
tion, the operating frequency of the fast PWM mode can be twice as high as the phase correct
PWM mode that use dual-slope operation. This high frequency makes the fast PWM mode
well suited for power regulation, rectification, and DAC applications. High frequency allows
physically small sized external components (coils, capacitors), and therefore reduces total
system cost.
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In fast PWM mode, the counter is incremented until the counter value matches the TOP value.
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast
PWM mode is shown in Figure 15-6. The TCNT0 value is in the timing diagram shown as a
histogram for illustrating the single-slope operation. The diagram includes non-inverted and
inverted PWM outputs. The small horizontal line marks on the TCNT0 slopes represent com-
pare matches between OCR0x and TCNT0.

Figure 15-6. Fast PWM Mode, Timing Diagram 

The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches TOP. If the
interrupt is enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC0x pins.
Setting the COM0x1:0 bits to two will produce a non-inverted PWM and an inverted PWM out-
put can be generated by setting the COM0x1:0 to three: Setting the COM0A1:0 bits to one
allows the OC0A pin to toggle on Compare Matches if the WGM02 bit is set. This option is not
available for the OC0B pin (see Table 15-6 on page 105). The actual OC0x value will only be
visible on the port pin if the data direction for the port pin is set as output. The PWM waveform
is generated by setting (or clearing) the OC0x Register at the compare match between OCR0x
and TCNT0, and clearing (or setting) the OC0x Register at the timer clock cycle the counter is
cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0A Register represents special cases when generating a
PWM waveform output in the fast PWM mode. If the OCR0A is set equal to BOTTOM, the out-
put will be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR0A equal to MAX
will result in a constantly high or low output (depending on the polarity of the output set by the
COM0A1:0 bits.)
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A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by
setting OC0x to toggle its logical level on each compare match (COM0x1:0 = 1). The wave-
form generated will have a maximum frequency of fOC0 = fclk_I/O/2 when OCR0A is set to zero.
This feature is similar to the OC0A toggle in CTC mode, except the double buffer feature of the
Output Compare unit is enabled in the fast PWM mode.

15.7.4 Phase Correct PWM Mode
The phase correct PWM mode (WGM02:0 = 1 or 5) provides a high resolution phase correct
PWM waveform generation option. The phase correct PWM mode is based on a dual-slope
operation. The counter counts repeatedly from BOTTOM to TOP and then from TOP to BOT-
TOM. TOP is defined as 0xFF when WGM2:0 = 1, and OCR0A when WGM2:0 = 5. In
non-inverting Compare Output mode, the Output Compare (OC0x) is cleared on the compare
match between TCNT0 and OCR0x while upcounting, and set on the compare match while
downcounting. In inverting Output Compare mode, the operation is inverted. The dual-slope
operation has lower maximum operation frequency than single slope operation. However, due
to the symmetric feature of the dual-slope PWM modes, these modes are preferred for motor
control applications.

In phase correct PWM mode the counter is incremented until the counter value matches TOP.
When the counter reaches TOP, it changes the count direction. The TCNT0 value will be
equal to TOP for one timer clock cycle. The timing diagram for the phase correct PWM mode
is shown on Figure 15-7. The TCNT0 value is in the timing diagram shown as a histogram for
illustrating the dual-slope operation. The diagram includes non-inverted and inverted PWM
outputs. The small horizontal line marks on the TCNT0 slopes represent compare matches
between OCR0x and TCNT0.

Figure 15-7. Phase Correct PWM Mode, Timing Diagram 

The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches BOTTOM. The
Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOT-
TOM value.
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In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the
OC0x pins. Setting the COM0x1:0 bits to two will produce a non-inverted PWM. An inverted
PWM output can be generated by setting the COM0x1:0 to three: Setting the COM0A0 bits to
one allows the OC0A pin to toggle on Compare Matches if the WGM02 bit is set. This option is
not available for the OC0B pin (see Table 15-7 on page 106). The actual OC0x value will only
be visible on the port pin if the data direction for the port pin is set as output. The PWM wave-
form is generated by clearing (or setting) the OC0x Register at the compare match between
OCR0x and TCNT0 when the counter increments, and setting (or clearing) the OC0x Register
at compare match between OCR0x and TCNT0 when the counter decrements. The PWM fre-
quency for the output when using phase correct PWM can be calculated by the following
equation:

The N variable represents the prescale factor (1, 8, 64, 256, or 1024).

The extreme values for the OCR0A Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR0A is set equal to BOTTOM, the
output will be continuously low and if set equal to MAX the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

At the very start of period 2 in Figure 15-7 OCnx has a transition from high to low even though
there is no Compare Match. The point of this transition is to guarantee symmetry around BOT-
TOM. There are two cases that give a transition without Compare Match.

• OCRnx changes its value from MAX, like in Figure 15-7. When the OCR0A value is MAX the 
OCn pin value is the same as the result of a down-counting Compare Match. To ensure 
symmetry around BOTTOM the OCnx value at MAX must correspond to the result of an 
up-counting Compare Match.

• The timer starts counting from a value higher than the one in OCRnx, and for that reason 
misses the Compare Match and hence the OCnx change that would have happened on the 
way up.

15.8 Timer/Counter Timing Diagrams
The Timer/Counter is a synchronous design and the timer clock (clkT0) is therefore shown as a
clock enable signal in the following figures. The figures include information on when interrupt
flags are set. Figure 15-8 contains timing data for basic Timer/Counter operation. The figure
shows the count sequence close to the MAX value in all modes other than phase correct PWM
mode.

Figure 15-8. Timer/Counter Timing Diagram, no Prescaling 
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Figure 15-9 shows the same timing data, but with the prescaler enabled.

Figure 15-9. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8) 

Figure 15-10 shows the setting of OCF0B in all modes and OCF0A in all modes except CTC
mode and PWM mode, where OCR0A is TOP.

Figure 15-10. Timer/Counter Timing Diagram, Setting of OCF0x, with Prescaler (fclk_I/O/8) 

Figure 15-11 shows the setting of OCF0A and the clearing of TCNT0 in CTC mode and fast
PWM mode where OCR0A is TOP.

Figure 15-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with 
Prescaler (fclk_I/O/8) 
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15.9 Register Description

15.9.1 TCCR0A – Timer/Counter Control Register A

• Bits 7:6 – COM0A1:0: Compare Match Output A Mode
These bits control the Output Compare pin (OC0A) behavior. If one or both of the COM0A1:0
bits are set, the OC0A output overrides the normal port functionality of the I/O pin it is con-
nected to. However, note that the Data Direction Register (DDR) bit corresponding to the
OC0A pin must be set in order to enable the output driver.

When OC0A is connected to the pin, the function of the COM0A1:0 bits depends on the
WGM02:0 bit setting. Table 15-2 shows the COM0A1:0 bit functionality when the WGM02:0
bits are set to a normal or CTC mode (non-PWM).

Table 15-3 shows the COM0A1:0 bit functionality when the WGM01:0 bits are set to fast PWM
mode.

Bit 7 6 5 4 3 2 1 0

0x24 (0x44) COM0A1 COM0A0 COM0B1 COM0B0 – – WGM01 WGM00 TCCR0A

Read/Write R/W R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 15-2. Compare Output Mode, non-PWM Mode

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1 Toggle OC0A on Compare Match

1 0 Clear OC0A on Compare Match

1 1 Set OC0A on Compare Match

Table 15-3. Compare Output Mode, Fast PWM Mode(1)

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1
WGM02 = 0: Normal Port Operation, OC0A Disconnected.
WGM02 = 1: Toggle OC0A on Compare Match.

1 0
Clear OC0A on Compare Match, set OC0A at BOTTOM,
(non-inverting mode).

1 1
Set OC0A on Compare Match, clear OC0A at BOTTOM,
(inverting mode).

Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the 
Compare Match is ignored, but the set or clear is done at BOTTOM. See “Fast PWM Mode” 
on page 99 for more details.
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Table 15-4 shows the COM0A1:0 bit functionality when the WGM02:0 bits are set to phase
correct PWM mode.

• Bits 5:4 – COM0B1:0: Compare Match Output B Mode
These bits control the Output Compare pin (OC0B) behavior. If one or both of the COM0B1:0
bits are set, the OC0B output overrides the normal port functionality of the I/O pin it is con-
nected to. However, note that the Data Direction Register (DDR) bit corresponding to the
OC0B pin must be set in order to enable the output driver.

When OC0B is connected to the pin, the function of the COM0B1:0 bits depends on the
WGM02:0 bit setting. Table 15-5 on page 105 shows the COM0B1:0 bit functionality when the
WGM02:0 bits are set to a normal or CTC mode (non-PWM).

Table 15-6 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to fast PWM
mode.

Table 15-4. Compare Output Mode, Phase Correct PWM Mode(1)

COM0A1 COM0A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1
WGM02 = 0: Normal Port Operation, OC0A Disconnected.
WGM02 = 1: Toggle OC0A on Compare Match.

1 0
Clear OC0A on Compare Match when up-counting. Set OC0A on 
Compare Match when down-counting.

1 1
Set OC0A on Compare Match when up-counting. Clear OC0A on 
Compare Match when down-counting.

Note: 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the 
Compare Match is ignored, but the set or clear is done at TOP. See “Phase Correct PWM 
Mode” on page 127 for more details.

Table 15-5. Compare Output Mode, non-PWM Mode

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Toggle OC0B on Compare Match

1 0 Clear OC0B on Compare Match

1 1 Set OC0B on Compare Match

Table 15-6. Compare Output Mode, Fast PWM Mode(1)

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Reserved

1 0
Clear OC0B on Compare Match, set OC0B at BOTTOM,
(non-inverting mode)

1 1
Set OC0B on Compare Match, clear OC0B at BOTTOM,
(inverting mode).

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the 
Compare Match is ignored, but the set or clear is done at TOP. See “Fast PWM Mode” on 
page 99 for more details.
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Table 15-7 shows the COM0B1:0 bit functionality when the WGM02:0 bits are set to phase
correct PWM mode.

• Bits 3, 2 – Reserved
These bits are reserved bits in the Atmel® ATmega48PA/88PA/168PA and will always read as
zero.

• Bits 1:0 – WGM01:0: Waveform Generation Mode
Combined with the WGM02 bit found in the TCCR0B Register, these bits control the counting
sequence of the counter, the source for maximum (TOP) counter value, and what type of
waveform generation to be used, see Table 15-8. Modes of operation supported by the
Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare Match (CTC) mode,
and two types of Pulse Width Modulation (PWM) modes (see “Modes of Operation” on page
98).

Table 15-7. Compare Output Mode, Phase Correct PWM Mode(1)

COM0B1 COM0B0 Description

0 0 Normal port operation, OC0B disconnected.

0 1 Reserved

1 0
Clear OC0B on Compare Match when up-counting. Set OC0B on 
Compare Match when down-counting.

1 1
Set OC0B on Compare Match when up-counting. Clear OC0B on 
Compare Match when down-counting.

Note: 1. A special case occurs when OCR0B equals TOP and COM0B1 is set. In this case, the 
Compare Match is ignored, but the set or clear is done at TOP. See “Phase Correct PWM 
Mode” on page 101 for more details.

Table 15-8. Waveform Generation Mode Bit Description

Mode WGM02 WGM01 WGM00

Timer/Counter 
Mode of 
Operation TOP

Update of
OCRx at

TOV Flag
Set on(1)(2)

0 0 0 0 Normal 0xFF Immediate MAX

1 0 0 1
PWM, Phase 
Correct

0xFF TOP BOTTOM

2 0 1 0 CTC OCRA Immediate MAX

3 0 1 1 Fast PWM 0xFF BOTTOM MAX

4 1 0 0 Reserved – – –

5 1 0 1
PWM, Phase 
Correct

OCRA TOP BOTTOM

6 1 1 0 Reserved – – –

7 1 1 1 Fast PWM OCRA BOTTOM TOP

Notes: 1. MAX = 0xFF

2. BOTTOM = 0x00
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15.9.2 TCCR0B – Timer/Counter Control Register B

• Bit 7 – FOC0A: Force Output Compare A
The FOC0A bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when
TCCR0B is written when operating in PWM mode. When writing a logical one to the FOC0A
bit, an immediate Compare Match is forced on the Waveform Generation unit. The OC0A out-
put is changed according to its COM0A1:0 bits setting. Note that the FOC0A bit is
implemented as a strobe. Therefore it is the value present in the COM0A1:0 bits that deter-
mines the effect of the forced compare. 

A FOC0A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR0A as TOP.

The FOC0A bit is always read as zero.

• Bit 6 – FOC0B: Force Output Compare B
The FOC0B bit is only active when the WGM bits specify a non-PWM mode. 

However, for ensuring compatibility with future devices, this bit must be set to zero when
TCCR0B is written when operating in PWM mode. When writing a logical one to the FOC0B
bit, an immediate Compare Match is forced on the Waveform Generation unit. The OC0B out-
put is changed according to its COM0B1:0 bits setting. Note that the FOC0B bit is
implemented as a strobe. Therefore it is the value present in the COM0B1:0 bits that deter-
mines the effect of the forced compare.

A FOC0B strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR0B as TOP. 

The FOC0B bit is always read as zero.

• Bits 5:4 – Reserved
These bits are reserved bits in the Atmel® ATmega48PA/88PA/168PA and will always read as
zero.

• Bit 3 – WGM02: Waveform Generation Mode
See the description in the “TCCR0A – Timer/Counter Control Register A” on page 104.

• Bits 2:0 – CS02:0: Clock Select

The three Clock Select bits select the clock source to be used by the Timer/Counter.

Bit 7 6 5 4 3 2 1 0

0x25 (0x45) FOC0A FOC0B – – WGM02 CS02 CS01 CS00 TCCR0B

Read/Write W W R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

15.9.3 TCNT0 – Timer/Counter Register

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNT0 Register blocks (removes) the Com-
pare Match on the following timer clock. Modifying the counter (TCNT0) while the counter is
running, introduces a risk of missing a Compare Match between TCNT0 and the OCR0x
Registers.

15.9.4 OCR0A – Output Compare Register A

The Output Compare Register A contains an 8-bit value that is continuously compared with
the counter value (TCNT0). A match can be used to generate an Output Compare interrupt, or
to generate a waveform output on the OC0A pin.

15.9.5 OCR0B – Output Compare Register B

The Output Compare Register B contains an 8-bit value that is continuously compared with
the counter value (TCNT0). A match can be used to generate an Output Compare interrupt, or
to generate a waveform output on the OC0B pin.

Table 15-9. Clock Select Bit Description 

CS02 CS01 CS00 Description

0 0 0 No clock source (Timer/Counter stopped)

0 0 1 clkI/O/(No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/64 (From prescaler)

1 0 0 clkI/O/256 (From prescaler)

1 0 1 clkI/O/1024 (From prescaler)

1 1 0 External clock source on T0 pin. Clock on falling edge.

1 1 1 External clock source on T0 pin. Clock on rising edge.

Bit 7 6 5 4 3 2 1 0

0x26 (0x46) TCNT0[7:0] TCNT0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x27 (0x47) OCR0A[7:0] OCR0A

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x28 (0x48) OCR0B[7:0] OCR0B

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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15.9.6 TIMSK0 – Timer/Counter Interrupt Mask Register

• Bits 7:3 – Reserved
These bits are reserved bits in the Atmel® ATmega48PA/88PA/168PA and will always read as
zero.

• Bit 2 – OCIE0B: Timer/Counter Output Compare Match B Interrupt Enable
When the OCIE0B bit is written to one, and the I-bit in the Status Register is set, the
Timer/Counter Compare Match B interrupt is enabled. The corresponding interrupt is executed
if a Compare Match in Timer/Counter occurs, i.e., when the OCF0B bit is set in the
Timer/Counter Interrupt Flag Register – TIFR0.

• Bit 1 – OCIE0A: Timer/Counter0 Output Compare Match A Interrupt Enable
When the OCIE0A bit is written to one, and the I-bit in the Status Register is set, the
Timer/Counter0 Compare Match A interrupt is enabled. The corresponding interrupt is exe-
cuted if a Compare Match in Timer/Counter0 occurs, i.e., when the OCF0A bit is set in the
Timer/Counter 0 Interrupt Flag Register – TIFR0.

• Bit 0 – TOIE0: Timer/Counter0 Overflow Interrupt Enable
When the TOIE0 bit is written to one, and the I-bit in the Status Register is set, the
Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/Counter0 occurs, i.e., when the TOV0 bit is set in the Timer/Counter 0 Inter-
rupt Flag Register – TIFR0.

15.9.7 TIFR0 – Timer/Counter 0 Interrupt Flag Register

• Bits 7:3 – Reserved
These bits are reserved bits in the Atmel® ATmega48PA/88PA/168PA and will always read as
zero.

• Bit 2 – OCF0B: Timer/Counter 0 Output Compare B Match Flag
The OCF0B bit is set when a Compare Match occurs between the Timer/Counter and the data
in OCR0B – Output Compare Register0 B. OCF0B is cleared by hardware when executing the
corresponding interrupt handling vector. Alternatively, OCF0B is cleared by writing a logic one
to the flag. When the I-bit in SREG, OCIE0B (Timer/Counter Compare B Match Interrupt
Enable), and OCF0B are set, the Timer/Counter Compare Match Interrupt is executed.

Bit 7 6 5 4 3 2 1 0

(0x6E) – – – – – OCIE0B OCIE0A TOIE0 TIMSK0

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x15 (0x35) – – – – – OCF0B OCF0A TOV0 TIFR0

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 1 – OCF0A: Timer/Counter 0 Output Compare A Match Flag
The OCF0A bit is set when a Compare Match occurs between the Timer/Counter0 and the
data in OCR0A – Output Compare Register0. OCF0A is cleared by hardware when executing
the corresponding interrupt handling vector. Alternatively, OCF0A is cleared by writing a logic
one to the flag. When the I-bit in SREG, OCIE0A (Timer/Counter0 Compare Match Interrupt
Enable), and OCF0A are set, the Timer/Counter0 Compare Match Interrupt is executed.

• Bit 0 – TOV0: Timer/Counter0 Overflow Flag
The bit TOV0 is set when an overflow occurs in Timer/Counter0. TOV0 is cleared by hardware
when executing the corresponding interrupt handling vector. Alternatively, TOV0 is cleared by
writing a logic one to the flag. When the SREG I-bit, TOIE0 (Timer/Counter0 Overflow Interrupt
Enable), and TOV0 are set, the Timer/Counter0 Overflow interrupt is executed.

The setting of this flag is dependent of the WGM02:0 bit setting. Refer to Table 15-8, “Wave-
form Generation Mode Bit Description” on page 106.
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16. 16-bit Timer/Counter1 with PWM

16.1 Features
• True 16-bit Design (i.e., Allows 16-bit PWM)
• Two independent Output Compare Units
• Double Buffered Output Compare Registers
• One Input Capture Unit
• Input Capture Noise Canceler
• Clear Timer on Compare Match (Auto Reload)
• Glitch-free, Phase Correct Pulse Width Modulator (PWM)
• Variable PWM Period
• Frequency Generator
• External Event Counter
• Four independent interrupt Sources (TOV1, OCF1A, OCF1B, and ICF1)

16.2 Overview
The 16-bit Timer/Counter unit allows accurate program execution timing (event management),
wave generation, and signal timing measurement.

Most register and bit references in this section are written in general form. A lower case “n”
replaces the Timer/Counter number, and a lower case “x” replaces the Output Compare unit
channel. However, when using the register or bit defines in a program, the precise form must
be used, i.e., TCNT1 for accessing Timer/Counter1 counter value and so on. 

A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 16-1. For the actual
placement of I/O pins, refer to “Pinout Atmel® ATmega48PA/88PA/168PA” on page 2. CPU
accessible I/O Registers, including I/O bits and I/O pins, are shown in bold. The device-spe-
cific I/O Register and bit locations are listed in the “Register Description” on page 133.

The PRTIM1 bit in “PRR – Power Reduction Register” on page 45 must be written to zero to
enable Timer/Counter1 module.
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Figure 16-1. 16-bit Timer/Counter Block Diagram(1) 

Note: 1. Refer to Figure 1-1 on page 2, Table 14-3 on page 81 and Table 14-9 on page 88 for 
Timer/Counter1 pin placement and description. 

16.2.1 Registers
The Timer/Counter (TCNT1), Output Compare Registers (OCR1A/B), and Input Capture Reg-
ister (ICR1) are all 16-bit registers. Special procedures must be followed when accessing the
16-bit registers. These procedures are described in the section “Accessing 16-bit Registers”
on page 113. The Timer/Counter Control Registers (TCCR1A/B) are 8-bit registers and have
no CPU access restrictions. Interrupt requests (abbreviated to Int.Req. in the figure) signals
are all visible in the Timer Interrupt Flag Register (TIFR1). All interrupts are individually
masked with the Timer Interrupt Mask Register (TIMSK1). TIFR1 and TIMSK1 are not shown
in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source
on the T1 pin. The Clock Select logic block controls which clock source and edge the
Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inactive when
no clock source is selected. The output from the Clock Select logic is referred to as the timer
clock (clkT1).
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The double buffered Output Compare Registers (OCR1A/B) are compared with the
Timer/Counter value at all time. The result of the compare can be used by the Waveform Gen-
erator to generate a PWM or variable frequency output on the Output Compare pin (OC1A/B).
See “Output Compare Units” on page 120. The compare match event will also set the Com-
pare Match Flag (OCF1A/B) which can be used to generate an Output Compare interrupt
request.

The Input Capture Register can capture the Timer/Counter value at a given external (edge
triggered) event on either the Input Capture pin (ICP1) or on the Analog Comparator pins (See
“Analog Comparator” on page 244) The Input Capture unit includes a digital filtering unit
(Noise Canceler) for reducing the chance of capturing noise spikes.

The TOP value, or maximum Timer/Counter value, can in some modes of operation be
defined by either the OCR1A Register, the ICR1 Register, or by a set of fixed values. When
using OCR1A as TOP value in a PWM mode, the OCR1A Register can not be used for gener-
ating a PWM output. However, the TOP value will in this case be double buffered allowing the
TOP value to be changed in run time. If a fixed TOP value is required, the ICR1 Register can
be used as an alternative, freeing the OCR1A to be used as PWM output.

16.2.2 Definitions
The following definitions are used extensively throughout the section:

16.3 Accessing 16-bit Registers
The TCNT1, OCR1A/B, and ICR1 are 16-bit registers that can be accessed by the AVR CPU
via the 8-bit data bus. The 16-bit register must be byte accessed using two read or write oper-
ations. Each 16-bit timer has a single 8-bit register for temporary storing of the high byte of the
16-bit access. The same temporary register is shared between all 16-bit registers within each
16-bit timer. Accessing the low byte triggers the 16-bit read or write operation. When the low
byte of a 16-bit register is written by the CPU, the high byte stored in the temporary register,
and the low byte written are both copied into the 16-bit register in the same clock cycle. When
the low byte of a 16-bit register is read by the CPU, the high byte of the 16-bit register is cop-
ied into the temporary register in the same clock cycle as the low byte is read.

Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCR1A/B
16-bit registers does not involve using the temporary register.

To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the
low byte must be read before the high byte.

The following code examples show how to access the 16-bit Timer Registers assuming that no
interrupts updates the temporary register. The same principle can be used directly for access-
ing the OCR1A/B and ICR1 Registers. Note that when using “C”, the compiler handles the
16-bit access.

BOTTOM The counter reaches the BOTTOM when it becomes 0x0000.

MAX The counter reaches its MAXimum when it becomes 0xFFFF (decimal 65535).

TOP

The counter reaches the TOP when it becomes equal to the highest value in the count 
sequence. The TOP value can be assigned to be one of the fixed values: 0x00FF, 0x01FF, 
or 0x03FF, or to the value stored in the OCR1A or ICR1 Register. The assignment is 
dependent of the mode of operation.
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It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt
occurs between the two instructions accessing the 16-bit register, and the interrupt code
updates the temporary register by accessing the same or any other of the 16-bit Timer Regis-
ters, then the result of the access outside the interrupt will be corrupted. Therefore, when both
the main code and the interrupt code update the temporary register, the main code must dis-
able the interrupts during the 16-bit access.

The following code examples show how to do an atomic read of the TCNT1 Register contents.
Reading any of the OCR1A/B or ICR1 Registers can be done by using the same principle.

Assembly Code Examples(1)

...

; Set TCNT1 to 0x01FF
ldi r17,0x01

ldi r16,0xFF

out TCNT1H,r17
out TCNT1L,r16
; Read TCNT1 into r17:r16
in r16,TCNT1L
in r17,TCNT1H
...

C Code Examples(1)

unsigned int i;

...

/* Set TCNT1 to 0x01FF */
TCNT1 = 0x1FF;
/* Read TCNT1 into i */
i = TCNT1;
...

Note: 1. See ”About Code Examples” on page 7.
For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and 
“SBI” instructions must be replaced with instructions that allow access to extended I/O. 
Typically “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.
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The following code examples show how to do an atomic write of the TCNT1 Register contents.
Writing any of the OCR1A/B or ICR1 Registers can be done by using the same principle.

Assembly Code Example(1)

TIM16_ReadTCNT1:
; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Read TCNT1 into r17:r16
in r16,TCNT1L
in r17,TCNT1H
; Restore global interrupt flag

out SREG,r18

ret

C Code Example(1)

unsigned int TIM16_ReadTCNT1( void )
{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

_CLI();

/* Read TCNT1 into i */
i = TCNT1;
/* Restore global interrupt flag */

SREG = sreg;

return i;

}

Note: 1. See ”About Code Examples” on page 7.
For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and 
“SBI” instructions must be replaced with instructions that allow access to extended I/O. 
Typically “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.
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The assembly code example requires that the r17:r16 register pair contains the value to be
written to TCNT1.

16.3.1 Reusing the Temporary High Byte Register
If writing to more than one 16-bit register where the high byte is the same for all registers writ-
ten, then the high byte only needs to be written once. However, note that the same rule of
atomic operation described previously also applies in this case.

16.4 Timer/Counter Clock Sources
The Timer/Counter can be clocked by an internal or an external clock source. The clock
source is selected by the Clock Select logic which is controlled by the Clock Select (CS12:0)
bits located in the Timer/Counter control Register B (TCCR1B). For details on clock sources
and prescaler, see “Timer/Counter0 and Timer/Counter1 Prescalers” on page 140.

Assembly Code Example(1)

TIM16_WriteTCNT1:
; Save global interrupt flag

in r18,SREG

; Disable interrupts

cli

; Set TCNT1 to r17:r16
out TCNT1H,r17
out TCNT1L,r16
; Restore global interrupt flag

out SREG,r18

ret

C Code Example(1)

void TIM16_WriteTCNT1( unsigned int i )
{

unsigned char sreg;

unsigned int i;

/* Save global interrupt flag */

sreg = SREG;

/* Disable interrupts */

_CLI();

/* Set TCNT1 to i */
TCNT1 = i;
/* Restore global interrupt flag */

SREG = sreg;

}

Note: 1. See ”About Code Examples” on page 7.
For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and 
“SBI” instructions must be replaced with instructions that allow access to extended I/O. 
Typically “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.
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16.5 Counter Unit
The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter
unit. Figure 16-2 shows a block diagram of the counter and its surroundings.

Figure 16-2. Counter Unit Block Diagram 

Signal description (internal signals):

Count Increment or decrement TCNT1 by 1.

Direction Select between increment and decrement.

Clear Clear TCNT1 (set all bits to zero).

clkT1 Timer/Counter clock.

TOP Signalize that TCNT1 has reached maximum value.

BOTTOM Signalize that TCNT1 has reached minimum value (zero).

The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNT1H)
containing the upper eight bits of the counter, and Counter Low (TCNT1L) containing the lower
eight bits. The TCNT1H Register can only be indirectly accessed by the CPU. When the CPU
does an access to the TCNT1H I/O location, the CPU accesses the high byte temporary regis-
ter (TEMP). The temporary register is updated with the TCNT1H value when the TCNT1L is
read, and TCNT1H is updated with the temporary register value when TCNT1L is written. This
allows the CPU to read or write the entire 16-bit counter value within one clock cycle via the
8-bit data bus. It is important to notice that there are special cases of writing to the TCNT1
Register when the counter is counting that will give unpredictable results. The special cases
are described in the sections where they are of importance.

Depending on the mode of operation used, the counter is cleared, incremented, or decre-
mented at each timer clock (clkT1). The clkT1 can be generated from an external or internal
clock source, selected by the Clock Select bits (CS12:0). When no clock source is selected
(CS12:0 = 0) the timer is stopped. However, the TCNT1 value can be accessed by the CPU,
independent of whether clkT1 is present or not. A CPU write overrides (has priority over) all
counter clear or count operations.

The counting sequence is determined by the setting of the Waveform Generation mode bits
(WGM13:0) located in the Timer/Counter Control Registers A and B (TCCR1A and TCCR1B).
There are close connections between how the counter behaves (counts) and how waveforms
are generated on the Output Compare outputs OC1x. For more details about advanced count-
ing sequences and waveform generation, see “Modes of Operation” on page 123.
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The Timer/Counter Overflow Flag (TOV1) is set according to the mode of operation selected
by the WGM13:0 bits. TOV1 can be used for generating a CPU interrupt.

16.6 Input Capture Unit
The Timer/Counter incorporates an Input Capture unit that can capture external events and
give them a time-stamp indicating time of occurrence. The external signal indicating an event,
or multiple events, can be applied via the ICP1 pin or alternatively, via the analog-comparator
unit. The time-stamps can then be used to calculate frequency, duty-cycle, and other features
of the signal applied. Alternatively the time-stamps can be used for creating a log of the
events.

The Input Capture unit is illustrated by the block diagram shown in Figure 16-3. The elements
of the block diagram that are not directly a part of the Input Capture unit are gray shaded. The
small “n” in register and bit names indicates the Timer/Counter number.

Figure 16-3. Input Capture Unit Block Diagram 

When a change of the logic level (an event) occurs on the Input Capture pin (ICP1), alterna-
tively on the Analog Comparator output (ACO), and this change confirms to the setting of the
edge detector, a capture will be triggered. When a capture is triggered, the 16-bit value of the
counter (TCNT1) is written to the Input Capture Register (ICR1). The Input Capture Flag
(ICF1) is set at the same system clock as the TCNT1 value is copied into ICR1 Register. If
enabled (ICIE1 = 1), the Input Capture Flag generates an Input Capture interrupt. The ICF1
Flag is automatically cleared when the interrupt is executed. Alternatively the ICF1 Flag can
be cleared by software by writing a logical one to its I/O bit location.

Reading the 16-bit value in the Input Capture Register (ICR1) is done by first reading the low
byte (ICR1L) and then the high byte (ICR1H). When the low byte is read the high byte is cop-
ied into the high byte temporary register (TEMP). When the CPU reads the ICR1H I/O location
it will access the TEMP Register.
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The ICR1 Register can only be written when using a Waveform Generation mode that utilizes
the ICR1 Register for defining the counter’s TOP value. In these cases the Waveform Genera-
tion mode (WGM13:0) bits must be set before the TOP value can be written to the ICR1
Register. When writing the ICR1 Register the high byte must be written to the ICR1H I/O loca-
tion before the low byte is written to ICR1L.

For more information on how to access the 16-bit registers refer to “Accessing 16-bit Regis-
ters” on page 113.

16.6.1 Input Capture Trigger Source
The main trigger source for the Input Capture unit is the Input Capture pin (ICP1).
Timer/Counter1 can alternatively use the Analog Comparator output as trigger source for the
Input Capture unit. The Analog Comparator is selected as trigger source by setting the Analog
Comparator Input Capture (ACIC) bit in the Analog Comparator Control and Status Register
(ACSR). Be aware that changing trigger source can trigger a capture. The Input Capture Flag
must therefore be cleared after the change.

Both the Input Capture pin (ICP1) and the Analog Comparator output (ACO) inputs are sam-
pled using the same technique as for the T1 pin (Figure 17-1 on page 140). The edge detector
is also identical. However, when the noise canceler is enabled, additional logic is inserted
before the edge detector, which increases the delay by four system clock cycles. Note that the
input of the noise canceler and edge detector is always enabled unless the Timer/Counter is
set in a Waveform Generation mode that uses ICR1 to define TOP.

An Input Capture can be triggered by software by controlling the port of the ICP1 pin.

16.6.2 Noise Canceler
The noise canceler improves noise immunity by using a simple digital filtering scheme. The
noise canceler input is monitored over four samples, and all four must be equal for changing
the output that in turn is used by the edge detector.

The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNC1) bit in
Timer/Counter Control Register B (TCCR1B). When enabled the noise canceler introduces
additional four system clock cycles of delay from a change applied to the input, to the update
of the ICR1 Register. The noise canceler uses the system clock and is therefore not affected
by the prescaler.

16.6.3 Using the Input Capture Unit
The main challenge when using the Input Capture unit is to assign enough processor capacity
for handling the incoming events. The time between two events is critical. If the processor has
not read the captured value in the ICR1 Register before the next event occurs, the ICR1 will
be overwritten with a new value. In this case the result of the capture will be incorrect.

When using the Input Capture interrupt, the ICR1 Register should be read as early in the inter-
rupt handler routine as possible. Even though the Input Capture interrupt has relatively high
priority, the maximum interrupt response time is dependent on the maximum number of clock
cycles it takes to handle any of the other interrupt requests.

Using the Input Capture unit in any mode of operation when the TOP value (resolution) is
actively changed during operation, is not recommended.
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Measurement of an external signal’s duty cycle requires that the trigger edge is changed after
each capture. Changing the edge sensing must be done as early as possible after the ICR1
Register has been read. After a change of the edge, the Input Capture Flag (ICF1) must be
cleared by software (writing a logical one to the I/O bit location). For measuring frequency
only, the clearing of the ICF1 Flag is not required (if an interrupt handler is used).

16.7 Output Compare Units
The 16-bit comparator continuously compares TCNT1 with the Output Compare Register
(OCR1x). If TCNT equals OCR1x the comparator signals a match. A match will set the Output
Compare Flag (OCF1x) at the next timer clock cycle. If enabled (OCIE1x = 1), the Output
Compare Flag generates an Output Compare interrupt. The OCF1x Flag is automatically
cleared when the interrupt is executed. Alternatively the OCF1x Flag can be cleared by soft-
ware by writing a logical one to its I/O bit location. The Waveform Generator uses the match
signal to generate an output according to operating mode set by the Waveform Generation
mode (WGM13:0) bits and Compare Output mode (COM1x1:0) bits. The TOP and BOTTOM
signals are used by the Waveform Generator for handling the special cases of the extreme
values in some modes of operation (See “Modes of Operation” on page 123.)

A special feature of Output Compare unit A allows it to define the Timer/Counter TOP value
(i.e., counter resolution). In addition to the counter resolution, the TOP value defines the
period time for waveforms generated by the Waveform Generator.

Figure 16-4 shows a block diagram of the Output Compare unit. The small “n” in the register
and bit names indicates the device number (n = 1 for Timer/Counter 1), and the “x” indicates
Output Compare unit (A/B). The elements of the block diagram that are not directly a part of
the Output Compare unit are gray shaded.

Figure 16-4. Output Compare Unit, Block Diagram 
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The OCR1x Register is double buffered when using any of the twelve Pulse Width Modulation
(PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the
double buffering is disabled. The double buffering synchronizes the update of the OCR1x
Compare Register to either TOP or BOTTOM of the counting sequence. The synchronization
prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the out-
put glitch-free.

The OCR1x Register access may seem complex, but this is not case. When the double buffer-
ing is enabled, the CPU has access to the OCR1x Buffer Register, and if double buffering is
disabled the CPU will access the OCR1x directly. The content of the OCR1x (Buffer or Com-
pare) Register is only changed by a write operation (the Timer/Counter does not update this
register automatically as the TCNT1 and ICR1 Register). Therefore OCR1x is not read via the
high byte temporary register (TEMP). However, it is a good practice to read the low byte first
as when accessing other 16-bit registers. Writing the OCR1x Registers must be done via the
TEMP Register since the compare of all 16 bits is done continuously. The high byte (OCR1xH)
has to be written first. When the high byte I/O location is written by the CPU, the TEMP Regis-
ter will be updated by the value written. Then when the low byte (OCR1xL) is written to the
lower eight bits, the high byte will be copied into the upper 8-bits of either the OCR1x buffer or
OCR1x Compare Register in the same system clock cycle.

For more information of how to access the 16-bit registers refer to “Accessing 16-bit Registers”
on page 113.

16.7.1 Force Output Compare
In non-PWM Waveform Generation modes, the match output of the comparator can be forced
by writing a one to the Force Output Compare (FOC1x) bit. Forcing compare match will not set
the OCF1x Flag or reload/clear the timer, but the OC1x pin will be updated as if a real com-
pare match had occurred (the COM11:0 bits settings define whether the OC1x pin is set,
cleared or toggled). 

16.7.2 Compare Match Blocking by TCNT1 Write
All CPU writes to the TCNT1 Register will block any compare match that occurs in the next
timer clock cycle, even when the timer is stopped. This feature allows OCR1x to be initialized
to the same value as TCNT1 without triggering an interrupt when the Timer/Counter clock is
enabled.

16.7.3 Using the Output Compare Unit
Since writing TCNT1 in any mode of operation will block all compare matches for one timer
clock cycle, there are risks involved when changing TCNT1 when using any of the Output
Compare channels, independent of whether the Timer/Counter is running or not. If the value
written to TCNT1 equals the OCR1x value, the compare match will be missed, resulting in
incorrect waveform generation. Do not write the TCNT1 equal to TOP in PWM modes with
variable TOP values. The compare match for the TOP will be ignored and the counter will con-
tinue to 0xFFFF. Similarly, do not write the TCNT1 value equal to BOTTOM when the counter
is downcounting.

The setup of the OC1x should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OC1x value is to use the Force Output Com-
pare (FOC1x) strobe bits in Normal mode. The OC1x Register keeps its value even when
changing between Waveform Generation modes.
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Be aware that the COM1x1:0 bits are not double buffered together with the compare value.
Changing the COM1x1:0 bits will take effect immediately.

16.8 Compare Match Output Unit
The Compare Output mode (COM1x1:0) bits have two functions. The Waveform Generator
uses the COM1x1:0 bits for defining the Output Compare (OC1x) state at the next compare
match. Secondly the COM1x1:0 bits control the OC1x pin output source. Figure 16-5 shows a
simplified schematic of the logic affected by the COM1x1:0 bit setting. The I/O Registers, I/O
bits, and I/O pins in the figure are shown in bold. Only the parts of the general I/O Port Control
Registers (DDR and PORT) that are affected by the COM1x1:0 bits are shown. When referring
to the OC1x state, the reference is for the internal OC1x Register, not the OC1x pin. If a sys-
tem reset occur, the OC1x Register is reset to “0”.

Figure 16-5. Compare Match Output Unit, Schematic 

The general I/O port function is overridden by the Output Compare (OC1x) from the Waveform
Generator if either of the COM1x1:0 bits are set. However, the OC1x pin direction (input or
output) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direc-
tion Register bit for the OC1x pin (DDR_OC1x) must be set as output before the OC1x value is
visible on the pin. The port override function is generally independent of the Waveform Gener-
ation mode, but there are some exceptions. Refer to Table 16-1, Table 16-2 and Table 16-3
for details.

The design of the Output Compare pin logic allows initialization of the OC1x state before the
output is enabled. Note that some COM1x1:0 bit settings are reserved for certain modes of
operation. See “Register Description” on page 133.
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16.8.1 Compare Output Mode and Waveform Generation
The Waveform Generator uses the COM1x1:0 bits differently in normal, CTC, and PWM
modes. For all modes, setting the COM1x1:0 = 0 tells the Waveform Generator that no action
on the OC1x Register is to be performed on the next compare match. For compare output
actions in the non-PWM modes refer to Table 16-1 on page 133. For fast PWM mode refer to
Table 16-2 on page 133, and for phase correct and phase and frequency correct PWM refer to
Table 16-3 on page 134.

A change of the COM1x1:0 bits state will have effect at the first compare match after the bits
are written. For non-PWM modes, the action can be forced to have immediate effect by using
the FOC1x strobe bits.

16.9 Modes of Operation
The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins,
is defined by the combination of the Waveform Generation mode (WGM13:0) and Compare
Output mode (COM1x1:0) bits. The Compare Output mode bits do not affect the counting
sequence, while the Waveform Generation mode bits do. The COM1x1:0 bits control whether
the PWM output generated should be inverted or not (inverted or non-inverted PWM). For
non-PWM modes the COM1x1:0 bits control whether the output should be set, cleared or tog-
gle at a compare match (See “Compare Match Output Unit” on page 122.)

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 131.

16.9.1 Normal Mode
The simplest mode of operation is the Normal mode (WGM13:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 16-bit value (MAX = 0xFFFF) and then restarts from the
BOTTOM (0x0000). In normal operation the Timer/Counter Overflow Flag (TOV1) will be set in
the same timer clock cycle as the TCNT1 becomes zero. The TOV1 Flag in this case behaves
like a 17th bit, except that it is only set, not cleared. However, combined with the timer over-
flow interrupt that automatically clears the TOV1 Flag, the timer resolution can be increased by
software. There are no special cases to consider in the Normal mode, a new counter value
can be written anytime.

The Input Capture unit is easy to use in Normal mode. However, observe that the maximum
interval between the external events must not exceed the resolution of the counter. If the inter-
val between events are too long, the timer overflow interrupt or the prescaler must be used to
extend the resolution for the capture unit.

The Output Compare units can be used to generate interrupts at some given time. Using the
Output Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

16.9.2 Clear Timer on Compare Match (CTC) Mode
In Clear Timer on Compare or CTC mode (WGM13:0 = 4 or 12), the OCR1A or ICR1 Register
are used to manipulate the counter resolution. In CTC mode the counter is cleared to zero
when the counter value (TCNT1) matches either the OCR1A (WGM13:0 = 4) or the ICR1
(WGM13:0 = 12). The OCR1A or ICR1 define the top value for the counter, hence also its res-
olution. This mode allows greater control of the compare match output frequency. It also
simplifies the operation of counting external events.
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The timing diagram for the CTC mode is shown in Figure 16-6. The counter value (TCNT1)
increases until a compare match occurs with either OCR1A or ICR1, and then counter
(TCNT1) is cleared.

Figure 16-6. CTC Mode, Timing Diagram 

An interrupt can be generated at each time the counter value reaches the TOP value by either
using the OCF1A or ICF1 Flag according to the register used to define the TOP value. If the
interrupt is enabled, the interrupt handler routine can be used for updating the TOP value.
However, changing the TOP to a value close to BOTTOM when the counter is running with
none or a low prescaler value must be done with care since the CTC mode does not have the
double buffering feature. If the new value written to OCR1A or ICR1 is lower than the current
value of TCNT1, the counter will miss the compare match. The counter will then have to count
to its maximum value (0xFFFF) and wrap around starting at 0x0000 before the compare match
can occur. In many cases this feature is not desirable. An alternative will then be to use the
fast PWM mode using OCR1A for defining TOP (WGM13:0 = 15) since the OCR1A then will
be double buffered.

For generating a waveform output in CTC mode, the OC1A output can be set to toggle its log-
ical level on each compare match by setting the Compare Output mode bits to toggle mode
(COM1A1:0 = 1). The OC1A value will not be visible on the port pin unless the data direction
for the pin is set to output (DDR_OC1A = 1). The waveform generated will have a maximum
frequency of fOC1A = fclk_I/O/2 when OCR1A is set to zero (0x0000). The waveform frequency is
defined by the following equation:

The N variable represents the prescaler factor (1, 8, 64, 256, or 1024).

As for the Normal mode of operation, the TOV1 Flag is set in the same timer clock cycle that
the counter counts from MAX to 0x0000.
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16.9.3 Fast PWM Mode
The fast Pulse Width Modulation or fast PWM mode (WGM13:0 = 5, 6, 7, 14, or 15) provides a
high frequency PWM waveform generation option. The fast PWM differs from the other PWM
options by its single-slope operation. The counter counts from BOTTOM to TOP then restarts
from BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC1x) is
cleared on the compare match between TCNT1 and OCR1x, and set at BOTTOM. In inverting
Compare Output mode output is set on compare match and cleared at BOTTOM. Due to the
single-slope operation, the operating frequency of the fast PWM mode can be twice as high as
the phase correct and phase and frequency correct PWM modes that use dual-slope opera-
tion. This high frequency makes the fast PWM mode well suited for power regulation,
rectification, and DAC applications. High frequency allows physically small sized external
components (coils, capacitors), hence reduces total system cost.

The PWM resolution for fast PWM can be fixed to 8-, 9-, or 10-bit, or defined by either ICR1 or
OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the
maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in bits can be
calculated by using the following equation:

In fast PWM mode the counter is incremented until the counter value matches either one of
the fixed values 0x00FF, 0x01FF, or 0x03FF (WGM13:0 = 5, 6, or 7), the value in ICR1
(WGM13:0 = 14), or the value in OCR1A (WGM13:0 = 15). The counter is then cleared at the
following timer clock cycle. The timing diagram for the fast PWM mode is shown in Figure
16-7. The figure shows fast PWM mode when OCR1A or ICR1 is used to define TOP. The
TCNT1 value is in the timing diagram shown as a histogram for illustrating the single-slope
operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal
line marks on the TCNT1 slopes represent compare matches between OCR1x and TCNT1.
The OC1x Interrupt Flag will be set when a compare match occurs.

Figure 16-7. Fast PWM Mode, Timing Diagram 

The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches TOP. In addi-
tion the OC1A or ICF1 Flag is set at the same timer clock cycle as TOV1 is set when either
OCR1A or ICR1 is used for defining the TOP value. If one of the interrupts are enabled, the
interrupt handler routine can be used for updating the TOP and compare values.
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When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.
Note that when using fixed TOP values the unused bits are masked to zero when any of the
OCR1x Registers are written.

The procedure for updating ICR1 differs from updating OCR1A when used for defining the
TOP value. The ICR1 Register is not double buffered. This means that if ICR1 is changed to a
low value when the counter is running with none or a low prescaler value, there is a risk that
the new ICR1 value written is lower than the current value of TCNT1. The result will then be
that the counter will miss the compare match at the TOP value. The counter will then have to
count to the MAX value (0xFFFF) and wrap around starting at 0x0000 before the compare
match can occur. The OCR1A Register however, is double buffered. This feature allows the
OCR1A I/O location to be written anytime. When the OCR1A I/O location is written the value
written will be put into the OCR1A Buffer Register. The OCR1A Compare Register will then be
updated with the value in the Buffer Register at the next timer clock cycle the TCNT1 matches
TOP. The update is done at the same timer clock cycle as the TCNT1 is cleared and the TOV1
Flag is set.

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using
ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. How-
ever, if the base PWM frequency is actively changed (by changing the TOP value), using the
OCR1A as TOP is clearly a better choice due to its double buffer feature.

In fast PWM mode, the compare units allow generation of PWM waveforms on the OC1x pins.
Setting the COM1x1:0 bits to two will produce a inverted PWM and an non-inverted PWM out-
put can be generated by setting the COM1x1:0 to three (see Table  on page 133). The actual
OC1x value will only be visible on the port pin if the data direction for the port pin is set as out-
put (DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x Register
at the compare match between OCR1x and TCNT1, and clearing (or setting) the OC1x Regis-
ter at the timer clock cycle the counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represents special cases when generating a
PWM waveform output in the fast PWM mode. If the OCR1x is set equal to BOTTOM (0x0000)
the output will be a narrow spike for each TOP+1 timer clock cycle. Setting the OCR1x equal
to TOP will result in a constant high or low output (depending on the polarity of the output set
by the COM1x1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by
setting OC1A to toggle its logical level on each compare match (COM1A1:0 = 1). This applies
only if OCR1A is used to define the TOP value (WGM13:0 = 15). The waveform generated will
have a maximum frequency of fOC1A = fclk_I/O/2 when OCR1A is set to zero (0x0000). This fea-
ture is similar to the OC1A toggle in CTC mode, except the double buffer feature of the Output
Compare unit is enabled in the fast PWM mode.

fOCnxPWM
fclk_I/O

N 1 TOP+( )×
--------------------------------------=
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16.9.4 Phase Correct PWM Mode
The phase correct Pulse Width Modulation or phase correct PWM mode (WGM13:0 = 1, 2, 3,
10, or 11) provides a high resolution phase correct PWM waveform generation option. The
phase correct PWM mode is, like the phase and frequency correct PWM mode, based on a
dual-slope operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and
then from TOP to BOTTOM. In non-inverting Compare Output mode, the Output Compare
(OC1x) is cleared on the compare match between TCNT1 and OCR1x while upcounting, and
set on the compare match while downcounting. In inverting Output Compare mode, the opera-
tion is inverted. The dual-slope operation has lower maximum operation frequency than single
slope operation. However, due to the symmetric feature of the dual-slope PWM modes, these
modes are preferred for motor control applications.

The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or
defined by either ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A
set to 0x0003), and the maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM
resolution in bits can be calculated by using the following equation:

In phase correct PWM mode the counter is incremented until the counter value matches either
one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGM13:0 = 1, 2, or 3), the value in ICR1
(WGM13:0 = 10), or the value in OCR1A (WGM13:0 = 11). The counter has then reached the
TOP and changes the count direction. The TCNT1 value will be equal to TOP for one timer
clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 16-8.
The figure shows phase correct PWM mode when OCR1A or ICR1 is used to define TOP. The
TCNT1 value is in the timing diagram shown as a histogram for illustrating the dual-slope
operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal
line marks on the TCNT1 slopes represent compare matches between OCR1x and TCNT1.
The OC1x Interrupt Flag will be set when a compare match occurs.

Figure 16-8. Phase Correct PWM Mode, Timing Diagram 
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The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches BOTTOM.
When either OCR1A or ICR1 is used for defining the TOP value, the OC1A or ICF1 Flag is set
accordingly at the same timer clock cycle as the OCR1x Registers are updated with the dou-
ble buffer value (at TOP). The Interrupt Flags can be used to generate an interrupt each time
the counter reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.
Note that when using fixed TOP values, the unused bits are masked to zero when any of the
OCR1x Registers are written. As the third period shown in Figure 16-8 illustrates, changing the
TOP actively while the Timer/Counter is running in the phase correct mode can result in an
unsymmetrical output. The reason for this can be found in the time of update of the OCR1x
Register. Since the OCR1x update occurs at TOP, the PWM period starts and ends at TOP.
This implies that the length of the falling slope is determined by the previous TOP value, while
the length of the rising slope is determined by the new TOP value. When these two values dif-
fer the two slopes of the period will differ in length. The difference in length gives the
unsymmetrical result on the output. 

It is recommended to use the phase and frequency correct mode instead of the phase correct
mode when changing the TOP value while the Timer/Counter is running. When using a static
TOP value there are practically no differences between the two modes of operation.

In phase correct PWM mode, the compare units allow generation of PWM waveforms on the
OC1x pins. Setting the COM1x1:0 bits to two will produce a non-inverted PWM and an
inverted PWM output can be generated by setting the COM1x1:0 to three (See Table  on page
134). The actual OC1x value will only be visible on the port pin if the data direction for the port
pin is set as output (DDR_OC1x). The PWM waveform is generated by setting (or clearing) the
OC1x Register at the compare match between OCR1x and TCNT1 when the counter incre-
ments, and clearing (or setting) the OC1x Register at compare match between OCR1x and
TCNT1 when the counter decrements. The PWM frequency for the output when using phase
correct PWM can be calculated by the following equation:

The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR1x is set equal to BOTTOM the
output will be continuously low and if set equal to TOP the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values. If
OCR1A is used to define the TOP value (WGM13:0 = 11) and COM1A1:0 = 1, the OC1A out-
put will toggle with a 50% duty cycle.

fOCnxPCPWM
fclk_I/O

2 N× TOP×
----------------------------------=



129
9223D–AVR–05/12

Atmel ATmega48PA/88PA/168PA

16.9.5 Phase and Frequency Correct PWM Mode
The phase and frequency correct Pulse Width Modulation, or phase and frequency correct
PWM mode (WGM13:0 = 8 or 9) provides a high resolution phase and frequency correct PWM
waveform generation option. The phase and frequency correct PWM mode is, like the phase
correct PWM mode, based on a dual-slope operation. The counter counts repeatedly from
BOTTOM (0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output
mode, the Output Compare (OC1x) is cleared on the compare match between TCNT1 and
OCR1x while upcounting, and set on the compare match while downcounting. In inverting
Compare Output mode, the operation is inverted. The dual-slope operation gives a lower max-
imum operation frequency compared to the single-slope operation. However, due to the
symmetric feature of the dual-slope PWM modes, these modes are preferred for motor control
applications.

The main difference between the phase correct, and the phase and frequency correct PWM
mode is the time the OCR1x Register is updated by the OCR1x Buffer Register, (see Figure
16-8 and Figure 16-9).

The PWM resolution for the phase and frequency correct PWM mode can be defined by either
ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003),
and the maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in
bits can be calculated using the following equation:

In phase and frequency correct PWM mode the counter is incremented until the counter value
matches either the value in ICR1 (WGM13:0 = 8), or the value in OCR1A (WGM13:0 = 9). The
counter has then reached the TOP and changes the count direction. The TCNT1 value will be
equal to TOP for one timer clock cycle. The timing diagram for the phase correct and fre-
quency correct PWM mode is shown on Figure 16-9. The figure shows phase and frequency
correct PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1 value is in the
timing diagram shown as a histogram for illustrating the dual-slope operation. The diagram
includes non-inverted and inverted PWM outputs. The small horizontal line marks on the
TCNT1 slopes represent compare matches between OCR1x and TCNT1. The OC1x Interrupt
Flag will be set when a compare match occurs.

RPFCPWM
TOP 1+( )log

2( )log
-----------------------------------=
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Figure 16-9. Phase and Frequency Correct PWM Mode, Timing Diagram 

The Timer/Counter Overflow Flag (TOV1) is set at the same timer clock cycle as the OCR1x
Registers are updated with the double buffer value (at BOTTOM). When either OCR1A or
ICR1 is used for defining the TOP value, the OC1A or ICF1 Flag set when TCNT1 has
reached TOP. The Interrupt Flags can then be used to generate an interrupt each time the
counter reaches the TOP or BOTTOM value.

When changing the TOP value the program must ensure that the new TOP value is higher or
equal to the value of all of the Compare Registers. If the TOP value is lower than any of the
Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x.

As Figure 16-9 shows the output generated is, in contrast to the phase correct mode, symmet-
rical in all periods. Since the OCR1x Registers are updated at BOTTOM, the length of the
rising and the falling slopes will always be equal. This gives symmetrical output pulses and is
therefore frequency correct.

Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using
ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. How-
ever, if the base PWM frequency is actively changed by changing the TOP value, using the
OCR1A as TOP is clearly a better choice due to its double buffer feature.

In phase and frequency correct PWM mode, the compare units allow generation of PWM
waveforms on the OC1x pins. Setting the COM1x1:0 bits to two will produce a non-inverted
PWM and an inverted PWM output can be generated by setting the COM1x1:0 to three (See
Table  on page 134). The actual OC1x value will only be visible on the port pin if the data
direction for the port pin is set as output (DDR_OC1x). The PWM waveform is generated by
setting (or clearing) the OC1x Register at the compare match between OCR1x and TCNT1
when the counter increments, and clearing (or setting) the OC1x Register at compare match
between OCR1x and TCNT1 when the counter decrements. The PWM frequency for the out-
put when using phase and frequency correct PWM can be calculated by the following
equation:

OCRnx/TOP Updateand
TOVn Interrupt Flag Set
(Interrupt on Bottom)

OCnA Interrupt Flag Set
or ICFn Interrupt Flag Set
(Interrupt on TOP)

1 2 3 4

TCNTn

Period

OCnx

OCnx

(COMnx1:0 = 2)

(COMnx1:0 = 3)

fOCnxPFCPWM
fclk_I/O

2 N× TOP×
----------------------------------=
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The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).

The extreme values for the OCR1x Register represents special cases when generating a
PWM waveform output in the phase correct PWM mode. If the OCR1x is set equal to BOT-
TOM the output will be continuously low and if set equal to TOP the output will be set to high
for non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.
If OCR1A is used to define the TOP value (WGM13:0 = 9) and COM1A1:0 = 1, the OC1A out-
put will toggle with a 50% duty cycle.

16.10 Timer/Counter Timing Diagrams
The Timer/Counter is a synchronous design and the timer clock (clkT1) is therefore shown as a
clock enable signal in the following figures. The figures include information on when Interrupt
Flags are set, and when the OCR1x Register is updated with the OCR1x buffer value (only for
modes utilizing double buffering). Figure 16-10 shows a timing diagram for the setting of
OCF1x. 

Figure 16-10. Timer/Counter Timing Diagram, Setting of OCF1x, no Prescaling 

Figure 16-11 shows the same timing data, but with the prescaler enabled. 

Figure 16-11. Timer/Counter Timing Diagram, Setting of OCF1x, with Prescaler (fclk_I/O/8) 

clkTn
(clkI/O/1)

OCFnx

clkI/O

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clkI/O

clkTn
(clkI/O/8)
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Figure 16-12 shows the count sequence close to TOP in various modes. When using phase
and frequency correct PWM mode the OCR1x Register is updated at BOTTOM. The timing
diagrams will be the same, but TOP should be replaced by BOTTOM, TOP-1 by BOTTOM+1
and so on. The same renaming applies for modes that set the TOV1 Flag at BOTTOM.

Figure 16-12. Timer/Counter Timing Diagram, no Prescaling 

Figure 16-13 shows the same timing data, but with the prescaler enabled. 

Figure 16-13. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8) 
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16.11 Register Description

16.11.1 TCCR1A – Timer/Counter1 Control Register A

• Bit 7:6 – COM1A1:0: Compare Output Mode for Channel A

• Bit 5:4 – COM1B1:0: Compare Output Mode for Channel B
The COM1A1:0 and COM1B1:0 control the Output Compare pins (OC1A and OC1B respec-
tively) behavior. If one or both of the COM1A1:0 bits are written to one, the OC1A output
overrides the normal port functionality of the I/O pin it is connected to. If one or both of the
COM1B1:0 bit are written to one, the OC1B output overrides the normal port functionality of
the I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit corre-
sponding to the OC1A or OC1B pin must be set in order to enable the output driver.

When the OC1A or OC1B is connected to the pin, the function of the COM1x1:0 bits is depen-
dent of the WGM13:0 bits setting. Table 16-1 shows the COM1x1:0 bit functionality when the
WGM13:0 bits are set to a Normal or a CTC mode (non-PWM).

Table 16-2 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the fast
PWM mode.

Bit 7 6 5 4 3 2 1 0

(0x80) COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10 TCCR1A

Read/Write R/W R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 16-1. Compare Output Mode, non-PWM

COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B disconnected.

0 1 Toggle OC1A/OC1B on Compare Match.

1 0
Clear OC1A/OC1B on Compare Match (Set output to 
low level).

1 1
Set OC1A/OC1B on Compare Match (Set output to 
high level).

Table 16-2. Compare Output Mode, Fast PWM(1)

COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B disconnected.

0 1

WGM13:0 = 14 or 15: Toggle OC1A on Compare 
Match, OC1B disconnected (normal port operation). 
For all other WGM1 settings, normal port operation, 
OC1A/OC1B disconnected.

1 0
Clear OC1A/OC1B on Compare Match, set 
OC1A/OC1B at BOTTOM (non-inverting mode)

1 1
Set OC1A/OC1B on Compare Match, clear 
OC1A/OC1B at BOTTOM (inverting mode)

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. In 
this case the compare match is ignored, but the set or clear is done at BOTTOM. See “Fast 
PWM Mode” on page 125. for more details.
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Table 16-3 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the phase
correct or the phase and frequency correct, PWM mode.

• Bit 1:0 – WGM11:0: Waveform Generation Mode
Combined with the WGM13:2 bits found in the TCCR1B Register, these bits control the count-
ing sequence of the counter, the source for maximum (TOP) counter value, and what type of
waveform generation to be used, see Table 16-4. Modes of operation supported by the
Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare match (CTC) mode,
and three types of Pulse Width Modulation (PWM) modes. (See “Modes of Operation” on page
123.).

Table 16-3. Compare Output Mode, Phase Correct and Phase and Frequency Correct 
PWM(1)

COM1A1/COM1B1 COM1A0/COM1B0 Description

0 0 Normal port operation, OC1A/OC1B disconnected.

0 1

WGM13:0 = 9 or 11: Toggle OC1A on Compare Match, 
OC1B disconnected (normal port operation). For all 
other WGM1 settings, normal port operation, 
OC1A/OC1B disconnected.

1 0
Clear OC1A/OC1B on Compare Match when 
up-counting. Set OC1A/OC1B on Compare Match 
when downcounting.

1 1
Set OC1A/OC1B on Compare Match when 
up-counting. Clear OC1A/OC1B on Compare Match 
when downcounting.

Note: 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. 
See “Phase Correct PWM Mode” on page 127. for more details.
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16.11.2 TCCR1B – Timer/Counter1 Control Register B

• Bit 7 – ICNC1: Input Capture Noise Canceler
Setting this bit (to one) activates the Input Capture Noise Canceler. When the noise canceler
is activated, the input from the Input Capture pin (ICP1) is filtered. The filter function requires
four successive equal valued samples of the ICP1 pin for changing its output. The Input Cap-
ture is therefore delayed by four Oscillator cycles when the noise canceler is enabled.

• Bit 6 – ICES1: Input Capture Edge Select
This bit selects which edge on the Input Capture pin (ICP1) that is used to trigger a capture
event. When the ICES1 bit is written to zero, a falling (negative) edge is used as trigger, and
when the ICES1 bit is written to one, a rising (positive) edge will trigger the capture.

When a capture is triggered according to the ICES1 setting, the counter value is copied into
the Input Capture Register (ICR1). The event will also set the Input Capture Flag (ICF1), and
this can be used to cause an Input Capture Interrupt, if this interrupt is enabled.

When the ICR1 is used as TOP value (see description of the WGM13:0 bits located in the
TCCR1A and the TCCR1B Register), the ICP1 is disconnected and consequently the Input
Capture function is disabled.

Table 16-4. Waveform Generation Mode Bit Description(1)

Mode WGM13
WGM12
(CTC1)

WGM11
(PWM11)

WGM10
(PWM10)

Timer/Counter Mode of 
Operation TOP

Update of 
OCR1x at

TOV1 Flag 
Set on

0 0 0 0 0 Normal 0xFFFF Immediate MAX

1 0 0 0 1 PWM, Phase Correct, 8-bit 0x00FF TOP BOTTOM

2 0 0 1 0 PWM, Phase Correct, 9-bit 0x01FF TOP BOTTOM

3 0 0 1 1 PWM, Phase Correct, 10-bit 0x03FF TOP BOTTOM

4 0 1 0 0 CTC OCR1A Immediate MAX

5 0 1 0 1 Fast PWM, 8-bit 0x00FF BOTTOM TOP

6 0 1 1 0 Fast PWM, 9-bit 0x01FF BOTTOM TOP

7 0 1 1 1 Fast PWM, 10-bit 0x03FF BOTTOM TOP

8 1 0 0 0
PWM, Phase and Frequency 
Correct

ICR1 BOTTOM BOTTOM

9 1 0 0 1
PWM, Phase and Frequency 
Correct

OCR1A BOTTOM BOTTOM

10 1 0 1 0 PWM, Phase Correct ICR1 TOP BOTTOM

11 1 0 1 1 PWM, Phase Correct OCR1A TOP BOTTOM

12 1 1 0 0 CTC ICR1 Immediate MAX

13 1 1 0 1 (Reserved) – – –

14 1 1 1 0 Fast PWM ICR1 BOTTOM TOP

15 1 1 1 1 Fast PWM OCR1A BOTTOM TOP

Note: 1. The CTC1 and PWM11:0 bit definition names are obsolete. Use the WGM12:0 definitions. However, the functionality and 
location of these bits are compatible with previous versions of the timer.

Bit 7 6 5 4 3 2 1 0

(0x81) ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 TCCR1B

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 5 – Reserved
This bit is reserved for future use. For ensuring compatibility with future devices, this bit must
be written to zero when TCCR1B is written.

• Bit 4:3 – WGM13:2: Waveform Generation Mode
See TCCR1A Register description.

• Bit 2:0 – CS12:0: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter, see Fig-
ure 16-10 and Figure 16-11.

If external pin modes are used for the Timer/Counter1, transitions on the T1 pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

16.11.3 TCCR1C – Timer/Counter1 Control Register C

• Bit 7 – FOC1A: Force Output Compare for Channel A

• Bit 6 – FOC1B: Force Output Compare for Channel B
The FOC1A/FOC1B bits are only active when the WGM13:0 bits specifies a non-PWM mode.
When writing a logical one to the FOC1A/FOC1B bit, an immediate compare match is forced
on the Waveform Generation unit. The OC1A/OC1B output is changed according to its
COM1x1:0 bits setting. Note that the FOC1A/FOC1B bits are implemented as strobes. There-
fore it is the value present in the COM1x1:0 bits that determine the effect of the forced
compare.

A FOC1A/FOC1B strobe will not generate any interrupt nor will it clear the timer in Clear Timer
on Compare match (CTC) mode using OCR1A as TOP. The FOC1A/FOC1B bits are always
read as zero.

Table 16-5. Clock Select Bit Description

CS12 CS11 CS10 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkI/O/1 (No prescaling)

0 1 0 clkI/O/8 (From prescaler)

0 1 1 clkI/O/64 (From prescaler)

1 0 0 clkI/O/256 (From prescaler)

1 0 1 clkI/O/1024 (From prescaler)

1 1 0 External clock source on T1 pin. Clock on falling edge.

1 1 1 External clock source on T1 pin. Clock on rising edge.

Bit 7 6 5 4 3 2 1 0

(0x82) FOC1A FOC1B – – – – – – TCCR1C

Read/Write R/W R/W R R R R R R

Initial Value 0 0 0 0 0 0 0 0
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16.11.4 TCNT1H and TCNT1L – Timer/Counter1

The two Timer/Counter I/O locations (TCNT1H and TCNT1L, combined TCNT1) give direct
access, both for read and for write operations, to the Timer/Counter unit 16-bit counter. To
ensure that both the high and low bytes are read and written simultaneously when the CPU
accesses these registers, the access is performed using an 8-bit temporary High Byte Regis-
ter (TEMP). This temporary register is shared by all the other 16-bit registers. See “Accessing
16-bit Registers” on page 113.

Modifying the counter (TCNT1) while the counter is running introduces a risk of missing a
compare match between TCNT1 and one of the OCR1x Registers.

Writing to the TCNT1 Register blocks (removes) the compare match on the following timer
clock for all compare units.

16.11.5 OCR1AH and OCR1AL – Output Compare Register 1 A

16.11.6 OCR1BH and OCR1BL – Output Compare Register 1 B

The Output Compare Registers contain a 16-bit value that is continuously compared with the
counter value (TCNT1). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OC1x pin.

The Output Compare Registers are 16-bit in size. To ensure that both the high and low bytes
are written simultaneously when the CPU writes to these registers, the access is performed
using an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all
the other 16-bit registers. See “Accessing 16-bit Registers” on page 113.

Bit 7 6 5 4 3 2 1 0

(0x85) TCNT1[15:8] TCNT1H

(0x84) TCNT1[7:0] TCNT1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x89) OCR1A[15:8] OCR1AH

(0x88) OCR1A[7:0] OCR1AL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x8B) OCR1B[15:8] OCR1BH

(0x8A) OCR1B[7:0] OCR1BL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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16.11.7 ICR1H and ICR1L – Input Capture Register 1

The Input Capture is updated with the counter (TCNT1) value each time an event occurs on
the ICP1 pin (or optionally on the Analog Comparator output for Timer/Counter1). The Input
Capture can be used for defining the counter TOP value.

The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes are
read simultaneously when the CPU accesses these registers, the access is performed using
an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all the
other 16-bit registers. See “Accessing 16-bit Registers” on page 113.

16.11.8 TIMSK1 – Timer/Counter1 Interrupt Mask Register

• Bit 7, 6 – Reserved
These bits are unused bits in the Atmel® ATmega48PA/88PA/168PA, and will always read as
zero.

• Bit 5 – ICIE1: Timer/Counter1, Input Capture Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Input Capture interrupt is enabled. The corresponding Interrupt
Vector (see “Interrupts” on page 58) is executed when the ICF1 Flag, located in TIFR1, is set.

• Bit 4, 3 – Reserved
These bits are unused bits in the Atmel ATmega48PA/88PA/168PA, and will always read as
zero.

• Bit 2 – OCIE1B: Timer/Counter1, Output Compare B Match Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Output Compare B Match interrupt is enabled. The correspond-
ing Interrupt Vector (see “Interrupts” on page 58) is executed when the OCF1B Flag, located
in TIFR1, is set.

• Bit 1 – OCIE1A: Timer/Counter1, Output Compare A Match Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Output Compare A Match interrupt is enabled. The correspond-
ing Interrupt Vector (see “Interrupts” on page 58) is executed when the OCF1A Flag, located
in TIFR1, is set.

• Bit 0 – TOIE1: Timer/Counter1, Overflow Interrupt Enable
When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally
enabled), the Timer/Counter1 Overflow interrupt is enabled. The corresponding Interrupt Vec-
tor (See “Interrupts” on page 58) is executed when the TOV1 Flag, located in TIFR1, is set.

Bit 7 6 5 4 3 2 1 0

(0x87) ICR1[15:8] ICR1H

(0x86) ICR1[7:0] ICR1L

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x6F) – – ICIE1 – – OCIE1B OCIE1A TOIE1 TIMSK1

Read/Write R R R/W R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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16.11.9 TIFR1 – Timer/Counter1 Interrupt Flag Register

• Bit 7, 6 – Reserved
These bits are unused bits in the Atmel® ATmega48PA/88PA/168PA, and will always read as
zero.

• Bit 5 – ICF1: Timer/Counter1, Input Capture Flag
This flag is set when a capture event occurs on the ICP1 pin. When the Input Capture Register
(ICR1) is set by the WGM13:0 to be used as the TOP value, the ICF1 Flag is set when the
counter reaches the TOP value.

ICF1 is automatically cleared when the Input Capture Interrupt Vector is executed. Alterna-
tively, ICF1 can be cleared by writing a logic one to its bit location.

• Bit 4, 3 – Reserved
These bits are unused bits in the Atmel ATmega48PA/88PA/168PA, and will always read as
zero.

• Bit 2 – OCF1B: Timer/Counter1, Output Compare B Match Flag
This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output
Compare Register B (OCR1B).

Note that a Forced Output Compare (FOC1B) strobe will not set the OCF1B Flag.

OCF1B is automatically cleared when the Output Compare Match B Interrupt Vector is exe-
cuted. Alternatively, OCF1B can be cleared by writing a logic one to its bit location.

• Bit 1 – OCF1A: Timer/Counter1, Output Compare A Match Flag
This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output
Compare Register A (OCR1A).

Note that a Forced Output Compare (FOC1A) strobe will not set the OCF1A Flag.

OCF1A is automatically cleared when the Output Compare Match A Interrupt Vector is exe-
cuted. Alternatively, OCF1A can be cleared by writing a logic one to its bit location.

• Bit 0 – TOV1: Timer/Counter1, Overflow Flag
The setting of this flag is dependent of the WGM13:0 bits setting. In Normal and CTC modes,
the TOV1 Flag is set when the timer overflows. Refer to Table 16-4 on page 135 for the TOV1
Flag behavior when using another WGM13:0 bit setting.

TOV1 is automatically cleared when the Timer/Counter1 Overflow Interrupt Vector is exe-
cuted. Alternatively, TOV1 can be cleared by writing a logic one to its bit location.

Bit 7 6 5 4 3 2 1 0

0x16 (0x36) – – ICF1 – – OCF1B OCF1A TOV1 TIFR1

Read/Write R R R/W R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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17. Timer/Counter0 and Timer/Counter1 Prescalers
“8-bit Timer/Counter0 with PWM” on page 93 and “16-bit Timer/Counter1 with PWM” on page
111 share the same prescaler module, but the Timer/Counters can have different prescaler
settings. The description below applies to both Timer/Counter1 and Timer/Counter0.

17.1 Internal Clock Source
The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1).
This provides the fastest operation, with a maximum Timer/Counter clock frequency equal to
system clock frequency (fCLK_I/O). Alternatively, one of four taps from the prescaler can be
used as a clock source. The prescaled clock has a frequency of either fCLK_I/O/8, fCLK_I/O/64,
fCLK_I/O/256, or fCLK_I/O/1024.

17.2 Prescaler Reset
The prescaler is free running, i.e., operates independently of the Clock Select logic of the
Timer/Counter, and it is shared by Timer/Counter1 and Timer/Counter0. Since the prescaler is
not affected by the Timer/Counter’s clock select, the state of the prescaler will have implica-
tions for situations where a prescaled clock is used. One example of prescaling artifacts
occurs when the timer is enabled and clocked by the prescaler (6 > CSn2:0 > 1). The number
of system clock cycles from when the timer is enabled to the first count occurs can be from 1
to N+1 system clock cycles, where N equals the prescaler divisor (8, 64, 256, or 1024).

It is possible to use the prescaler reset for synchronizing the Timer/Counter to program execu-
tion. However, care must be taken if the other Timer/Counter that shares the same prescaler
also uses prescaling. A prescaler reset will affect the prescaler period for all Timer/Counters it
is connected to.

17.3 External Clock Source
An external clock source applied to the T1/T0 pin can be used as Timer/Counter clock
(clkT1/clkT0). The T1/T0 pin is sampled once every system clock cycle by the pin synchroniza-
tion logic. The synchronized (sampled) signal is then passed through the edge detector.
Figure 17-1 shows a functional equivalent block diagram of the T1/T0 synchronization and
edge detector logic. The registers are clocked at the positive edge of the internal system clock
(clkI/O). The latch is transparent in the high period of the internal system clock.

The edge detector generates one clkT1/clkT0 pulse for each positive (CSn2:0 = 7) or negative
(CSn2:0 = 6) edge it detects.

Figure 17-1. T1/T0 Pin Sampling 

The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock
cycles from an edge has been applied to the T1/T0 pin to the counter is updated.
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Enabling and disabling of the clock input must be done when T1/T0 has been stable for at
least one system clock cycle, otherwise it is a risk that a false Timer/Counter clock pulse is
generated.

Each half period of the external clock applied must be longer than one system clock cycle to
ensure correct sampling. The external clock must be guaranteed to have less than half the
system clock frequency (fExtClk < fclk_I/O/2) given a 50/50% duty cycle. Since the edge detector
uses sampling, the maximum frequency of an external clock it can detect is half the sampling
frequency (Nyquist sampling theorem). However, due to variation of the system clock fre-
quency and duty cycle caused by Oscillator source (crystal, resonator, and capacitors)
tolerances, it is recommended that maximum frequency of an external clock source is less
than fclk_I/O/2.5.

An external clock source can not be prescaled.

Figure 17-2. Prescaler for Timer/Counter0 and Timer/Counter1(1) 

Note: 1. The synchronization logic on the input pins (T1/T0) is shown in Figure 17-1.
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17.4 Register Description

17.4.1 GTCCR – General Timer/Counter Control Register

• Bit 7 – TSM: Timer/Counter Synchronization Mode
Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this mode,
the value that is written to the PSRASY and PSRSYNC bits is kept, hence keeping the corre-
sponding prescaler reset signals asserted. This ensures that the corresponding
Timer/Counters are halted and can be configured to the same value without the risk of one of
them advancing during configuration. When the TSM bit is written to zero, the PSRASY and
PSRSYNC bits are cleared by hardware, and the Timer/Counters start counting
simultaneously.

• Bit 0 – PSRSYNC: Prescaler Reset
When this bit is one, Timer/Counter1 and Timer/Counter0 prescaler will be Reset. This bit is
normally cleared immediately by hardware, except if the TSM bit is set. Note that
Timer/Counter1 and Timer/Counter0 share the same prescaler and a reset of this prescaler
will affect both timers.

Bit 7 6 5 4 3 2 1 0

0x23 (0x43) TSM – – – – – PSRASY PSRSYNC GTCCR

Read/Write R/W R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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18. 8-bit Timer/Counter2 with PWM and Asynchronous Operation

18.1 Features
• Single Channel Counter
• Clear Timer on Compare Match (Auto Reload)
• Glitch-free, Phase Correct Pulse Width Modulator (PWM)
• Frequency Generator
• 10-bit Clock Prescaler
• Overflow and Compare Match Interrupt Sources (TOV2, OCF2A and OCF2B)
• Allows Clocking from External 32kHz Watch Crystal Independent of the I/O Clock

18.2 Overview
Timer/Counter2 is a general purpose, single channel, 8-bit Timer/Counter module. A simplified
block diagram of the 8-bit Timer/Counter is shown in Figure 18-1. For the actual placement of
I/O pins, refer to “Pinout Atmel® ATmega48PA/88PA/168PA” on page 2. CPU accessible I/O
Registers, including I/O bits and I/O pins, are shown in bold. The device-specific I/O Register
and bit locations are listed in the “Register Description” on page 158.

The PRTIM2 bit in “Minimizing Power Consumption” on page 42 must be written to zero to
enable Timer/Counter2 module.

Figure 18-1. 8-bit Timer/Counter Block Diagram 
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18.2.1 Registers
The Timer/Counter (TCNT2) and Output Compare Register (OCR2A and OCR2B) are 8-bit
registers. Interrupt request (shorten as Int.Req.) signals are all visible in the Timer Interrupt
Flag Register (TIFR2). All interrupts are individually masked with the Timer Interrupt Mask
Register (TIMSK2). TIFR2 and TIMSK2 are not shown in the figure.

The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked
from the TOSC1/2 pins, as detailed later in this section. The asynchronous operation is con-
trolled by the Asynchronous Status Register (ASSR). The Clock Select logic block controls
which clock source he Timer/Counter uses to increment (or decrement) its value. The
Timer/Counter is inactive when no clock source is selected. The output from the Clock Select
logic is referred to as the timer clock (clkT2).

The double buffered Output Compare Register (OCR2A and OCR2B) are compared with the
Timer/Counter value at all times. The result of the compare can be used by the Waveform
Generator to generate a PWM or variable frequency output on the Output Compare pins
(OC2A and OC2B). See “Output Compare Unit” on page 146 for details. The compare match
event will also set the Compare Flag (OCF2A or OCF2B) which can be used to generate an
Output Compare interrupt request.

18.2.2 Definitions
Many register and bit references in this document are written in general form. A lower case “n”
replaces the Timer/Counter number, in this case 2. However, when using the register or bit
defines in a program, the precise form must be used, i.e., TCNT2 for accessing
Timer/Counter2 counter value and so on.

The definitions in Table 18-1 are also used extensively throughout the section. 

18.3 Timer/Counter Clock Sources
The Timer/Counter can be clocked by an internal synchronous or an external asynchronous
clock source. The clock source clkT2 is by default equal to the MCU clock, clkI/O. When the
AS2 bit in the ASSR Register is written to logic one, the clock source is taken from the
Timer/Counter Oscillator connected to TOSC1 and TOSC2. For details on asynchronous
operation, see “ASSR – Asynchronous Status Register” on page 164. For details on clock
sources and prescaler, see “Timer/Counter Prescaler” on page 157.

Table 18-1. Definitions

BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00).

MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255).

TOP
The counter reaches the TOP when it becomes equal to the highest value in the count 
sequence. The TOP value can be assigned to be the fixed value 0xFF (MAX) or the value 
stored in the OCR2A Register. The assignment is dependent on the mode of operation.
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18.4 Counter Unit
The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Fig-
ure 18-2 on page 145 shows a block diagram of the counter and its surrounding environment.

Figure 18-2. Counter Unit Block Diagram 

Signal description (internal signals):

count Increment or decrement TCNT2 by 1.

direction Selects between increment and decrement.

clear Clear TCNT2 (set all bits to zero).

clkTn Timer/Counter clock, referred to as clkT2 in the following.

top Signalizes that TCNT2 has reached maximum value.

bottom Signalizes that TCNT2 has reached minimum value (zero).

Depending on the mode of operation used, the counter is cleared, incremented, or decre-
mented at each timer clock (clkT2). clkT2 can be generated from an external or internal clock
source, selected by the Clock Select bits (CS22:0). When no clock source is selected
(CS22:0 = 0) the timer is stopped. However, the TCNT2 value can be accessed by the CPU,
regardless of whether clkT2 is present or not. A CPU write overrides (has priority over) all
counter clear or count operations.

The counting sequence is determined by the setting of the WGM21 and WGM20 bits located
in the Timer/Counter Control Register (TCCR2A) and the WGM22 located in the Timer/Coun-
ter Control Register B (TCCR2B). There are close connections between how the counter
behaves (counts) and how waveforms are generated on the Output Compare outputs OC2A
and OC2B. For more details about advanced counting sequences and waveform generation,
see “Modes of Operation” on page 149.

The Timer/Counter Overflow Flag (TOV2) is set according to the mode of operation selected
by the WGM22:0 bits. TOV2 can be used for generating a CPU interrupt.
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18.5 Output Compare Unit
The 8-bit comparator continuously compares TCNT2 with the Output Compare Register
(OCR2A and OCR2B). Whenever TCNT2 equals OCR2A or OCR2B, the comparator signals a
match. A match will set the Output Compare Flag (OCF2A or OCF2B) at the next timer clock
cycle. If the corresponding interrupt is enabled, the Output Compare Flag generates an Output
Compare interrupt. The Output Compare Flag is automatically cleared when the interrupt is
executed. Alternatively, the Output Compare Flag can be cleared by software by writing a log-
ical one to its I/O bit location. The Waveform Generator uses the match signal to generate an
output according to operating mode set by the WGM22:0 bits and Compare Output mode
(COM2x1:0) bits. The max and bottom signals are used by the Waveform Generator for han-
dling the special cases of the extreme values in some modes of operation (“Modes of
Operation” on page 149).

Figure 18-3 shows a block diagram of the Output Compare unit. 

Figure 18-3. Output Compare Unit, Block Diagram 

The OCR2x Register is double buffered when using any of the Pulse Width Modulation (PWM)
modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the double
buffering is disabled. The double buffering synchronizes the update of the OCR2x Compare
Register to either top or bottom of the counting sequence. The synchronization prevents the
occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output
glitch-free.

The OCR2x Register access may seem complex, but this is not case. When the double buffer-
ing is enabled, the CPU has access to the OCR2x Buffer Register, and if double buffering is
disabled the CPU will access the OCR2x directly. 
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18.5.1 Force Output Compare
In non-PWM waveform generation modes, the match output of the comparator can be forced
by writing a one to the Force Output Compare (FOC2x) bit. Forcing compare match will not set
the OCF2x Flag or reload/clear the timer, but the OC2x pin will be updated as if a real com-
pare match had occurred (the COM2x1:0 bits settings define whether the OC2x pin is set,
cleared or toggled).

18.5.2 Compare Match Blocking by TCNT2 Write
All CPU write operations to the TCNT2 Register will block any compare match that occurs in
the next timer clock cycle, even when the timer is stopped. This feature allows OCR2x to be
initialized to the same value as TCNT2 without triggering an interrupt when the Timer/Counter
clock is enabled.

18.5.3 Using the Output Compare Unit
Since writing TCNT2 in any mode of operation will block all compare matches for one timer
clock cycle, there are risks involved when changing TCNT2 when using the Output Compare
channel, independently of whether the Timer/Counter is running or not. If the value written to
TCNT2 equals the OCR2x value, the compare match will be missed, resulting in incorrect
waveform generation. Similarly, do not write the TCNT2 value equal to BOTTOM when the
counter is downcounting.

The setup of the OC2x should be performed before setting the Data Direction Register for the
port pin to output. The easiest way of setting the OC2x value is to use the Force Output Com-
pare (FOC2x) strobe bit in Normal mode. The OC2x Register keeps its value even when
changing between Waveform Generation modes.

Be aware that the COM2x1:0 bits are not double buffered together with the compare value.
Changing the COM2x1:0 bits will take effect immediately.

18.6 Compare Match Output Unit
The Compare Output mode (COM2x1:0) bits have two functions. The Waveform Generator
uses the COM2x1:0 bits for defining the Output Compare (OC2x) state at the next compare
match. Also, the COM2x1:0 bits control the OC2x pin output source. Figure 18-4 shows a sim-
plified schematic of the logic affected by the COM2x1:0 bit setting. The I/O Registers, I/O bits,
and I/O pins in the figure are shown in bold. Only the parts of the general I/O Port Control Reg-
isters (DDR and PORT) that are affected by the COM2x1:0 bits are shown. When referring to
the OC2x state, the reference is for the internal OC2x Register, not the OC2x pin.
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Figure 18-4. Compare Match Output Unit, Schematic 

The general I/O port function is overridden by the Output Compare (OC2x) from the Waveform
Generator if either of the COM2x1:0 bits are set. However, the OC2x pin direction (input or
output) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direc-
tion Register bit for the OC2x pin (DDR_OC2x) must be set as output before the OC2x value is
visible on the pin. The port override function is independent of the Waveform Generation
mode.

The design of the Output Compare pin logic allows initialization of the OC2x state before the
output is enabled. Note that some COM2x1:0 bit settings are reserved for certain modes of
operation. See “Register Description” on page 158.

18.6.1 Compare Output Mode and Waveform Generation
The Waveform Generator uses the COM2x1:0 bits differently in normal, CTC, and PWM
modes. For all modes, setting the COM2x1:0 = 0 tells the Waveform Generator that no action
on the OC2x Register is to be performed on the next compare match. For compare output
actions in the non-PWM modes refer to Table 18-5 on page 159. For fast PWM mode, refer to
Table 18-6 on page 159, and for phase correct PWM refer to Table 18-7 on page 160.

A change of the COM2x1:0 bits state will have effect at the first compare match after the bits
are written. For non-PWM modes, the action can be forced to have immediate effect by using
the FOC2x strobe bits.
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18.7 Modes of Operation
The mode of operation, i.e., the behavior of the Timer/Counter and the Output Compare pins,
is defined by the combination of the Waveform Generation mode (WGM22:0) and Compare
Output mode (COM2x1:0) bits. The Compare Output mode bits do not affect the counting
sequence, while the Waveform Generation mode bits do. The COM2x1:0 bits control whether
the PWM output generated should be inverted or not (inverted or non-inverted PWM). For
non-PWM modes the COM2x1:0 bits control whether the output should be set, cleared, or tog-
gled at a compare match (See “Compare Match Output Unit” on page 147.).

For detailed timing information refer to “Timer/Counter Timing Diagrams” on page 154.

18.7.1 Normal Mode
The simplest mode of operation is the Normal mode (WGM22:0 = 0). In this mode the counting
direction is always up (incrementing), and no counter clear is performed. The counter simply
overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bot-
tom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV2) will be set in the
same timer clock cycle as the TCNT2 becomes zero. The TOV2 Flag in this case behaves like
a ninth bit, except that it is only set, not cleared. However, combined with the timer overflow
interrupt that automatically clears the TOV2 Flag, the timer resolution can be increased by
software. There are no special cases to consider in the Normal mode, a new counter value
can be written anytime.

The Output Compare unit can be used to generate interrupts at some given time. Using the
Output Compare to generate waveforms in Normal mode is not recommended, since this will
occupy too much of the CPU time.

18.7.2 Clear Timer on Compare Match (CTC) Mode
In Clear Timer on Compare or CTC mode (WGM22:0 = 2), the OCR2A Register is used to
manipulate the counter resolution. In CTC mode the counter is cleared to zero when the coun-
ter value (TCNT2) matches the OCR2A. The OCR2A defines the top value for the counter,
hence also its resolution. This mode allows greater control of the compare match output fre-
quency. It also simplifies the operation of counting external events.

The timing diagram for the CTC mode is shown in Figure 18-5. The counter value (TCNT2)
increases until a compare match occurs between TCNT2 and OCR2A, and then counter
(TCNT2) is cleared.

Figure 18-5. CTC Mode, Timing Diagram 
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An interrupt can be generated each time the counter value reaches the TOP value by using
the OCF2A Flag. If the interrupt is enabled, the interrupt handler routine can be used for
updating the TOP value. However, changing TOP to a value close to BOTTOM when the
counter is running with none or a low prescaler value must be done with care since the CTC
mode does not have the double buffering feature. If the new value written to OCR2A is lower
than the current value of TCNT2, the counter will miss the compare match. The counter will
then have to count to its maximum value (0xFF) and wrap around starting at 0x00 before the
compare match can occur.

For generating a waveform output in CTC mode, the OC2A output can be set to toggle its log-
ical level on each compare match by setting the Compare Output mode bits to toggle mode
(COM2A1:0 = 1). The OC2A value will not be visible on the port pin unless the data direction
for the pin is set to output. The waveform generated will have a maximum frequency of fOC2A =
fclk_I/O/2 when OCR2A is set to zero (0x00). The waveform frequency is defined by the follow-
ing equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

As for the Normal mode of operation, the TOV2 Flag is set in the same timer clock cycle that
the counter counts from MAX to 0x00.

18.7.3 Fast PWM Mode
The fast Pulse Width Modulation or fast PWM mode (WGM22:0 = 3 or 7) provides a high fre-
quency PWM waveform generation option. The fast PWM differs from the other PWM option
by its single-slope operation. The counter counts from BOTTOM to TOP then restarts from
BOTTOM. TOP is defined as 0xFF when WGM2:0 = 3, and OCR2A when MGM2:0 = 7. In
non-inverting Compare Output mode, the Output Compare (OC2x) is cleared on the compare
match between TCNT2 and OCR2x, and set at BOTTOM. In inverting Compare Output mode,
the output is set on compare match and cleared at BOTTOM. Due to the single-slope opera-
tion, the operating frequency of the fast PWM mode can be twice as high as the phase correct
PWM mode that uses dual-slope operation. This high frequency makes the fast PWM mode
well suited for power regulation, rectification, and DAC applications. High frequency allows
physically small sized external components (coils, capacitors), and therefore reduces total
system cost.

In fast PWM mode, the counter is incremented until the counter value matches the TOP value.
The counter is then cleared at the following timer clock cycle. The timing diagram for the fast
PWM mode is shown in Figure 18-6. The TCNT2 value is in the timing diagram shown as a
histogram for illustrating the single-slope operation. The diagram includes non-inverted and
inverted PWM outputs. The small horizontal line marks on the TCNT2 slopes represent com-
pare matches between OCR2x and TCNT2.

fOCnx
fclk_I/O

2 N× 1 OCRnx+( )×
--------------------------------------------------------=
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Figure 18-6. Fast PWM Mode, Timing Diagram 

The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches TOP. If the
interrupt is enabled, the interrupt handler routine can be used for updating the compare value.

In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2x pin.
Setting the COM2x1:0 bits to two will produce a non-inverted PWM and an inverted PWM out-
put can be generated by setting the COM2x1:0 to three. TOP is defined as 0xFF when
WGM2:0 = 3, and OCR2A when MGM2:0 = 7. (See Table 18-3 on page 158). The actual
OC2x value will only be visible on the port pin if the data direction for the port pin is set as out-
put. The PWM waveform is generated by setting (or clearing) the OC2x Register at the
compare match between OCR2x and TCNT2, and clearing (or setting) the OC2x Register at
the timer clock cycle the counter is cleared (changes from TOP to BOTTOM).

The PWM frequency for the output can be calculated by the following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a PWM
waveform output in the fast PWM mode. If the OCR2A is set equal to BOTTOM, the output will
be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR2A equal to MAX will
result in a constantly high or low output (depending on the polarity of the output set by the
COM2A1:0 bits.)

A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by
setting OC2x to toggle its logical level on each compare match (COM2x1:0 = 1). The wave-
form generated will have a maximum frequency of foc2 = fclk_I/O/2 when OCR2A is set to zero.
This feature is similar to the OC2A toggle in CTC mode, except the double buffer feature of the
Output Compare unit is enabled in the fast PWM mode.
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18.7.4 Phase Correct PWM Mode
The phase correct PWM mode (WGM22:0 = 1 or 5) provides a high resolution phase correct
PWM waveform generation option. The phase correct PWM mode is based on a dual-slope
operation. The counter counts repeatedly from BOTTOM to TOP and then from TOP to BOT-
TOM. TOP is defined as 0xFF when WGM2:0 = 3, and OCR2A when MGM2:0 = 7. In
non-inverting Compare Output mode, the Output Compare (OC2x) is cleared on the compare
match between TCNT2 and OCR2x while upcounting, and set on the compare match while
downcounting. In inverting Output Compare mode, the operation is inverted. The dual-slope
operation has lower maximum operation frequency than single slope operation. However, due
to the symmetric feature of the dual-slope PWM modes, these modes are preferred for motor
control applications.

In phase correct PWM mode the counter is incremented until the counter value matches TOP.
When the counter reaches TOP, it changes the count direction. The TCNT2 value will be
equal to TOP for one timer clock cycle. The timing diagram for the phase correct PWM mode
is shown on Figure 18-7. The TCNT2 value is in the timing diagram shown as a histogram for
illustrating the dual-slope operation. The diagram includes non-inverted and inverted PWM
outputs. The small horizontal line marks on the TCNT2 slopes represent compare matches
between OCR2x and TCNT2.

Figure 18-7. Phase Correct PWM Mode, Timing Diagram 
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In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the
OC2x pin. Setting the COM2x1:0 bits to two will produce a non-inverted PWM. An inverted
PWM output can be generated by setting the COM2x1:0 to three. TOP is defined as 0xFF
when WGM2:0 = 3, and OCR2A when MGM2:0 = 7 (See Table 18-4 on page 159). The actual
OC2x value will only be visible on the port pin if the data direction for the port pin is set as out-
put. The PWM waveform is generated by clearing (or setting) the OC2x Register at the
compare match between OCR2x and TCNT2 when the counter increments, and setting (or
clearing) the OC2x Register at compare match between OCR2x and TCNT2 when the counter
decrements. The PWM frequency for the output when using phase correct PWM can be calcu-
lated by the following equation:

The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024).

The extreme values for the OCR2A Register represent special cases when generating a PWM
waveform output in the phase correct PWM mode. If the OCR2A is set equal to BOTTOM, the
output will be continuously low and if set equal to MAX the output will be continuously high for
non-inverted PWM mode. For inverted PWM the output will have the opposite logic values.

At the very start of period 2 in Figure 18-7 OCnx has a transition from high to low even though
there is no Compare Match. The point of this transition is to guarantee symmetry around BOT-
TOM. There are two cases that give a transition without Compare Match. 

• OCR2A changes its value from MAX, like in Figure 18-7. When the OCR2A value is MAX the 
OCn pin value is the same as the result of a down-counting compare match. To ensure 
symmetry around BOTTOM the OCn value at MAX must correspond to the result of an 
up-counting Compare Match.

• The timer starts counting from a value higher than the one in OCR2A, and for that reason 
misses the Compare Match and hence the OCn change that would have happened on the 
way up.

fOCnxPCPWM
fclk_I/O

N 510×
---------------------=
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18.8 Timer/Counter Timing Diagrams
The following figures show the Timer/Counter in synchronous mode, and the timer clock
(clkT2) is therefore shown as a clock enable signal. In asynchronous mode, clkI/O should be
replaced by the Timer/Counter Oscillator clock. The figures include information on when Inter-
rupt Flags are set. Figure 18-8 contains timing data for basic Timer/Counter operation. The
figure shows the count sequence close to the MAX value in all modes other than phase correct
PWM mode.

Figure 18-8. Timer/Counter Timing Diagram, no Prescaling 

Figure 18-9 shows the same timing data, but with the prescaler enabled.

Figure 18-9. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8) 

Figure 18-10 shows the setting of OCF2A in all modes except CTC mode.

Figure 18-10. Timer/Counter Timing Diagram, Setting of OCF2A, with Prescaler (fclk_I/O/8) 

clkTn
(clkI/O/1)

TOVn

clkI/O

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

TOVn

TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)

OCFnx

OCRnx

TCNTn

OCRnx Value

OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2

clkI/O

clkTn
(clkI/O/8)
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Figure 18-11 shows the setting of OCF2A and the clearing of TCNT2 in CTC mode.

Figure 18-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with 
Prescaler (fclk_I/O/8) 

18.9 Asynchronous Operation of Timer/Counter2
When Timer/Counter2 operates asynchronously, some considerations must be taken.

• Warning: When switching between asynchronous and synchronous clocking of 
Timer/Counter2, the Timer Registers TCNT2, OCR2x, and TCCR2x might be corrupted. A 
safe procedure for switching clock source is:

a. Disable the Timer/Counter2 interrupts by clearing OCIE2x and TOIE2.

b. Select clock source by setting AS2 as appropriate.

c. Write new values to TCNT2, OCR2x, and TCCR2x.

d. To switch to asynchronous operation: Wait for TCN2xUB, OCR2xUB, and 
TCR2xUB.

e. Clear the Timer/Counter2 Interrupt Flags.

f. Enable interrupts, if needed.

• The CPU main clock frequency must be more than four times the Oscillator frequency.

• When writing to one of the registers TCNT2, OCR2x, or TCCR2x, the value is transferred to 
a temporary register, and latched after two positive edges on TOSC1. The user should not 
write a new value before the contents of the temporary register have been transferred to its 
destination. Each of the five mentioned registers have their individual temporary register, 
which means that e.g. writing to TCNT2 does not disturb an OCR2x write in progress. To 
detect that a transfer to the destination register has taken place, the Asynchronous Status 
Register – ASSR has been implemented.

• When entering Power-save or ADC Noise Reduction mode after having written to TCNT2, 
OCR2x, or TCCR2x, the user must wait until the written register has been updated if 
Timer/Counter2 is used to wake up the device. Otherwise, the MCU will enter sleep mode 
before the changes are effective. This is particularly important if any of the Output Compare2 
interrupt is used to wake up the device, since the Output Compare function is disabled during 
writing to OCR2x or TCNT2. If the write cycle is not finished, and the MCU enters sleep 
mode before the corresponding OCR2xUB bit returns to zero, the device will never receive a 
compare match interrupt, and the MCU will not wake up.

OCFnx

OCRnx

TCNTn
(CTC)

TOP

TOP - 1 TOP BOTTOM BOTTOM + 1

clkI/O

clkTn
(clkI/O/8)
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• If Timer/Counter2 is used to wake the device up from Power-save or ADC Noise Reduction 
mode, precautions must be taken if the user wants to re-enter one of these modes: If 
re-entering sleep mode within the TOSC1 cycle, the interrupt will immediately occur and the 
device wake up again. The result is multiple interrupts and wake-ups within one TOSC1 
cycle from the first interrupt. If the user is in doubt whether the time before re-entering 
Power-save or ADC Noise Reduction mode is sufficient, the following algorithm can be used 
to ensure that one TOSC1 cycle has elapsed:

a. Write a value to TCCR2x, TCNT2, or OCR2x.

b. Wait until the corresponding Update Busy Flag in ASSR returns to zero.

c. Enter Power-save or ADC Noise Reduction mode.

• When the asynchronous operation is selected, the 32.768kHz Oscillator for 
Timer/Counter2 is always running, except in Power-down and Standby modes. After a 
Power-up Reset or wake-up from Power-down or Standby mode, the user should be aware 
of the fact that this Oscillator might take as long as one second to stabilize. The user is 
advised to wait for at least one second before using Timer/Counter2 after power-up or 
wake-up from Power-down or Standby mode. The contents of all Timer/Counter2 Registers 
must be considered lost after a wake-up from Power-down or Standby mode due to 
unstable clock signal upon start-up, no matter whether the Oscillator is in use or a clock 
signal is applied to the TOSC1 pin.

• Description of wake up from Power-save or ADC Noise Reduction mode when the timer is 
clocked asynchronously: When the interrupt condition is met, the wake up process is started 
on the following cycle of the timer clock, that is, the timer is always advanced by at least one 
before the processor can read the counter value. After wake-up, the MCU is halted for four 
cycles, it executes the interrupt routine, and resumes execution from the instruction following 
SLEEP.

• Reading of the TCNT2 Register shortly after wake-up from Power-save may give an incorrect 
result. Since TCNT2 is clocked on the asynchronous TOSC clock, reading TCNT2 must be 
done through a register synchronized to the internal I/O clock domain. Synchronization takes 
place for every rising TOSC1 edge. When waking up from Power-save mode, and the I/O 
clock (clkI/O) again becomes active, TCNT2 will read as the previous value (before entering 
sleep) until the next rising TOSC1 edge. The phase of the TOSC clock after waking up from 
Power-save mode is essentially unpredictable, as it depends on the wake-up time. The 
recommended procedure for reading TCNT2 is thus as follows: 

a. Write any value to either of the registers OCR2x or TCCR2x. 

b. Wait for the corresponding Update Busy Flag to be cleared. 

c. Read TCNT2. 

During asynchronous operation, the synchronization of the Interrupt Flags for the asynchro-
nous timer takes 3 processor cycles plus one timer cycle. The timer is therefore advanced by
at least one before the processor can read the timer value causing the setting of the Interrupt
Flag. The Output Compare pin is changed on the timer clock and is not synchronized to the
processor clock.
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18.10 Timer/Counter Prescaler

Figure 18-12. Prescaler for Timer/Counter2 

The clock source for Timer/Counter2 is named clkT2S. clkT2S is by default connected to the
main system I/O clock clkIO. By setting the AS2 bit in ASSR, Timer/Counter2 is asynchro-
nously clocked from the TOSC1 pin. This enables use of Timer/Counter2 as a Real Time
Counter (RTC). When AS2 is set, pins TOSC1 and TOSC2 are disconnected from Port B. A
crystal can then be connected between the TOSC1 and TOSC2 pins to serve as an indepen-
dent clock source for Timer/Counter2. The Oscillator is optimized for use with a 32.768kHz
crystal.

For Timer/Counter2, the possible prescaled selections are: clkT2S/8, clkT2S/32, clkT2S/64,
clkT2S/128, clkT2S/256, and clkT2S/1024. Additionally, clkT2S as well as 0 (stop) may be
selected. Setting the PSRASY bit in GTCCR resets the prescaler. This allows the user to oper-
ate with a predictable prescaler. 
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18.11 Register Description

18.11.1 TCCR2A – Timer/Counter Control Register A

• Bits 7:6 – COM2A1:0: Compare Match Output A Mode
These bits control the Output Compare pin (OC2A) behavior. If one or both of the COM2A1:0
bits are set, the OC2A output overrides the normal port functionality of the I/O pin it is con-
nected to. However, note that the Data Direction Register (DDR) bit corresponding to the
OC2A pin must be set in order to enable the output driver.

When OC2A is connected to the pin, the function of the COM2A1:0 bits depends on the
WGM22:0 bit setting. Table 18-2 shows the COM2A1:0 bit functionality when the WGM22:0
bits are set to a normal or CTC mode (non-PWM).

Table 18-3 shows the COM2A1:0 bit functionality when the WGM21:0 bits are set to fast PWM
mode.

Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the Com-
pare Match is ignored, but the set or clear is done at BOTTOM. See “Fast PWM Mode” on 
page 150 for more details.

Bit 7 6 5 4 3 2 1 0

(0xB0) COM2A1 COM2A0 COM2B1 COM2B0 – – WGM21 WGM20 TCCR2A

Read/Write R/W R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 18-2. Compare Output Mode, non-PWM Mode

COM2A1 COM2A0 Description

0 0 Normal port operation, OC0A disconnected.

0 1 Toggle OC2A on Compare Match

1 0 Clear OC2A on Compare Match

1 1 Set OC2A on Compare Match

Table 18-3. Compare Output Mode, Fast PWM Mode(1)

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected.

0 1
WGM22 = 0: Normal Port Operation, OC0A Disconnected.
WGM22 = 1: Toggle OC2A on Compare Match.

1 0
Clear OC2A on Compare Match, set OC2A at BOTTOM,
(non-inverting mode).

1 1
Set OC2A on Compare Match, clear OC2A at BOTTOM,

(inverting mode).
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Table 18-4 shows the COM2A1:0 bit functionality when the WGM22:0 bits are set to phase
correct PWM mode.

• Bits 5:4 – COM2B1:0: Compare Match Output B Mode
These bits control the Output Compare pin (OC2B) behavior. If one or both of the COM2B1:0
bits are set, the OC2B output overrides the normal port functionality of the I/O pin it is con-
nected to. However, note that the Data Direction Register (DDR) bit corresponding to the
OC2B pin must be set in order to enable the output driver.

When OC2B is connected to the pin, the function of the COM2B1:0 bits depends on the
WGM22:0 bit setting. Table 18-5 shows the COM2B1:0 bit functionality when the WGM22:0
bits are set to a normal or CTC mode (non-PWM).

Table 18-6 shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to fast PWM
mode.

Table 18-4. Compare Output Mode, Phase Correct PWM Mode(1)

COM2A1 COM2A0 Description

0 0 Normal port operation, OC2A disconnected.

0 1
WGM22 = 0: Normal Port Operation, OC2A Disconnected.
WGM22 = 1: Toggle OC2A on Compare Match.

1 0
Clear OC2A on Compare Match when up-counting. Set OC2A on 
Compare Match when down-counting.

1 1
Set OC2A on Compare Match when up-counting. Clear OC2A on 
Compare Match when down-counting.

Note: 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the 
Compare Match is ignored, but the set or clear is done at TOP. See “Phase Correct PWM 
Mode” on page 152 for more details.

Table 18-5. Compare Output Mode, non-PWM Mode

COM2B1 COM2B0 Description

0 0 Normal port operation, OC2B disconnected.

0 1 Toggle OC2B on Compare Match

1 0 Clear OC2B on Compare Match

1 1 Set OC2B on Compare Match

Table 18-6. Compare Output Mode, Fast PWM Mode(1)

COM2B1 COM2B0 Description

0 0 Normal port operation, OC2B disconnected.

0 1 Reserved

1 0
Clear OC2B on Compare Match, set OC2B at BOTTOM,
(non-inverting mode).

1 1
Set OC2B on Compare Match, clear OC2B at BOTTOM,
(inverting mode).

Note: 1. A special case occurs when OCR2B equals TOP and COM2B1 is set. In this case, the 
Compare Match is ignored, but the set or clear is done at BOTTOM. See “Phase Correct 
PWM Mode” on page 152 for more details.
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Table 18-7 shows the COM2B1:0 bit functionality when the WGM22:0 bits are set to phase
correct PWM mode.

• Bits 3, 2 – Reserved
These bits are reserved bits in the Atmel® ATmega48PA/88PA/168PA and will always read as
zero.

• Bits 1:0 – WGM21:0: Waveform Generation Mode
Combined with the WGM22 bit found in the TCCR2B Register, these bits control the counting
sequence of the counter, the source for maximum (TOP) counter value, and what type of
waveform generation to be used, see Table 18-8. Modes of operation supported by the
Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare Match (CTC) mode,
and two types of Pulse Width Modulation (PWM) modes (see “Modes of Operation” on page
149).

Table 18-7. Compare Output Mode, Phase Correct PWM Mode(1)

COM2B1 COM2B0 Description

0 0 Normal port operation, OC2B disconnected.

0 1 Reserved

1 0
Clear OC2B on Compare Match when up-counting. Set OC2B on 
Compare Match when down-counting.

1 1
Set OC2B on Compare Match when up-counting. Clear OC2B on 
Compare Match when down-counting.

Note: 1. A special case occurs when OCR2B equals TOP and COM2B1 is set. In this case, the 
Compare Match is ignored, but the set or clear is done at TOP. See “Phase Correct PWM 
Mode” on page 152 for more details.

Table 18-8. Waveform Generation Mode Bit Description

Mode WGM2 WGM1 WGM0
Timer/Counter 
Mode of Operation TOP

Update of
OCRx at

TOV Flag
Set on(1)(2)

0 0 0 0 Normal 0xFF Immediate MAX

1 0 0 1
PWM, Phase 
Correct

0xFF TOP BOTTOM

2 0 1 0 CTC OCRA Immediate MAX

3 0 1 1 Fast PWM 0xFF BOTTOM MAX

4 1 0 0 Reserved – – –

5 1 0 1
PWM, Phase 
Correct

OCRA TOP BOTTOM

6 1 1 0 Reserved – – –

7 1 1 1 Fast PWM OCRA BOTTOM TOP

Notes: 1. MAX = 0xFF

2. BOTTOM = 0x00
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18.11.2 TCCR2B – Timer/Counter Control Register B

• Bit 7 – FOC2A: Force Output Compare A
The FOC2A bit is only active when the WGM bits specify a non-PWM mode.

However, for ensuring compatibility with future devices, this bit must be set to zero when
TCCR2B is written when operating in PWM mode. When writing a logical one to the FOC2A
bit, an immediate Compare Match is forced on the Waveform Generation unit. The OC2A out-
put is changed according to its COM2A1:0 bits setting. Note that the FOC2A bit is
implemented as a strobe. Therefore it is the value present in the COM2A1:0 bits that deter-
mines the effect of the forced compare. 

A FOC2A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR2A as TOP.

The FOC2A bit is always read as zero.

• Bit 6 – FOC2B: Force Output Compare B
The FOC2B bit is only active when the WGM bits specify a non-PWM mode. 

However, for ensuring compatibility with future devices, this bit must be set to zero when
TCCR2B is written when operating in PWM mode. When writing a logical one to the FOC2B
bit, an immediate Compare Match is forced on the Waveform Generation unit. The OC2B out-
put is changed according to its COM2B1:0 bits setting. Note that the FOC2B bit is
implemented as a strobe. Therefore it is the value present in the COM2B1:0 bits that deter-
mines the effect of the forced compare.

A FOC2B strobe will not generate any interrupt, nor will it clear the timer in CTC mode using
OCR2B as TOP. 

The FOC2B bit is always read as zero.

• Bits 5:4 – Reserved
These bits are reserved bits in the Atmel® ATmega48PA/88PA/168PA and will always read as
zero.

• Bit 3 – WGM22: Waveform Generation Mode
See the description in the “TCCR2A – Timer/Counter Control Register A” on page 158.

• Bit 2:0 – CS22:0: Clock Select
The three Clock Select bits select the clock source to be used by the Timer/Counter, see
Table 18-9 on page 162.

Bit 7 6 5 4 3 2 1 0

(0xB1) FOC2A FOC2B – – WGM22 CS22 CS21 CS20 TCCR2B

Read/Write W W R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will clock the
counter even if the pin is configured as an output. This feature allows software control of the
counting.

18.11.3 TCNT2 – Timer/Counter Register

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNT2 Register blocks (removes) the Com-
pare Match on the following timer clock. Modifying the counter (TCNT2) while the counter is
running, introduces a risk of missing a Compare Match between TCNT2 and the OCR2x
Registers.

18.11.4 OCR2A – Output Compare Register A

The Output Compare Register A contains an 8-bit value that is continuously compared with
the counter value (TCNT2). A match can be used to generate an Output Compare interrupt, or
to generate a waveform output on the OC2A pin.

18.11.5 OCR2B – Output Compare Register B

The Output Compare Register B contains an 8-bit value that is continuously compared with
the counter value (TCNT2). A match can be used to generate an Output Compare interrupt, or
to generate a waveform output on the OC2B pin.

Table 18-9. Clock Select Bit Description

CS22 CS21 CS20 Description

0 0 0 No clock source (Timer/Counter stopped).

0 0 1 clkT2S/(No prescaling)

0 1 0 clkT2S/8 (From prescaler)

0 1 1 clkT2S/32 (From prescaler)

1 0 0 clkT2S/64 (From prescaler)

1 0 1 clkT2S/128 (From prescaler)

1 1 0 clkT2S/256 (From prescaler)

1 1 1 clkT2S/1024 (From prescaler)

Bit 7 6 5 4 3 2 1 0

(0xB2) TCNT2[7:0] TCNT2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xB3) OCR2A[7:0] OCR2A

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xB4) OCR2B[7:0] OCR2B

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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18.11.6 TIMSK2 – Timer/Counter2 Interrupt Mask Register

• Bit 2 – OCIE2B: Timer/Counter2 Output Compare Match B Interrupt Enable
When the OCIE2B bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Compare Match B interrupt is enabled. The corresponding interrupt is exe-
cuted if a compare match in Timer/Counter2 occurs, i.e., when the OCF2B bit is set in the
Timer/Counter 2 Interrupt Flag Register – TIFR2.

• Bit 1 – OCIE2A: Timer/Counter2 Output Compare Match A Interrupt Enable
When the OCIE2A bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Compare Match A interrupt is enabled. The corresponding interrupt is exe-
cuted if a compare match in Timer/Counter2 occurs, i.e., when the OCF2A bit is set in the
Timer/Counter 2 Interrupt Flag Register – TIFR2.

• Bit 0 – TOIE2: Timer/Counter2 Overflow Interrupt Enable
When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the
Timer/Counter2 Overflow interrupt is enabled. The corresponding interrupt is executed if an
overflow in Timer/Counter2 occurs, i.e., when the TOV2 bit is set in the Timer/Counter2 Inter-
rupt Flag Register – TIFR2.

18.11.7 TIFR2 – Timer/Counter2 Interrupt Flag Register

• Bit 2 – OCF2B: Output Compare Flag 2 B
The OCF2B bit is set (one) when a compare match occurs between the Timer/Counter2 and
the data in OCR2B – Output Compare Register2. OCF2B is cleared by hardware when exe-
cuting the corresponding interrupt handling vector. Alternatively, OCF2B is cleared by writing a
logic one to the flag. When the I-bit in SREG, OCIE2B (Timer/Counter2 Compare match Inter-
rupt Enable), and OCF2B are set (one), the Timer/Counter2 Compare match Interrupt is
executed.

• Bit 1 – OCF2A: Output Compare Flag 2 A
The OCF2A bit is set (one) when a compare match occurs between the Timer/Counter2 and
the data in OCR2A – Output Compare Register2. OCF2A is cleared by hardware when exe-
cuting the corresponding interrupt handling vector. Alternatively, OCF2A is cleared by writing a
logic one to the flag. When the I-bit in SREG, OCIE2A (Timer/Counter2 Compare match Inter-
rupt Enable), and OCF2A are set (one), the Timer/Counter2 Compare match Interrupt is
executed.

Bit 7 6 5 4 3 2 1 0

(0x70) – – – – – OCIE2B OCIE2A TOIE2 TIMSK2

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x17 (0x37) – – – – – OCF2B OCF2A TOV2 TIFR2

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0



164
9223D–AVR–05/12

Atmel ATmega48PA/88PA/168PA

• Bit 0 – TOV2: Timer/Counter2 Overflow Flag
The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared by
hardware when executing the corresponding interrupt handling vector. Alternatively, TOV2 is
cleared by writing a logic one to the flag. When the SREG I-bit, TOIE2A (Timer/Counter2
Overflow Interrupt Enable), and TOV2 are set (one), the Timer/Counter2 Overflow interrupt is
executed. In PWM mode, this bit is set when Timer/Counter2 changes counting direction at
0x00.

18.11.8 ASSR – Asynchronous Status Register

• Bit 7 – Reserved
This bit is reserved and will always read as zero.

• Bit 6 – EXCLK: Enable External Clock Input
When EXCLK is written to one, and asynchronous clock is selected, the external clock input
buffer is enabled and an external clock can be input on Timer Oscillator 1 (TOSC1) pin instead
of a 32kHz crystal. Writing to EXCLK should be done before asynchronous operation is
selected. Note that the crystal Oscillator will only run when this bit is zero.

• Bit 5 – AS2: Asynchronous Timer/Counter2
When AS2 is written to zero, Timer/Counter2 is clocked from the I/O clock, clkI/O. When AS2 is
written to one, Timer/Counter2 is clocked from a crystal Oscillator connected to the Timer
Oscillator 1 (TOSC1) pin. When the value of AS2 is changed, the contents of TCNT2, OCR2A,
OCR2B, TCCR2A and TCCR2B might be corrupted.

• Bit 4 – TCN2UB: Timer/Counter2 Update Busy
When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes set.
When TCNT2 has been updated from the temporary storage register, this bit is cleared by
hardware. A logical zero in this bit indicates that TCNT2 is ready to be updated with a new
value.

• Bit 3 – OCR2AUB: Output Compare Register2 Update Busy

When Timer/Counter2 operates asynchronously and OCR2A is written, this bit becomes set.
When OCR2A has been updated from the temporary storage register, this bit is cleared by
hardware. A logical zero in this bit indicates that OCR2A is ready to be updated with a new
value.

• Bit 2 – OCR2BUB: Output Compare Register2 Update Busy
When Timer/Counter2 operates asynchronously and OCR2B is written, this bit becomes set.
When OCR2B has been updated from the temporary storage register, this bit is cleared by
hardware. A logical zero in this bit indicates that OCR2B is ready to be updated with a new
value.

Bit 7 6 5 4 3 2 1 0

(0xB6) – EXCLK AS2 TCN2UB OCR2AUB OCR2BUB TCR2AUB TCR2BUB ASSR

Read/Write R R/W R/W R R R R R

Initial Value 0 0 0 0 0 0 0 0
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• Bit 1 – TCR2AUB: Timer/Counter Control Register2 Update Busy
When Timer/Counter2 operates asynchronously and TCCR2A is written, this bit becomes set.
When TCCR2A has been updated from the temporary storage register, this bit is cleared by
hardware. A logical zero in this bit indicates that TCCR2A is ready to be updated with a new
value.

• Bit 0 – TCR2BUB: Timer/Counter Control Register2 Update Busy
When Timer/Counter2 operates asynchronously and TCCR2B is written, this bit becomes set.
When TCCR2B has been updated from the temporary storage register, this bit is cleared by
hardware. A logical zero in this bit indicates that TCCR2B is ready to be updated with a new
value.

If a write is performed to any of the five Timer/Counter2 Registers while its update busy flag is
set, the updated value might get corrupted and cause an unintentional interrupt to occur.

The mechanisms for reading TCNT2, OCR2A, OCR2B, TCCR2A and TCCR2B are different.
When reading TCNT2, the actual timer value is read. When reading OCR2A, OCR2B,
TCCR2A and TCCR2B the value in the temporary storage register is read.

18.11.9 GTCCR – General Timer/Counter Control Register

• Bit 1 – PSRASY: Prescaler Reset Timer/Counter2
When this bit is one, the Timer/Counter2 prescaler will be reset. This bit is normally cleared
immediately by hardware. If the bit is written when Timer/Counter2 is operating in asynchro-
nous mode, the bit will remain one until the prescaler has been reset. The bit will not be
cleared by hardware if the TSM bit is set. Refer to the description of the “Bit 7 – TSM:
Timer/Counter Synchronization Mode” on page 142 for a description of the Timer/Counter
Synchronization mode.

Bit 7 6 5 4 3 2 1 0

0x23 (0x43) TSM – – – – – PSRASY PSRSYNC GTCCR

Read/Write R/W R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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19. SPI – Serial Peripheral Interface

19.1 Features
• Full-duplex, Three-wire Synchronous Data Transfer
• Master or Slave Operation
• LSB First or MSB First Data Transfer
• Seven Programmable Bit Rates
• End of Transmission Interrupt Flag
• Write Collision Flag Protection
• Wake-up from Idle Mode
• Double Speed (CK/2) Master SPI Mode

19.2 Overview
The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between
the Atmel® ATmega48PA/88PA/168PA and peripheral devices or between several AVR
devices. 

The USART can also be used in Master SPI mode, see “USART in SPI Mode” on page 202.
The PRSPI bit in “Minimizing Power Consumption” on page 42 must be written to zero to
enable SPI module.

Figure 19-1. SPI Block Diagram(1) 

Note: 1. Refer to Figure 1-1 on page 2, and Table 14-3 on page 81 for SPI pin placement. 
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The interconnection between Master and Slave CPUs with SPI is shown in Figure 19-2 on
page 167. The system consists of two shift Registers, and a Master clock generator. The SPI
Master initiates the communication cycle when pulling low the Slave Select SS pin of the
desired Slave. Master and Slave prepare the data to be sent in their respective shift Registers,
and the Master generates the required clock pulses on the SCK line to interchange data. Data
is always shifted from Master to Slave on the Master Out – Slave In, MOSI, line, and from
Slave to Master on the Master In – Slave Out, MISO, line. After each data packet, the Master
will synchronize the Slave by pulling high the Slave Select, SS, line.

When configured as a Master, the SPI interface has no automatic control of the SS line. This
must be handled by user software before communication can start. When this is done, writing
a byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the
eight bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end
of Transmission Flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set,
an interrupt is requested. The Master may continue to shift the next byte by writing it into
SPDR, or signal the end of packet by pulling high the Slave Select, SS line. The last incoming
byte will be kept in the Buffer Register for later use.

When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as
long as the SS pin is driven high. In this state, software may update the contents of the SPI
Data Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK
pin until the SS pin is driven low. As one byte has been completely shifted, the end of Trans-
mission Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR Register is set, an
interrupt is requested. The Slave may continue to place new data to be sent into SPDR before
reading the incoming data. The last incoming byte will be kept in the Buffer Register for later
use.

Figure 19-2. SPI Master-slave Interconnection 

The system is single buffered in the transmit direction and double buffered in the receive direc-
tion. This means that bytes to be transmitted cannot be written to the SPI Data Register before
the entire shift cycle is completed. When receiving data, however, a received character must
be read from the SPI Data Register before the next character has been completely shifted in.
Otherwise, the first byte is lost.

SHIFT
ENABLE
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In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure
correct sampling of the clock signal, the minimum low and high periods should be:

Low periods: Longer than 2 CPU clock cycles.

High periods: Longer than 2 CPU clock cycles.

When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overrid-
den according to Table 19-1 on page 168. For more details on automatic port overrides, refer
to “Alternate Port Functions” on page 79.

The following code examples show how to initialize the SPI as a Master and how to perform a
simple transmission. DDR_SPI in the examples must be replaced by the actual Data Direction
Register controlling the SPI pins. DD_MOSI, DD_MISO and DD_SCK must be replaced by the
actual data direction bits for these pins. E.g. if MOSI is placed on pin PB5, replace DD_MOSI
with DDB5 and DDR_SPI with DDRB.

Table 19-1. SPI Pin Overrides(1)

Pin Direction, Master SPI Direction, Slave SPI

MOSI User Defined Input

MISO Input User Defined

SCK User Defined Input

SS User Defined Input

Note: 1. See “Alternate Functions of Port B” on page 81 for a detailed description of how to define 
the direction of the user defined SPI pins.
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Assembly Code Example(1)

SPI_MasterInit:

; Set MOSI and SCK output, all others input

ldi r17,(1<<DD_MOSI)|(1<<DD_SCK)

out DDR_SPI,r17

; Enable SPI, Master, set clock rate fck/16

ldi r17,(1<<SPE)|(1<<MSTR)|(1<<SPR0)

out SPCR,r17

ret

SPI_MasterTransmit:

; Start transmission of data (r16)

out SPDR,r16

Wait_Transmit:

; Wait for transmission complete

in r16, SPSR

sbrsr16, SPIF

rjmp Wait_Transmit

ret

C Code Example(1)

void SPI_MasterInit(void)

{

/* Set MOSI and SCK output, all others input */

DDR_SPI = (1<<DD_MOSI)|(1<<DD_SCK);

/* Enable SPI, Master, set clock rate fck/16 */

SPCR = (1<<SPE)|(1<<MSTR)|(1<<SPR0);

}

void SPI_MasterTransmit(char cData)

{

/* Start transmission */

SPDR = cData;

/* Wait for transmission complete */

while(!(SPSR & (1<<SPIF)))

;

}

Note: 1. See ”About Code Examples” on page 7.
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The following code examples show how to initialize the SPI as a Slave and how to perform a
simple reception.

Assembly Code Example(1)

SPI_SlaveInit:

; Set MISO output, all others input

ldi r17,(1<<DD_MISO)

out DDR_SPI,r17

; Enable SPI

ldi r17,(1<<SPE)

out SPCR,r17

ret

SPI_SlaveReceive:

; Wait for reception complete

in r16, SPSR
sbrs r16, SPIF

rjmp SPI_SlaveReceive

; Read received data and return

in r16,SPDR

ret

C Code Example(1)

void SPI_SlaveInit(void)

{

/* Set MISO output, all others input */

DDR_SPI = (1<<DD_MISO);

/* Enable SPI */

SPCR = (1<<SPE);

}

char SPI_SlaveReceive(void)

{

/* Wait for reception complete */

while(!(SPSR & (1<<SPIF)))

;

/* Return Data Register */

return SPDR;

}

Note: 1. See ”About Code Examples” on page 7.
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19.3 SS Pin Functionality

19.3.1 Slave Mode
When the SPI is configured as a Slave, the Slave Select (SS) pin is always input. When SS is
held low, the SPI is activated, and MISO becomes an output if configured so by the user. All
other pins are inputs. When SS is driven high, all pins are inputs, and the SPI is passive, which
means that it will not receive incoming data. Note that the SPI logic will be reset once the SS
pin is driven high.

The SS pin is useful for packet/byte synchronization to keep the slave bit counter synchronous
with the master clock generator. When the SS pin is driven high, the SPI slave will immediately
reset the send and receive logic, and drop any partially received data in the Shift Register.

19.3.2 Master Mode
When the SPI is configured as a Master (MSTR in SPCR is set), the user can determine the
direction of the SS pin.

If SS is configured as an output, the pin is a general output pin which does not affect the SPI
system. Typically, the pin will be driving the SS pin of the SPI Slave.

If SS is configured as an input, it must be held high to ensure Master SPI operation. If the SS
pin is driven low by peripheral circuitry when the SPI is configured as a Master with the SS pin
defined as an input, the SPI system interprets this as another master selecting the SPI as a
slave and starting to send data to it. To avoid bus contention, the SPI system takes the follow-
ing actions:

1. The MSTR bit in SPCR is cleared and the SPI system becomes a Slave. As a result of 
the SPI becoming a Slave, the MOSI and SCK pins become inputs.

2. The SPIF Flag in SPSR is set, and if the SPI interrupt is enabled, and the I-bit in SREG 
is set, the interrupt routine will be executed.

Thus, when interrupt-driven SPI transmission is used in Master mode, and there exists a pos-
sibility that SS is driven low, the interrupt should always check that the MSTR bit is still set. If
the MSTR bit has been cleared by a slave select, it must be set by the user to re-enable SPI
Master mode.

19.4 Data Modes
There are four combinations of SCK phase and polarity with respect to serial data, which are
determined by control bits CPHA and CPOL. The SPI data transfer formats are shown in Fig-
ure 19-3 and Figure 19-4 on page 172. Data bits are shifted out and latched in on opposite
edges of the SCK signal, ensuring sufficient time for data signals to stabilize. This is clearly
seen by summarizing Table 19-3 on page 173 and Table 19-4 on page 173, as done in Table
19-2.

Table 19-2. SPI Modes

SPI Mode Conditions Leading Edge Trailing eDge

0 CPOL=0, CPHA=0 Sample (Rising) Setup (Falling)

1 CPOL=0, CPHA=1 Setup (Rising) Sample (Falling)

2 CPOL=1, CPHA=0 Sample (Falling) Setup (Rising)

3 CPOL=1, CPHA=1 Setup (Falling) Sample (Rising)
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Figure 19-3. SPI Transfer Format with CPHA = 0 

Figure 19-4. SPI Transfer Format with CPHA = 1 
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19.5 Register Description

19.5.1 SPCR – SPI Control Register

• Bit 7 – SPIE: SPI Interrupt Enable
This bit causes the SPI interrupt to be executed if SPIF bit in the SPSR Register is set and the
if the Global Interrupt Enable bit in SREG is set.

• Bit 6 – SPE: SPI Enable
When the SPE bit is written to one, the SPI is enabled. This bit must be set to enable any SPI
operations.

• Bit 5 – DORD: Data Order
When the DORD bit is written to one, the LSB of the data word is transmitted first.

When the DORD bit is written to zero, the MSB of the data word is transmitted first.

• Bit 4 – MSTR: Master/Slave Select
This bit selects Master SPI mode when written to one, and Slave SPI mode when written logic
zero. If SS is configured as an input and is driven low while MSTR is set, MSTR will be
cleared, and SPIF in SPSR will become set. The user will then have to set MSTR to re-enable
SPI Master mode.

• Bit 3 – CPOL: Clock Polarity
When this bit is written to one, SCK is high when idle. When CPOL is written to zero, SCK is
low when idle. Refer to Figure 19-3 and Figure 19-4 for an example. The CPOL functionality is
summarized below:

• Bit 2 – CPHA: Clock Phase
The settings of the Clock Phase bit (CPHA) determine if data is sampled on the leading (first)
or trailing (last) edge of SCK. Refer to Figure 19-3 and Figure 19-4 for an example. The CPOL
functionality is summarized below:

Bit 7 6 5 4 3 2 1 0

0x2C (0x4C) SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 SPCR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 19-3. CPOL Functionality

CPOL Leading Edge Trailing Edge

0 Rising Falling

1 Falling Rising

Table 19-4. CPHA Functionality

CPHA Leading Edge Trailing Edge

0 Sample Setup

1 Setup Sample
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• Bits 1, 0 – SPR1, SPR0: SPI Clock Rate Select 1 and 0
These two bits control the SCK rate of the device configured as a Master. SPR1 and SPR0
have no effect on the Slave. The relationship between SCK and the Oscillator Clock frequency
fosc is shown in the following table:

19.5.2 SPSR – SPI Status Register

• Bit 7 – SPIF: SPI Interrupt Flag
When a serial transfer is complete, the SPIF Flag is set. An interrupt is generated if SPIE in
SPCR is set and global interrupts are enabled. If SS is an input and is driven low when the SPI
is in Master mode, this will also set the SPIF Flag. SPIF is cleared by hardware when execut-
ing the corresponding interrupt handling vector. Alternatively, the SPIF bit is cleared by first
reading the SPI Status Register with SPIF set, then accessing the SPI Data Register (SPDR).

• Bit 6 – WCOL: Write COLlision Flag
The WCOL bit is set if the SPI Data Register (SPDR) is written during a data transfer. The
WCOL bit (and the SPIF bit) are cleared by first reading the SPI Status Register with WCOL
set, and then accessing the SPI Data Register.

• Bit 5...1 – Reserved
These bits are reserved bits in the Atmel® ATmega48PA/88PA/168PA and will always read as
zero.

• Bit 0 – SPI2X: Double SPI Speed Bit
When this bit is written logic one the SPI speed (SCK Frequency) will be doubled when the
SPI is in Master mode (see Table 19-5). This means that the minimum SCK period will be two
CPU clock periods. When the SPI is configured as Slave, the SPI is only guaranteed to work at
fosc/4 or lower.

The SPI interface on the Atmel ATmega48PA/88PA/168PA is also used for program memory
and EEPROM downloading or uploading. See page 308 for serial programming and
verification.

Table 19-5. Relationship Between SCK and the Oscillator Frequency 

SPI2X SPR1 SPR0 SCK Frequency

0 0 0 fosc/4

0 0 1 fosc/16

0 1 0 fosc/64

0 1 1 fosc/128

1 0 0 fosc/2

1 0 1 fosc/8

1 1 0 fosc/32

1 1 1 fosc/64

Bit 7 6 5 4 3 2 1 0

0x2D (0x4D) SPIF WCOL – – – – – SPI2X SPSR

Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0
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19.5.3 SPDR – SPI Data Register

The SPI Data Register is a read/write register used for data transfer between the Register File
and the SPI Shift Register. Writing to the register initiates data transmission. Reading the reg-
ister causes the Shift Register Receive buffer to be read.

Bit 7 6 5 4 3 2 1 0

0x2E (0x4E) MSB LSB SPDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value X X X X X X X X Undefined
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20. USART0

20.1 Features
• Full Duplex Operation (Independent Serial Receive and Transmit Registers)
• Asynchronous or Synchronous Operation
• Master or Slave Clocked Synchronous Operation
• High Resolution Baud Rate Generator
• Supports Serial Frames with 5, 6, 7, 8, or 9 Data Bits and 1 or 2 Stop Bits
• Odd or Even Parity Generation and Parity Check Supported by Hardware
• Data OverRun Detection
• Framing Error Detection
• Noise Filtering Includes False Start Bit Detection and Digital Low Pass Filter
• Three Separate Interrupts on TX Complete, TX Data Register Empty and RX Complete
• Multi-processor Communication Mode
• Double Speed Asynchronous Communication Mode

20.2 Overview
The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) is a
highly flexible serial communication device.

The USART0 can also be used in Master SPI mode, see “USART in SPI Mode” on page 202.
The Power Reduction USART bit, PRUSART0, in “Minimizing Power Consumption” on page
42 must be disabled by writing a logical zero to it.

A simplified block diagram of the USART Transmitter is shown in Figure 20-1 on page 177.
CPU accessible I/O Registers and I/O pins are shown in bold.

The dashed boxes in the block diagram separate the three main parts of the USART (listed
from the top): Clock Generator, Transmitter and Receiver. Control Registers are shared by all
units. The Clock Generation logic consists of synchronization logic for external clock input
used by synchronous slave operation, and the baud rate generator. The XCKn (Transfer
Clock) pin is only used by synchronous transfer mode. The Transmitter consists of a single
write buffer, a serial Shift Register, Parity Generator and Control logic for handling different
serial frame formats. The write buffer allows a continuous transfer of data without any delay
between frames. The Receiver is the most complex part of the USART module due to its clock
and data recovery units. The recovery units are used for asynchronous data reception. In addi-
tion to the recovery units, the Receiver includes a Parity Checker, Control logic, a Shift
Register and a two level receive buffer (UDRn). The Receiver supports the same frame for-
mats as the Transmitter, and can detect Frame Error, Data OverRun and Parity Errors.
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Figure 20-1. USART Block Diagram(1) 

Note: 1. Refer to Figure 1-1 on page 2 and Table 14-9 on page 88 for USART0 pin placement. 

20.3 Clock Generation
The Clock Generation logic generates the base clock for the Transmitter and Receiver. The
USART supports four modes of clock operation: Normal asynchronous, Double Speed asyn-
chronous, Master synchronous and Slave synchronous mode. The UMSELn bit in USART
Control and Status Register C (UCSRnC) selects between asynchronous and synchronous
operation. Double Speed (asynchronous mode only) is controlled by the U2Xn found in the
UCSRnA Register. When using synchronous mode (UMSELn = 1), the Data Direction Regis-
ter for the XCKn pin (DDR_XCKn) controls whether the clock source is internal (Master mode)
or external (Slave mode). The XCKn pin is only active when using synchronous mode.
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Figure 20-2 shows a block diagram of the clock generation logic.

Figure 20-2. Clock Generation Logic, Block Diagram 

Signal description:

txclk Transmitter clock (Internal Signal).

rxclk Receiver base clock (Internal Signal).

xcki Input from XCK pin (internal Signal). Used for synchronous slave operation.

xcko Clock output to XCK pin (Internal Signal). Used for synchronous master
operation.

fosc XTAL pin frequency (System Clock).

20.3.1 Internal Clock Generation – The Baud Rate Generator
Internal clock generation is used for the asynchronous and the synchronous master modes of
operation. The description in this section refers to Figure 20-2.

The USART Baud Rate Register (UBRRn) and the down-counter connected to it function as a
programmable prescaler or baud rate generator. The down-counter, running at system clock
(fosc), is loaded with the UBRRn value each time the counter has counted down to zero or
when the UBRRnL Register is written. A clock is generated each time the counter reaches
zero. This clock is the baud rate generator clock output (= fosc/(UBRRn+1)). The Transmitter
divides the baud rate generator clock output by 2, 8 or 16 depending on mode. The baud rate
generator output is used directly by the Receiver’s clock and data recovery units. However,
the recovery units use a state machine that uses 2, 8 or 16 states depending on mode set by
the state of the UMSELn, U2Xn and DDR_XCKn bits.
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Table 20-1 contains equations for calculating the baud rate (in bits per second) and for calcu-
lating the UBRRn value for each mode of operation using an internally generated clock
source.

Some examples of UBRRn values for some system clock frequencies are found in Table 20-4
(see page 194).

20.3.2 Double Speed Operation (U2Xn)
The transfer rate can be doubled by setting the U2Xn bit in UCSRnA. Setting this bit only has
effect for the asynchronous operation. Set this bit to zero when using synchronous operation.

Setting this bit will reduce the divisor of the baud rate divider from 16 to 8, effectively doubling
the transfer rate for asynchronous communication. Note however that the Receiver will in this
case only use half the number of samples (reduced from 16 to 8) for data sampling and clock
recovery, and therefore a more accurate baud rate setting and system clock are required
when this mode is used. For the Transmitter, there are no downsides.

20.3.3 External Clock
External clocking is used by the synchronous slave modes of operation. The description in this
section refers to Figure 20-2 for details.

External clock input from the XCKn pin is sampled by a synchronization register to minimize
the chance of meta-stability. The output from the synchronization register must then pass
through an edge detector before it can be used by the Transmitter and Receiver. This process
introduces a two CPU clock period delay and therefore the maximum external XCKn clock fre-
quency is limited by the following equation:

Note that fosc depends on the stability of the system clock source. It is therefore recommended
to add some margin to avoid possible loss of data due to frequency variations.

Table 20-1. Equations for Calculating Baud Rate Register Setting

Operating Mode
Equation for Calculating Baud 

Rate(1)
Equation for Calculating 

UBRRn Value

Asynchronous Normal mode 
(U2Xn = 0)

Asynchronous Double Speed 
mode (U2Xn = 1)

Synchronous Master mode

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps)
BAUD Baud rate (in bits per second, bps)
fOSC System Oscillator clock frequency
UBRRn Contents of the UBRRnH and UBRRnL Registers, (0-4095)

BAUD
fOSC

16 UBRRn 1+( )
-----------------------------------------= UBRRn

fOSC

16BAUD
----------------------- 1–=

BAUD
fOSC

8 UBRRn 1+( )
--------------------------------------= UBRRn

fOSC

8BAUD
-------------------- 1–=

BAUD
fOSC

2 UBRRn 1+( )
--------------------------------------= UBRRn

fOSC

2BAUD
-------------------- 1–=

fXCK

fOSC

4
------------<
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20.3.4 Synchronous Clock Operation
When synchronous mode is used (UMSELn = 1), the XCKn pin will be used as either clock
input (Slave) or clock output (Master). The dependency between the clock edges and data
sampling or data change is the same. The basic principle is that data input (on RxDn) is sam-
pled at the opposite XCKn clock edge of the edge the data output (TxDn) is changed.

Figure 20-3. Synchronous Mode XCKn Timing 

The UCPOLn bit UCRSC selects which XCKn clock edge is used for data sampling and which
is used for data change. As Figure 20-3 shows, when UCPOLn is zero the data will be
changed at rising XCKn edge and sampled at falling XCKn edge. If UCPOLn is set, the data
will be changed at falling XCKn edge and sampled at rising XCKn edge.

20.4 Frame Formats
A serial frame is defined to be one character of data bits with synchronization bits (start and
stop bits), and optionally a parity bit for error checking. The USART accepts all 30 combina-
tions of the following as valid frame formats:

• 1 start bit

• 5, 6, 7, 8, or 9 data bits

• no, even or odd parity bit

• 1 or 2 stop bits

A frame starts with the start bit followed by the least significant data bit. Then the next data
bits, up to a total of nine, are succeeding, ending with the most significant bit. If enabled, the
parity bit is inserted after the data bits, before the stop bits. When a complete frame is trans-
mitted, it can be directly followed by a new frame, or the communication line can be set to an
idle (high) state. Figure 20-4 illustrates the possible combinations of the frame formats. Bits
inside brackets are optional.

Figure 20-4. Frame Formats 
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St Start bit, always low.

(n) Data bits (0 to 8).

P Parity bit. Can be odd or even.

Sp Stop bit, always high.

IDLE No transfers on the communication line (RxDn or TxDn). An IDLE line must be
high.

The frame format used by the USART is set by the UCSZn2:0, UPMn1:0 and USBSn bits in
UCSRnB and UCSRnC. The Receiver and Transmitter use the same setting. Note that chang-
ing the setting of any of these bits will corrupt all ongoing communication for both the Receiver
and Transmitter. 

The USART Character SiZe (UCSZn2:0) bits select the number of data bits in the frame. The
USART Parity mode (UPMn1:0) bits enable and set the type of parity bit. The selection
between one or two stop bits is done by the USART Stop Bit Select (USBSn) bit. The Receiver
ignores the second stop bit. An FE (Frame Error) will therefore only be detected in the cases
where the first stop bit is zero.

20.4.1 Parity Bit Calculation
The parity bit is calculated by doing an exclusive-or of all the data bits. If odd parity is used, the
result of the exclusive or is inverted. The relation between the parity bit and data bits is as
follows:

Peven Parity bit using even parity

Podd Parity bit using odd parity

dn Data bit n of the character

If used, the parity bit is located between the last data bit and first stop bit of a serial frame.

20.5 USART Initialization
The USART has to be initialized before any communication can take place. The initialization
process normally consists of setting the baud rate, setting frame format and enabling the
Transmitter or the Receiver depending on the usage. For interrupt driven USART operation,
the Global Interrupt Flag should be cleared (and interrupts globally disabled) when doing the
initialization.

Before doing a re-initialization with changed baud rate or frame format, be sure that there are
no ongoing transmissions during the period the registers are changed. The TXCn Flag can be
used to check that the Transmitter has completed all transfers, and the RXC Flag can be used
to check that there are no unread data in the receive buffer. Note that the TXCn Flag must be
cleared before each transmission (before UDRn is written) if it is used for this purpose.

The following simple USART initialization code examples show one assembly and one C func-
tion that are equal in functionality. The examples assume asynchronous operation using
polling (no interrupts enabled) and a fixed frame format. The baud rate is given as a function
parameter. For the assembly code, the baud rate parameter is assumed to be stored in the
r17:r16 Registers.

Peven dn 1– … d3 d2 d1 d0 0
Podd

⊕ ⊕ ⊕ ⊕ ⊕ ⊕
dn 1– … d3 d2 d1 d0 1⊕ ⊕ ⊕ ⊕ ⊕ ⊕

=
=



182
9223D–AVR–05/12

Atmel ATmega48PA/88PA/168PA

More advanced initialization routines can be made that include frame format as parameters,
disable interrupts and so on. However, many applications use a fixed setting of the baud and
control registers, and for these types of applications the initialization code can be placed
directly in the main routine, or be combined with initialization code for other I/O modules.

Assembly Code Example(1)

USART_Init:

; Set baud rate

out UBRRnH, r17

out UBRRnL, r16

; Enable receiver and transmitter

ldi r16, (1<<RXENn)|(1<<TXENn)

out UCSRnB,r16

; Set frame format: 8data, 2stop bit

ldi r16, (1<<USBSn)|(3<<UCSZn0)

out UCSRnC,r16

ret

C Code Example(1)

#define FOSC 1843200 // Clock Speed

#define BAUD 9600

#define MYUBRR FOSC/16/BAUD-1

void main( void )

{

...

USART_Init(MYUBRR)

...

}

void USART_Init( unsigned int ubrr)

{

/*Set baud rate */

UBRR0H = (unsigned char)(ubrr>>8);

UBRR0L = (unsigned char)ubrr;

Enable receiver and transmitter */

UCSR0B = (1<<RXEN0)|(1<<TXEN0);

/* Set frame format: 8data, 2stop bit */

UCSR0C = (1<<USBS0)|(3<<UCSZ00);

}

Note: 1. See Section 6. “About Code Examples” on page 7.
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20.6 Data Transmission – The USART Transmitter
The USART Transmitter is enabled by setting the Transmit Enable (TXEN) bit in the UCSRnB
Register. When the Transmitter is enabled, the normal port operation of the TxDn pin is over-
ridden by the USART and given the function as the Transmitter’s serial output. The baud rate,
mode of operation and frame format must be set up once before doing any transmissions. If
synchronous operation is used, the clock on the XCKn pin will be overridden and used as
transmission clock.

20.6.1 Sending Frames with 5 to 8 Data Bit
A data transmission is initiated by loading the transmit buffer with the data to be transmitted.
The CPU can load the transmit buffer by writing to the UDRn I/O location. The buffered data in
the transmit buffer will be moved to the Shift Register when the Shift Register is ready to send
a new frame. The Shift Register is loaded with new data if it is in idle state (no ongoing trans-
mission) or immediately after the last stop bit of the previous frame is transmitted. When the
Shift Register is loaded with new data, it will transfer one complete frame at the rate given by
the Baud Register, U2Xn bit or by XCKn depending on mode of operation.

The following code examples show a simple USART transmit function based on polling of the
Data Register Empty (UDREn) Flag. When using frames with less than eight bits, the most
significant bits written to the UDRn are ignored. The USART has to be initialized before the
function can be used. For the assembly code, the data to be sent is assumed to be stored in
Register R16 

The function simply waits for the transmit buffer to be empty by checking the UDREn Flag,
before loading it with new data to be transmitted. If the Data Register Empty interrupt is uti-
lized, the interrupt routine writes the data into the buffer.

Assembly Code Example(1)

USART_Transmit:

; Wait for empty transmit buffer

in r16, UCSRnA

sbrs r16, UDREn

rjmp USART_Transmit

; Put data (r16) into buffer, sends the data

out UDRn,r16

ret

C Code Example(1)

void USART_Transmit( unsigned char data )

{

/* Wait for empty transmit buffer */

while ( !( UCSRnA & (1<<UDREn)) )

;

/* Put data into buffer, sends the data */

UDRn = data;

}

Note: 1. See Section 6. “About Code Examples” on page 7.
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20.6.2 Sending Frames with 9 Data Bit
If 9-bit characters are used (UCSZn = 7), the ninth bit must be written to the TXB8 bit in UCS-
RnB before the low byte of the character is written to UDRn. The following code examples
show a transmit function that handles 9-bit characters. For the assembly code, the data to be
sent is assumed to be stored in registers R17:R16.

The ninth bit can be used for indicating an address frame when using multi processor commu-
nication mode or for other protocol handling as for example synchronization.

Assembly Code Example(1)(2)

USART_Transmit:

; Wait for empty transmit buffer

in r16, UCSRnA

sbrs r16, UDREn

rjmp USART_Transmit

; Copy 9th bit from r17 to TXB8

cbi UCSRnB,TXB8

sbrc r17,0

sbi UCSRnB,TXB8

; Put LSB data (r16) into buffer, sends the data

out UDRn,r16

ret

C Code Example(1)(2)

void USART_Transmit( unsigned int data )

{

/* Wait for empty transmit buffer */

while ( !( UCSRnA & (1<<UDREn))) )

;

/* Copy 9th bit to TXB8 */

UCSRnB &= ~(1<<TXB8);

if ( data & 0x0100 )

UCSRnB |= (1<<TXB8);

/* Put data into buffer, sends the data */

UDRn = data;

}

Notes: 1. These transmit functions are written to be general functions. They can be optimized if the 
contents of the UCSRnB is static. For example, only the TXB8 bit of the UCSRnB Regis-
ter is used after initialization.

2. See ”About Code Examples” on page 7.
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20.6.3 Transmitter Flags and Interrupts
The USART Transmitter has two flags that indicate its state: USART Data Register Empty
(UDREn) and Transmit Complete (TXCn). Both flags can be used for generating interrupts.

The Data Register Empty (UDREn) Flag indicates whether the transmit buffer is ready to
receive new data. This bit is set when the transmit buffer is empty, and cleared when the
transmit buffer contains data to be transmitted that has not yet been moved into the Shift Reg-
ister. For compatibility with future devices, always write this bit to zero when writing the
UCSRnA Register.

When the Data Register Empty Interrupt Enable (UDRIEn) bit in UCSRnB is written to one, the
USART Data Register Empty Interrupt will be executed as long as UDREn is set (provided that
global interrupts are enabled). UDREn is cleared by writing UDRn. When interrupt-driven data
transmission is used, the Data Register Empty interrupt routine must either write new data to
UDRn in order to clear UDREn or disable the Data Register Empty interrupt, otherwise a new
interrupt will occur once the interrupt routine terminates.

The Transmit Complete (TXCn) Flag bit is set one when the entire frame in the Transmit Shift
Register has been shifted out and there are no new data currently present in the transmit buf-
fer. The TXCn Flag bit is automatically cleared when a transmit complete interrupt is executed,
or it can be cleared by writing a one to its bit location. The TXCn Flag is useful in half-duplex
communication interfaces (like the RS-485 standard), where a transmitting application must
enter receive mode and free the communication bus immediately after completing the
transmission.

When the Transmit Compete Interrupt Enable (TXCIEn) bit in UCSRnB is set, the USART
Transmit Complete Interrupt will be executed when the TXCn Flag becomes set (provided that
global interrupts are enabled). When the transmit complete interrupt is used, the interrupt han-
dling routine does not have to clear the TXCn Flag, this is done automatically when the
interrupt is executed.

20.6.4 Parity Generator
The Parity Generator calculates the parity bit for the serial frame data. When parity bit is
enabled (UPMn1 = 1), the transmitter control logic inserts the parity bit between the last data
bit and the first stop bit of the frame that is sent.

20.6.5 Disabling the Transmitter
The disabling of the Transmitter (setting the TXEN to zero) will not become effective until
ongoing and pending transmissions are completed, i.e., when the Transmit Shift Register and
Transmit Buffer Register do not contain data to be transmitted. When disabled, the Transmit-
ter will no longer override the TxDn pin.

20.7 Data Reception – The USART Receiver
The USART Receiver is enabled by writing the Receive Enable (RXENn) bit in the
UCSRnB Register to one. When the Receiver is enabled, the normal pin operation of the
RxDn pin is overridden by the USART and given the function as the Receiver’s serial input.
The baud rate, mode of operation and frame format must be set up once before any serial
reception can be done. If synchronous operation is used, the clock on the XCKn pin will be
used as transfer clock.
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20.7.1 Receiving Frames with 5 to 8 Data Bits
The Receiver starts data reception when it detects a valid start bit. Each bit that follows the
start bit will be sampled at the baud rate or XCKn clock, and shifted into the Receive Shift Reg-
ister until the first stop bit of a frame is received. A second stop bit will be ignored by the
Receiver. When the first stop bit is received, i.e., a complete serial frame is present in the
Receive Shift Register, the contents of the Shift Register will be moved into the receive buffer.
The receive buffer can then be read by reading the UDRn I/O location.

The following code example shows a simple USART receive function based on polling of the
Receive Complete (RXCn) Flag. When using frames with less than eight bits the most signifi-
cant bits of the data read from the UDRn will be masked to zero. The USART has to be
initialized before the function can be used. 

The function simply waits for data to be present in the receive buffer by checking the RXCn
Flag, before reading the buffer and returning the value.

20.7.2 Receiving Frames with 9 Data Bits
If 9-bit characters are used (UCSZn=7) the ninth bit must be read from the RXB8n bit in UCS-
RnB before reading the low bits from the UDRn. This rule applies to the FEn, DORn and
UPEn Status Flags as well. Read status from UCSRnA, then data from UDRn. Reading the
UDRn I/O location will change the state of the receive buffer FIFO and consequently the
TXB8n, FEn, DORn and UPEn bits, which all are stored in the FIFO, will change.

The following code example shows a simple USART receive function that handles both nine
bit characters and the status bits. 

Assembly Code Example(1)

USART_Receive:

; Wait for data to be received

in r16, UCSRnA

sbrs r16, UDREn

rjmp USART_Receive

; Get and return received data from buffer

in r16, UDRn

ret

C Code Example(1)

unsigned char USART_Receive( void )

{

/* Wait for data to be received */

while ( !(UCSRnA & (1<<RXCn)) )

;

/* Get and return received data from buffer */

return UDRn;

}

Note: 1. See ”About Code Examples” on page 7.
For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and 
“SBI” instructions must be replaced with instructions that allow access to extended I/O. 
Typically “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.
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The receive function example reads all the I/O Registers into the Register File before any
computation is done. This gives an optimal receive buffer utilization since the buffer location
read will be free to accept new data as early as possible.

Assembly Code Example(1)

USART_Receive:

; Wait for data to be received

in r16, UCSRnA

sbrs r16, RXCn

rjmp USART_Receive

; Get status and 9th bit, then data from buffer

in r18, UCSRnA

in r17, UCSRnB

in r16, UDRn

; If error, return -1

andi r18,(1<<FEn)|(1<<DORn)|(1<<UPEn)

breq USART_ReceiveNoError

ldi r17, HIGH(-1)

ldi r16, LOW(-1)

USART_ReceiveNoError:

; Filter the 9th bit, then return

lsr r17

andi r17, 0x01

ret
C Code Example(1)

unsigned int USART_Receive( void )

{

unsigned char status, resh, resl;

/* Wait for data to be received */

while ( !(UCSRnA & (1<<RXCn)) )

;

/* Get status and 9th bit, then data */

/* from buffer */

status = UCSRnA;

resh = UCSRnB;

resl = UDRn;

/* If error, return -1 */

if ( status & (1<<FEn)|(1<<DORn)|(1<<UPEn) )

return -1;

/* Filter the 9th bit, then return */

resh = (resh >> 1) & 0x01;

return ((resh << 8) | resl);

}

Note: 1. See Section 6. “About Code Examples” on page 7
For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and 
“SBI” instructions must be replaced with instructions that allow access to extended I/O. Typ-
ically “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.
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20.7.3 Receive Compete Flag and Interrupt
The USART Receiver has one flag that indicates the Receiver state.

The Receive Complete (RXCn) Flag indicates if there are unread data present in the receive
buffer. This flag is one when unread data exist in the receive buffer, and zero when the
receive buffer is empty (i.e., does not contain any unread data). If the Receiver is disabled
(RXENn = 0), the receive buffer will be flushed and consequently the RXCn bit will become
zero.

When the Receive Complete Interrupt Enable (RXCIEn) in UCSRnB is set, the USART
Receive Complete interrupt will be executed as long as the RXCn Flag is set (provided that
global interrupts are enabled). When interrupt-driven data reception is used, the receive com-
plete routine must read the received data from UDRn in order to clear the RXCn Flag,
otherwise a new interrupt will occur once the interrupt routine terminates.

20.7.4 Receiver Error Flags
The USART Receiver has three Error Flags: Frame Error (FEn), Data OverRun (DORn) and
Parity Error (UPEn). All can be accessed by reading UCSRnA. Common for the Error Flags is
that they are located in the receive buffer together with the frame for which they indicate the
error status. Due to the buffering of the Error Flags, the UCSRnA must be read before the
receive buffer (UDRn), since reading the UDRn I/O location changes the buffer read location.
Another equality for the Error Flags is that they can not be altered by software doing a write to
the flag location. However, all flags must be set to zero when the UCSRnA is written for
upward compatibility of future USART implementations. None of the Error Flags can generate
interrupts.

The Frame Error (FEn) Flag indicates the state of the first stop bit of the next readable frame
stored in the receive buffer. The FEn Flag is zero when the stop bit was correctly read (as
one), and the FEn Flag will be one when the stop bit was incorrect (zero). This flag can be
used for detecting out-of-sync conditions, detecting break conditions and protocol handling.
The FEn Flag is not affected by the setting of the USBSn bit in UCSRnC since the Receiver
ignores all, except for the first, stop bits. For compatibility with future devices, always set this
bit to zero when writing to UCSRnA.

The Data OverRun (DORn) Flag indicates data loss due to a receiver buffer full condition. A
Data OverRun occurs when the receive buffer is full (two characters), it is a new character
waiting in the Receive Shift Register, and a new start bit is detected. If the DORn Flag is set
there was one or more serial frame lost between the frame last read from UDRn, and the next
frame read from UDRn. For compatibility with future devices, always write this bit to zero when
writing to UCSRnA. The DORn Flag is cleared when the frame received was successfully
moved from the Shift Register to the receive buffer.

The Parity Error (UPEn) Flag indicates that the next frame in the receive buffer had a Parity
Error when received. If Parity Check is not enabled the UPEn bit will always be read zero. For
compatibility with future devices, always set this bit to zero when writing to UCSRnA. For more
details see “Parity Bit Calculation” on page 181 and “Parity Checker” on page 189.
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20.7.5 Parity Checker
The Parity Checker is active when the high USART Parity mode (UPMn1) bit is set. Type of
Parity Check to be performed (odd or even) is selected by the UPMn0 bit. When enabled, the
Parity Checker calculates the parity of the data bits in incoming frames and compares the
result with the parity bit from the serial frame. The result of the check is stored in the receive
buffer together with the received data and stop bits. The Parity Error (UPEn) Flag can then be
read by software to check if the frame had a Parity Error.

The UPEn bit is set if the next character that can be read from the receive buffer had a Parity
Error when received and the Parity Checking was enabled at that point (UPMn1 = 1). This bit
is valid until the receive buffer (UDRn) is read.

20.7.6 Disabling the Receiver
In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from ongoing
receptions will therefore be lost. When disabled (i.e., the RXENn is set to zero) the Receiver
will no longer override the normal function of the RxDn port pin. The Receiver buffer FIFO will
be flushed when the Receiver is disabled. Remaining data in the buffer will be lost

20.7.7 Flushing the Receive Buffer
The receiver buffer FIFO will be flushed when the Receiver is disabled, i.e., the buffer will be
emptied of its contents. Unread data will be lost. If the buffer has to be flushed during normal
operation, due to for instance an error condition, read the UDRn I/O location until the RXCn
Flag is cleared. The following code example shows how to flush the receive buffer. 

Assembly Code Example(1)

USART_Flush:

in r16, UCSRnA

sbrs r16, RXCn

ret

in r16, UDRn

rjmp USART_Flush

C Code Example(1)

void USART_Flush( void )

{

unsigned char dummy;

while ( UCSRnA & (1<<RXCn) ) dummy = UDRn;

}

Note: 1. See Section 6. “About Code Examples” on page 7
For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and 
“SBI” instructions must be replaced with instructions that allow access to extended I/O. 
Typically “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”.
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20.8 Asynchronous Data Reception
The USART includes a clock recovery and a data recovery unit for handling asynchronous
data reception. The clock recovery logic is used for synchronizing the internally generated
baud rate clock to the incoming asynchronous serial frames at the RxDn pin. The data recov-
ery logic samples and low pass filters each incoming bit, thereby improving the noise immunity
of the Receiver. The asynchronous reception operational range depends on the accuracy of
the internal baud rate clock, the rate of the incoming frames, and the frame size in number of
bits.

20.8.1 Asynchronous Clock Recovery
The clock recovery logic synchronizes internal clock to the incoming serial frames. Figure 20-5
illustrates the sampling process of the start bit of an incoming frame. The sample rate is 16
times the baud rate for Normal mode, and eight times the baud rate for Double Speed mode.
The horizontal arrows illustrate the synchronization variation due to the sampling process.
Note the larger time variation when using the Double Speed mode (U2Xn = 1) of operation.
Samples denoted zero are samples done when the RxDn line is idle (i.e., no communication
activity).

Figure 20-5. Start Bit Sampling 

When the clock recovery logic detects a high (idle) to low (start) transition on the RxDn line,
the start bit detection sequence is initiated. Let sample 1 denote the first zero-sample as
shown in the figure. The clock recovery logic then uses samples 8, 9, and 10 for Normal mode,
and samples 4, 5, and 6 for Double Speed mode (indicated with sample numbers inside boxes
on the figure), to decide if a valid start bit is received. If two or more of these three samples
have logical high levels (the majority wins), the start bit is rejected as a noise spike and the
Receiver starts looking for the next high to low-transition. If however, a valid start bit is
detected, the clock recovery logic is synchronized and the data recovery can begin. The syn-
chronization process is repeated for each start bit.

20.8.2 Asynchronous Data Recovery
When the receiver clock is synchronized to the start bit, the data recovery can begin. The data
recovery unit uses a state machine that has 16 states for each bit in Normal mode and eight
states for each bit in Double Speed mode. Figure 20-6 shows the sampling of the data bits and
the parity bit. Each of the samples is given a number that is equal to the state of the recovery
unit.
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Figure 20-6. Sampling of Data and Parity Bit 

The decision of the logic level of the received bit is taken by doing a majority voting of the logic
value to the three samples in the center of the received bit. The center samples are empha-
sized on the figure by having the sample number inside boxes. The majority voting process is
done as follows: If two or all three samples have high levels, the received bit is registered to be
a logic 1. If two or all three samples have low levels, the received bit is registered to be a logic
0. This majority voting process acts as a low pass filter for the incoming signal on the RxDn
pin. The recovery process is then repeated until a complete frame is received. Including the
first stop bit. Note that the Receiver only uses the first stop bit of a frame.

Figure 20-7 on page 191 shows the sampling of the stop bit and the earliest possible begin-
ning of the start bit of the next frame.

Figure 20-7. Stop Bit Sampling and Next Start Bit Sampling 

The same majority voting is done to the stop bit as done for the other bits in the frame. If the
stop bit is registered to have a logic 0 value, the Frame Error (FEn) Flag will be set. 

A new high to low transition indicating the start bit of a new frame can come right after the last
of the bits used for majority voting. For Normal Speed mode, the first low level sample can be
at point marked (A) in Figure 20-7. For Double Speed mode the first low level must be delayed
to (B). (C) marks a stop bit of full length. The early start bit detection influences the operational
range of the Receiver.

20.8.3 Asynchronous Operational Range
The operational range of the Receiver is dependent on the mismatch between the received bit
rate and the internally generated baud rate. If the Transmitter is sending frames at too fast or
too slow bit rates, or the internally generated baud rate of the Receiver does not have a similar
(see Table 20-2 on page 192) base frequency, the Receiver will not be able to synchronize the
frames to the start bit.
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The following equations can be used to calculate the ratio of the incoming data rate and inter-
nal receiver baud rate.

D Sum of character size and parity size (D = 5 to 10 bit)

S Samples per bit. S = 16 for Normal Speed mode and S = 8 for Double Speed
mode.

SF First sample number used for majority voting. SF = 8 for normal speed and 
SF = 4 for Double Speed mode.

SM Middle sample number used for majority voting. SM = 9 for normal speed and
SM = 5 for Double Speed mode.

Rslow is the ratio of the slowest incoming data rate that can be accepted in relation to 
the receiver baud rate. Rfast is the ratio of the fastest incoming data rate that can 
be accepted in relation to the receiver baud rate.

Table 20-2 on page 192 and Table 20-3 on page 192 list the maximum receiver baud rate
error that can be tolerated. Note that Normal Speed mode has higher toleration of baud rate
variations. 

Table 20-2. Recommended Maximum Receiver Baud Rate Error for Normal Speed Mode 
(U2Xn = 0)

D
# (Data+Parity Bit) Rslow (%) Rfast (%) Max Total Error (%)

Recommended Max 
Receiver Error (%)

5 93.20 106.67 +6.67/–6.8 ±3.0

6 94.12 105.79 +5.79/–5.88 ±2.5

7 94.81 105.11 +5.11/–5.19 ±2.0

8 95.36 104.58 +4.58/–4.54 ±2.0

9 95.81 104.14 +4.14/–4.19 ±1.5

10 96.17 103.78 +3.78/–3.83 ±1.5

Table 20-3. Recommended Maximum Receiver Baud Rate Error for Double Speed Mode 
(U2Xn = 1)

D
# (Data+Parity Bit) Rslow (%) Rfast (%) Max Total Error (%)

Recommended Max 
Receiver Error (%)

5 94.12 105.66 +5.66/–5.88 ±2.5

6 94.92 104.92 +4.92/–5.08 ±2.0

7 95.52 104,35 +4.35/–4.48 ±1.5

8 96.00 103.90 +3.90/–4.00 ±1.5

9 96.39 103.53 +3.53/–3.61 ±1.5

10 96.70 103.23 +3.23/–3.30 ±1.0

Rslow
D 1+( ) S×

S 1– D S× SF+ +
------------------------------------------------= Rfast

D 2+( ) S×
D 1+( ) S× SM+

--------------------------------------------=
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The recommendations of the maximum receiver baud rate error was made under the assump-
tion that the Receiver and Transmitter equally divides the maximum total error.

There are two possible sources for the receivers baud rate error. The Receiver’s system clock
(XTAL) will always have some minor instability over the supply voltage range and the temper-
ature range. When using a crystal to generate the system clock, this is rarely a problem, but
for a resonator the system clock may differ more than 2% depending of the resonators toler-
ance. The second source for the error is more controllable. The baud rate generator can not
always do an exact division of the system frequency to get the baud rate wanted. In this case
an UBRRn value that gives an acceptable low error can be used if possible.

20.9 Multi-processor Communication Mode
Setting the Multi-processor Communication mode (MPCMn) bit in UCSRnA enables a filtering
function of incoming frames received by the USART Receiver. Frames that do not contain
address information will be ignored and not put into the receive buffer. This effectively reduces
the number of incoming frames that has to be handled by the CPU, in a system with multiple
MCUs that communicate via the same serial bus. The Transmitter is unaffected by the
MPCMn setting, but has to be used differently when it is a part of a system utilizing the
Multi-processor Communication mode.

If the Receiver is set up to receive frames that contain 5 to 8 data bits, then the first stop bit
indicates if the frame contains data or address information. If the Receiver is set up for frames
with nine data bits, then the ninth bit (RXB8n) is used for identifying address and data frames.
When the frame type bit (the first stop or the ninth bit) is one, the frame contains an address.
When the frame type bit is zero the frame is a data frame.

The Multi-processor Communication mode enables several slave MCUs to receive data from a
master MCU. This is done by first decoding an address frame to find out which MCU has been
addressed. If a particular slave MCU has been addressed, it will receive the following data
frames as normal, while the other slave MCUs will ignore the received frames until another
address frame is received.

20.9.1 Using MPCMn
For an MCU to act as a master MCU, it can use a 9-bit character frame format (UCSZn = 7).
The ninth bit (TXB8n) must be set when an address frame (TXB8n = 1) or cleared when a data
frame (TXB = 0) is being transmitted. The slave MCUs must in this case be set to use a 9-bit
character frame format. 

The following procedure should be used to exchange data in Multi-processor Communication
mode:

1. All Slave MCUs are in Multi-processor Communication mode (MPCMn in
UCSRnA is set).

2. The Master MCU sends an address frame, and all slaves receive and read this frame. 
In the Slave MCUs, the RXCn Flag in UCSRnA will be set as normal.

3. Each Slave MCU reads the UDRn Register and determines if it has been selected. If 
so, it clears the MPCMn bit in UCSRnA, otherwise it waits for the next address byte and 
keeps the MPCMn setting.

4. The addressed MCU will receive all data frames until a new address frame is received. 
The other Slave MCUs, which still have the MPCMn bit set, will ignore the data frames.
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5. When the last data frame is received by the addressed MCU, the addressed MCU sets 
the MPCMn bit and waits for a new address frame from master. The process then 
repeats from 2.

Using any of the 5- to 8-bit character frame formats is possible, but impractical since the
Receiver must change between using n and n+1 character frame formats. This makes
full-duplex operation difficult since the Transmitter and Receiver uses the same character size
setting. If 5- to 8-bit character frames are used, the Transmitter must be set to use two stop bit
(USBSn = 1) since the first stop bit is used for indicating the frame type.

Do not use Read-Modify-Write instructions (SBI and CBI) to set or clear the MPCMn bit. The
MPCMn bit shares the same I/O location as the TXCn Flag and this might accidentally be
cleared when using SBI or CBI instructions.

20.10 Examples of Baud Rate Setting
For standard crystal and resonator frequencies, the most commonly used baud rates for asyn-
chronous operation can be generated by using the UBRRn settings in Table 20-4. UBRRn
values which yield an actual baud rate differing less than 0.5% from the target baud rate, are
bold in the table. Higher error ratings are acceptable, but the Receiver will have less noise
resistance when the error ratings are high, especially for large serial frames (see “Asynchro-
nous Operational Range” on page 191). The error values are calculated using the following
equation:

Error[%]
BaudRateClosest Match

BaudRate
-------------------------------------------------------- 1–⎝ ⎠

⎛ ⎞ 100%×=

Table 20-4. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies

Baud 
Rate 
(bps)

fosc = 1.0000MHz fosc = 1.8432MHz fosc = 2.0000MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error

2400 25 0.2% 51 0.2% 47 0.0% 95 0.0% 51 0.2% 103 0.2%

4800 12 0.2% 25 0.2% 23 0.0% 47 0.0% 25 0.2% 51 0.2%

9600 6 -7.0% 12 0.2% 11 0.0% 23 0.0% 12 0.2% 25 0.2%

14.4k 3 8.5% 8 -3.5% 7 0.0% 15 0.0% 8 -3.5% 16 2.1%

19.2k 2 8.5% 6 -7.0% 5 0.0% 11 0.0% 6 -7.0% 12 0.2%

28.8k 1 8.5% 3 8.5% 3 0.0% 7 0.0% 3 8.5% 8 -3.5%

38.4k 1 -18.6% 2 8.5% 2 0.0% 5 0.0% 2 8.5% 6 -7.0%

57.6k 0 8.5% 1 8.5% 1 0.0% 3 0.0% 1 8.5% 3 8.5%

76.8k – – 1 -18.6% 1 -25.0% 2 0.0% 1 -18.6% 2 8.5%

115.2k – – 0 8.5% 0 0.0% 1 0.0% 0 8.5% 1 8.5%

230.4k – – – – – – 0 0.0% – – – –

250k – – – – – – – – – – 0 0.0%

Max.(1) 62.5 kbps 125 kbps 115.2 kbps 230.4 kbps 125 kbps 250 kbps

Note: 1. UBRRn = 0, Error = 0.0%
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Table 20-5. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies (Continued)

Baud 
Rate 
(bps)

fosc = 3.6864MHz fosc = 4.0000MHz fosc = 7.3728MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error

2400 95 0.0% 191 0.0% 103 0.2% 207 0.2% 191 0.0% 383 0.0%

4800 47 0.0% 95 0.0% 51 0.2% 103 0.2% 95 0.0% 191 0.0%

9600 23 0.0% 47 0.0% 25 0.2% 51 0.2% 47 0.0% 95 0.0%

14.4k 15 0.0% 31 0.0% 16 2.1% 34 -0.8% 31 0.0% 63 0.0%

19.2k 11 0.0% 23 0.0% 12 0.2% 25 0.2% 23 0.0% 47 0.0%

28.8k 7 0.0% 15 0.0% 8 -3.5% 16 2.1% 15 0.0% 31 0.0%

38.4k 5 0.0% 11 0.0% 6 -7.0% 12 0.2% 11 0.0% 23 0.0%

57.6k 3 0.0% 7 0.0% 3 8.5% 8 -3.5% 7 0.0% 15 0.0%

76.8k 2 0.0% 5 0.0% 2 8.5% 6 -7.0% 5 0.0% 11 0.0%

115.2k 1 0.0% 3 0.0% 1 8.5% 3 8.5% 3 0.0% 7 0.0%

230.4k 0 0.0% 1 0.0% 0 8.5% 1 8.5% 1 0.0% 3 0.0%

250k 0 -7.8% 1 -7.8% 0 0.0% 1 0.0% 1 -7.8% 3 -7.8%

0.5M – – 0 -7.8% – – 0 0.0% 0 -7.8% 1 -7.8%

1M – – – – – – – – – – 0 -7.8%

Max.(1) 230.4kbps 460.8kbps 250kbps 0.5Mbps 460.8kbps 921.6kbps

Note: 1. UBRRn = 0, Error = 0.0%

Table 20-6. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies (Continued)

Baud 
Rate 
(bps)

fosc = 8.0000MHz fosc = 11.0592MHz fosc = 14.7456MHz

U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1 U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error UBRRn Error

2400 207 0.2% 416 -0.1% 287 0.0% 575 0.0% 383 0.0% 767 0.0%

4800 103 0.2% 207 0.2% 143 0.0% 287 0.0% 191 0.0% 383 0.0%

9600 51 0.2% 103 0.2% 71 0.0% 143 0.0% 95 0.0% 191 0.0%

14.4k 34 -0.8% 68 0.6% 47 0.0% 95 0.0% 63 0.0% 127 0.0%

19.2k 25 0.2% 51 0.2% 35 0.0% 71 0.0% 47 0.0% 95 0.0%

28.8k 16 2.1% 34 -0.8% 23 0.0% 47 0.0% 31 0.0% 63 0.0%

38.4k 12 0.2% 25 0.2% 17 0.0% 35 0.0% 23 0.0% 47 0.0%

57.6k 8 -3.5% 16 2.1% 11 0.0% 23 0.0% 15 0.0% 31 0.0%

76.8k 6 -7.0% 12 0.2% 8 0.0% 17 0.0% 11 0.0% 23 0.0%

115.2k 3 8.5% 8 -3.5% 5 0.0% 11 0.0% 7 0.0% 15 0.0%

230.4k 1 8.5% 3 8.5% 2 0.0% 5 0.0% 3 0.0% 7 0.0%

250k 1 0.0% 3 0.0% 2 -7.8% 5 -7.8% 3 -7.8% 6 5.3%

0.5M 0 0.0% 1 0.0% – – 2 -7.8% 1 -7.8% 3 -7.8%

1M – – 0 0.0% – – – – 0 -7.8% 1 -7.8%

Max.(1) 0.5Mbps 1Mbps 691.2kbps 1.3824Mbps 921.6kbps 1.8432Mbps

Note: 1. UBRRn = 0, Error = 0.0%
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20.11 Register Description

20.11.1 UDRn – USART I/O Data Register n

The USART Transmit Data Buffer Register and USART Receive Data Buffer Registers share
the same I/O address referred to as USART Data Register or UDRn. The Transmit Data Buffer
Register (TXB) will be the destination for data written to the UDRn Register location. Reading
the UDRn Register location will return the contents of the Receive Data Buffer Register (RXB).

For 5-, 6-, or 7-bit characters the upper unused bits will be ignored by the Transmitter and set
to zero by the Receiver.

The transmit buffer can only be written when the UDREn Flag in the UCSRnA Register is set.
Data written to UDRn when the UDREn Flag is not set, will be ignored by the USART Trans-
mitter. When data is written to the transmit buffer, and the Transmitter is enabled, the
Transmitter will load the data into the Transmit Shift Register when the Shift Register is empty.
Then the data will be serially transmitted on the TxDn pin.

Table 20-7. Examples of UBRRn Settings for Commonly Used Oscillator Frequencies 
(Continued)

Baud Rate (bps)

fosc = 16.0000MHz

U2Xn = 0 U2Xn = 1

UBRRn Error UBRRn Error

2400 416 -0.1% 832 0.0%

4800 207 0.2% 416 -0.1%

9600 103 0.2% 207 0.2%

14.4k 68 0.6% 138 -0.1%

19.2k 51 0.2% 103 0.2%

28.8k 34 -0.8% 68 0.6%

38.4k 25 0.2% 51 0.2%

57.6k 16 2.1% 34 -0.8%

76.8k 12 0.2% 25 0.2%

115.2k 8 -3.5% 16 2.1%

230.4k 3 8.5% 8 -3.5%

250k 3 0.0% 7 0.0%

0.5M 1 0.0% 3 0.0%

1M 0 0.0% 1 0.0%

Max.(1) 1Mbps 2Mbps

Note: 1. UBRRn = 0, Error = 0.0%

Bit 7 6 5 4 3 2 1 0

RXB[7:0] UDRn (Read)

TXB[7:0] UDRn (Write)

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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The receive buffer consists of a two level FIFO. The FIFO will change its state whenever the
receive buffer is accessed. Due to this behavior of the receive buffer, do not use Read-Mod-
ify-Write instructions (SBI and CBI) on this location. Be careful when using bit test instructions
(SBIC and SBIS), since these also will change the state of the FIFO.

20.11.2 UCSRnA – USART Control and Status Register n A

• Bit 7 – RXCn: USART Receive Complete
This flag bit is set when there are unread data in the receive buffer and cleared when the
receive buffer is empty (i.e., does not contain any unread data). If the Receiver is disabled, the
receive buffer will be flushed and consequently the RXCn bit will become zero. The RXCn
Flag can be used to generate a Receive Complete interrupt (see description of the RXCIEn
bit).

• Bit 6 – TXCn: USART Transmit Complete
This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out
and there are no new data currently present in the transmit buffer (UDRn). The TXCn Flag bit
is automatically cleared when a transmit complete interrupt is executed, or it can be cleared by
writing a one to its bit location. The TXCn Flag can generate a Transmit Complete interrupt
(see description of the TXCIEn bit).

• Bit 5 – UDREn: USART Data Register Empty

The UDREn Flag indicates if the transmit buffer (UDRn) is ready to receive new data. If
UDREn is one, the buffer is empty, and therefore ready to be written. The UDREn Flag can
generate a Data Register Empty interrupt (see description of the UDRIEn bit). UDREn is set
after a reset to indicate that the Transmitter is ready.

• Bit 4 – FEn: Frame Error
This bit is set if the next character in the receive buffer had a Frame Error when received. I.e.,
when the first stop bit of the next character in the receive buffer is zero. This bit is valid until
the receive buffer (UDRn) is read. The FEn bit is zero when the stop bit of received data is
one. Always set this bit to zero when writing to UCSRnA.

• Bit 3 – DORn: Data OverRun
This bit is set if a Data OverRun condition is detected. A Data OverRun occurs when the
receive buffer is full (two characters), it is a new character waiting in the Receive Shift Regis-
ter, and a new start bit is detected. This bit is valid until the receive buffer (UDRn) is read.
Always set this bit to zero when writing to UCSRnA.

• Bit 2 – UPEn: USART Parity Error
This bit is set if the next character in the receive buffer had a Parity Error when received and
the Parity Checking was enabled at that point (UPMn1 = 1). This bit is valid until the receive
buffer (UDRn) is read. Always set this bit to zero when writing to UCSRnA.

Bit 7 6 5 4 3 2 1 0

RXCn TXCn UDREn FEn DORn UPEn U2Xn MPCMn UCSRnA

Read/Write R R/W R R R R R/W R/W

Initial Value 0 0 1 0 0 0 0 0
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• Bit 1 – U2Xn: Double the USART Transmission Speed
This bit only has effect for the asynchronous operation. Write this bit to zero when using syn-
chronous operation.

Writing this bit to one will reduce the divisor of the baud rate divider from 16 to 8 effectively
doubling the transfer rate for asynchronous communication.

• Bit 0 – MPCMn: Multi-processor Communication Mode
This bit enables the Multi-processor Communication mode. When the MPCMn bit is written to
one, all the incoming frames received by the USART Receiver that do not contain address
information will be ignored. The Transmitter is unaffected by the MPCMn setting. For more
detailed information see “Multi-processor Communication Mode” on page 193.

20.11.3 UCSRnB – USART Control and Status Register n B

• Bit 7 – RXCIEn: RX Complete Interrupt Enable n
Writing this bit to one enables interrupt on the RXCn Flag. A USART Receive Complete inter-
rupt will be generated only if the RXCIEn bit is written to one, the Global Interrupt Flag in
SREG is written to one and the RXCn bit in UCSRnA is set.

• Bit 6 – TXCIEn: TX Complete Interrupt Enable n
Writing this bit to one enables interrupt on the TXCn Flag. A USART Transmit Complete inter-
rupt will be generated only if the TXCIEn bit is written to one, the Global Interrupt Flag in
SREG is written to one and the TXCn bit in UCSRnA is set.

• Bit 5 – UDRIEn: USART Data Register Empty Interrupt Enable n
Writing this bit to one enables interrupt on the UDREn Flag. A Data Register Empty interrupt
will be generated only if the UDRIEn bit is written to one, the Global Interrupt Flag in SREG is
written to one and the UDREn bit in UCSRnA is set.

• Bit 4 – RXENn: Receiver Enable n
Writing this bit to one enables the USART Receiver. The Receiver will override normal port
operation for the RxDn pin when enabled. Disabling the Receiver will flush the receive buffer
invalidating the FEn, DORn, and UPEn Flags.

• Bit 3 – TXENn: Transmitter Enable n
Writing this bit to one enables the USART Transmitter. The Transmitter will override normal
port operation for the TxDn pin when enabled. The disabling of the Transmitter (writing TXENn
to zero) will not become effective until ongoing and pending transmissions are completed, i.e.,
when the Transmit Shift Register and Transmit Buffer Register do not contain data to be trans-
mitted. When disabled, the Transmitter will no longer override the TxDn port.

• Bit 2 – UCSZn2: Character Size n
The UCSZn2 bits combined with the UCSZn1:0 bit in UCSRnC sets the number of data bits
(Character SiZe) in a frame the Receiver and Transmitter use. 

Bit 7 6 5 4 3 2 1 0

RXCIEn TXCIEn UDRIEn RXENn TXENn UCSZn2 RXB8n TXB8n UCSRnB

Read/Write R/W R/W R/W R/W R/W R/W R R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 1 – RXB8n: Receive Data Bit 8 n
RXB8n is the ninth data bit of the received character when operating with serial frames with
nine data bits. Must be read before reading the low bits from UDRn.

• Bit 0 – TXB8n: Transmit Data Bit 8 n
TXB8n is the ninth data bit in the character to be transmitted when operating with serial frames
with nine data bits. Must be written before writing the low bits to UDRn.

20.11.4 UCSRnC – USART Control and Status Register n C

• Bits 7:6 – UMSELn1:0 USART Mode Select
These bits select the mode of operation of the USARTn as shown in Table 20-8.

• Bits 5:4 – UPMn1:0: Parity Mode
These bits enable and set type of parity generation and check. If enabled, the Transmitter will
automatically generate and send the parity of the transmitted data bits within each frame. The
Receiver will generate a parity value for the incoming data and compare it to the UPMn set-
ting. If a mismatch is detected, the UPEn Flag in UCSRnA will be set.

Bit 7 6 5 4 3 2 1 0

UMSELn1 UMSELn0 UPMn1 UPMn0 USBSn UCSZn1 UCSZn0 UCPOLn UCSRnC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 1 1 0

Table 20-8. UMSELn Bits Settings

UMSELn1 UMSELn0 Mode

0 0 Asynchronous USART

0 1 Synchronous USART

1 0 (Reserved)

1 1 Master SPI (MSPIM)(1)

Note: 1. See “USART in SPI Mode” on page 202 for full description of the Master SPI Mode 
(MSPIM) operation

Table 20-9. UPMn Bits Settings

UPMn1 UPMn0 Parity Mode

0 0 Disabled

0 1 Reserved

1 0 Enabled, Even Parity

1 1 Enabled, Odd Parity
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• Bit 3 – USBSn: Stop Bit Select
This bit selects the number of stop bits to be inserted by the Transmitter. The Receiver ignores
this setting.

• Bit 2:1 – UCSZn1:0: Character Size

The UCSZn1:0 bits combined with the UCSZn2 bit in UCSRnB sets the number of data bits
(Character SiZe) in a frame the Receiver and Transmitter use.

• Bit 0 – UCPOLn: Clock Polarity
This bit is used for synchronous mode only. Write this bit to zero when asynchronous mode is
used. The UCPOLn bit sets the relationship between data output change and data input sam-
ple, and the synchronous clock (XCKn).

Table 20-10. USBS Bit Settings

USBSn Stop Bit(s)

0 1-bit

1 2-bit

Table 20-11. UCSZn Bits Settings

UCSZn2 UCSZn1 UCSZn0 Character Size

0 0 0 5-bit

0 0 1 6-bit

0 1 0 7-bit

0 1 1 8-bit

1 0 0 Reserved

1 0 1 Reserved

1 1 0 Reserved

1 1 1 9-bit

Table 20-12. UCPOLn Bit Settings

UCPOLn
Transmitted Data Changed (Output of 
TxDn Pin)

Received Data Sampled (Input on RxDn 
Pin)

0 Rising XCKn Edge Falling XCKn Edge

1 Falling XCKn Edge Rising XCKn Edge
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20.11.5 UBRRnL and UBRRnH – USART Baud Rate Registers

• Bit 15:12 – Reserved
These bits are reserved for future use. For compatibility with future devices, these bit must be
written to zero when UBRRnH is written.

• Bit 11:0 – UBRR[11:0]: USART Baud Rate Register
This is a 12-bit register which contains the USART baud rate. The UBRRnH contains the four
most significant bits, and the UBRRnL contains the eight least significant bits of the USART
baud rate. Ongoing transmissions by the Transmitter and Receiver will be corrupted if the
baud rate is changed. Writing UBRRnL will trigger an immediate update of the baud rate
prescaler.

Bit 15 14 13 12 11 10 9 8

– – – – UBRRn[11:8] UBRRnH

UBRRn[7:0] UBRRnL

7 6 5 4 3 2 1 0

Read/Write R R R R R/W R/W R/W R/W

R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
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21. USART in SPI Mode

21.1 Features
• Full Duplex, Three-wire Synchronous Data Transfer
• Master Operation
• Supports all four SPI Modes of Operation (Mode 0, 1, 2, and 3)
• LSB First or MSB First Data Transfer (Configurable Data Order)
• Queued Operation (Double Buffered)
• High Resolution Baud Rate Generator
• High Speed Operation (fXCKmax = fCK/2)
• Flexible Interrupt Generation

21.2 Overview
The Universal Synchronous and Asynchronous serial Receiver and Transmitter (USART) can
be set to a master SPI compliant mode of operation. 

Setting both UMSELn1:0 bits to one enables the USART in MSPIM logic. In this mode of oper-
ation the SPI master control logic takes direct control over the USART resources. These
resources include the transmitter and receiver shift register and buffers, and the baud rate
generator. The parity generator and checker, the data and clock recovery logic, and the RX
and TX control logic is disabled. The USART RX and TX control logic is replaced by a com-
mon SPI transfer control logic. However, the pin control logic and interrupt generation logic is
identical in both modes of operation.

The I/O register locations are the same in both modes. However, some of the functionality of
the control registers changes when using MSPIM. 

21.3 Clock Generation
The Clock Generation logic generates the base clock for the Transmitter and Receiver. For
USART MSPIM mode of operation only internal clock generation (i.e. master operation) is
supported. The Data Direction Register for the XCKn pin (DDR_XCKn) must therefore be set
to one (i.e. as output) for the USART in MSPIM to operate correctly. Preferably the
DDR_XCKn should be set up before the USART in MSPIM is enabled (i.e. TXENn and
RXENn bit set to one).

The internal clock generation used in MSPIM mode is identical to the USART synchronous
master mode. The baud rate or UBRRn setting can therefore be calculated using the same
equations, see Table 21-1.
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BAUD Baud rate (in bits per second, bps)

fOSC System Oscillator clock frequency

UBRRn Contents of the UBRRnH and UBRRnL Registers, (0-4095)

21.4 SPI Data Modes and Timing
There are four combinations of XCKn (SCK) phase and polarity with respect to serial data,
which are determined by control bits UCPHAn and UCPOLn. The data transfer timing dia-
grams are shown in Figure 21-1. Data bits are shifted out and latched in on opposite edges of
the XCKn signal, ensuring sufficient time for data signals to stabilize. The UCPOLn and
UCPHAn functionality is summarized in Table 21-2. Note that changing the setting of any of
these bits will corrupt all ongoing communication for both the Receiver and Transmitter.

Figure 21-1. UCPHAn and UCPOLn data transfer timing diagrams 

Table 21-1. Equations for Calculating Baud Rate Register Setting

Operating Mode
Equation for Calculating Baud 

Rate(1)
Equation for Calculating UBRRn 

Value

Synchronous Master 
mode

Note: 1. The baud rate is defined to be the transfer rate in bit per second (bps)

BAUD
fOSC

2 UBRRn 1+( )
---------------------------------------= UBRRn

fOSC
2BAUD
-------------------- 1–=

Table 21-2. UCPOLn and UCPHAn Functionality-

UCPOLn UCPHAn SPI Mode Leading Edge Trailing Edge

0 0 0 Sample (Rising) Setup (Falling)

0 1 1 Setup (Rising) Sample (Falling)

1 0 2 Sample (Falling) Setup (Rising)

1 1 3 Setup (Falling) Sample (Rising)

XCK

Data setup (TXD)

Data sample (RXD)

XCK

Data setup (TXD)

Data sample (RXD)

XCK

Data setup (TXD)

Data sample (RXD)

XCK

Data setup (TXD)

Data sample (RXD)

UCPOL=0 UCPOL=1

U
C

P
H

A
=0

U
C

P
H

A
=1
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21.5 Frame Formats
A serial frame for the MSPIM is defined to be one character of 8 data bits. The USART in
MSPIM mode has two valid frame formats:

• 8-bit data with MSB first

• 8-bit data with LSB first

A frame starts with the least or most significant data bit. Then the next data bits, up to a total of
eight, are succeeding, ending with the most or least significant bit accordingly. When a com-
plete frame is transmitted, a new frame can directly follow it, or the communication line can be
set to an idle (high) state.

The UDORDn bit in UCSRnC sets the frame format used by the USART in MSPIM mode. The
Receiver and Transmitter use the same setting. Note that changing the setting of any of these
bits will corrupt all ongoing communication for both the Receiver and Transmitter.

16-bit data transfer can be achieved by writing two data bytes to UDRn. A UART transmit com-
plete interrupt will then signal that the 16-bit value has been shifted out.

21.5.1 USART MSPIM Initialization
The USART in MSPIM mode has to be initialized before any communication can take place.
The initialization process normally consists of setting the baud rate, setting master mode of
operation (by setting DDR_XCKn to one), setting frame format and enabling the Transmitter
and the Receiver. Only the transmitter can operate independently. For interrupt driven USART
operation, the Global Interrupt Flag should be cleared (and thus interrupts globally disabled)
when doing the initialization.

Note: To ensure immediate initialization of the XCKn output the baud-rate register (UBRRn) must be 
zero at the time the transmitter is enabled. Contrary to the normal mode USART operation the 
UBRRn must then be written to the desired value after the transmitter is enabled, but before the 
first transmission is started. Setting UBRRn to zero before enabling the transmitter is not neces-
sary if the initialization is done immediately after a reset since UBRRn is reset to zero.

Before doing a re-initialization with changed baud rate, data mode, or frame format, be sure
that there is no ongoing transmissions during the period the registers are changed. The TXCn
Flag can be used to check that the Transmitter has completed all transfers, and the RXCn
Flag can be used to check that there are no unread data in the receive buffer. Note that the
TXCn Flag must be cleared before each transmission (before UDRn is written) if it is used for
this purpose.
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The following simple USART initialization code examples show one assembly and one C func-
tion that are equal in functionality. The examples assume polling (no interrupts enabled). The
baud rate is given as a function parameter. For the assembly code, the baud rate parameter is
assumed to be stored in the r17:r16 registers. 

Assembly Code Example(1)

USART_Init:

clr r18

out UBRRnH,r18

out UBRRnL,r18

; Setting the XCKn port pin as output, enables master mode.

sbi XCKn_DDR, XCKn

; Set MSPI mode of operation and SPI data mode 0.

ldi r18, (1<<UMSELn1)|(1<<UMSELn0)|(0<<UCPHAn)|(0<<UCPOLn)

out UCSRnC,r18

; Enable receiver and transmitter.

ldi r18, (1<<RXENn)|(1<<TXENn)

out UCSRnB,r18

; Set baud rate. 

; IMPORTANT: The Baud Rate must be set after the transmitter is 
enabled!

out UBRRnH, r17

out UBRRnL, r18

ret

C Code Example(1)

void USART_Init( unsigned int baud )

{

UBRRn = 0;

/* Setting the XCKn port pin as output, enables master mode. */

XCKn_DDR |= (1<<XCKn);

/* Set MSPI mode of operation and SPI data mode 0. */

UCSRnC = (1<<UMSELn1)|(1<<UMSELn0)|(0<<UCPHAn)|(0<<UCPOLn);

/* Enable receiver and transmitter. */

UCSRnB = (1<<RXENn)|(1<<TXENn);

/* Set baud rate. */

/* IMPORTANT: The Baud Rate must be set after the transmitter is 
enabled */

UBRRn = baud;

}

Note: 1. See Section 6. “About Code Examples” on page 7.
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21.6 Data Transfer
Using the USART in MSPI mode requires the Transmitter to be enabled, i.e. the TXENn bit in
the UCSRnB register is set to one. When the Transmitter is enabled, the normal port operation
of the TxDn pin is overridden and given the function as the Transmitter's serial output.
Enabling the receiver is optional and is done by setting the RXENn bit in the UCSRnB register
to one. When the receiver is enabled, the normal pin operation of the RxDn pin is overridden
and given the function as the Receiver's serial input. The XCKn will in both cases be used as
the transfer clock.

After initialization the USART is ready for doing data transfers. A data transfer is initiated by
writing to the UDRn I/O location. This is the case for both sending and receiving data since the
transmitter controls the transfer clock. The data written to UDRn is moved from the transmit
buffer to the shift register when the shift register is ready to send a new frame.

Note: To keep the input buffer in sync with the number of data bytes transmitted, the UDRn register 
must be read once for each byte transmitted. The input buffer operation is identical to normal 
USART mode, i.e. if an overflow occurs the character last received will be lost, not the first data 
in the buffer. This means that if four bytes are transferred, byte 1 first, then byte 2, 3, and 4, and 
the UDRn is not read before all transfers are completed, then byte 3 to be received will be lost, 
and not byte 1.

The following code examples show a simple USART in MSPIM mode transfer function based
on polling of the Data Register Empty (UDREn) Flag and the Receive Complete (RXCn) Flag.
The USART has to be initialized before the function can be used. For the assembly code, the
data to be sent is assumed to be stored in Register R16 and the data received will be available
in the same register (R16) after the function returns.

The function simply waits for the transmit buffer to be empty by checking the UDREn Flag,
before loading it with new data to be transmitted. The function then waits for data to be present
in the receive buffer by checking the RXCn Flag, before reading the buffer and returning the
value.
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21.6.1 Transmitter and Receiver Flags and Interrupts
The RXCn, TXCn, and UDREn flags and corresponding interrupts in USART in MSPIM mode
are identical in function to the normal USART operation. However, the receiver error status
flags (FE, DOR, and PE) are not in use and is always read as zero.

21.6.2 Disabling the Transmitter or Receiver
The disabling of the transmitter or receiver in USART in MSPIM mode is identical in function to
the normal USART operation.

Assembly Code Example(1)

USART_MSPIM_Transfer:

; Wait for empty transmit buffer

in r16, UCSRnA

sbrs r16, UDREn

rjmp USART_MSPIM_Transfer

; Put data (r16) into buffer, sends the data

out UDRn,r16

; Wait for data to be received

USART_MSPIM_Wait_RXCn:

in r16, UCSRnA

sbrs r16, RXCn

rjmp USART_MSPIM_Wait_RXCn

; Get and return received data from buffer

in r16, UDRn

ret

C Code Example(1)

unsigned char USART_Receive( void )

{

/* Wait for empty transmit buffer */

while ( !( UCSRnA & (1<<UDREn)) );

/* Put data into buffer, sends the data */

UDRn = data;

/* Wait for data to be received */

while ( !(UCSRnA & (1<<RXCn)) );

/* Get and return received data from buffer */

return UDRn;

}

Note: 1. See ”About Code Examples” on page 7.
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21.7 AVR USART MSPIM versus AVR SPI
The USART in MSPIM mode is fully compatible with the AVR SPI regarding:

• Master mode timing diagram.

• The UCPOLn bit functionality is identical to the SPI CPOL bit.

• The UCPHAn bit functionality is identical to the SPI CPHA bit. 

• The UDORDn bit functionality is identical to the SPI DORD bit.

However, since the USART in MSPIM mode reuses the USART resources, the use of the
USART in MSPIM mode is somewhat different compared to the SPI. In addition to differences
of the control register bits, and that only master operation is supported by the USART in
MSPIM mode, the following features differ between the two modules:

• The USART in MSPIM mode includes (double) buffering of the transmitter. The SPI has no 
buffer.

• The USART in MSPIM mode receiver includes an additional buffer level.

• The SPI WCOL (Write Collision) bit is not included in USART in MSPIM mode.

• The SPI double speed mode (SPI2X) bit is not included. However, the same effect is 
achieved by setting UBRRn accordingly.

• Interrupt timing is not compatible.

• Pin control differs due to the master only operation of the USART in MSPIM mode.

A comparison of the USART in MSPIM mode and the SPI pins is shown in Table 21-3 on page
208.

Table 21-3. Comparison of USART in MSPIM mode and SPI pins.

USART_MSPIM  SPI  Comment

TxDn  MOSI  Master Out only

RxDn  MISO  Master In only

XCKn  SCK  (Functionally identical)

(N/A)  SS
 Not supported by USART in 
MSPIM
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21.8 Register Description
The following section describes the registers used for SPI operation using the USART.

21.8.1 UDRn – USART MSPIM I/O Data Register
The function and bit description of the USART data register (UDRn) in MSPI mode is identical
to normal USART operation. See “UDRn – USART I/O Data Register n” on page 196.

21.8.2 UCSRnA – USART MSPIM Control and Status Register n A

• Bit 7 – RXCn: USART Receive Complete
This flag bit is set when there are unread data in the receive buffer and cleared when the
receive buffer is empty (i.e., does not contain any unread data). If the Receiver is disabled, the
receive buffer will be flushed and consequently the RXCn bit will become zero. The RXCn
Flag can be used to generate a Receive Complete interrupt (see description of the RXCIEn
bit).

• Bit 6 – TXCn: USART Transmit Complete
This flag bit is set when the entire frame in the Transmit Shift Register has been shifted out
and there are no new data currently present in the transmit buffer (UDRn). The TXCn Flag bit
is automatically cleared when a transmit complete interrupt is executed, or it can be cleared by
writing a one to its bit location. The TXCn Flag can generate a Transmit Complete interrupt
(see description of the TXCIEn bit).

• Bit 5 – UDREn: USART Data Register Empty
The UDREn Flag indicates if the transmit buffer (UDRn) is ready to receive new data. If
UDREn is one, the buffer is empty, and therefore ready to be written. The UDREn Flag can
generate a Data Register Empty interrupt (see description of the UDRIE bit). UDREn is set
after a reset to indicate that the Transmitter is ready.

• Bit 4:0 – Reserved Bits in MSPI mode
When in MSPI mode, these bits are reserved for future use. For compatibility with future
devices, these bits must be written to zero when UCSRnA is written.

21.8.3 UCSRnB – USART MSPIM Control and Status Register n B

• Bit 7 – RXCIEn: RX Complete Interrupt Enable
Writing this bit to one enables interrupt on the RXCn Flag. A USART Receive Complete inter-
rupt will be generated only if the RXCIEn bit is written to one, the Global Interrupt Flag in
SREG is written to one and the RXCn bit in UCSRnA is set.

Bit 7 6 5 4 3 2 1 0

RXCn TXCn UDREn – – – – – UCSRnA

Read/Write R R/W R R R R R R

Initial Value 0 0 0 0 0 1 1 0

Bit 7 6 5 4 3 2 1 0

RXCIEn TXCIEn UDRIE RXENn TXENn – - - UCSRnB

Read/Write R/W R/W R/W R/W R/W R R R

Initial Value 0 0 0 0 0 1 1 0
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• Bit 6 – TXCIEn: TX Complete Interrupt Enable
Writing this bit to one enables interrupt on the TXCn Flag. A USART Transmit Complete inter-
rupt will be generated only if the TXCIEn bit is written to one, the Global Interrupt Flag in
SREG is written to one and the TXCn bit in UCSRnA is set.

• Bit 5 – UDRIE: USART Data Register Empty Interrupt Enable
Writing this bit to one enables interrupt on the UDREn Flag. A Data Register Empty interrupt
will be generated only if the UDRIE bit is written to one, the Global Interrupt Flag in SREG is
written to one and the UDREn bit in UCSRnA is set.

• Bit 4 – RXENn: Receiver Enable
Writing this bit to one enables the USART Receiver in MSPIM mode. The Receiver will over-
ride normal port operation for the RxDn pin when enabled. Disabling the Receiver will flush the
receive buffer. Only enabling the receiver in MSPI mode (i.e. setting RXENn=1 and TXENn=0)
has no meaning since it is the transmitter that controls the transfer clock and since only master
mode is supported.

• Bit 3 – TXENn: Transmitter Enable
Writing this bit to one enables the USART Transmitter. The Transmitter will override normal
port operation for the TxDn pin when enabled. The disabling of the Transmitter (writing TXENn
to zero) will not become effective until ongoing and pending transmissions are completed, i.e.,
when the Transmit Shift Register and Transmit Buffer Register do not contain data to be trans-
mitted. When disabled, the Transmitter will no longer override the TxDn port.

• Bit 2:0 – Reserved Bits in MSPI mode
When in MSPI mode, these bits are reserved for future use. For compatibility with future
devices, these bits must be written to zero when UCSRnB is written.

21.8.4 UCSRnC – USART MSPIM Control and Status Register n C

• Bit 7:6 – UMSELn1:0: USART Mode Select
These bits select the mode of operation of the USART as shown in Table 21-4. See “UCSRnC
– USART Control and Status Register n C” on page 199 for full description of the normal
USART operation. The MSPIM is enabled when both UMSELn bits are set to one. The UDO-
RDn, UCPHAn, and UCPOLn can be set in the same write operation where the MSPIM is
enabled. 

Bit 7 6 5 4 3 2 1 0

UMSELn1 UMSELn0 – – – UDORDn UCPHAn UCPOLn UCSRnC

Read/Write R/W R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 1 1 0

Table 21-4. UMSELn Bits Settings

UMSELn1  UMSELn0 Mode

0  0 Asynchronous USART

0 1  Synchronous USART

1 0 Reserved

1 1 Master SPI (MSPIM)
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• Bit 5:3 – Reserved Bits in MSPI mode
When in MSPI mode, these bits are reserved for future use. For compatibility with future
devices, these bits must be written to zero when UCSRnC is written.

• Bit 2 – UDORDn: Data Order
When set to one the LSB of the data word is transmitted first. When set to zero the MSB of the
data word is transmitted first. Refer to the Frame Formats section page 4 for details. 

• Bit 1 – UCPHAn: Clock Phase
The UCPHAn bit setting determine if data is sampled on the leasing edge (first) or tailing (last)
edge of XCKn. Refer to the SPI Data Modes and Timing section page 4 for details. 

• Bit 0 – UCPOLn: Clock Polarity
The UCPOLn bit sets the polarity of the XCKn clock. The combination of the UCPOLn and
UCPHAn bit settings determine the timing of the data transfer. Refer to the SPI Data Modes
and Timing section page 4 for details.

21.8.5 USART MSPIM Baud Rate Registers – UBRRnL and UBRRnH
The function and bit description of the baud rate registers in MSPI mode is identical to normal
USART operation. See “UBRRnL and UBRRnH – USART Baud Rate Registers” on page 201.
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22. 2-wire Serial Interface

22.1 Features
• Simple Yet Powerful and Flexible Communication Interface, only two Bus Lines Needed
• Both Master and Slave Operation Supported
• Device can Operate as Transmitter or Receiver
• 7-bit Address Space Allows up to 128 Different Slave Addresses
• Multi-master Arbitration Support
• Up to 400kHz Data Transfer Speed
• Slew-rate Limited Output Drivers
• Noise Suppression Circuitry Rejects Spikes on Bus Lines
• Fully Programmable Slave Address with General Call Support
• Address Recognition Causes Wake-up When AVR is in Sleep Mode
• Compatible with Philips’ I2C protocol

22.2 2-wire Serial Interface Bus Definition
The 2-wire Serial Interface (TWI) is ideally suited for typical microcontroller applications. The
TWI protocol allows the systems designer to interconnect up to 128 different devices using
only two bi-directional bus lines, one for clock (SCL) and one for data (SDA). The only external
hardware needed to implement the bus is a single pull-up resistor for each of the TWI bus
lines. All devices connected to the bus have individual addresses, and mechanisms for resolv-
ing bus contention are inherent in the TWI protocol.

Figure 22-1. TWI Bus Interconnection 

Device 1 Device 2 Device 3 Device n

SDA

SCL

........ R1 R2

VCC
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22.2.1 TWI Terminology
The following definitions are frequently encountered in this section.

The PRTWI bit in “Minimizing Power Consumption” on page 42 must be written to zero to
enable the 2-wire Serial Interface.

22.2.2 Electrical Interconnection
As depicted in Figure 22-1, both bus lines are connected to the positive supply voltage through
pull-up resistors. The bus drivers of all TWI-compliant devices are open-drain or open-collec-
tor. This implements a wired-AND function which is essential to the operation of the interface.
A low level on a TWI bus line is generated when one or more TWI devices output a zero. A
high level is output when all TWI devices tri-state their outputs, allowing the pull-up resistors to
pull the line high. Note that all AVR devices connected to the TWI bus must be powered in
order to allow any bus operation. 

The number of devices that can be connected to the bus is only limited by the bus capacitance
limit of 400 pF and the 7-bit slave address space. A detailed specification of the electrical char-
acteristics of the TWI is given in “Two-wire Serial Interface Characteristics” on page 320. Two
different sets of specifications are presented there, one relevant for bus speeds below
100kHz, and one valid for bus speeds up to 400kHz.

Table 22-1. TWI Terminology

Term Description

Master
The device that initiates and terminates a transmission. The Master also generates the 
SCL clock.

Slave The device addressed by a Master.

Transmitter The device placing data on the bus.

Receiver The device reading data from the bus.
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22.3 Data Transfer and Frame Format

22.3.1 Transferring Bits
Each data bit transferred on the TWI bus is accompanied by a pulse on the clock line. The
level of the data line must be stable when the clock line is high. The only exception to this rule
is for generating start and stop conditions.

Figure 22-2. Data Validity 

22.3.2 START and STOP Conditions
The Master initiates and terminates a data transmission. The transmission is initiated when
the Master issues a START condition on the bus, and it is terminated when the Master issues
a STOP condition. Between a START and a STOP condition, the bus is considered busy, and
no other master should try to seize control of the bus. A special case occurs when a new
START condition is issued between a START and STOP condition. This is referred to as a
REPEATED START condition, and is used when the Master wishes to initiate a new transfer
without relinquishing control of the bus. After a REPEATED START, the bus is considered
busy until the next STOP. This is identical to the START behavior, and therefore START is
used to describe both START and REPEATED START for the remainder of this datasheet,
unless otherwise noted. As depicted below, START and STOP conditions are signalled by
changing the level of the SDA line when the SCL line is high.

Figure 22-3. START, REPEATED START and STOP conditions 
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22.3.3 Address Packet Format
All address packets transmitted on the TWI bus are 9 bits long, consisting of 7 address bits,
one READ/WRITE control bit and an acknowledge bit. If the READ/WRITE bit is set, a read
operation is to be performed, otherwise a write operation should be performed. When a Slave
recognizes that it is being addressed, it should acknowledge by pulling SDA low in the ninth
SCL (ACK) cycle. If the addressed Slave is busy, or for some other reason can not service the
Master’s request, the SDA line should be left high in the ACK clock cycle. The Master can then
transmit a STOP condition, or a REPEATED START condition to initiate a new transmission.
An address packet consisting of a slave address and a READ or a WRITE bit is called SLA+R
or SLA+W, respectively.

The MSB of the address byte is transmitted first. Slave addresses can freely be allocated by
the designer, but the address 0000 000 is reserved for a general call. 

When a general call is issued, all slaves should respond by pulling the SDA line low in the
ACK cycle. A general call is used when a Master wishes to transmit the same message to sev-
eral slaves in the system. When the general call address followed by a Write bit is transmitted
on the bus, all slaves set up to acknowledge the general call will pull the SDA line low in the
ack cycle. The following data packets will then be received by all the slaves that acknowl-
edged the general call. Note that transmitting the general call address followed by a Read bit
is meaningless, as this would cause contention if several slaves started transmitting different
data.

All addresses of the format 1111 xxx should be reserved for future purposes.

Figure 22-4. Address Packet Format 

22.3.4 Data Packet Format
All data packets transmitted on the TWI bus are nine bits long, consisting of one data byte and
an acknowledge bit. During a data transfer, the Master generates the clock and the START
and STOP conditions, while the Receiver is responsible for acknowledging the reception. An
Acknowledge (ACK) is signalled by the Receiver pulling the SDA line low during the ninth SCL
cycle. If the Receiver leaves the SDA line high, a NACK is signalled. When the Receiver has
received the last byte, or for some reason cannot receive any more bytes, it should inform the
Transmitter by sending a NACK after the final byte. The MSB of the data byte is transmitted
first. 
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Figure 22-5. Data Packet Format 

22.3.5 Combining Address and Data Packets into a Transmission
A transmission basically consists of a START condition, a SLA+R/W, one or more data pack-
ets and a STOP condition. An empty message, consisting of a START followed by a STOP
condition, is illegal. Note that the Wired-ANDing of the SCL line can be used to implement
handshaking between the Master and the Slave. The Slave can extend the SCL low period by
pulling the SCL line low. This is useful if the clock speed set up by the Master is too fast for the
Slave, or the Slave needs extra time for processing between the data transmissions. The
Slave extending the SCL low period will not affect the SCL high period, which is determined by
the Master. As a consequence, the Slave can reduce the TWI data transfer speed by prolong-
ing the SCL duty cycle.

Figure 22-6 shows a typical data transmission. Note that several data bytes can be transmitted
between the SLA+R/W and the STOP condition, depending on the software protocol imple-
mented by the application software.

Figure 22-6. Typical Data Transmission 
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22.4 Multi-master Bus Systems, Arbitration and Synchronization
The TWI protocol allows bus systems with several masters. Special concerns have been
taken in order to ensure that transmissions will proceed as normal, even if two or more mas-
ters initiate a transmission at the same time. Two problems arise in multi-master systems:

• An algorithm must be implemented allowing only one of the masters to complete the 
transmission. All other masters should cease transmission when they discover that they have 
lost the selection process. This selection process is called arbitration. When a contending 
master discovers that it has lost the arbitration process, it should immediately switch to Slave 
mode to check whether it is being addressed by the winning master. The fact that multiple 
masters have started transmission at the same time should not be detectable to the slaves, 
i.e. the data being transferred on the bus must not be corrupted. 

• Different masters may use different SCL frequencies. A scheme must be devised to 
synchronize the serial clocks from all masters, in order to let the transmission proceed in a 
lockstep fashion. This will facilitate the arbitration process.

The wired-ANDing of the bus lines is used to solve both these problems. The serial clocks
from all masters will be wired-ANDed, yielding a combined clock with a high period equal to
the one from the Master with the shortest high period. The low period of the combined clock is
equal to the low period of the Master with the longest low period. Note that all masters listen to
the SCL line, effectively starting to count their SCL high and low time-out periods when the
combined SCL line goes high or low, respectively.

Figure 22-7. SCL Synchronization Between Multiple Masters 
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Arbitration is carried out by all masters continuously monitoring the SDA line after outputting
data. If the value read from the SDA line does not match the value the Master had output, it
has lost the arbitration. Note that a Master can only lose arbitration when it outputs a high SDA
value while another Master outputs a low value. The losing Master should immediately go to
Slave mode, checking if it is being addressed by the winning Master. The SDA line should be
left high, but losing masters are allowed to generate a clock signal until the end of the current
data or address packet. Arbitration will continue until only one Master remains, and this may
take many bits. If several masters are trying to address the same Slave, arbitration will con-
tinue into the data packet.

Figure 22-8. Arbitration Between Two Masters 

Note that arbitration is not allowed between:

• A REPEATED START condition and a data bit.

• A STOP condition and a data bit.

• A REPEATED START and a STOP condition.

It is the user software’s responsibility to ensure that these illegal arbitration conditions never
occur. This implies that in multi-master systems, all data transfers must use the same compo-
sition of SLA+R/W and data packets. In other words: All transmissions must contain the same
number of data packets, otherwise the result of the arbitration is undefined.
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22.5 Overview of the TWI Module
The TWI module is comprised of several submodules, as shown in Figure 22-9. All registers
drawn in a thick line are accessible through the AVR data bus.

Figure 22-9. Overview of the TWI Module 

22.5.1 SCL and SDA Pins
These pins interface the AVR TWI with the rest of the MCU system. The output drivers contain
a slew-rate limiter in order to conform to the TWI specification. The input stages contain a
spike suppression unit removing spikes shorter than 50 ns. Note that the internal pull-ups in
the AVR pads can be enabled by setting the PORT bits corresponding to the SCL and SDA
pins, as explained in the I/O Port section. The internal pull-ups can in some systems eliminate
the need for external ones.
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22.5.2 Bit Rate Generator Unit
This unit controls the period of SCL when operating in a Master mode. The SCL period is con-
trolled by settings in the TWI Bit Rate Register (TWBR) and the Prescaler bits in the TWI
Status Register (TWSR). Slave operation does not depend on Bit Rate or Prescaler settings,
but the CPU clock frequency in the Slave must be at least 16 times higher than the SCL fre-
quency. Note that slaves may prolong the SCL low period, thereby reducing the average TWI
bus clock period. The SCL frequency is generated according to the following equation:

• TWBR = Value of the TWI Bit Rate Register.

• PrescalerValue = Value of the prescaler, see Table 22-8 on page 242.

Note: Pull-up resistor values should be selected according to the SCL frequency and the capacitive 
bus line load. See Table 29-8 on page 320 for value of pull-up resistor.

22.5.3 Bus Interface Unit
This unit contains the Data and Address Shift Register (TWDR), a START/STOP Controller
and Arbitration detection hardware. The TWDR contains the address or data bytes to be trans-
mitted, or the address or data bytes received. In addition to the 8-bit TWDR, the Bus Interface
Unit also contains a register containing the (N)ACK bit to be transmitted or received. This
(N)ACK Register is not directly accessible by the application software. However, when receiv-
ing, it can be set or cleared by manipulating the TWI Control Register (TWCR). When in
Transmitter mode, the value of the received (N)ACK bit can be determined by the value in the
TWSR.

The START/STOP Controller is responsible for generation and detection of START,
REPEATED START, and STOP conditions. The START/STOP controller is able to detect
START and STOP conditions even when the AVR MCU is in one of the sleep modes, enabling
the MCU to wake up if addressed by a Master.

If the TWI has initiated a transmission as Master, the Arbitration Detection hardware continu-
ously monitors the transmission trying to determine if arbitration is in process. If the TWI has
lost an arbitration, the Control Unit is informed. Correct action can then be taken and appropri-
ate status codes generated.

22.5.4 Address Match Unit
The Address Match unit checks if received address bytes match the seven-bit address in the
TWI Address Register (TWAR). If the TWI General Call Recognition Enable (TWGCE) bit in
the TWAR is written to one, all incoming address bits will also be compared against the Gen-
eral Call address. Upon an address match, the Control Unit is informed, allowing correct action
to be taken. The TWI may or may not acknowledge its address, depending on settings in the
TWCR. The Address Match unit is able to compare addresses even when the AVR MCU is in
sleep mode, enabling the MCU to wake up if addressed by a Master.

SCL frequency CPU Clock frequency
16 2(TWBR) PrescalerValue( )×+
-------------------------------------------------------------------------------------------=
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22.5.5 Control Unit
The Control unit monitors the TWI bus and generates responses corresponding to settings in
the TWI Control Register (TWCR). When an event requiring the attention of the application
occurs on the TWI bus, the TWI Interrupt Flag (TWINT) is asserted. In the next clock cycle, the
TWI Status Register (TWSR) is updated with a status code identifying the event. The TWSR
only contains relevant status information when the TWI Interrupt Flag is asserted. At all other
times, the TWSR contains a special status code indicating that no relevant status information
is available. As long as the TWINT Flag is set, the SCL line is held low. This allows the appli-
cation software to complete its tasks before allowing the TWI transmission to continue.

The TWINT Flag is set in the following situations:

• After the TWI has transmitted a START/REPEATED START condition.

• After the TWI has transmitted SLA+R/W.

• After the TWI has transmitted an address byte.

• After the TWI has lost arbitration.

• After the TWI has been addressed by own slave address or general call.

• After the TWI has received a data byte.

• After a STOP or REPEATED START has been received while still addressed as a Slave.

• When a bus error has occurred due to an illegal START or STOP condition.

22.6 Using the TWI
The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus events,
like reception of a byte or transmission of a START condition. Because the TWI is inter-
rupt-based, the application software is free to carry on other operations during a TWI byte
transfer. Note that the TWI Interrupt Enable (TWIE) bit in TWCR together with the Global Inter-
rupt Enable bit in SREG allow the application to decide whether or not assertion of the TWINT
Flag should generate an interrupt request. If the TWIE bit is cleared, the application must poll
the TWINT Flag in order to detect actions on the TWI bus.

When the TWINT Flag is asserted, the TWI has finished an operation and awaits application
response. In this case, the TWI Status Register (TWSR) contains a value indicating the cur-
rent state of the TWI bus. The application software can then decide how the TWI should
behave in the next TWI bus cycle by manipulating the TWCR and TWDR Registers.

Figure 22-10 is a simple example of how the application can interface to the TWI hardware. In
this example, a Master wishes to transmit a single data byte to a Slave. This description is
quite abstract, a more detailed explanation follows later in this section. A simple code example
implementing the desired behavior is also presented.
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Figure 22-10. Interfacing the Application to the TWI in a Typical Transmission 

1. The first step in a TWI transmission is to transmit a START condition. This is done by 
writing a specific value into TWCR, instructing the TWI hardware to transmit a START 
condition. Which value to write is described later on. However, it is important that the 
TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI 
will not start any operation as long as the TWINT bit in TWCR is set. Immediately 
after the application has cleared TWINT, the TWI will initiate transmission of the 
START condition.

2. When the START condition has been transmitted, the TWINT Flag in TWCR is set, 
and TWSR is updated with a status code indicating that the START condition has 
successfully been sent.

3. The application software should now examine the value of TWSR, to make sure that 
the START condition was successfully transmitted. If TWSR indicates otherwise, the 
application software might take some special action, like calling an error routine. 
Assuming that the status code is as expected, the application must load SLA+W into 
TWDR. Remember that TWDR is used both for address and data. After TWDR has 
been loaded with the desired SLA+W, a specific value must be written to TWCR, 
instructing the TWI hardware to transmit the SLA+W present in TWDR. Which value 
to write is described later on. However, it is important that the TWINT bit is set in the 
value written. Writing a one to TWINT clears the flag. The TWI will not start any oper-
ation as long as the TWINT bit in TWCR is set. Immediately after the application has 
cleared TWINT, the TWI will initiate transmission of the address packet.

4. When the address packet has been transmitted, the TWINT Flag in TWCR is set, and 
TWSR is updated with a status code indicating that the address packet has success-
fully been sent. The status code will also reflect whether a Slave acknowledged the 
packet or not.
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5. The application software should now examine the value of TWSR, to make sure that 
the address packet was successfully transmitted, and that the value of the ACK bit 
was as expected. If TWSR indicates otherwise, the application software might take 
some special action, like calling an error routine. Assuming that the status code is as 
expected, the application must load a data packet into TWDR. Subsequently, a spe-
cific value must be written to TWCR, instructing the TWI hardware to transmit the 
data packet present in TWDR. Which value to write is described later on. However, it 
is important that the TWINT bit is set in the value written. Writing a one to TWINT 
clears the flag. The TWI will not start any operation as long as the TWINT bit in 
TWCR is set. Immediately after the application has cleared TWINT, the TWI will initi-
ate transmission of the data packet.

6. When the data packet has been transmitted, the TWINT Flag in TWCR is set, and 
TWSR is updated with a status code indicating that the data packet has successfully 
been sent. The status code will also reflect whether a Slave acknowledged the packet 
or not.

7. The application software should now examine the value of TWSR, to make sure that 
the data packet was successfully transmitted, and that the value of the ACK bit was 
as expected. If TWSR indicates otherwise, the application software might take some 
special action, like calling an error routine. Assuming that the status code is as 
expected, the application must write a specific value to TWCR, instructing the TWI 
hardware to transmit a STOP condition. Which value to write is described later on. 
However, it is important that the TWINT bit is set in the value written. Writing a one to 
TWINT clears the flag. The TWI will not start any operation as long as the TWINT bit 
in TWCR is set. Immediately after the application has cleared TWINT, the TWI will ini-
tiate transmission of the STOP condition. Note that TWINT is NOT set after a STOP 
condition has been sent.

Even though this example is simple, it shows the principles involved in all TWI transmissions.
These can be summarized as follows:

• When the TWI has finished an operation and expects application response, the TWINT 
Flag is set. The SCL line is pulled low until TWINT is cleared.

• When the TWINT Flag is set, the user must update all TWI Registers with the value 
relevant for the next TWI bus cycle. As an example, TWDR must be loaded with the value 
to be transmitted in the next bus cycle.

• After all TWI Register updates and other pending application software tasks have been 
completed, TWCR is written. When writing TWCR, the TWINT bit should be set. Writing a 
one to TWINT clears the flag. The TWI will then commence executing whatever operation 
was specified by the TWCR setting.

In the following an assembly and C implementation of the example is given. Note that the code
below assumes that several definitions have been made, for example by using include-files.
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Table 22-2.

Assembly Code Example C Example Comments

1

ldi r16, 
(1<<TWINT)|(1<<TWSTA)|

(1<<TWEN)

out TWCR, r16

TWCR = (1<<TWINT)|(1<<TWSTA)|

(1<<TWEN)
Send START condition

2

wait1:

in r16,TWCR

sbrs r16,TWINT

rjmp wait1

while (!(TWCR & (1<<TWINT)))

; Wait for TWINT Flag set. This 
indicates that the START condition 
has been transmitted

3

in r16,TWSR

andi r16, 0xF8

cpi r16, START

brne ERROR

if ((TWSR & 0xF8) != START)

ERROR();
Check value of TWI Status 
Register. Mask prescaler bits. If 
status different from START go to 
ERROR

ldi r16, SLA_W

out TWDR, r16 

ldi r16, (1<<TWINT) | 
(1<<TWEN)

out TWCR, r16

TWDR = SLA_W;

TWCR = (1<<TWINT) | (1<<TWEN); Load SLA_W into TWDR Register. 
Clear TWINT bit in TWCR to start 
transmission of address

4

wait2:

in r16,TWCR

sbrs r16,TWINT

rjmp wait2

while (!(TWCR & (1<<TWINT)))

;
Wait for TWINT Flag set. This 
indicates that the SLA+W has been 
transmitted, and ACK/NACK has 
been received.

5

in r16,TWSR

andi r16, 0xF8

cpi r16, MT_SLA_ACK

brne ERROR

if ((TWSR & 0xF8) != 
MT_SLA_ACK)

ERROR();

Check value of TWI Status 
Register. Mask prescaler bits. If 
status different from MT_SLA_ACK 
go to ERROR

ldi r16, DATA

out TWDR, r16       

ldi r16, (1<<TWINT) | 
(1<<TWEN)

out TWCR, r16

TWDR = DATA;

TWCR = (1<<TWINT) | (1<<TWEN); Load DATA into TWDR Register. 
Clear TWINT bit in TWCR to start 
transmission of data

6

wait3:

in r16,TWCR

sbrs r16,TWINT

rjmp wait3

while (!(TWCR & (1<<TWINT)))

;
Wait for TWINT Flag set. This 
indicates that the DATA has been 
transmitted, and ACK/NACK has 
been received.

7

in r16,TWSR

andi r16, 0xF8

cpi r16, MT_DATA_ACK

brne ERROR

if ((TWSR & 0xF8) != 
MT_DATA_ACK)

ERROR();

Check value of TWI Status 
Register. Mask prescaler bits. If 
status different from 
MT_DATA_ACK go to ERROR

ldi r16, 
(1<<TWINT)|(1<<TWEN)|

(1<<TWSTO)

out TWCR, r16 

TWCR = (1<<TWINT)|(1<<TWEN)|

(1<<TWSTO);
Transmit STOP condition



225
9223D–AVR–05/12

Atmel ATmega48PA/88PA/168PA

22.7 Transmission Modes
The TWI can operate in one of four major modes. These are named Master Transmitter (MT),
Master Receiver (MR), Slave Transmitter (ST) and Slave Receiver (SR). Several of these
modes can be used in the same application. As an example, the TWI can use MT mode to
write data into a TWI EEPROM, MR mode to read the data back from the EEPROM. If other
masters are present in the system, some of these might transmit data to the TWI, and then SR
mode would be used. It is the application software that decides which modes are legal.

The following sections describe each of these modes. Possible status codes are described
along with figures detailing data transmission in each of the modes. These figures contain the
following abbreviations:

S: START condition

Rs: REPEATED START condition

R: Read bit (high level at SDA)

W: Write bit (low level at SDA)

A: Acknowledge bit (low level at SDA)

A: Not acknowledge bit (high level at SDA)

Data: 8-bit data byte

P: STOP condition

SLA: Slave Address

In Figure 22-12 to Figure 22-18, circles are used to indicate that the TWINT Flag is set. The
numbers in the circles show the status code held in TWSR, with the prescaler bits masked to
zero. At these points, actions must be taken by the application to continue or complete the
TWI transfer. The TWI transfer is suspended until the TWINT Flag is cleared by software.

When the TWINT Flag is set, the status code in TWSR is used to determine the appropriate
software action. For each status code, the required software action and details of the following
serial transfer are given in Table 22-3 to Table 22-6. Note that the prescaler bits are masked to
zero in these tables.

22.7.1 Master Transmitter Mode
In the Master Transmitter mode, a number of data bytes are transmitted to a Slave Receiver
(see Figure 22-11). In order to enter a Master mode, a START condition must be transmitted.
The format of the following address packet determines whether Master Transmitter or Master
Receiver mode is to be entered. If SLA+W is transmitted, MT mode is entered, if SLA+R is
transmitted, MR mode is entered. All the status codes mentioned in this section assume that
the prescaler bits are zero or are masked to zero.
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Figure 22-11. Data Transfer in Master Transmitter Mode 

A START condition is sent by writing the following value to TWCR:

TWEN must be set to enable the 2-wire Serial Interface, TWSTA must be written to one to
transmit a START condition and TWINT must be written to one to clear the TWINT Flag. The
TWI will then test the 2-wire Serial Bus and generate a START condition as soon as the bus
becomes free. After a START condition has been transmitted, the TWINT Flag is set by hard-
ware, and the status code in TWSR will be 0x08 (see Table 22-3). In order to enter MT mode,
SLA+W must be transmitted. This is done by writing SLA+W to TWDR. Thereafter the TWINT
bit should be cleared (by writing it to one) to continue the transfer. This is accomplished by
writing the following value to TWCR:

When SLA+W have been transmitted and an acknowledgement bit has been received, TWINT
is set again and a number of status codes in TWSR are possible. Possible status codes in
Master mode are 0x18, 0x20, or 0x38. The appropriate action to be taken for each of these
status codes is detailed in Table 22-3. 

When SLA+W has been successfully transmitted, a data packet should be transmitted. This is
done by writing the data byte to TWDR. TWDR must only be written when TWINT is high. If
not, the access will be discarded, and the Write Collision bit (TWWC) will be set in the TWCR
Register. After updating TWDR, the TWINT bit should be cleared (by writing it to one) to con-
tinue the transfer. This is accomplished by writing the following value to TWCR:

This scheme is repeated until the last byte has been sent and the transfer is ended by gener-
ating a STOP condition or a repeated START condition. A STOP condition is generated by
writing the following value to TWCR:

A REPEATED START condition is generated by writing the following value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 1 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 0 1 X 1 0 X

Device 1
MASTER

TRANSMITTER

Device 2
SLAVE

RECEIVER
Device 3 Device n

SDA

SCL

........ R1 R2

VCC

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 1 0 X 1 0 X
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After a repeated START condition (state 0x10) the 2-wire Serial Interface can access the
same Slave again, or a new Slave without transmitting a STOP condition. Repeated START
enables the Master to switch between Slaves, Master Transmitter mode and Master Receiver
mode without losing control of the bus.

Table 22-3. Status codes for Master Transmitter Mode

Status Code

(TWSR)

Prescaler Bits
are 0

Status of the 2-wire Serial 
Bus and 2-wire Serial 

Interface Hardware

Application Software Response

Next Action Taken by TWI HardwareTo/from TWDR

To TWCR

STA STO TWINT TWEA

0x08
A START condition has 

been transmitted
Load SLA+W 0 0 1 X

SLA+W will be transmitted;

ACK or NOT ACK will be received

0x10
A repeated START condition 

has been transmitted

Load SLA+W or 

Load SLA+R

0

0

0

0

1

1

X

X

SLA+W will be transmitted;

ACK or NOT ACK will be received

SLA+R will be transmitted;

Logic will switch to Master Receiver mode

0x18
SLA+W has been 

transmitted;

ACK has been received

Load data byte or

No TWDR action or

No TWDR action or

No TWDR action

0

1

0

1

0

0

1

1

1

1

1

1

X

X

X

X

Data byte will be transmitted and ACK or NOT 
ACK will be received

Repeated START will be transmitted

STOP condition will be transmitted and

TWSTO Flag will be reset

STOP condition followed by a START condition 
will be transmitted and TWSTO Flag will be reset

0x20

SLA+W has been 
transmitted;

NOT ACK has been 
received

Load data byte or

No TWDR action or

No TWDR action or

No TWDR action

0

1

0

1

0

0

1

1

1

1

1

1

X

X

X

X

Data byte will be transmitted and ACK or NOT 
ACK will be received

Repeated START will be transmitted

STOP condition will be transmitted and

TWSTO Flag will be reset

STOP condition followed by a START condition 
will be transmitted and TWSTO Flag will be reset

0x28
Data byte has been 

transmitted;

ACK has been received

Load data byte or

No TWDR action or

No TWDR action or

No TWDR action

0

1

0

1

0

0

1

1

1

1

1

1

X

X

X

X

Data byte will be transmitted and ACK or NOT 
ACK will be received

Repeated START will be transmitted

STOP condition will be transmitted and

TWSTO Flag will be reset

STOP condition followed by a START condition 
will be transmitted and TWSTO Flag will be reset

0x30

Data byte has been 
transmitted;

NOT ACK has been 
received

Load data byte or

No TWDR action or

No TWDR action or

No TWDR action

0

1

0

1

0

0

1

1

1

1

1

1

X

X

X

X

Data byte will be transmitted and ACK or NOT 
ACK will be received

Repeated START will be transmitted

STOP condition will be transmitted and

TWSTO Flag will be reset

STOP condition followed by a START condition 
will be transmitted and TWSTO Flag will be reset

0x38
Arbitration lost in SLA+W or 

data bytes

No TWDR action or

No TWDR action

0

1

0

0

1

1

X

X

2-wire Serial Bus will be released and not 
addressed Slave mode entered

A START condition will be transmitted when the 
bus becomes free
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Figure 22-12. Formats and States in the Master Transmitter Mode 
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22.7.2 Master Receiver Mode
In the Master Receiver mode, a number of data bytes are received from a Slave Transmitter
(Slave see Figure 22-13). In order to enter a Master mode, a START condition must be trans-
mitted. The format of the following address packet determines whether Master Transmitter or
Master Receiver mode is to be entered. If SLA+W is transmitted, MT mode is entered, if
SLA+R is transmitted, MR mode is entered. All the status codes mentioned in this section
assume that the prescaler bits are zero or are masked to zero.

Figure 22-13. Data Transfer in Master Receiver Mode 

A START condition is sent by writing the following value to TWCR:

TWEN must be written to one to enable the 2-wire Serial Interface, TWSTA must be written to
one to transmit a START condition and TWINT must be set to clear the TWINT Flag. The TWI
will then test the 2-wire Serial Bus and generate a START condition as soon as the bus
becomes free. After a START condition has been transmitted, the TWINT Flag is set by hard-
ware, and the status code in TWSR will be 0x08 (See Table 22-3). In order to enter MR mode,
SLA+R must be transmitted. This is done by writing SLA+R to TWDR. Thereafter the TWINT
bit should be cleared (by writing it to one) to continue the transfer. This is accomplished by
writing the following value to TWCR:

When SLA+R have been transmitted and an acknowledgement bit has been received, TWINT
is set again and a number of status codes in TWSR are possible. Possible status codes in
Master mode are 0x38, 0x40, or 0x48. The appropriate action to be taken for each of these
status codes is detailed in Table 22-4. Received data can be read from the TWDR Register
when the TWINT Flag is set high by hardware. This scheme is repeated until the last byte has
been received. After the last byte has been received, the MR should inform the ST by sending
a NACK after the last received data byte. The transfer is ended by generating a STOP condi-
tion or a repeated START condition. A STOP condition is generated by writing the following
value to TWCR:

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 1 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 0 0 X 1 0 X

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 0 1 X 1 0 X

Device 1
MASTER

RECEIVER

Device 2
SLAVE

TRANSMITTER
Device 3 Device n

SDA

SCL

........ R1 R2

VCC
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A REPEATED START condition is generated by writing the following value to TWCR:

After a repeated START condition (state 0x10) the 2-wire Serial Interface can access the
same Slave again, or a new Slave without transmitting a STOP condition. Repeated START
enables the Master to switch between Slaves, Master Transmitter mode and Master Receiver
mode without losing control over the bus.

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 1 X 1 0 X 1 0 X

Table 22-4. Status codes for Master Receiver Mode

Status Code

(TWSR)

Prescaler 
Bits
are 0

Status of the 2-wire 
Serial Bus and 2-wire 

Serial Interface Hardware

Application Software Response

Next Action Taken by TWI HardwareTo/from TWDR

To TWCR

STA STO TWINT TWEA

0x08
A START condition has 

been transmitted
Load SLA+R 0 0 1 X

SLA+R will be transmitted

ACK or NOT ACK will be received

0x10
A repeated START 
condition has been 

transmitted

Load SLA+R or 

Load SLA+W

0

0

0

0

1

1

X

X

SLA+R will be transmitted

ACK or NOT ACK will be received

SLA+W will be transmitted

Logic will switch to Master Transmitter mode

0x38
Arbitration lost in SLA+R or 

NOT ACK bit

No TWDR action or

No TWDR action

0

1

0

0

1

1

X

X

2-wire Serial Bus will be released and not 
addressed Slave mode will be entered

A START condition will be transmitted when the 
bus

becomes free

0x40
SLA+R has been 

transmitted;

ACK has been received

No TWDR action or

No TWDR action

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 

returned

Data byte will be received and ACK will be 
returned

0x48

SLA+R has been 
transmitted;

NOT ACK has been 
received

No TWDR action or

No TWDR action or

No TWDR action

1

0

1

0

1

1

1

1

1

X

X

X

Repeated START will be transmitted

STOP condition will be transmitted and TWSTO 
Flag will be reset

STOP condition followed by a START condition 
will be transmitted and TWSTO Flag will be reset

0x50
Data byte has been 

received;

ACK has been returned

Read data byte or

Read data byte

0

0

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 

returned

Data byte will be received and ACK will be 
returned

0x58

Data byte has been 
received;

NOT ACK has been 
returned

Read data byte or

Read data byte or

Read data byte

1

0

1

0

1

1

1

1

1

X

X

X

Repeated START will be transmitted

STOP condition will be transmitted and TWSTO 
Flag will be reset

STOP condition followed by a START condition 
will be transmitted and TWSTO Flag will be reset
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Figure 22-14. Formats and States in the Master Receiver Mode 

22.7.3 Slave Receiver Mode
In the Slave Receiver mode, a number of data bytes are received from a Master Transmitter
(see Figure 22-15). All the status codes mentioned in this section assume that the prescaler
bits are zero or are masked to zero.

Figure 22-15. Data Transfer in Slave Receiver Mode 
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To initiate the Slave Receiver mode, TWAR and TWCR must be initialized as follows:

The upper 7 bits are the address to which the 2-wire Serial Interface will respond when
addressed by a Master. If the LSB is set, the TWI will respond to the general call address
(0x00), otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to
enable the acknowledgement of the device’s own slave address or the general call address.
TWSTA and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own
slave address (or the general call address if enabled) followed by the data direction bit. If the
direction bit is “0” (write), the TWI will operate in SR mode, otherwise ST mode is entered.
After its own slave address and the write bit have been received, the TWINT Flag is set and a
valid status code can be read from TWSR. The status code is used to determine the appropri-
ate software action. The appropriate action to be taken for each status code is detailed in
Table 22-5. The Slave Receiver mode may also be entered if arbitration is lost while the TWI is
in the Master mode (see states 0x68 and 0x78).

If the TWEA bit is reset during a transfer, the TWI will return a “Not Acknowledge” (“1”) to SDA
after the next received data byte. This can be used to indicate that the Slave is not able to
receive any more bytes. While TWEA is zero, the TWI does not acknowledge its own slave
address. However, the 2-wire Serial Bus is still monitored and address recognition may
resume at any time by setting TWEA. This implies that the TWEA bit may be used to tempo-
rarily isolate the TWI from the 2-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA
bit is set, the interface can still acknowledge its own slave address or the general call address
by using the 2-wire Serial Bus clock as a clock source. The part will then wake up from sleep
and the TWI will hold the SCL clock low during the wake up and until the TWINT Flag is
cleared (by writing it to one). Further data reception will be carried out as normal, with the AVR
clocks running as normal. Observe that if the AVR is set up with a long start-up time, the SCL
line may be held low for a long time, blocking other data transmissions.

Note that the 2-wire Serial Interface Data Register – TWDR does not reflect the last byte pres-
ent on the bus when waking up from these Sleep modes.

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

value Device’s Own Slave Address

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 0 1 0 0 0 1 0 X
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Table 22-5. Status Codes for Slave Receiver Mode
Status Code

(TWSR)
Prescaler Bits

are 0

Status of the 2-wire Serial Bus 
and 2-wire Serial Interface 

Hardware

Application Software Response

Next Action Taken by TWI HardwareTo/from TWDR

To TWCR

STA STO TWINT TWEA

0x60 Own SLA+W has been received;
ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

0x68 Arbitration lost in SLA+R/W as Mas-
ter; own SLA+W has been 
received; ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

0x70 General call address has been 
received; ACK has been returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

0x78 Arbitration lost in SLA+R/W as Mas-
ter; General call address has been
received; ACK has been 
returned

No TWDR action or

No TWDR action

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

0x80 Previously addressed with own
SLA+W; data has been received;
ACK has been returned

Read data byte or

Read data byte

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

0x88 Previously addressed with own
SLA+W; data has been received;
NOT ACK has been returned

Read data byte or

Read data byte or

Read data byte or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus 
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus 
becomes free

0x90 Previously addressed with 
general call; data has been re-
ceived; ACK has been returned

Read data byte or

Read data byte

X

X

0

0

1

1

0

1

Data byte will be received and NOT ACK will be 
returned
Data byte will be received and ACK will be returned

0x98 Previously addressed with 
general call; data has been 
received; NOT ACK has been 
returned

Read data byte or

Read data byte or

Read data byte or

Read data byte

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus 
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus 
becomes free

0xA0 A STOP condition or repeated
START condition has been 
received while still addressed as
Slave

No action 0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus 
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus 
becomes free
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Figure 22-16. Formats and States in the Slave Receiver Mode 

22.7.4 Slave Transmitter Mode
In the Slave Transmitter mode, a number of data bytes are transmitted to a Master Receiver
(see Figure 22-17). All the status codes mentioned in this section assume that the prescaler
bits are zero or are masked to zero.

Figure 22-17. Data Transfer in Slave Transmitter Mode 
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To initiate the Slave Transmitter mode, TWAR and TWCR must be initialized as follows:

The upper seven bits are the address to which the 2-wire Serial Interface will respond when
addressed by a Master. If the LSB is set, the TWI will respond to the general call address
(0x00), otherwise it will ignore the general call address.

TWEN must be written to one to enable the TWI. The TWEA bit must be written to one to
enable the acknowledgement of the device’s own slave address or the general call address.
TWSTA and TWSTO must be written to zero.

When TWAR and TWCR have been initialized, the TWI waits until it is addressed by its own
slave address (or the general call address if enabled) followed by the data direction bit. If the
direction bit is “1” (read), the TWI will operate in ST mode, otherwise SR mode is entered.
After its own slave address and the write bit have been received, the TWINT Flag is set and a
valid status code can be read from TWSR. The status code is used to determine the appropri-
ate software action. The appropriate action to be taken for each status code is detailed in
Table 22-6. The Slave Transmitter mode may also be entered if arbitration is lost while the
TWI is in the Master mode (see state 0xB0).

If the TWEA bit is written to zero during a transfer, the TWI will transmit the last byte of the
transfer. State 0xC0 or state 0xC8 will be entered, depending on whether the Master Receiver
transmits a NACK or ACK after the final byte. The TWI is switched to the not addressed Slave
mode, and will ignore the Master if it continues the transfer. Thus the Master Receiver
receives all “1” as serial data. State 0xC8 is entered if the Master demands additional data
bytes (by transmitting ACK), even though the Slave has transmitted the last byte (TWEA zero
and expecting NACK from the Master).

While TWEA is zero, the TWI does not respond to its own slave address. However, the 2-wire
Serial Bus is still monitored and address recognition may resume at any time by setting
TWEA. This implies that the TWEA bit may be used to temporarily isolate the TWI from the
2-wire Serial Bus.

In all sleep modes other than Idle mode, the clock system to the TWI is turned off. If the TWEA
bit is set, the interface can still acknowledge its own slave address or the general call address
by using the 2-wire Serial Bus clock as a clock source. The part will then wake up from sleep
and the TWI will hold the SCL clock will low during the wake up and until the TWINT Flag is
cleared (by writing it to one). Further data transmission will be carried out as normal, with the
AVR clocks running as normal. Observe that if the AVR is set up with a long start-up time, the
SCL line may be held low for a long time, blocking other data transmissions.

Note that the 2-wire Serial Interface Data Register – TWDR does not reflect the last byte pres-
ent on the bus when waking up from these sleep modes.

TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE

value Device’s Own Slave Address

TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE

value 0 1 0 0 0 1 0 X
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Table 22-6. Status Codes for Slave Transmitter Mode
Status Code

(TWSR)
Prescaler Bits

are 0

Status of the 2-wire Serial Bus 
and 2-wire Serial Interface 

Hardware

Application Software Response

Next Action Taken by TWI HardwareTo/from TWDR

To TWCR

STA STO TWINT TWEA

0xA8
Own SLA+R has been received;

ACK has been returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should 
be received
Data byte will be transmitted and ACK should be 
received

0xB0
Arbitration lost in SLA+R/W as 
Master; own SLA+R has been 

received; ACK has been returned

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should 
be received
Data byte will be transmitted and ACK should be 
received

0xB8
Data byte in TWDR has been 
transmitted; ACK has been 

received

Load data byte or

Load data byte

X

X

0

0

1

1

0

1

Last data byte will be transmitted and NOT ACK should 
be received
Data byte will be transmitted and ACK should be 
received

0xC0
Data byte in TWDR has been 

transmitted; NOT ACK has been 
received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus 
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus 
becomes free

0xC8
Last data byte in TWDR has been 

transmitted (TWEA = “0”); ACK has 
been received

No TWDR action or

No TWDR action or

No TWDR action or

No TWDR action

0

0

1

1

0

0

0

0

1

1

1

1

0

1

0

1

Switched to the not addressed Slave mode;
no recognition of own SLA or GCA
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”
Switched to the not addressed Slave mode;
no recognition of own SLA or GCA;
a START condition will be transmitted when the bus 
becomes free
Switched to the not addressed Slave mode;
own SLA will be recognized;
GCA will be recognized if TWGCE = “1”;
a START condition will be transmitted when the bus 
becomes free
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Figure 22-18. Formats and States in the Slave Transmitter Mode 

22.7.5 Miscellaneous States
There are two status codes that do not correspond to a defined TWI state, see Table 22-7.

Status 0xF8 indicates that no relevant information is available because the TWINT Flag is not
set. This occurs between other states, and when the TWI is not involved in a serial transfer.

Status 0x00 indicates that a bus error has occurred during a 2-wire Serial Bus transfer. A bus
error occurs when a START or STOP condition occurs at an illegal position in the format
frame. Examples of such illegal positions are during the serial transfer of an address byte, a
data byte, or an acknowledge bit. When a bus error occurs, TWINT is set. To recover from a
bus error, the TWSTO Flag must set and TWINT must be cleared by writing a logic one to it.
This causes the TWI to enter the not addressed Slave mode and to clear the TWSTO Flag (no
other bits in TWCR are affected). The SDA and SCL lines are released, and no STOP condi-
tion is transmitted.

S SLA R A DATA A

$A8 $B8

A

$B0

Reception of the own
slave address and one or
more data bytes

Last data byte transmitted.
Switched to not addressed
slave (TWEA = '0')

Arbitration lost as master
and addressed as slave

n

From master to slave

From slave to master

Any number of data bytes
and their associated acknowledge bits

This number (contained in TWSR) corresponds
to a defined state of the 2-Wire Serial Bus. The 
prescaler bits are zero or masked to zero

P or SDATA

$C0

DATA A

A

$C8

P or SAll 1's

A

Table 22-7. Miscellaneous States

Status Code
(TWSR)

Prescaler 
Bits
are 0

Status of the 2-wire 
Serial Bus and 2-wire 

Serial Interface 
Hardware

Application Software Response

Next Action Taken by TWI HardwareTo/from TWDR

To TWCR

STA STO TWINT TWEA

0xF8
No relevant state 

information available; 
TWINT = “0”

No TWDR action
No TWCR action

Wait or proceed current transfer

0x00
Bus error due to an illegal 
START or STOP condition

No TWDR action 0 1 1 X

Only the internal hardware is affected, 
no STOP condition is sent on the bus. In 
all cases, the bus is released and 
TWSTO is cleared.
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22.7.6 Combining Several TWI Modes
In some cases, several TWI modes must be combined in order to complete the desired action.
Consider for example reading data from a serial EEPROM. Typically, such a transfer involves
the following steps:

1. The transfer must be initiated.

2. The EEPROM must be instructed what location should be read.

3. The reading must be performed.

4. The transfer must be finished.

Note that data is transmitted both from Master to Slave and vice versa. The Master must
instruct the Slave what location it wants to read, requiring the use of the MT mode. Subse-
quently, data must be read from the Slave, implying the use of the MR mode. Thus, the
transfer direction must be changed. The Master must keep control of the bus during all these
steps, and the steps should be carried out as an atomical operation. If this principle is violated
in a multi master system, another Master can alter the data pointer in the EEPROM between
steps 2 and 3, and the Master will read the wrong data location. Such a change in transfer
direction is accomplished by transmitting a REPEATED START between the transmission of
the address byte and reception of the data. After a REPEATED START, the Master keeps
ownership of the bus. The following figure shows the flow in this transfer.

Figure 22-19. Combining Several TWI Modes to Access a Serial EEPROM 

22.8 Multi-master Systems and Arbitration
If multiple masters are connected to the same bus, transmissions may be initiated simultane-
ously by one or more of them. The TWI standard ensures that such situations are handled in
such a way that one of the masters will be allowed to proceed with the transfer, and that no
data will be lost in the process. An example of an arbitration situation is depicted below, where
two masters are trying to transmit data to a Slave Receiver.

Figure 22-20. An Arbitration Example 
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Several different scenarios may arise during arbitration, as described below:

• Two or more masters are performing identical communication with the same Slave. In this 
case, neither the Slave nor any of the masters will know about the bus contention.

• Two or more masters are accessing the same Slave with different data or direction bit. In 
this case, arbitration will occur, either in the READ/WRITE bit or in the data bits. The 
masters trying to output a one on SDA while another Master outputs a zero will lose the 
arbitration. Losing masters will switch to not addressed Slave mode or wait until the bus is 
free and transmit a new START condition, depending on application software action.

• Two or more masters are accessing different slaves. In this case, arbitration will occur in the 
SLA bits. Masters trying to output a one on SDA while another Master outputs a zero will 
lose the arbitration. Masters losing arbitration in SLA will switch to Slave mode to check if 
they are being addressed by the winning Master. If addressed, they will switch to SR or ST 
mode, depending on the value of the READ/WRITE bit. If they are not being addressed, 
they will switch to not addressed Slave mode or wait until the bus is free and transmit a new 
START condition, depending on application software action.

This is summarized in Figure 22-21. Possible status values are given in circles.

Figure 22-21. Possible Status Codes Caused by Arbitration 
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22.9 Register Description

22.9.1 TWBR – TWI Bit Rate Register

• Bits 7...0 – TWI Bit Rate Register
TWBR selects the division factor for the bit rate generator. The bit rate generator is a fre-
quency divider which generates the SCL clock frequency in the Master modes. See “Bit Rate
Generator Unit” on page 220 for calculating bit rates.

22.9.2 TWCR – TWI Control Register

The TWCR is used to control the operation of the TWI. It is used to enable the TWI, to initiate
a Master access by applying a START condition to the bus, to generate a Receiver acknowl-
edge, to generate a stop condition, and to control halting of the bus while the data to be written
to the bus are written to the TWDR. It also indicates a write collision if data is attempted written
to TWDR while the register is inaccessible.

• Bit 7 – TWINT: TWI Interrupt Flag
This bit is set by hardware when the TWI has finished its current job and expects application
software response. If the I-bit in SREG and TWIE in TWCR are set, the MCU will jump to the
TWI Interrupt Vector. While the TWINT Flag is set, the SCL low period is stretched. The
TWINT Flag must be cleared by software by writing a logic one to it. Note that this flag is not
automatically cleared by hardware when executing the interrupt routine. Also note that clear-
ing this flag starts the operation of the TWI, so all accesses to the TWI Address Register
(TWAR), TWI Status Register (TWSR), and TWI Data Register (TWDR) must be complete
before clearing this flag.

• Bit 6 – TWEA: TWI Enable Acknowledge Bit
The TWEA bit controls the generation of the acknowledge pulse. If the TWEA bit is written to
one, the ACK pulse is generated on the TWI bus if the following conditions are met:

1. The device’s own slave address has been received.

2. A general call has been received, while the TWGCE bit in the TWAR is set.

3. A data byte has been received in Master Receiver or Slave Receiver mode. 

By writing the TWEA bit to zero, the device can be virtually disconnected from the 2-wire Serial
Bus temporarily. Address recognition can then be resumed by writing the TWEA bit to one
again.

Bit 7 6 5 4 3 2 1 0

(0xB8) TWBR7 TWBR6 TWBR5 TWBR4 TWBR3 TWBR2 TWBR1 TWBR0 TWBR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0xBC) TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE TWCR

Read/Write R/W R/W R/W R/W R R/W R R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 5 – TWSTA: TWI START Condition Bit

The application writes the TWSTA bit to one when it desires to become a Master on the 2-wire
Serial Bus. The TWI hardware checks if the bus is available, and generates a START condi-
tion on the bus if it is free. However, if the bus is not free, the TWI waits until a STOP condition
is detected, and then generates a new START condition to claim the bus Master status.
TWSTA must be cleared by software when the START condition has been transmitted.

• Bit 4 – TWSTO: TWI STOP Condition Bit
Writing the TWSTO bit to one in Master mode will generate a STOP condition on the 2-wire
Serial Bus. When the STOP condition is executed on the bus, the TWSTO bit is cleared auto-
matically. In Slave mode, setting the TWSTO bit can be used to recover from an error
condition. This will not generate a STOP condition, but the TWI returns to a well-defined unad-
dressed Slave mode and releases the SCL and SDA lines to a high impedance state.

• Bit 3 – TWWC: TWI Write Collision Flag
The TWWC bit is set when attempting to write to the TWI Data Register – TWDR when TWINT
is low. This flag is cleared by writing the TWDR Register when TWINT is high.

• Bit 2 – TWEN: TWI Enable Bit
The TWEN bit enables TWI operation and activates the TWI interface. When TWEN is written
to one, the TWI takes control over the I/O pins connected to the SCL and SDA pins, enabling
the slew-rate limiters and spike filters. If this bit is written to zero, the TWI is switched off and
all TWI transmissions are terminated, regardless of any ongoing operation.

• Bit 1 – Reserved
This bit is a reserved bit and will always read as zero.

• Bit 0 – TWIE: TWI Interrupt Enable
When this bit is written to one, and the I-bit in SREG is set, the TWI interrupt request will be
activated for as long as the TWINT Flag is high.

22.9.3 TWSR – TWI Status Register

• Bits 7:3 – TWS: TWI Status
These 5 bits reflect the status of the TWI logic and the 2-wire Serial Bus. The different status
codes are described later in this section. Note that the value read from TWSR contains both
the 5-bit status value and the 2-bit prescaler value. The application designer should mask the
prescaler bits to zero when checking the Status bits. This makes status checking independent
of prescaler setting. This approach is used in this datasheet, unless otherwise noted.

• Bit 2 – Reserved
This bit is reserved and will always read as zero.

• Bits 1:0 – TWPS: TWI Prescaler Bits
These bits can be read and written, and control the bit rate prescaler.

Bit 7 6 5 4 3 2 1 0

(0xB9) TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0 TWSR
Read/Write R R R R R R R/W R/W

Initial Value 1 1 1 1 1 0 0 0
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To calculate bit rates, see “Bit Rate Generator Unit” on page 220. The value of TWPS1...0 is
used in the equation.

22.9.4 TWDR – TWI Data Register

In Transmit mode, TWDR contains the next byte to be transmitted. In Receive mode, the
TWDR contains the last byte received. It is writable while the TWI is not in the process of shift-
ing a byte. This occurs when the TWI Interrupt Flag (TWINT) is set by hardware. Note that the
Data Register cannot be initialized by the user before the first interrupt occurs. The data in
TWDR remains stable as long as TWINT is set. While data is shifted out, data on the bus is
simultaneously shifted in. TWDR always contains the last byte present on the bus, except after
a wake up from a sleep mode by the TWI interrupt. In this case, the contents of TWDR is
undefined. 

In the case of a lost bus arbitration, no data is lost in the transition from Master to Slave. Han-
dling of the ACK bit is controlled automatically by the TWI logic, the CPU cannot access the
ACK bit directly.

• Bits 7:0 – TWD: TWI Data Register 
These eight bits constitute the next data byte to be transmitted, or the latest data byte received
on the 2-wire Serial Bus.

Table 22-8. TWI Bit Rate Prescaler

TWPS1 TWPS0 Prescaler Value

0 0 1

0 1 4

1 0 16

1 1 64

Bit 7 6 5 4 3 2 1 0

(0xBB) TWD7 TWD6 TWD5 TWD4 TWD3 TWD2 TWD1 TWD0 TWDR
Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1
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22.9.5 TWAR – TWI (Slave) Address Register

The TWAR should be loaded with the 7-bit Slave address (in the seven most significant bits of
TWAR) to which the TWI will respond when programmed as a Slave Transmitter or Receiver,
and not needed in the Master modes. In multi master systems, TWAR must be set in masters
which can be addressed as Slaves by other Masters.

The LSB of TWAR is used to enable recognition of the general call address (0x00). There is
an associated address comparator that looks for the slave address (or general call address if
enabled) in the received serial address. If a match is found, an interrupt request is generated.

• Bits 7:1 – TWA: TWI (Slave) Address Register 
These seven bits constitute the slave address of the TWI unit.

• Bit 0 – TWGCE: TWI General Call Recognition Enable Bit 
If set, this bit enables the recognition of a General Call given over the 2-wire Serial Bus.

22.9.6 TWAMR – TWI (Slave) Address Mask Register

• Bits 7:1 – TWAM: TWI Address Mask
The TWAMR can be loaded with a 7-bit Salve Address mask. Each of the bits in TWAMR can
mask (disable) the corresponding address bits in the TWI Address Register (TWAR). If the
mask bit is set to one then the address match logic ignores the compare between the incoming
address bit and the corresponding bit in TWAR. Figure 22-22 shown the address match logic
in detail.

Figure 22-22. TWI Address Match Logic, Block Diagram 

• Bit 0 – Reserved
This bit is an unused bit in the Atmel® ATmega48PA/88PA/168PA, and will always read as
zero.

Bit 7 6 5 4 3 2 1 0

(0xBA) TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE TWAR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 0

Bit 7 6 5 4 3 2 1 0

(0xBD) TWAM[6:0] – TWAMR

Read/Write R/W R/W R/W R/W R/W R/W R/W R

Initial Value 0 0 0 0 0 0 0 0

Address
Match

Address Bit Comparator 0

Address Bit Comparator 6..1

TWAR0

TWAMR0

Address
Bit 0
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23. Analog Comparator

23.1 Overview
The Analog Comparator compares the input values on the positive pin AIN0 and negative pin
AIN1. When the voltage on the positive pin AIN0 is higher than the voltage on the negative pin
AIN1, the Analog Comparator output, ACO, is set. The comparator’s output can be set to trig-
ger the Timer/Counter1 Input Capture function. In addition, the comparator can trigger a
separate interrupt, exclusive to the Analog Comparator. The user can select Interrupt trigger-
ing on comparator output rise, fall or toggle. A block diagram of the comparator and its
surrounding logic is shown in Figure 23-1.

The Power Reduction ADC bit, PRADC, in “Minimizing Power Consumption” on page 42 must
be disabled by writing a logical zero to be able to use the ADC input MUX.

Figure 23-1. Analog Comparator Block Diagram(2) 

Notes: 1. See Table 23-1 on page 245.

2. Refer to Figure 1-1 on page 2 and Table 14-9 on page 88 for Analog Comparator pin 
placement.

23.2 Analog Comparator Multiplexed Input
It is possible to select any of the ADC7...0 pins to replace the negative input to the Analog
Comparator. The ADC multiplexer is used to select this input, and consequently, the ADC
must be switched off to utilize this feature. If the Analog Comparator Multiplexer Enable bit
(ACME in ADCSRB) is set and the ADC is switched off (ADEN in ADCSRA is zero), MUX2...0
in ADMUX select the input pin to replace the negative input to the Analog Comparator, as
shown in Table 23-1. If ACME is cleared or ADEN is set, AIN1 is applied to the negative input
to the Analog Comparator

ACBG

BANDGAP
REFERENCE

ADC MULTIPLEXER
OUTPUT

ACME
ADEN

(1)
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23.3 Register Description

23.3.1 ADCSRB – ADC Control and Status Register B

• Bit 6 – ACME: Analog Comparator Multiplexer Enable
When this bit is written logic one and the ADC is switched off (ADEN in ADCSRA is zero), the
ADC multiplexer selects the negative input to the Analog Comparator. When this bit is written
logic zero, AIN1 is applied to the negative input of the Analog Comparator. For a detailed
description of this bit, see “Analog Comparator Multiplexed Input” on page 244. 

23.3.2 ACSR – Analog Comparator Control and Status Register

• Bit 7 – ACD: Analog Comparator Disable
When this bit is written logic one, the power to the Analog Comparator is switched off. This bit
can be set at any time to turn off the Analog Comparator. This will reduce power consumption
in Active and Idle mode. When changing the ACD bit, the Analog Comparator Interrupt must
be disabled by clearing the ACIE bit in ACSR. Otherwise an interrupt can occur when the bit is
changed.

Table 23-1. Analog Comparator Multiplexed Input

ACME ADEN MUX2...0 Analog Comparator Negative Input

0 x xxx AIN1

1 1 xxx AIN1

1 0 000 ADC0

1 0 001 ADC1

1 0 010 ADC2

1 0 011 ADC3

1 0 100 ADC4

1 0 101 ADC5

1 0 110 ADC6

1 0 111 ADC7

Bit 7 6 5 4 3 2 1 0

(0x7B) – ACME – – – ADTS2 ADTS1 ADTS0 ADCSRB

Read/Write R R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

0x30 (0x50) ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 ACSR

Read/Write R/W R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 N/A 0 0 0 0 0
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• Bit 6 – ACBG: Analog Comparator Bandgap Select
When this bit is set, a fixed bandgap reference voltage replaces the positive input to the Ana-
log Comparator. When this bit is cleared, AIN0 is applied to the positive input of the Analog
Comparator. When the bandgap reference is used as input to the Analog Comparator, it will
take a certain time for the voltage to stabilize. If not stabilized, the first conversion may give a
wrong value. See “Internal Voltage Reference” on page 51

• Bit 5 – ACO: Analog Comparator Output
The output of the Analog Comparator is synchronized and then directly connected to ACO.
The synchronization introduces a delay of 1 - 2 clock cycles. 

• Bit 4 – ACI: Analog Comparator Interrupt Flag
This bit is set by hardware when a comparator output event triggers the interrupt mode defined
by ACIS1 and ACIS0. The Analog Comparator interrupt routine is executed if the ACIE bit is
set and the I-bit in SREG is set. ACI is cleared by hardware when executing the corresponding
interrupt handling vector. Alternatively, ACI is cleared by writing a logic one to the flag.

• Bit 3 – ACIE: Analog Comparator Interrupt Enable
When the ACIE bit is written logic one and the I-bit in the Status Register is set, the Analog
Comparator interrupt is activated. When written logic zero, the interrupt is disabled.

• Bit 2 – ACIC: Analog Comparator Input Capture Enable
When written logic one, this bit enables the input capture function in Timer/Counter1 to be trig-
gered by the Analog Comparator. The comparator output is in this case directly connected to
the input capture front-end logic, making the comparator utilize the noise canceler and edge
select features of the Timer/Counter1 Input Capture interrupt. When written logic zero, no con-
nection between the Analog Comparator and the input capture function exists. To make the
comparator trigger the Timer/Counter1 Input Capture interrupt, the ICIE1 bit in the Timer Inter-
rupt Mask Register (TIMSK1) must be set.

• Bits 1, 0 – ACIS1, ACIS0: Analog Comparator Interrupt Mode Select
These bits determine which comparator events that trigger the Analog Comparator interrupt.
The different settings are shown in Table 23-2.

When changing the ACIS1/ACIS0 bits, the Analog Comparator Interrupt must be disabled by
clearing its Interrupt Enable bit in the ACSR Register. Otherwise an interrupt can occur when
the bits are changed.

Table 23-2. ACIS1/ACIS0 Settings

ACIS1 ACIS0 Interrupt Mode

0 0 Comparator Interrupt on Output Toggle.

0 1 Reserved

1 0 Comparator Interrupt on Falling Output Edge.

1 1 Comparator Interrupt on Rising Output Edge.
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23.3.3 DIDR1 – Digital Input Disable Register 1

• Bit 7:2 – Reserved
These bits are unused bits in the Atmel® ATmega48PA/88PA/168PA, and will always read as
zero.

• Bit 1, 0 – AIN1D, AIN0D: AIN1, AIN0 Digital Input Disable
When this bit is written logic one, the digital input buffer on the AIN1/0 pin is disabled. The cor-
responding PIN Register bit will always read as zero when this bit is set. When an analog
signal is applied to the AIN1/0 pin and the digital input from this pin is not needed, this bit
should be written logic one to reduce power consumption in the digital input buffer. 

Bit 7 6 5 4 3 2 1 0

(0x7F) – – – – – – AIN1D AIN0D DIDR1

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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24. Analog-to-Digital Converter

24.1 Features
• 10-bit Resolution
• 0.5 LSB Integral Non-linearity
• ± 2 LSB Absolute Accuracy
• 13 - 260 µs Conversion Time
• Up to 76.9 kSPS (Up to 15 kSPS at Maximum Resolution)
• 6 Multiplexed Single Ended Input Channels
• 2 Additional Multiplexed Single Ended Input Channels
• Temperature Sensor Input Channel
• Optional Left Adjustment for ADC Result Readout
• 0 - VCC ADC Input Voltage Range
• Selectable 1.1V ADC Reference Voltage
• Free Running or Single Conversion Mode
• Interrupt on ADC Conversion Complete
• Sleep Mode Noise Canceler

24.2 Overview
The Atmel® ATmega48PA/88PA/168PA features a 10-bit successive approximation ADC. The
ADC is connected to an 8-channel Analog Multiplexer which allows eight single-ended voltage
inputs constructed from the pins of Port A. The single-ended voltage inputs refer to 0V (GND).

The ADC contains a Sample and Hold circuit which ensures that the input voltage to the ADC
is held at a constant level during conversion. A block diagram of the ADC is shown in Figure
24-1 on page 249.

The ADC has a separate analog supply voltage pin, AVCC. AVCC must not differ more than
±0.3V from VCC. See the paragraph “ADC Noise Canceler” on page 255 on how to connect
this pin.

Internal reference voltages of nominally 1.1V or AVCC are provided On-chip. The voltage refer-
ence may be externally decoupled at the AREF pin by a capacitor for better noise
performance.

The Power Reduction ADC bit, PRADC, in “Minimizing Power Consumption” on page 42 must
be disabled by writing a logical zero to enable the ADC.

The ADC converts an analog input voltage to a 10-bit digital value through successive approx-
imation. The minimum value represents GND and the maximum value represents the voltage
on the AREF pin minus 1 LSB. Optionally, AVCC or an internal 1.1V reference voltage may be
connected to the AREF pin by writing to the REFSn bits in the ADMUX Register. The internal
voltage reference may thus be decoupled by an external capacitor at the AREF pin to improve
noise immunity.
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Figure 24-1. Analog to Digital Converter Block Schematic Operation 

The analog input channel is selected by writing to the MUX bits in ADMUX. Any of the ADC
input pins, as well as GND and a fixed bandgap voltage reference, can be selected as single
ended inputs to the ADC. The ADC is enabled by setting the ADC Enable bit, ADEN in ADC-
SRA. Voltage reference and input channel selections will not go into effect until ADEN is set.
The ADC does not consume power when ADEN is cleared, so it is recommended to switch off
the ADC before entering power saving sleep modes.

The ADC generates a 10-bit result which is presented in the ADC Data Registers, ADCH and
ADCL. By default, the result is presented right adjusted, but can optionally be presented left
adjusted by setting the ADLAR bit in ADMUX.
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If the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read
ADCH. Otherwise, ADCL must be read first, then ADCH, to ensure that the content of the Data
Registers belongs to the same conversion. Once ADCL is read, ADC access to Data Regis-
ters is blocked. This means that if ADCL has been read, and a conversion completes before
ADCH is read, neither register is updated and the result from the conversion is lost. When
ADCH is read, ADC access to the ADCH and ADCL Registers is re-enabled. 

The ADC has its own interrupt which can be triggered when a conversion completes. When
ADC access to the Data Registers is prohibited between reading of ADCH and ADCL, the
interrupt will trigger even if the result is lost.

24.3 Starting a Conversion
A single conversion is started by disabling the Power Reduction ADC bit, PRADC, in “Minimiz-
ing Power Consumption” on page 42 by writing a logical zero to it and writing a logical one to
the ADC Start Conversion bit, ADSC. This bit stays high as long as the conversion is in prog-
ress and will be cleared by hardware when the conversion is completed. If a different data
channel is selected while a conversion is in progress, the ADC will finish the current conver-
sion before performing the channel change. 

Alternatively, a conversion can be triggered automatically by various sources. Auto Triggering
is enabled by setting the ADC Auto Trigger Enable bit, ADATE in ADCSRA. The trigger source
is selected by setting the ADC Trigger Select bits, ADTS in ADCSRB (See description of the
ADTS bits for a list of the trigger sources). When a positive edge occurs on the selected trigger
signal, the ADC prescaler is reset and a conversion is started. This provides a method of start-
ing conversions at fixed intervals. If the trigger signal still is set when the conversion
completes, a new conversion will not be started. If another positive edge occurs on the trigger
signal during conversion, the edge will be ignored. Note that an Interrupt Flag will be set even
if the specific interrupt is disabled or the Global Interrupt Enable bit in SREG is cleared. A con-
version can thus be triggered without causing an interrupt. However, the Interrupt Flag must
be cleared in order to trigger a new conversion at the next interrupt event. 

Figure 24-2. ADC Auto Trigger Logic 
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Using the ADC Interrupt Flag as a trigger source makes the ADC start a new conversion as
soon as the ongoing conversion has finished. The ADC then operates in Free Running mode,
constantly sampling and updating the ADC Data Register. The first conversion must be started
by writing a logical one to the ADSC bit in ADCSRA. In this mode the ADC will perform suc-
cessive conversions independently of whether the ADC Interrupt Flag, ADIF is cleared or not.

If Auto Triggering is enabled, single conversions can be started by writing ADSC in ADCSRA
to one. ADSC can also be used to determine if a conversion is in progress. The ADSC bit will
be read as one during a conversion, independently of how the conversion was started.

24.4 Prescaling and Conversion Timing

Figure 24-3. ADC Prescaler 

By default, the successive approximation circuitry requires an input clock frequency between
50kHz and 200kHz to get maximum resolution. If a lower resolution than 10 bits is needed, the
input clock frequency to the ADC can be higher than 200kHz to get a higher sample rate.

The ADC module contains a prescaler, which generates an acceptable ADC clock frequency
from any CPU frequency above 100kHz. The prescaling is set by the ADPS bits in ADCSRA.
The prescaler starts counting from the moment the ADC is switched on by setting the ADEN
bit in ADCSRA. The prescaler keeps running for as long as the ADEN bit is set, and is contin-
uously reset when ADEN is low.

When initiating a single ended conversion by setting the ADSC bit in ADCSRA, the conversion
starts at the following rising edge of the ADC clock cycle. 

A normal conversion takes 13 ADC clock cycles. The first conversion after the ADC is
switched on (ADEN in ADCSRA is set) takes 25 ADC clock cycles in order to initialize the ana-
log circuitry.

When the bandgap reference voltage is used as input to the ADC, it will take a certain time for
the voltage to stabilize. If not stabilized, the first value read after the first conversion may be
wrong.
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The actual sample-and-hold takes place 1.5 ADC clock cycles after the start of a normal con-
version and 13.5 ADC clock cycles after the start of an first conversion. When a conversion is
complete, the result is written to the ADC Data Registers, and ADIF is set. In Single Conver-
sion mode, ADSC is cleared simultaneously. The software may then set ADSC again, and a
new conversion will be initiated on the first rising ADC clock edge. 

When Auto Triggering is used, the prescaler is reset when the trigger event occurs. This
assures a fixed delay from the trigger event to the start of conversion. In this mode, the sam-
ple-and-hold takes place two ADC clock cycles after the rising edge on the trigger source
signal. Three additional CPU clock cycles are used for synchronization logic.

In Free Running mode, a new conversion will be started immediately after the conversion
completes, while ADSC remains high. For a summary of conversion times, see Table 24-1 on
page 253.

Figure 24-4. ADC Timing Diagram, First Conversion (Single Conversion Mode) 

Figure 24-5. ADC Timing Diagram, Single Conversion 
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Figure 24-6. ADC Timing Diagram, Auto Triggered Conversion 

Figure 24-7. ADC Timing Diagram, Free Running Conversion 
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Table 24-1. ADC Conversion Time

Condition
Sample & Hold 

(Cycles from Start of Conversion)
Conversion Time 

(Cycles)

First conversion 13.5 25

Normal conversions, single ended 1.5 13

Auto Triggered conversions 2 13.5
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24.5 Changing Channel or Reference Selection
The MUXn and REFS1:0 bits in the ADMUX Register are single buffered through a temporary
register to which the CPU has random access. This ensures that the channels and reference
selection only takes place at a safe point during the conversion. The channel and reference
selection is continuously updated until a conversion is started. Once the conversion starts, the
channel and reference selection is locked to ensure a sufficient sampling time for the ADC.
Continuous updating resumes in the last ADC clock cycle before the conversion completes
(ADIF in ADCSRA is set). Note that the conversion starts on the following rising ADC clock
edge after ADSC is written. The user is thus advised not to write new channel or reference
selection values to ADMUX until one ADC clock cycle after ADSC is written.

If Auto Triggering is used, the exact time of the triggering event can be indeterministic. Special
care must be taken when updating the ADMUX Register, in order to control which conversion
will be affected by the new settings.

If both ADATE and ADEN is written to one, an interrupt event can occur at any time. If the
ADMUX Register is changed in this period, the user cannot tell if the next conversion is based
on the old or the new settings. ADMUX can be safely updated in the following ways:

a. When ADATE or ADEN is cleared.

b. During conversion, minimum one ADC clock cycle after the trigger event.

c. After a conversion, before the Interrupt Flag used as trigger source is cleared.

When updating ADMUX in one of these conditions, the new settings will affect the next ADC
conversion.

24.5.1 ADC Input Channels
When changing channel selections, the user should observe the following guidelines to ensure
that the correct channel is selected:

In Single Conversion mode, always select the channel before starting the conversion. The
channel selection may be changed one ADC clock cycle after writing one to ADSC. However,
the simplest method is to wait for the conversion to complete before changing the channel
selection.

In Free Running mode, always select the channel before starting the first conversion. The
channel selection may be changed one ADC clock cycle after writing one to ADSC. However,
the simplest method is to wait for the first conversion to complete, and then change the chan-
nel selection. Since the next conversion has already started automatically, the next result will
reflect the previous channel selection. Subsequent conversions will reflect the new channel
selection.

24.5.2 ADC Voltage Reference
The reference voltage for the ADC (VREF) indicates the conversion range for the ADC. Single
ended channels that exceed VREF will result in codes close to 0x3FF. VREF can be selected as
either AVCC, internal 1.1V reference, or external AREF pin.

AVCC is connected to the ADC through a passive switch. The internal 1.1V reference is gener-
ated from the internal bandgap reference (VBG) through an internal amplifier. In either case,
the external AREF pin is directly connected to the ADC, and the reference voltage can be
made more immune to noise by connecting a capacitor between the AREF pin and ground.
VREF can also be measured at the AREF pin with a high impedance voltmeter. Note that VREF

is a high impedance source, and only a capacitive load should be connected in a system.
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If the user has a fixed voltage source connected to the AREF pin, the user may not use the
other reference voltage options in the application, as they will be shorted to the external volt-
age. If no external voltage is applied to the AREF pin, the user may switch between AVCC and
1.1V as reference selection. The first ADC conversion result after switching reference voltage
source may be inaccurate, and the user is advised to discard this result.

24.6 ADC Noise Canceler
The ADC features a noise canceler that enables conversion during sleep mode to reduce
noise induced from the CPU core and other I/O peripherals. The noise canceler can be used
with ADC Noise Reduction and Idle mode. To make use of this feature, the following proce-
dure should be used:

a. Make sure that the ADC is enabled and is not busy converting. Single Conversion 
mode must be selected and the ADC conversion complete interrupt must be 
enabled.

b. Enter ADC Noise Reduction mode (or Idle mode). The ADC will start a conver-
sion once the CPU has been halted.

c. If no other interrupts occur before the ADC conversion completes, the ADC inter-
rupt will wake up the CPU and execute the ADC Conversion Complete interrupt 
routine. If another interrupt wakes up the CPU before the ADC conversion is com-
plete, that interrupt will be executed, and an ADC Conversion Complete interrupt 
request will be generated when the ADC conversion completes. The CPU will 
remain in active mode until a new sleep command is executed.

Note that the ADC will not be automatically turned off when entering other sleep modes than
Idle mode and ADC Noise Reduction mode. The user is advised to write zero to ADEN before
entering such sleep modes to avoid excessive power consumption. 

24.6.1 Analog Input Circuitry
The analog input circuitry for single ended channels is illustrated in Figure 24-8. An analog
source applied to ADCn is subjected to the pin capacitance and input leakage of that pin,
regardless of whether that channel is selected as input for the ADC. When the channel is
selected, the source must drive the S/H capacitor through the series resistance (combined
resistance in the input path).

The ADC is optimized for analog signals with an output impedance of approximately 10 kΩ or
less. If such a source is used, the sampling time will be negligible. If a source with higher
impedance is used, the sampling time will depend on how long time the source needs to
charge the S/H capacitor, with can vary widely. The user is recommended to only use low
impedance sources with slowly varying signals, since this minimizes the required charge
transfer to the S/H capacitor.

Signal components higher than the Nyquist frequency (fADC/2) should not be present for either
kind of channels, to avoid distortion from unpredictable signal convolution. The user is advised
to remove high frequency components with a low-pass filter before applying the signals as
inputs to the ADC.
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Figure 24-8. Analog Input Circuitry 

24.6.2 Analog Noise Canceling Techniques
Digital circuitry inside and outside the device generates EMI which might affect the accuracy of
analog measurements. If conversion accuracy is critical, the noise level can be reduced by
applying the following techniques:

a. Keep analog signal paths as short as possible. Make sure analog tracks run over 
the analog ground plane, and keep them well away from high-speed switching 
digital tracks.

b. The AVCC pin on the device should be connected to the digital VCC supply voltage 
via an LC network as shown in Figure 24-9 on page 257.

c. Use the ADC noise canceler function to reduce induced noise from the CPU.

d. If any ADC [3...0] port pins are used as digital outputs, it is essential that these do 
not switch while a conversion is in progress. However, using the 2-wire Interface 
(ADC4 and ADC5) will only affect the conversion on ADC4 and ADC5 and not the 
other ADC channels.

ADCn

IIH

1..100 k

CS/H= 14 pF

VCC/2

IIL
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Figure 24-9. ADC Power Connections 

24.6.3 ADC Accuracy Definitions
An n-bit single-ended ADC converts a voltage linearly between GND and VREF in 2n steps
(LSBs). The lowest code is read as 0, and the highest code is read as 2n-1. 

Several parameters describe the deviation from the ideal behavior:

• Offset: The deviation of the first transition (0x000 to 0x001) compared to the ideal transition 
(at 0.5 LSB). Ideal value: 0 LSB.
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Figure 24-10. Offset Error 

• Gain error: After adjusting for offset, the gain error is found as the deviation of the last 
transition (0x3FE to 0x3FF) compared to the ideal transition (at 1.5 LSB below maximum). 
Ideal value: 0 LSB

Figure 24-11. Gain Error 

• Integral Non-linearity (INL): After adjusting for offset and gain error, the INL is the maximum 
deviation of an actual transition compared to an ideal transition for any code. Ideal value: 0 
LSB.
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Figure 24-12. Integral Non-linearity (INL) 

• Differential Non-linearity (DNL): The maximum deviation of the actual code width (the 
interval between two adjacent transitions) from the ideal code width (1 LSB). Ideal value: 0 
LSB.

Figure 24-13. Differential Non-linearity (DNL) 

• Quantization Error: Due to the quantization of the input voltage into a finite number of 
codes, a range of input voltages (1 LSB wide) will code to the same value. Always ±0.5 
LSB.

• Absolute accuracy: The maximum deviation of an actual (unadjusted) transition compared 
to an ideal transition for any code. This is the compound effect of offset, gain error, 
differential error, non-linearity, and quantization error. Ideal value: ±0.5 LSB.
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24.7 ADC Conversion Result
After the conversion is complete (ADIF is high), the conversion result can be found in the ADC
Result Registers (ADCL, ADCH). 

For single ended conversion, the result is

where VIN is the voltage on the selected input pin and VREF the selected voltage reference (see
Table 24-3 on page 262 and Table 24-4 on page 263). 0x000 represents analog ground, and
0x3FF represents the selected reference voltage minus one LSB.

24.8 Temperature Measurement
The temperature measurement is based on an on-chip temperature sensor that is coupled to a
single ended ADC input. 1000 setting in MUX[3..0] bits of ADMUX register selects the temper-
ature sensor. The internal 1.1V voltage reference, a 11 setting in REFS[1..0] of ADMUX, must
also be selected for the ADC voltage reference source during the temperature sensor mea-
surement. When the temperature sensor is enabled, the ADC converter can be used in single
conversion mode to measure the voltage over the temperature sensor.

The measured voltage has a linear relationship to the temperature as described in Table 24-2. 

The voltage sensitivity is approximately 1LSB/°C (142/128) and the accuracy of the tempera-
ture measurement  is  ±20°C using the manufactur ing cal ibrat ion of fset  va lue
(TS_ADC_25[H..L]).

The values described in Table 24-2 are typical values. However, due to the process variation
the temperature sensor output varies from one chip to another.

ADC
VIN 1024×

VREF
-----------------------------=

Table 24-2. Sensor Output Code versus Temperature (Typical Values)

Temperature/°C –40°C +25°C +125°C

0x010D 0x0160 0x01E0
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24.8.1 Manufacturing Calibration
Calibration values determined during test are available in the signature row.

The temperature in degrees Celsius can be calculated using the formula:

Where:.

a.  ADCH & ADCL are the ADC data register values obtained during temperature 
sensor reading.

b. TS_ADC_25_H and _L is the 10-bit ADC temp sensor reading stored as two 
byte values during factory calibration at 25°C in the signature row.

c. The ratio 128/142 is the design compensation factor for the temperature sensor 
gain, as the temp sensor is slightly more sensitive than 1°C/unit.

d. The +25 is the offset compensation for the fact that the calibration values are 
obtained at +25°C during factory calibration.

See Section 27.8.10 “Reading the Signature Row from Software” on page 286 
and Table 27-5 on page 286 for signature row access and parameter 
addresses.

ADCH<<8( ) ADCL+( ) TS_ADC_25_H<<8( ) TS_ADC_25_L+( )– 128×( )
142

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 25+
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24.9 Register Description

24.9.1 ADMUX – ADC Multiplexer Selection Register

• Bit 7:6 – REFS[1:0]: Reference Selection Bits
These bits select the voltage reference for the ADC, as shown in Table 24-3. If these bits are
changed during a conversion, the change will not go in effect until this conversion is complete
(ADIF in ADCSRA is set). The internal voltage reference options may not be used if an
external reference voltage is being applied to the AREF pin.

•  Bit 5 – ADLAR: ADC Left Adjust Result
The ADLAR bit affects the presentation of the ADC conversion result in the ADC Data Regis-
ter. Write one to ADLAR to left adjust the result. Otherwise, the result is right adjusted.
Changing the ADLAR bit will affect the ADC Data Register immediately, regardless of any
ongoing conversions. For a complete description of this bit, see “ADCL and ADCH – The ADC
Data Register” on page 265.

• Bit 4 – Reserved
This bit is an unused bit in the Atmel® ATmega48PA/88PA/168PA, and will always read as
zero.

• Bits 3:0 – MUX[3:0]: Analog Channel Selection Bits
The value of these bits selects which analog inputs are connected to the ADC. See Table 24-4
for details. If these bits are changed during a conversion, the change will not go in effect until
this conversion is complete (ADIF in ADCSRA is set).

Bit 7 6 5 4 3 2 1 0

(0x7C) REFS1 REFS0 ADLAR – MUX3 MUX2 MUX1 MUX0 ADMUX
Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 24-3. Voltage Reference Selections for ADC

REFS1 REFS0 Voltage Reference Selection

0 0 AREF, Internal Vref turned off

0 1 AVCC with external capacitor(1) at AREF pin

1 0 Reserved

1 1 Internal 1.1V Voltage Reference with external capacitor(1) at AREF pin

Note: 1. Note the value used for the external ARef capacitor (e.g. 10nF) should be very much 
smaller than the decoupling capacitor used on the AVcc pin (e.g. 100nF) to prevent possi-
ble switching glitches.
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24.9.2 ADCSRA – ADC Control and Status Register A

• Bit 7 – ADEN: ADC Enable
Writing this bit to one enables the ADC. By writing it to zero, the ADC is turned off. Turning the
ADC off while a conversion is in progress, will terminate this conversion.

• Bit 6 – ADSC: ADC Start Conversion
In Single Conversion mode, write this bit to one to start each conversion. In Free Running
mode, write this bit to one to start the first conversion. The first conversion after ADSC has
been written after the ADC has been enabled, or if ADSC is written at the same time as the
ADC is enabled, will take 25 ADC clock cycles instead of the normal 13. This first conversion
performs initialization of the ADC.

ADSC will read as one as long as a conversion is in progress. When the conversion is com-
plete, it returns to zero. Writing zero to this bit has no effect.

Table 24-4. Input Channel Selections

MUX3...0 Single Ended Input

0000 ADC0

0001 ADC1

0010 ADC2

0011 ADC3

0100 ADC4

0101 ADC5

0110 ADC6

0111 ADC7

1000 ADC8(1)

1001 (reserved)

1010 (reserved)

1011 (reserved)

1100 (reserved)

1101 (reserved)

1110 1.1V (VBG)

1111 0V (GND)

Note: 1. For Temperature Sensor.

Bit 7 6 5 4 3 2 1 0

(0x7A) ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 ADCSRA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 5 – ADATE: ADC Auto Trigger Enable
When this bit is written to one, Auto Triggering of the ADC is enabled. The ADC will start a
conversion on a positive edge of the selected trigger signal. The trigger source is selected by
setting the ADC Trigger Select bits, ADTS in ADCSRB.

• Bit 4 – ADIF: ADC Interrupt Flag
This bit is set when an ADC conversion completes and the Data Registers are updated. The
ADC Conversion Complete Interrupt is executed if the ADIE bit and the I-bit in SREG are set.
ADIF is cleared by hardware when executing the corresponding interrupt handling vector.
Alternatively, ADIF is cleared by writing a logical one to the flag. Beware that if doing a
Read-Modify-Write on ADCSRA, a pending interrupt can be disabled. This also applies if the
SBI and CBI instructions are used.

• Bit 3 – ADIE: ADC Interrupt Enable
When this bit is written to one and the I-bit in SREG is set, the ADC Conversion Complete
Interrupt is activated.

• Bits 2:0 – ADPS[2:0]: ADC Prescaler Select Bits
These bits determine the division factor between the system clock frequency and the input
clock to the ADC.

Table 24-5. ADC Prescaler Selections 

ADPS2 ADPS1 ADPS0 Division Factor

0 0 0 2

0 0 1 2

0 1 0 4

0 1 1 8

1 0 0 16

1 0 1 32

1 1 0 64

1 1 1 128



265
9223D–AVR–05/12

Atmel ATmega48PA/88PA/168PA

24.9.3 ADCL and ADCH – The ADC Data Register

24.9.3.1 ADLAR = 0

24.9.3.2 ADLAR = 1

When an ADC conversion is complete, the result is found in these two registers.

When ADCL is read, the ADC Data Register is not updated until ADCH is read. Consequently,
if the result is left adjusted and no more than 8-bit precision is required, it is sufficient to read
ADCH. Otherwise, ADCL must be read first, then ADCH.

The ADLAR bit in ADMUX, and the MUXn bits in ADMUX affect the way the result is read from
the registers. If ADLAR is set, the result is left adjusted. If ADLAR is cleared (default), the
result is right adjusted. 

• ADC9:0: ADC Conversion Result
These bits represent the result from the conversion, as detailed in “ADC Conversion Result”
on page 260.

24.9.4 ADCSRB – ADC Control and Status Register B

• Bit 7, 5:3 – Reserved
These bits are reserved for future use. To ensure compatibility with future devices, these bits
must be written to zero when ADCSRB is written.

Bit 15 14 13 12 11 10 9 8

(0x79) – – – – – – ADC9 ADC8 ADCH

(0x78) ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 15 14 13 12 11 10 9 8

(0x79) ADC9 ADC8 ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADCH

(0x78) ADC1 ADC0 – – – – – – ADCL

7 6 5 4 3 2 1 0

Read/Write R R R R R R R R

R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

(0x7B) – ACME – – – ADTS2 ADTS1 ADTS0 ADCSRB

Read/Write R R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 2:0 – ADTS[2:0]: ADC Auto Trigger Source
If ADATE in ADCSRA is written to one, the value of these bits selects which source will trigger
an ADC conversion. If ADATE is cleared, the ADTS[2:0] settings will have no effect. A conver-
sion will be triggered by the rising edge of the selected Interrupt Flag. Note that switching from
a trigger source that is cleared to a trigger source that is set, will generate a positive edge on
the trigger signal. If ADEN in ADCSRA is set, this will start a conversion. Switching to Free
Running mode (ADTS[2:0]=0) will not cause a trigger event, even if the ADC Interrupt Flag is
set.

24.9.5 DIDR0 – Digital Input Disable Register 0

• Bits 7:6 – Reserved
These bits are reserved for future use. To ensure compatibility with future devices, these bits
must be written to zero when DIDR0 is written.

• Bit 5:0 – ADC5D...ADC0D: ADC5...0 Digital Input Disable
When this bit is written logic one, the digital input buffer on the corresponding ADC pin is dis-
abled. The corresponding PIN Register bit will always read as zero when this bit is set. When
an analog signal is applied to the ADC5...0 pin and the digital input from this pin is not needed,
this bit should be written logic one to reduce power consumption in the digital input buffer. 

Note that ADC pins ADC7 and ADC6 do not have digital input buffers, and therefore do not
require Digital Input Disable bits.

Table 24-6. ADC Auto Trigger Source Selections

ADTS2 ADTS1 ADTS0 Trigger Source

0 0 0 Free Running mode

0 0 1 Analog Comparator

0 1 0 External Interrupt Request 0

0 1 1 Timer/Counter0 Compare Match A

1 0 0 Timer/Counter0 Overflow

1 0 1 Timer/Counter1 Compare Match B

1 1 0 Timer/Counter1 Overflow

1 1 1 Timer/Counter1 Capture Event

Bit 7 6 5 4 3 2 1 0

(0x7E) – – ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D DIDR0

Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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25. debugWIRE On-chip Debug System

25.1 Features
• Complete Program Flow Control
• Emulates All On-chip Functions, Both Digital and Analog, except RESET Pin
• Real-time Operation
• Symbolic Debugging Support (Both at C and Assembler Source Level, or for Other HLLs)
• Unlimited Number of Program Break Points (Using Software Break Points)
• Non-intrusive Operation
• Electrical Characteristics Identical to Real Device
• Automatic Configuration System
• High-Speed Operation
• Programming of Non-volatile Memories

25.2 Overview
The debugWIRE On-chip debug system uses a One-wire, bi-directional interface to control the
program flow, execute AVR instructions in the CPU and to program the different non-volatile
memories. 

25.3 Physical Interface
When the debugWIRE Enable (DWEN) Fuse is programmed and Lock bits are unpro-
grammed, the debugWIRE system within the target device is activated. The RESET port pin is
configured as a wire-AND (open-drain) bi-directional I/O pin with pull-up enabled and becomes
the communication gateway between target and emulator. 

Figure 25-1. The debugWIRE Setup 

Figure 25-1 shows the schematic of a target MCU, with debugWIRE enabled, and the emula-
tor connector. The system clock is not affected by debugWIRE and will always be the clock
source selected by the CKSEL Fuses. 

dW

GND

dW(RESET)

VCC

2.7 - 5.5V
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When designing a system where debugWIRE will be used, the following observations must be
made for correct operation:

• Pull-up resistors on the dW/(RESET) line must not be smaller than 10kΩ. The pull-up resistor 
is not required for debugWIRE functionality.

• Connecting the RESET pin directly to VCC will not work.

• Capacitors connected to the RESET pin must be disconnected when using debugWire.

• All external reset sources must be disconnected.

25.4 Software Break Points
debugWIRE supports Program memory Break Points by the AVR Break instruction. Setting a
Break Point in AVR Studio® will insert a BREAK instruction in the Program memory. The
instruction replaced by the BREAK instruction will be stored. When program execution is con-
tinued, the stored instruction will be executed before continuing from the Program memory. A
break can be inserted manually by putting the BREAK instruction in the program.

The Flash must be re-programmed each time a Break Point is changed. This is automatically
handled by AVR Studio through the debugWIRE interface. The use of Break Points will there-
fore reduce the Flash Data retention. Devices used for debugging purposes should not be
shipped to end customers.

25.5 Limitations of debugWIRE
The debugWIRE communication pin (dW) is physically located on the same pin as External
Reset (RESET). An External Reset source is therefore not supported when the debugWIRE is
enabled.

A programmed DWEN Fuse enables some parts of the clock system to be running in all sleep
modes. This will increase the power consumption while in sleep. Thus, the DWEN Fuse
should be disabled when debugWire is not used.

25.6 Register Description
The following section describes the registers used with the debugWire.

25.6.1 DWDR – debugWire Data Register

The DWDR Register provides a communication channel from the running program in the MCU
to the debugger. This register is only accessible by the debugWIRE and can therefore not be
used as a general purpose register in the normal operations.

Bit 7 6 5 4 3 2 1 0

DWDR[7:0] DWDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0



269
9223D–AVR–05/12

Atmel ATmega48PA/88PA/168PA

26. Self-Programming the Flash, Atmel ATmega48PA

26.1 Overview
In Atmel® ATmega48PA there is no Read-While-Write support, and no separate Boot Loader
Section. The SPM instruction can be executed from the entire Flash.

The device provides a Self-Programming mechanism for downloading and uploading program
code by the MCU itself. The Self-Programming can use any available data interface and asso-
ciated protocol to read code and write (program) that code into the Program memory.

The Program memory is updated in a page by page fashion. Before programming a page with
the data stored in the temporary page buffer, the page must be erased. The temporary page
buffer is filled one word at a time using SPM and the buffer can be filled either before the Page
Erase command or between a Page Erase and a Page Write operation:

Alternative 1, fill the buffer before a Page Erase

• Fill temporary page buffer

• Perform a Page Erase

• Perform a Page Write

Alternative 2, fill the buffer after Page Erase

• Perform a Page Erase

• Fill temporary page buffer

• Perform a Page Write

If only a part of the page needs to be changed, the rest of the page must be stored (for exam-
ple in the temporary page buffer) before the erase, and then be re-written. When using
alternative 1, the Boot Loader provides an effective Read-Modify-Write feature which allows
the user software to first read the page, do the necessary changes, and then write back the
modified data. If alternative 2 is used, it is not possible to read the old data while loading since
the page is already erased. The temporary page buffer can be accessed in a random
sequence. It is essential that the page address used in both the Page Erase and Page Write
operation is addressing the same page.

26.1.1 Performing Page Erase by SPM
To execute Page Erase, set up the address in the Z-pointer, write “00000011” to SPMCSR
and execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is
ignored. The page address must be written to PCPAGE in the Z-register. Other bits in the
Z-pointer will be ignored during this operation.

• The CPU is halted during the Page Erase operation.

Note: If an interrupt occurs in the time sequence the four cycle access cannot be guaranteed. In order 
to ensure atomic operation you should disable interrupts before writing to SPMCSR. 
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26.1.2 Filling the Temporary Buffer (Page Loading)
To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write
“00000001” to SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The
content of PCWORD in the Z-register is used to address the data in the temporary buffer. The
temporary buffer will auto-erase after a Page Write operation or by writing the RWWSRE bit in
SPMCSR. It is also erased after a system reset. Note that it is not possible to write more than
one time to each address without erasing the temporary buffer.

If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded will be
lost.

26.1.3 Performing a Page Write
To execute Page Write, set up the address in the Z-pointer, write “00000101” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is
ignored. The page address must be written to PCPAGE. Other bits in the Z-pointer must be
written to zero during this operation.

• The CPU is halted during the Page Write operation.

26.2 Addressing the Flash During Self-Programming
The Z-pointer is used to address the SPM commands.

Since the Flash is organized in pages (see Table 28-9 on page 298), the Program Counter can
be treated as having two different sections. One section, consisting of the least significant bits,
is addressing the words within a page, while the most significant bits are addressing the
pages. This is shown in Figure 27-3 on page 283. Note that the Page Erase and Page Write
operations are addressed independently. Therefore it is of major importance that the software
addresses the same page in both the Page Erase and Page Write operation. 

The LPM instruction uses the Z-pointer to store the address. Since this instruction addresses
the Flash byte-by-byte, also the LSB (bit Z0) of the Z-pointer is used.

Bit 15 14 13 12 11 10 9 8

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8

ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0
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Figure 26-1. Addressing the Flash During SPM(1) 

Note: 1. The different variables used in Figure 27-3 are listed in Table 28-9 on page 298. 

26.2.1 EEPROM Write Prevents Writing to SPMCSR
Note that an EEPROM write operation will block all software programming to Flash. Reading
the Fuses and Lock bits from software will also be prevented during the EEPROM write opera-
tion. It is recommended that the user checks the status bit (EEPE) in the EECR Register and
verifies that the bit is cleared before writing to the SPMCSR Register.

26.2.2 Reading the Fuse and Lock Bits from Software
It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the
Z-pointer with 0x0001 and set the BLBSET and SELFPRGEN bits in SPMCSR. When an LPM
instruction is executed within three CPU cycles after the BLBSET and SELFPRGEN bits are
set in SPMCSR, the value of the Lock bits will be loaded in the destination register. The BLB-
SET and SELFPRGEN bits will auto-clear upon completion of reading the Lock bits or if no
LPM instruction is executed within three CPU cycles or no SPM instruction is executed within
four CPU cycles. When BLBSET and SELFPRGEN are cleared, LPM will work as described in
the Instruction set Manual. 
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The algorithm for reading the Fuse Low byte is similar to the one described above for reading
the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and set the BLBSET
and SELFPRGEN bits in SPMCSR. When an LPM instruction is executed within three cycles
after the BLBSET and SELFPRGEN bits are set in the SPMCSR, the value of the Fuse Low
byte (FLB) will be loaded in the destination register as shown below.See Table 28-5 on page
296 for a detailed description and mapping of the Fuse Low byte.

Similarly, when reading the Fuse High byte (FHB), load 0x0003 in the Z-pointer. When an
LPM instruction is executed within three cycles after the BLBSET and SELFPRGEN bits are
set in the SPMCSR, the value of the Fuse High byte will be loaded in the destination register
as shown below. See Table 28-5 on page 296 for detailed description and mapping of the
Extended Fuse byte.

Similarly, when reading the Extended Fuse byte (EFB), load 0x0002 in the Z-pointer. When an
LPM instruction is executed within three cycles after the BLBSET and SELFPRGEN bits are
set in the SPMCSR, the value of the Extended Fuse byte will be loaded in the destination reg-
ister as shown below. See Table 28-5 on page 296 for detailed description and mapping of the
Extended Fuse byte.

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are
unprogrammed, will be read as one.

26.2.3 Preventing Flash Corruption
During periods of low VCC, the Flash program can be corrupted because the supply voltage is
too low for the CPU and the Flash to operate properly. These issues are the same as for board
level systems using the Flash, and the same design solutions should be applied. 

A Flash program corruption can be caused by two situations when the voltage is too low. First,
a regular write sequence to the Flash requires a minimum voltage to operate correctly. Sec-
ondly, the CPU itself can execute instructions incorrectly, if the supply voltage for executing
instructions is too low.

Flash corruption can easily be avoided by following these design recommendations (one is
sufficient):

1. Keep the AVR RESET active (low) during periods of insufficient power supply voltage. 
This can be done by enabling the internal Brown-out Detector (BOD) if the operating 
voltage matches the detection level. If not, an external low VCC reset protection circuit 
can be used. If a reset occurs while a write operation is in progress, the write opera-
tion will be completed provided that the power supply voltage is sufficient.

2. Keep the AVR core in Power-down sleep mode during periods of low VCC. This will 
prevent the CPU from attempting to decode and execute instructions, effectively pro-
tecting the SPMCSR Register and thus the Flash from unintentional writes.

Bit 7 6 5 4 3 2 1 0

Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0
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26.2.4 Programming Time for Flash when Using SPM
The calibrated RC Oscillator is used to time Flash accesses. Table 27-6 shows the typical pro-
gramming time for Flash accesses from the CPU.

26.2.5 Simple Assembly Code Example for a Boot Loader
Note that the RWWSB bit will always be read as zero in Atmel® ATmega48PA. Nevertheless,
it is recommended to check this bit as shown in the code example, to ensure compatibility with
devices supporting Read-While-Write.

;-the routine writes one page of data from RAM to Flash
; the first data location in RAM is pointed to by the Y pointer
; the first data location in Flash is pointed to by the Z-pointer
;-error handling is not included
;-the routine must be placed inside the Boot space
; (at least the Do_spm sub routine). Only code inside NRWW section can
; be read during Self-Programming (Page Erase and Page Write).
;-registers used: r0, r1, temp1 (r16), temp2 (r17), looplo (r24), 
; loophi (r25), spmcrval (r20)
; storing and restoring of registers is not included in the routine
; register usage can be optimized at the expense of code size
;-It is assumed that either the interrupt table is moved to the Boot
; loader section or that the interrupts are disabled.

.equ PAGESIZEB = PAGESIZE*2 ;PAGESIZEB is page size in BYTES, not words

.org SMALLBOOTSTART
Write_page:
; Page Erase
ldi spmcrval, (1<<PGERS) | (1<<SELFPRGEN)
rcallDo_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
rcallDo_spm

; transfer data from RAM to Flash page buffer
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256

Wrloop:
ld r0, Y+
ld r1, Y+
ldi spmcrval, (1<<SELFPRGEN)
rcallDo_spm
adiw ZH:ZL, 2
sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256
brne Wrloop

; execute Page Write

Table 26-1. SPM Programming Time(1)

Symbol Min. Programming Time Max Programming Time

Flash write (Page Erase, Page Write, and 
write Lock bits by SPM)

3.7ms 4.5ms

Note: 1. Minimum and maximum programming time is per individual operation.
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subi ZL, low(PAGESIZEB) ;restore pointer
sbci ZH, high(PAGESIZEB) ;not required for PAGESIZEB<=256
ldi spmcrval, (1<<PGWRT) | (1<<SELFPRGEN)
rcallDo_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
rcallDo_spm

; read back and check, optional
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256
subi YL, low(PAGESIZEB) ;restore pointer
sbci YH, high(PAGESIZEB)

Rdloop:
lpm r0, Z+
ld r1, Y+
cpse r0, r1
rjmp Error
sbiw loophi:looplo, 1 ;use subi for PAGESIZEB<=256
brne Rdloop

; return to RWW section
; verify that RWW section is safe to read

Return:
in temp1, SPMCSR
sbrs temp1, RWWSB ; If RWWSB is set, the RWW section is not ready yet
ret
; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
rcallDo_spm
rjmp Return

Do_spm:
; check for previous SPM complete

Wait_spm:
in temp1, SPMCSR
sbrc temp1, SELFPRGEN
rjmp Wait_spm
; input: spmcrval determines SPM action
; disable interrupts if enabled, store status
in temp2, SREG
cli
; check that no EEPROM write access is present

Wait_ee:
sbic EECR, EEPE
rjmp Wait_ee
; SPM timed sequence
out SPMCSR, spmcrval
spm
; restore SREG (to enable interrupts if originally enabled)
out SREG, temp2
ret
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26.3 Register Description

26.3.1 SPMCSR – Store Program Memory Control and Status Register
The Store Program Memory Control and Status Register contains the control bits needed to
control the Program memory operations.

• Bit 7 – SPMIE: SPM Interrupt Enable
When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the SPM
ready interrupt will be enabled. The SPM ready Interrupt will be executed as long as the SELF-
PRGEN bit in the SPMCSR Register is cleared. The interrupt will not be generated during
EEPROM write or SPM.

• Bit 6 – RWWSB: Read-While-Write Section Busy
This bit is for compatibility with devices supporting Read-While-Write. It will always read as
zero in Atmel® ATmega48PA.

• Bit 5 – SIGRD: Signature Row Read
If this bit is written to one at the same time as SELFPRGEN, the next LPM instruction within 
three
clock cycles will read a byte from the signature row into the destination register. see “Reading 
the Signature Row from Software” on page 286 for details. An SPM instruction within four 
cycles
after SIGRD and SELFPRGEN are set will have no effect. This operation is reserved for future 
use
and should not be used.

• Bit 4 – RWWSRE: Read-While-Write Section Read Enable
The functionality of this bit in Atmel ATmega48PA is a subset of the functionality in the Atmel® 
ATmega48PA/88PA/168PA. If the RWWSRE bit is written while filling the temporary page buf-
fer, the temporary page buffer will be cleared and the data will be lost.

• Bit 3 – BLBSET: Boot Lock Bit Set
The functionality of this bit in Atmel ATmega48PA is a subset of the functionality in the Atmel
ATmega48PA/88PA/168PA. An LPM instruction within three cycles after BLBSET and SELF-
PRGEN are set in the SPMCSR Register, will read either the Lock bits or the Fuse bits
(depending on Z0 in the Z-pointer) into the destination register. See “Reading the Fuse and
Lock Bits from Software” on page 271 for details.

• Bit 2 – PGWRT: Page Write
If this bit is written to one at the same time as SELFPRGEN, the next SPM instruction within
four clock cycles executes Page Write, with the data stored in the temporary buffer. The page
address is taken from the high part of the Z-pointer. The data in R1 and R0 are ignored. The
PGWRT bit will auto-clear upon completion of a Page Write, or if no SPM instruction is exe-
cuted within four clock cycles. The CPU is halted during the entire Page Write operation.

Bit 7 6 5 4 3 2 1 0

0x37 (0x57) SPMIE RWWSB SIGRD RWWSRE BLBSET PGWRT PGERS SELFPRGEN SPMCSR

Read/Write R/W R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 1 – PGERS: Page Erase
If this bit is written to one at the same time as SELFPRGEN, the next SPM instruction within
four clock cycles executes Page Erase. The page address is taken from the high part of the
Z-pointer. The data in R1 and R0 are ignored. The PGERS bit will auto-clear upon completion
of a Page Erase, or if no SPM instruction is executed within four clock cycles. The CPU is
halted during the entire Page Write operation.

• Bit 0 – SELFPRGEN: Self Programming Enable
This bit enables the SPM instruction for the next four clock cycles. If written to one together
with either RWWSRE, BLBSET, PGWRT, or PGERS, the following SPM instruction will have a
special meaning, see description above. If only SELFPRGEN is written, the following SPM
instruction will store the value in R1:R0 in the temporary page buffer addressed by the
Z-pointer. The LSB of the Z-pointer is ignored. The SELFPRGEN bit will auto-clear upon com-
pletion of an SPM instruction, or if no SPM instruction is executed within four clock cycles.
During Page Erase and Page Write, the SELFPRGEN bit remains high until the operation is
completed. 

Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the lower
five bits will have no effect.
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27. Boot Loader Support – Read-While-Write Self-Programming
The Boot Loader Support applies to Atmel® ATmega48PA/88PA/168PA

27.1 Features
• Read-While-Write Self-Programming
• Flexible Boot Memory Size
• High Security (Separate Boot Lock Bits for a Flexible Protection)
• Separate Fuse to Select Reset Vector
• Optimized Page(1) Size
• Code Efficient Algorithm
• Efficient Read-Modify-Write Support

Note: 1. A page is a section in the Flash consisting of several bytes (see Table 28-9 on page 298) 
used during programming. The page organization does not affect normal operation.

27.2 Overview
In the Atmel ATmega48PA/88PA/168PA the Boot Loader Support provides a real
Read-While-Write Self-Programming mechanism for downloading and uploading program
code by the MCU itself. This feature allows flexible application software updates controlled by
the MCU using a Flash-resident Boot Loader program. The Boot Loader program can use any
available data interface and associated protocol to read code and write (program) that code
into the Flash memory, or read the code from the program memory. The program code within
the Boot Loader section has the capability to write into the entire Flash, including the Boot
Loader memory. The Boot Loader can thus even modify itself, and it can also erase itself from
the code if the feature is not needed anymore. The size of the Boot Loader memory is configu-
rable with fuses and the Boot Loader has two separate sets of Boot Lock bits which can be set
independently. This gives the user a unique flexibility to select different levels of protection. 

27.3 Application and Boot Loader Flash Sections
The Flash memory is organized in two main sections, the Application section and the Boot
Loader section (see Figure 27-2). The size of the different sections is configured by the
BOOTSZ Fuses as shown in Table 27-7 on page 290 and Figure 27-2. These two sections
can have different level of protection since they have different sets of Lock bits.

27.3.1 Application Section
The Application section is the section of the Flash that is used for storing the application code.
The protection level for the Application section can be selected by the application Boot Lock
bits (Boot Lock bits 0), see Table 27-2 on page 281. The Application section can never store
any Boot Loader code since the SPM instruction is disabled when executed from the Applica-
tion section.

27.3.2 BLS – Boot Loader Section
While the Application section is used for storing the application code, the The Boot Loader
software must be located in the BLS since the SPM instruction can initiate a programming
when executing from the BLS only. The SPM instruction can access the entire Flash, including
the BLS itself. The protection level for the Boot Loader section can be selected by the Boot
Loader Lock bits (Boot Lock bits 1), see Table 27-3 on page 281.
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27.4 Read-While-Write and No Read-While-Write Flash Sections
Whether the CPU supports Read-While-Write or if the CPU is halted during a Boot Loader
software update is dependent on which address that is being programmed. In addition to the
two sections that are configurable by the BOOTSZ Fuses as described above, the Flash is
also divided into two fixed sections, the Read-While-Write (RWW) section and the No
Read-While-Write (NRWW) section. The limit between the RWW- and NRWW sections is
given in Table 27-8 on page 290 and Figure 27-2 on page 280. The main difference between
the two sections is:

• When erasing or writing a page located inside the RWW section, the NRWW section can be 
read during the operation.

• When erasing or writing a page located inside the NRWW section, the CPU is halted during 
the entire operation.

Note that the user software can never read any code that is located inside the RWW section
during a Boot Loader software operation. The syntax “Read-While-Write section” refers to
which section that is being programmed (erased or written), not which section that actually is
being read during a Boot Loader software update.

27.4.1 RWW – Read-While-Write Section
If a Boot Loader software update is programming a page inside the RWW section, it is possi-
ble to read code from the Flash, but only code that is located in the NRWW section. During an
on-going programming, the software must ensure that the RWW section never is being read. If
the user software is trying to read code that is located inside the RWW section (i.e., by a
call/jmp/lpm or an interrupt) during programming, the software might end up in an unknown
state. To avoid this, the interrupts should either be disabled or moved to the Boot Loader sec-
tion. The Boot Loader section is always located in the NRWW section. The RWW Section
Busy bit (RWWSB) in the Store Program Memory Control and Status Register (SPMCSR) will
be read as logical one as long as the RWW section is blocked for reading. After a program-
ming is completed, the RWWSB must be cleared by software before reading code located in
the RWW section. See “SPMCSR – Store Program Memory Control and Status Register” on
page 292. for details on how to clear RWWSB.

27.4.2 NRWW – No Read-While-Write Section
The code located in the NRWW section can be read when the Boot Loader software is updat-
ing a page in the RWW section. When the Boot Loader code updates the NRWW section, the
CPU is halted during the entire Page Erase or Page Write operation. 

Table 27-1. Read-While-Write Features

Which Section does the 
Z-pointer Address during 

the Programming?
Which Section can be read 

during Programming? CPU Halted?
Read-While-Write 

Supported?

RWW Section NRWW Section No Yes

NRWW Section None Yes No
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Figure 27-1. Read-While-Write versus No Read-While-Write 
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Figure 27-2. Memory Sections 

Note: 1. The parameters in the figure above are given in Table 27-7 on page 290.
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27.5 Boot Loader Lock Bits
If no Boot Loader capability is needed, the entire Flash is available for application code. The
Boot Loader has two separate sets of Boot Lock bits which can be set independently. This
gives the user a unique flexibility to select different levels of protection. 

The user can select:

• To protect the entire Flash from a software update by the MCU.

• To protect only the Boot Loader Flash section from a software update by the MCU.

• To protect only the Application Flash section from a software update by the MCU.

• Allow software update in the entire Flash.

See Table 27-2 and Table 27-3 for further details. The Boot Lock bits can be set in software
and in Serial or Parallel Programming mode, but they can be cleared by a Chip Erase com-
mand only. The general Write Lock (Lock Bit mode 2) does not control the programming of the
Flash memory by SPM instruction. Similarly, the general Read/Write Lock (Lock Bit mode 1)
does not control reading nor writing by LPM/SPM, if it is attempted. 

Table 27-2. Boot Lock Bit0 Protection Modes (Application Section)(1)

BLB0 Mode BLB02 BLB01 Protection

1 1 1
No restrictions for SPM or LPM accessing the Application 
section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and LPM 
executing from the Boot Loader section is not allowed to read 
from the Application section. If Interrupt Vectors are placed in the 
Boot Loader section, interrupts are disabled while executing from 
the Application section.

4 0 1

LPM executing from the Boot Loader section is not allowed to 
read from the Application section. If Interrupt Vectors are placed 
in the Boot Loader section, interrupts are disabled while 
executing from the Application section.

Note: 1. “1” means unprogrammed, “0” means programmed

Table 27-3. Boot Lock Bit1 Protection Modes (Boot Loader Section)(1)

BLB1 Mode BLB12 BLB11 Protection

1 1 1
No restrictions for SPM or LPM accessing the Boot Loader 
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0

SPM is not allowed to write to the Boot Loader section, and LPM 
executing from the Application section is not allowed to read from 
the Boot Loader section. If Interrupt Vectors are placed in the 
Application section, interrupts are disabled while executing from 
the Boot Loader section.

4 0 1

LPM executing from the Application section is not allowed to read 
from the Boot Loader section. If Interrupt Vectors are placed in 
the Application section, interrupts are disabled while executing 
from the Boot Loader section.

Note: 1. “1” means unprogrammed, “0” means programmed
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27.6 Entering the Boot Loader Program
Entering the Boot Loader takes place by a jump or call from the application program. This may
be initiated by a trigger such as a command received via USART, or SPI interface. Alterna-
tively, the Boot Reset Fuse can be programmed so that the Reset Vector is pointing to the
Boot Flash start address after a reset. In this case, the Boot Loader is started after a reset.
After the application code is loaded, the program can start executing the application code.
Note that the fuses cannot be changed by the MCU itself. This means that once the Boot
Reset Fuse is programmed, the Reset Vector will always point to the Boot Loader Reset and
the fuse can only be changed through the serial or parallel programming interface.

27.7 Addressing the Flash During Self-Programming
The Z-pointer is used to address the SPM commands.

Since the Flash is organized in pages (see Table 28-9 on page 298), the Program Counter can
be treated as having two different sections. One section, consisting of the least significant bits,
is addressing the words within a page, while the most significant bits are addressing the
pages. This is1 shown in Figure 27-3. Note that the Page Erase and Page Write operations
are addressed independently. Therefore it is of major importance that the Boot Loader soft-
ware addresses the same page in both the Page Erase and Page Write operation. Once a
programming operation is initiated, the address is latched and the Z-pointer can be used for
other operations. 

The only SPM operation that does not use the Z-pointer is Setting the Boot Loader Lock bits.
The content of the Z-pointer is ignored and will have no effect on the operation. The LPM
instruction does also use the Z-pointer to store the address. Since this instruction addresses
the Flash byte-by-byte, also the LSB (bit Z0) of the Z-pointer is used.

Table 27-4. Boot Reset Fuse(1)

BOOTRST Reset Address

1 Reset Vector = Application Reset (address 0x0000)

0 Reset Vector = Boot Loader Reset (see Table 27-7 on page 290)

Note: 1. “1” means unprogrammed, “0” means programmed

Bit 15 14 13 12 11 10 9 8

ZH (R31) Z15 Z14 Z13 Z12 Z11 Z10 Z9 Z8

ZL (R30) Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

7 6 5 4 3 2 1 0
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Figure 27-3. Addressing the Flash During SPM(1) 

Note: 1. The different variables used in Figure 27-3 are listed in Table 27-9 on page 290. 
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It is essential that the page address used in both the Page Erase and Page Write operation is
addressing the same page. See “Simple Assembly Code Example for a Boot Loader” on page
288 for an assembly code example.

27.8.1 Performing Page Erase by SPM
To execute Page Erase, set up the address in the Z-pointer, write “X0000011” to SPMCSR
and execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is
ignored. The page address must be written to PCPAGE in the Z-register. Other bits in the
Z-pointer will be ignored during this operation.

• Page Erase to the RWW section: The NRWW section can be read during the Page Erase.

• Page Erase to the NRWW section: The CPU is halted during the operation.

27.8.2 Filling the Temporary Buffer (Page Loading)
To write an instruction word, set up the address in the Z-pointer and data in R1:R0, write
“00000001” to SPMCSR and execute SPM within four clock cycles after writing SPMCSR. The
content of PCWORD in the Z-register is used to address the data in the temporary buffer. The
temporary buffer will auto-erase after a Page Write operation or by writing the RWWSRE bit in
SPMCSR. It is also erased after a system reset. Note that it is not possible to write more than
one time to each address without erasing the temporary buffer.

If the EEPROM is written in the middle of an SPM Page Load operation, all data loaded will be
lost.

27.8.3 Performing a Page Write
To execute Page Write, set up the address in the Z-pointer, write “X0000101” to SPMCSR and
execute SPM within four clock cycles after writing SPMCSR. The data in R1 and R0 is
ignored. The page address must be written to PCPAGE. Other bits in the Z-pointer must be
written to zero during this operation.

• Page Write to the RWW section: The NRWW section can be read during the Page Write.

• Page Write to the NRWW section: The CPU is halted during the operation.

27.8.4 Using the SPM Interrupt
If the SPM interrupt is enabled, the SPM interrupt will generate a constant interrupt when the
SELFPRGEN bit in SPMCSR is cleared. This means that the interrupt can be used instead of
polling the SPMCSR Register in software. When using the SPM interrupt, the Interrupt Vectors
should be moved to the BLS section to avoid that an interrupt is accessing the RWW section
when it is blocked for reading. How to move the interrupts is described in “Interrupts” on page
58.

27.8.5 Consideration While Updating BLS
Special care must be taken if the user allows the Boot Loader section to be updated by leaving
Boot Lock bit11 unprogrammed. An accidental write to the Boot Loader itself can corrupt the
entire Boot Loader, and further software updates might be impossible. If it is not necessary to
change the Boot Loader software itself, it is recommended to program the Boot Lock bit11 to
protect the Boot Loader software from any internal software changes.
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27.8.6 Prevent Reading the RWW Section During Self-Programming
During Self-Programming (either Page Erase or Page Write), the RWW section is always
blocked for reading. The user software itself must prevent that this section is addressed during
the self programming operation. The RWWSB in the SPMCSR will be set as long as the RWW
section is busy. During Self-Programming the Interrupt Vector table should be moved to the
BLS as described in “Watchdog Timer” on page 51, or the interrupts must be disabled. Before
addressing the RWW section after the programming is completed, the user software must
clear the RWWSB by writing the RWWSRE. See “Simple Assembly Code Example for a Boot
Loader” on page 288 for an example.

27.8.7 Setting the Boot Loader Lock Bits by SPM
To set the Boot Loader Lock bits and general Lock Bits, write the desired data to R0, write
“X0001001” to SPMCSR and execute SPM within four clock cycles after writing SPMCSR.

See Table 27-2 and Table 27-3 for how the different settings of the Boot Loader bits affect the
Flash access.

If bits 5...0 in R0 are cleared (zero), the corresponding Lock bit will be programmed if an SPM
instruction is executed within four cycles after BLBSET and SELFPRGEN are set in SPMCSR.
The Z-pointer is don’t care during this operation, but for future compatibility it is recommended
to load the Z-pointer with 0x0001 (same as used for reading the lOck bits). For future compati-
bility it is also recommended to set bits 7 and 6 in R0 to “1” when writing the Lock bits. When
programming the Lock bits the entire Flash can be read during the operation.

27.8.8 EEPROM Write Prevents Writing to SPMCSR
Note that an EEPROM write operation will block all software programming to Flash. Reading
the Fuses and Lock bits from software will also be prevented during the EEPROM write opera-
tion. It is recommended that the user checks the status bit (EEPE) in the EECR Register and
verifies that the bit is cleared before writing to the SPMCSR Register.

27.8.9 Reading the Fuse and Lock Bits from Software
It is possible to read both the Fuse and Lock bits from software. To read the Lock bits, load the
Z-pointer with 0x0001 and set the BLBSET and SELFPRGEN bits in SPMCSR. When an LPM
instruction is executed within three CPU cycles after the BLBSET and SELFPRGEN bits are
set in SPMCSR, the value of the Lock bits will be loaded in the destination register. The BLB-
SET and SELFPRGEN bits will auto-clear upon completion of reading the Lock bits or if no
LPM instruction is executed within three CPU cycles or no SPM instruction is executed within
four CPU cycles. When BLBSET and SELFPRGEN are cleared, LPM will work as described in
the Instruction set Manual.

Bit 7 6 5 4 3 2 1 0

R0 1 1 BLB12 BLB11 BLB02 BLB01 LB2 LB1

Bit 7 6 5 4 3 2 1 0

Rd – – BLB12 BLB11 BLB02 BLB01 LB2 LB1
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The algorithm for reading the Fuse Low byte is similar to the one described above for reading
the Lock bits. To read the Fuse Low byte, load the Z-pointer with 0x0000 and set the BLBSET
and SELFPRGEN bits in SPMCSR. When an LPM instruction is executed within three cycles
after the BLBSET and SELFPRGEN bits are set in the SPMCSR, the value of the Fuse Low
byte (FLB) will be loaded in the destination register as shown below. Refer to Table 28-5 on
page 296 for a detailed description and mapping of the Fuse Low byte.

Similarly, when reading the Fuse High byte, load 0x0003 in the Z-pointer. When an LPM
instruction is executed within three cycles after the BLBSET and SELFPRGEN bits are set in
the SPMCSR, the value of the Fuse High byte (FHB) will be loaded in the destination register
as shown below. Refer to Table 28-6 on page 296 for detailed description and mapping of the
Fuse High byte.

When reading the Extended Fuse byte, load 0x0002 in the Z-pointer. When an LPM instruction
is executed within three cycles after the BLBSET and SELFPRGEN bits are set in the
SPMCSR, the value of the Extended Fuse byte (EFB) will be loaded in the destination register
as shown below. Refer to Table 28-5 on page 296 for detailed description and mapping of the
Extended Fuse byte.

Fuse and Lock bits that are programmed, will be read as zero. Fuse and Lock bits that are
unprogrammed, will be read as one.

27.8.10 Reading the Signature Row from Software
To read the Signature Row from software, load the Z-pointer with the signature byte address
given in Table 27-5 and set the SIGRD and SELFPRGEN bits in SPMCSR. When an LPM
instruction is executed within three CPU cycles after the SIGRD and SELFPRGEN bits are set
in SPMCSR, the signature byte value will be loaded in the destination register. The SIGRD
and SELFPRGEN bits will auto-clear upon completion of reading the Signature Row Lock bits
or if no LPM instruction is executed within three CPU cycles. When SIGRD and SELFPRGEN
are cleared, LPM will work as described in the Instruction set Manual.

Bit 7 6 5 4 3 2 1 0

Rd FLB7 FLB6 FLB5 FLB4 FLB3 FLB2 FLB1 FLB0

Bit 7 6 5 4 3 2 1 0

Rd FHB7 FHB6 FHB5 FHB4 FHB3 FHB2 FHB1 FHB0

Bit 7 6 5 4 3 2 1 0

Rd – – – – EFB3 EFB2 EFB1 EFB0

Table 27-5. Signature Row Addressing

Signature Byte Z-Pointer Address

Device Signature Byte 1 0x0000

Device Signature Byte 2 0x0002

Device Signature Byte 3 0x0004

RC Oscillator Calibration Byte 3V 0x0001

TS_ADC_25_L - Temp Sensor value at 25°C - Low byte 0x0005

TS_ADC_25_H - Temp Sensor value at 25°C - High 
byte

0x0007

RC Oscillator Calibration Byte 5V 0x0009

Note: All other addresses are reserved for future use
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27.8.11 Preventing Flash Corruption
During periods of low VCC, the Flash program can be corrupted because the supply voltage is
too low for the CPU and the Flash to operate properly. These issues are the same as for board
level systems using the Flash, and the same design solutions should be applied. 

A Flash program corruption can be caused by two situations when the voltage is too low. First,
a regular write sequence to the Flash requires a minimum voltage to operate correctly. Sec-
ondly, the CPU itself can execute instructions incorrectly, if the supply voltage for executing
instructions is too low.

Flash corruption can easily be avoided by following these design recommendations (one is
sufficient):

1. If there is no need for a Boot Loader update in the system, program the Boot Loader 
Lock bits to prevent any Boot Loader software updates.

2. Keep the AVR RESET active (low) during periods of insufficient power supply voltage. 
This can be done by enabling the internal Brown-out Detector (BOD) if the operating 
voltage matches the detection level. If not, an external low VCC reset protection circuit 
can be used. If a reset occurs while a write operation is in progress, the write opera-
tion will be completed provided that the power supply voltage is sufficient.

3. Keep the AVR core in Power-down sleep mode during periods of low VCC. This will 
prevent the CPU from attempting to decode and execute instructions, effectively pro-
tecting the SPMCSR Register and thus the Flash from unintentional writes.

27.8.12 Programming Time for Flash when Using SPM
The calibrated RC Oscillator is used to time Flash accesses. Table 27-6 shows the typical pro-
gramming time for Flash accesses from the CPU.

Table 27-6. SPM Programming Time(27.8.13)

Symbol Min. Programming Time Max Programming Time

Flash write (Page Erase, Page Write, and 
write Lock bits by SPM)

3.7ms 4.5ms

Note: 1. Minimum and maximum programming time is per individual operation.
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27.8.13 Simple Assembly Code Example for a Boot Loader
;-the routine writes one page of data from RAM to Flash
; the first data location in RAM is pointed to by the Y pointer
; the first data location in Flash is pointed to by the Z-pointer
;-error handling is not included
;-the routine must be placed inside the Boot space
; (at least the Do_spm sub routine). Only code inside NRWW section can
; be read during Self-Programming (Page Erase and Page Write).
;-registers used: r0, r1, temp1 (r16), temp2 (r17), looplo (r24), 
; loophi (r25), spmcrval (r20)
; storing and restoring of registers is not included in the routine
; register usage can be optimized at the expense of code size
;-It is assumed that either the interrupt table is moved to the Boot
; loader section or that the interrupts are disabled.

.equ PAGESIZEB = PAGESIZE*2 ;PAGESIZEB is page size in BYTES, not words

.org SMALLBOOTSTART
Write_page:
; Page Erase
ldi spmcrval, (1<<PGERS) | (1<<SELFPRGEN)
call Do_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
call Do_spm

; transfer data from RAM to Flash page buffer
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256

Wrloop:
ld r0, Y+
ld r1, Y+
ldi spmcrval, (1<<SELFPRGEN)
call Do_spm
adiw ZH:ZL, 2
sbiw loophi:looplo, 2 ;use subi for PAGESIZEB<=256
brne Wrloop

; execute Page Write
subi ZL, low(PAGESIZEB) ;restore pointer
sbci ZH, high(PAGESIZEB) ;not required for PAGESIZEB<=256
ldi spmcrval, (1<<PGWRT) | (1<<SELFPRGEN)
call Do_spm

; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
call Do_spm

; read back and check, optional
ldi looplo, low(PAGESIZEB) ;init loop variable
ldi loophi, high(PAGESIZEB) ;not required for PAGESIZEB<=256
subi YL, low(PAGESIZEB) ;restore pointer
sbci YH, high(PAGESIZEB)

Rdloop:
lpm r0, Z+
ld r1, Y+
cpse r0, r1
jmp Error
sbiw loophi:looplo, 1 ;use subi for PAGESIZEB<=256
brne Rdloop
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; return to RWW section
; verify that RWW section is safe to read

Return:
in temp1, SPMCSR
sbrs temp1, RWWSB ; If RWWSB is set, the RWW section is not ready yet
ret
; re-enable the RWW section
ldi spmcrval, (1<<RWWSRE) | (1<<SELFPRGEN)
call Do_spm
rjmp Return

Do_spm:
; check for previous SPM complete

Wait_spm:
in temp1, SPMCSR
sbrc temp1, SELFPRGEN
rjmp Wait_spm
; input: spmcrval determines SPM action
; disable interrupts if enabled, store status
in temp2, SREG
cli
; check that no EEPROM write access is present

Wait_ee:
sbic EECR, EEPE
rjmp Wait_ee
; SPM timed sequence
out SPMCSR, spmcrval
spm
; restore SREG (to enable interrupts if originally enabled)
out SREG, temp2
ret
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27.8.14 Atmel ATmega88PA Boot Loader Parameters
In Table 27-7 through Table 27-9, the parameters used in the description of the self program-
ming are given. 

Note: The different BOOTSZ Fuse configurations are shown in Figure 27-2 on page 280.

For details about these two section, see “NRWW – No Read-While-Write Section” on page
278 and “RWW – Read-While-Write Section” on page 278.

Table 27-7. Boot Size Configuration, Atmel ATmega88PA

BOOTSZ1 BOOTSZ0
Boot 
Size Pages

Application
Flash 
Section

Boot 
Loader
Flash 
Section

End
Application
Section

Boot Reset Address (Start Boot Loader 
Section)

1 1 128 words 4 0x000 - 0xF7F 0xF80 - 0xFFF 0xF7F 0xF80 

1 0 256 words 8 0x000 - 0xEFF 0xF00 - 0xFFF 0xEFF 0xF00

0 1 512 words 16 0x000 - 0xDFF 0xE00 - 0xFFF 0xDFF 0xE00

0 0 1024 words 32 0x000 - 0xBFF 0xC00 - 0xFFF 0xBFF 0xC00

Table 27-8. Read-While-Write Limit, Atmel ATmega88PA

Section Pages Address

Read-While-Write section (RWW) 96 0x000 - 0xBFF

No Read-While-Write section (NRWW) 32 0xC00 - 0xFFF

Table 27-9. Explanation of Different Variables used in Figure 27-3 and the Mapping to the Z-pointer, Atmel 
ATmega88PA

Variable
Corresponding

Z-value(1) Description

PCMSB 11
Most significant bit in the Program Counter. (The Program Counter is 
12 bits PC[11:0])

PAGEMSB 4
Most significant bit which is used to address the words within one page 
(32 words in a page requires 5 bits PC [4:0]).

ZPCMSB Z12
Bit in Z-register that is mapped to PCMSB. Because Z0 is not used, 
the ZPCMSB equals PCMSB + 1.

ZPAGEMSB Z5
Bit in Z-register that is mapped to PAGEMSB. Because Z0 is not used, 
the ZPAGEMSB equals PAGEMSB + 1.

PCPAGE PC[11:5] Z12:Z6
Program counter page address: Page select, for page erase and page 
write

PCWORD PC[4:0] Z5:Z1
Program counter word address: Word select, for filling temporary buffer 
(must be zero during page write operation)

Note: 1. Z15:Z13: always ignored
Z0: should be zero for all SPM commands, byte select for the LPM instruction.
See “Addressing the Flash During Self-Programming” on page 282 for details about the use of Z-pointer during 
Self-Programming.
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27.8.15 Atmel ATmega168PA Boot Loader Parameters
In Table 27-10 through Table 27-12, the parameters used in the description of the self pro-
gramming are given. 

Note: The different BOOTSZ Fuse configurations are shown in Figure 27-2 on page 280.

For details about these two section, see “NRWW – No Read-While-Write Section” on page
278 and “RWW – Read-While-Write Section” on page 278

Table 27-10. Boot Size Configuration, Atmel ATmega168PA

BOOTSZ1 BOOTSZ0
Boot 
Size Pages

Application
Flash 
Section

Boot 
Loader
Flash 
Section

End
Application
Section

Boot Reset Address (Start Boot 
Loader Section)

1 1 128 words 2 0x0000 - 0x1F7F 0x1F80 - 0x1FFF 0x1F7F 0x1F80 

1 0 256 words 4 0x0000 - 0x1EFF 0x1F00 - 0x1FFF 0x1EFF 0x1F00

0 1 512 words 8 0x0000 - 0x1DFF 0x1E00 - 0x1FFF 0x1DFF 0x1E00

0 0 1024 words 16 0x0000 - 0x1BFF 0x1C00 - 0x1FFF 0x1BFF 0x1C00

Table 27-11. Read-While-Write Limit, Atmel ATmega168PA

Section Pages Address

Read-While-Write section (RWW) 112 0x0000 - 0x1BFF

No Read-While-Write section (NRWW) 16 0x1C00 - 0x1FFF

Table 27-12. Explanation of Different Variables used in Figure 27-3 and the Mapping to the Z-pointer, Atmel 
ATmega168PA

Variable
Corresponding

Z-value(1) Description

PCMSB 12
Most significant bit in the Program Counter. (The Program Counter is 
13 bits PC[12:0])

PAGEMSB 5
Most significant bit which is used to address the words within
one page (64 words in a page requires 6 bits PC [5:0])

ZPCMSB Z13
Bit in Z-register that is mapped to PCMSB. Because Z0 is not used, 
the ZPCMSB equals PCMSB + 1.

ZPAGEMSB Z6
Bit in Z-register that is mapped to PAGEMSB. Because Z0 is not 
used, the ZPAGEMSB equals PAGEMSB + 1.

PCPAGE PC[12:6] Z13:Z7
Program counter page address: Page select, for page erase and 
page write

PCWORD PC[5:0] Z6:Z1
Program counter word address: Word select, for filling temporary 
buffer (must be zero during page write operation)

Note: 1. Z15:Z14: always ignored
Z0: should be zero for all SPM commands, byte select for the LPM instruction.
See “Addressing the Flash During Self-Programming” on page 282 for details about the use of Z-pointer during 
Self-Programming.
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27.9 Register Description

27.9.1 SPMCSR – Store Program Memory Control and Status Register
The Store Program Memory Control and Status Register contains the control bits needed to
control the Boot Loader operations.

• Bit 7 – SPMIE: SPM Interrupt Enable
When the SPMIE bit is written to one, and the I-bit in the Status Register is set (one), the SPM
ready interrupt will be enabled. The SPM ready Interrupt will be executed as long as the SELF-
PRGEN bit in the SPMCSR Register is cleared.

• Bit 6 – RWWSB: Read-While-Write Section Busy
When a Self-Programming (Page Erase or Page Write) operation to the RWW section is initi-
ated, the RWWSB will be set (one) by hardware. When the RWWSB bit is set, the RWW
section cannot be accessed. The RWWSB bit will be cleared if the RWWSRE bit is written to
one after a Self-Programming operation is completed. Alternatively the RWWSB bit will auto-
matically be cleared if a page load operation is initiated.

• Bit 5 – Reserved
This bit is a reserved bit in the Atmel® ATmega48PA/88PA/168PA and always read as zero.

• Bit 4 – RWWSRE: Read-While-Write Section Read Enable
When programming (Page Erase or Page Write) to the RWW section, the RWW section is
blocked for reading (the RWWSB will be set by hardware). To re-enable the RWW section, the
user software must wait until the programming is completed (SELFPRGEN will be cleared).
Then, if the RWWSRE bit is written to one at the same time as SELFPRGEN, the next SPM
instruction within four clock cycles re-enables the RWW section. The RWW section cannot be
re-enabled while the Flash is busy with a Page Erase or a Page Write (SELFPRGEN is set). If
the RWWSRE bit is written while the Flash is being loaded, the Flash load operation will abort
and the data loaded will be lost.

• Bit 3 – BLBSET: Boot Lock Bit Set
If this bit is written to one at the same time as SELFPRGEN, the next SPM instruction within
four clock cycles sets Boot Lock bits and Memory Lock bits, according to the data in R0. The
data in R1 and the address in the Z-pointer are ignored. The BLBSET bit will automatically be
cleared upon completion of the Lock bit set, or if no SPM instruction is executed within four
clock cycles. 

An LPM instruction within three cycles after BLBSET and SELFPRGEN are set in the
SPMCSR Register, will read either the Lock bits or the Fuse bits (depending on Z0 in the
Z-pointer) into the destination register. See “Reading the Fuse and Lock Bits from Software”
on page 285 for details.

Bit 7 6 5 4 3 2 1 0

0x37 (0x57) SPMIE RWWSB – RWWSRE BLBSET PGWRT PGERS SELFPRGEN SPMCSR

Read/Write R/W R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
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• Bit 2 – PGWRT: Page Write
If this bit is written to one at the same time as SELFPRGEN, the next SPM instruction within
four clock cycles executes Page Write, with the data stored in the temporary buffer. The page
address is taken from the high part of the Z-pointer. The data in R1 and R0 are ignored. The
PGWRT bit will auto-clear upon completion of a Page Write, or if no SPM instruction is exe-
cuted within four clock cycles. The CPU is halted during the entire Page Write operation if the
NRWW section is addressed.

• Bit 1 – PGERS: Page Erase
If this bit is written to one at the same time as SELFPRGEN, the next SPM instruction within
four clock cycles executes Page Erase. The page address is taken from the high part of the
Z-pointer. The data in R1 and R0 are ignored. The PGERS bit will auto-clear upon completion
of a Page Erase, or if no SPM instruction is executed within four clock cycles. The CPU is
halted during the entire Page Write operation if the NRWW section is addressed.

• Bit 0 – SELFPRGEN: Self Programming Enable
This bit enables the SPM instruction for the next four clock cycles. If written to one together
with either RWWSRE, BLBSET, PGWRT or PGERS, the following SPM instruction will have a
special meaning, see description above. If only SELFPRGEN is written, the following SPM
instruction will store the value in R1:R0 in the temporary page buffer addressed by the
Z-pointer. The LSB of the Z-pointer is ignored. The SELFPRGEN bit will auto-clear upon com-
pletion of an SPM instruction, or if no SPM instruction is executed within four clock cycles.
During Page Erase and Page Write, the SELFPRGEN bit remains high until the operation is
completed. 

Writing any other combination than “10001”, “01001”, “00101”, “00011” or “00001” in the lower
five bits will have no effect.



294
9223D–AVR–05/12

Atmel ATmega48PA/88PA/168PA

28. Memory Programming

28.1 Program And Data Memory Lock Bits
The Atmel® ATmega48PA provides two Lock bits and the Atmel 
ATmega48PA/88PA/168PA provides six Lock bits. These can be left unprogrammed (“1”) or
can be programmed (“0”) to obtain the additional features listed in Table 28-2. The Lock bits
can only be erased to “1” with the Chip Erase command. 

The Atmel ATmega48PA has no separate Boot Loader section, and the SPM instruction is
enabled for the whole Flash if the SELFPRGEN fuse is programmed (“0”). Otherwise the SPM
instruction is disabled.

Notes: 1. “1” means unprogrammed, “0” means programmed.

2. Only on Atmel ATmega48PA/88PA/168PA. 

Table 28-1. Lock Bit Byte(1)

Lock Bit Byte Bit No Description Default Value

7 – 1 (unprogrammed)

6 – 1 (unprogrammed)

BLB12() 5 Boot Lock bit 1 (unprogrammed)

BLB11() 4 Boot Lock bit 1 (unprogrammed)

BLB02() 3 Boot Lock bit 1 (unprogrammed)

BLB01() 2 Boot Lock bit 1 (unprogrammed)

LB2 1 Lock bit 1 (unprogrammed)

LB1 0 Lock bit 1 (unprogrammed)

Notes: 1. “1” means unprogrammed, “0” means programmed.

2. Only on Atmel ATmega48PA/88PA/168PA. 

Table 28-2. Lock Bit Protection Modes(1)(2) 

Memory Lock Bits Protection Type

LB Mode LB2 LB1

1 1 1 No memory lock features enabled.

2 1 0
Further programming of the Flash and EEPROM is disabled in 
Parallel and Serial Programming mode. The Fuse bits are locked 
in both Serial and Parallel Programming mode.(1)

3 0 0

Further programming and verification of the Flash and EEPROM 
is disabled in Parallel and Serial Programming mode. The Boot 
Lock bits and Fuse bits are locked in both Serial and Parallel 
Programming mode.(1)

Notes: 1. “Program the Fuse bits and Boot Lock bits before programming the LB1 and LB2.

2. “1” means unprogrammed, “0” means programmed
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28.2 Fuse Bits
The Atmel® ATmega48PA/88PA/168PA has three Fuse bytes. Table 28-5 - Table 28-7
describe briefly the functionality of all the fuses and how they are mapped into the Fuse bytes.
Note that the fuses are read as logical zero, “0”, if they are programmed. 

Table 28-3. Lock Bit Protection Modes(1)(2) (only Atmel ATmega48PA/88PA/168PA)

BLB0 Mode BLB02 BLB01

1 1 1
No restrictions for SPM or LPM accessing the Application 
section.

2 1 0 SPM is not allowed to write to the Application section.

3 0 0

SPM is not allowed to write to the Application section, and LPM 
executing from the Boot Loader section is not allowed to read 
from the Application section. If Interrupt Vectors are placed in the 
Boot Loader section, interrupts are disabled while executing from 
the Application section.

4 0 1

LPM executing from the Boot Loader section is not allowed to 
read from the Application section. If Interrupt Vectors are placed 
in the Boot Loader section, interrupts are disabled while 
executing from the Application section.

BLB1 Mode BLB12 BLB11

1 1 1
No restrictions for SPM or LPM accessing the Boot Loader 
section.

2 1 0 SPM is not allowed to write to the Boot Loader section.

3 0 0

SPM is not allowed to write to the Boot Loader section, and LPM 
executing from the Application section is not allowed to read from 
the Boot Loader section. If Interrupt Vectors are placed in the 
Application section, interrupts are disabled while executing from 
the Boot Loader section.

4 0 1

LPM executing from the Application section is not allowed to read 
from the Boot Loader section. If Interrupt Vectors are placed in 
the Application section, interrupts are disabled while executing 
from the Boot Loader section.

Notes: 1. Program the Fuse bits and Boot Lock bits before programming the LB1 and LB2.

2. “1” means unprogrammed, “0” means programmed 

Table 28-4. Extended Fuse Byte for the Atmel ATmega48PA

Extended Fuse Byte Bit No Description Default Value

– 7 – 1

– 6 – 1

– 5 – 1

– 4 – 1

– 3 – 1

– 2 – 1

– 1 – 1

SELFPRGEN 0 Self Programming Enable 1 (unprogrammed)
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Table 28-5. Extended Fuse Byte for Atmel ATmega88PA/168PA

Extended Fuse Byte Bit No Description Default Value

– 7 – 1

– 6 – 1

– 5 – 1

– 4 – 1

– 3 – 1

BOOTSZ1 2

Select Boot Size 
(see

Table 27-7 on page 290 and 
Table 27-10 on page 291

for details)

0 (programmed)(1)

BOOTSZ0 1

Select Boot Size 
(see

Table 27-7 on page 290 and 
Table 27-10 on page 291

for details)

0 (programmed)(1)

BOOTRST 0 Select Reset Vector 1 (unprogrammed)

Note: 1. The default value of BOOTSZ[1:0] results in maximum Boot Size. See “Pin Name Mapping” 
on page 299.

Table 28-6. Fuse High Byte for the Atmel ATmega48PA/88PA/168PA

High Fuse Byte Bit No Description Default Value

RSTDISBL(1) 7 External Reset Disable 1 (unprogrammed)

DWEN 6 debugWIRE Enable 1 (unprogrammed)

SPIEN(2) 5
Enable Serial Program and 
Data Downloading

0 (programmed, SPI 
programming enabled)

WDTON(3) 4 Watchdog Timer Always On 1 (unprogrammed)

EESAVE 3
EEPROM memory is 
preserved through the Chip 
Erase

1 (unprogrammed), EEPROM 
not reserved

BODLEVEL2(4) 2
Brown-out Detector trigger 
level

1 (unprogrammed)

BODLEVEL1(4) 1
Brown-out Detector trigger 
level

0 (programmed)

BODLEVEL0(4) 0
Brown-out Detector trigger 
level

1 (unprogrammed)

Notes: 1. See “Alternate Functions of Port C” on page 85 for description of RSTDISBL Fuse.

2. The SPIEN Fuse is not accessible in serial programming mode.

3. See “WDTCSR – Watchdog Timer Control Register” on page 56 for details.

4. See Table 29-6 on page 317 for BODLEVEL Fuse decoding (default = 2.7V).
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The status of the Fuse bits is not affected by Chip Erase. Note that the Fuse bits are locked if
Lock bit1 (LB1) is programmed. Program the Fuse bits before programming the Lock bits.

28.2.1 Latching of Fuses
The fuse values are latched when the device enters programming mode and changes of the
fuse values will have no effect until the part leaves Programming mode. This does not apply to
the EESAVE Fuse which will take effect once it is programmed. The fuses are also latched on
Power-up in Normal mode.

28.3 Signature Bytes
All Atmel microcontrollers have a three-byte signature code which identifies the device. This
code can be read in both serial and parallel mode, also when the device is locked. The three
bytes reside in a separate address space. For the Atmel® ATmega48PA/88PA/168PA the sig-
nature bytes are given in Table 28-8. 

28.4 Calibration Byte
The Atmel ATmega48PA/88PA/168PA has 2 calibration values for the Internal RC Oscillator.
The 3V calibration byte resides in the address 0x0001 in the signature address space and the
5V calibration byte resides in the address 0x0009. During reset, the 3V calibration byte is
automatically written into the OSCCAL Register to ensure correct frequency of the calibrated
RC Oscillator.

Table 28-7. Fuse Low Byte

Low Fuse Byte Bit No Description Default Value

CKDIV8(4) 7 Divide clock by 8 0 (programmed)

CKOUT(3) 6 Clock output 1 (unprogrammed)

SUT1 5 Select start-up time 1 (unprogrammed)(1)

SUT0 4 Select start-up time 0 (programmed)(1)

CKSEL3 3 Select Clock source 0 (programmed)(2)

CKSEL2 2 Select Clock source 0 (programmed)(2)

CKSEL1 1 Select Clock source 1 (unprogrammed)(2)

CKSEL0 0 Select Clock source 0 (programmed)(2)

Note: 1. The default value of SUT1...0 results in maximum start-up time for the default clock source. 
See Table 9-12 on page 33 for details.

2. The default setting of CKSEL3...0 results in internal RC Oscillator at 8MHz. See Table 9-11 
on page 33 for details.

3. The CKOUT Fuse allows the system clock to be output on PORTB0. See “Clock Output 
Buffer” on page 35 for details.

4. See “System Clock Prescaler” on page 36 for details.

Table 28-8. Device ID

Part

Signature Bytes Address

0x000 0x002 0x004

Atmel ATmega48PA/88PA/168PA 0x1E 0x92 0x0A

Atmel ATmega88PA 0x1E 0x93 0x0F

Atmel ATmega168PA 0x1E 0x94 0x0B
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28.5 Page Size

28.6 Parallel Programming Parameters, Pin Mapping, and Commands
This section describes how to parallel program and verify Flash Program memory, EEPROM
Data memory, Memory Lock bits, and Fuse bits in the Atmel® ATmega48PA/88PA/168PA.
Pulses are assumed to be at least 250 ns unless otherwise noted.

28.6.1 Signal Names
In this section, some pins of the Atmel ATmega48PA/88PA/168PA are referenced by signal
names describing their functionality during parallel programming, see Figure 28-1 and Table
28-11. Pins not described in the following table are referenced by pin names.

The XA1/XA0 pins determine the action executed when the XTAL1 pin is given a positive
pulse. The bit coding is shown in Table 28-13.

When pulsing WR or OE, the command loaded determines the action executed. The different
Commands are shown in Table 28-14.

Table 28-9. No. of Words in a Page and No. of Pages in the Flash

Device Flash Size Page Size PCWORD
No. of 
Pages PCPAGE PCMSB

Atmel 
ATmega48PA/
88PA/168PA

2K words 
(4K bytes)

32 words PC[4:0] 64 PC[10:5] 10

Atmel 
ATmega88PA

4K words 
(8K bytes)

32 words PC[4:0] 128 PC[11:5] 11

Atmel 
ATmega168PA

8K words 
(16K bytes)

64 words PC[5:0] 128 PC[12:6] 12

Table 28-10. No. of Words in a Page and No. of Pages in the EEPROM

Device
EEPROM

Size
Page 
Size PCWORD

No. of 
Pages PCPAGE EEAMSB

Atmel ATmega48PA/ 
88PA/168PA

256 bytes 4 bytes EEA[1:0] 64 EEA[7:2] 7

Atmel ATmega88PA 512 bytes 4 bytes EEA[1:0] 128 EEA[8:2] 8

Atmel ATmega168PA 512 bytes 4 bytes EEA[1:0] 128 EEA[8:2] 8
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Figure 28-1. Parallel Programming 

Note: VCC - 0.3V < AVCC < VCC + 0.3V, however, AVCC should always be within 4.5 - 5.5V

Table 28-11. Pin Name Mapping 

Signal Name in 
Programming Mode Pin Name I/O Function

RDY/BSY PD1 O
0: Device is busy programming, 1: Device is 
ready for new command

OE PD2 I Output Enable (Active low)

WR PD3 I Write Pulse (Active low)

BS1 PD4 I
Byte Select 1 (“0” selects Low byte, “1” selects 
High byte)

XA0 PD5 I XTAL Action Bit 0

XA1 PD6 I XTAL Action Bit 1

PAGEL PD7 I
Program memory and EEPROM Data Page 
Load

BS2 PC2 I
Byte Select 2 (“0” selects Low byte, “1” selects 
2’nd High byte)

DATA {PC[1:0]: PB[5:0]} I/O Bi-directional Data bus (Output when OE is low)

Table 28-12. Pin Values Used to Enter Programming Mode

Pin Symbol Value

PAGEL Prog_enable[3] 0

XA1 Prog_enable[2] 0

XA0 Prog_enable[1] 0

BS1 Prog_enable[0] 0

VCC

GND

XTAL1

PD1

PD2

PD3

PD4

PD5

PD6

 PC[1:0]:PB[5:0] DATA

RESET

PD7

+12 V

BS1

XA0

XA1

OE

RDY/BSY

PAGEL

PC2

WR

BS2

AVCC

+4.5 - 5.5V

+4.5 - 5.5V



300
9223D–AVR–05/12

Atmel ATmega48PA/88PA/168PA

28.7 Parallel Programming

28.7.1 Enter Programming Mode
The following algorithm puts the device in Parallel (High-voltage) Programming mode:

1. Set Prog_enable pins listed in Table 28-12 on page 299 to “0000”, RESET pin to 0V 
and VCC to 0V. 

2. Apply 4.5 - 5.5V between VCC and GND.

Ensure that VCC reaches at least 1.8V within the next 20 µs.

3. Wait 20 - 60 µs, and apply 11.5 - 12.5V to RESET.

4. Keep the Prog_enable pins unchanged for at least 10µs after the High-voltage has 
been applied to ensure the Prog_enable Signature has been latched. 

5. Wait at least 300 µs before giving any parallel programming commands. 

6. Exit Programming mode by power the device down or by bringing RESET pin to 0V.

If the rise time of the VCC is unable to fulfill the requirements listed above, the following alterna-
tive algorithm can be used.

1. Set Prog_enable pins listed in Table 28-12 on page 299 to “0000”, RESET pin to 0V 
and VCC to 0V.

2. Apply 4.5 - 5.5V between VCC and GND.

3. Monitor VCC, and as soon as VCC reaches 0.9 - 1.1V, apply 11.5 - 12.5V to RESET.

4. Keep the Prog_enable pins unchanged for at least 10µs after the High-voltage has 
been applied to ensure the Prog_enable Signature has been latched.

5. Wait until VCC actually reaches 4.5 -5.5V before giving any parallel programming 
commands.

6. Exit Programming mode by power the device down or by bringing RESET pin to 0V.

Table 28-13. XA1 and XA0 Coding

XA1 XA0 Action when XTAL1 is Pulsed

0 0 Load Flash or EEPROM Address (High or low address byte determined by BS1).

0 1 Load Data (High or Low data byte for Flash determined by BS1).

1 0 Load Command

1 1 No Action, Idle

Table 28-14. Command Byte Bit Coding

Command Byte Command Executed

1000 0000 Chip Erase

0100 0000 Write Fuse bits

0010 0000 Write Lock bits

0001 0000 Write Flash

0001 0001 Write EEPROM

0000 1000 Read Signature Bytes and Calibration byte

0000 0100 Read Fuse and Lock bits

0000 0010 Read Flash

0000 0011 Read EEPROM
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28.7.2 Considerations for Efficient Programming
The loaded command and address are retained in the device during programming. For effi-
cient programming, the following should be considered.

• The command needs only be loaded once when writing or reading multiple memory 
locations.

• Skip writing the data value 0xFF, that is the contents of the entire EEPROM (unless the 
EESAVE Fuse is programmed) and Flash after a Chip Erase.

• Address high byte needs only be loaded before programming or reading a new 256 word 
window in Flash or 256 byte EEPROM. This consideration also applies to Signature bytes 
reading.

28.7.3 Chip Erase
The Chip Erase will erase the Flash and EEPROM(1) memories plus Lock bits. The Lock bits
are not reset until the program memory has been completely erased. The Fuse bits are not
changed. A Chip Erase must be performed before the Flash and/or EEPROM are
reprogrammed.

Note: 1. The EEPRPOM memory is preserved during Chip Erase if the EESAVE Fuse is 
programmed.

Load Command “Chip Erase”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “1000 0000”. This is the command for Chip Erase.

4. Give XTAL1 a positive pulse. This loads the command.

5. Give WR a negative pulse. This starts the Chip Erase. RDY/BSY goes low.

6. Wait until RDY/BSY goes high before loading a new command.

28.7.4 Programming the Flash
The Flash is organized in pages, see Table 28-9 on page 298. When programming the Flash,
the program data is latched into a page buffer. This allows one page of program data to be
programmed simultaneously. The following procedure describes how to program the entire
Flash memory:

A. Load Command “Write Flash”

1. Set XA1, XA0 to “10”. This enables command loading.

2. Set BS1 to “0”.

3. Set DATA to “0001 0000”. This is the command for Write Flash.

4. Give XTAL1 a positive pulse. This loads the command.

B. Load Address Low byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “0”. This selects low address.

3. Set DATA = Address low byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the address low byte.
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C. Load Data Low Byte

1. Set XA1, XA0 to “01”. This enables data loading.

2. Set DATA = Data low byte (0x00 - 0xFF).

3. Give XTAL1 a positive pulse. This loads the data byte.

D. Load Data High Byte

1. Set BS1 to “1”. This selects high data byte.

2. Set XA1, XA0 to “01”. This enables data loading.

3. Set DATA = Data high byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the data byte.

E. Latch Data

1. Set BS1 to “1”. This selects high data byte.

2. Give PAGEL a positive pulse. This latches the data bytes. (See Figure 28-3 for signal 
waveforms)

F. Repeat B through E until the entire buffer is filled or until all data within the page is loaded.

While the lower bits in the address are mapped to words within the page, the higher bits
address the pages within the FLASH. This is illustrated in Figure 28-2 on page 303. Note that
if less than eight bits are required to address words in the page (pagesize < 256), the most sig-
nificant bit(s) in the address low byte are used to address the page when performing a Page
Write.

G. Load Address High byte

1. Set XA1, XA0 to “00”. This enables address loading.

2. Set BS1 to “1”. This selects high address.

3. Set DATA = Address high byte (0x00 - 0xFF).

4. Give XTAL1 a positive pulse. This loads the address high byte.

H. Program Page

1. Give WR a negative pulse. This starts programming of the entire page of data. 
RDY/BSY goes low.

2. Wait until RDY/BSY goes high (See Figure 28-3 for signal waveforms).

I. Repeat B through H until the entire Flash is programmed or until all data has been
programmed.

J. End Page Programming

1. 1. Set XA1, XA0 to “10”. This enables command loading.

2. Set DATA to “0000 0000”. This is the command for No Operation.

3. Give XTAL1 a positive pulse. This loads the command, and the internal write signals 
are reset.
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Figure 28-2. Addressing the Flash Which is Organized in Pages(1) 

Note: 1. PCPAGE and PCWORD are listed in Table 28-9 on page 298.

Figure 28-3. Programming the Flash Waveforms(1) 

Note: 1. “XX” is don’t care. The letters refer to the programming description above.

PROGRAM MEMORY

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

INSTRUCTION WORD

PAGE PCWORD[PAGEMSB:0]:

00

01

02

PAGEEND

PAGE

PCWORDPCPAGE

PCMSB PAGEMSB
PROGRAM
COUNTER

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

0x10 ADDR. LOW ADDR. HIGHDATA DATA LOW DATA HIGH ADDR. LOW DATA LOW DATA HIGH

XA1

XA0

BS1

XTAL1

XX XX XX

A B C D E B C D E G H

F
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28.7.5 Programming the EEPROM
The EEPROM is organized in pages, see Table 28-10 on page 298. When programming the
EEPROM, the program data is latched into a page buffer. This allows one page of data to be
programmed simultaneously. The programming algorithm for the EEPROM data memory is as
follows (refer to “Programming the Flash” on page 301 for details on Command, Address and
Data loading):

1. A: Load Command “0001 0001”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. C: Load Data (0x00 - 0xFF).

5. E: Latch data (give PAGEL a positive pulse).

K: Repeat 3 through 5 until the entire buffer is filled.

L: Program EEPROM page

1. Set BS1 to “0”.

2. Give WR a negative pulse. This starts programming of the EEPROM page. RDY/BSY 
goes low.

3. Wait until to RDY/BSY goes high before programming the next page (See Figure 28-4 
for signal waveforms).

Figure 28-4. Programming the EEPROM Waveforms 

RDY/BSY

WR

OE

RESET +12V

PAGEL

BS2

0x11 ADDR. HIGHDATA ADDR. LOW DATA ADDR. LOW DATA XX

XA1

XA0

BS1

XTAL1

XX

A G B C E B C E L

K
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28.7.6 Reading the Flash
The algorithm for reading the Flash memory is as follows (refer to “Programming the Flash” on
page 301 for details on Command and Address loading):

1. A: Load Command “0000 0010”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The Flash word low byte can now be read at DATA.

5. Set BS1 to “1”. The Flash word high byte can now be read at DATA.

6. Set OE to “1”.

28.7.7 Reading the EEPROM
The algorithm for reading the EEPROM memory is as follows (refer to “Programming the
Flash” on page 301 for details on Command and Address loading):

1. A: Load Command “0000 0011”.

2. G: Load Address High Byte (0x00 - 0xFF).

3. B: Load Address Low Byte (0x00 - 0xFF).

4. Set OE to “0”, and BS1 to “0”. The EEPROM Data byte can now be read at DATA.

5. Set OE to “1”.

28.7.8 Programming the Fuse Low Bits
The algorithm for programming the Fuse Low bits is as follows (refer to “Programming the
Flash” on page 301 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

28.7.9 Programming the Fuse High Bits
The algorithm for programming the Fuse High bits is as follows (refer to “Programming the
Flash” on page 301 for details on Command and Data loading):

1. A: Load Command “0100 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. Set BS1 to “1” and BS2 to “0”. This selects high data byte.

4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. Set BS1 to “0”. This selects low data byte.

28.7.10 Programming the Extended Fuse Bits
The algorithm for programming the Extended Fuse bits is as follows (refer to “Programming
the Flash” on page 301 for details on Command and Data loading):

1. 1. A: Load Command “0100 0000”.

2. 2. C: Load Data Low Byte. Bit n = “0” programs and bit n = “1” erases the Fuse bit.

3. 3. Set BS1 to “0” and BS2 to “1”. This selects extended data byte.

4. 4. Give WR a negative pulse and wait for RDY/BSY to go high.

5. 5. Set BS2 to “0”. This selects low data byte.
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Figure 28-5. Programming the FUSES Waveforms 

28.7.11 Programming the Lock Bits
The algorithm for programming the Lock bits is as follows (refer to “Programming the Flash” on
page 301 for details on Command and Data loading):

1. A: Load Command “0010 0000”.

2. C: Load Data Low Byte. Bit n = “0” programs the Lock bit. If LB mode 3 is pro-
grammed (LB1 and LB2 is programmed), it is not possible to program the Boot Lock 
bits by any External Programming mode.

3. Give WR a negative pulse and wait for RDY/BSY to go high.

The Lock bits can only be cleared by executing Chip Erase.

28.7.12 Reading the Fuse and Lock Bits
The algorithm for reading the Fuse and Lock bits is as follows (refer to “Programming the
Flash” on page 301 for details on Command loading):

1. A: Load Command “0000 0100”.

2. Set OE to “0”, BS2 to “0” and BS1 to “0”. The status of the Fuse Low bits can now be 
read at DATA (“0” means programmed).

3. Set OE to “0”, BS2 to “1” and BS1 to “1”. The status of the Fuse High bits can now be 
read at DATA (“0” means programmed).

4. Set OE to “0”, BS2 to “1”, and BS1 to “0”. The status of the Extended Fuse bits can 
now be read at DATA (“0” means programmed).

5. Set OE to “0”, BS2 to “0” and BS1 to “1”. The status of the Lock bits can now be read 
at DATA (“0” means programmed).

6. Set OE to “1”.

RDY/BSY

WR

OE

RESET +12V

PAGEL

0x40DATA DATA XX

XA1

XA0

BS1

XTAL1

A C

0x40 DATA XX

A C

Write Fuse Low byte Write Fuse high byte

0x40 DATA XX

A C

Write Extended Fuse byte

BS2
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Figure 28-6. Mapping Between BS1, BS2 and the Fuse and Lock Bits During Read 

28.7.13 Reading the Signature Bytes
The algorithm for reading the Signature bytes is as follows (refer to “Programming the Flash”
on page 301 for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. B: Load Address Low Byte (0x00 - 0x02).

3. Set OE to “0”, and BS1 to “0”. The selected Signature byte can now be read at DATA.

4. Set OE to “1”.

28.7.14 Reading the Calibration Byte
The algorithm for reading the Calibration byte is as follows (refer to “Programming the Flash”
on page 301 for details on Command and Address loading):

1. A: Load Command “0000 1000”.

2. B: Load Address Low Byte, 0x00.

3. Set OE to “0”, and BS1 to “1”. The Calibration byte can now be read at DATA.

4. Set OE to “1”.

28.7.15 Parallel Programming Characteristics
For characteristics of the Parallel Programming, see “Parallel Programming Characteristics”
on page 322.

Lock Bits 0

1

BS2

Fuse High Byte

0

1

BS1

DATA

Fuse Low Byte 0

1

BS2

Extended Fuse Byte
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28.8 Serial Downloading
Both the Flash and EEPROM memory arrays can be programmed using the serial SPI bus
while RESET is pulled to GND. The serial interface consists of pins SCK, MOSI (input) and
MISO (output). After RESET is set low, the Programming Enable instruction needs to be exe-
cuted first before program/erase operations can be executed. NOTE, in Table 28-15 on page
309, the pin mapping for SPI programming is listed. Not all parts use the SPI pins dedicated
for the internal SPI interface.

Figure 28-7. Serial Programming and Verify(1) 

Notes: 1. If the device is clocked by the internal Oscillator, it is no need to connect a clock source to 
the XTAL1 pin.

2. VCC - 0.3V < AVCC < VCC + 0.3V, however, AVCC should always be within 2.7 - 5.5V

When programming the EEPROM, an auto-erase cycle is built into the self-timed program-
ming operation (in the Serial mode ONLY) and there is no need to first execute the Chip Erase
instruction. The Chip Erase operation turns the content of every memory location in both the
Program and EEPROM arrays into 0xFF.

Depending on CKSEL Fuses, a valid clock must be present. The minimum low and high peri-
ods for the serial clock (SCK) input are defined as follows:

Low: > 2 CPU clock cycles for fck < 12MHz, 3 CPU clock cycles for fck >= 12MHz

High: > 2 CPU clock cycles for fck < 12MHz, 3 CPU clock cycles for fck >= 12MHz

VCC

GND

XTAL1

SCK

MISO

MOSI

RESET

+2.7 - 5.5V

AVCC

+2.7 - 5.5V(2)
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28.8.1 Serial Programming Pin Mapping

28.8.2 Serial Programming Algorithm
When writing serial data to the Atmel® ATmega48PA/88PA/168PA, data is clocked on the ris-
ing edge of SCK.

When reading data from the Atmel ATmega48PA/88PA/168PA, data is clocked on the falling
edge of SCK. See Figure 28-9 for timing details.

To program and verify the Atmel ATmega48PA/88PA/168PA in the serial programming mode,
the following sequence is recommended (See Serial Programming Instruction set in Table
28-17 on page 311):

1. Power-up sequence:
Apply power between VCC and GND while RESET and SCK are set to “0”. In some 
systems, the programmer can not guarantee that SCK is held low during power-up. In 
this case, RESET must be given a positive pulse of at least two CPU clock cycles 
duration after SCK has been set to “0”.

2. Wait for at least 20ms and enable serial programming by sending the Programming 
Enable serial instruction to pin MOSI.

3. The serial programming instructions will not work if the communication is out of syn-
chronization. When in sync. the second byte (0x53), will echo back when issuing the 
third byte of the Programming Enable instruction. Whether the echo is correct or not, 
all four bytes of the instruction must be transmitted. If the 0x53 did not echo back, 
give RESET a positive pulse and issue a new Programming Enable command. 

4. The Flash is programmed one page at a time. The memory page is loaded one byte 
at a time by supplying the 6 LSB of the address and data together with the Load Pro-
gram Memory Page instruction. To ensure correct loading of the page, the data low 
byte must be loaded before data high byte is applied for a given address. The Pro-
gram Memory Page is stored by loading the Write Program Memory Page instruction 
with the 7 MSB of the address. If polling (RDY/BSY) is not used, the user must wait at 
least tWD_FLASH before issuing the next page (See Table 28-16). Accessing the serial 
programming interface before the Flash write operation completes can result in incor-
rect programming.

Table 28-15. Pin Mapping Serial Programming

Symbol Pins I/O Description

MOSI PB3 I Serial Data in

MISO PB4 O Serial Data out

SCK PB5 I Serial Clock
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5. A: The EEPROM array is programmed one byte at a time by supplying the address 
and data together with the appropriate Write instruction. An EEPROM memory loca-
tion is first automatically erased before new data is written. If polling (RDY/BSY) is not 
used, the user must wait at least tWD_EEPROM before issuing the next byte (See Table 
28-16). In a chip erased device, no 0xFFs in the data file(s) need to be programmed.
B: The EEPROM array is programmed one page at a time. The Memory page is 
loaded one byte at a time by supplying the 6 LSB of the address and data together 
with the Load EEPROM Memory Page instruction. The EEPROM Memory Page is 
stored by loading the Write EEPROM Memory Page Instruction with the 7 MSB of the 
address. When using EEPROM page access only byte locations loaded with the 
Load EEPROM Memory Page instruction is altered. The remaining locations remain 
unchanged. If polling (RDY/BSY) is not used, the used must wait at least tWD_EEPROM 
before issuing the next byte (See Table 28-16). In a chip erased device, no 0xFF in 
the data file(s) need to be programmed.

6. Any memory location can be verified by using the Read instruction which returns the 
content at the selected address at serial output MISO.

7. At the end of the programming session, RESET can be set high to commence normal 
operation.

8. Power-off sequence (if needed):
Set RESET to “1”.
Turn VCC power off. 

Table 28-16. Typical Wait Delay Before Writing the Next Flash or EEPROM Location

Symbol Minimum Wait Delay

tWD_FLASH 4.5ms

tWD_EEPROM 3.6ms

tWD_ERASE 9.0ms
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28.8.3 Serial Programming Instruction set
Table 28-17 on page 311 and Figure 28-8 on page 312 describes the Instruction set.

Table 28-17. Serial Programming Instruction Set (Hexadecimal values) 

Instruction/Operation

Instruction Format

Byte 1 Byte 2 Byte 3 Byte4

Programming Enable $AC $53 $00 $00

Chip Erase (Program Memory/EEPROM) $AC $80 $00 $00

Poll RDY/BSY $F0 $00 $00 data byte out

Load Instructions

Load Extended Address byte(1) $4D $00 Extended adr $00

Load Program Memory Page, High byte $48 $00 adr LSB high data byte in

Load Program Memory Page, Low byte $40 $00 adr LSB low data byte in

Load EEPROM Memory Page (page access) $C1 $00 0000 000aa data byte in

Read Instructions

Read Program Memory, High byte $28 adr MSB adr LSB high data byte out

Read Program Memory, Low byte $20 adr MSB adr LSB low data byte out

Read EEPROM Memory $A0 0000 00aa aaaa aaaa data byte out

Read Lock bits $58 $00 $00 data byte out

Read Signature Byte $30 $00 0000 000aa data byte out

Read Fuse bits $50 $00 $00 data byte out

Read Fuse High bits $58 $08 $00 data byte out

Read Extended Fuse Bits $50 $08 $00 data byte out

Read Calibration Byte $38 $00 $00 data byte out

Write Instructions(6)

Write Program Memory Page $4C adr MSB(8) adr LSB(8) $00

Write EEPROM Memory $C0 0000 00aa aaaa aaaa data byte in

Write EEPROM Memory Page (page access) $C2 0000 00aa aaaa aa00 $00

Write Lock bits $AC $E0 $00 data byte in

Write Fuse bits $AC $A0 $00 data byte in

Write Fuse High bits $AC $A8 $00 data byte in

Write Extended Fuse Bits $AC $A4 $00 data byte in

Notes: 1. Not all instructions are applicable for all parts.

2. a = address.

3. Bits are programmed ‘0’, unprogrammed ‘1’.

4. To ensure future compatibility, unused Fuses and Lock bits should be unprogrammed (‘1’).

5. Refer to the corresponding section for Fuse and Lock bits, Calibration and Signature bytes and Page size.

6. Instructions accessing program memory use a word address. This address may be random within the page range.

7. See http://www.atmel.com/avr for Application Notes regarding programming and programmers.

8. WORDS
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If the LSB in RDY/BSY data byte out is ‘1’, a programming operation is still pending. Wait until
this bit returns ‘0’ before the next instruction is carried out.

Within the same page, the low data byte must be loaded prior to the high data byte.

After data is loaded to the page buffer, program the EEPROM page, see Figure 28-8 on page
312.

Figure 28-8. Serial Programming Instruction example 

28.8.4 SPI Serial Programming Characteristics

Figure 28-9. Serial Programming Waveforms 

For characteristics of the SPI module see “SPI Timing Characteristics” on page 318.
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29. Electrical Characteristics
All AC/DC characteristics contained in this datasheet are based on characterization of
the Atmel® ATmega48PA/88PA/168PA AVR microcontroller manufactured in an automotive
process technology.

29.1 Absolute Maximum Ratings(1) 
Operating Temperature..................................–55°C to +125°C Note: 1. Stresses beyond those listed under “Absolute 

Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and 
functional operation of the device at these or other 
conditions beyond those indicated in the opera-
tional sections of this specification is not implied. 
Exposure to absolute maximum rating conditions 
for extended periods may affect device reliability.

Storage Temperature .....................................–65°C to +150°C

Voltage on any Pin except RESET
with respect to Ground ...............................–0.5V to VCC+0.5V

Voltage on RESET with respect to Ground.....–0.5V to +13.0V

Maximum Operating Voltage ............................................ 6.0V

DC Current per I/O Pin ................................................ 40.0mA

DC Current VCC and GND Pins ................................. 200.0mA
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29.2 DC Characteristics

Table 29-1.  Common DC characteristics TA = -40°C to 125°C, VCC = 2.7V to 5.5V (unless otherwise noted) 

Symbol Parameter Condition Min. Typ. Max. Units

VIL
Input Low Voltage, except 
XTAL1 and RESET pin

VCC = 2.7V - 5.5V –0.3 0.3VCC
(1) V

VIH
Input High Voltage, except 
XTAL1 and RESET pins

VCC = 2.4V - 5.5V 0.6VCC
(2) VCC + 0.5 V

VIL1
Input Low Voltage,
XTAL1 pin

VCC = 2.7V - 5.5V –0.3 0.1VCC
(1) V

VIH1
Input High Voltage, 
XTAL1 pin

VCC = 2.4V - 5.5V 0.7VCC
(2) VCC + 0.5 V

VIL2
Input Low Voltage, 
RESET pin

VCC = 2.7V - 5.5V –0.3 0.1VCC
(1) V

VIH2
Input High Voltage, 
RESET pin

VCC = 2.7V - 5.5V 0.9VCC
(2) VCC + 0.5 V

VOL
Output Low Voltage(4)

except RESET pin
IOL = 20mA, VCC = 5V
IOL = 5mA, VCC = 3V

0.8
0.5

V

VOH
Output High Voltage(3)

except Reset pin
IOH = –20mA, VCC = 5V
IOH = –10mA, VCC = 3V

4.1
2.3

V

IIL
Input Leakage
Current I/O Pin

VCC = 5.5V, pin low
(absolute value)

1 µA

IIH
Input Leakage
Current I/O Pin

VCC = 5.5V, pin high
(absolute value)

1 µA

RRST Reset Pull-up Resistor VCC = 5V, Vin = 0V 30 60 kΩ
RPU I/O Pin Pull-up Resistor 20 50 kΩ

VACIO
Analog Comparator 
Input Offset Voltage

VCC = 5V, 0.1VCC < Vin < 
VCC - 100mV

<10 40 mV

IACLK
Analog Comparator 
Input Leakage Current

0.1VCC < Vin < VCC – 100mV –50 50 nA

tACID
Analog Comparator 
Propagation Delay

VCC = 4.5V 140 ns

Notes: 1. “Max” means the highest value where the pin is guaranteed to be read as low

2. “Min.” means the lowest value where the pin is guaranteed to be read as high

3. Although each I/O port can source more than the test conditions (20mA at VCC = 5V, 10mA at VCC = 3V) under steady state 
conditions (non-transient), the following must be observed:
Atmel ATmega48PA/88PA/168PA:
1] The sum of all IOH, for ports C0 - C5, D0- D4, ADC7, RESET should not exceed 150mA.
2] The sum of all IOH, for ports B0 - B5, D5 - D7, ADC6, XTAL1, XTAL2 should not exceed 150mA.
If IIOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current 
greater than the listed test condition.

4. Although each I/O port can sink more than the test conditions (20mA at VCC = 5V, 10mA at VCC = 3V) under steady state 
conditions (non-transient), the following must be observed:
Atmel ATmega48PA/88PA/168PA:
1] The sum of all IOL, for ports C0 - C5, ADC7, ADC6 should not exceed 100mA.
2] The sum of all IOL, for ports B0 - B5, D5 - D7, XTAL1, XTAL2 should not exceed 100mA.
3] The sum of all IOL, for ports D0 - D4, RESET should not exceed 100mA.
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater 
than the listed test condition.
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29.2.1 DC Characteristics

29.3 Speed Grades
Maximum frequency is dependent on VCC. As shown in Figure 29-1.

Figure 29-1. Maximum Frequency versus VCC 

Table 29-2. DC characteristics - TA = –40°C to +125°C, VCC = 2.7V to 5.5V (unless otherwise noted) 

Symbol Parameter Condition Min. Typ.(2) Max. Units

ICC

Power Supply Current(1)

Active 4MHz, VCC = 3V 1.3 2.4 mA

Active 8MHz, VCC = 5V 4.6 10 mA

Active 16MHz, VCC = 5V 8.4 16 mA

Idle 4MHz, VCC = 3V 0.2 0.6 mA

Idle 8MHz, VCC = 5V 0.9 1.6 mA

Idle 16MHz, VCC = 5V 1.8 4 mA

Power-down mode(3)

WDT enabled, VCC = 3V 4.2 44 µA

WDT enabled, VCC = 5V 6.2 66 µA

WDT disabled, VCC = 3V 0.8 40 µA

WDT disabled, VCC = 5V 1.1 60 µA

Notes: 1. Values with “Minimizing Power Consumption” enabled (0xFF).

2. Typical values at 25°C. Maximum values are test limits in production.

3. The current consumption values include input leakage current

4MHz

2.7V 4.5V

8MHz

16MHz

5.5V

Safe Operating Area
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29.4 Clock Characteristics

29.4.1 Calibrated Internal RC Oscillator Accuracy

29.4.2 External Clock Drive Waveforms

Figure 29-2. External Clock Drive Waveforms 

29.4.3 External Clock Drive

Table 29-3. Calibration Accuracy of Internal RC Oscillator

Frequency VCC Temperature Calibration Accuracy

Default 3V Factory
Calibration

8.0MHz
3V 25°C ±1%

2.7V - 5.5V –40°C - 125°C ±14%

5V Factory
Calibration

8.0MHz
5V 25°C ±1%

4.5V - 5.5V –40°C - 125°C ±10%

Watchdog Oscillator 128kHz 2.7V - 5.5V –40°C - 125°C ±40%

VIL1

VIH1

Table 29-4. External Clock Drive

Symbol Parameter

VCC = 2.7 - 5.5V VCC = 4.5 - 5.5V

UnitsMin. Max. Min. Max.

1/tCLCL Oscillator Frequency 0 8 0 16 MHz

tCLCL Clock Period 125 62.5 ns

tCHCX High Time 50 25 ns

tCLCX Low Time 50 25 ns

tCLCH Rise Time 1.6 0.5 µs

tCHCL Fall Time 1.6 0.5 µs

ΔtCLCL
Change in period from one clock 
cycle to the next

2 2 %

Note: All DC Characteristics contained in this datasheet are based on simulation and characterization of other AVR microcontrollers 
manufactured in the same process technology. These values are preliminary values representing design targets, and will be 
updated after characterization of actual silicon.



317
9223D–AVR–05/12

Atmel ATmega48PA/88PA/168PA

29.5 System and Reset Characteristics

Table 29-5. Power on Reset specifications(1)

Symbol Parameter Min. Typ Max Units

VPOT
Power-on Reset Threshold Voltage (rising) 1.4 V

Power-on Reset Threshold Voltage (falling)(2) 0.6 1.3 1.6 V

Vpormax VCC Max. start voltage to ensure internal
Power-on Reset signal

0.4 V

Vpormin VCC Min. start voltage to ensure internal
Power-on Reset signal

–0.1 V

VCCRR VCC Rise Rate to ensure Power-on Reset 0.01 V/ms

VRST RESET Pin Threshold Voltage 0.2Vcc 0.9Vcc V

tRST Minimum pulse width on RESET Pin 2.5 µs

VBG Bandgap reference voltage 1.0 1.1 1.2 V

tBG Bandgap reference start-up time 40 70 µs

VHYST Brown-out Detector Hysteresis 80 mV

Notes: 1. Values are guidelines only.

2. Before rising, the supply has to be between VPORMIN and VPORMAX to ensure a Reset.

Table 29-6. BODLEVEL Fuse Coding(1)

BODLEVEL 2:0 Fuses Min. VBOT Typ VBOT Max VBOT Units

111 BOD Disabled

110 1.6 1.8 2.0

V

101 2.5 2.7 2.9

100 3.9 4.3 4.6

011 2.3(2)

010 2.2(2)

000 2.0(2)

001 1.9(2)

Notes: 1. VBOT may be below nominal minimum operating voltage for some devices. For devices where this is the case, the device is 
tested down to VCC = VBOT during the production test. This guarantees that a Brown-Out Reset will occur before VCC drops 
to a voltage where correct operation of the microcontroller is no longer guaranteed. The test is performed using 
BODLEVEL = 110, 101 and 100.

2. Not Tested in production
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29.6 SPI Timing Characteristics
See Figure 29-3 and Figure 29-4 for details.

Table 29-7. SPI Timing Parameters

Description Mode Min. Typ Max

1 SCK period Master See Table 19-5

ns

2 SCK high/low Master 50% duty cycle

3 Rise/Fall time Master 3.6

4 Setup Master 10

5 Hold Master 10

6 Out to SCK Master 0.5 ×  tsck

7 SCK to out Master 10

8 SCK to out high Master 10

9 SS low to out Slave 15

10 SCK period Slave 4 ×  tck

11 SCK high/low(1) Slave 2 ×  tck

12 Rise/Fall time Slave 1600

13 Setup Slave 10

14 Hold Slave tck

15 SCK to out Slave 15

16 SCK to SS high Slave 20

17 SS high to tri-state Slave 10

18 SS low to SCK Slave 20

Notes: 1. In SPI Programming mode the minimum SCK high/low period is:
- 2 tCLCL for fCK < 12MHz
- 3 tCLCL for fCK > 12MHz

2. All DC Characteristics contained in this datasheet are based on simulation and character-
ization of other AVR microcontrollers manufactured in the same process technology. These 
values are preliminary values representing design targets, and will be updated after charac-
terization of actual silicon.
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Figure 29-3. SPI Interface Timing Requirements (Master Mode) 

Figure 29-4. SPI Interface Timing Requirements (Slave Mode) 
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29.7 Two-wire Serial Interface Characteristics
Table 29-8 describes the requirements for devices connected to the 2-wire Serial Bus. The
Atmel® ATmega48PA/88PA/168PA 2-wire Serial Interface meets or exceeds these require-
ments under the noted conditions. Timing symbols refer to Figure 29-5.

Table 29-8. Two-wire Serial Bus Requirements 

Symbol Parameter Condition Min. Max Units

VIL Input Low-voltage -0.3 0.3 VCC V

VIH Input High-voltage 0.7 VCC VCC + 0.5 V

Vhys
(1) Hysteresis of Schmitt Trigger Inputs 0.05 VCC

(2) – V

VOL
(1) Output Low-voltage 3 mA sink current 0 0.4 V

tr
(1) Rise Time for both SDA and SCL 20 + 0.1Cb

(3)(2) 300 ns

tof
(1) Output Fall Time from VIHmin to VILmax 10 pF < Cb < 400 pF(3) 20 + 0.1Cb

(3)(2) 250 ns

tSP
(1) Spikes Suppressed by Input Filter 0 50(2) ns

Ii Input Current each I/O Pin 0.1VCC < Vi < 0.9VCC -10 10 µA

Ci
(1) Capacitance for each I/O Pin – 10 pF

fSCL SCL Clock Frequency fCK
(4) > max(16fSCL, 250kHz)(5) 0 400 kHz

Rp Value of Pull-up resistor

fSCL ≤ 100kHz

fSCL > 100kHz

tHD;STA Hold Time (repeated) START Condition
fSCL ≤ 100kHz 4.0 – µs

fSCL > 100kHz 0.6 – µs

tLOW Low Period of the SCL Clock
fSCL ≤ 100kHz 4.7 – µs

fSCL > 100kHz 1.3 – µs

tHIGH High period of the SCL clock
fSCL ≤ 100kHz 4.0 – µs

fSCL > 100kHz 0.6 – µs

tSU;STA Set-up time for a repeated START condition
fSCL ≤ 100kHz 4.7 – µs

fSCL > 100kHz 0.6 – µs

tHD;DAT Data hold time
fSCL ≤ 100kHz 0 3.45 µs

fSCL > 100kHz 0 0.9 µs

tSU;DAT Data setup time
fSCL ≤ 100kHz 250 – ns

fSCL > 100kHz 100 – ns

tSU;STO Setup time for STOP condition
fSCL ≤ 100kHz 4.0 – µs

fSCL > 100kHz 0.6 – µs

tBUF
Bus free time between a STOP and START 
condition

fSCL ≤ 100kHz 4.7 – µs

fSCL > 100kHz 1.3 – µs

Notes: 1. In the Atmel ATmega48PA/88PA/168PA, this parameter is characterized and not 100% tested.

2. Required only for fSCL > 100kHz.

3. Cb = capacitance of one bus line in pF.

4. fCK = CPU clock frequency

5. This requirement applies to all Atmel ATmega48PA/88PA/168PA 2-wire Serial Interface operation. Other devices connected 
to the 2-wire Serial Bus need only obey the general fSCL requirement.

VCC 0,4V–

3mA
---------------------------- 1000ns

Cb
------------------- Ω

VCC 0,4V–

3mA
---------------------------- 300ns

Cb
---------------- Ω
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Figure 29-5. Two-wire Serial Bus Timing 

29.8 ADC Characteristics 

tSU;STA

tLOW

tHIGH

tLOW

tof

tHD;STA tHD;DAT tSU;DAT
tSU;STO

tBUF

SCL

SDA

tr

Table 29-9. ADC Characteristics

Symbol Parameter Condition Min. Typ Max Units

Resolution
–40°C to 125°C, 
2.70V to 5.50V
ADC clock = 200kHz

10 Bits

TUE Absolute accuracy VCC = 4V, VREF = 4V 2.2 3.5 LSB

INL Integral Non-Linearity VCC = 4V, VREF = 4V 0.6 1.5 LSB

DNL Differential Non-Linearity VCC = 4V, VREF = 4V 0.3 0.7 LSB

Gain Error VCC = 4V, VREF = 4V –4.0 3.0 LSB

Offset Error VCC = 4V, VREF = 4V –3.5 3.5 LSB

Clock Frequency 50 200 kHz

AVCC
(1) Analog Supply Voltage VCC - 0.3 VCC + 0.3 V

VREF Reference Voltage 1.0 AVCC V

VIN Input Voltage GND VREF V

Input Bandwidth 38.5 kHz

VINT Internal Voltage Reference 1.0 1.1 1.2 V

RREF Reference Input Resistance 22 32 42 kΩ

RAIN Analog Input Resistance 100 MΩ

Note: 1. AVCC absolute min./max: 2.7V/5.5V
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29.9 Parallel Programming Characteristics

Figure 29-6. Parallel Programming Timing, Including some General Timing Requirements 

Table 29-10. Parallel Programming Characteristics, VCC = 5V ±10% 

Symbol Parameter Min. Typ Max Units

VPP Programming Enable Voltage 11.5 12.5 V

IPP Programming Enable Current 250 µA

tDVXH Data and Control Valid before XTAL1 High 67 ns

tXLXH XTAL1 Low to XTAL1 High 200 ns

tXHXL XTAL1 Pulse Width High 150 ns

tXLDX Data and Control Hold after XTAL1 Low 67 ns

tXLWL XTAL1 Low to WR Low 0 ns

tXLPH XTAL1 Low to PAGEL high 0 ns

tPLXH PAGEL low to XTAL1 high 150 ns

tBVPH BS1 Valid before PAGEL High 67 ns

tPHPL PAGEL Pulse Width High 150 ns

tPLBX BS1 Hold after PAGEL Low 67 ns

tWLBX BS2/1 Hold after WR Low 67 ns

tPLWL PAGEL Low to WR Low 67 ns

tBVWL BS1 Valid to WR Low 67 ns

tWLWH WR Pulse Width Low 150 ns

tWLRL WR Low to RDY/BSY Low 0 1 µs

tWLRH WR Low to RDY/BSY High(1) 3.7 4.5 ms

tWLRH_CE WR Low to RDY/BSY High for Chip Erase(2) 7.5 9 ms

tXLOL XTAL1 Low to OE Low 0 ns

tBVDV BS1 Valid to DATA valid 0 250 ns

tOLDV OE Low to DATA Valid 250 ns

tOHDZ OE High to DATA Tri-stated 250 ns

Notes: 1.  tWLRH is valid for the Write Flash, Write EEPROM, Write Fuse bits and Write Lock bits 
commands.

2.  tWLRH_CE is valid for the Chip Erase command.

Data & Contol
(DATA, XA0/1, BS1, BS2)

XTAL1
tXHXL

tWLWH

tDVXH tXLDX

tPLWL

tWLRH

WR

RDY/BSY

PAGEL tPHPL

tPLBXtBVPH

tXLWL

tWLBX
tBVWL

WLRL
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Figure 29-7. Parallel Programming Timing, Loading Sequence with Timing Requirements(1) 

Note: 1. The timing requirements shown in Figure 29-6 (i.e., tDVXH, tXHXL, and tXLDX) also apply to 
loading operation.

Figure 29-8. Parallel Programming Timing, Reading Sequence (within the Same Page) with Timing Requirements(1) 

Note: 1. The timing requirements shown in Figure 29-6 (i.e., tDVXH, tXHXL, and tXLDX) also apply to 
reading operation.

XTAL1

PAGEL

tPLXHXLXHt tXLPH

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA

BS1

XA0

XA1

LOAD ADDRESS
(LOW BYTE)

LOAD DATA 
(LOW BYTE)

LOAD DATA
(HIGH BYTE)

LOAD DATA LOAD ADDRESS
(LOW BYTE)

XTAL1

OE

ADDR0 (Low Byte) DATA (Low Byte) DATA (High Byte) ADDR1 (Low Byte)DATA
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XA0
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LOAD ADDRESS
(LOW BYTE)

READ DATA 
(LOW BYTE)

READ DATA
(HIGH BYTE)

LOAD ADDRESS
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tBVDV
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tXLOL

tOHDZ
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30. Typical Characteristics
The following charts show typical behavior. These figures are not tested during manufacturing.
All current consumption measurements are performed with all I/O pins configured as inputs
and with internal pull-ups enabled. A square wave generator with rail-to-rail output is used as
clock source.

30.1 ATmega48PA Typical Characteristics

30.1.1 Active Supply Current

Figure 30-1. Active Supply Current versus Low Frequency (0.1-1.0MHz) 

Figure 30-2. Active Supply Current versus Frequency (1-16MHz) 
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30.1.2 Idle Supply Current 

Figure 30-3. Idle Supply Current versus Low Frequency (0.1-1.0MHz) 

Figure 30-4. Idle Supply Current versus Frequency (1-16MHz) 
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30.1.3 Supply Current of IO Modules
The tables and formulas below can be used to calculate the additional current consumption for
the different I/O modules in Active and Idle mode. The enabling or disabling of the I/O modules
are controlled by the Power Reduction Register. See “Power Reduction Register” on page 42
for details.

It is possible to calculate the typical current consumption based on the numbers from Table
30-2 for other VCC and frequency settings than listed in Table 30-1.

30.1.3.1 Example
Calculate the expected current consumption in idle mode with TIMER1, ADC, and SPI
enabled at VCC = 2.0V and F = 1MHz. From Table 30-2, third column, we see that we need to
add 11.2% for the TIMER1, 22.1% for the ADC, and 17.6% for the SPI module. Reading from
Figure 30-3 on page 325, we find that the idle current consumption is ~0.028mA at VCC = 2.0V
and F = 1MHz. The total current consumption in idle mode with TIMER1, ADC, and SPI
enabled, gives: 

Table 30-1.  Additional Current Consumption for the Different I/O Modules (Absolute 
Values)

PRR bit Typical Numbers

VCC = 2V, F = 1MHz VCC = 3V, F = 4MHz VCC = 5V, F = 8MHz

PRUSART0 2.9µA 20.7µA 97.4µA

PRTWI 6.0µA 44.8µA 219.7µA

PRTIM2 5.0µA 34.5µA 141.3µA

PRTIM1 3.6µA 24.4µA 107.7µA

PRTIM0  1.4µA 9.5µA 38.4µA

PRSPI  5.0µA 38.0µA 190.4µA

PRADC  6.1µA 47.4µA 244.7µA

Table 30-2. Additional Current Consumption (Percentage) in Active and Idle Mode

PRR bit

Additional Current consumption 
compared to Active with external 

clock (see Figure 30-1 on page 324 
and Figure 30-2 on page 324)

Additional Current consumption 
compared to Idle with external clock 

(see Figure 30-3 on page 325 and 
Figure 30-4 on page 325)

PRUSART0 1.8% 11.4%

PRTWI 3.9% 20.6%

PRTIM2 2.9% 15.7%

PRTIM1 2.1% 11.2%

PRTIM0 0.8% 4.2%

PRSPI 3.3% 17.6%

PRADC 4.2% 22.1%

ICCtotal 0.028 mA (1 + 0.112 + 0.221 + 0.176)⋅ 0.042 mA≈ ≈
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30.1.4 Power-down Supply Current

Figure 30-5. Power-Down Supply Current versus VCC (Watchdog Timer Disabled) 

Figure 30-6. Power-Down Supply Current versus VCC (Watchdog Timer Enabled) 

30.1.5 Pin Pull-Up

Figure 30-7. I/O Pin Pull-up Resistor Current versus Input Voltage (VCC = 5.0V) 
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Figure 30-8. Reset Pull-up Resistor Current versus Reset Pin Voltage (VCC = 5V) 

30.1.6 Pin Driver Strength 

Figure 30-9. I/O Pin Output Voltage versus Sink Current (VCC = 3V) 

Figure 30-10. I/O Pin Output Voltage versus Sink Current (VCC = 5V) 
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Figure 30-11. I/O Pin Output Voltage versus Source Current (Vcc = 3V) 

Figure 30-12. I/O Pin Output Voltage versus Source Current (VCC = 5V) 

30.1.7 Pin Threshold and Hysteresis

Figure 30-13. I/O Pin Input Threshold Voltage versus VCC (VIH, I/O Pin read as ‘1’) 
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Figure 30-14. I/O Pin Input Threshold Voltage versus VCC (VIL, I/O Pin read as ‘0’) 

Figure 30-15. Reset Input Threshold Voltage versus VCC (VIH, I/O Pin read as ‘1’) 

Figure 30-16. Reset Input Threshold Voltage versus VCC (VIL, I/O Pin read as ‘0’) 
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30.1.8 BOD Threshold

Figure 30-17. BOD Thresholds versus Temperature (BODLEVEL is 1.8V) 

Figure 30-18. BOD Thresholds versus Temperature (BODLEVEL is 2.7V) 

Figure 30-19. BOD Thresholds versus Temperature (BODLEVEL is 4.3V) 
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Figure 30-20. Bandgap Voltage versus VCC 

30.1.9 Internal Oscillator Speed

Figure 30-21. Watchdog Oscillator Frequency versus Temperature 

Figure 30-22. Watchdog Oscillator Frequency versus VCC 
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Figure 30-23. Calibrated 8MHz RC Oscillator Frequency versus VCC 

Figure 30-24. Calibrated 8MHz RC Oscillator Frequency versus Temperature 

Figure 30-25. Calibrated 8MHz RC Oscillator Frequency versus OSCCAL Value 
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30.1.10 Reset Pulse width

Figure 30-26. Minimum Reset Pulse width versus VCC 

30.2 ATmega88PA Typical Characteristics

30.2.1 Active Supply Current

Figure 30-27. Active Supply Current versus Low Frequency (0.1-1.0MHz) 
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Figure 30-28. Active Supply Current versus Frequency (1-16MHz) 

30.2.2 Idle Supply Current 

Figure 30-29. Idle Supply Current versus Low Frequency (0.1-1.0MHz) 
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Figure 30-30. Idle Supply Current versus Frequency (1-16MHz) 

30.2.3 Supply Current of IO Modules
The tables and formulas below can be used to calculate the additional current consumption for
the different I/O modules in Active and Idle mode. The enabling or disabling of the I/O modules
are controlled by the Power Reduction Register. See “Power Reduction Register” on page 42
for details.
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Table 30-3. Additional Current Consumption for the Different I/O Modules (Absolute 
Values)

PRR bit Typical numbers

VCC = 2V, F = 1MHz VCC = 3V, F = 4MHz VCC = 5V, F = 8MHz

PRUSART0 2.9µA 20.7µA 97.4µA

PRTWI 6.0µA 44.8µA 219.7µA

PRTIM2 5.0µA 34.5µA 141.3µA

PRTIM1 3.6µA 24.4µA 107.7µA

PRTIM0  1.4µA 9.5µA 38.4µA

PRSPI  5.0µA 38.0µA 190.4µA

PRADC  6.1µA 47.4µA 244.7µA
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It is possible to calculate the typical current consumption based on the numbers from Table
30-2 on page 326 for other VCC and frequency settings than listed in Table 30-1 on page 326.

30.2.3.1 Example
Calculate the expected current consumption in idle mode with TIMER1, ADC, and SPI
enabled at VCC = 2.0V and F = 1MHz. From Table 30-2 on page 326, third column, we see that
we need to add 11.2% for the TIMER1, 22.1% for the ADC, and 17.6% for the SPI module.
Reading from Figure 30-3 on page 325, we find that the idle current consumption is ~0.028mA
at VCC = 2.0V and F = 1MHz. The total current consumption in idle mode with TIMER1, ADC,
and SPI enabled, gives: 

30.2.4 Power-down Supply Current

Figure 30-31. Power-Down Supply Current versus VCC (Watchdog Timer Disabled) 

Table 30-4. Additional Current Consumption (percentage) in Active and Idle mode

PRR bit

Additional Current consumption 
compared to Active with external 
clock (see Figure 30-1 on page 324 
and Figure 30-2 on page 324)

Additional Current consumption 
compared to Idle with external clock 
(see Figure 30-3 on page 325 and 
Figure 30-4 on page 325)

PRUSART0 1.8% 11.4%

PRTWI 3.9% 20.6%

PRTIM2 2.9% 15.7%

PRTIM1 2.1% 11.2%

PRTIM0 0.8% 4.2%

PRSPI 3.3% 17.6%

PRADC 4.2% 22.1%

ICCtotal 0.028 mA (1 + 0.112 + 0.221 + 0.176)⋅ 0.042 mA≈ ≈
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Figure 30-32. Power-Down Supply Current versus VCC (Watchdog Timer Enabled) 

30.2.5 Pin Pull-Up

Figure 30-33. I/O Pin Pull-up Resistor Current versus Input Voltage (VCC = 5.0V) 

Figure 30-34. Reset Pull-up Resistor Current versus Reset Pin Voltage (VCC = 5V) 
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30.2.6 Pin Driver Strength 

Figure 30-35. I/O Pin Output Voltage versus Sink Current (VCC = 3V) 

Figure 30-36. I/O Pin Output Voltage versus Sink Current (VCC = 5V) 

Figure 30-37. I/O Pin Output Voltage versus Source Current (Vcc = 3V) 
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Figure 30-38. I/O Pin Output Voltage versus Source Current (VCC = 5V) 

30.2.7 Pin Threshold and Hysteresis

Figure 30-39. I/O Pin Input Threshold Voltage versus VCC (VIH, I/O Pin read as ‘1’) 

Figure 30-40. I/O Pin Input Threshold Voltage versus VCC (VIL, I/O Pin read as ‘0’) 
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Figure 30-41. Reset Input Threshold Voltage versus VCC (VIH, I/O Pin read as ‘1’) 

Figure 30-42. Reset Input Threshold Voltage versus VCC (VIL, I/O Pin read as ‘0’) 

30.2.8 BOD Threshold

Figure 30-43. BOD Thresholds versus Temperature (BODLEVEL is 1.8V) 
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Figure 30-44. BOD Thresholds versus Temperature (BODLEVEL is 2.7V) 

Figure 30-45. BOD Thresholds versus Temperature (BODLEVEL is 4.3V) 

Figure 30-46. Bandgap Voltage versus VCC 

2.5

2.55

2.6

2.65

2.7

2.75

2.8

2.85

2.9

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Temper ature [C]

T
hr

es
ho

ld
 [

V
]

1

0

4

4.1

4.2

4.3

4.4

4.5

4.6

-50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Temperature [C]

T
hr

es
ho

ld
 [V

]

1

0

1.08

1.082

1.084

1.086

1.088

1.09

1.092

1.094

1.096

1.098

1.1

1.5 2 2.5 3 3.5 4 4.5 5 5.5

Vcc [V]

B
an

dg
ap

 V
ol

ta
ge

 [V
]

150

125

85

25

-40



343
9223D–AVR–05/12

Atmel ATmega48PA/88PA/168PA

30.2.9 Internal Oscillator Speed

Figure 30-47. Watchdog Oscillator Frequency versus Temperature 

Figure 30-48. Watchdog Oscillator Frequency versus VCC 

Figure 30-49. Calibrated 8MHz RC Oscillator Frequency versus VCC 
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Figure 30-50. Calibrated 8MHz RC Oscillator Frequency versus Temperature 

Figure 30-51. Calibrated 8MHz RC Oscillator Frequency versus OSCCAL Value 

30.2.10 Reset Pulse width

Figure 30-52. Minimum Reset Pulse width versus VCC 
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30.3 ATmega168PA Typical Characteristics

30.3.1 Active Supply Current

Figure 30-53. Active Supply Current versus Low Frequency (0.1-1.0MHz) 

Figure 30-54. Active Supply Current versus Frequency (1-16MHz) 
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30.3.2 Idle Supply Current 

Figure 30-55. Idle Supply Current versus Low Frequency (0.1-1.0MHz) 

Figure 30-56. Idle Supply Current versus Frequency (1-16MHz) 
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30.3.3 Supply Current of IO Modules
The tables and formulas below can be used to calculate the additional current consumption for
the different I/O modules in Active and Idle mode. The enabling or disabling of the I/O modules
are controlled by the Power Reduction Register. See “Power Reduction Register” on page 42
for details. 

It is possible to calculate the typical current consumption based on the numbers from Table
30-2 on page 326 for other VCC and frequency settings than listed in Table 30-1 on page 326.

30.3.3.1 Example
Calculate the expected current consumption in idle mode with TIMER1, ADC, and SPI
enabled at VCC = 2.0V and F = 1MHz. From Table 30-2 on page 326, third column, we see that
we need to add 11.2% for the TIMER1, 22.1% for the ADC, and 17.6% for the SPI module.
Reading from Figure 30-3 on page 325, we find that the idle current consumption is ~0.028mA
at VCC = 2.0V and F = 1MHz. The total current consumption in idle mode with TIMER1, ADC,
and SPI enabled, gives: 

Table 30-5. Additional Current Consumption for the Different I/O Modules (Absolute 
Values)

PRR bit Typical numbers

VCC = 2V, F = 1MHz VCC = 3V, F = 4MHz VCC = 5V, F = 8MHz

PRUSART0 2.9µA 20.7µA 97.4µA

PRTWI 6.0µA 44.8µA 219.7µA

PRTIM2 5.0µA 34.5µA 141.3µA

PRTIM1 3.6µA 24.4µA 107.7µA

PRTIM0  1.4µA 9.5µA 38.4µA

PRSPI  5.0µA 38.0µA 190.4µA

PRADC  6.1µA 47.4µA 244.7µA

Table 30-6. Additional Current Consumption (Percentage) in Active and Idle Mode

PRR bit

Additional Current consumption 
compared to Active with external 
clock (see Figure 30-1 on page 324 
and Figure 30-2 on page 324)

Additional Current consumption 
compared to Idle with external clock 
(see Figure 30-3 on page 325 and 
Figure 30-4 on page 325)

PRUSART0 1.8% 11.4%

PRTWI 3.9% 20.6%

PRTIM2 2.9% 15.7%

PRTIM1 2.1% 11.2%

PRTIM0 0.8% 4.2%

PRSPI 3.3% 17.6%

PRADC 4.2% 22.1%

ICCtotal 0.028 mA (1 + 0.112 + 0.221 + 0.176)⋅ 0.042 mA≈ ≈
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30.3.4 Power-down Supply Current

Figure 30-57. Power-Down Supply Current versus VCC (Watchdog Timer Disabled) 

Figure 30-58. Power-Down Supply Current versus VCC (Watchdog Timer Enabled) 

30.3.5 Pin Pull-Up

Figure 30-59. I/O Pin Pull-up Resistor Current versus Input Voltage (VCC = 5.0V) 
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Figure 30-60. Reset Pull-up Resistor Current versus Reset Pin Voltage (VCC = 5V) 

30.3.6 Pin Driver Strength 

Figure 30-61. I/O Pin Output Voltage versus Sink Current (VCC = 3V) 

Figure 30-62. I/O Pin Output Voltage versus Sink Current (VCC = 5V) 
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Figure 30-63. I/O Pin Output Voltage versus Source Current (Vcc = 3V) 

Figure 30-64. I/O Pin Output Voltage versus Source Current (VCC = 5V) 

30.3.7 Pin Threshold and Hysteresis

Figure 30-65. I/O Pin Input Threshold Voltage versus VCC (VIH, I/O Pin read as ‘1’)
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Figure 30-66. I/O Pin Input Threshold Voltage versus VCC (VIL, I/O Pin read as ‘0’) 

Figure 30-67. Reset Input Threshold Voltage versus VCC (VIH, I/O Pin read as ‘1’) 

Figure 30-68. Reset Input Threshold Voltage versus VCC (VIL, I/O Pin read as ‘0’) 
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30.3.8 BOD Threshold

Figure 30-69. BOD Thresholds versus Temperature (BODLEVEL is 1.8V) 

Figure 30-70. BOD Thresholds versus Temperature (BODLEVEL is 2.7V) 

Figure 30-71. BOD Thresholds versus Temperature (BODLEVEL is 4.3V) 
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Figure 30-72. Bandgap Voltage versus VCC 

30.3.9 Internal Oscillator Speed

Figure 30-73. Watchdog Oscillator Frequency versus Temperature 

Figure 30-74. Watchdog Oscillator Frequency versus VCC 
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Figure 30-75. Calibrated 8MHz RC Oscillator Frequency versus VCC 

Figure 30-76. Calibrated 8MHz RC Oscillator Frequency versus Temperature 

Figure 30-77. Calibrated 8MHz RC Oscillator Frequency versus OSCCAL Value 
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30.3.10 Reset Pulse width

Figure 30-78. Minimum Reset Pulse width versus VCC 
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31. Register Summary
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

(0xFF) Reserved – – – – – – – –

(0xFE) Reserved – – – – – – – –

(0xFD) Reserved – – – – – – – –

(0xFC) Reserved – – – – – – – –

(0xFB) Reserved – – – – – – – –

(0xFA) Reserved – – – – – – – –

(0xF9) Reserved – – – – – – – –

(0xF8) Reserved – – – – – – – –

(0xF7) Reserved – – – – – – – –

(0xF6) Reserved – – – – – – – –

(0xF5) Reserved – – – – – – – –

(0xF4) Reserved – – – – – – – –

(0xF3) Reserved – – – – – – – –

(0xF2) Reserved – – – – – – – –

(0xF1) Reserved – – – – – – – –

(0xF0) Reserved – – – – – – – –

(0xEF) Reserved – – – – – – – –

(0xEE) Reserved – – – – – – – –

(0xED) Reserved – – – – – – – –

(0xEC) Reserved – – – – – – – –

(0xEB) Reserved – – – – – – – –

(0xEA) Reserved – – – – – – – –

(0xE9) Reserved – – – – – – – –

(0xE8) Reserved – – – – – – – –

(0xE7) Reserved – – – – – – – –

(0xE6) Reserved – – – – – – – –

(0xE5) Reserved – – – – – – – –

(0xE4) Reserved – – – – – – – –

(0xE3) Reserved – – – – – – – –

(0xE2) Reserved – – – – – – – –

(0xE1) Reserved – – – – – – – –

(0xE0) Reserved – – – – – – – –

(0xDF) Reserved – – – – – – – –

(0xDE) Reserved – – – – – – – –

(0xDD) Reserved – – – – – – – –

(0xDC) Reserved – – – – – – – –

(0xDB) Reserved – – – – – – – –

(0xDA) Reserved – – – – – – – –

(0xD9) Reserved – – – – – – – –

(0xD8) Reserved – – – – – – – –

(0xD7) Reserved – – – – – – – –

(0xD6) Reserved – – – – – – – –

(0xD5) Reserved – – – – – – – –

(0xD4) Reserved – – – – – – – –

(0xD3) Reserved – – – – – – – –

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses 
should never be written.

2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these 
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI 
instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. 
The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O 
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The Atmel 
ATmega48PA/88PA/168PA is a complex microcontroller with more peripheral units than can be supported within the 64 
location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only 
the ST/STS/STD and LD/LDS/LDD instructions can be used.

5. Only valid for the Atmel ATmega48PA/88PA/168PA.

6. BODS and BODSE only available for picoPower devices ATmega48PA/88PA/168PA
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(0xD2) Reserved – – – – – – – –

(0xD1) Reserved – – – – – – – –

(0xD0) Reserved – – – – – – – –

(0xCF) Reserved – – – – – – – –

(0xCE) Reserved – – – – – – – –

(0xCD) Reserved – – – – – – – –

(0xCC) Reserved – – – – – – – –

(0xCB) Reserved – – – – – – – –

(0xCA) Reserved – – – – – – – –

(0xC9) Reserved – – – – – – – –

(0xC8) Reserved – – – – – – – –

(0xC7) Reserved – – – – – – – –

(0xC6) UDR0  USART I/O Data Register 196

(0xC5) UBRR0H USART Baud Rate Register High 201

(0xC4) UBRR0L  USART Baud Rate Register Low 201

(0xC3) Reserved – – – – – – – –

(0xC2) UCSR0C UMSEL01 UMSEL00 UPM01 UPM00 USBS0 UCSZ01 /UDORD0 UCSZ00 / UCPHA0 UCPOL0 199/210

(0xC1) UCSR0B RXCIE0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80 198

(0xC0) UCSR0A RXC0 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0 197

(0xBF) Reserved – – – – – – – –

(0xBE) Reserved – – – – – – – –

(0xBD) TWAMR TWAM6 TWAM5 TWAM4 TWAM3 TWAM2 TWAM1 TWAM0 – 243

(0xBC) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE 240

(0xBB) TWDR  2-wire Serial Interface Data Register 242

(0xBA) TWAR TWA6 TWA5 TWA4 TWA3 TWA2 TWA1 TWA0 TWGCE 243

(0xB9) TWSR TWS7 TWS6 TWS5 TWS4 TWS3 – TWPS1 TWPS0 241

(0xB8) TWBR  2-wire Serial Interface Bit Rate Register 240

(0xB7) Reserved – – – – – – –

(0xB6) ASSR – EXCLK AS2 TCN2UB OCR2AUB OCR2BUB TCR2AUB TCR2BUB 164

(0xB5) Reserved – – – – – – – –

(0xB4) OCR2B Timer/Counter2 Output Compare Register B 162

(0xB3) OCR2A  Timer/Counter2 Output Compare Register A 162

(0xB2) TCNT2  Timer/Counter2 (8-bit) 162

(0xB1) TCCR2B FOC2A FOC2B – – WGM22 CS22 CS21 CS20 161

(0xB0) TCCR2A COM2A1 COM2A0 COM2B1 COM2B0 – – WGM21 WGM20 158

(0xAF) Reserved – – – – – – – –

(0xAE) Reserved – – – – – – – –

(0xAD) Reserved – – – – – – – –

(0xAC) Reserved – – – – – – – –

(0xAB) Reserved – – – – – – – –

(0xAA) Reserved – – – – – – – –

(0xA9) Reserved – – – – – – – –

(0xA8) Reserved – – – – – – – –

(0xA7) Reserved – – – – – – – –

(0xA6) Reserved – – – – – – – –

(0xA5) Reserved – – – – – – – –

31. Register Summary (Continued)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses 
should never be written.

2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these 
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI 
instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. 
The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O 
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The Atmel 
ATmega48PA/88PA/168PA is a complex microcontroller with more peripheral units than can be supported within the 64 
location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only 
the ST/STS/STD and LD/LDS/LDD instructions can be used.

5. Only valid for the Atmel ATmega48PA/88PA/168PA.

6. BODS and BODSE only available for picoPower devices ATmega48PA/88PA/168PA
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(0xA4) Reserved – – – – – – – –

(0xA3) Reserved – – – – – – – –

(0xA2) Reserved – – – – – – – –

(0xA1) Reserved – – – – – – – –

(0xA0) Reserved – – – – – – – –

(0x9F) Reserved – – – – – – – –

(0x9E) Reserved – – – – – – – –

(0x9D) Reserved – – – – – – – –

(0x9C) Reserved – – – – – – – –

(0x9B) Reserved – – – – – – – –

(0x9A) Reserved – – – – – – – –

(0x99) Reserved – – – – – – – –

(0x98) Reserved – – – – – – – –

(0x97) Reserved – – – – – – – –

(0x96) Reserved – – – – – – – –

(0x95) Reserved – – – – – – – –

(0x94) Reserved – – – – – – – –

(0x93) Reserved – – – – – – – –

(0x92) Reserved – – – – – – – –

(0x91) Reserved – – – – – – – –

(0x90) Reserved – – – – – – – –

(0x8F) Reserved – – – – – – – –

(0x8E) Reserved – – – – – – – –

(0x8D) Reserved – – – – – – – –

(0x8C) Reserved – – – – – – – –

(0x8B) OCR1BH Timer/Counter1 - Output Compare Register B High Byte 137

 (0x8A) OCR1BL Timer/Counter1 - Output Compare Register B Low Byte 137

(0x89) OCR1AH Timer/Counter1 - Output Compare Register A High Byte 137

(0x88) OCR1AL Timer/Counter1 - Output Compare Register A Low Byte 137

(0x87) ICR1H Timer/Counter1 - Input Capture Register High Byte 138

(0x86) ICR1L Timer/Counter1 - Input Capture Register Low Byte 138

(0x85) TCNT1H Timer/Counter1 - Counter Register High Byte 137

(0x84) TCNT1L Timer/Counter1 - Counter Register Low Byte 137

(0x83) Reserved – – – – – – – –

(0x82) TCCR1C FOC1A FOC1B – – – – – – 136

(0x81) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 135

(0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 – – WGM11 WGM10 133

(0x7F) DIDR1 – – – – – – AIN1D AIN0D 247

(0x7E) DIDR0 – – ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D 266

(0x7D) Reserved – – – – – – – –

(0x7C) ADMUX REFS1 REFS0 ADLAR – MUX3 MUX2 MUX1 MUX0 262

(0x7B) ADCSRB – ACME – – – ADTS2 ADTS1 ADTS0 265

(0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 263

(0x79) ADCH ADC Data Register High byte 265

(0x78) ADCL ADC Data Register Low byte 265

(0x77) Reserved – – – – – – – –

31. Register Summary (Continued)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses 
should never be written.

2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these 
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI 
instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. 
The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O 
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The Atmel 
ATmega48PA/88PA/168PA is a complex microcontroller with more peripheral units than can be supported within the 64 
location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only 
the ST/STS/STD and LD/LDS/LDD instructions can be used.

5. Only valid for the Atmel ATmega48PA/88PA/168PA.

6. BODS and BODSE only available for picoPower devices ATmega48PA/88PA/168PA
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(0x76) Reserved – – – – – – – –

(0x75) Reserved – – – – – – – –

(0x74) Reserved – – – – – – – –

(0x73) Reserved – – – – – – – –

(0x72) Reserved – – – – – – – –

(0x71) Reserved – – – – – – – –

(0x70) TIMSK2 – – – – – OCIE2B OCIE2A TOIE2 163

(0x6F) TIMSK1 – – ICIE1 – – OCIE1B OCIE1A TOIE1 138

(0x6E) TIMSK0 – – – – – OCIE0B OCIE0A TOIE0 109

(0x6D) PCMSK2 PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 72

(0x6C) PCMSK1 – PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 72

(0x6B) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 72

(0x6A) Reserved – – – – – – – –

(0x69) EICRA – – – – ISC11 ISC10 ISC01 ISC00 69

(0x68) PCICR – – – – – PCIE2 PCIE1 PCIE0

(0x67) Reserved – – – – – – – –

(0x66) OSCCAL Oscillator Calibration Register 37

(0x65) Reserved – – – – – – – –

(0x64) PRR PRTWI PRTIM2 PRTIM0 – PRTIM1 PRSPI PRUSART0 PRADC 42

(0x63) Reserved – – – – – – – –

(0x62) Reserved – – – – – – – –

(0x61) CLKPR CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 37

(0x60) WDTCSR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 56

0x3F (0x5F) SREG I T H S V N Z C 10

0x3E (0x5E) SPH – – – – – (SP10) 5. SP9 SP8 12

0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 12

0x3C (0x5C) Reserved – – – – – – – –

0x3B (0x5B) Reserved – – – – – – – –

0x3A (0x5A) Reserved – – – – – – – –

0x39 (0x59) Reserved – – – – – – – –

0x38 (0x58) Reserved – – – – – – – –

0x37 (0x57) SPMCSR SPMIE (RWWSB)5. – (RWWSRE)5. BLBSET PGWRT PGERS SELFPRGEN 292

0x36 (0x56) Reserved – – – – – – – –

0x35 (0x55) MCUCR – BODS(6) BODSE(6) PUD – – IVSEL IVCE 45/66/91

0x34 (0x54) MCUSR – – – – WDRF BORF EXTRF PORF 55

0x33 (0x53) SMCR – – – – SM2 SM1 SM0 SE 40

0x32 (0x52) Reserved – – – – – – – –

0x31 (0x51) Reserved – – – – – – – –

0x30 (0x50) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 245

0x2F (0x4F) Reserved – – – – – – – –

0x2E (0x4E) SPDR  SPI Data Register 175

0x2D (0x4D) SPSR SPIF WCOL – – – – – SPI2X 174

0x2C (0x4C) SPCR SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0 173

0x2B (0x4B) GPIOR2 General Purpose I/O Register 2 25

0x2A (0x4A) GPIOR1 General Purpose I/O Register 1 25

0x29 (0x49) Reserved – – – – – – – –

31. Register Summary (Continued)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses 
should never be written.

2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these 
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI 
instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. 
The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O 
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The Atmel 
ATmega48PA/88PA/168PA is a complex microcontroller with more peripheral units than can be supported within the 64 
location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only 
the ST/STS/STD and LD/LDS/LDD instructions can be used.

5. Only valid for the Atmel ATmega48PA/88PA/168PA.

6. BODS and BODSE only available for picoPower devices ATmega48PA/88PA/168PA
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0x28 (0x48) OCR0B  Timer/Counter0 Output Compare Register B

0x27 (0x47) OCR0A  Timer/Counter0 Output Compare Register A

0x26 (0x46) TCNT0  Timer/Counter0 (8-bit)

0x25 (0x45) TCCR0B FOC0A FOC0B – – WGM02 CS02 CS01 CS00

0x24 (0x44) TCCR0A COM0A1 COM0A0 COM0B1 COM0B0 – – WGM01 WGM00

0x23 (0x43) GTCCR TSM – – – – – PSRASY PSRSYNC 142/165 

0x22 (0x42) EEARH (EEPROM Address Register High Byte) 5. 21

0x21 (0x41) EEARL EEPROM Address Register Low Byte 21

0x20 (0x40) EEDR EEPROM Data Register 21

0x1F (0x3F) EECR – – EEPM1 EEPM0 EERIE EEMPE EEPE EERE 21

0x1E (0x3E) GPIOR0 General Purpose I/O Register 0 25

0x1D (0x3D) EIMSK – – – – – – INT1 INT0 70

0x1C (0x3C) EIFR – – – – – – INTF1 INTF0 70

0x1B (0x3B) PCIFR – – – – – PCIF2 PCIF1 PCIF0

0x1A (0x3A) Reserved – – – – – – – –

0x19 (0x39) Reserved – – – – – – – –

0x18 (0x38) Reserved – – – – – – – –

0x17 (0x37) TIFR2 – – – – – OCF2B OCF2A TOV2 163

0x16 (0x36) TIFR1 – – ICF1 – – OCF1B OCF1A TOV1 139

0x15 (0x35) TIFR0 – – – – – OCF0B OCF0A TOV0

0x14 (0x34) Reserved – – – – – – – –

0x13 (0x33) Reserved – – – – – – – –

0x12 (0x32) Reserved – – – – – – – –

0x11 (0x31) Reserved – – – – – – – –

0x10 (0x30) Reserved – – – – – – – –

0x0F (0x2F) Reserved – – – – – – – –

0x0E (0x2E) Reserved – – – – – – – –

0x0D (0x2D) Reserved – – – – – – – –

0x0C (0x2C) Reserved – – – – – – – –

0x0B (0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 92

0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 92

0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 92

0x08 (0x28) PORTC – PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 91

0x07 (0x27) DDRC – DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 91

0x06 (0x26) PINC – PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 91

0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 91

0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 91

0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 91

0x02 (0x22) Reserved – – – – – – – –

0x01 (0x21) Reserved – – – – – – – –

0x0 (0x20) Reserved – – – – – – – –

31. Register Summary (Continued)
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses 
should never be written.

2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these 
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.

3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI 
instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. 
The CBI and SBI instructions work with registers 0x00 to 0x1F only.

4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O 
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The Atmel 
ATmega48PA/88PA/168PA is a complex microcontroller with more peripheral units than can be supported within the 64 
location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only 
the ST/STS/STD and LD/LDS/LDD instructions can be used.

5. Only valid for the Atmel ATmega48PA/88PA/168PA.

6. BODS and BODSE only available for picoPower devices ATmega48PA/88PA/168PA
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32. Instruction Set Summary
Mnemonics Operands Description Operation Flags #Clocks

ARITHMETIC AND LOGIC INSTRUCTIONS

ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H 1

ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1

ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2

SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1

SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1

SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1

SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1

SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2

AND Rd, Rr Logical AND Registers Rd ← Rd •  Rr Z,N,V 1

ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1

OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1

ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1

EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1

COM Rd One’s Complement Rd ← 0xFF − Rd Z,C,N,V 1

NEG Rd Two’s Complement Rd ← 0x00 − Rd Z,C,N,V,H 1

SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1

CBR Rd,K Clear Bit(s) in Register Rd ← Rd •  (0xFF - K) Z,N,V 1

INC Rd Increment Rd ← Rd + 1 Z,N,V 1

DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1

TST Rd Test for Zero or Minus Rd ← Rd •  Rd Z,N,V 1

CLR Rd Clear Register Rd  ← Rd ⊕ Rd Z,N,V 1

SER Rd Set Register Rd ← 0xFF None 1

MUL Rd, Rr Multiply Unsigned R1:R0 ← Rd x Rr Z,C 2

MULS Rd, Rr Multiply Signed R1:R0 ← Rd x Rr Z,C 2

MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr Z,C 2

FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2

FMULS Rd, Rr Fractional Multiply Signed R1:R0 ← (Rd x Rr) << 1 Z,C 2

FMULSU Rd, Rr Fractional Multiply Signed with Unsigned R1:R0 ← (Rd x Rr) << 1 Z,C 2

BRANCH INSTRUCTIONS

RJMP k Relative Jump PC ← PC + k  + 1 None 2

IJMP Indirect Jump to (Z) PC ← Z None 2

JMP(1) k Direct Jump PC ← k None 3

RCALL k Relative Subroutine Call PC ← PC + k + 1 None 3

ICALL Indirect Call to (Z) PC ← Z None 3

CALL(1) k Direct Subroutine Call PC ← k None 4

RET Subroutine Return PC ← STACK None 4

RETI Interrupt Return PC ← STACK I 4

CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1/2/3

CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1 

CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1

CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H 1

SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1/2/3

SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1/2/3

SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1/2/3

SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3

BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1/2

BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1/2

BREQ  k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1/2

BRNE  k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2

BRCS  k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1/2

BRCC  k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2

BRSH  k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2

BRLO  k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1/2

BRMI  k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1/2

BRPL  k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1/2

BRGE  k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1/2

BRLT  k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1/2

BRHS  k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1/2

BRHC  k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1/2

BRTS  k Branch if T Flag Set if (T = 1) then PC ← PC + k  + 1 None 1/2

BRTC  k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1/2

Note: 1. These instructions are only available in the Atmel ATmega168PA.
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BRVS  k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1/2

BRVC  k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1/2

BRIE  k Branch if Interrupt Enabled if ( I = 1) then PC ← PC + k + 1 None 1/2

BRID  k Branch if Interrupt Disabled if ( I = 0) then PC ← PC + k + 1 None 1/2

BIT AND BIT-TEST INSTRUCTIONS

SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None 2

CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None 2

LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1

LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1

ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Z,C,N,V 1

ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Z,C,N,V 1

ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0...6 Z,C,N,V 1

SWAP Rd Swap Nibbles Rd(3...0)←Rd(7...4),Rd(7...4)←Rd(3...0) None 1

BSET s Flag Set SREG(s) ← 1 SREG(s) 1

BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1

BST Rr, b Bit Store from Register to T T ← Rr(b) T 1

BLD Rd, b Bit load from T to Register Rd(b) ← T None 1

SEC Set Carry C ← 1 C 1

CLC Clear Carry C ← 0 C 1

SEN Set Negative Flag N ← 1 N 1

CLN Clear Negative Flag N ← 0 N 1

SEZ Set Zero Flag Z ← 1 Z 1

CLZ Clear Zero Flag Z ← 0 Z 1

SEI Global Interrupt Enable I ← 1 I 1

CLI Global Interrupt Disable I ← 0 I 1

SES Set Signed Test Flag S ← 1 S 1

CLS Clear Signed Test Flag S ← 0 S 1

SEV Set Twos Complement Overflow. V ← 1 V 1

CLV Clear Twos Complement Overflow V ← 0 V 1

SET Set T in SREG T ← 1 T 1

CLT Clear T in SREG T ← 0 T 1

SEH Set Half Carry Flag in SREG H ← 1 H 1

CLH Clear Half Carry Flag in SREG H ← 0 H 1

DATA TRANSFER INSTRUCTIONS

MOV Rd, Rr Move Between Registers Rd ← Rr None 1

MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None 1

LDI Rd, K Load Immediate Rd  ← K None 1

LD Rd, X Load Indirect Rd ← (X) None 2

LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2

LD Rd, - X Load Indirect and Pre-Dec. X ← X - 1, Rd ← (X) None 2

LD Rd, Y Load Indirect Rd ← (Y) None 2

LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2

LD Rd, - Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) None 2

LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2

LD Rd, Z Load Indirect Rd ← (Z) None 2

LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2

LD Rd, -Z Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) None 2

LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2

LDS Rd, k Load Direct from SRAM Rd  ← (k) None 2

ST X, Rr Store Indirect (X) ← Rr None 2

ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None 2

ST - X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr None 2

ST Y, Rr Store Indirect (Y) ← Rr None 2

ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None 2

ST - Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr None 2

STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2

ST Z, Rr Store Indirect (Z) ← Rr None 2

ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None 2

ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr None 2

STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2

STS k, Rr Store Direct to SRAM (k) ← Rr None 2

LPM Load Program Memory R0 ← (Z) None 3

LPM Rd, Z Load Program Memory Rd ← (Z) None 3

32. Instruction Set Summary (Continued)
Mnemonics Operands Description Operation Flags #Clocks

Note: 1. These instructions are only available in the Atmel ATmega168PA.
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LPM Rd, Z+ Load Program Memory and Post-Inc Rd ← (Z), Z ← Z+1 None 3

SPM Store Program Memory (Z) ← R1:R0 None -

IN Rd, P In Port Rd ← P None 1

OUT P, Rr Out Port P ← Rr None 1

PUSH Rr Push Register on Stack STACK ← Rr None 2

POP Rd Pop Register from Stack Rd ← STACK None 2

MCU CONTROL INSTRUCTIONS

NOP No Operation None 1

SLEEP Sleep (see specific descr. for Sleep function) None 1

WDR Watchdog Reset (see specific descr. for WDR/timer) None 1

BREAK Break For On-chip Debug Only None N/A

32. Instruction Set Summary (Continued)
Mnemonics Operands Description Operation Flags #Clocks

Note: 1. These instructions are only available in the Atmel ATmega168PA.
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33. Ordering Information

33.1 ATmega48PA/88PA/168PA
Speed (MHz) Power Supply (V) Ordering Code Package(1) Operational Range

16(2) 2.7 - 5.5

ATmega48PA-15AZ
ATmega48PA-15MZ

MA
PN

Automotive
(-40°C to 125°C)

ATmega88PA-15AZ

ATmega88PA-15MZ

MA

PN

ATmega168PA-15AZ

ATmega168PA-15MZ

MA

PN

Notes: 1. Pb-free packaging complies to the European Directive for Restriction of Hazardous Substances (RoHS directive).Also 
Halide free and fully Green.

2. See “Speed Grades” on page 315.

Package Type

MA
MA, 32 - Lead, 7x7 mm Body Size, 1.0 mm Body Thickness 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat
Package (TQFP)

PN PN, 32-Lead, 5.0x5.0 mm Body, 0.50 mm, Quad Flat No Lead Package (QFN)



365
9223D–AVR–05/12

Atmel ATmega48PA/88PA/168PA

34. Packaging Information

34.1 MA 



366
9223D–AVR–05/12

Atmel ATmega48PA/88PA/168PA

34.2 PN 
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35. Errata

35.1 Errata ATmega48PA
The revision letter in this section refers to the revision of the ATmega48PA/88PA/168PA
device.

35.1.1 Rev. D
• Analog MUX can be turned off when setting ACME bit

1. Analog MUX can be turned off when setting ACME bit

If the ACME (Analog Comparator Multiplexer Enabled) bit in ADCSRB is set while MUX3
in ADMUX is '1' (ADMUX[3:0]=1xxx), all MUX'es are turned off until the ACME bit is
cleared.

Problem Fix/Workaround
Clear the MUX3 bit before setting the ACME bit.

35.2 Errata Atmel ATmega88PA
The revision letter in this section refers to the revision of the Atmel ATmega88PA device.

35.2.1 Rev. F
• Analog MUX can be turned off when setting ACME bit

1. Analog MUX can be turned off when setting ACME bit

If the ACME (Analog Comparator Multiplexer Enabled) bit in ADCSRB is set while MUX3
in ADMUX is '1' (ADMUX[3:0]=1xxx), all MUX'es are turned off until the ACME bit is
cleared.

Problem Fix/Workaround
Clear the MUX3 bit before setting the ACME bit.

35.3 Errata Atmel ATmega168PA
The revision letter in this section refers to the revision of the Atmel ATmega168PA device.

35.3.1 Rev E
• Analog MUX can be turned off when setting ACME bit

1. Analog MUX can be turned off when setting ACME bit

If the ACME (Analog Comparator Multiplexer Enabled) bit in ADCSRB is set while MUX3
in ADMUX is '1' (ADMUX[3:0]=1xxx), all MUX'es are turned off until the ACME bit is
cleared.

Problem Fix/Workaround
Clear the MUX3 bit before setting the ACME bit.
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36. Datasheet Revision History
Please note that the referring page numbers in this section are referred to this document. The
referring revision in this section are referring to the document revision.

36.1 Rev. 9223D – 05/12
• Set datasheet from “Preliminary” to “Standard”

36.2 Rev. 9223C – 02/12
• Features on page 1 updated

• Figure 25-1 “The debugWIRE Setup” on page 267 updated

• Section 28.8 “Serial Downloading” on page 309 updated

• Section 29.2 “DC Characteristics” on pages 315 to 316 updated

• Section 29.3 “Speed Grades” on page 316 updated

• Section 29.4 “Clock Characteristics” on page 317 updated

• Section 29.5 “System and Reset Characteristics” on page 318 updated

• Section 29.8 “ADC Characteristics” on page 322 updated

• Section 30.1.5 “I/O Pin Output Voltage versus Sink Current (VCC = 1.8V)” on pages 329 to 
330 updated

• Section 30.2.6 “Pin Driver Strength” on pages 340 to 341 updated

• Section 30.3.6 “Pin Driver Strength” on pages 350 to 351 updated

• Section 33 “Ordering Information” on page 365 updated

36.3 Rev. 9223B – 09/11
• ADC characteristics updated

• Temperature sensor updated

36.4 Rev. 9223A – 08/11
• Creation of the automotive version starting from industrial version based on the Atmel 

ATmega48PA/88PA/168PA datasheet 8271C-AVR-08/10. Temperature and voltage ranges 
reflecting Automotive requirements.
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Application 1. The ACS712 outputs an analog signal, VOUT . 
that varies linearly with the uni- or bi-directional AC or DC 
primary sampled current, IP , within the range specified. CF 
is recommended for noise management, with values that 
depend on the application.

ACS712

Description
The Allegro® ACS712 provides economical and precise 
solutions for AC or DC current sensing in industrial,  commercial, 
and communications systems. The device package allows for 
easy implementation by the customer. Typical applications 
include motor control, load detection and management, switch-
mode power supplies, and overcurrent fault protection. The 
device is not intended for automotive applications.

The device consists of a precise, low-offset, linear Hall circuit 
with a copper conduction path located near the surface of the 
die. Applied current flowing through this copper conduction 
path generates a magnetic field which the Hall IC converts into a 
proportional voltage. Device accuracy is optimized through the 
close proximity of the magnetic signal to the Hall transducer. 
A precise, proportional voltage is provided by the low-offset, 
chopper-stabilized BiCMOS Hall IC, which is programmed 
for accuracy after packaging.

The output of the device has a positive slope (>VIOUT(Q)) 
when an increasing current flows through the primary copper 
conduction path (from pins 1 and 2, to pins 3 and 4), which is 
the path used for current sampling. The internal resistance of 
this conductive path is 1.2 mΩ typical, providing low power 
loss. The thickness of the copper conductor allows survival of 

ACS712-DS, Rev. 14

Features and Benefits
▪ Low-noise analog signal path
▪ Device bandwidth is set via the new FILTER pin
▪ 5 μs output rise time in response to step input current
▪ 80 kHz bandwidth
▪ Total output error 1.5% at TA = 25°C
▪ Small footprint, low-profile SOIC8 package
▪ 1.2 mΩ internal conductor resistance
▪ 2.1 kVRMS minimum isolation voltage from pins 1-4 to pins 5-8
▪ 5.0 V, single supply operation
▪ 66 to 185 mV/A output sensitivity
▪ Output voltage proportional to AC or DC currents
▪ Factory-trimmed for accuracy
▪ Extremely stable output offset voltage
▪ Nearly zero magnetic hysteresis
▪ Ratiometric output from supply voltage

Fully Integrated, Hall Effect-Based Linear Current Sensor IC 
with 2.1 kVRMS Isolation and a Low-Resistance Current Conductor

Continued on the next page…

Approximate Scale 1:1

Package: 8 Lead SOIC (suffix LC)

Typical Application

TÜV America
Certificate Number:
U8V 06 05 54214 010



Fully Integrated, Hall Effect-Based Linear Current Sensor IC 
with 2.1 kVRMS Isolation and a Low-Resistance Current ConductorACS712

2Allegro MicroSystems, Inc.
115 Northeast Cutoff
Worcester, Massachusetts 01615-0036 U.S.A.
1.508.853.5000; www.allegromicro.com

Absolute Maximum Ratings
Characteristic Symbol Notes Rating Units

Supply Voltage VCC 8 V

Reverse Supply Voltage VRCC –0.1 V

Output Voltage VIOUT 8 V

Reverse Output Voltage VRIOUT –0.1 V

Reinforced Isolation Voltage VISO

Pins 1-4 and 5-8; 60 Hz, 1 minute, TA=25°C 2100 VAC

Maximum working voltage according to 
UL60950-1 184 Vpeak

Basic Isolation Voltage VISO(bsc)

Pins 1-4 and 5-8; 60 Hz, 1 minute, TA=25°C 1500 VAC

Maximum working voltage according to 
UL60950-1 354 Vpeak

Output Current Source IIOUT(Source)  3 mA

Output Current Sink IIOUT(Sink) 10 mA

Overcurrent Transient Tolerance IP 1 pulse, 100 ms 100 A

Nominal Operating Ambient Temperature TA Range E –40 to 85 ºC

Maximum Junction Temperature TJ(max) 165 ºC

Storage Temperature Tstg –65 to 170 ºC

Selection Guide

Part Number Packing* TA 
(°C)

Optimized Range, IP
(A)

Sensitivity, Sens 
(Typ) (mV/A)

ACS712ELCTR-05B-T Tape and reel, 3000 pieces/reel –40 to 85 ±5 185

ACS712ELCTR-20A-T Tape and reel, 3000 pieces/reel –40 to 85 ±20 100

ACS712ELCTR-30A-T Tape and reel, 3000 pieces/reel –40 to 85 ±30 66

*Contact Allegro for additional packing options.

the device at up to 5× overcurrent conditions. The terminals of the 
conductive path are electrically isolated from the signal leads (pins 
5 through 8). This allows the ACS712 to be used in applications 
requiring electrical isolation without the use of opto-isolators or 
other costly isolation techniques.

The ACS712 is provided in a small, surface mount SOIC8 package. 
The leadframe is plated with 100% matte tin, which is compatible 
with standard lead (Pb) free printed circuit board assembly processes. 
Internally, the device is Pb-free, except for flip-chip high-temperature 
Pb-based solder balls, currently exempt from RoHS. The device is 
fully calibrated prior to shipment from the factory.

Description (continued)

Parameter Specification

Fire and Electric Shock
CAN/CSA-C22.2 No. 60950-1-03

UL 60950-1:2003
EN 60950-1:2001
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Terminal List Table
Number Name Description

1 and 2 IP+ Terminals for current being sampled; fused internally

3 and 4 IP– Terminals for current being sampled; fused internally

5 GND Signal ground terminal

6 FILTER Terminal for external capacitor that sets bandwidth

7 VIOUT Analog output signal

8 VCC Device power supply terminal

Functional Block Diagram

Pin-out Diagram
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COMMON OPERATING CHARACTERISTICS1 over full range of TA , CF = 1 nF, and VCC = 5 V, unless otherwise specified
Characteristic Symbol Test Conditions Min. Typ. Max. Units

ELECTRICAL CHARACTERISTICS
Supply Voltage VCC 4.5 5.0 5.5 V
Supply Current ICC VCC = 5.0 V, output open – 10 13 mA
Output Capacitance Load CLOAD VIOUT to GND – – 10 nF
Output Resistive Load RLOAD VIOUT to GND 4.7 – – kΩ
Primary Conductor Resistance RPRIMARY TA = 25°C – 1.2 – mΩ
Rise Time tr IP = IP(max), TA = 25°C, COUT = open – 5 – μs
Frequency Bandwidth f –3 dB, TA = 25°C; IP is 10 A peak-to-peak – 80 – kHz
Nonlinearity ELIN Over full range of IP – 1.5 – %
Symmetry ESYM Over full range of IP 98 100 102 %

Zero Current Output Voltage VIOUT(Q) Bidirectional; IP = 0 A, TA = 25°C – VCC  × 
0.5 – V

Power-On Time tPO
Output reaches 90% of steady-state level, TJ = 25°C, 20 A present 
on leadframe – 35 – μs

Magnetic Coupling2 – 12 – G/A
Internal Filter Resistance3 RF(INT) 1.7 kΩ
1Device may be operated at higher primary current levels, IP, and ambient, TA , and internal leadframe temperatures, TA , provided that the Maximum 
Junction Temperature, TJ(max), is not exceeded.
21G = 0.1 mT. 
3RF(INT) forms an RC circuit via the FILTER pin.

COMMON THERMAL CHARACTERISTICS1

Min. Typ. Max. Units
Operating Internal Leadframe Temperature TA E range –40 – 85 °C

Value Units
Junction-to-Lead Thermal Resistance2 RθJL Mounted on the Allegro ASEK 712 evaluation board 5 °C/W

Junction-to-Ambient Thermal Resistance RθJA
Mounted on the Allegro 85-0322 evaluation board, includes the power con-
sumed by the board 23 °C/W

1Additional thermal information is available on the Allegro website.
2The Allegro evaluation board has 1500 mm2 of 2 oz. copper on each side, connected to pins 1 and 2, and to pins 3 and 4, with thermal vias connect-
ing the layers. Performance values include the power consumed by the PCB.  Further details on the board are available from the Frequently Asked 
Questions document on our website. Further information about board design and thermal performance also can be found in the Applications Informa-
tion section of this datasheet.
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x05B PERFORMANCE CHARACTERISTICS1 TA = –40°C to 85°C, CF = 1 nF, and VCC = 5 V, unless otherwise specified
Characteristic Symbol Test Conditions Min. Typ. Max. Units

Optimized Accuracy Range IP –5 – 5 A
Sensitivity Sens Over full range of IP, TA = 25°C 180 185 190 mV/A

Noise VNOISE(PP)
Peak-to-peak, TA = 25°C, 185 mV/A programmed Sensitivity, 
CF = 47 nF, COUT = open, 2 kHz bandwidth – 21 – mV

Zero Current Output Slope ∆IOUT(Q)
TA = –40°C to 25°C – –0.26 – mV/°C
TA = 25°C to 150°C – –0.08 – mV/°C

Sensitivity Slope ∆Sens
TA = –40°C to 25°C –   0.054 – mV/A/°C
TA = 25°C to 150°C – –0.008 – mV/A/°C

Total Output Error2 ETOT IP =±5 A, TA = 25°C – ±1.5 – %
1Device may be operated at higher primary current levels, IP, and ambient temperatures, TA, provided that the Maximum Junction Temperature, TJ(max), 
is not exceeded.
2Percentage of IP, with IP = 5 A. Output filtered.

x20A PERFORMANCE CHARACTERISTICS1 TA = –40°C to 85°C, CF = 1 nF, and VCC = 5 V, unless otherwise specified
Characteristic Symbol Test Conditions Min. Typ. Max. Units

Optimized Accuracy Range IP –20 – 20 A
Sensitivity Sens Over full range of IP, TA = 25°C 96 100 104 mV/A

Noise VNOISE(PP)
Peak-to-peak, TA = 25°C, 100 mV/A programmed Sensitivity, 
CF = 47 nF, COUT = open, 2 kHz bandwidth – 11 – mV

Zero Current Output Slope ∆IOUT(Q)
TA = –40°C to 25°C – –0.34 – mV/°C
TA = 25°C to 150°C – –0.07 – mV/°C

Sensitivity Slope ∆Sens
TA = –40°C to 25°C –   0.017 – mV/A/°C
TA = 25°C to 150°C – –0.004 – mV/A/°C

Total Output Error2 ETOT IP =±20 A, TA = 25°C – ±1.5 – %
1Device may be operated at higher primary current levels, IP, and ambient temperatures, TA, provided that the Maximum Junction Temperature, 
TJ(max), is not exceeded.
2Percentage of IP, with IP = 20 A. Output filtered.

x30A PERFORMANCE CHARACTERISTICS1 TA = –40°C to 85°C, CF = 1 nF, and VCC = 5 V, unless otherwise specified
Characteristic Symbol Test Conditions Min. Typ. Max. Units

Optimized Accuracy Range IP –30 – 30 A
Sensitivity Sens Over full range of IP , TA = 25°C 63 66 69 mV/A

Noise VNOISE(PP)
Peak-to-peak, TA = 25°C, 66 mV/A programmed Sensitivity, 
CF = 47 nF, COUT = open, 2 kHz bandwidth – 7 – mV

Zero Current Output Slope ∆IOUT(Q)
TA = –40°C to 25°C – –0.35 – mV/°C
TA = 25°C to 150°C – –0.08 – mV/°C

Sensitivity Slope ∆Sens
TA = –40°C to 25°C –   0.007 – mV/A/°C
TA = 25°C to 150°C – –0.002 – mV/A/°C

Total Output Error2 ETOT IP = ±30 A , TA = 25°C – ±1.5 – %
1Device may be operated at higher primary current levels, IP, and ambient temperatures, TA, provided that the Maximum Junction Temperature, 
TJ(max), is not exceeded.
2Percentage of IP, with IP = 30 A. Output filtered.
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IP = 5 A, unless otherwise specified
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Characteristic Performance
IP = 30 A, unless otherwise specified
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Sensitivity (Sens). The change in device output in response to a 
1 A change through the primary conductor. The sensitivity is the 
product of the magnetic circuit sensitivity (G / A) and the linear 
IC amplifier gain (mV/G). The linear IC amplifier gain is pro-
grammed at the factory to optimize the sensitivity (mV/A) for the 
full-scale current of the device.

Noise (VNOISE). The product of the linear IC amplifier gain 
(mV/G) and the noise floor for the Allegro Hall effect linear IC 
(≈1 G).  The noise floor is derived from the thermal and shot 
noise observed in Hall elements. Dividing the noise (mV) by the 
sensitivity (mV/A) provides the smallest current that the device is 
able to resolve.   

Linearity (ELIN). The degree to which the voltage output from 
the IC varies in direct proportion to the primary current through 
its full-scale amplitude. Nonlinearity in the output can be attrib-
uted to the saturation of the flux concentrator approaching the 
full-scale current. The following equation is used to derive the 
linearity: 

where VIOUT_full-scale amperes = the output voltage (V) when the 
sampled current approximates full-scale ±IP .

Symmetry (ESYM).  The degree to which the absolute voltage 
output from the IC varies in proportion to either a positive or 
negative full-scale primary current. The following formula is 
used to derive symmetry:

Quiescent output voltage (VIOUT(Q)). The output of the device 
when the primary current is zero.  For a unipolar supply voltage, 
it nominally remains at VCC ⁄ 2.  Thus, VCC = 5 V translates into 
VIOUT(Q) = 2.5 V. Variation in VIOUT(Q) can be attributed to the 
resolution of the Allegro linear IC quiescent voltage trim and 
thermal drift.

Electrical offset voltage (VOE). The deviation of the device out-
put from its ideal quiescent value of VCC / 2 due to nonmagnetic 
causes. To convert this voltage to amperes, divide by the device 
sensitivity, Sens. 

Accuracy (ETOT). The accuracy represents the maximum devia-
tion of the actual output from its ideal value.  This is also known 
as the total output error.  The accuracy is illustrated graphically in 
the output voltage versus current chart at right.

Accuracy is divided into four areas:

 0 A at 25°C. Accuracy at the zero current flow at 25°C, with-
out the effects of temperature.

 0 A over Δ temperature. Accuracy at the zero current flow 
including temperature effects.

 Full-scale current at 25°C. Accuracy at the the full-scale current 
at 25°C, without the effects of temperature.

 Full-scale current over Δ temperature. Accuracy at the full-
scale current flow including temperature effects.

Ratiometry. The ratiometric feature means that its 0 A output, 
VIOUT(Q), (nominally equal to VCC/2) and sensitivity, Sens, are 
proportional to its supply voltage, VCC . The following formula is 
used to derive the ratiometric change in 0 A output voltage,
VIOUT(Q)RAT (%).

The ratiometric change in sensitivity, SensRAT (%), is defined as:

Definitions of Accuracy Characteristics

100 1– [{ [ {VIOUT_full-scale amperes –  VIOUT(Q)Δ gain × % sat ( )
2 (VIOUT_half-scale amperes –   VIOUT(Q) )

100
VIOUT_+ full-scale amperes –     VIOUT(Q)

VIOUT(Q) – VIOUT_–full-scale amperes 

100
VIOUT(Q)VCC / VIOUT(Q)5V

VCC / 5 V 

100

SensVCC / Sens5V
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Power on Time versus External Filter Capacitance
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Definitions of Dynamic Response Characteristics

Primary Current

Transducer Output

90

10
0

I (%)

Rise Time, tr
t

Rise time (tr). The time interval between a) when the device 
reaches 10% of its full scale value, and b) when it reaches 90% 
of its full scale value. The rise time to a step response is used to 
derive the bandwidth of the device, in which ƒ(–3 dB) = 0.35 / tr. 
Both tr and tRESPONSE are detrimentally affected by eddy current 
losses observed in the conductive IC ground plane.

Excitation Signal

Output (mV)

15 A 

Step Response

TA=25°C

CF (nF) tr (μs)

 0  6.6
 1  7.7
 4.7  17.4
 10  32.1
 22  68.2
 47  88.2
 100  291.3
 220  623.0
 470  1120.0

Power-On Time (tPO). When the supply is ramped to its operat-
ing voltage, the device requires a finite time to power its internal 
components before responding to an input magnetic field.
Power-On Time, tPO , is defined as the time it takes for the output 
voltage to settle within ±10% of its steady state value under an 
applied magnetic field, after the power supply has reached its 
minimum specified operating voltage, VCC(min), as shown in the 
chart at right.
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Chopper Stabilization is an innovative circuit technique that is 
used to minimize the offset voltage of a Hall element and an asso-
ciated on-chip amplifier.  Allegro patented a Chopper Stabiliza-
tion technique that nearly eliminates Hall IC output drift induced 
by temperature or package stress effects. This offset reduction 
technique is based on a signal modulation-demodulation process. 
Modulation is used to separate the undesired DC offset signal 
from the magnetically induced signal in the frequency domain.  
Then, using a low-pass filter, the modulated DC offset is sup-
pressed while the magnetically induced signal passes through 

the filter.  As a result of this chopper stabilization approach, the 
output voltage from the Hall IC is desensitized to the effects 
of temperature and mechanical stress. This technique produces 
devices that have an extremely stable Electrical Offset Voltage, 
are immune to thermal stress, and have precise recoverability 
after temperature cycling.  

This technique is made possible through the use of a BiCMOS 
process that allows the use of low-offset and low-noise amplifiers 
in combination with high-density logic integration and sample 
and hold circuits.  

Chopper Stabilization Technique

Amp
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Clock/Logic

Hall Element

S
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e 
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Filter

Concept of Chopper Stabilization Technique
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Typical Applications

Application 5. 10 A Overcurrent Fault Latch. Fault threshold set by R1 and 
R2. This circuit latches an overcurrent fault and holds it until the 5 V rail is 
powered down.

Application 2. Peak Detecting Circuit

Application 4. Rectified Output. 3.3 V scaling and rectification application 
for A-to-D converters. Replaces current transformer solutions with simpler 
ACS circuit. C1 is a function of the load resistance and filtering desired. 
R1 can be omitted if the full range is desired.
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Application 3. This configuration increases gain to 610 mV/A 
(tested using the ACS712ELC-05A).
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Improving Sensing System Accuracy Using the FILTER Pin

In low-frequency sensing applications, it is often advantageous 
to add a simple RC filter to the output of the device. Such a low-
pass filter improves the signal-to-noise ratio, and therefore the 
resolution, of the device output signal. However, the addition of 
an RC filter to the output of a sensor IC can result in undesirable 
device output attenuation — even for DC signals. 

Signal attenuation, ∆VATT , is a result of the resistive divider 
effect between the resistance of the external filter, RF (see 
Application 6), and the input impedance and resistance of the 
customer interface circuit, RINTFC. The transfer function of this 
resistive divider is given by:

Even if RF and RINTFC are designed to match, the two individual 
resistance values will most likely drift by different amounts over 

temperature. Therefore, signal attenuation will vary as a function 
of temperature. Note that, in many cases, the input impedance, 
RINTFC , of a typical analog-to-digital converter (ADC) can be as 
low as 10 kΩ.

The ACS712 contains an internal resistor, a FILTER pin connec-
tion to the printed circuit board, and an internal buffer amplifier. 
With this circuit architecture, users can implement a simple 
RC filter via the addition of a capacitor, CF (see Application 7) 
from the FILTER pin to ground. The buffer amplifier inside of 
the ACS712 (located after the internal resistor and FILTER pin 
connection) eliminates the attenuation caused by the resistive 
divider effect described in the equation for ∆VATT. Therefore, the 
ACS712 device is ideal for use in high-accuracy applications 
that cannot afford the signal attenuation associated with the use 
of an external RC low-pass filter.

=∆VATT
RINTFC

RF + RINTFC
VIOUT ⎟

⎠

⎞
⎜⎜
⎝

⎛ .

Application 6. When a low pass filter is constructed 
externally to a standard Hall effect device, a resistive 
divider may exist between the filter resistor, RF, and 
the resistance of the customer interface circuit, RINTFC. 
This resistive divider will cause excessive attenuation, 
as given by the transfer function for ∆VATT.

Application 7. Using the FILTER pin 
provided on the ACS712 eliminates the 
attenuation effects of the resistor divider 
between RF and RINTFC, shown in Appli-
cation 6.
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FEATURES
� Real-time clock (RTC) counts seconds,

minutes, hours, date of the month, month, day
of the week, and year with leap-year
compensation valid up to 2100

� 56-byte, battery-backed, nonvolatile (NV)
RAM for data storage

� Two-wire serial interface
� Programmable squarewave output signal
� Automatic power-fail detect and switch

circuitry
� Consumes less than 500nA in battery backup

mode with oscillator running
� Optional industrial temperature range:

-40°C to +85°C
� Available in 8-pin DIP or SOIC
� Underwriters Laboratory (UL) recognized

ORDERING INFORMATION
DS1307 8-Pin DIP (300-mil)
DS1307Z 8-Pin SOIC (150-mil)
DS1307N 8-Pin DIP (Industrial)
DS1307ZN 8-Pin SOIC (Industrial)

PIN ASSIGNMENT

PIN DESCRIPTION
VCC - Primary Power Supply
X1, X2 - 32.768kHz Crystal Connection
VBAT - +3V Battery Input
GND - Ground
SDA - Serial Data
SCL - Serial Clock
SQW/OUT - Square Wave/Output Driver

DESCRIPTION
The DS1307 Serial Real-Time Clock is a low-power, full binary-coded decimal (BCD) clock/calendar
plus 56 bytes of NV SRAM.  Address and data are transferred serially via a 2-wire, bi-directional bus.
The clock/calendar provides seconds, minutes, hours, day, date, month, and year information.  The end of
the month date is automatically adjusted for months with fewer than 31 days, including corrections for
leap year.  The clock operates in either the 24-hour or 12-hour format with AM/PM indicator.  The
DS1307 has a built-in power sense circuit that detects power failures and automatically switches to the
battery supply.

DS1307
64 x 8 Serial Real-Time Clock

www.maxim-ic.com

DS1307 8-Pin SOIC (150-mil)

DS1307 8-Pin DIP (300-mil)
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OPERATION
The DS1307 operates as a slave device on the serial bus.  Access is obtained by implementing a START
condition and providing a device identification code followed by a register address.  Subsequent registers
can be accessed sequentially until a STOP condition is executed.  When VCC falls below 1.25 x VBAT the
device terminates an access in progress and resets the device address counter.  Inputs to the device will
not be recognized at this time to prevent erroneous data from being written to the device from an out of
tolerance system.  When VCC falls below VBAT the device switches into a low-current battery backup
mode.  Upon power-up, the device switches from battery to VCC when VCC is greater than VBAT  + 0.2V
and recognizes inputs when VCC is greater than 1.25 x VBAT.  The block diagram in Figure 1 shows the
main elements of the serial RTC.

DS1307 BLOCK DIAGRAM Figure 1

TYPICAL OPERATING CIRCUIT
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SIGNAL DESCRIPTIONS
VCC, GND – DC power is provided to the device on these pins.  VCC is the +5V input.  When 5V is
applied within normal limits, the device is fully accessible and data can be written and read.  When a 3V
battery is connected to the device and VCC is below 1.25 x VBAT, reads and writes are inhibited.  However,
the timekeeping function continues unaffected by the lower input voltage.  As VCC falls below VBAT the
RAM and timekeeper are switched over to the external power supply (nominal 3.0V DC) at VBAT.

VBAT – Battery input for any standard 3V lithium cell or other energy source.  Battery voltage must be
held between 2.0V and 3.5V for proper operation.  The nominal write protect trip point voltage at which
access to the RTC and user RAM is denied is set by the internal circuitry as 1.25 x VBAT nominal.  A
lithium battery with 48mAhr or greater will back up the DS1307 for more than 10 years in the absence of
power at 25ºC. UL recognized to ensure against reverse charging current when used in conjunction with a
lithium battery.

See “Conditions of Acceptability” at http://www.maxim-ic.com/TechSupport/QA/ntrl.htm.

SCL (Serial Clock Input) – SCL is used to synchronize data movement on the serial interface.

SDA (Serial Data Input/Output) – SDA is the input/output pin for the 2-wire serial interface.  The SDA
pin is open drain which requires an external pullup resistor.

SQW/OUT (Square Wave/Output Driver) – When enabled, the SQWE bit set to 1, the SQW/OUT pin
outputs one of four square wave frequencies (1Hz, 4kHz, 8kHz, 32kHz).  The SQW/OUT pin is open
drain and requires an external pull-up resistor.  SQW/OUT will operate with either Vcc or Vbat applied.

X1, X2 – Connections for a standard 32.768kHz quartz crystal.  The internal oscillator circuitry is
designed for operation with a crystal having a specified load capacitance (CL) of 12.5pF.

For more information on crystal selection and crystal layout considerations, please consult Application
Note 58, “Crystal Considerations with Dallas Real-Time Clocks.” The DS1307 can also be driven by an
external 32.768kHz oscillator.  In this configuration, the X1 pin is connected to the external oscillator
signal and the X2 pin is floated.

RECOMMENDED LAYOUT FOR CRYSTAL

http://www.maxim-ic.com/TechSupport/QA/ntrl.htm
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CLOCK ACCURACY
The accuracy of the clock is dependent upon the accuracy of the crystal and the accuracy of the match
between the capacitive load of the oscillator circuit and the capacitive load for which the crystal was
trimmed.  Additional error will be added by crystal frequency drift caused by temperature shifts.  External
circuit noise coupled into the oscillator circuit may result in the clock running fast.  See Application Note
58, “Crystal Considerations with Dallas Real-Time Clocks” for detailed information.

Please review Application Note 95, “Interfacing the DS1307 with a 8051-Compatible Microcontroller”
for additional information.

RTC AND RAM ADDRESS MAP
The address map for the RTC and RAM registers of the DS1307 is shown in Figure 2.  The RTC registers
are located in address locations 00h to 07h.  The RAM registers are located in address locations 08h to
3Fh.  During a multi-byte access, when the address pointer reaches 3Fh, the end of RAM space, it wraps
around to location 00h, the beginning of the clock space.

DS1307 ADDRESS MAP Figure 2

CLOCK AND CALENDAR
The time and calendar information is obtained by reading the appropriate register bytes.  The RTC
registers are illustrated in Figure 3.  The time and calendar are set or initialized by writing the appropriate
register bytes.  The contents of the time and calendar registers are in the BCD format.  Bit 7 of register 0
is the clock halt (CH) bit.  When this bit is set to a 1, the oscillator is disabled.  When cleared to a 0, the
oscillator is enabled.

Please note that the initial power-on state of all registers is not defined.  Therefore, it is important
to enable the oscillator (CH bit = 0) during initial configuration.

The DS1307 can be run in either 12-hour or 24-hour mode.  Bit 6 of the hours register is defined as the
12- or 24-hour mode select bit.  When high, the 12-hour mode is selected.  In the 12-hour mode, bit 5 is
the AM/PM bit with logic high being PM.  In the 24-hour mode, bit 5 is the second 10 hour bit (20-
23 hours).

On a 2-wire START, the current time is transferred to a second set of registers.  The time information is
read from these secondary registers, while the clock may continue to run.  This eliminates the need to re-
read the registers in case of an update of the main registers during a read.

SECONDS

MINUTES

HOURS

DAY

DATE

MONTH

YEAR

CONTROL

RAM
56 x 8

00H

07H
08H

3FH
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DS1307 TIMEKEEPER REGISTERS Figure 3

CONTROL REGISTER
The DS1307 control register is used to control the operation of the SQW/OUT pin.

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
OUT 0 0 SQWE 0 0 RS1 RS0

OUT (Output control): This bit controls the output level of the SQW/OUT pin when the square wave
output is disabled.  If SQWE = 0, the logic level on the SQW/OUT pin is 1 if OUT = 1 and is 0 if
OUT = 0.

SQWE (Square Wave Enable): This bit, when set to a logic 1, will enable the oscillator output.  The
frequency of the square wave output depends upon the value of the RS0 and RS1 bits. With the square
wave output set to 1Hz, the clock registers update on the falling edge of the square wave.

RS (Rate Select): These bits control the frequency of the square wave output when the square wave
output has been enabled.  Table 1 lists the square wave frequencies that can be selected with the RS bits.

SQUAREWAVE OUTPUT FREQUENCY Table 1
RS1 RS0 SQW OUTPUT FREQUENCY

0 0 1Hz
0 1 4.096kHz
1 0 8.192kHz
1 1 32.768kHz

0

0

0 0 0 0

000

00

00000
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2-WIRE SERIAL DATA BUS
The DS1307 supports a bi-directional, 2-wire bus and data transmission protocol.  A device that sends
data onto the bus is defined as a transmitter and a device receiving data as a receiver.  The device that
controls the message is called a master.  The devices that are controlled by the master are referred to as
slaves.  The bus must be controlled by a master device that generates the serial clock (SCL), controls the
bus access, and generates the START and STOP conditions.  The DS1307 operates as a slave on the 2-
wire bus.  A typical bus configuration using this 2-wire protocol is show in Figure 4.

TYPICAL 2-WIRE BUS CONFIGURATION Figure 4

Figures 5, 6, and 7 detail how data is transferred on the 2-wire bus.

� Data transfer may be initiated only when the bus is not busy.
� During data transfer, the data line must remain stable whenever the clock line is HIGH.  Changes in

the data line while the clock line is high will be interpreted as control signals.

Accordingly, the following bus conditions have been defined:

Bus not busy: Both data and clock lines remain HIGH.

Start data transfer: A change in the state of the data line, from HIGH to LOW, while the clock is HIGH,
defines a START condition.

Stop data transfer: A change in the state of the data line, from LOW to HIGH, while the clock line is
HIGH, defines the STOP condition.

Data valid: The state of the data line represents valid data when, after a START condition, the data line
is stable for the duration of the HIGH period of the clock signal.  The data on the line must be changed
during the LOW period of the clock signal.  There is one clock pulse per bit of data.

Each data transfer is initiated with a START condition and terminated with a STOP condition.  The
number of data bytes transferred between START and STOP conditions is not limited, and is determined
by the master device.  The information is transferred byte-wise and each receiver acknowledges with a
ninth bit.  Within the 2-wire bus specifications a regular mode (100kHz clock rate) and a fast mode
(400kHz clock rate) are defined.  The DS1307 operates in the regular mode (100kHz) only.
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Acknowledge: Each receiving device, when addressed, is obliged to generate an acknowledge after the
reception of each byte.  The master device must generate an extra clock pulse which is associated with
this acknowledge bit.

A device that acknowledges must pull down the SDA line during the acknowledge clock pulse in such a
way that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse.  Of
course, setup and hold times must be taken into account.  A master must signal an end of data to the slave
by not generating an acknowledge bit on the last byte that has been clocked out of the slave.  In this case,
the slave must leave the data line HIGH to enable the master to generate the STOP condition.

DATA TRANSFER ON 2-WIRE SERIAL BUS Figure 5

Depending upon the state of the R/ W  bit, two types of data transfer are possible:

1. Data transfer from a master transmitter to a slave receiver.  The first byte transmitted by the
master is the slave address.  Next follows a number of data bytes.  The slave returns an acknowledge
bit after each received byte.  Data is transferred with the most significant bit (MSB) first.

2. Data transfer from a slave transmitter to a master receiver.  The first byte (the slave address) is
transmitted by the master.  The slave then returns an acknowledge bit.  This is followed by the slave
transmitting a number of data bytes.  The master returns an acknowledge bit after all received bytes
other than the last byte.  At the end of the last received byte, a “not acknowledge” is returned.

The master device generates all of the serial clock pulses and the START and STOP conditions.  A
transfer is ended with a STOP condition or with a repeated START condition.  Since a repeated START
condition is also the beginning of the next serial transfer, the bus will not be released.  Data is transferred
with the most significant bit (MSB) first.
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The DS1307 may operate in the following two modes:

1. Slave receiver mode (DS1307 write mode): Serial data and clock are received through SDA and
SCL.  After each byte is received an acknowledge bit is transmitted.  START and STOP conditions
are recognized as the beginning and end of a serial transfer.  Address recognition is performed by
hardware after reception of the slave address and *direction bit (See Figure 6).  The address byte is
the first byte received after the start condition is generated by the master.  The address byte contains
the 7 bit DS1307 address, which is 1101000, followed by the *direction bit (R/ W ) which, for a write,
is a 0.  After receiving and decoding the address byte the device outputs an acknowledge on the SDA
line.  After the DS1307 acknowledges the slave address + write bit, the master transmits a register
address to the DS1307 This will set the register pointer on the DS1307.  The master will then begin
transmitting each byte of data with the DS1307 acknowledging each byte received.  The master will
generate a stop condition to terminate the data write.

DATA WRITE – SLAVE RECEIVER MODE Figure 6

2. Slave transmitter mode (DS1307 read mode): The first byte is received and handled as in the slave
receiver mode.  However, in this mode, the *direction bit will indicate that the transfer direction is
reversed.  Serial data is transmitted on SDA by the DS1307 while the serial clock is input on SCL.
START and STOP conditions are recognized as the beginning and end of a serial transfer (See
Figure 7).  The address byte is the first byte received after the start condition is generated by the
master.  The address byte contains the 7-bit DS1307 address, which is 1101000, followed by the
*direction bit (R/ W ) which, for a read, is a 1.  After receiving and decoding the address byte the
device inputs an acknowledge on the SDA line.  The DS1307 then begins to transmit data starting
with the register address pointed to by the register pointer.  If the register pointer is not written to
before the initiation of a read mode the first address that is read is the last one stored in the register
pointer.  The DS1307 must receive a “not acknowledge” to end a read.

DATA READ – SLAVE TRANSMITTER MODE Figure 7
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ABSOLUTE MAXIMUM RATINGS*
Voltage on Any Pin Relative to Ground -0.5V to +7.0V
Storage Temperature -55°C to +125°C
Soldering Temperature 260°C for 10 seconds DIP

See JPC/JEDEC Standard J-STD-020A for
Surface Mount Devices

* This is a stress rating only and functional operation of the device at these or any other conditions above
those indicated in the operation sections of this specification is not implied.  Exposure to absolute
maximum rating conditions for extended periods of time may affect reliability.

Range Temperature VCC
Commercial 0°C to +70°C 4.5V to 5.5V VCC1

Industrial -40°C to +85°C 4.5V to 5.5V VCC1

RECOMMENDED DC OPERATING CONDITIONS
(Over the operating range*)

PARAMETER SYMBOL MIN TYP MAX UNITS NOTES
Supply Voltage VCC 4.5 5.0 5.5 V
Logic 1 VIH 2.2 VCC + 0.3 V
Logic 0 VIL -0.5 +0.8 V
VBAT Battery Voltage VBAT 2.0 3.5 V

*Unless otherwise specified.

DC ELECTRICAL CHARACTERISTICS
(Over the operating range*)

PARAMETER SYMBOL MIN TYP MAX UNITS NOTES
Input Leakage (SCL) ILI 1 �A
I/O Leakage (SDA &
SQW/OUT)

ILO 1 �A

Logic 0 Output (IOL = 5mA) VOL 0.4 V
Active Supply Current ICCA 1.5 mA 7
Standby Current ICCS 200 �A 1
Battery Current (OSC ON);
SQW/OUT OFF

IBAT1 300 500 nA 2

Battery Current (OSC ON);
SQW/OUT ON (32kHz)

IBAT2 480 800 nA

Power-Fail Voltage VPF 1.216 x VBAT 1.25 x VBAT 1.284 x VBAT V 8
*Unless otherwise specified.
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AC ELECTRICAL CHARACTERISTICS
(Over the operating range*)

PARAMETER SYMBOL MIN TYP MAX UNITS NOTES
SCL Clock Frequency fSCL 0 100 kHz
Bus Free Time Between a STOP and
START Condition

tBUF 4.7 �s

Hold Time (Repeated) START Condition tHD:STA 4.0 �s 3
LOW Period of SCL Clock tLOW 4.7 �s
HIGH Period of SCL Clock tHIGH 4.0 �s
Set-up Time for a Repeated START
Condition

tSU:STA 4.7 �s

Data Hold Time tHD:DAT 0 �s 4,5
Data Set-up Time tSU:DAT 250 ns
Rise Time of Both SDA and SCL Signals tR 1000 ns
Fall Time of Both SDA and SCL Signals tF 300 ns
Set-up Time for STOP Condition tSU:STO 4.7 �s
Capacitive Load for each Bus Line CB 400 pF 6

I/O Capacitance (TA = 25ºC)
CI/O 10 pF

Crystal Specified Load Capacitance
(TA = 25ºC)

12.5 pF

*Unless otherwise specified.

NOTES:
1. ICCS specified with VCC = 5.0V and SDA, SCL = 5.0V.
2. VCC = 0V, VBAT = 3V.
3. After this period, the first clock pulse is generated.
4. A device must internally provide a hold time of at least 300ns for the SDA signal (referred to the

VIHMIN of the SCL signal) in order to bridge the undefined region of the falling edge of SCL.
5. The maximum tHD:DAT has only to be met if the device does not stretch the LOW period (tLOW) of the

SCL signal.
6. CB – Total capacitance of one bus line in pF.
7. ICCA – SCL clocking at max frequency = 100kHz.
8. VPF measured at VBAT = 3.0V.
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DS1307 64 X 8 SERIAL REAL-TIME CLOCK
8-PIN DIP MECHANICAL DIMENSIONS

PKG 8-PIN
DIM MIN MAX

A  IN.
MM

0.360
9.14

0.400
10.16

B  IN.
MM

0.240
6.10

0.260
6.60

C  IN.
MM

0.120
3.05

0.140
3.56

D  IN.
MM

0.300
7.62

0.325
8.26

E  IN.
MM

0.015
0.38

0.040
1.02

F  IN.
MM

0.120
3.04

0.140
3.56

G  IN.
MM

0.090
2.29

0.110
2.79

H  IN.
MM

0.320
8.13

0.370
9.40

J  IN.
MM

0.008
0.20

0.012
0.30

K  IN.
MM

0.015
0.38

0.021
0.53
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DS1307Z 64 X 8 SERIAL REAL-TIME CLOCK
8-PIN SOIC (150-MIL) MECHANICAL DIMENSIONS

PKG 8-PIN
(150 MIL)

DIM MIN MAX
A  IN.
MM

0.188
4.78

0.196
4.98

B  IN.
MM

0.150
3.81

0.158
4.01

C  IN.
MM

0.048
1.22

0.062
1.57

E  IN.
MM

0.004
0.10

0.010
0.25

F  IN.
MM

0.053
1.35

0.069
1.75

G  IN.
MM

0.050 BSC
1.27 BSC

H  IN.
MM

0.230
5.84

0.244
6.20

J  IN.
MM

0.007
0.18

0.011
0.28

K  IN.
MM

0.012
0.30

0.020
0.51

L  IN.
MM

0.016
0.41

0.050
1.27

phi 0� 8�
56-G2008-001
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1. XBee®/XBee‐PRO® RF Modules

The XBee and XBee-PRO RF Modules were engineered to 
meet IEEE 802.15.4 standards and support the unique 
needs of low-cost, low-power wireless sensor networks. 
The modules require minimal power and provide reliable 
delivery of  data between devices.

The modules operate within the ISM 2.4 GHz frequency 
band and are pin-for-pin compatible with each other.

Key Features

Worldwide Acceptance

FCC Approval (USA) Refer to Appendix A [p63] for FCC Requirements.
Systems that contain XBee®/XBee-PRO® RF Modules inherit Digi Certifications.
ISM (Industrial, Scientific & Medical) 2.4 GHz frequency band
Manufactured under ISO 9001:2000 registered standards
XBee®/XBee-PRO® RF Modules are optimized for use in the United States, Canada, 
Australia, Japan, and Europe. Contact Digi for complete list of government agency 
approvals.

Long Range Data Integrity

XBee

• Indoor/Urban: up to 100’ (30 m)
• Outdoor line-of-sight: up to 300’ (90 m)
• Transmit Power: 1 mW (0 dBm)
• Receiver Sensitivity: -92 dBm

XBee-PRO

• Indoor/Urban: up to 300’ (90 m), 200' (60 m) for 
International variant

• Outdoor line-of-sight: up to 1 mile (1600 m), 2500' 
(750 m) for International variant

• Transmit Power: 63mW (18dBm), 10mW (10dBm) 
for International variant

• Receiver Sensitivity: -100 dBm

RF Data Rate: 250,000 bps

Advanced Networking & Security

Retries and Acknowledgements

DSSS (Direct Sequence Spread Spectrum)

Each direct sequence channels has over
65,000 unique network addresses available

Source/Destination Addressing

Unicast & Broadcast Communications

Point-to-point, point-to-multipoint 
and peer-to-peer topologies supported

Coordinator/End Device operations

Transparent and API Operations

128-bit Encryption

Low Power

XBee

• TX Peak Current: 45 mA (@3.3 V)
• RX Current: 50 mA (@3.3 V)
• Power-down Current: < 10 µA

XBee-PRO

• TX Peak Current: 250mA (150mA for interna-
tional variant)

• TX Peak Current (RPSMA module only): 
340mA (180mA for international variant)

• RX Current: 55 mA (@3.3 V)
• Power-down Current: < 10 µA

ADC and I/O line support

Analog-to-digital conversion, Digital I/O

I/O Line Passing

Easy-to-Use

No configuration necessary for out-of box
RF communications

Free X-CTU Software
(Testing and configuration software)

AT and API Command Modes for 
configuring module parameters

Extensive command set

Small form factor
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Specifications

* See Appendix A for region‐specific certification requirements.

Antenna Options: The ranges specified are typical when using the integrated Whip (1.5 dBi) and Dipole (2.1 dBi) anten-
nas. The PCB antenna option provides advantages in its form factor; however, it typically yields shorter range than the 
Whip and Dipole antenna options when transmitting outdoors.For more information, refer to the "XBee Antennas" Knowl-
edgebase Article located on Digi's Support Web site

Table 1‐01. Specifications of the XBee®/XBee‐PRO®  RF Modules

Specification XBee XBee-PRO

Performance

Indoor/Urban Range Up to 100 ft (30 m) Up to 300 ft. (90 m), up to 200 ft (60 m) International 
variant

Outdoor RF line-of-sight Range Up to 300 ft (90 m) Up to 1 mile (1600 m), up to 2500 ft (750 m) 
international variant

Transmit Power Output
(software selectable) 1mW (0 dBm) 63mW (18dBm)*

10mW (10 dBm) for International variant

RF Data Rate 250,000 bps 250,000 bps

Serial Interface Data Rate
(software selectable)

1200 bps - 250 kbps
(non-standard baud rates also supported)

1200 bps - 250 kbps
(non-standard baud rates also supported)

Receiver Sensitivity -92 dBm (1% packet error rate) -100 dBm (1% packet error rate)

Power Requirements

Supply Voltage 2.8 – 3.4 V 2.8 – 3.4 V

Transmit Current (typical) 45mA (@ 3.3 V)
250mA (@3.3 V) (150mA for international variant) 
RPSMA module only: 340mA (@3.3 V) (180mA for 
international variant)

Idle / Receive Current (typical) 50mA (@ 3.3 V) 55mA (@ 3.3 V)

Power-down Current < 10 µA < 10 µA

General

Operating Frequency ISM 2.4 GHz ISM 2.4 GHz

Dimensions 0.960” x 1.087” (2.438cm x 2.761cm) 0.960” x 1.297” (2.438cm x 3.294cm)

Operating Temperature -40 to 85º C (industrial) -40 to 85º C (industrial)

Antenna Options Integrated Whip Antenna, Embedded PCB Antenna, 
U.FL Connector, RPSMA connector 

Integrated Whip Antenna, Embedded PCB Antenna, 
U.FL Connector, RPSMA connector 

Networking & Security

Supported Network Topologies Point-to-point, Point-to-multipoint & Peer-to-peer

Number of Channels
(software selectable) 16 Direct Sequence Channels 12 Direct Sequence Channels

Addressing Options PAN ID, Channel and Addresses PAN ID, Channel and Addresses

Agency Approvals

United States (FCC Part 15.247) OUR-XBEE OUR-XBEEPRO

Industry Canada (IC) 4214A XBEE 4214A XBEEPRO

Europe (CE) ETSI ETSI (Max. 10 dBm transmit power output)*

Japan R201WW07215214
R201WW08215111 (Max. 10 dBm transmit power 
output)*
Wire, chip, RPMSA, and U.FL versions are certified for 
Japan. PCB antenna version is not. 

Australia C-Tick C-Tick 
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Mechanical Drawings

Figure 1‐01. Mechanical drawings of the XBee®/XBee‐PRO® RF Modules (antenna options not shown)
The XBee and XBee‐PRO RF Modules are pin‐for‐pin compatible. 

Mounting Considerations

The XBee®/XBee-PRO® RF Module was designed to mount into a receptacle (socket) and there-
fore does not require any soldering when mounting it to a board. The XBee Development Kits con-
tain RS-232 and USB interface boards which use two 20-pin receptacles to receive modules.

Figure 1‐02. XBee Module Mounting to an RS‐232 Interface Board. 

The receptacles used on Digi development boards are manufactured by Century Interconnect. 
Several other manufacturers provide comparable mounting solutions; however, Digi currently uses 
the following receptacles:

• Through-hole single-row receptacles - 
Samtec P/N: MMS-110-01-L-SV (or equivalent)

• Surface-mount double-row receptacles - 
Century Interconnect P/N: CPRMSL20-D-0-1 (or equivalent)

• Surface-mount single-row receptacles - 
Samtec P/N: SMM-110-02-SM-S

Digi also recommends printing an outline of the module on the board to indicate the orientation the 
module should be mounted.
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Pin Signals

Figure 1‐03. XBee®/XBee‐PRO® RF Module Pin 
Numbers

(top sides shown ‐ shields on bottom)

* Function is not supported at the time of this release

Notes:
• Minimum connections: VCC, GND, DOUT & DIN
• Minimum connections for updating firmware: VCC, GND, DIN, DOUT, RTS & DTR
• Signal Direction is specified with respect to the module
• Module includes a 50k pull-up resistor attached to RESET

• Several of the input pull-ups can be configured using the PR command
• Unused pins should be left disconnected

Design Notes

The XBee modules do not specifically require any external circuitry or specific connections for 
proper operation. However, there are some general design guidelines that are recommended for 
help in troubleshooting and building a robust design.

Power Supply Design

Poor power supply can lead to poor radio performance, especially if the supply voltage is not kept 
within tolerance or is excessively noisy. To help reduce noise, we recommend placing a 1.0 µF and 
8.2 pF capacitor as near as possible to pin 1 on the XBee. If using a switching regulator for the 
power supply, switching frequencies above 500 kHz are preferred. Power supply ripple should be 
limited to a maximum 100 mV peak to peak.

Table 1‐02. Pin Assignments for the XBee and XBee‐PRO Modules
(Low‐asserted signals are distinguished with a horizontal line above signal name.)

Pin # Name Direction Description
1 VCC - Power supply
2 DOUT Output UART Data Out
3 DIN / CONFIG  Input UART Data In
4 DO8* Output Digital Output 8
5 RESET  Input Module Reset (reset pulse must be at least 200 ns)
6 PWM0 / RSSI Output PWM Output 0 / RX Signal Strength Indicator
7 PWM1 Output PWM Output 1
8 [reserved] - Do not connect
9 DTR / SLEEP_RQ / DI8 Input Pin Sleep Control Line or Digital Input 8
10 GND - Ground
11 AD4 / DIO4 Either Analog Input 4 or Digital I/O 4
12 CTS  / DIO7 Either Clear-to-Send Flow Control or Digital I/O 7
13 ON / SLEEP Output Module Status Indicator
14 VREF Input Voltage Reference for A/D Inputs
15 Associate / AD5 / DIO5 Either Associated Indicator, Analog Input 5 or Digital I/O 5
16 RTS / DIO6 Either Request-to-Send Flow Control, or Digital I/O 6
17 AD3 / DIO3 Either Analog Input 3 or Digital I/O 3
18 AD2 / DIO2 Either Analog Input 2 or Digital I/O 2
19 AD1 / DIO1 Either Analog Input 1 or Digital I/O 1
20 AD0 / DIO0 Either Analog Input 0 or Digital I/O 0

Pin 1

Pin 10

Pin 1

Pin 10

Pin 20

Pin 11

Pin 20

Pin 11
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Recommended Pin Connections

The only required pin connections are VCC, GND, DOUT and DIN. To support serial firmware 
updates, VCC, GND, DOUT, DIN, RTS, and DTR should be connected.

All unused pins should be left disconnected. All inputs on the radio can be pulled high with internal 
pull-up resistors using the PR software command. No specific treatment is needed for unused out-
puts.

Other pins may be connected to external circuitry for convenience of operation including the Asso-
ciate LED pin (pin 15) and the commissioning button pin (pin 20). The Associate LED will flash dif-
ferently depending on the state of the module, and a pushbutton attached to pin 20 can enable 
various deployment and troubleshooting functions without having to send UART commands. 

If analog sampling is desired, VRef (pin 14) should be attached to a voltage reference.

Board Layout

XBee modules are designed to be self sufficient and have minimal sensitivity to nearby processors, 
crystals or other PCB components. As with all PCB designs, Power and Ground traces should be 
thicker than signal traces and able to comfortably support the maximum current specifications. No 
other special PCB design considerations are required for integrating XBee radios except in the 
antenna section. 

Antenna Performance

Antenna location is an important consideration for optimal performance. In general, antennas radi-
ate and receive best perpendicular to the direction they point. Thus a vertical antenna's radiation 
pattern is strongest across the horizon. Metal objects near the antenna may impede the radiation 
pattern. Metal objects between the transmitter and receiver can block the radiation path or reduce 
the transmission distance, so antennas should be positioned away from them when possible. Some 
objects that are often overlooked are metal poles, metal studs or beams in structures, concrete (it 
is usually reinforced with metal rods), vehicles, elevators, ventilation ducts, refrigerators, micro-
wave ovens, batteries, and tall electrolytic capacitors. If the XBee is to be placed inside a metal 
enclosure, an external antenna should be used.

XBee units with the Embedded PCB Antenna should not be placed inside a metal enclosure or have 
any ground planes or metal objects above or below the antenna. For best results, place the XBee 
at the edge of the host PCB on which it is mounted. Ensure that the ground, power and signal 
planes are vacant immediately below the antenna section. Digi recommends allowing a “keepout” 
area, which is shown in detail on the next page.
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Electrical Characteristics

Table 1‐03. DC Characteristics (VCC = 2.8 ‐ 3.4 VDC)

Symbol Characteristic Condition Min Typical Max Unit
VIL Input Low Voltage All Digital Inputs - - 0.35 * VCC V
VIH Input High Voltage All Digital Inputs 0.7 * VCC -  - V
VOL Output Low Voltage IOL = 2 mA, VCC >= 2.7 V - - 0.5 V
VOH Output High Voltage IOH  = -2 mA, VCC >= 2.7 V VCC - 0.5 - - V
IIIN Input Leakage Current VIN = VCC or GND, all inputs, per pin - 0.025 1 µA
IIOZ High Impedance Leakage Current VIN = VCC or GND, all I/O High-Z, per pin - 0.025 1 µA

TX Transmit Current VCC = 3.3 V - 45
(XBee)

215, 140 
(PRO, 

Int)
- mA

RX Receive Current VCC = 3.3 V - 50
(XBee)

55
(PRO) - mA

PWR-DWN Power-down Current SM parameter = 1 - < 10 - µA

Table 1‐04. ADC Characteristics (Operating)

Symbol Characteristic Condition Min Typical Max Unit

VREFH
VREF - Analog-to-Digital converter 

reference range 2.08 - VDDAD* V

IREF VREF - Reference Supply Current Enabled - 200 - µA
Disabled or Sleep Mode - < 0.01 0.02 µA

VINDC Analog Input Voltage1

1. Maximum electrical operating range, not valid conversion range. 

* VDDAD is connected to VCC.

VSSAD - 0.3 - VDDAD + 0.3 V

Table 1‐05. ADC Timing/Performance Characteristics1

1. All ACCURACY numbers are based on processor and system being in WAIT state (very little activity and no IO switching) 
and that adequate low‐pass filtering is present on analog input pins (filter with 0.01 μF to 0.1 μF capacitor between analog 
input and VREFL). Failure to observe these guidelines may result in system or microcontroller noise causing accuracy errors 
which will vary based on board layout and the type and magnitude of the activity.

Data transmission and reception during data conversion may cause some degradation of these specifications, depending on 
the number and timing of packets. It is advisable to test the ADCs in your installation if best accuracy is required.

Symbol Characteristic Condition Min Typical Max Unit
RAS Source Impedance at Input2

2. RAS is the real portion of the impedance of the network driving the analog input pin. Values greater than this amount may 
not fully charge the input circuitry of the ATD resulting in accuracy error.

- - 10 k
VAIN Analog Input Voltage3

3. Analog input must be between VREFL and VREFH for valid conversion. Values greater than VREFH will convert to $3FF.

VREFL VREFH V
RES Ideal Resolution (1 LSB)4

4. The resolution is the ideal step size or 1LSB = (VREFH–VREFL)/1024

2.08V < VDDAD < 3.6V 2.031 - 3.516 mV
DNL Differential Non-linearity5

5. Differential non‐linearity is the difference between the current code width and the ideal code width (1LSB). The current 
code width is the difference in the transition voltages to and from the current code.

- ±0.5 ±1.0 LSB
INL Integral Non-linearity6

6. Integral non‐linearity is the difference between the transition voltage to the current code and the adjusted ideal transition 
voltage for the current code. The adjusted ideal transition voltage is (Current Code–1/2)*(1/((VREFH+EFS)–(VREFL+EZS))).

- ±0.5 ±1.0 LSB
EZS Zero-scale Error7

7. Zero‐scale error is the difference between the transition to the first valid code and the ideal transition to that code. The 
Ideal transition voltage to a given code is (Code–1/2)*(1/(VREFH–VREFL)).

- ±0.4 ±1.0 LSB
FFS Full-scale Error8

8. Full‐scale error is the difference between the transition to the last valid code and the ideal transition to that code. The ideal 
transition voltage to a given code is (Code–1/2)*(1/(VREFH–VREFL)).

- ±0.4 ±1.0 LSB
EIL Input Leakage Error9

9. Input leakage error is error due to input leakage across the real portion of the impedance of the network driving the analog 
pin. Reducing the impedance of the network reduces this error.

- ±0.05 ±5.0 LSB
ETU Total Unadjusted Error10

10.Total unadjusted error is the difference between the transition voltage to the current code and the ideal straight‐line trans‐
fer function. This measure of error includes inherent quantization error (1/2LSB) and circuit error (differential, integral, zero‐
scale, and full‐scale) error. The specified value of ETU assumes zero EIL (no leakage or zero real source impedance).

- ±1.1 ±2.5 LSB
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2. RF Module Operation

Serial Communications

The XBee®/XBee-PRO® RF Modules interface to a host device through a logic-level asynchronous 
serial port. Through its serial port, the module can communicate with any logic and voltage com-
patible UART; or through a level translator to any serial device (For example: Through a Digi pro-
prietary RS-232 or USB interface board).

UART Data Flow

Devices that have a UART interface can connect directly to the pins of the RF module as shown in 
the figure below.

Figure 2‐01. System Data Flow Diagram in a UART‐interfaced environment
(Low‐asserted signals distinguished with horizontal line over signal name.)

Serial Data

Data enters the module UART through the DI pin (pin 3) as an asynchronous serial signal. The sig-
nal should idle high when no data is being transmitted.

Each data byte consists of a start bit (low), 8 data bits (least significant bit first) and a stop bit 
(high). The following figure illustrates the serial bit pattern of data passing through the module.

Figure 2‐02. UART data packet 0x1F (decimal number ʺ31ʺ) as transmitted through the RF module
Example Data Format is 8‐N‐1 (bits ‐ parity ‐ # of stop bits)

Serial communications depend on the two UARTs (the microcontroller's and the RF module's) to be 
configured with compatible settings (baud rate, parity, start bits, stop bits, data bits).

The UART baud rate and parity settings on the XBee module can be configured with the BD and NB 
commands, respectively. See the command table in Chapter 3 for details.
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Transparent Operation

By default, XBee®/XBee-PRO® RF Modules operate in Transparent Mode. When operating in this 
mode, the modules act as a serial line replacement - all UART data received through the DI pin is 
queued up for RF transmission. When RF data is received, the data is sent out the DO pin.

Serial-to-RF Packetization

Data is buffered in the DI buffer until one of the following causes the data to be packetized and 
transmitted:

If the module cannot immediately transmit (for instance, if it is already receiving RF data), the 
serial data is stored in the DI Buffer. The data is packetized and sent at any RO timeout or when 
100 bytes (maximum packet size) are received.

If the DI buffer becomes full, hardware or software flow control must be implemented in order to 
prevent overflow (loss of data between the host and module).

API Operation

API (Application Programming Interface) Operation is an alternative to the default Transparent 
Operation. The frame-based API extends the level to which a host application can interact with the 
networking capabilities of the module.

When in API mode, all data entering and leaving the module is contained in frames that define 
operations or events within the module.

Transmit Data Frames (received through the DI pin (pin 3)) include:

• RF Transmit Data Frame
• Command Frame (equivalent to AT commands)

Receive Data Frames (sent out the DO pin (pin 2)) include:

• RF-received data frame
• Command response
• Event notifications such as reset, associate, disassociate, etc.

The API provides alternative means of configuring modules and routing data at the host applica-
tion layer. A host application can send data frames to the module that contain address and payload 
information instead of using command mode to modify addresses. The module will send data 
frames to the application containing status packets; as well as source, RSSI and payload informa-
tion from received data packets.

The API operation option facilitates many operations such as the examples cited below:

To implement API operations, refer to API sections [p56].

1. No serial characters are received for the amount of time determined by the RO (Packetiza-
tion Timeout) parameter. If RO = 0, packetization begins when a character is received.

2. The maximum number of characters that will fit in an RF packet (100) is received.
3. The Command Mode Sequence (GT + CC + GT) is received. Any character buffered in the 

DI buffer before the sequence is transmitted.

-> Transmitting data to multiple destinations without entering Command Mode
-> Receive success/failure status of each transmitted RF packet
-> Identify the source address of each received packet
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Flow Control

Figure 2‐03. Internal Data Flow Diagram

DI (Data In) Buffer

When serial data enters the RF module through the DI pin (pin 3), the data is stored in the DI Buf-
fer until it can be processed.

Hardware Flow Control (CTS). When the DI buffer is 17 bytes away from being full; by default, 
the module de-asserts CTS (high) to signal to the host device to stop sending data [refer to D7 
(DIO7 Configuration) parameter]. CTS is re-asserted after the DI Buffer has 34 bytes of memory 
available.

How to eliminate the need for flow control:

Case in which the DI Buffer may become full and possibly overflow:

Refer to the RO (Packetization Timeout), BD (Interface Data Rate) and D7 (DIO7 Configuration) com-
mand descriptions for more information.

DO (Data Out) Buffer

When RF data is received, the data enters the DO buffer and is sent out the serial port to a host 
device. Once the DO Buffer reaches capacity, any additional incoming RF data is lost.

Hardware Flow Control (RTS). If RTS is enabled for flow control (D6 (DIO6 Configuration) 
Parameter = 1), data will not be sent out the DO Buffer as long as RTS (pin 16) is de-asserted.

Two cases in which the DO Buffer may become full and possibly overflow:

Refer to the D6 (DIO6 Configuration) command description for more information.

1. Send messages that are smaller than the DI buffer size (202 bytes).
2. Interface at a lower baud rate [BD (Interface Data Rate) parameter] than the throughput 

data rate.

If the module is receiving a continuous stream of RF data, any serial data that arrives on the DI 
pin is placed in the DI Buffer. The data in the DI buffer will be transmitted over-the-air when the 
module is no longer receiving RF data in the network.

1.    If the RF data rate is set higher than the interface data rate of the module, the module will 
receive data from the transmitting module faster than it can send the data to the host.

2.    If the host does not allow the module to transmit data out from the DO buffer because of 
being held off by hardware or software flow control.
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ADC and Digital I/O Line Support

The XBee®/XBee-PRO® RF Modules support ADC (Analog-to-digital conversion) and digital I/O 
line passing. The following pins support multiple functions:

To enable ADC and DIO pin functions:

I/O Data Format

I/O data begins with a header. The first byte of the header defines the number of samples forth-
coming. The last 2 bytes of the header (Channel Indicator) define which inputs are active. Each bit 
represents either a DIO line or ADC channel.

Figure 2‐04. Header

Sample data follows the header and the channel indicator frame is used to determine how to read 
the sample data. If any of the DIO lines are enabled, the first 2 bytes are the DIO sample. The 
ADC data follows. ADC channel data is represented as an unsigned 10-bit value right-justified on a 
16- bit boundary.

Figure 2‐05. Sample Data

Table 2‐01. Pin functions and their associated pin numbers and commands
AD = Analog‐to‐Digital Converter, DIO = Digital Input/Output
Pin functions not applicable to this section are denoted within (parenthesis).

Pin Function Pin# AT Command
AD0 / DIO0 20 D0
AD1 / DIO1 19 D1
AD2 / DIO2 18 D2
AD3 / DIO3 / (COORD_SEL) 17 D3
AD4 / DIO4 11 D4
AD5 / DIO5 / (ASSOCIATE) 15 D5
DIO6 / (RTS) 16 D6
DIO7 / (CTS) 12 D7
DI8 / (DTR) / (Sleep_RQ) 9 D8

For ADC Support: Set ATDn = 2
For Digital Input support: Set ATDn = 3
For Digital Output Low support: Set ATDn = 4
For Digital Output High support: Set ATDn = 5

Header

Bit set to ‘1’ if channel is active

Bytes 2 - 3 (Channel Indicator)

na D8A0A1A2A3A4A5 D7 D0D1D2D3D4D5D6

Byte 1

Total number of samples

bit 15 bit 0

Sample Data

DIO Line Data is first (if enabled) ADC Line Data

ADCn MSB ADCn LSB7 0123456X 8XXXXXX
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API Support

I/O data is sent out the UART using an API frame. All other data can be sent and received using 
Transparent Operation [refer to p12] or API framing if API mode is enabled (AP > 0).

API Operations support two RX (Receive) frame identifiers for I/O data (set 16-bit address to 
0xFFFE and the module will do 64-bit addressing):

• 0x82 for RX (Receive) Packet: 64-bit address I/O
• 0x83 for RX (Receive) Packet: 16-bit address I/O

The API command header is the same as shown in the “RX (Receive) Packet: 64-bit Address” and 
“RX (Receive) Packet: 16-bit Address” API types [refer to p62]. RX data follows the format 
described in the I/O Data Format section [p14].

Applicable Commands: AP (API Enable)

Sleep Support

Automatic wakeup sampling can be suppressed by setting SO bit 1.When an RF module wakes, it 
will always do a sample based on any active ADC or DIO lines. This allows sampling based on the 
sleep cycle whether it be Cyclic Sleep (SM parameter = 4 or 5) or Pin Sleep (SM = 1 or 2). To 
gather more samples when awake, set the IR (Sample Rate) parameter. 

For Cyclic Sleep modes: If the IR parameter is set, the module will stay awake until the IT (Sam-
ples before TX) parameter is met. The module will stay awake for ST (Time before Sleep) time.

Applicable Commands: IR (Sample Rate), IT (Samples before TX), SM (Sleep Mode), IC (DIO 
Change Detect), SO (Sleep Options)

DIO Pin Change Detect

When “DIO Change Detect” is enabled (using the IC command), DIO lines 0-7 are monitored. 
When a change is detected on a DIO line, the following will occur:

Note: Change detect will not affect Pin Sleep wake-up. The D8 pin (DTR/Sleep_RQ/DI8) is the only 
line that will wake a module from Pin Sleep. If not all samples are collected, the module will still 
enter Sleep Mode after a change detect packet is sent.

Applicable Commands: IC (DIO Change Detect), IT (Samples before TX)

NOTE: Change detect is only supported when the Dx (DIOx Configuration) parameter equals 3,4 or 5.

Sample Rate (Interval)

The Sample Rate (Interval) feature allows enabled ADC and DIO pins to be read periodically on 
modules that are not configured to operate in Sleep Mode. When one of the Sleep Modes is 
enabled and the IR (Sample Rate) parameter is set, the module will stay awake until IT (Samples 
before TX) samples have been collected.

Once a particular pin is enabled, the appropriate sample rate must be chosen. The maximum sam-
ple rate that can be achieved while using one A/D line is 1 sample/ms or 1 KHz (Note that the 
modem will not be able to keep up with transmission when IR & IT are equal to “1” and that con-
figuring the modem to sample at rates greater than once every 20ms is not recommended).

Applicable Commands: IR (Sample Rate), IT (Samples before TX), SM (Sleep Mode)

1. An RF packet is sent with the updated DIO pin levels. This packet will not contain any ADC 
samples. 

2. Any queued samples are transmitted before the change detect data. This may result in 
receiving a packet with less than IT (Samples before TX) samples.
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I/O Line Passing

Virtual wires can be set up between XBee®/XBee-PRO® Modules. When an RF data packet is 
received that contains I/O data, the receiving module can be setup to update any enabled outputs 
(PWM and DIO) based on the data it receives.

Note that I/O lines are mapped in pairs. For example: AD0 can only update PWM0 and DI5 can 
only update DO5. The default setup is for outputs not to be updated, which results in the I/O data 
being sent out the UART (refer to the IU (Enable I/O Output) command). To enable the outputs to 
be updated, the IA (I/O Input Address) parameter must be setup with the address of the module 
that has the appropriate inputs enabled. This effectively binds the outputs to a particular module’s 
input. This does not affect the ability of the module to receive I/O line data from other modules - 
only its ability to update enabled outputs. The IA parameter can also be setup to accept I/O data 
for output changes from any module by setting the IA parameter to 0xFFFF. 

When outputs are changed from their non-active state, the module can be setup to return the out-
put level to it non-active state. The timers are set using the Tn (Dn Output Timer) and PT (PWM 
Output Timeout) commands. The timers are reset every time a valid I/O packet (passed IA check) 
is received. The IC (Change Detect) and IR (Sample Rate) parameters can be setup to keep the 
output set to their active output if the system needs more time than the timers can handle.

Note: DI8 cannot be used for I/O line passing. 

Applicable Commands: IA (I/O Input Address), Tn (Dn Output Timeout), P0 (PWM0 Configura-
tion), P1 (PWM1 Configuration), M0 (PWM0 Output Level), M1 (PWM1 Output Level), PT (PWM 
Output Timeout), RP (RSSSI PWM Timer)

Configuration Example

As an example for a simple A/D link, a pair of RF modules could be set as follows:

These settings configure the remote module to sample AD0 and AD1 once each every 20 ms. It 
then buffers 5 samples each before sending them back to the base module. The base should then 
receive a 32-Byte transmission (20 Bytes data and 12 Bytes framing) every 100 ms.

Remote Configuration
DL = 0x1234
MY = 0x5678

D0 = 2
D1 = 2

IR = 0x14
IT = 5

Base Configuration
DL = 0x5678
MY = 0x1234

P0 = 2
P1 = 2
IU = 1

IA = 0x5678 (or 0xFFFF)
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XBee®/XBee-PRO® Networks

The following terms will be used to explicate the network operations:

Peer-to-Peer

By default, XBee®/XBee-PRO RF Modules are configured to operate within a Peer-to-Peer network 
topology and therefore are not dependent upon Master/Slave relationships. NonBeacon systems 
operate within a Peer-to-Peer network topology and therefore are not dependent upon Master/
Slave relationships. This means that modules remain synchronized without use of master/server 
configurations and each module in the network shares both roles of master and slave. Digi's peer-
to-peer architecture features fast synchronization times and fast cold start times. This default con-
figuration accommodates a wide range of RF data applications.

Figure 2‐06.  Peer‐to‐Peer Architecture

A peer-to-peer network can be established by 
configuring each module to operate as an End Device (CE = 0), disabling End Device Association 
on all modules (A1 = 0) and setting ID and CH parameters to be identical across the network.

NonBeacon (w/ Coordinator)

A device is configured as a Coordinator by setting the CE (Coordinator Enable) parameter to “1”. 
Coordinator power-up is governed by the A2 (Coordinator Association) parameter.

In a Coordinator system, the Coordinator can be configured to use direct or indirect transmissions. 
If the SP (Cyclic Sleep Period) parameter is set to “0”, the Coordinator will send data immediately. 
Otherwise, the SP parameter determines the length of time the Coordinator will retain the data 
before discarding it. Generally, SP (Cyclic Sleep Period) and ST (Time before Sleep) parameters 
should be set to match the SP and ST settings of the End Devices.

Table 2‐02. Terms and definitions

Term Definition

PAN Personal Area Network - A data communication network that includes one or more End Devices and 
optionally a Coordinator.

Coordinator A Full-function device (FFD) that provides network synchronization by polling nodes [NonBeacon 
(w/ Coordinator) networks only]

End Device When in the same network as a Coordinator - RF modules that rely on a Coordinator for 
synchronization and can be put into states of sleep for low-power applications.

Association The establishment of membership between End Devices and a Coordinator. Association is only 
applicable in NonBeacon (w/Coordinator) networks.
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Association

Association is the establishment of membership between End Devices and a Coordinator. The 
establishment of membership is useful in scenarios that require a central unit (Coordinator) to 
relay messages to or gather data from several remote units (End Devices), assign channels or 
assign PAN IDs.

An RF data network that consists of one Coordinator and one or more End Devices forms a PAN 
(Personal Area Network). Each device in a PAN has a PAN Identifier [ID (PAN ID) parameter]. PAN 
IDs must be unique to prevent miscommunication between PANs. The Coordinator PAN ID is set 
using the ID (PAN ID) and A2 (Coordinator Association) commands.

An End Device can associate to a Coordinator without knowing the address, PAN ID or channel of 
the Coordinator. The A1 (End Device Association) parameter bit fields determine the flexibility of 
an End Device during association. The A1 parameter can be used for an End Device to dynamically 
set its destination address, PAN ID and/or channel.

Coordinator / End Device Setup and Operation

To configure a module to operate as a Coordinator, set the CE (Coordinator Enable) parameter to 
‘1’. Set the CE parameter of End Devices to ‘0’ (default). Coordinator and End Devices should con-
tain matching firmware versions.

NonBeacon (w/ Coordinator) Systems
The Coordinator can be configured to use direct or indirect transmissions. If the SP (Cyclic Sleep 
Period) parameter is set to ‘0’, the Coordinator will send data immediately. Otherwise, the SP 
parameter determines the length of time the Coordinator will retain the data before discarding it. 
Generally, SP (Cyclic Sleep Period) and ST (Time before Sleep) parameters should be set to match 
the SP and ST settings of the End Devices.

Coordinator Start-up

Coordinator power-up is governed by the A2 (Coordinator Association) command. On power-up, 
the Coordinator undergoes the following sequence of events:

1. Check A2 parameter- Reassign_PANID Flag
Set (bit 0 = 1) - The Coordinator issues an Active Scan. The Active Scan selects one channel 
and transmits a request to the broadcast address (0xFFFF) and broadcast PAN ID (0xFFFF). It 
then listens on that channel for beacons from any Coordinator operating on that channel. The 
listen time on each channel is determined by the SD (Scan Duration) parameter value.

Once the time expires on that channel, the Active Scan selects another channel and again 
transmits the BeaconRequest as before. This process continues until all channels have been 
scanned, or until 5 PANs have been discovered. When the Active Scan is complete, the results 
include a list of PAN IDs and Channels that are being used by other PANs. This list is used to 
assign an unique PAN ID to the new Coordinator. The ID parameter will be retained if it is not 
found in the Active Scan results. Otherwise, the ID (PAN ID) parameter setting will be updated 
to a PAN ID that was not detected.

Not Set (bit 0 = 0) - The Coordinator retains its ID setting. No Active Scan is performed.

For example: If the PAN ID of a Coordinator is known, but the operating channel is not; the A1 
command on the End Device should be set to enable the ‘Auto_Associate’ and 
‘Reassign_Channel’ bits. Additionally, the ID parameter should be set to match the PAN ID of 
the associated Coordinator.
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2. Check A2 parameter - Reassign_Channel Flag (bit 1)
Set (bit 1 = 1) - The Coordinator issues an Energy Scan. The Energy Scan selects one channel 
and scans for energy on that channel. The duration of the scan is specified by the SD (Scan 
Duration) parameter. Once the scan is completed on a channel, the Energy Scan selects the 
next channel and begins a new scan on that channel. This process continues until all channels 
have been scanned. 

When the Energy Scan is complete, the results include the maximal energy values detected on 
each channel. This list is used to determine a channel where the least energy was detected. If 
an Active Scan was performed (Reassign_PANID Flag set), the channels used by the detected 
PANs are eliminated as possible channels. Thus, the results of the Energy Scan and the Active 
Scan (if performed) are used to find the best channel (channel with the least energy that is not 
used by any detected PAN). Once the best channel has been selected, the CH (Channel) param-
eter value is updated to that channel.

Not Set (bit 1 = 0)  - The Coordinator retains its CH setting. An Energy Scan is not performed.

3. Start Coordinator
The Coordinator starts on the specified channel (CH parameter) and PAN ID (ID parameter). 
Note, these may be selected in steps 1 and/or 2 above. The Coordinator will only allow End 
Devices to associate to it if the A2 parameter “AllowAssociation” flag is set. Once the Coordina-
tor has successfully started, the Associate LED will blink 1 time per second. (The LED is solid if 
the Coordinator has not started.)

4. Coordinator Modifications
Once a Coordinator has started: 
Modifying the A2 (Reassign_Channel or Reassign_PANID bits), ID, CH or MY parameters will 
cause the Coordinator’s MAC to reset (The Coordinator RF module (including volatile RAM) is 
not reset). Changing the A2 AllowAssociation bit will not reset the Coordinator’s MAC. In a non-
beaconing system, End Devices that associated to the Coordinator prior to a MAC reset will have 
knowledge of the new settings on the Coordinator. Thus, if the Coordinator were to change its 
ID, CH or MY settings, the End Devices would no longer be able to communicate with the non-
beacon Coordinator. Once a Coordinator has started, the ID, CH, MY or A2 (Reassign_Channel 
or Reassign_PANID bits) should not be changed.

End Device Start-up

End Device power-up is governed by the A1 (End Device Association) command. On power-up, the 
End Device undergoes the following sequence of events:

1. Check A1 parameter - AutoAssociate Bit
Set (bit 2 = 1) - End Device will attempt to associate to a Coordinator. (refer to steps 2-3).

Not Set (bit 2 = 0) - End Device will not attempt to associate to a Coordinator. The End Device 
will operate as specified by its ID, CH and MY parameters. Association is considered complete 
and the Associate LED will blink quickly (5 times per second). When the AutoAssociate bit is not 
set, the remaining steps (2-3) do not apply.

2. Discover Coordinator (if Auto-Associate Bit Set)
The End Device issues an Active Scan. The Active Scan selects one channel and transmits a 
BeaconRequest command to the broadcast address (0xFFFF) and broadcast PAN ID (0xFFFF). It 
then listens on that channel for beacons from any Coordinator operating on that channel. The 
listen time on each channel is determined by the SD parameter. 

Once the time expires on that channel, the Active Scan selects another channel and again 
transmits the BeaconRequest command as before. This process continues until all channels 
have been scanned, or until 5 PANs have been discovered. When the Active Scan is complete, 
the results include a list of PAN IDs and Channels that are being used by detected PANs. 
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The End Device selects a Coordinator to associate with according to the A1 parameter 
“Reassign_PANID” and “Reassign_Channel” flags:

Reassign_PANID Bit Set (bit 0 = 1)- End Device can associate with a PAN with any ID value. 

Reassign_PANID Bit Not Set (bit 0 = 0) - End Device will only associate with a PAN whose 
ID setting matches the ID setting of the End Device. 

Reassign_Channel Bit Set (bit 1 = 1) - End Device can associate with a PAN with any CH 
value.

Reassign_Channel Bit Not Set (bit 1 = 0)- End Device will only associate with a PAN whose 
CH setting matches the CH setting of the End Device. 

After applying these filters to the discovered Coordinators, if multiple candidate PANs exist, the 
End Device will select the PAN whose transmission link quality is the strongest. If no valid Coor-
dinator is found, the End Device will either go to sleep (as dictated by its SM (Sleep Mode) 
parameter) or retry Association. 

Note - An End Device will also disqualify Coordinators if they are not allowing association (A2 - 
AllowAssociation bit); or, if the Coordinator is not using the same NonBeacon scheme as the 
End Device. (They must both be programmed with NonBeacon code.)

3. Associate to Valid Coordinator
Once a valid Coordinator is found (step 2), the End Device sends an AssociationRequest mes-
sage to the Coordinator. It then waits for an AssociationConfirmation to be sent from the Coor-
dinator. Once the Confirmation is received, the End Device is Associated and the Associate LED 
will blink rapidly (2 times per second). The LED is solid if the End Device has not associated.

4. End Device Changes once an End Device has associated

Changing A1, ID or CH parameters will cause the End Device to disassociate and restart the 
Association procedure.

If the End Device fails to associate, the AI command can give some indication of the failure.
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XBee®/XBee-PRO® Addressing

Every RF data packet sent over-the-air contains a Source Address and Destination Address field in 
its header. The RF module conforms to the 802.15.4 specification and supports both short 16-bit 
addresses and long 64-bit addresses. A unique 64-bit IEEE source address is assigned at the fac-
tory and can be read with the SL (Serial Number Low) and SH (Serial Number High) commands. 
Short addressing must be configured manually. A module will use its unique 64-bit address as its 
Source Address if its MY (16-bit Source Address) value is “0xFFFF” or “0xFFFE”.

To send a packet to a specific module using 64-bit addressing: Set the Destination Address (DL + 
DH) of the sender to match the Source Address (SL + SH) of the intended destination module. 

To send a packet to a specific module using 16-bit addressing: Set DL (Destination Address Low) 
parameter to equal the MY parameter of the intended destination module and set the DH (Destina-
tion Address High) parameter to '0'.

Unicast Mode

By default, the RF module operates in Unicast Mode. Unicast Mode is the only mode that supports 
retries. While in this mode, receiving modules send an ACK (acknowledgement) of RF packet 
reception to the transmitter. If the transmitting module does not receive the ACK, it will re-send 
the packet up to three times or until the ACK is received.

Short 16-bit addresses. The module can be configured to use short 16-bit addresses as the 
Source Address by setting (MY < 0xFFFE). Setting the DH parameter (DH = 0) will configure the 
Destination Address to be a short 16-bit address (if DL < 0xFFFE). For two modules to communi-
cate using short addressing, the Destination Address of the transmitter module must match the 
MY parameter of the receiver.

The following table shows a sample network configuration that would enable Unicast Mode com-
munications using short 16-bit addresses.

Long 64-bit addresses. The RF module’s serial number (SL parameter concatenated to the SH 
parameter) can be used as a 64-bit source address when the MY (16-bit Source Address) parame-
ter is disabled. When the MY parameter is disabled (MY = 0xFFFF or 0xFFFE), the module’s source 
address is set to the 64-bit IEEE address stored in the SH and SL parameters.

When an End Device associates to a Coordinator, its MY parameter is set to 0xFFFE to enable 64-
bit addressing. The 64-bit address of the module is stored as SH and SL parameters. To send a 
packet to a specific module, the Destination Address (DL + DH) on the sender must match the 
Source Address (SL + SH) of the desired receiver.

Broadcast Mode

Any RF module within range will accept a packet that contains a broadcast address. When config-
ured to operate in Broadcast Mode, receiving modules do not send ACKs (Acknowledgements) and 
transmitting modules do not automatically re-sent packets as is the case in Unicast Mode.

To send a broadcast packet to all modules regardless of 16-bit or 64-bit addressing, set the desti-
nation addresses of all the modules as shown below.

Sample Network Configuration (All modules in the network):

• DL (Destination Low Address) = 0x0000FFFF
If RR is set to 0, only one packet is broadcast. If RR > 0, (RR + 2) packets are sent in each broadcast. No acknowl‐
edgements are returned. See also the RR command description.

• DH (Destination High Address) = 0x00000000 (default value)
NOTE: When programming the module, parameters are entered in hexadecimal notation (without the “0x” pre‐
fix). Leading zeroes may be omitted.

Table 2‐03. Sample Unicast Network Configuration (using 16‐bit addressing)

Parameter RF Module 1 RF Module 2
MY (Source Address) 0x01 0x02

DH (Destination Address High) 0 0
DL (Destination Address Low) 0x02 0x01
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Modes of Operation

XBee®/XBee-PRO® RF Modules operate in five modes.

Figure 2‐07. Modes of Operation

Idle Mode

When not receiving or transmitting data, the RF module is in Idle Mode. The module shifts into the 
other modes of operation under the following conditions:

• Transmit Mode (Serial data is received in the DI Buffer)
• Receive Mode (Valid RF data is received through the antenna)
• Sleep Mode (Sleep Mode condition is met)
• Command Mode (Command Mode Sequence is issued)

Transmit/Receive Modes

RF Data Packets

Each transmitted data packet contains a Source Address and Destination Address field. The Source 
Address matches the address of the transmitting module as specified by the MY (Source Address) 
parameter (if MY >= 0xFFFE), the SH (Serial Number High) parameter or the SL (Serial Number 
Low) parameter. The <Destination Address> field is created from the DH (Destination Address 
High) and DL (Destination Address Low) parameter values. The Source Address and/or Destination 
Address fields will either contain a 16-bit short or long 64-bit long address. 

The RF data packet structure follows the 802.15.4 specification.

[Refer to the XBee/XBee-PRO Addressing section for more information]

Direct and Indirect Transmission

There are two methods to transmit data:

• Direct Transmission - data is transmitted immediately to the Destination Address
• Indirect Transmission - A packet is retained for a period of time and is only transmitted after 

the destination module (Source Address = Destination Address) requests the data. 
Indirect Transmissions can only occur on a Coordinator. Thus, if all nodes in a network are End 
Devices, only Direct Transmissions will occur. Indirect Transmissions are useful to ensure packet 
delivery to a sleeping node. The Coordinator currently is able to retain up to 2 indirect messages.
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Direct Transmission
A Coordinator can be configured to use only Direct Transmission by setting the SP (Cyclic Sleep 
Period) parameter to "0". Also, a Coordinator using indirect transmissions will revert to direct 
transmission if it knows the destination module is awake. 

To enable this behavior, the ST (Time before Sleep) value of the Coordinator must be set to match 
the ST value of the End Device. Once the End Device either transmits data to the Coordinator or 
polls the Coordinator for data, the Coordinator will use direct transmission for all subsequent data 
transmissions to that module address until ST time occurs with no activity (at which point it will 
revert to using indirect transmissions for that module address). "No activity" means no transmis-
sion or reception of messages with a specific address. Global messages will not reset the ST timer. 

Indirect Transmission
To configure Indirect Transmissions in a PAN (Personal Area Network), the SP (Cyclic Sleep Period) 
parameter value on the Coordinator must be set to match the longest sleep value of any End 
Device. The sleep period value on the Coordinator determines how long (time or number of bea-
cons) the Coordinator will retain an indirect message before discarding it. 

An End Device must poll the Coordinator once it wakes from Sleep to determine if the Coordinator 
has an indirect message for it. For Cyclic Sleep Modes, this is done automatically every time the 
module wakes (after SP time). For Pin Sleep Modes, the A1 (End Device Association) parameter 
value must be set to enable Coordinator polling on pin wake-up. Alternatively, an End Device can 
use the FP (Force Poll) command to poll the Coordinator as needed.

CCA (Clear Channel Assessment)

Prior to transmitting a packet, a CCA (Clear Channel Assessment) is performed on the channel to 
determine if the channel is available for transmission. The detected energy on the channel is com-
pared with the CA (Clear Channel Assessment) parameter value. If the detected energy exceeds 
the CA parameter value, the packet is not transmitted. 

Also, a delay is inserted before a transmission takes place. This delay is able to be set using the RN 
(Backoff Exponent) parameter. If RN is set to “0”, then there is no delay before the first CCA is per-
formed. The RN parameter value is the equivalent of the “minBE” parameter in the 802.15.4 spec-
ification. The transmit sequence follows the 802.15.4 specification.

By default, the MM (MAC Mode) parameter = 0. On a CCA failure, the module will attempt to re-
send the packet up to two additional times.

When in Unicast packets with RR (Retries) = 0, the module will execute two CCA retries. Broadcast 
packets always get two CCA retries.

Acknowledgement

If the transmission is not a broadcast message, the module will expect to receive an acknowledge-
ment from the destination node. If an acknowledgement is not received, the packet will be resent 
up to 3 more times. If the acknowledgement is not received after all transmissions, an ACK failure 
is recorded.
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Sleep Mode

Sleep Modes enable the RF module to enter states of low-power consumption when not in use. In 
order to enter Sleep Mode, one of the following conditions must be met (in addition to the module 
having a non-zero SM parameter value):

• Sleep_RQ (pin 9) is asserted and the module is in a pin sleep mode (SM = 1, 2, or 5)
• The module is idle (no data transmission or reception) for the amount of time defined by the 

ST (Time before Sleep) parameter. [NOTE: ST is only active when SM = 4-5.]

The SM command is central to setting Sleep Mode configurations. By default, Sleep Modes are dis-
abled (SM = 0) and the module remains in Idle/Receive Mode. When in this state, the module is 
constantly ready to respond to serial or RF activity.

Pin/Host-controlled Sleep Modes

The transient current when waking from pin sleep (SM = 1 or 2) does not exceed the idle current 
of the module. The current ramps up exponentially to its idle current.

Pin Hibernate (SM = 1)
• Pin/Host-controlled
• Typical power-down current: < 10 µA (@3.0 VCC)
• Typical wake-up time: 10.2 msec

Pin Hibernate Mode minimizes quiescent power (power consumed when in a state of rest or inac-
tivity). This mode is voltage level-activated; when Sleep_RQ (pin 9) is asserted, the module will 
finish any transmit, receive or association activities, enter Idle Mode, and then enter a state of 
sleep. The module will not respond to either serial or RF activity while in pin sleep.

To wake a sleeping module operating in Pin Hibernate Mode, de-assert Sleep_RQ (pin 9). The 
module will wake when Sleep_RQ is de-asserted and is ready to transmit or receive when the CTS 
line is low. When waking the module, the pin must be de-asserted at least two 'byte times' after 
CTS goes low. This assures that there is time for the data to enter the DI buffer. 

Pin Doze (SM = 2)
• Pin/Host-controlled
• Typical power-down current: < 50 µA
• Typical wake-up time: 2.6 msec

Pin Doze Mode functions as does Pin Hibernate Mode; however, Pin Doze features faster wake-up

time and higher power consumption.

To wake a sleeping module operating in Pin Doze Mode, de-assert Sleep_RQ (pin 9). The module

will wake when Sleep_RQ is de-asserted and is ready to transmit or receive when the CTS line is

Table 2‐04. Sleep Mode Configurations

Sleep Mode 
Setting

Transition into 
Sleep Mode

Transition out of 
Sleep Mode (wake) Characteristics Related

Commands
Power
Consumption

Pin Hibernate
(SM = 1)

Assert (high) Sleep_RQ 
(pin 9) De-assert (low) Sleep_RQ

Pin/Host-controlled / 
NonBeacon systems 
only / Lowest Power

(SM) < 10 µA (@3.0 
VCC)

Pin Doze
(SM = 2)

Assert (high) Sleep_RQ 
(pin 9) De-assert (low) Sleep_RQ

Pin/Host-controlled / 
NonBeacon systems 
only /  Fastest wake-up

(SM) < 50 µA

Cyclic Sleep
(SM = 4)

Automatic transition to 
Sleep Mode as defined by 
the SM (Sleep Mode) and 
ST (Time before Sleep) 
parameters.

Transition occurs after the 
cyclic sleep time interval 
elapses. The time interval 
is defined by the SP 
(Cyclic Sleep Period) 
parameter.

RF module wakes in 
pre-determined time 
intervals to detect if RF 
data is present / When 
SM = 5

(SM), SP, ST < 50 µA 
when sleeping

Cyclic Sleep
(SM = 5)

Automatic transition to 
Sleep Mode as defined by 
the SM (Sleep Mode) and 
ST (Time before Sleep) 
parameters or on a falling 
edge transition of the 
SLEEP_RQ pin. 

Transition occurs after the 
cyclic sleep time interval 
elapses. The time interval 
is defined by the SP 
(Cyclic Sleep Period) 
parameter.

RF module wakes in 
pre-determined time 
intervals to detect if RF 
data is present. Module 
also wakes on a falling 
edge of SLEEP_RQ

(SM), SP, ST < 50 µA 
when sleeping
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low. When waking the module, the pin must be de-asserted at least two 'byte times' after CTS

goes low. This assures that there is time for the data to enter the DI buffer.

Cyclic Sleep Modes

Cyclic Sleep Remote (SM = 4)
• Typical Power-down Current: < 50 µA (when asleep)
• Typical wake-up time: 2.6 msec

The Cyclic Sleep Modes allow modules to periodically check for RF data. When the SM parameter is 
set to ‘4’, the module is configured to sleep, then wakes once a cycle to check for data from a 
module configured as a Cyclic Sleep Coordinator (SM = 0, CE = 1). The Cyclic Sleep Remote sends 
a poll request to the coordinator at a specific interval set by the SP (Cyclic Sleep Period) parame-
ter. The coordinator will transmit any queued data addressed to that specific remote upon receiv-
ing the poll request. 

If no data is queued for the remote, the coordinator will not transmit and the remote will return to 
sleep for another cycle. If queued data is transmitted back to the remote, it will stay awake to 
allow for back and forth communication until the ST (Time before Sleep) timer expires. 

Also note that CTS will go low each time the remote wakes, allowing for communication initiated 
by the remote host if desired. 

Cyclic Sleep Remote with Pin Wake-up (SM = 5) 
Use this mode to wake a sleeping remote module through either the RF interface or by the de-
assertion of Sleep_RQ for event-driven communications. The cyclic sleep mode works as described 
above (Cyclic Sleep Remote) with the addition of a pin-controlled wake-up at the remote module. 
The Sleep_RQ pin is edge-triggered, not level-triggered. The module will wake when a low is 
detected then set CTS low as soon as it is ready to transmit or receive. 

Any activity will reset the ST (Time before Sleep) timer so the module will go back to sleep only 
after there is no activity for the duration of the timer. Once the module wakes (pin-controlled), fur-
ther pin activity is ignored. The module transitions back into sleep according to the ST time 
regardless of the state of the pin.

[Cyclic Sleep Coordinator (SM = 6)] 
• Typical current = Receive current
• Always awake

NOTE: The SM=6 parameter value exists solely for backwards compatibility with firmware version 
1.x60. If backwards compatibility with the older firmware version is not required, always use the CE 
(Coordinator Enable) command to configure a module as a Coordinator.

This mode configures a module to wake cyclic sleeping remotes through RF interfacing. The Coor-
dinator will accept a message addressed to a specific remote 16 or 64-bit address and hold it in a 
buffer until the remote wakes and sends a poll request. Messages not sent directly (buffered and 
requested) are called "Indirect messages". The Coordinator only queues one indirect message at a 
time. The Coordinator will hold the indirect message for a period 2.5 times the sleeping period 
indicated by the SP (Cyclic Sleep Period) parameter. The Coordinator's SP parameter should be set 
to match the value used by the remotes.
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Command Mode

To modify or read RF Module parameters, the module must first enter into Command Mode - a 
state in which incoming characters are interpreted as commands. Two Command Mode options are 
supported: AT Command Mode [refer to section below] and API Command Mode [p56].

AT Command Mode

To Enter AT Command Mode:

Default AT Command Mode Sequence (for transition to Command Mode):

• No characters sent for one second [GT (Guard Times) parameter = 0x3E8]
• Input three plus characters (“+++”) within one second [CC (Command Sequence Character) 

parameter = 0x2B.]
• No characters sent for one second [GT (Guard Times) parameter = 0x3E8]

All of the parameter values in the sequence can be modified to reflect user preferences.

NOTE: Failure to enter AT Command Mode is most commonly due to baud rate mismatch. Ensure the 
‘Baud’ setting on the “PC Settings” tab matches the interface data rate of the RF module. By default, 
the BD parameter = 3 (9600 bps).

To Send AT Commands:

Figure 2‐08. Syntax for sending AT Commands 

To read a parameter value stored in the RF module’s register, omit the parameter field.

The preceding example would change the RF module Destination Address (Low) to “0x1F”. To store 
the new value to non-volatile (long term) memory, subsequently send the WR (Write) command.

For modified parameter values to persist in the module’s registry after a reset, changes must be saved 
to non-volatile memory using the WR (Write) Command. Otherwise, parameters are restored to previ-
ously saved values after the module is reset.

System Response. When a command is sent to the module, the module will parse and execute 
the command. Upon successful execution of a command, the module returns an “OK” message. If 
execution of a command results in an error, the module returns an “ERROR” message.

To Exit AT Command Mode:

For an example of programming the RF module using AT Commands and descriptions of each config-
urable parameter, refer to the RF Module Configuration chapter [p27].

Send the 3-character command sequence “+++” and observe guard times before and after the 
command characters. [Refer to the “Default AT Command Mode Sequence” below.]

Send AT commands and parameters using the syntax shown below.

1.    Send the ATCN (Exit Command Mode) command (followed by a carriage return).
       [OR]
2.    If no valid AT Commands are received within the time specified by CT (Command Mode 

Timeout) Command, the RF module automatically returns to Idle Mode. 
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3. RF Module Configuration

Programming the RF Module

Refer to the Command Mode section [p26] for more information about entering Command Mode, 
sending AT commands and exiting Command Mode. For information regarding module program-
ming using API Mode, refer to the API Operation sections [p56].

Programming Examples

Setup

Sample Configuration: Modify RF Module Destination Address

Sample Configuration: Restore RF Module Defaults

The programming examples in this section require the installation of Digi's X-CTU Software and 
a serial connection to a PC. (Digi stocks RS-232 and USB boards to facilitate interfacing with a 
PC.)
1. Install Digi's X-CTU Software to a PC by double-clicking the "setup_X-CTU.exe" file. (The file 

is located on the Digi CD and www.digi.com/xctu.)
2. Mount the RF module to an interface board, then connect the module assembly to a PC.
3. Launch the X-CTU Software and select the 'PC Settings' tab. Verify the baud and parity set-

tings of the Com Port match those of the RF module.
NOTE: Failure to enter AT Command Mode is most commonly due to baud rate mismatch. 
Ensure the ‘Baud’ setting on the ‘PC Settings’ tab matches the interface data rate of the RF mod-
ule. By default, the BD parameter = 3 (which corresponds to 9600 bps).

Example: Utilize the X-CTU “Terminal” tab to change the RF module's DL (Destination Address 
Low) parameter and save the new address to non-volatile memory.
After establishing a serial connection between the RF module and a PC [refer to the 'Setup' sec-
tion above], select the “Terminal” tab of the X-CTU Software and enter the following command 
lines (‘CR’ stands for carriage return):

Method 1 (One line per command)
Send AT Command
+++
ATDL <Enter>
ATDL1A0D <Enter>
ATWR <Enter>
ATCN <Enter>

System Response
OK <CR> (Enter into Command Mode)
{current value} <CR> (Read Destination Address Low)
OK <CR> (Modify Destination Address Low)
OK <CR> (Write to non-volatile memory)
OK <CR> (Exit Command Mode)

Method 2 (Multiple commands on one line)
Send AT Command
+++
ATDL <Enter>
ATDL1A0D,WR,CN <Enter>

System Response
OK <CR> (Enter into Command Mode)
{current value} <CR> (Read Destination Address Low)
OK<CR> OK<CR> OK<CR>

Example: Utilize the X-CTU “Modem Configuration” tab to restore default parameter values.
After establishing a connection between the module and a PC [refer to the 'Setup' section 
above], select the “Modem Configuration” tab of the X-CTU Software.
1.    Select the 'Read' button.
2.    Select the 'Restore' button.
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Remote Configuration Commands

The API firmware has provisions to send configuration commands to remote devices using the 
Remote Command Request API frame (see API Operation). This API frame can be used to send 
commands to a remote module to read or set command parameters.

The API firmware has provisions to send configuration commands (set or read) to a remote mod-
ule using the Remote Command Request API frame (see API Operations). Remote commands can 
be issued to read or set command parameters on a remote device.

Sending a Remote Command

To send a remote command, the Remote Command Request frame should be populated with val-
ues for the 64 bit and 16 bit addresses. If 64 bit addressing is desired then the 16 bit address field 
should be filled with 0xFFFE. If any value other than 0xFFFE is used in the 16 bit address field then 
the 64 bit address field will be ignored and 16 bit addressing will be used. If a command response 
is desired, the Frame ID should be set to a non-zero value. 

Applying Changes on Remote

When remote commands are used to change command parameter settings on a remote device, 
parameter changes do not take effect until the changes are applied. For example, changing the BD 
parameter will not change the actual serial interface rate on the remote until the changes are 
applied. Changes can be applied using remote commands in one of three ways:

Set the apply changes option bit in the API frame

Issue an AC command to the remote device

Issue a WR + FR command to the remote device to save changes and reset the device.

Remote Command Responses

If the remote device receives a remote command request transmission, and the API frame ID is 
non-zero, the remote will send a remote command response transmission back to the device that 
sent the remote command. When a remote command response transmission is received, a device 
sends a remote command response API frame out its UART. The remote command response indi-
cates the status of the command (success, or reason for failure), and in the case of a command 
query, it will include the register value.

The device that sends a remote command will not receive a remote command response frame if:

The destination device could not be reached 

The frame ID in the remote command request is set to 0.

Command Reference Tables

XBee®/XBee-PRO® RF Modules expect numerical values in hexadecimal. Hexadecimal values are 
designated by a “0x” prefix. Decimal equivalents are designated by a “d” suffix. Commands are 
contained within the following command categories (listed in the order that their tables appear):

• Special
• Networking & Security
• RF Interfacing
• Sleep (Low Power)
• Serial Interfacing
• I/O Settings
• Diagnostics
• AT Command Options

All modules within a PAN should operate using the same firmware version.
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Special

* Firmware version in which the command was first introduced (firmware versions are numbered in hexadecimal notation.)

Networking & Security 

Table 3‐01. XBee‐PRO Commands ‐ Special

AT
Command

Command
Category Name and Description Parameter Range Default

WR Special
Write. Write parameter values to non-volatile memory so that parameter modifications 
persist through subsequent power-up or reset. 
Note: Once WR is issued, no additional characters should be sent to the module until 
after the response "OK\r" is received.

- -

RE Special Restore Defaults. Restore module parameters to factory defaults. - -

FR ( v1.x80*) Special Software Reset. Responds immediately with an OK then performs a hard reset 
~100ms later. - -

Table 3‐02. XBee®/XBee‐PRO® Commands ‐ Networking & Security (Sub‐categories designated within {brackets})

AT
Command

Command
Category Name and Description Parameter Range Default

CH Networking 
{Addressing}

Channel. Set/Read the channel number used for transmitting and receiving data 
between RF modules (uses 802.15.4 protocol channel numbers).

0x0B - 0x1A (XBee)             
0x0C - 0x17 (XBee-PRO) 0x0C (12d)

ID Networking 
{Addressing}

PAN ID. Set/Read the PAN (Personal Area Network) ID.
Use 0xFFFF to broadcast messages to all PANs. 0 - 0xFFFF 0x3332

(13106d)

DH Networking 
{Addressing}

Destination Address High. Set/Read the upper 32 bits of the 64-bit destination 
address. When combined with DL, it defines the destination address used for 
transmission. To transmit using a 16-bit address, set DH parameter to zero and DL less 
than 0xFFFF. 0x000000000000FFFF is the broadcast address for the PAN.

0 - 0xFFFFFFFF 0

DL Networking 
{Addressing}

Destination Address Low. Set/Read the lower 32 bits of the 64-bit destination 
address. When combined with DH, DL defines the destination address used for 
transmission. To transmit using a 16-bit address, set DH parameter to zero and DL less 
than 0xFFFF. 0x000000000000FFFF is the broadcast address for the PAN.

0 - 0xFFFFFFFF 0

MY Networking 
{Addressing}

16-bit Source Address. Set/Read the RF module 16-bit source address. Set MY = 
0xFFFF to disable reception of packets with 16-bit addresses. 64-bit source address 
(serial number) and broadcast address (0x000000000000FFFF) is always enabled.

0 - 0xFFFF 0

SH Networking 
{Addressing}

Serial Number High. Read high 32 bits of the RF module's unique IEEE 64-bit 
address. 64-bit source address is always enabled. 0 - 0xFFFFFFFF [read-only] Factory-set

SL Networking 
{Addressing}

Serial Number Low. Read low 32 bits of the RF module's unique IEEE 64-bit address. 
64-bit source address is always enabled. 0 - 0xFFFFFFFF [read-only] Factory-set

RR ( v1.xA0*) Networking 
{Addressing}

XBee Retries. Set/Read the maximum number of retries the module will execute in 
addition to the 3 retries provided by the 802.15.4 MAC. For each XBee retry, the 
802.15.4 MAC can execute up to 3 retries.

0 - 6 0

RN Networking 
{Addressing}

Random Delay Slots. Set/Read the minimum value of the back-off exponent in the 
CSMA-CA algorithm that is used for collision avoidance. If RN = 0, collision avoidance 
is disabled during the first iteration of the algorithm (802.15.4 - macMinBE).

0 - 3 [exponent] 0

MM ( v1.x80*) Networking 
{Addressing}

MAC Mode. MAC Mode. Set/Read MAC Mode value. MAC Mode enables/disables the 
use of a Digi header in the 802.15.4 RF packet. When Modes 1 or 3 are enabled 
(MM=1,3), duplicate packet detection is enabled as well as certain AT commands. 
Please see the detailed MM description on page 47 for additional information.

0 - 3
0 = Digi Mode
1 = 802.15.4 (no ACKs)
2 = 802.15.4 (with ACKs)
3 = Digi Mode (no ACKs) 

0

NI ( v1.x80*) Networking 
{Identification}

Node Identifier. Stores a string identifier. The register only accepts printable ASCII 
data. A string can not start with a space. Carriage return ends command. Command will 
automatically end when maximum bytes for the string have been entered. This string is 
returned as part of the ND (Node Discover) command. This identifier is also used with 
the DN (Destination Node) command.

 20-character ASCII string -

ND ( v1.x80*) Networking 
{Identification}

Node Discover. Discovers and reports all RF modules found. The following information 
is reported for each module discovered (the example cites use of Transparent operation 
(AT command format) - refer to the long ND command description regarding differences 
between Transparent and API operation).

MY<CR>
SH<CR>
SL<CR>
DB<CR>
NI<CR><CR>

The amount of time the module allows for responses is determined by the NT 
parameter. In Transparent operation, command completion is designated by a <CR> 
(carriage return). ND also accepts a Node Identifier as a parameter. In this case, only a 
module matching the supplied identifier will respond. If ND self-response is enabled 
(NO=1) the module initiating the node discover will also output a response for itself.

optional 20-character NI value

NT ( v1.xA0*) Networking 
{Identification}

Node Discover Time. Set/Read the amount of time a node will wait for responses from 
other nodes when using the ND (Node Discover) command. 0x01 - 0xFC [x 100 ms] 0x19
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NO (v1xC5)  Networking 
{Identification} Node Discover Options. Enables node discover self-response on the module. 0-1 0

DN ( v1.x80*) Networking 
{Identification}

Destination Node. Resolves an NI (Node Identifier) string to a physical address. The 
following events occur upon successful command execution:

1. DL and DH are set to the address of the module with the matching Node Identifier.
2. “OK” is returned.
3. RF module automatically exits AT Command Mode

If there is no response from a module within 200 msec or a parameter is not specified 
(left blank), the command is terminated and an “ERROR” message is returned.

 20-character ASCII string -

CE ( v1.x80*) Networking 
{Association} Coordinator Enable. Set/Read the coordinator setting.

0 - 1
0 = End Device
1 = Coordinator

0

SC ( v1.x80*) Networking 
{Association}

Scan Channels. Set/Read list of channels to scan for all Active and Energy Scans as a 
bitfield. This affects scans initiated in command mode (AS, ED) and during End Device 
Association and Coordinator startup:

bit 0 - 0x0B bit 4 - 0x0F bit 8 - 0x13 bit12 - 0x17 
bit 1 - 0x0C bit 5 - 0x10 bit 9 - 0x14 bit13 - 0x18
bit 2 - 0x0D bit 6 - 0x11 bit 10 - 0x15 bit14 - 0x19
bit 3 - 0x0E bit 7 - 0x12 bit 11 - 0x16 bit 15 - 0x1A

0 - 0xFFFF [bitfield]
(bits 0, 14, 15 not allowed on 
the XBee-PRO)

0x1FFE
(all XBee-
PRO 
Channels)

SD ( v1.x80*) Networking 
{Association}

Scan Duration. Set/Read the scan duration exponent. 
End Device - Duration of Active Scan during Association. 
Coordinator - If ‘ReassignPANID’ option is set on Coordinator [refer to A2 parameter], 
SD determines the length of time the Coordinator will scan channels to locate existing 
PANs. If ‘ReassignChannel’ option is set, SD determines how long the Coordinator will 
perform an Energy Scan to determine which channel it will operate on.
‘Scan Time’ is measured as (# of channels to scan] * (2 ^ SD) * 15.36ms). The number 
of channels to scan is set by the SC command. The XBee can scan up to 16 channels 
(SC = 0xFFFF). The XBee PRO can scan up to 13 channels (SC = 0x3FFE).
Example: The values below show results for a 13 channel scan:

If SD = 0, time = 0.18 sec SD = 8, time = 47.19 sec
SD = 2, time = 0.74 sec  SD = 10, time = 3.15 min
SD = 4, time = 2.95 sec SD = 12, time = 12.58 min
SD = 6, time = 11.80 sec SD = 14, time = 50.33 min

0-0x0F [exponent] 4

A1 ( v1.x80*) Networking 
{Association}

End Device Association. Set/Read End Device association options. 
bit 0 - ReassignPanID

0 - Will only associate with Coordinator operating on PAN ID that matches module ID
1 - May associate with Coordinator operating on any PAN ID 

bit 1 - ReassignChannel
0 - Will only associate with Coordinator operating on matching CH Channel setting
1 - May associate with Coordinator operating on any Channel

bit 2 - AutoAssociate
0 - Device will not attempt Association
1 - Device attempts Association until success

Note: This bit is used only for Non-Beacon systems. End Devices in Beacon-enabled 
system must always associate to a Coordinator
bit 3 - PollCoordOnPinWake

0 - Pin Wake will not poll the Coordinator for indirect (pending) data 
1 - Pin Wake will send Poll Request to Coordinator to extract any pending data

bits 4 - 7 are reserved

0 - 0x0F [bitfield] 0

A2 ( v1.x80*) Networking 
{Association}

Coordinator Association. Set/Read Coordinator association options.
bit 0 - ReassignPanID

0 - Coordinator will not perform Active Scan to locate available PAN ID. It will operate 
      on ID (PAN ID).
1 - Coordinator will perform Active Scan to determine an available ID (PAN ID). If a

   PAN ID conflict is found, the ID parameter will change. 
bit 1 - ReassignChannel -

0 - Coordinator will not perform Energy Scan to determine free channel. It will operate
      on the channel determined by the CH parameter. 
1 - Coordinator will perform Energy Scan to find a free channel, then operate on that 
      channel. 

bit 2 - AllowAssociation -
0 - Coordinator will not allow any devices to associate to it. 
1 - Coordinator will allow devices to associate to it. 

bits 3 - 7 are reserved 

0 - 7 [bitfield] 0

Table 3‐02. XBee®/XBee‐PRO® Commands ‐ Networking & Security (Sub‐categories designated within {brackets})

AT
Command

Command
Category Name and Description Parameter Range Default



XBee®/XBee‐PRO®  RF Modules ‐ 802.15.4 ‐ v1.xEx

© 2012 Digi Internatonal, Inc.      31

* Firmware version in which the command was first introduced (firmware versions are numbered in hexadecimal notation.)

AI ( v1.x80*) Networking 
{Association}

Association Indication. Read errors with the last association request:
0x00 - Successful Completion - Coordinator successfully started or End Device

        association complete
0x01 - Active Scan Timeout 
0x02 - Active Scan found no PANs 
0x03 - Active Scan found PAN, but the CoordinatorAllowAssociation bit is not set
0x04 - Active Scan found PAN, but Coordinator and End Device are not 

         configured to support beacons 
0x05 - Active Scan found PAN, but the Coordinator ID parameter does not match

        the ID parameter of the End Device
0x06 - Active Scan found PAN, but the Coordinator CH parameter does not match the 

       CH parameter of the End Device
0x07 - Energy Scan Timeout
0x08 - Coordinator start request failed
0x09 - Coordinator could not start due to invalid parameter
0x0A - Coordinator Realignment is in progress
0x0B - Association Request not sent
0x0C - Association Request timed out - no reply was received
0x0D - Association Request had an Invalid Parameter
0x0E - Association Request Channel Access Failure. Request was not transmitted - 

        CCA failure
0x0F - Remote Coordinator did not send an ACK after Association Request was sent
0x10 - Remote Coordinator did not reply to the Association Request, but an ACK was 

       received after sending the request
0x11 - [reserved]
0x12 - Sync-Loss - Lost synchronization with a Beaconing Coordinator
0x13 - Disassociated - No longer associated to Coordinator
0xFF - RF Module is attempting to associate

0 - 0x13 [read-only] -

DA ( v1.x80*) Networking 
{Association}

Force Disassociation. End Device will immediately disassociate from a Coordinator (if 
associated) and reattempt to associate. - -

FP ( v1.x80*) Networking 
{Association} Force Poll. Request indirect messages being held by a coordinator. - -

AS ( v1.x80*) Networking 
{Association}

Active Scan. Send Beacon Request to Broadcast Address (0xFFFF) and Broadcast 
PAN (0xFFFF) on every channel. The parameter determines the time the radio will 
listen for Beacons on each channel. A PanDescriptor is created and returned for every 
Beacon received from the scan. Each PanDescriptor contains the following information:
CoordAddress (SH, SL)<CR> 
CoordPanID (ID)<CR>
CoordAddrMode <CR>

0x02 = 16-bit Short Address 
0x03 = 64-bit Long Address 

Channel (CH parameter) <CR> 
SecurityUse<CR> 
ACLEntry<CR> 
SecurityFailure<CR> 
SuperFrameSpec<CR> (2 bytes):

bit 15 - Association Permitted (MSB) 
bit 14 - PAN Coordinator 
bit 13 - Reserved 
bit 12 - Battery Life Extension
bits 8-11 - Final CAP Slot 
bits 4-7 - Superframe Order 
bits 0-3 - Beacon Order 

GtsPermit<CR> 
RSSI<CR> (RSSI is returned as -dBm)
TimeStamp<CR> (3 bytes) 
<CR> 
A carriage return <CR> is sent at the end of the AS command. The Active Scan is 
capable of returning up to 5 PanDescriptors in a scan. The actual scan time on each 
channel is measured as Time = [(2 ^SD PARAM) * 15.36] ms. Note the total scan time is 
this time multiplied by the number of channels to be scanned (16 for the XBee and 13 
for the XBee-PRO). Also refer to SD command description. 

0 - 6 -

ED ( v1.x80*) Networking 
{Association}

Energy Scan. Send an Energy Detect Scan. This parameter determines the length of 
scan on each channel. The maximal energy on each channel is returned & each value 
is followed by a carriage return. An additional carriage return is sent at the end of the 
command. The values returned represent the detected energy level in units of -dBm. 
The actual scan time on each channel is measured as Time = [(2 ^ED) * 15.36] ms. 
Note the total scan time is this time multiplied by the number of channels to be scanned 
(refer to SD parameter).

0 - 6 -

EE ( v1.xA0*) Networking 
{Security}

AES Encryption Enable. Disable/Enable 128-bit AES encryption support. Use in 
conjunction with the KY command. 0 - 1 0 (disabled)

KY ( v1.xA0*) Networking 
{Security}

AES Encryption Key. Set the 128-bit AES (Advanced Encryption Standard) key for 
encrypting/decrypting data. The KY register cannot be read. 0 - (any 16-Byte value) -

Table 3‐02. XBee®/XBee‐PRO® Commands ‐ Networking & Security (Sub‐categories designated within {brackets})

AT
Command

Command
Category Name and Description Parameter Range Default



XBee®/XBee‐PRO®  RF Modules ‐ 802.15.4 ‐ v1.xEx

© 2012 Digi Internatonal, Inc.      32

RF Interfacing 

* Firmware version in which the command was first introduced (firmware versions are numbered in hexadecimal notation.)

Sleep (Low Power)

Table 3‐03. XBee/XBee‐PRO Commands ‐ RF Interfacing

AT
Command

Command
Category Name and Description Parameter Range Default

PL RF Interfacing Power Level. Select/Read the power level at which the RF module transmits conducted 
power.

0 - 4 (XBee / XBee-PRO)
0 = -10 / 10 dBm
1 = -6 / 12 dBm
2 = -4 / 14 dBm
3 = -2 / 16 dBm
4 = 0 / 18 dBm

XBee-PRO International 
variant: 
PL=4: 10 dBm 
PL=3: 8 dBm 
PL=2: 2 dBm 
PL=1: -3 dBm 
PL=0: -3 dBm 

4

CA (v1.x80*) RF Interfacing
CCA Threshold. Set/read the CCA (Clear Channel Assessment) threshold. Prior to 
transmitting a packet, a CCA is performed to detect energy on the channel. If the 
detected energy is above the CCA Threshold, the module will not transmit the packet.

0x24 - 0x50 [-dBm] 0x2C
(-44d dBm)

Table 3‐04. XBee®/XBee‐PRO® Commands ‐ Sleep (Low Power)

AT
Command

Command
Category Name and Description Parameter Range Default

SM Sleep
(Low Power) Sleep Mode. Set/Read Sleep Mode configurations.

0 - 5
0 = No Sleep
1 = Pin Hibernate
2 = Pin Doze
3 = Reserved
4 = Cyclic sleep remote
5 = Cyclic sleep remote 
       w/ pin wake-up
6 = [Sleep Coordinator] for 

   backwards compatibility 
   w/ v1.x6 only; otherwise,
   use CE command.

0

SO Sleep (Low 
Power)

Sleep Options Set/Read the sleep mode options.    
Bit 0 - Poll wakeup disable
0 - Normal operations. A module configured for cyclic sleep will poll for data on waking.
1 - Disable wakeup poll. A module configured for cyclic sleep will not poll for data on 
waking.
Bit 1 - ADC/DIO wakeup sampling disable.
0 - Normal operations. A module configured in a sleep mode with ADC/DIO sampling 
enabled will automatically perform a sampling on wakeup.
1 - Suppress sample on wakeup. A module configured in a sleep mode with ADC/DIO 
sampling enabled will not automatically sample on wakeup.

0-4 0

ST Sleep
(Low Power)

Time before Sleep. <NonBeacon firmware> Set/Read time period of inactivity (no 
serial or RF data is sent or received) before activating Sleep Mode. ST parameter is 
only valid with Cyclic Sleep settings (SM = 4 - 5).
Coordinator and End Device ST values must be equal. 
Also note, the GT parameter value must always be less than the ST value. (If GT > ST, 
the configuration will render the module unable to enter into command mode.) If the ST 
parameter is modified, also modify the GT parameter accordingly.

1 - 0xFFFF [x 1 ms] 0x1388
(5000d)

SP Sleep
(Low Power)

Cyclic Sleep Period. <NonBeacon firmware> Set/Read sleep period for cyclic sleeping 
remotes. Coordinator and End Device SP values should always be equal. To send 
Direct Messages, set SP = 0.
End Device - SP determines the sleep period for cyclic sleeping remotes. Maximum 
sleep period is 268 seconds (0x68B0).
Coordinator - If non-zero, SP determines the time to hold an indirect message before 
discarding it. A Coordinator will discard indirect messages after a period of (2.5 * SP).

0 - 0x68B0 [x 10 ms]  0

DP (1.x80*) Sleep
(Low Power) 

Disassociated Cyclic Sleep Period. <NonBeacon firmware> 
End Device - Set/Read time period of sleep for cyclic sleeping remotes that are 
configured for Association but are not associated to a Coordinator. (i.e. If a device is 
configured to associate, configured as a Cyclic Sleep remote, but does not find a 
Coordinator, it will sleep for DP time before reattempting association.) Maximum sleep 
period is 268 seconds (0x68B0). DP should be > 0 for NonBeacon systems.

1 - 0x68B0 [x 10 ms] 0x3E8
(1000d)
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* Firmware version in which the command was first introduced (firmware versions are numbered in hexadecimal notation.)

Serial Interfacing

* Firmware version in which the command was first introduced (firmware versions are numbered in hexadecimal notation.)

I/O Settings

Table 3‐05. XBee‐PRO Commands ‐ Serial Interfacing

AT
Command

Command
Category Name and Description Parameter Range Default

BD Serial 
Interfacing

Interface Data Rate. Set/Read the serial interface data rate for communications 
between the RF module serial port and host. 
Request non-standard baud rates with values above 0x80 using a terminal window. 
Read the BD register to find actual baud rate achieved.

0 - 7 (standard baud rates)
0 = 1200 bps
1 = 2400
2 = 4800
3 = 9600
4 = 19200
5 = 38400
6 = 57600
7 = 115200

0x80 - 0x3D090 
(non-standard baud rates up to 
250 Kbps)

3

RO Serial 
Interfacing

Packetization Timeout. Set/Read number of character times of inter-character delay 
required before transmission. Set to zero to transmit characters as they arrive instead of 
buffering them into one RF packet.

0 - 0xFF [x character times] 3

AP (v1.x80*) Serial 
Interfacing API Enable. Disable/Enable API Mode.

0 - 2
0 =Disabled
1 = API enabled
2 = API enabled  (w/escaped 

control characters)

0

NB Serial
Interfacing Parity. Set/Read parity settings.

0 - 4
0 = 8-bit no parity
1 = 8-bit even
2 = 8-bit odd
3 = 8-bit mark
4 = 8-bit space

0

PR (v1.x80*) Serial 
Interfacing

Pull-up Resistor Enable. Set/Read bitfield to configure internal pull-up resistor status 
for I/O lines 
Bitfield Map:

 bit 0 - AD4/DIO4 (pin11)
 bit 1 - AD3 / DIO3 (pin17)
 bit 2 - AD2/DIO2 (pin18)
 bit 3 - AD1/DIO1 (pin19)
 bit 4 - AD0 / DIO0 (pin20)
 bit 5 - RTS / AD6 / DIO6 (pin16)
 bit 6 - DTR / SLEEP_RQ / DI8 (pin9)
 bit 7 - DIN/CONFIG (pin3)

Bit set to “1” specifies pull-up enabled; “0” specifies no pull-up

0 - 0xFF 0xFF

Table 3‐06. XBee‐PRO Commands ‐ I/O Settings (sub‐category designated within {brackets})

AT
Command

Command
Category Name and Description Parameter Range Default

D8 I/O Settings DI8 Configuration. Select/Read options for the DI8 line (pin 9) of the RF module.
0 - 1

0 = Disabled
3 = DI 

(1,2,4 & 5 n/a)
0

D7 (v1.x80*) I/O Settings DIO7 Configuration. Select/Read settings for the DIO7 line (pin 12) of the RF module. 
Options include CTS flow control and I/O line settings.

0 - 1
0 = Disabled
1 = CTS Flow Control
2 = (n/a)
3 = DI
4 = DO low
5 = DO high

6 = RS485 Tx Enable Low
7 = RS485 Tx Enable High

1

D6 (v1.x80*) I/O Settings DIO6 Configuration. Select/Read settings for the DIO6 line (pin 16) of the RF module. 
Options include RTS flow control and I/O line settings.

0 - 1
0 = Disabled 
1 = RTS flow control
2 = (n/a)
3 = DI 
4 = DO low 
5 = DO high 

0
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Diagnostics

D5 (v1.x80*) I/O Settings
DIO5 Configuration. Configure settings for the DIO5 line (pin 15) of the RF module. 
Options include Associated LED indicator (blinks when associated) and I/O line 
settings.

0 - 1
0 = Disabled 
1 = Associated indicator 
2 = ADC
3 = DI
4 = DO low 
5 = DO high 

1

D0 - D4 
(v1.xA0*) I/O Settings

(DIO4 -DIO4) Configuration. Select/Read settings for the following lines: AD0/DIO0 
(pin 20), AD1/DIO1 (pin 19), AD2/DIO2 (pin 18), AD3/DIO3 (pin 17), AD4/DIO4 (pin 11).
Options include: Analog-to-digital converter, Digital Input and Digital Output.

0 - 1
0 = Disabled 
1 = (n/a) 
2 = ADC 
3 = DI
4 = DO low 
5 = DO high 

0

IU (v1.xA0*) I/O Settings I/O Output Enable. Disables/Enables I/O data received to be sent out UART. The data 
is sent using an API frame regardless of the current AP parameter value.

0 - 1
0 = Disabled
1 = Enabled

1

IT (v1.xA0*) I/O Settings Samples before TX. Set/Read the number of samples to collect before transmitting 
data. Maximum number of samples is dependent upon the number of enabled inputs. 1 - 0xFF 1

IS (v1.xA0*) I/O Settings Force Sample. Force a read of all enabled inputs (DI or ADC). Data is returned through 
the UART. If no inputs are defined (DI or ADC), this command will return error.

8-bit bitmap (each bit 
represents the level of an I/O 
line setup as an output)

-

IO (v1.xA0*) I/O Settings Digital Output Level. Set digital output level to allow DIO lines that are setup as 
outputs to be changed through Command Mode. - -

IC (v1.xA0*) I/O Settings
DIO Change Detect. Set/Read bitfield values for change detect monitoring. Each bit 
enables monitoring of DIO0 - DIO7 for changes. If detected, data is transmitted with 
DIO data only. Any samples queued waiting for transmission will be sent first.

0 - 0xFF [bitfield] 0 (disabled)

IR (v1.xA0*) I/O Settings Sample Rate. Set/Read sample rate. When set, this parameter causes the module to 
sample all enabled inputs at a specified interval. 0 - 0xFFFF [x 1 msec] 0

IA (v1.xA0*) I/O Settings {I/O 
Line Passing}

I/O Input Address. Set/Read addresses of module to which outputs are bound. Setting 
all bytes to 0xFF will not allow any received I/O packet to change outputs. Setting 
address to 0xFFFF will allow any received I/O packet to change outputs.

0 - 0xFFFFFFFFFFFFFFFF 0xFFFFFFF
FFFFFFFFF

T0 - T7 
(v1.xA0*)

I/O Settings {I/O 
Line Passing}

(D0 - D7) Output Timeout. Set/Read Output timeout values for lines that correspond 
with the D0 - D7 parameters. When output is set (due to I/O line passing) to a non-
default level, a timer is started which when expired will set the output to it default level. 
The timer is reset when a valid I/O packet is received.

0 - 0xFF [x 100 ms] 0xFF

P0 I/O Settings {I/O 
Line Passing} PWM0 Configuration. Select/Read function for PWM0 pin.

0 - 2
0 = Disabled 
1 = RSSI 
2 = PWM Output 

1

P1 (v1.xA0*) I/O Settings {I/O 
Line Passing} PWM1 Configuration. Select/Read function for PWM1 pin.

0 - 2
0 = Disabled 
1 = RSSI 
2 = PWM Output 

0

M0 (v1.xA0*) I/O Settings {I/O 
Line Passing} PWM0 Output Level. Set/Read the PWM0 output level. 0 - 0x03FF -

M1 (v1.xA0*) I/O Settings {I/O 
Line Passing} PWM1 Output Level. Set/Read the PWM1 output level. 0 - 0x03FF -

PT (v1.xA0*) I/O Settings {I/O 
Line Passing}

PWM Output Timeout. Set/Read output timeout value for both PWM outputs. When 
PWM is set to a non-zero value: Due to I/O line passing, a time is started which when 
expired will set the PWM output to zero. The timer is reset when a valid I/O packet is 
received.]

0 - 0xFF [x 100 ms] 0xFF

RP I/O Settings {I/O 
Line Passing}

RSSI PWM Timer. Set/Read PWM timer register. Set the duration of PWM (pulse width 
modulation) signal output on the RSSI pin. The signal duty cycle is updated with each 
received packet and is shut off when the timer expires.]

0 - 0xFF [x 100 ms] 0x28 (40d)

Table 3‐07. XBee®/XBee‐PRO® Commands ‐ Diagnostics

AT
Command

Command
Category Name and Description Parameter Range Default

VR Diagnostics Firmware Version. Read firmware version of the RF module. 0 - 0xFFFF [read-only] Factory-set

VL (v1.x80*) Diagnostics
Firmware Version - Verbose. Read detailed version information (including application 
build date, MAC, PHY and bootloader versions). The VL command has been 
deprecated in version 10C9. It is not supported in firmware versions after 10C8

- -

Table 3‐06. XBee‐PRO Commands ‐ I/O Settings (sub‐category designated within {brackets})

AT
Command

Command
Category Name and Description Parameter Range Default
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AT Command Options

 * Firmware version in which the command was first introduced (firmware versions are numbered in hexadecimal notation.)

HV (v1.x80*) Diagnostics Hardware Version. Read hardware version of the RF module. 0 - 0xFFFF [read-only] Factory-set

DB Diagnostics
Received Signal Strength. Read signal level [in dB] of last good packet received 
(RSSI). Absolute value is reported. (For example: 0x58 = -88 dBm) Reported value is 
accurate between -40 dBm and RX sensitivity.

0x17-0x5C (XBee)
0x24-0x64 (XBee-PRO) 
[read-only]

-

EC (v1.x80*) Diagnostics
CCA Failures. Reset/Read count of CCA (Clear Channel Assessment) failures. This 
parameter value increments when the module does not transmit a packet because it 
detected energy above the CCA threshold level set with CA command. This count 
saturates at its maximum value. Set count to “0” to reset count.

0 - 0xFFFF -

EA (v1.x80*) Diagnostics
ACK Failures. Reset/Read count of acknowledgment failures. This parameter value 
increments when the module expires its transmission retries without receiving an ACK 
on a packet transmission. This count saturates at its maximum value. Set the parameter 
to “0” to reset count.

0 - 0xFFFF -

ED (v1.x80*) Diagnostics

Energy Scan. Send ‘Energy Detect Scan’. ED parameter determines the length of scan 
on each channel. The maximal energy on each channel is returned and each value is 
followed by a carriage return. Values returned represent detected energy levels in units 
of -dBm. Actual scan time on each channel is measured as Time = [(2 ^ SD) * 15.36] 
ms. Total scan time is this time multiplied by the number of channels to be scanned.

0 - 6 -

Table 3‐08. XBee®/XBee‐PRO® Commands ‐ AT Command Options

AT
Command

Command
Category Name and Description Parameter Range Default

CT AT Command 
Mode Options

Command Mode Timeout. Set/Read the period of inactivity (no valid commands 
received) after which the RF module automatically exits AT Command Mode and 
returns to Idle Mode.

2 - 0xFFFF [x 100 ms] 0x64 (100d)

CN AT Command 
Mode Options Exit Command Mode. Explicitly exit the module from AT Command Mode. -- --

AC (v1.xA0*) AT Command 
Mode Options

Apply Changes. Explicitly apply changes to queued parameter value(s) and re-
initialize module. -- --

GT AT Command 
Mode Options

Guard Times. Set required period of silence before and after the Command Sequence 
Characters of the AT Command Mode Sequence (GT+ CC + GT). The period of silence 
is used to prevent inadvertent entrance into AT Command Mode.

2 - 0x0CE4 [x 1 ms] 0x3E8
(1000d)

CC AT Command 
Mode Options

Command Sequence Character. Set/Read the ASCII character value to be used 
between Guard Times of the AT Command Mode Sequence (GT+CC+GT). The AT 
Command Mode Sequence enters the RF module into AT Command Mode.

0 - 0xFF 0x2B 
(‘+’ ASCII)

Table 3‐07. XBee®/XBee‐PRO® Commands ‐ Diagnostics

AT
Command

Command
Category Name and Description Parameter Range Default
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Command Descriptions

Command descriptions in this section are listed alphabetically. Command categories are desig-
nated within "< >" symbols that follow each command title. XBee®/XBee-PRO® RF Modules 
expect parameter values in hexadecimal (designated by the "0x" prefix).

All modules operating within the same network should contain the same firmware version.

A1 (End Device Association) Command

<Networking {Association}> The A1 command is 
used to set and read association options for an 
End Device.

Use the table below to determine End Device 
behavior in relation to the A1 parameter.

A2 (Coordinator Association) Command

<Networking {Association}> The A2 command is 
used to set and read association options of the 
Coordinator.

Use the table below to determine Coordinator 
behavior in relation to the A2 parameter.

The binary equivalent of the default value (0x06) is 00000110. ‘Bit 0’ is the last digit of the sequence.

Bit number End Device Association Option

0 - ReassignPanID
0 - Will only associate with Coordinator operating on PAN ID that matches Node Identifier
1 - May associate with Coordinator operating on any PAN ID

1 - ReassignChannel
0 - Will only associate with Coordinator operating on Channel that matches CH setting
1 - May associate with Coordinator operating on any Channel

2 - AutoAssociate

0 - Device will not attempt Association
1 - Device attempts Association until success
Note: This bit is used only for Non-Beacon systems. End Devices in a Beaconing system must 
always associate to a Coordinator

3 -  PollCoordOnPinWake
0 - Pin Wake will not poll the Coordinator for pending (indirect) Data
1 - Pin Wake will send Poll Request to Coordinator to extract any pending data

4 - 7 [reserved]

Bit number End Device Association Option

0 - ReassignPanID

0 - Coordinator will not perform Active Scan to locate available PAN ID. It will operate on ID 
(PAN ID). 
1 - Coordinator will perform Active Scan to determine an available ID (PAN ID). If a PAN ID 
conflict is found, the ID parameter will change.

1 - ReassignChannel
0 - Coordinator will not perform Energy Scan to determine free channel. It will operate on the 
channel determined by the CH parameter.
1 - Coordinator will perform Energy Scan to find a free channel, then operate on that channel. 

2 - AllowAssociate
0 - Coordinator will not allow any devices to associate to it.
1 - Coordinator will allow devices to associate to it.

3 - 7 [reserved]

AT Command: ATA1
Parameter Range: 0 - 0x0F [bitfield]
Default Parameter Value: 0
Related Commands: ID (PAN ID), NI (Node 
Identifier), CH (Channel), CE (Coordinator 
Enable), A2 (Coordinator Association)
Minimum Firmware Version Required: v1.x80

AT Command: ATA2
Parameter Range: 0 - 7 [bitfield]
Default Parameter Value: 0
Related Commands: ID (PAN ID), NI (Node 
Identifier), CH (Channel), CE (Coordinator 
Enable), A1 (End Device Association), AS 
Active Scan), ED (Energy Scan)
Minimum Firmware Version Required: v1.x80
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AC (Apply Changes) Command

<AT Command Mode Options> The AC command 
is used to explicitly apply changes to module 
parameter values. ‘Applying changes’ means that 
the module is re-initialized based on changes 
made to its parameter values. Once changes are applied, the module immediately operates 
according to the new parameter values.

This behavior is in contrast to issuing the WR (Write) command. The WR command saves parame-
ter values to non-volatile memory, but the module still operates according to previously saved val-
ues until the module is re-booted or the CN (Exit AT Command Mode) command is issued.

Refer to the “AT Command - Queue Parameter Value” API type for more information.

AI (Association Indication) Command

<Networking {Association}> The AI command is 
used to indicate occurrences of errors during the 
last association request.

Use the table below to determine meaning of the 
returned values.

Returned Value (Hex) Association Indication
0x00 Successful Completion - Coordinator successfully started or End Device association complete
0x01 Active Scan Timeout
0x02 Active Scan found no PANs
0x03 Active Scan found PAN, but the Coordinator Allow Association bit is not set
0x04 Active Scan found PAN, but Coordinator and End Device are not configured to support beacons
0x05 Active Scan found PAN, but Coordinator ID (PAN ID) value does not match the ID of the End Device
0x06 Active Scan found PAN, but Coordinator CH (Channel) value does not match the CH of the End Device
0x07 Energy Scan Timeout
0x08 Coordinator start request failed
0x09 Coordinator could not start due to Invalid Parameter
0x0A Coordinator Realignment is in progress
0x0B Association Request not sent
0x0C Association Request timed out - no reply was received
0x0D Association Request had an Invalid Parameter
0x0E Association Request Channel Access Failure - Request was not transmitted - CCA failure
0x0F Remote Coordinator did not send an ACK after Association Request was sent

0x10 Remote Coordinator did not reply to the Association Request, but an ACK was received 
after sending the request

0x11 [reserved]
0x12 Sync-Loss - Lost synchronization with a Beaconing Coordinator
0x13 Disassociated - No longer associated to Coordinator
0xFF RF Module is attempting to associate

AT Command: ATAC
Minimum Firmware Version Required: v1.xA0

AT Command: ATAI
Parameter Range: 0 - 0x13 [read-only]
Related Commands: AS (Active Scan), ID (PAN 
ID), CH (Channel), ED (Energy Scan), A1 (End 
Device Association), A2 (Coordinator 
Association), CE (Coordinator Enable)
Minimum Firmware Version Required: v1.x80
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AP (API Enable) Command

<Serial Interfacing> The AP command is used to 
enable the RF module to operate using a frame-
based API instead of using the default Transpar-
ent (UART) mode.

Refer to the API Operation section when API operation is enabled (AP = 1 or 2).

AS (Active Scan) Command

<Network {Association}> The AS command is 
used to send a Beacon Request to a Broadcast  
(0xFFFF) and Broadcast PAN (0xFFFF) on every 
channel. The parameter determines the amount 
of time the RF module will listen for Beacons on 
each channel. A ‘PanDescriptor’ is created and 
returned for every Beacon received from the 
scan. Each PanDescriptor contains the following 
information:

CoordAddress (SH + SL parameters)<CR> (NOTE: If MY on the coordinator is set less than 
0xFFFF, the MY value is displayed)
CoordPanID (ID parameter)<CR>
CoordAddrMode <CR>

0x02 = 16-bit Short Address 
0x03 = 64-bit Long Address 

Channel (CH parameter) <CR> 
SecurityUse<CR> 
ACLEntry<CR> 
SecurityFailure<CR> 
SuperFrameSpec<CR> (2 bytes):

bit 15 - Association Permitted (MSB) 
bit 14 - PAN Coordinator 
bit 13 - Reserved 
bit 12 - Battery Life Extension
bits 8-11 - Final CAP Slot 
bits 4-7 - Superframe Order 
bits 0-3 - Beacon Order 

GtsPermit<CR> 
RSSI<CR> (- RSSI is returned as -dBm) 
TimeStamp<CR> (3 bytes) 
<CR> (A carriage return <CR> is sent at the end of the AS command.

The Active Scan is capable of returning up to 5 PanDescriptors in a scan. The actual scan time on 
each channel is measured as Time = [(2 ^ (SD Parameter)) * 15.36] ms. Total scan time is this 
time multiplied by the number of channels to be scanned (16 for the XBee, 12 for the XBee-PRO).

AT Command: ATAP
Parameter Range:0 - 2

Parameter Configuration

0 Disabled
(Transparent operation)

1 API enabled

2 API enabled 
(with escaped characters)

Default Parameter Value:0
Minimum Firmware Version Required: v1.x80

AT Command: ATAS
Parameter Range: 0 - 6
Related Command: SD (Scan Duration), DL 
(Destination Low Address), DH (Destination 
High Address), ID (PAN ID), CH (Channel)
Minimum Firmware Version Required: v1.x80
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NOTE: Refer the scan table in the SD description to determine scan times. If using API Mode, no 
<CR>’s are returned in the response. Refer to the API Mode Operation section.

BD (Interface Data Rate) Command

<Serial Interfacing> The BD command is used to 
set and read the serial interface data rate used 
between the RF module and host. This parameter 
determines the rate at which serial data is sent to 
the module from the host. Modified interface data 
rates do not take effect until the CN (Exit AT Com-
mand Mode) command is issued and the system 
returns the 'OK' response.

When parameters 0-7 are sent to the module, the 
respective interface data rates are used (as 
shown in the table on the right).

The RF data rate is not affected by the BD param-
eter. If the interface data rate is set higher than 
the RF data rate, a flow control configuration may 
need to be implemented.

Non-standard Interface Data Rates: 
Any value above 0x07 will be interpreted as an actual baud rate. When a value above 0x07 is sent, 
the closest interface data rate represented by the number is stored in the BD register. For exam-
ple, a rate of 19200 bps can be set by sending the following command line "ATBD4B00". NOTE: 
When using Digi’s X-CTU Software, non-standard interface data rates can only be set and read 
using the X-CTU ‘Terminal’ tab. Non-standard rates are not accessible through the ‘Modem Config-
uration’ tab.

When the BD command is sent with a non-standard interface data rate, the UART will adjust to 
accommodate the requested interface rate. In most cases, the clock resolution will cause the 
stored BD parameter to vary from the parameter that was sent (refer to the table below). Reading 
the BD command (send "ATBD" command without an associated parameter value) will return the 
value actually stored in the module’s BD register.

* The 115,200 baud rate setting is actually at 111,111 baud (-3.5% target UART speed). 

CA (CCA Threshold) Command

<RF Interfacing> CA command is used to set and 
read CCA (Clear Channel Assessment) thresholds.

Prior to transmitting a packet, a CCA is performed 
to detect energy on the transmit channel. If the 
detected energy is above the CCA Threshold, the 
RF module will not transmit the packet.

Parameters Sent Versus Parameters Stored

BD Parameter Sent (HEX) Interface Data Rate (bps) BD Parameter Stored (HEX)
0 1200 0
4 19,200 4
7 115,200* 7

12C 300 12B
1C200 115,200 1B207

AT Command: ATBD
Parameter Range:0 - 7 (standard rates)
0x80-0x3D090 (non-standard rates up to 
250 Kbps)

Parameter Configuration (bps)
0 1200
1 2400
2 4800
3 9600
4 19200
5 38400
6 57600
7 115200

Default Parameter Value:3

AT Command: ATCA
Parameter Range: 0 - 0x50 [-dBm]
Default Parameter Value: 0x2C 

           (-44 decimal dBm)
Minimum Firmware Version Required: v1.x80
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CC (Command Sequence Character) Command

<AT Command Mode Options> The CC command 
is used to set and read the ASCII character used 
between guard times of the AT Command Mode 
Sequence (GT + CC + GT). This sequence enters 
the RF module into AT Command Mode so that 
data entering the module from the host is recog-
nized as commands instead of payload.

The AT Command Sequence is explained further in the AT Command Mode section.

CE (Coordinator Enable) Command

<Networking {Association} The CE command is 
used to set and read the behavior (End Device vs. 
Coordinator) of the RF module.

CH (Channel) Command

<Networking {Addressing}> The CH command is 
used to set/read the operating channel on which 
RF connections are made between RF modules. 
The channel is one of three addressing options 
available to the module. The other options are the 
PAN ID (ID command) and destination addresses 
(DL & DH commands).

In order for modules to communicate with each 
other, the modules must share the same channel number. Different channels can be used to pre-
vent modules in one network from listening to transmissions of another. Adjacent channel rejec-
tion is 23 dB.

The module uses channel numbers of the 802.15.4 standard.
Center Frequency = 2.405 + (CH - 11d) * 5 MHz (d = decimal)

Refer to the XBee/XBee-PRO Addressing section for more information.

CN (Exit Command Mode) Command

<AT Command Mode Options> The CN command 
is used to explicitly exit the RF module from AT 
Command Mode.

CT (Command Mode Timeout) Command

<AT Command Mode Options> The CT command 
is used to set and read the amount of inactive 
time that elapses before the RF module automati-
cally exits from AT Command Mode and returns to 
Idle Mode.

Use the CN (Exit Command Mode) command to 
exit AT Command Mode manually.

AT Command: ATCC
Parameter Range: 0 - 0xFF
Default Parameter Value: 0x2B (ASCII “+”)
Related Command: GT (Guard Times)

AT Command: ATCE
Parameter Range:0 - 1

Parameter Configuration
0 End Device
1 Coordinator

Default Parameter Value:0
Minimum Firmware Version Required: v1.x80

AT Command: ATCH
Parameter Range: 0x0B - 0x1A (XBee)

 0x0C - 0x17 (XBee-PRO)
Default Parameter Value: 0x0C (12 decimal)
Related Commands: ID (PAN ID), DL 
(Destination Address Low, DH (Destination 
Address High)

AT Command: ATCN

AT Command: ATCT
Parameter Range:2 - 0xFFFF 

[x 100 milliseconds]
Default Parameter Value: 0x64 (100 decimal 
(which equals 10 decimal seconds))
Number of bytes returned: 2
Related Command: CN (Exit Command Mode)
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D0 - D4 (DIOn Configuration) Commands

<I/O Settings> The D0, D1, D2, D3 and D4 com-
mands are used to select/read the behavior of 
their respective AD/DIO lines (pins 20, 19, 18, 17 
and 11 respectively). 

Options include: 

• Analog-to-digital converter
• Digital input 
• Digital output

D5 (DIO5 Configuration) Command

<I/O Settings> The D5 command is used to 
select/read the behavior of the DIO5 line (pin 15).

Options include: 

• Associated Indicator (LED blinks when the 
module is associated)

• Analog-to-digital converter
• Digital input 
• Digital output

D6 (DIO6 Configuration) Command

<I/O Settings> The D6 command is used to 
select/read the behavior of the DIO6 line (pin 16). 
Options include: 

• RTS flow control
• Analog-to-digital converter
• Digital input 
• Digital output

AT Commands: 
ATD0, ATD1, ATD2, ATD3, ATD4
Parameter Range:0 - 5

Parameter Configuration
0 Disabled
1 n/a
2 ADC
3 DI
4 DO low
5 DO high

Default Parameter Value:0
Minimum Firmware Version Required: 1.x.A0

AT Command: ATD5
Parameter Range:0 - 5

Parameter Configuration
0 Disabled
1 Associated Indicator
2 ADC
3 DI
4 DO low
5 DO high

Default Parameter Value:1
Parameters 2-5 supported as of firmware 
version 1.xA0

AT Command: ATD6
Parameter Range:0 - 5

Parameter Configuration
0 Disabled
1 RTS Flow Control
2 n/a
3 DI
4 DO low
5 DO high

Default Parameter Value:0
Parameters 3-5 supported as of firmware 
version 1.xA0
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D7 (DIO7 Configuration) Command

<I/O Settings> The D7 command is used to 
select/read the behavior of the DIO7 line (pin 12). 
Options include: 

• CTS flow control
• Analog-to-digital converter
• Digital input 
• Digital output
• RS485 TX Enable (this output is 3V CMOS 

level, and is useful in a 3V CMOS to RS485 
conversion circuit)

D8 (DI8 Configuration) Command

<I/O Settings> The D8 command is used to 
select/read the behavior of the DI8 line (pin 9). 
This command enables configuring the pin to 
function as a digital input. This line is also used 
with Pin Sleep.

DA (Force Disassociation) Command

<(Special)> The DA command is used to immedi-
ately disassociate an End Device from a Coordi-
nator and reattempt to associate.

DB (Received Signal Strength) Command

<Diagnostics> DB parameter is used to read the 
received signal strength (in dBm) of the last RF 
packet received. Reported values are accurate 
between -40 dBm and the RF module's receiver 
sensitivity.

Absolute values are reported. For example: 0x58 = -88 dBm (decimal). If no packets have been 
received (since last reset, power cycle or sleep event), “0” will be reported.

DH (Destination Address High) Command

<Networking {Addressing}> The DH command is 
used to set and read the upper 32 bits of the RF 
module's 64-bit destination address. When com-
bined with the DL (Destination Address Low) 
parameter, it defines the destination address used 
for transmission.

An module will only communicate with other 
modules having the same channel (CH parame-
ter), PAN ID (ID parameter) and destination address
(DH + DL parameters).

AT Command: ATD7
Parameter Range:0 - 5

Parameter Configuration
0 Disabled
1 CTS Flow Control
2 n/a
3 DI
4 DO low
5 DO high
6 RS485 TX Enable Low
7 RS485 TX Enable High

Default Parameter Value:1
Parameters 3-7 supported as of firmware 
version 1.x.A0

AT Command: ATD8
Parameter Range:0 - 5 

(1, 2, 4 & 5 n/a)
Parameter Configuration

0 Disabled
3 DI

Default Parameter Value:0
Minimum Firmware Version Required: 1.xA0

AT Command: ATDA
Minimum Firmware Version Required: v1.x80

AT Command: ATDB
Parameter Range [read-only]: 
0x17-0x5C (XBee), 0x24-0x64 (XBee-PRO)

AT Command: ATDH
Parameter Range: 0 - 0xFFFFFFFF
Default Parameter Value: 0
Related Commands: DL (Destination Address 
Low), CH (Channel), ID (PAN VID), MY (Source 
Address)
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To transmit using a 16-bit address, set the DH parameter to zero and the DL parameter less than 
0xFFFF. 0x000000000000FFFF (DL concatenated to DH) is the broadcast address for the PAN.

Refer to the XBee/XBee-PRO Addressing section for more information.

DL (Destination Address Low) Command

<Networking {Addressing}> The DL command is 
used to set and read the lower 32 bits of the RF 
module's 64-bit destination address. When com-
bined with the DH (Destination Address High) 
parameter, it defines the destination address used 
for transmission.

A module will only communicate with other mod-
ules having the same channel (CH parameter), 
PAN ID (ID parameter) and destination address (DH + DL parameters).

To transmit using a 16-bit address, set the DH parameter to zero and the DL parameter less than 
0xFFFF. 0x000000000000FFFF (DL concatenated to DH) is the broadcast address for the PAN.

Refer to the XBee/XBee-PRO Addressing section for more information.

DN (Destination Node) Command

<Networking {Identification}> The DN command 
is used to resolve a NI (Node Identifier) string to 
a physical address. The following events occur 
upon successful command execution:

1. DL and DH are set to the address of the 
module with the matching NI (Node Identifier).

2. ‘OK’ is returned.
3. RF module automatically exits AT Command Mode.

If there is no response from a modem within 200 msec or a parameter is not specified (left blank), 
the command is terminated and an ‘ERROR’ message is returned.

DP (Disassociation Cyclic Sleep Period) Command

<Sleep Mode (Low Power)>

NonBeacon Firmware
End Device - The DP command is used to set and 
read the time period of sleep for cyclic sleeping 
remotes that are configured for Association but 
are not associated to a Coordinator. (i.e. If a 
device is configured to associate, configured as a 
Cyclic Sleep remote, but does not find a Coordi-
nator; it will sleep for DP time before reattempt-
ing association.) Maximum sleep period is 268 
seconds (0x68B0). DP should be > 0 for NonBeacon systems.

EA (ACK Failures) Command

<Diagnostics> The EA command is used to reset 
and read the count of ACK (acknowledgement) 
failures. This parameter value increments when 
the module expires its transmission retries with-
out receiving an ACK on a packet transmission. 
This count saturates at its maximum value. 

Set the parameter to “0” to reset count.

AT Command: ATDL
Parameter Range: 0 - 0xFFFFFFFF

Default Parameter Value: 0
Related Commands: DH (Destination Address 
High), CH (Channel), ID (PAN VID), MY (Source 
Address)

AT Command: ATDN
Parameter Range: 20-character ASCII String
Minimum Firmware Version Required: v1.x80

AT Command: ATDP
Parameter Range: 1 - 0x68B0 

 [x 10 milliseconds]
Default Parameter Value:0x3E8

(1000 decimal)
Related Commands: SM (Sleep Mode), SP 
(Cyclic Sleep Period), ST (Time before Sleep)
Minimum Firmware Version Required: v1.x80

AT Command: ATEA
Parameter Range:0 - 0xFFFF
Minimum Firmware Version Required: v1.x80
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EC (CCA Failures) Command

<Diagnostics> The EC command is used to read 
and reset the count of CCA (Clear Channel 
Assessment) failures. This parameter value incre-
ments when the RF module does not transmit a 
packet due to the detection of energy that is 
above the CCA threshold level (set with CA com-
mand). This count saturates at its maximum value. 

Set the EC parameter to “0” to reset count.

ED (Energy Scan) Command

<Networking {Association}> The ED command is 
used to send an “Energy Detect Scan”. This 
parameter determines the length of scan on each 
channel. The maximal energy on each channel is 
returned and each value is followed by a carriage 
return. An additional carriage return is sent at the 
end of the command. 

The values returned represent the detected energy level in units of -dBm. The actual scan time on 
each channel is measured as Time = [(2 ^ ED PARAM) * 15.36] ms.

Note: Total scan time is this time multiplied by the number of channels to be scanned. Also refer to 
the SD (Scan Duration) table. Use the SC (Scan Channel) command to choose which channels to scan.

EE (AES Encryption Enable) Command

<Networking {Security}> The EE command is 
used to set/read the parameter that disables/
enables 128-bit AES encryption.

The XBee®/XBee-PRO® firmware uses the 
802.15.4 Default Security protocol and uses AES 
encryption with a 128-bit key. AES encryption dic-
tates that all modules in the network use the 
same key and the maximum RF packet size is 95 
Bytes.

When encryption is enabled, the module will 
always use its 64-bit long address as the source 
address for RF packets. This does not affect how the MY (Source Address), DH (Destination 
Address High) and DL (Destination Address Low) parameters work

If MM (MAC Mode) > 0 and AP (API Enable) parameter > 0: 
With encryption enabled and a 16-bit short address set, receiving modules will only be able to 
issue RX (Receive) 64-bit indicators. This is not an issue when MM = 0.

If a module with a non-matching key detects RF data, but has an incorrect key: When encryption is 
enabled, non-encrypted RF packets received will be rejected and will not be sent out the UART.

Transparent Operation --> All RF packets are sent encrypted if the key is set.

API Operation --> Receive frames use an option bit to indicate that the packet was encrypted.

FP (Force Poll) Command

<Networking (Association)> The FP command is 
used to request indirect messages being held by 
a Coordinator.

AT Command: ATEC
Parameter Range:0 - 0xFFFF
Related Command: CA (CCA Threshold)
Minimum Firmware Version Required: v1.x80

AT Command: ATED
Parameter Range:0 - 6
Related Command: SD (Scan Duration), SC 
(Scan Channel)
Minimum Firmware Version Required: v1.x80

AT Command: ATEE
Parameter Range:0 - 1

Parameter Configuration
0 Disabled
1 Enabled

Default Parameter Value:0
Related Commands: KY (Encryption Key), AP 
(API Enable), MM (MAC Mode)
Minimum Firmware Version Required: v1.xA0

AT Command: ATFP
Minimum Firmware Version Required: v1.x80
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FR (Software Reset) Command

<Special> The FR command is used to force a 
software reset on the RF module. The reset simu-
lates powering off and then on again the module.

GT (Guard Times) Command

<AT Command Mode Options> GT Command is 
used to set the DI (data in from host) time-of-
silence that surrounds the AT command sequence 
character (CC Command) of the AT Command 
Mode sequence (GT + CC + GT). 

The DI time-of-silence is used to prevent inadver-
tent entrance into AT Command Mode.

Refer to the Command Mode section for more 
information regarding the AT Command Mode Sequence.

HV (Hardware Version) Command

<Diagnostics> The HV command is used to read 
the hardware version of the RF module.

IA (I/O Input Address) Command

<I/O Settings {I/O Line Passing}> The IA com-
mand is used to bind a module output to a spe-
cific address. Outputs will only change if received 
from this address. The IA command can be used 
to set/read both 16 and 64-bit addresses.

Setting all bytes to 0xFF will not allow the recep-
tion of any I/O packet to change outputs. Setting 
the IA address to 0xFFFF will cause the module to 
accept all I/O packets.

IC (DIO Change Detect) Command

<I/O Settings> Set/Read bitfield values for 
change detect monitoring. Each bit enables moni-
toring of DIO0 - DIO7 for changes. 

If detected, data is transmitted with DIO data 
only. Any samples queued waiting for transmis-
sion will be sent first.

Refer to the “ADC and Digital I/O Line Support” sections of the “RF Module Operations” chapter for 
more information.

ID (Pan ID) Command

<Networking {Addressing}> The ID command is 
used to set and read the PAN (Personal Area Net-
work) ID of the RF module. Only modules with 
matching PAN IDs can communicate with each 
other. Unique PAN IDs enable control of which RF 
packets are received by a module.

Setting the ID parameter to 0xFFFF indicates a global transmission for all PANs. It does not indi-
cate a global receive.

AT Command: ATFR
Minimum Firmware Version Required: v1.x80

AT Command: ATGT
Parameter Range:2 - 0x0CE4 

[x 1 millisecond]
Default Parameter Value:0x3E8 

(1000 decimal)
Related Command: CC (Command Sequence 
Character)

AT Command: ATHV
Parameter Range:0 - 0xFFFF [Read-only]
Minimum Firmware Version Required: v1.x80

AT Command: ATIA
Parameter Range:0 - 0xFFFFFFFFFFFFFFFF
Default Parameter Value:0xFFFFFFFFFFFFFFFF
(will not allow any received I/O packet to 
change outputs)
Minimum Firmware Version Required: v1.xA0

AT Command: ATIC
Parameter Range:0 - 0xFF [bitfield]
Default Parameter Value:0 (disabled)
Minimum Firmware Version Required: 1.xA0

AT Command: ATID
Parameter Range: 0 - 0xFFFF
Default Parameter Value:0x3332

(13106 decimal)
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IO (Digital Output Level) Command

<I/O Settings> The IO command is used to set 
digital output levels. This allows DIO lines setup 
as outputs to be changed through Command 
Mode.

IR (Sample Rate) Command

<I/O Settings> The IR command is used to set/
read the sample rate. When set, the module will 
sample all enabled DIO/ADC lines at a specified 
interval. This command allows periodic reads of 
the ADC and DIO lines in a non-Sleep Mode 
setup. A sample rate which requires transmis-
sions at a rate greater than once every 20ms is 
not recommended.

Example: When IR = 0x14, the sample rate is 20 ms (or 50 Hz).

IS (Force Sample) Command

<I/O Settings> The IS command is used to force 
a read of all enabled DIO/ADC lines. The data is 
returned through the UART.

When operating in Transparent Mode (AP=0), the 
data is retuned in the following format:

All bytes are converted to ASCII:
     number of samples<CR>
     channel mask<CR>
     DIO data<CR> (If DIO lines are enabled<CR>
     ADC channel Data<cr> <-This will repeat for every enabled ADC channel<CR>
     <CR>  (end of data noted by extra <CR>)

When operating in API mode (AP > 0), the command will immediately return an ‘OK’ response. 
The data will follow in the normal API format for DIO data.

IT (Samples before TX) Command

<I/O Settings> The IT command is used to set/
read the number of DIO and ADC samples to col-
lect before transmitting data. 

One ADC sample is considered complete when all 
enabled ADC channels have been read. The mod-
ule can buffer up to 93 Bytes of sample data. 
Since the module uses a 10-bit A/D converter, each sample uses two Bytes. This leads to a maxi-
mum buffer size of 46 samples or IT=0x2E.

When Sleep Modes are enabled and IR (Sample Rate) is set, the module will remain awake until IT 
samples have been collected.

AT Command: ATIO
Parameter Range: 8-bit bitmap 
(where each bit represents the level of an I/O 
line that is setup as an output.)
Minimum Firmware Version Required: v1.xA0

AT Command: ATIR
Parameter Range: 0 - 0xFFFF [x 1 msec]
(cannot guarantee 1 ms timing when IT=1)
Default Parameter Value:0
Related Command: IT (Samples before TX)
Minimum Firmware Version Required: v1.xA0

AT Command: ATIS
Minimum Firmware Version Required: v1.xA0

AT Command: ATIT
Parameter Range: 1 - 0xFF
Default Parameter Value:1
Minimum Firmware Version Required: v1.xA0
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IU (I/O Output Enable) Command

<I/O Settings> The IU command is used to dis-
able/enable I/O UART output. When enabled (IU 
= 1), received I/O line data packets are sent out 
the UART. The data is sent using an API frame 
regardless of the current AP parameter value.

KY (AES Encryption Key) Command

<Networking {Security}> The KY command is 
used to set the 128-bit AES (Advanced Encryption 
Standard) key for encrypting/decrypting data. 
Once set, the key cannot be read out of the mod-
ule by any means. 

The entire payload of the packet is encrypted 
using the key and the CRC is computed across the 
ciphertext. When encryption is enabled, each packet carries an additional 16 Bytes to convey the 
random CBC Initialization Vector (IV) to the receiver(s). The KY value may be “0” or any 128-bit 
value. Any other value, including entering KY by itself with no parameters, is invalid. All ATKY 
entries (valid or not) are received with a returned 'OK'.

A module with the wrong key (or no key) will receive encrypted data, but the data driven out the 
serial port will be meaningless. A module with a key and encryption enabled will receive data sent 
from a module without a key and the correct unencrypted data output will be sent out the serial 
port. Because CBC mode is utilized, repetitive data appears differently in different transmissions 
due to the randomly-generated IV.

When queried, the system will return an ‘OK’ message and the value of the key will not be 
returned.

M0 (PWM0 Output Level) Command

<I/O Settings> The M0 command is used to set 
the output level of the PWM0 line (pin 6).

Before setting the line as an output:
1. Enable PWM0 output (P0 = 2) 
2. Apply settings (use CN or AC)

The PWM period is 64 µsec and there are 0x03FF 
(1023 decimal) steps within this period. When M0 
= 0 (0% PWM), 0x01FF (50% PWM), 0x03FF 
(100% PWM), etc.

M1 (PWM1 Output Level) Command

<I/O Settings> The M1 command is used to set 
the output level of the PWM1 line (pin 7).

Before setting the line as an output:
1. Enable PWM1 output (P1 = 2) 
2. Apply settings (use CN or AC)

AT Command: ATIU
Parameter Range:0 - 1

Parameter Configuration

0
Disabled - 

Received I/O line data 
packets will be NOT 

sent out UART.

1
Enabled -

Received I/O line data 
will be sent out UART

Default Parameter Value:1
Minimum Firmware Version Required: 1.xA0

AT Command: ATKY
Parameter Range:0 - (any 16-Byte value)
Default Parameter Value:0
Related Command: EE (Encryption Enable)
Minimum Firmware Version Required: v1.xA0

AT Command: ATM0
Parameter Range:0 - 0x03FF [steps]
Default Parameter Value:0
Related Commands: P0 (PWM0 Enable), AC 
(Apply Changes), CN (Exit Command Mode)
Minimum Firmware Version Required: v1.xA0

AT Command: ATM1
Parameter Range:0 - 0x03FF
Default Parameter Value:0
Related Commands: P1 (PWM1 Enable), AC 
(Apply Changes), CN (Exit Command Mode)
Minimum Firmware Version Required: v1.xA0
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MM (MAC Mode) Command

<Networking {Addressing}> The MM command is 
used to set and read the MAC Mode value. The 
MM command disables/enables the use of a Digi  
header contained in the 802.15.4 RF packet. By 
default (MM = 0), Digi Mode is enabled and the 
module adds an extra header to the data portion 
of the 802.15.4 packet. This enables the following 
features:

• ND and DN command support
• Duplicate packet detection when using ACKs
• "RR command
• "DIO/AIO sampling support

The MM command allows users to turn off the use 
of the extra header. Modes 1 and 2 are strict 
802.15.4 modes. If the Digi header is disabled, ND and DN parameters are also disabled.

Note: When MM=1 or 3, MAC and CCA failure retries are not supported.

MY (16-bit Source Address) Command

<Networking {Addressing}> The MY command is 
used to set and read the 16-bit source address of 
the RF module.

By setting MY to 0xFFFF, the reception of RF pack-
ets having a 16-bit address is disabled. The 64-bit 
address is the module’s serial number and is 
always enabled.

NB (Parity) Command

<Serial Interfacing> The NB command is used to 
select/read the parity settings of the RF module 
for UART communications.

Note: the module does not actually calculate and 
check the parity; it only interfaces with devices at 
the configured parity and stop bit settings.

AT Command: ATMM
Parameter Range:0 - 3

Parameter Configuration

0 Digi Mode (802.15.4 + 
Digi header)

1 802.15.4 (no ACKs)
2 802.15.4 (with ACKs)
3 Digi Mode (no ACKs)

Default Parameter Value:0
Related Commands: ND (Node Discover), DN 
(Destination Node) 
Minimum Firmware Version Required: v1.x80

AT Command: ATMY
Parameter Range: 0 - 0xFFFF
Default Parameter Value: 0
Related Commands: DH (Destination Address 
High), DL (Destination Address Low), CH 
(Channel), ID (PAN ID)

AT Command:  ATNB
Parameter Range:  0 - 4

Parameter Configuration
0 8-bit no parity
1 8-bit even
2 8-bit odd
3 8-bit mark
4 8-bit space

Default Parameter Value:  0
Number of bytes returned:  1
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ND (Node Discover) Command

<Networking {Identification}> The ND command 
is used to discover and report all modules on its 
current operating channel (CH parameter) and 
PAN ID (ID parameter). ND also accepts an NI 
(Node Identifier) value as a parameter. In this 
case, only a module matching the supplied identi-
fier will respond.

ND uses a 64-bit long address when sending and 
responding to an ND request. The ND command causes a module to transmit a globally addressed 
ND command packet. The amount of time allowed for responses is determined by the NT (Node 
Discover Time) parameter. 

In AT Command mode, command completion is designated by a carriage return (0x0D). Since two 
carriage returns end a command response, the application will receive three carriage returns at 
the end of the command. If no responses are received, the application should only receive one 
carriage return. When in API mode, the application should receive a frame (with no data) and sta-
tus (set to ‘OK’) at the end of the command. When the ND command packet is received, the 
remote sets up a random time delay (up to 2.2 sec) before replying as follows:

Node Discover Response (AT command mode format - Transparent operation):
MY (Source Address) value<CR>
SH (Serial Number High) value<CR>
SL (Serial Number Low) value<CR>
DB (Received Signal Strength) value<CR>
NI (Node Identifier) value<CR>
<CR>  (This is part of the response and not the end of command indicator.)

Node Discover Response (API format - data is binary (except for NI)):
 2 bytes for MY (Source Address) value
 4 bytes for SH (Serial Number High) value
 4 bytes for SL (Serial Number Low) value
 1 byte for DB (Received Signal Strength) value
 NULL-terminated string for NI (Node Identifier) value (max 20 bytes w/out NULL terminator)

NI (Node Identifier) Command

<Networking {Identification}> The NI command 
is used to set and read a string for identifying a 
particular node. 

Rules:

• Register only accepts printable ASCII data. 
• A string can not start with a space. 
• A carriage return ends command
• Command will automatically end when maximum bytes for the string have been entered. 

This string is returned as part of the ND (Node Discover) command. This identifier is also used 
with the DN (Destination Node) command.

NO (Node Discover Options) Command                                                                                                   

<Networking {Identification}>  The NO command 
is used to suppress/include a self-response to 
Node Discover commands. When NO=1 a module 
doing a Node Discover will include a response 
entry for itself.

AT Command: ATND
Range: optional 20-character NI value
Related Commands: CH (Channel), ID (Pan ID), 
MY (Source Address), SH (Serial Number High), 
SL (Serial Number Low), NI (Node Identifier), 
NT (Node Discover Time)
Minimum Firmware Version Required: v1.x80

AT Command: ATNI
Parameter Range: 20-character ASCII string
Related Commands: ND (Node Discover), DN 
(Destination Node)
Minimum Firmware Version Required: v1.x80

AT Command: ATNO
Parameter Range: "0-1
Related Commands: ND (Node Discover), DN 
(Destination Node)
Minimum Firmware Version Required: v1.xC5
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NT (Node Discover Time) Command

<Networking {Identification}> The NT command 
is used to set the amount of time a base node will 
wait for responses from other nodes when using 
the ND (Node Discover) command. The NT value 
is transmitted with the ND command. 

Remote nodes will set up a random hold-off time 
based on this time. The remotes will adjust this 
time down by 250 ms to give each node the abil-
ity to respond before the base ends the command. Once the ND command has ended, any 
response received on the base will be discarded.

P0 (PWM0 Configuration) Command

<I/O Setting {I/O Line Passing}> The P0 com-
mand is used to select/read the function for 
PWM0 (Pulse Width Modulation output 0). This 
command enables the option of translating 
incoming data to a PWM so that the output can be 
translated back into analog form. 

With the IA (I/O Input Address) parameter cor-
rectly set, AD0 values can automatically be 
passed to PWM0.

P1 (PWM1 Configuration) Command

<I/O Setting {I/O Line Passing}> The P1 com-
mand is used to select/read the function for 
PWM1 (Pulse Width Modulation output 1). This 
command enables the option of translating 
incoming data to a PWM so that the output can be 
translated back into analog form. 

With the IA (I/O Input Address) parameter cor-
rectly set, AD1 values can automatically be 
passed to PWM1.

PL (Power Level) Command

<RF Interfacing> The PL com-
mand is used to select and read 
the power level at which the RF 
module transmits conducted 
power.

When operating in Europe, 
XBee-PRO 802.15.4 modules 
must operate at or below a 
transmit power output level of 
10dBm. Customers have 2 
choices for transmitting at or 
below 10dBm: 

• Order the standard XBee-
PRO module and change 
the PL command to "0" 
(10dBm),

• Order the Japan variant of the XBee-PRO module, which has a maximum transmit output 
power of 10dBm.

AT Command: ATNT
Parameter Range: 0x01 - 0xFC

[x 100 msec]
Default: 0x19 (2.5 decimal seconds)
Related Commands: ND (Node Discover)
Minimum Firmware Version Required: 1.xA0

AT Command: ATP0
The second character in the command is the 
number zero (“0”), not the letter “O”.
Parameter Range: 0 - 2

Parameter Configuration
0 Disabled
1 RSSI
2 PWM0 Output

Default Parameter Value: 1

AT Command: ATP1
Parameter Range: 0 - 2

Parameter Configuration
0 Disabled
1 RSSI
2 PWM1 Output

Default Parameter Value: 0
Minimum Firmware Version Required: v1.xA0

AT Command:  ATPL

Parameter Range:  0 - 4

Parameter XBee XBee-PRO XBee-PRO 
Japan variant

0 -10 dBm 10 dBm PL=4: 10 dBm 
1 -6 dBm 12 dBm PL=3: 8 dBm 
2 -4 dBm 14 dBm PL=2: 2 dBm 
3 -2 dBm 16 dBm PL=1: -3 dBm 
4 0 dBm 18 dBm PL=0: -3 dBm 

Default Parameter Value: 4
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PR (Pull-up Resistor) Command

bit 0 - AD4/DIO4 (pin 11)
bit 1 - AD3/DIO3 (pin 17) 
bit 2 - AD2/DIO2 (pin 18)
bit 3 - AD1/DIO1 (pin 19)
bit 4 - AD0/DIO0 (pin 20)
bit 5 - AD6/DIO6 (pin 16)
bit 6 - DI8 (pin 9) 
bit 7 - DIN/CONFIG (pin 3)

For example: Sending the command “ATPR 6F” will turn bits 0, 1, 2, 3, 5 and 6 ON; and bits 4 & 7 
will be turned OFF. (The binary equivalent of “0x6F” is “01101111”. Note that ‘bit 0’ is the last digit 
in the bitfield.

PT (PWM Output Timeout) Command

<I/O Settings {I/O Line Passing}> The PT com-
mand is used to set/read the output timeout 
value for both PWM outputs. 

When PWM is set to a non-zero value: Due to I/O 
line passing, a time is started which when expired 
will set the PWM output to zero. The timer is reset 
when a valid I/O packet is received.

RE (Restore Defaults) Command

<(Special)> The RE command is used to restore 
all configurable parameters to their factory 
default settings. The RE command does not write 
restored values to non-volatile (persistent) memory. Issue the WR (Write) command subsequent 
to issuing the RE command to save restored parameter values to non-volatile memory.

RN (Random Delay Slots) Command

<Networking & Security> The RN command is 
used to set and read the minimum value of the 
back-off exponent in the CSMA-CA algorithm. The 
CSMA-CA algorithm was engineered for collision 
avoidance (random delays are inserted to prevent 
data loss caused by data collisions).

If RN = 0, collision avoidance is disabled during the first iteration of the algorithm (802.15.4 - 
macMinBE).

CSMA-CA stands for "Carrier Sense Multiple Access - Collision Avoidance". Unlike CSMA-CD (reacts 
to network transmissions after collisions have been detected), CSMA-CA acts to prevent data colli-
sions before they occur. As soon as a module receives a packet that is to be transmitted, it checks 
if the channel is clear (no other module is transmitting). If the channel is clear, the packet is sent 
over-the-air. If the channel is not clear, the module waits for a randomly selected period of time, 
then checks again to see if the channel is clear. After a time, the process ends and the data is lost.

AT Command: ATPR
Parameter Range: 0 - 0xFF
Default Parameter Value: 0xFF 
(all pull-up resistors are enabled)
Minimum Firmware Version Required: v1.x80

AT Command: ATPT
Parameter Range: 0 - 0xFF [x 100 msec]
Default Parameter Value: 0xFF
Minimum Firmware Version Required: 1.xA0

AT Command: ATRE

AT Command: ATRN
Parameter Range: 0 - 3 [exponent]
Default Parameter Value: 0

<Serial Interfacing> The PR command is used to 
set and read the bit field that is used to config-
ure internal the pull-up resistor status for I/O 
lines. “1” specifies the pull-up resistor is 
enabled. “0” specifies no pull up.
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RO (Packetization Timeout) Command

<Serial Interfacing> RO command is used to set 
and read the number of character times of inter-
character delay required before transmission.

RF transmission commences when data is 
detected in the DI (data in from host) buffer and 
RO character times of silence are detected on the 
UART receive lines (after receiving at least 1 byte). 

RF transmission will also commence after 100 Bytes (maximum packet size) are received in the DI 
buffer.

Set the RO parameter to '0' to transmit characters as they arrive instead of buffering them into 
one RF packet.

RP (RSSI PWM Timer) Command

<I/O Settings {I/O Line Passing}> The RP com-
mand is used to enable PWM (Pulse Width Modu-
lation) output on the RF module. The output is 
calibrated to show the level a received RF signal is 
above the sensitivity level of the module. The 
PWM pulses vary from 24 to 100%. Zero percent 
means PWM output is inactive. One to 24% percent means the received RF signal is at or below 
the published sensitivity level of the module. The following table shows levels above sensitivity 
and PWM values.

The total period of the PWM output is 64 µs. Because there are 445 steps in the PWM output, the 
minimum step size is 144 ns.

A non-zero value defines the time that the PWM output will be active with the RSSI value of the 
last received RF packet. After the set time when no RF packets are received, the PWM output will 
be set low (0 percent PWM) until another RF packet is received. The PWM output will also be set 
low at power-up until the first RF packet is received. A parameter value of 0xFF permanently 
enables the PWM output and it will always reflect the value of the last received RF packet.

RR (XBee Retries) Command

<Networking {Addressing}> The RR command is 
used to set/read the maximum number of retries 
the module will execute in addition to the 3 
retries provided by the 802.15.4 MAC. For each 
XBee retry, the 802.15.4 MAC can execute up to 3 
retries.

The following applies when the DL parameter is set to 0xFFFF: If RR is set to zero (RR = 0), only 
one packet is broadcast. If RR is set to a value greater than zero (RR > 0), (RR + 2) packets are 
sent on each broadcast. No acknowledgements are returned on a broadcast.

This value does not need to be set on all modules for retries to work. If retries are enabled, the 
transmitting module will set a bit in the Digi RF Packet header which requests the receiving module 
to send an ACK (acknowledgement). If the transmitting module does not receive an ACK within 
200 msec, it will re-send the packet within a random period up to 48 msec. Each XBee retry can 
potentially result in the MAC sending the packet 4 times (1 try plus 3 retries). Note that retries are 
not attempted for packets that are purged when transmitting with a Cyclic Sleep Coordinator.

PWM Percentages

dB above Sensitivity PWM percentage
(high period / total period)

10 41%
20 58%
30 75%

AT Command: ATRO
Parameter Range:0 - 0xFF

[x character times]
Default Parameter Value: 3

AT Command: ATRP
Parameter Range:0 - 0xFF

[x 100 msec]
Default Parameter Value: 0x28 (40 decimal)

AT Command: ATRR
Parameter Range: 0 - 6
Default: 0
Minimum Firmware Version Required: 1.xA0
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SC (Scan Channels) Command

<Networking {Association}> The SC command is 
used to set and read the list of channels to scan 
for all Active and Energy Scans as a bit field.

This affects scans initiated in command mode [AS 
(Active Scan) and ED (Energy Scan) commands] 
and during End Device Association and Coordina-
tor startup.

bit 0 - 0x0B bit 4 - 0x0F bit 8 - 0x13 bit 12 - 0x17
bit 1 - 0x0C bit 5 - 0x10 bit 9 - 0x14 bit 13 - 0x18
bit 2 - 0x0D bit 6 - 0x11 bit 10 - 0x15 bit 14 - 0x19
bit 3 - 0x0E bit 7 - 0x12 bit 11 - 0x16 bit 15 - 0x1A

SD (Scan Duration) Command

<Networking {Association}> The SD command is 
used to set and read the exponent value that 
determines the duration (in time) of a scan.

End Device (Duration of Active Scan during 
Association) - In a Beacon system, set SD = BE of 
the Coordinator. SD must be set at least to the 
highest BE parameter of any Beaconing Coordina-
tor with which an End Device or Coordinator wish 
to discover. 

Coordinator - If the ‘ReassignPANID’ option is set on the Coordinator [refer to A2 parameter], the 
SD parameter determines the length of time the Coordinator will scan channels to locate existing 
PANs. If the ‘ReassignChannel’ option is set, SD determines how long the Coordinator will perform 
an Energy Scan to determine which channel it will operate on.

Scan Time is measured as ((# of Channels to Scan) * (2 ^ SD) * 15.36ms). The number of chan-
nels to scan is set by the SC command. The XBee RF Module can scan up to 16 channels (SC = 
0xFFFF). The XBee PRO RF Module can scan up to 12 channels (SC = 0x1FFE).

SH (Serial Number High) Command

<Diagnostics> The SH command is used to read 
the high 32 bits of the RF module's unique IEEE 
64-bit address.

The module serial number is set at the factory 
and is read-only.

SL (Serial Number Low) Command

<Diagnostics> The SL command is used to read 
the low 32 bits of the RF module's unique IEEE 
64-bit address.

The module serial number is set at the factory 
and is read-only.

Examples: Values below show results for a 12‐channel scan  

If SD = 0, time = 0.18 sec SD = 8, time = 47.19 sec
SD = 2, time = 0.74 sec SD = 10, time = 3.15 min
SD = 4, time = 2.95 sec SD = 12, time = 12.58 min
SD = 6, time = 11.80 sec SD = 14, time = 50.33 min

AT Command: ATSC
Parameter Range: 1-0xFFFF [Bitfield]
(bits 0, 14, 15 are not allowed when using the 
XBee-PRO)
Default Parameter Value: 0x1FFE (all XBee-
PRO channels)
Related Commands: ED (Energy Scan), SD 
(Scan Duration)
Minimum Firmware Version Required: v1.x80

AT Command: ATSD
Parameter Range: 0 - 0x0F
Default Parameter Value: 4
Related Commands: ED (Energy Scan), SC 
(Scan Channel)
Minimum Firmware Version Required: v1.x80

AT Command: ATSH
Parameter Range: 0 - 0xFFFFFFFF [read-only]
Related Commands: SL (Serial Number Low), 
MY (Source Address)

AT Command: ATSL
Parameter Range: 0 - 0xFFFFFFFF [read-only]
Related Commands: SH (Serial Number High), 
MY (Source Address)
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SM (Sleep Mode) Command

<Sleep Mode (Low Power)> The SM 
command is used to set and read 
Sleep Mode settings. By default, 
Sleep Modes are disabled (SM = 0) 
and the RF module remains in Idle/
Receive Mode. When in this state, the 
module is constantly ready to respond 
to either serial or RF activity.

* The Sleep Coordinator option 
(SM=6) only exists for backwards 
compatibility with firmware version 
1.x06 only. In all other cases, use the 
CE command to enable a Coordinator.

SO (Sleep Mode Command)

Sleep (Low Power) Sleep Options Set/Read the 
sleep mode options.    

Bit 0 - Poll wakeup disable

• 0 - Normal operations. A module configured 
for cyclic sleep will poll for data on waking.

• 1 - Disable wakeup poll. A module configured 
for cyclic sleep will not poll for data on wak-
ing.

Bit 1 - ADC/DIO wakeup sampling disable.

• 0 - Normal operations. A module configured 
in a sleep mode with ADC/DIO sampling enabled will automatically perform a sampling on 
wakeup.

• 1 - Suppress sample on wakeup. A module configured in a sleep mode with ADC/DIO sam-
pling enabled will not automatically sample on wakeup.

SP (Cyclic Sleep Period) Command

<Sleep Mode (Low Power)> The SP command is 
used to set and read the duration of time in which 
a remote RF module sleeps. After the cyclic sleep 
period is over, the module wakes and checks for 
data. If data is not present, the module goes back 
to sleep. The maximum sleep period is 268 sec-
onds (SP = 0x68B0).

The SP parameter is only valid if the module is 
configured to operate in Cyclic Sleep (SM = 4-6). 
Coordinator and End Device SP values should 
always be equal. 

To send Direct Messages, set SP = 0.

NonBeacon Firmware
End Device - SP determines the sleep period for cyclic sleeping remotes. Maximum sleep period is 
268 seconds (0x68B0).

Coordinator - If non-zero, SP determines the time to hold an indirect message before discarding it. 
A Coordinator will discard indirect messages after a period of (2.5 * SP).

AT Command: ATSM
Parameter Range: 0 - 6
    Parameter Configuration

0 Disabled
1 Pin Hibernate
2 Pin Doze
3 (reserved)
4 Cyclic Sleep Remote

5 Cyclic Sleep Remote
(with Pin Wake-up)

6 Sleep Coordinator*
Default Parameter Value: 0

AT Command: ATSO
Parameter 
Range: 0-4

Default Parameter Value:
Related Commands: SM (Sleep Mode), ST 
(Time before Sleep), DP (Disassociation Cyclic 
Sleep Period, BE (Beacon Order)

AT Command: ATSP
Parameter 
Range:

NonBeacon Firmware:
0-0x68B0 [x 10 milliseconds]

Default Parameter Value:
Related Commands: SM (Sleep Mode), ST 
(Time before Sleep), DP (Disassociation Cyclic 
Sleep Period, BE (Beacon Order)
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ST (Time before Sleep) Command

<Sleep Mode (Low Power)> The ST command is 
used to set and read the period of inactivity (no 
serial or RF data is sent or received) before acti-
vating Sleep Mode.

NonBeacon Firmware
Set/Read time period of inactivity (no serial or RF 
data is sent or received) before activating Sleep 
Mode. ST parameter is only valid with Cyclic Sleep 
settings (SM = 4 - 5).

Coordinator and End Device ST values must be equal.

T0 - T7 ((D0-D7) Output Timeout) Command

<I/O Settings {I/O Line Passing}> The T0, T1, 
T2, T3, T4, T5, T6 and T7 commands are used to 
set/read output timeout values for the lines that 
correspond with the D0 - D7 parameters. When 
output is set (due to I/O line passing) to a non-
default level, a timer is started which when 
expired, will set the output to its default level. The timer is reset when a valid I/O packet is 
received. The Tn parameter defines the permissible amount of time to stay in a non-default 
(active) state. If Tn = 0, Output Timeout is disabled (output levels are held indefinitely).

VL (Firmware Version - Verbose)

<Diagnostics> The VL command is used to read  
detailed version information about the RF module. 
The information includes: 
application build date; MAC, PHY and bootloader 
versions; and build dates. This command was 
removed from firmware 1xC9 and later versions.

VR (Firmware Version) Command

<Diagnostics> The VR command is used to read 
which firmware version is stored in the module. 

XBee version numbers will have four significant 
digits. The reported number will show three or four numbers and is stated in hexadecimal nota-
tion. A version can be reported as "ABC" or "ABCD". Digits ABC are the main release number and 
D is the revision number from the main release. "D" is not required and if it is not present, a zero 
is assumed for D. "B" is a variant designator. The following variants exist:

• "0" = Non-Beacon Enabled 802.15.4 Code
• "1" = Beacon Enabled 802.15.4 Code

WR (Write) Command

<(Special)> The WR command is used to write 
configurable parameters to the RF module's non-
volatile memory. Parameter values remain in the 
module's memory until overwritten by subsequent use of the WR Command. 

If changes are made without writing them to non-volatile memory, the module reverts back to pre-
viously saved parameters the next time the module is powered-on.

NOTE: Once the WR command is sent to the module, no additional characters should be sent until 
after the “OK/r” response is received.

AT Command: ATST
Parameter 
Range:

NonBeacon Firmware:
1 - 0xFFFF [x 1 millisecond]

Default Parameter Value:
Related Commands: SM (Sleep Mode), ST 
(Time before Sleep)

AT Commands: ATT0 - ATT7
Parameter Range:0 - 0xFF [x 100 msec]
Default Parameter Value:0xFF
Minimum Firmware Version Required: v1.xA0

AT Command: ATVL
Parameter Range:0 - 0xFF

[x 100 milliseconds]
Default Parameter Value: 0x28 (40 decimal)
Minimum Firmware Version Required: v1.x80 
- v1.xC8

AT Command: ATVR
Parameter Range: 0 - 0xFFFF [read only]

AT Command: ATWR
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API Operation

By default, XBee®/XBee-PRO® RF Modules act as a serial line replacement (Transparent Opera-
tion) - all UART data received through the DI pin is queued up for RF transmission. When the mod-
ule receives an RF packet, the data is sent out the DO pin with no additional information.

Inherent to Transparent Operation are the following behaviors:

• If module parameter registers are to be set or queried, a special operation is required for 
transitioning the module into Command Mode.

• In point-to-multipoint systems, the application must send extra information so that the 
receiving module(s) can distinguish between data coming from different remotes.

As an alternative to the default Transparent Operation, API (Application Programming Interface) 
Operations are available. API operation requires that communication with the module be done 
through a structured interface (data is communicated in frames in a defined order). The API spec-
ifies how commands, command responses and module status messages are sent and received 
from the module using a UART Data Frame.

API Frame Specifications

Two API modes are supported and both can be enabled using the AP (API Enable) command. Use 
the following AP parameter values to configure the module to operate in a particular mode:

• AP = 0 (default): Transparent Operation (UART Serial line replacement)
API modes are disabled.

• AP = 1: API Operation
• AP = 2: API Operation (with escaped characters)

Any data received prior to the start delimiter is silently discarded. If the frame is not received cor-
rectly or if the checksum fails, the data is silently discarded.

API Operation (AP parameter = 1)

When this API mode is enabled (AP = 1), the UART data frame structure is defined as follows:

Figure 3‐09. UART Data Frame Structure:

MSB = Most Significant Byte, LSB = Least Significant Byte

API Operation - with Escape Characters (AP parameter = 2)

When this API mode is enabled (AP = 2), the UART data frame structure is defined as follows:

Figure 3‐10. UART Data Frame Structure ‐ with escape control characters:

MSB = Most Significant Byte, LSB = Least Significant Byte

Escape characters. When sending or receiving a UART data frame, specific data values must be 
escaped (flagged) so they do not interfere with the UART or UART data frame operation. To escape 
an interfering data byte, insert 0x7D and follow it with the byte to be escaped XOR’d with 0x20.

Start Delimiter
(Byte 1)

Length
(Bytes 2-3)

Frame Data
(Bytes 4-n)

Checksum
(Byte n + 1)

0x7E MSB LSB API-specific Structure 1 Byte

Start Delimiter
(Byte 1)

Length
(Bytes 2-3)

Frame Data
(Bytes 4-n)

Checksum
(Byte n + 1)

0x7E MSB LSB API-specific Structure 1 Byte

Characters Escaped If Needed
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Data bytes that need to be escaped:
• 0x7E – Frame Delimiter
• 0x7D – Escape
• 0x11 – XON
• 0x13 – XOFF

Note: In the above example, the length of the raw data (excluding the checksum) is 0x0002 and 
the checksum of the non-escaped data (excluding frame delimiter and length) is calculated as:
0xFF - (0x23 + 0x11) = (0xFF - 0x34) = 0xCB.

Checksum

To test data integrity, a checksum is calculated and verified on non-escaped data.

To calculate: Not including frame delimiters and length, add all bytes keeping only the lowest 8 
bits of the result and subtract from 0xFF.

To verify: Add all bytes (include checksum, but not the delimiter and length). If the checksum is 
correct, the sum will equal 0xFF.

API Types

Frame data of the UART data frame forms an API-specific structure as follows:

Figure 3‐11. UART Data Frame & API‐specific Structure:

The cmdID frame (API-identifier) indicates which API messages will be contained in the cmdData 
frame (Identifier-specific data). Refer to the sections that follow for more information regarding 
the supported API types. Note that multi-byte values are sent big endian.

Modem Status

API Identifier: 0x8A
RF module status messages are sent from the module in response to specific conditions.

Figure 3‐12.  Modem Status Frames

Example -  Raw UART Data Frame (before escaping interfering bytes): 
     0x7E 0x00 0x02 0x23 0x11 0xCB

0x11 needs to be escaped which results in the following frame:  
0x7E 0x00 0x02 0x23 0x7D 0x31 0xCB

Length
(Bytes 2-3)

Checksum
(Byte n + 1)

MSB LSB 1 Byte

Start Delimiter
(Byte 1)

0x7E

Frame Data
(Bytes 4-n)

API-specific Structure

Identifier-specific Data

cmdData

API Identifier

cmdID

cmdData0x8A

Length ChecksumStart Delimiter Frame Data

Identifier-specific DataAPI Identifier

MSB LSB0x7E 1 ByteAPI-specific Structure

Status (Byte 5)
0 = Hardware reset
1 = Watchdog timer reset
2 = Associated
3 = Disassociated
4 = Synchronization Lost
      (Beacon-enabled only )
5 = Coordinator realignment
6 = Coordinator started
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AT Command

API Identifier Value: 0x08
The “AT Command” API type allows for module parameters to be queried or set. When using this 
command ID, new parameter values are applied immediately. This includes any register set with 
the “AT Command - Queue Parameter Value” (0x09) API type.

Figure 3‐13. AT Command Frames

Figure 3‐14. Example: API frames when reading the DL parameter value of the module.

Figure 3‐15. Example: API frames when modifying the DL parameter value of the module.

AT Command - Queue Parameter Value

API Identifier Value: 0x09
This API type allows module parameters to be queried or set. In contrast to the “AT Command” API 
type, new parameter values are queued and not applied until either the “AT Command” (0x08) API 
type or the AC (Apply Changes) command is issued. Register queries (reading parameter values) 
are returned immediately.

cmdData0x08

Length ChecksumStart Delimiter Frame Data

Identifier-specific DataAPI Identifier

MSB LSB0x7E 1 ByteAPI-specific Structure

Frame ID (Byte 5)

Identifies the UART data frame for the host to 
correlate with a subsequent ACK (acknowledgement).
If set to ‘0’, no response is sent.

AT Command (Bytes 6-7)

Command Name - Two 
ASCII characters that 
identify the AT Command.

Parameter Value (Byte(s) 8-n)

If present, indicates the requested parameter 
value to set the given register.
If no characters present, register is queried.

* Length [Bytes] = API Identifier + Frame ID + AT Command

** “R” value was arbitrarily selected.

Checksum

0x15

Byte 8

AT Command

Bytes 6-7

Frame ID**

0x52 (R)

Byte 5

0x44 (D) 0x4C (L)

API Identifier

0x08

Byte 4

Start Delimiter

Byte 1

0x7E

Length*

Bytes 2-3

0x00 0x04

* Length [Bytes] = API Identifier + Frame ID + AT Command + Parameter Value

** “M” value was arbitrarily selected.

Checksum

0x0C

Byte 12

AT Command

Bytes 6-7

0x44 (D) 0x4C (L)

Parameter Value

0x00000FFF

Bytes 8-11

Frame ID**

0x4D (M)

Byte 5

Length*

Bytes 2-3

0x00 0x08

API Identifier

0x08

Byte 4

Start Delimiter

Byte 1

0x7E
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AT Command Response

API Identifier Value: 0x88
Response to previous command.

In response to an AT Command message, the module will send an AT Command Response mes-
sage. Some commands will send back multiple frames (for example, the ND (Node Discover) and 
AS (Active Scan) commands). These commands will end by sending a frame with a status of 
ATCMD_OK and no cmdData.

Figure 3‐16. AT Command Response Frames.

Figure 3‐17. AT Command Response Frames.

Remote AT Command Request

API Identifier Value: 0x17 

Allows for module parameter registers on a remote device to be queried or set

Figure 3‐18. Remote AT Command Request

cmdData0x88

Length ChecksumStart Delimiter Frame Data

Identifier-specific DataAPI Identifier

MSB LSB0x7E 1 ByteAPI-specific Structure

Frame ID (Byte 5 )

Identifies the UART data frame being reported.
Note: If Frame ID = 0 in AT Command Mode, 
no AT Command Response will be given.

AT Command (Bytes 6-7)

Command Name - Two 
ASCII characters that 
identify the AT Command.

Status (Byte 8)

0 = OK
1 = ERROR
2 = Invalid Command
3 = Invalid Parameter

The HEX (non-ASCII) value 
of the requested register

Value (Byte(s) 9-n)

cmdData0x88

Length ChecksumStart Delimiter Frame Data

Identifier-specific DataAPI Identifier

MSB LSB0x7E 1 ByteAPI-specific Structure

Frame ID (Byte 5 )

Identifies the UART data frame being reported.
Note: If Frame ID = 0 in AT Command Mode, 
no AT Command Response will be given.

AT Command (Bytes 6-7)

Command Name - Two 
ASCII characters that 
identify the AT Command.

Status (Byte 8)

0 = OK
1 = ERROR
2 = Invalid Command
3 = Invalid Parameter

The HEX (non-ASCII) value 
of the requested register

Value (Byte(s) 9-n)

0x17 cmdData

Length ChecksumStart Delimiter Frame Data

Identifier-specific DataAPI Identifier

MSB LSB0x7E 1 ByteAPI-specific Structure

Frame ID (Byte 5)

Identifies the UART data frame for the host to 
correlate with a subsequent ACK (acknowledgement).
If set to ‘0’, no AT Command Response will be given.

Command Name (bytes
17-18)

Name of the
command

Set to match the 64-bit address
of the destination, MSB first,
LSB last. Broadcast =
0x000000000000FFFF. This field is ignored if the 16-bit 
network address field equals anything other than 
0xFFFE.

64-bit Destination Address
(bytes 6-13)

0x02 - Apply changes on remote. (If
not set, AC command must be sent
before changes will take effect.)
All other bits must be set to 0.

Command Options (byte 16)

If present, indicates the requested
parameter value to set the given
register. If no characters present,
the register is queried.

Command Data (byte 19-n)

16-bit Destination Network Address
 (bytes 14-15)

Set to match the 16-bit network
address of the destination, MSB
first, LSB last. Set to 0xFFFE if 64-bit 
addressing is being used.
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Remote Command Response

API Identifier Value: 0x97

If a module receives a remote command response RF data frame in response to a Remote AT Com-
mand Request, the module will send a Remote AT Command Response message out the UART.  
Some commands may send back multiple frames--for example, Node Discover (ND) command. 

Figure 3‐19. Remote AT Command Response.

TX (Transmit) Request: 64-bit address

API Identifier Value: 0x00
A TX Request message will cause the module to transmit data as an RF Packet.

Figure 3‐20. TX Packet (64‐bit address) Frames

cmdData0x97

Length ChecksumStart Delimiter Frame Data

Identifier- specific DataAPI Identifier

MSB LSB0x7E 1 ByteAPI- specific Structure

16- bit Responder Network Address ( bytes 
14-15)

Set to the 16- bit network 
address of the remote.

.

Frame ID ( Byte 5)

Status ( byte 18)

0 = OK
1 = Error
2 = Invalid Command
3 = Invalid Parameter

64- bit Responder 
Address ( bytes 6-13)

Indicates the 64- bit address 
of the remote module that is 
responding to the Remote 

AT Command request

Identifies the UART data frame being reported.  
Matches the Frame ID of the Remote Command 

Request the remote is responding to.

Command Name ( bytes 
16-17)

Name of the command.  Two 
ASCII characters that 
identify the AT command

Command Data ( byte 19-n)

The value of the requested 
register.

4 =   No Response

cmdData0x00

Length ChecksumStart Delimiter Frame Data

Identifier-specific DataAPI Identifier

MSB LSB0x7E 1 ByteAPI-specific Structure

Frame ID (Byte 5)

Identifies the UART data frame for the host to
correlate with a subsequent ACK (acknowledgement).
Setting Frame ID to ‘0' will disable response frame.

Destination Address (Bytes 6-13)

MSB first, LSB last.
Broadcast =
0x000000000000FFFF

Options (Byte 14)

0x01 = Disable ACK
0x04 = Send packet with Broadcast Pan ID
All other bits must be set to 0.

RF Data (Byte(s) 15-n)

Up to 100 Bytes per packet
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TX (Transmit) Request: 16-bit address

API Identifier Value: 0x01
A TX Request message will cause the module to transmit data as an RF Packet.

Figure 3‐21. TX Packet (16‐bit address) Frames

TX (Transmit) Status

API Identifier Value: 0x89
When a TX Request is completed, the module sends a TX Status message. This message will indi-
cate if the packet was transmitted successfully or if there was a failure.

Figure 3‐22. TX Status Frames

NOTES:

• “STATUS = 1” occurs when all retries are expired and no ACK is received.
• If transmitter broadcasts (destination address = 0x000000000000FFFF), only 

“STATUS = 0 or 2” will be returned.
• “STATUS = 3” occurs when Coordinator times out of an indirect transmission. 

Timeout is defined as (2.5 x SP (Cyclic Sleep Period) parameter value).

RX (Receive) Packet: 64-bit Address

API Identifier Value: 0x80
When the module receives an RF packet, it is sent out the UART using this message type.

Figure 3‐23. RX Packet (64‐bit address) Frames

cmdData0x01

Length ChecksumStart Delimiter Frame Data

Identifier-specific DataAPI Identifier

MSB LSB0x7E 1 ByteAPI-specific Structure

Frame ID (Byte 5)

Identifies the UART data frame for the host to
correlate with a subsequent ACK (acknowledgement).
Setting Frame ID to ‘0' will disable response frame.

Destination Address (Bytes 6-7)

MSB first, LSB last.
Broadcast = 0xFFFF

Options (Byte 8)

0x01 = Disable ACK
0x04 = Send packet with Broadcast Pan ID
All other bits must be set to 0.

RF Data (Byte(s) 9-n)

Up to 100 Bytes per packet

cmdData0x89

Length ChecksumStart Delimiter Frame Data

Identifier-specific DataAPI Identifier

MSB LSB0x7E 1 ByteAPI-specific Structure

Frame ID (Byte 5) Status (Byte 6)

0 = Success
1 = No ACK (Acknowledgement) received
2 = CCA failure
3 = Purged

Identifies UART data frame being reported.
Note: If Frame ID = 0 in the TX Request, no
AT Command Response will be given.

cmdData0x80

Length ChecksumStart Delimiter Frame Data

Identifier-specific DataAPI Identifier

MSB LSB0x7E 1 ByteAPI-specific Structure

bit 0 [reserved]
bit 1 = Address broadcast
bit 2 = PAN broadcast
bits 3-7 [reserved]

Up to 100 Bytes per packet

Received Signal Strength Indicator -
Hexadecimal equivalent of (-dBm) value.
(For example: If RX signal strength = -40
dBm, “0x28” (40 decimal) is returned)

Source Address (Bytes 5-12) Options (Byte 14) RF Data (Byte(s) 15-n)RSSI (Byte 13)

MSB (most significant byte) first,
LSB (least significant) last
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RX (Receive) Packet: 16-bit Address

API Identifier Value: 0x81
When the module receives an RF packet, it is sent out the UART using this message type.

Figure 3‐24. RX Packet (16‐bit address) Frames

RX (Receive) Packet: 64-bit Address IO

API Identifier Value: 0x82
I/O data is sent out the UART using an API frame.

Figure 3‐25. RX Packet (64‐bit address) Frames

RX (Receive) Packet: 16-bit Address IO

API Identifier Value: 0x83
I/O data is sent out the UART using an API frame.

Figure 3‐26. RX Packet (16‐bit address) Frames

cmdData0x81

Length ChecksumStart Delimiter Frame Data

Identifier-specific DataAPI Identifier

MSB LSB0x7E 1 ByteAPI-specific Structure

bit 0 [reserved]
bit 1 = Address broadcast
bit 2 = PAN broadcast
bits 3-7 [reserved]

Up to 100 Bytes per packet

Received Signal Strength Indicator -
Hexadecimal equivalent of (-dBm) value.
(For example: If RX signal strength = -40
dBm, “0x28” (40 decimal) is returned)

Source Address (Bytes 5-6) RSSI (Byte 7)

MSB (most significant byte) first,
LSB (least significant) last

Options (Byte 8) RF Data (Byte(s) 9-n)
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Appendix A: Agency Certifications

United States (FCC)

XBee®/XBee-PRO® RF Modules comply with Part 15 of the FCC rules and regulations. Compliance 
with the labeling requirements, FCC notices and antenna usage guidelines is required.

To fulfill FCC Certification requirements, the OEM must comply with the following regulations:

OEM Labeling Requirements

WARNING: The Original Equipment Manufacturer (OEM) must ensure that FCC labeling 
requirements are met. This includes a clearly visible label on the outside of the final 
product enclosure that displays the contents shown in the figure below.

Figure 4‐01. Required FCC Label for OEM products containing the XBee®/XBee‐PRO® RF Module 

* The FCC ID for the XBee is “OUR‐XBEE”. The FCC ID for the XBee‐PRO is “OUR‐XBEEPRO”.

FCC Notices

IMPORTANT: The XBee®/XBee-PRO® RF Module has been certified by the FCC for use with other 
products without any further certification (as per FCC section 2.1091). Modifications not expressly 
approved by Digi could void the user's authority to operate the equipment.

IMPORTANT: OEMs must test final product to comply with unintentional radiators (FCC section 
15.107 & 15.109) before declaring compliance of their final product to Part 15 of the FCC Rules.

IMPORTANT: The RF module has been certified for remote and base radio applications. If the 
module will be used for portable applications, please take note of the following instructions:

• For XBee modules where the antenna gain is less than 13.8 dBi, no additional SAR testing is 
required. The 20 cm separation distance is not required for antenna gain less than 13.8 dBi. 

• For XBee modules where the antenna gain is greater than 13.8 dBi and for all XBee-PRO mod-
ules, the device must undergo SAR testing. 

This equipment has been tested and found to comply with the limits for a Class B digital device, 
pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection 
against harmful interference in a residential installation. This equipment generates, uses and can 
radiate radio frequency energy and, if not installed and used in accordance with the instructions, 
may cause harmful interference to radio communications. However, there is no guarantee that 
interference will not occur in a particular installation. 

If this equipment does cause harmful interference to radio or television reception, which can be 
determined by turning the equipment off and on, the user is encouraged to try to correct the inter-
ference by one or more of the following measures: Re-orient or relocate the receiving antenna, 
Increase the separation between the equipment and receiver, Connect equipment and receiver to 
outlets on different circuits, or Consult the dealer or an experienced radio/TV technician for help.

1. The system integrator must ensure that the text on the external label provided with this 
device is placed on the outside of the final product [Figure A-01].

2. XBee®/XBee-PRO® RF Modules may only be used with antennas that have been tested and 
approved for use with this module [refer to the antenna tables in this section].

Contains FCC ID: OUR-XBEE/OUR-XBEEPRO**

The enclosed device complies with Part 15 of the FCC Rules. Operation is subject to the following two 
conditions: (i.) this device may not cause harmful interference and (ii.) this device must accept any inter-
ference received, including interference that may cause undesired operation.
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FCC-Approved Antennas (2.4 GHz)

XBee/XBee-PRO RF Modules can be installed using antennas and cables constructed with standard connectors (Type-
N, SMA, TNC, etc.) if the installation is performed professionally and according to FCC guidelines. For installations 
not performed by a professional, non-standard connectors (RPSMA, RPTNC, etc) must be used.

The modules are FCC-approved for fixed base station and mobile applications on channels 0x0B - 0x1A (XBee) and 
0x0C - 0x17 (XBee-PRO). If the antenna is mounted at least 20cm (8 in.) from nearby persons, the application is 
considered a mobile application. Antennas not listed in the table must be tested to comply with FCC Section 15.203 
(Unique Antenna Connectors) and Section 15.247 (Emissions).

XBee RF Modules (1 mW): XBee Modules have been tested and approved for use with the antennas listed in the 
first and second tables below (Cable loss is required as shown).

XBee-PRO RF Modules (60 mW): XBee-PRO Modules have been tested and approved for use with the antennas 
listed in the first and third tables below (Cable loss is required as shown).

The antennas in the tables below have been approved for use with this module. Digi does not carry all of these 
antenna variants. Contact Digi Sales for available antennas. 

Antennas approved for use with the XBee®/XBee‐PRO® RF Modules (Cable loss is not required.)    

Antennas approved for use with the XBee RF Modules (Cable loss is required)

Part Number Type (Description) Gain Application* Min. Separation
A24-HASM-450 Dipole (Half-wave articulated RPSMA - 4.5”) 2.1 dBi Fixed/Mobile 20 cm
A24-HABSM Dipole (Articulated RPSMA) 2.1 dBi Fixed 20 cm
A24-HABUF-P5I Dipole (Half-wave articulated bulkhead mount U.FL. w/ 5” pigtail) 2.1 dBi Fixed 20 cm
A24-HASM-525 Dipole (Half-wave articulated RPSMA - 5.25") 2.1 dBi Fixed/Mobile 20 cm
A24-QI Monopole (Integrated whip) 1.5 dBi Fixed 20 cm
A24-C1 Surface Mount -1.5 dBi Fixed/Mobile 20 cm
29000430 Embedded PCB Antenna -0.5dBi Fixed/ Mobile 20 cm

Part Number Type (Description) Gain Application* Min. Separation Required Cable-loss
Yagi Class Antennas
A24-Y4NF Yagi (4-element) 6.0 dBi Fixed 2 m -
A24-Y6NF Yagi (6-element) 8.8 dBi Fixed 2 m 1.7 dB
A24-Y7NF Yagi (7-element) 9.0 dBi Fixed 2 m 1.9 dB
A24-Y9NF Yagi (9-element) 10.0 dBi Fixed 2 m 2.9 dB
A24-Y10NF Yagi (10-element) 11.0 dBi Fixed 2 m 3.9 dB
A24-Y12NF Yagi (12-element) 12.0 dBi Fixed 2 m 4.9 dB
A24-Y13NF Yagi (13-element) 12.0 dBi Fixed 2 m 4.9 dB
A24-Y15NF Yagi (15-element) 12.5 dBi Fixed 2 m 5.4 dB
A24-Y16NF Yagi (16-element) 13.5 dBi Fixed 2 m 6.4 dB
A24-Y16RM Yagi (16-element, RPSMA connector) 13.5 dBi Fixed 2 m 6.4 dB
A24-Y18NF Yagi (18-element) 15.0 dBi Fixed 2 m 7.9 dB
Omni-Directional Class Antennas
A24-F2NF Omni-directional (Fiberglass base station) 2.1 dBi Fixed/Mobile 20 cm
A24-F3NF Omni-directional (Fiberglass base station) 3.0 dBi Fixed/Mobile 20 cm
A24-F5NF Omni-directional (Fiberglass base station) 5.0 dBi Fixed/Mobile 20 cm
A24-F8NF Omni-directional (Fiberglass base station) 8.0 dBi Fixed 2 m
A24-F9NF Omni-directional (Fiberglass base station) 9.5 dBi Fixed 2 m 0.2 dB
A24-F10NF Omni-directional (Fiberglass base station) 10.0 dBi Fixed 2 m 0.7 dB
A24-F12NF Omni-directional (Fiberglass base station) 12.0 dBi Fixed 2 m 2.7 dB
A24-F15NF Omni-directional (Fiberglass base station) 15.0 dBi Fixed 2 m 5.7 dB
A24-W7NF Omni-directional (Base station) 7.2 dBi Fixed 2 m
A24-M7NF Omni-directional (Mag-mount base station) 7.2 dBi Fixed 2 m
Panel Class Antennas
A24-P8SF Flat Panel 8.5 dBi Fixed 2 m 1.5 dB
A24-P8NF Flat Panel 8.5 dBi Fixed 2 m 1.5 dB
A24-P13NF Flat Panel 13.0 dBi Fixed 2 m 6 dB
A24-P14NF Flat Panel 14.0 dBi Fixed 2 m 7 dB
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Antennas approved for use with the XBee®/XBee‐PRO® RF Modules (Cable‐loss is required)

* If using the RF module in a portable application (For example ‐ If the module is used in a handheld device and the antenna is less 
than 20cm from the human body when the device is operation): The integrator is responsible for passing additional SAR (Specific 
Absorption Rate) testing based on FCC rules 2.1091 and FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic 
Fields, OET Bulletin and Supplement C. The testing results will be submitted to the FCC for approval prior to selling the integrated 
unit. The required SAR testing measures emissions from the module and how they affect the person.

RF Exposure

WARNING: To satisfy FCC RF exposure requirements for mobile transmitting devices, a separation distance of 
20 cm or more should be maintained between the antenna of this device and persons during device operation. 
To ensure compliance, operations at closer than this distance is not recommended. The antenna used for this 
transmitter must not be co-located in conjunction with any other antenna or transmitter.

The preceding statement must be included as a CAUTION statement in OEM product manuals in order to alert users 
of FCC RF Exposure compliance.

A24-P15NF Flat Panel 15.0 dBi Fixed 2 m 8 dB
A24-P16NF Flat Panel 16.0 dBi Fixed 2 m 9 dB

Part Number Type (Description) Gain Application* Min. Separation Required Cable-loss
Yagi Class Antennas
A24-Y4NF Yagi (4-element) 6.0 dBi Fixed 2 m 8.1 dB
A24-Y6NF Yagi (6-element) 8.8 dBi Fixed 2 m 10.9 dB
A24-Y7NF Yagi (7-element) 9.0 dBi Fixed 2 m 11.1 dB
A24-Y9NF Yagi (9-element) 10.0 dBi Fixed 2 m 12.1 dB
A24-Y10NF Yagi (10-element) 11.0 dBi Fixed 2 m 13.1 dB
A24-Y12NF Yagi (12-element) 12.0 dBi Fixed 2 m 14.1 dB
A24-Y13NF Yagi (13-element) 12.0 dBi Fixed 2 m 14.1 dB
A24-Y15NF Yagi (15-element) 12.5 dBi Fixed 2 m 14.6 dB
A24-Y16NF Yagi (16-element) 13.5 dBi Fixed 2 m 15.6 dB
A24-Y16RM Yagi (16-element, RPSMA connector) 13.5 dBi Fixed 2 m 15.6 dB
A24-Y18NF Yagi (18-element) 15.0 dBi Fixed 2 m 17.1 dB
Omni-Directional Class Antennas
A24-F2NF Omni-directional (Fiberglass base station) 2.1 dBi Fixed/Mobile 20 cm 4.2 dB
A24-F3NF Omni-directional (Fiberglass base station) 3.0 dBi Fixed/Mobile 20 cm 5.1 dB
A24-F5NF Omni-directional (Fiberglass base station) 5.0 dBi Fixed/Mobile 20 cm 7.1 dB
A24-F8NF Omni-directional (Fiberglass base station) 8.0 dBi Fixed 2 m 10.1 dB
A24-F9NF Omni-directional (Fiberglass base station) 9.5 dBi Fixed 2 m 11.6 dB
A24-F10NF Omni-directional (Fiberglass base station) 10.0 dBi Fixed 2 m 12.1 dB
A24-F12NF Omni-directional (Fiberglass base station) 12.0 dBi Fixed 2 m 14.1 dB
A24-F15NF Omni-directional (Fiberglass base station) 15.0 dBi Fixed 2 m 17.1 dB
A24-W7NF Omni-directional (Base station) 7.2 dBi Fixed 2 m 9.3 dB
A24-M7NF Omni-directional (Mag-mount base station) 7.2 dBi Fixed 2 m 9.3 dB
Panel Class Antennas
A24-P8SF Flat Panel 8.5 dBi Fixed 2 m 8.6 dB
A24-P8NF Flat Panel 8.5 dBi Fixed 2 m 8.6 dB
A24-P13NF Flat Panel 13.0 dBi Fixed 2 m 13.1 dB
A24-P14NF Flat Panel 14.0 dBi Fixed 2 m 14.1 dB
A24-P15NF Flat Panel 15.0 dBi Fixed 2 m 15.1 dB
A24-P16NF Flat Panel 16.0 dBi Fixed 2 m 16.1 dB
A24-P19NF Flat Panel 19.0 dBi Fixed 2m 19.1 dB
Waveguide Class Antennas
RSM Waveguide 7.1 dBi Fixed 2m 1.5dB
Helical Class Antenna
A24-H3UF Helical 3.0dBi Fixed/ Mobile 20cm 0dB

Part Number Type (Description) Gain Application* Min. Separation Required Cable-loss



XBee®/XBee‐PRO®  RF Modules ‐ 802.15.4 ‐ v1.xEx

© 2012 Digi Internatonal, Inc.      66

Europe (ETSI)

The XBee RF Modules have been certified for use in several European countries. For a complete 
list, refer to www.digi.com

If the XBee RF Modules are incorporated into a product, the manufacturer must ensure compliance 
of the final product to the European harmonized EMC and low-voltage/safety standards. A 
Declaration of Conformity must be issued for each of these standards and kept on file as described 
in Annex II of the R&TTE Directive. 

Furthermore, the manufacturer must maintain a copy of the XBee user manual documentation and 
ensure the final product does not exceed the specified power ratings, antenna specifications, and/
or installation requirements as specified in the user manual. If any of these specifications are 
exceeded in the final product, a submission must be made to a notified body for compliance 
testing to all required standards.

OEM Labeling Requirements

The 'CE' marking must be affixed to a visible location on the OEM product.

CE Labeling Requirements

The CE mark shall consist of the initials “CE” taking the following form:

• If the CE marking is reduced or enlarged, the proportions given in the above graduated draw-
ing must be respected.

• The CE marking must have a height of at least 5mm except where this is not possible on 
account of the nature of the apparatus.

• The CE marking must be affixed visibly, legibly, and indelibly.

Restrictions

Power Output: When operating in Europe, XBee-PRO 802.15.4 modules must operate at or 
below a transmit power output level of 10dBm. Customers have two choices for transmitting at or 
below 10dBm: 

a. Order the standard XBee-PRO module and change the PL command to 0 (10dBm)

b. Order the International variant of the XBee-PRO module, which has a maximum transmit 
output power of 10dBm (@ PL=4). 

Additionally, European regulations stipulate an EIRP power maximum of 12.86 dBm (19 mW) for 
the XBee-PRO and 12.11 dBm for the XBee when integrating antennas.

France: Outdoor use limited to 10 mW EIRP within the band 2454-2483.5 MHz.

Norway: Norway prohibits operation near Ny-Alesund in Svalbard. More information can be found 
at the Norway Posts and Telecommunications site (www.npt.no).

Declarations of Conformity

Digi has issued Declarations of Conformity for the XBee RF Modules concerning emissions, EMC 
and safety. Files can be obtained by contacting Digi Support.

Important Note:

Digi does not list the entire set of standards that must be met for each country. Digi customers 
assume full responsibility for learning and meeting the required guidelines for each country in their 
distribution market. For more information relating to European compliance of an OEM product 
incorporating the XBee RF Module, contact Digi, or refer to the following web sites:
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CEPT ERC 70-03E - Technical Requirements, European restrictions and general requirements: 
Available at www.ero.dk/.

R&TTE Directive - Equipment requirements, placement on market: Available at www.ero.dk/.

Approved Antennas

When integrating high-gain antennas, European regulations stipulate EIRP power maximums. Use 
the following guidelines to determine which antennas to design into an application.

XBee RF Module

The following antenna types have been tested and approved for use with the XBee Module:

Antenna Type: Yagi
RF module was tested and approved with 15 dBi antenna gain with 1 dB cable-loss (EIRP Maxi-
mum of 14 dBm). Any Yagi type antenna with 14 dBi gain or less can be used with no cable-loss.

Antenna Type: Omni-directional
RF module was tested and approved with 15 dBi antenna gain with 1 dB cable-loss (EIRP Maxi-
mum of 14 dBm). Any Omni-directional type antenna with 14 dBi gain or less can be used with no 
cable-loss.

Antenna Type: Flat Panel
RF module was tested and approved with 19 dBi antenna gain with 4.8 dB cable-loss (EIRP Maxi-
mum of 14.2 dBm). Any Flat Panel type antenna with 14.2 dBi gain or less can be used with no 
cable-loss.

XBee-PRO RF Module (@ 10 dBm Transmit Power, PL parameter value must equal 0, or use Inter-
national variant)

The following antennas have been tested and approved for use with the embedded XBee-PRO RF 
Module:

• Dipole (2.1 dBi, Omni-directional, Articulated RPSMA, Digi part number A24-HABSM)
• Chip Antenna (-1.5 dBi)
• Attached Monopole Whip (1.5 dBi)
• Integrated PCB Antenna (-0.5 dBi)

Canada (IC)

Labeling Requirements

Labeling requirements for Industry Canada are similar to those of the FCC. A clearly visible label 
on the outside of the final product enclosure must display the following text:

Contains Model XBee Radio, IC: 4214A-XBEE
Contains Model XBee-PRO Radio, IC: 4214A-XBEEPRO

The integrator is responsible for its product to comply with IC ICES-003 & FCC Part 15, Sub. B - 
Unintentional Radiators. ICES-003 is the same as FCC Part 15 Sub. B and Industry Canada accepts 
FCC test report or CISPR 22 test report for compliance with ICES-003.

Japan

In order to gain approval for use in Japan, the XBee RF module or the International variant of the 
XBee-PRO RF module (which has 10 dBm transmit output power) must be used. 

Labeling Requirements

A clearly visible label on the outside of the final product enclosure must display the following text:

ID: 005NYCA0378
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Appendix B. Additional Information

1-Year Warranty

XBee®/XBee-PRO® RF Modules from Digi International, Inc. (the "Product") are warranted 
against defects in materials and workmanship under normal use, for a period of 1-year from the 
date of purchase. In the event of a product failure due to materials or workmanship, Digi will 
repair or replace the defective product. For warranty service, return the defective product to Digi, 
shipping prepaid, for prompt repair or replacement.

The foregoing sets forth the full extent of Digi's warranties regarding the Product. Repair or 
replacement at Digi's option is the exclusive remedy. THIS WARRANTY IS GIVEN IN LIEU OF ALL 
OTHER WARRANTIES, EXPRESS OR IMPLIED, AND DIGI SPECIFICALLY DISCLAIMS ALL WARRAN-
TIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL DIGI, 
ITS SUPPLIERS OR LICENSORS BE LIABLE FOR DAMAGES IN EXCESS OF THE PURCHASE PRICE 
OF THE PRODUCT, FOR ANY LOSS OF USE, LOSS OF TIME, INCONVENIENCE, COMMERCIAL LOSS, 
LOST PROFITS OR SAVINGS, OR OTHER INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES 
ARISING OUT OF THE USE OR INABILITY TO USE THE PRODUCT, TO THE FULL EXTENT SUCH MAY 
BE DISCLAIMED BY LAW. SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCI-
DENTAL OR CONSEQUENTIAL DAMAGES. THEREFORE, THE FOREGOING EXCLUSIONS MAY NOT 
APPLY IN ALL CASES. This warranty provides specific legal rights. Other rights which vary from 
state to state may also apply.



 

Technical Support:      

    
 Online support: http://www.digi.com/support/eservice/login.jsp  

 

 Phone: (801) 765-9885  
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Introduction 

This User’s Guide is intended to discuss the functions of Digi’s X-CTU software utility. Each 

function will be discussed in detail allowing a better understanding of the program and how 

it can be used.   

 

X-CTU is a Windows-based application provided by Digi. This program was designed to 

interact with the firmware files found on Digi’s RF products and to provide a simple-to-use 

graphical user interface to them.  

 

X-CTU is designed to function with all Windows-based computers running Microsoft 

Windows 98 SE and above.  X-CTU can either be downloaded from Digi’s Web site or an 

installation CD. When properly installed it can be launched by clicking on the icon on the PC 

desktop (see Figure 1) or selecting from the Start menu (see Figure 2). 

 

    

   

Figure 1      Figure 2 

 

When launched, you will see four tabs across the top of the program (see Figure 3). Each of 

these tabs has a different function. The four tabs are: 

 

PC Settings: Allows a customer to select the desired COM port and configure that port to fit the 

radios settings. 

 

Range Test: Allows a customer to perform a range test between two radios.   

 

Terminal: Allows access to the computers COM port with a terminal emulation program. This tab 

also allows the ability to access the radios’ firmware using AT commands (for a complete 

listing of the radios’ AT commands, please see the product manuals available online). 

 

Modem Configuration: Allows the ability to program the radios’ firmware settings via a graphical 

user interface. This tab also allows customers the ability to change firmware versions. 
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Figure 3 

 

PC Settings Tab 

 

When the program is launched, the default tab selected is the “PC Settings” tab. The PC Settings 

tab is broken down into three basic areas: The COM port setup, the Host Setup, and the User 

Com ports. 

COM port setup: 

The PC settings tab allows the user to select a COM port and configure the selected COM 

port settings when accessing the port. Some of these settings include:  

 

Baud Rate:   Both standard and non-standard 

Flow Control:  Hardware, Software (Xon/Xoff), None 

Data bits:  4, 5, 6, 7, and 8 data bits 

Parity:   None, Odd, Even, Mark and Space 

Stop bit: 1, 1.5, and 2 

 

To change any of the above settings, select the pull down menu on the left of the value 

and select the desired setting. To enter a non-standard baud rate, type the baud rate 

into the baud rate box to the left.  

 

The Test / Query button is used to test the selected COM port and PC settings. If the 

settings and COM port are correct, you will receive a response similar to the one 

depicted in Figure 4 below. 
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Figure 4 

Host Setup: 

The Host Setup tab allows the user to configure how the X-CTU program is to interface 

with a radio’s firmware. This includes determining whether API or AT command mode will 

be used to access the module’s firmware as well as the proper command mode character 

and sequence.  

 

By default, the Host Settings are as follows:  

 

API mode:    not enabled (Not checked)  

Command mode Character: + (ACSII) 2B (Hex).  

Before Guard Time:   1000 (1 Sec) 

After Guard Time:   1000 (1 Sec)   

 

This is the default value of our radios. If this is not the value of the AT, BT, or GT 

commands of the connected radio, enter the respective value here. 

 

User COM ports: 

The user COM port option allows the user to “Add” or “Delete” a user-created COM port. 

This is only for temporary use. Once the program has closed, the user-created COM port 

will disappear and is no longer accessible to the program.  

 

Range Test Tab 

The range test tab is designed to verify the range of the radio link by sending a user-

specified data packet and verifying the response packet is the same, within the time 

specified. For performing a standard range test, please follow the steps found in most 

Quick Start or Getting Started Guides that ship with the product. 

Packet Data and Size 

By default, the size of the data packet sent is 32 bytes. This data packet specified can be 

adjusted in either size or the text sent.  
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Figure 5 

 

To modify the size of the packet sent, change the value next to the “Create Data” box 

and click on the “Create Data” button (see Figure 5). If you want to change the data sent, 

delete the text in the transmit window and place in your desired text.  

 

By modifying the text, data packet size, packet delay and the data receive timeout; the 

user is able to simulate a wide range of scenarios. 
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RSSI: 

The RSSI option of the X-CTU allows the user to see the RSSI (Received Signal Strength 

Indicator) of a received packet when performing a range test. 

API Function: 

The X-CTU also allows the user to test the API function of a radio during a range test.   

 

To perform a range test with the API function of the radio, follow the steps outlined 

below: 

 

1: Configure the Base with API enabled and a unique 16 bit or 64 bit source 

address. 

2: Configure the remote radio with a unique source address and set the 

Destination address to equal the Base radio’s source address.  

3: Enable the API option of the X-CTU on the PC Settings tab and connect the 

base radio to the PC (See Figure 3).  

4: Connect the red loopback adapter to the remote radio and place them a 

distance apart. 

5: Enter either the 16 bit or 64 bit destination address of the remote radio into 

the Destination Address box on the Range Test tab (See figure 6). 

6: Create a data packet of your choosing by typing in the data in the Transmit 

box 

7: To start a Range test, click on Start. 

 

You will notice the TX failures, Purge, CCA, and ACK messages will increment 

accordingly while the range test is performed. 

 

To stop a range test, click on the Stop button.  
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Figure 6 

 

The Terminal Tab 

The Terminal tab has three basic functions: 

   Terminal emulator 

   Ability to send and receive predefined data pacts (Assemble packet) 

   Ability to send and receive data in Hex and ASCII formats (Show/Hide hex) 

 

The main terminal window 

The main white portion of this tab is where most of the communications information will 

occur while using X-CTU as a terminal emulator. The text in blue is what has been typed 

in and directed out to the radio’s serial port while the red text is the incoming data from 

the radio’s serial port (see Figure 7).   
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Figure 7 

 

Assemble Packet 

The Assemble Packet option on the Terminal tab is designed to allow the user to 

assemble a data packet in either ASCII or Hex characters. This is accomplished by 

selecting the Assemble packet window and choosing either ASCII (default) or Hex. Once 

selected, the data packet is assembled by typing in the desired characters as depicted in 

Figure 8.  

 

 

Figure 8 

The Line Status indicators depicted in Figure 5 shows the status of the RS-232 

hardware flow control lines.  Green indicates the line is asserted while black indicates 

de-asserted.  
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The Break option is for engaging the serial line break. This can be accomplished by 

checking or asserting the Break option. Asserting the Break will place the DI line high 

and prevent data from being sent to the radio.  

 

Modem Configuration tab 

  The Modem configuration tab has four basic functions:  

 

1: Provide a Graphical User Interface with a radio’s firmware 

2: Read and Write firmware to the radio’s microcontroller 

3: Download updated firmware files from either the web or from a compressed 

file 

4: Saving or loading a modem profile 

 

Reading a radio’s firmware 

To read a radio’s firmware, follow the steps outlined below: 

1: Connect the radio module to the interface board and connect this assembly 

or a packaged radio (PKG) to the PC’s corresponding port (IE: USB, RS232, 

Ethernet etc.). 

2: Set the PC Settings tab (see Figure 3) to the radio’s default settings. 

3: On the Modem Configuration tab, select “Read” from the Modem Parameters 

and Firmware section (see Figure 9). 

Making changes to a radio’s firmware 

Once the radio’s firmware has been read, the configuration settings are displayed in 

three colors (see Figure 10): 

 

   Black – not settable or read-only 

   Green – Default value 

   Blue – User-specified 

 

To modify any of the user-settable parameters, click on the associated command and 

type in the new value for that parameter. For ease of understanding a specific 

command, once the command is selected, a quick description along with its limits is 

provided at the bottom of the screen. Once all of the new values have been entered, the 

new values are ready to be saved to the radio’s non-volatile memory.  
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Figure 9 

Writing firmware to the Radio 

To write the parameter changes to the radio’s non-volatile memory, click on the Write 

button located in the Modem Parameters and Firmware section (see Figure 10) 
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Figure 10 

Downloading Updated Firmware Files 

Another function of the Modem Configuration tab is allowing the user to download 

updated firmware files from either the web or install them from a disk or CD. This is 

accomplished by following the steps below: 

  

1: Click on the Download New Versions… option under the Version section 

2a: Click on Web for downloading new firmware files from the web  

2b: Click on the File when installing compressed firmware files from a CD or 

saved file (see Figures 11 and 12) 

2bi: Browse to the location the file is saved at and click on Open (see 

Figure 13) 

3: Click on OK and Done when prompted 
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Figure 11     Figure 12 

 

 

 

 
Figure 13 

Modem Profiles 

The X-CTU has the ability to save and write saved modem profiles or configuration to 

the radio. This function is useful in a production environment when the same 

parameters need to be set on multiple radios. 

 

How to save a profile: 

  

1: Set the desired settings within the radio’s firmware as described in the 

Making changes to the radios firmware section 

2: Click Save in the Profile section 

3: Type in the desired name of this profile in the File Name box (see Figure 14) 

4: Browse to the location where you wish to save your profile 

5: Click Save 
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Figure 14 

 

How to load a saved profile: 

 

   1: Click on Load from the profile section 

2: Browse to the location of the file and click on the desired file (see Figure 15) 

   3: Click Open 

 

 

Figure 15 

 

To save the loaded profile to the radio once you have loaded the file, follow the steps 

outlined in the Writing firmware to the radio section above. 

 

To find out how to load the saved profiles in a production environment from a DOS prompt, please 

follow the steps outlined in Digi’s online Knowledgebase at 

http://www.maxstream.net/support/knowledgebase/article.php?kb=126  

 

 

http://www.maxstream.net/support/knowledgebase/article.php?kb=126
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Remote Modem Management 

 

 XBee 802.15.4 modules with firmware version 1xCx and above, XBee ZNet 2.5 modules, and 

XBee ZB modules offer the ability to be configured with over the air commands.  With the addition of 

this new feature, the user is able to configure remote radio parameters with X-CTU or API packets. To 

use the remote configuration tool, the following is required: 

 

- The radio connected to the PC must be in API mode 

- The remote radio must be associated or within range of the base radio 

 

To access remote radios through X-CTU’s Modem Configuration tab, perform the steps below: 

 

- Enable API on the PC Settings tab 

- Verify the COM port selection and settings 

- On the Modem Configuration tab, select the Remote Configuration option on the top left 

corner of the program 

 

 

- Select Open Com port 

- Select Discover 
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- Select the desired modem from the discovered node list 

- On the Modem configuration tab, select Read 

 

The remote radio’s configuration is now displayed on the Modem Configuration tab. At this point, the 

same options exist with respect to Read and Write parameter changes. Please note that the ability to 

change firmware versions is still limited to the radio’s UART.  

 

To clear the discovered node list, click on Node List and Clear.  

 

The Node List option provides several additional options, including: 

- Ability to print the discovered list 

- Ability to remove a specific node from a list 

- Ability to add additional nodes that have not been discovered 

- Save the Node List 

- Load a saved Node List 

- Select/filter All, Routers, or End nodes 

 

For specific questions related to the X-CTU configuration and test utility software, please contact our 

Support department, Mon – Fri, 8am – 5pm U.S. Mountain Time: 
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US and Canada Toll free: 

(866)765-9885 

 

Local or International calls: 

(801) 765-9885 

 

Online support: http://www.digi.com/support/eservice/login.jsp  

http://www.digi.com/support/eservice/login.jsp


clear all 
close all 
clc 
  
  
delete(instrfind({'Port'},{'COM10'})); %ajustar puerto serie! 
  
B = Bluetooth('btspp://0015FFF21097',1)%%ID y luego va el canal 
set(B,'InputBufferSize',1024); 
s1= B 
%%s1 = 
serial('COM10','BaudRate',9600,'DataBits',8,'Parity','none','StopBits',1) 
s1 = 
serial('COM10','BaudRate',9600,'DataBits',8,'Parity','none','StopBits',1, 
... 
'Flowcontrol','none'); 
set(s1,'InputBufferSize',2024); 
fopen(s1); 
%s1=B 
%%t=tic; 
a=1; 
minutoanterior=0; 
for j=1:1:36000 
 fwrite(s1,'A') 
 % Se envía un 'A' para que indique el comienzo de recoleccion de datos 
   nMaxMuestras=42; 
   reloj= 8; 
   potencia= 6 
     M= zeros(nMaxMuestras*4+reloj+potencia,1) 
M= fread(s1,nMaxMuestras*4+reloj+potencia); 
voltaje=zeros(nMaxMuestras,1); %senal auxiliar 
corriente=zeros(nMaxMuestras,1); %senal auxiliar 
for i=0:1:nMaxMuestras-1 
    voltaje(i+1)=M(4*i+3)+ M(4*i+4)*256 ; 
    corriente(i+1)=M(4*i+2)*256+M(4*i+1); 
end 
signo=M(nMaxMuestras*4+1); 
millar=M(nMaxMuestras*4+2); 
centena= M(nMaxMuestras*4+3); 
decena=M(nMaxMuestras*4+4); 
unidad=M(nMaxMuestras*4+5); 
potenciauc= millar*1000+centena*100+decena*10+unidad; 
if (signo==45) 
potenciauc= potenciauc*-1; 
end  
  
dia=M(nMaxMuestras*4+7); 
mes=M(nMaxMuestras*4+8); 
anio=M(nMaxMuestras*4+9); 
hora= M(nMaxMuestras*4+10); 
minuto=M(nMaxMuestras*4+11); 
segundo=M(nMaxMuestras*4+12); 
diasem=M(nMaxMuestras*4+13); 
fin=M(nMaxMuestras*4+14); 
  
  



  
voltaje= (voltaje-72)*(622/869)-311; 
subplot(2,2,1); 
plot(voltaje,'r') 
xlabel('Muestras') 
  ylabel('Voltaje') 
  title('Voltaje AC') 
  grid on 
  
 corriente= (corriente-102)*(60/819)-30; 
  
  
 maximo= max(corriente); 
%minimo= min(corriente); 
if (maximo < 0.3 ) 
 aparato= 0; 
else  
  aparato= 1; 
end 
  
if (mod(minuto,6)==0) 
    if minuto ~= minutoanterior 
    horario1(a)= diasem; 
    horario2(a)= hora; 
    horario3(a)=minuto; 
    salida(a)= aparato; 
    muestrasp(a)=potenciauc; 
    a= a+1; 
    end  
end 
  
 minutoanterior= minuto; 
subplot(2,2,2) 
plot(corriente,'b') 
xlabel('Muestras') 
ylabel('Corriente') 
title('Corriente AC') 
grid on 
  
subplot(2,2,3) 
potencia= voltaje.*corriente; 
plot(potencia,'g') 
xlabel('Muestras') 
ylabel('Potencia') 
title('Potencia AC') 
grid on 
P= potencia*(1/42); 
Pactiva= sum(P) 
subplot(2,2,4) 
plot(Pactiva,potenciauc) 
pause(0.7); 
end 
  
%% Red neuronal 



%ejemplo p=[[1 7 0.1]' [2 13 0]' [3 4 0.2]' [4 12 0.9]' [5 12 0.7]' [6 5 
0.3]' [7 1 0.2]' [1 13 1]' [1 13 0]' [1 14 0.5]' [1 15 0.6]']; 
% ejemplo t=[1 0 0 1 1 0 0 0 1 1 0]; 
%horario1 
%horario2 
%horario3 
clear all 
close all 
clc  
  
%%pruebas 
A1=ones(1,160) 
A2= 2*ones(1,160) 
A3= 3*ones(1,160) 
A4= 4*ones(1,160) 
A5= 5*ones(1,160) 
A6= 6*ones(1,160) 
A7= 7*ones(1,160) 
Asemana= [A1 A2 A3 A4 A5 A6 A7];%primero 
  
Ap=Asemana 
  
hora=[  7*ones(1,10) 8*ones(1,10) 9*ones(1,10) 10*ones(1,10) 
11*ones(1,10) 12*ones(1,10) 13*ones(1,10) 14*ones(1,10) 15*ones(1,10) 
16*ones(1,10) 17*ones(1,10) 18*ones(1,10) 19*ones(1,10) 20*ones(1,10) 
21*ones(1,10) 22*ones(1,10)] 
horasem=[hora hora hora hora hora hora hora];  % segundo 
Bp=horasem*(2/23) -1 
MIN=[0 1 2 3 4 5 6 7 8 9 ]*6 
minutos=[ MIN MIN MIN MIN MIN MIN MIN MIN MIN  MIN MIN MIN MIN MIN MIN 
MIN ] 
  
minutossem=[minutos minutos minutos minutos minutos minutos minutos ]; 
%tercero 
Cp= minutossem/0.6 
  
t1=[1*ones(1,10) 0*ones(1,10) 0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 
0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  
0*ones(1,10) 1*ones(1,10)  0*ones(1,10) 1*ones(1,10)  0*ones(1,10) 
0*ones(1,10)  ] 
t2=[0*ones(1,10) 1*ones(1,10) 0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 
0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  
0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  1*ones(1,10) 
0*ones(1,10)  ] 
t3=[0*ones(1,10) 1*ones(1,10) 0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 
1*ones(1,10)  0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  
0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  1*ones(1,10) 
0*ones(1,10)  ] 
t4=[1*ones(1,10) 0*ones(1,10) 0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 
1*ones(1,10)  0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  
0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  1*ones(1,10) 
0*ones(1,10)  ] 
t5=[1*ones(1,10) 0*ones(1,10) 0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 
1*ones(1,10)  0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  
0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  1*ones(1,10) 
0*ones(1,10)  ] 



t6=[1*ones(1,10) 0*ones(1,10) 0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 
0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  
0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  1*ones(1,10) 
0*ones(1,10)  ] 
t7=[0*ones(1,10) 0*ones(1,10) 0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 
0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  
0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 1*ones(1,10)  1*ones(1,10) 
0*ones(1,10)  ] 
t= [t1 t2 t3 t4 t5 t6 t7] 
A= horario1; %dia 
  
B= horario2;% hora 
%C= horario3; 
C= horario3*(0.1/6);% minutos  
  
p= [Ap' Bp' Cp']'; 
  
  
%p=   [ 3    3    3    3    3    3    3    3   3    3    3    3    3    3    
3; 
 %   14    14    14      14    14      14   14      14    14    15    15     
15    15      15    15; 
  %  0.1    0.2   0.3    0.4   0.5     0.6  0.7     0.8   0.9    0     
0.1   0.2    0.3    0.4   0.5] 
%p =[ 30    30    30    30    30    30    30    30    30    30    30    
30    30    30    30; 
 %    14    14    14      15    15      15    15      15    15    15      
15     15    15      15    15; 
  %  57    58    59      0     1         2     3       4       5     6         
7       8     9      10    11] 
  
%p= p/100; 
%salida=[ 1     1     1     1     1     1     1     1     1     1     1     
1     0     0    0] 
  
t= salida; 
net=newff(minmax(p),[20,30,1],{'tansig','tansig','purelin'},'traingda'); 
net.trainParam.show = 20; 
net.trainParam.lr = 0.2; % Constante de aprendizaje inicial 
net.trainParam.lr_inc = 1.05; 
net.trainParam.lr_dec = 0.7; 
net.trainParam.epochs = 80000; 
net.trainParam.goal = 3*1e-3; 
%net.trainParam. 
[net,tr]=train(net,p,t); 
c= sim(net, p) 
subplot(2,1,1) 
plot(t*100); 
   axis([0 1200 -1 1.5]); 
        xlabel('Muestras'); 
         ylabel('ON/OFF'); 
          title('Rutina del usuario'); 
          grid on; 
           
subplot(2,1,2) 
plot(c*100,'r'); 



   axis([0 1200 -1 1.5]); 
  xlabel('Muestras'); 
         ylabel('ON/OFF'); 
          title('Rutina del usuario por red neuronal'); 
          grid on; 
  
  
  
  
 %% 
 fwrite(s1,'A');   
    nMaxMuestras=325; 
     M= zeros(nMaxMuestras*6+7,1); 
M= fread(s1,nMaxMuestras*6+7); 
%%time= toc(t); 
FIN= M(nMaxMuestras*6+7); 
if (FIN==13) 
   display(['Recepcion exitosa']); 
end 
   voltaje=zeros(nMaxMuestras,1); %senal auxiliar 
corriente=zeros(nMaxMuestras,1); %senal auxiliar 
for i=0:1:nMaxMuestras-1 
     corriente(i+1)=(M(6*i+2)+ 256*M(6*i+3))/100; 
    if (M(6*i+1)==45) 
    corriente(i+1)= (corriente(i+1)*-1); 
    end 
   voltaje(i+1)=(M(6*i+5)+ 256*M(6*i+6))/100; 
    if (M(6*i+4)==45) 
        voltaje(i+1)=(voltaje(i+1)*-1); 
     
    end 
end 
dia=M(nMaxMuestras*6+1); 
mes=M(nMaxMuestras*6+2); 
anio=M(nMaxMuestras*6+3); 
hora= M(nMaxMuestras*6+4); 
minuto=M(nMaxMuestras*6+5); 
segundo=M(nMaxMuestras*6+6); 
  
  
subplot(2,2,1) 
plot(voltaje,'r') 
xlabel('Muestras') 
  ylabel('Voltaje') 
  title('Voltaje AC') 
  
subplot(2,2,2) 
plot(corriente,'b') 
xlabel('Muestras') 
ylabel('Corriente') 
title('Corriente AC') 
  
subplot(2,2,3) 
potencia= voltaje.*corriente; 
plot(potencia,'g') 



xlabel('Muestras') 
ylabel('Potencia') 
title('Potencia AC') 
  
Pactiva= potencia*(0.05/16.7); 
Pactiva= sum(Pactiva) 
  
  
fclose(s1); 
  
for i=1:160 
    lunes(i)=t(i+160*0); 
    potencia= 200+20*rand(1) 
    consumol(i)= potencia*t(i+160*0) 
    
    martes(i)=t(i+160*1); 
    potencia= 200+20*rand(1) 
    consumom(i)= potencia*t(i+160*1) 
     
    miercoles(i)=t(i+160*2); 
     potencia= 200+20*rand(1) 
     consumomi(i)= potencia*t(i+160*2) 
    
      
     jueves(i)= t(i+160*3); 
      potencia= 200+20*rand(1) 
    consumoj(i)= potencia*t(i+160*3) 
     
    viernes(i)= t(i+160*4); 
     potencia= 200+20*rand(1) 
    consumov(i)= potencia*t(i+160*4) 
     
    sabado(i)=t(i+160*5); 
     potencia= 200+20*rand(1) 
    consumos(i)= potencia*t(i+160*5) 
     
    domingo(i)=t(i+160*6); 
     potencia= 200+20*rand(1) 
    consumod(i)= potencia*t(i+160*6) 
     
end 
  
; % 200W+-20 
for i=1:1120 
potencia= 200+20*rand(1) 
consumo(i)= potencia*t(i) 
  
end  
cosumoWh= (sum(consumo)*6)*(1/60) 
costo= cosumoWh*0.3490 
plot(1:1120, consumo) 
  
subplot(2,2,1) 
bar((1:160)/10 +7 ,lunes,'b') 



axis([7 23 0 1]); 
xlabel('Horas') 
ylabel('ON/OFF') 
title('Rutina del día Lunes') 
%% 
subplot(2,2, 1) 
bar((1:160)/10 +7 ,consumol,'k') 
axis([7 23 0 300]); 
xlabel('Horas') 
ylabel('Potencia (W)') 
title('Rutina del día Lunes') 
  
  
subplot(2,2, 2) 
bar((1:160)/10 +7 ,consumom,'r') 
axis([7 23 0 300]); 
xlabel('Horas') 
ylabel('Potencia (W)') 
title('Rutina del día Martes') 
  
  
  
subplot(2,2, 3) 
bar((1:160)/10 +7 ,consumomi,'y') 
axis([7 23 0 300]); 
xlabel('Horas') 
ylabel('Potencia (W)') 
title('Rutina del día Miercoles') 
  
subplot(2,2, 4) 
bar((1:160)/10 +7 ,consumoj,'g') 
axis([7 23 0 300]); 
xlabel('Horas') 
ylabel('Potencia (W)') 
title('Rutina del día Jueves') 
  
subplot(2,2, 1) 
bar((1:160)/10 +7 ,consumov,'b') 
axis([7 23 0 300]); 
xlabel('Horas') 
ylabel('Potencia (W)') 
title('Rutina del día Viernes') 
  
subplot(2,2, 2) 
bar((1:160)/10 +7 ,consumos,'m') 
axis([7 23 0 300]); 
xlabel('Horas') 
ylabel('Potencia (W)') 
title('Rutina del día Sabado') 
  
subplot(2,2, 3) 
bar((1:160)/10 +7 ,consumod,'c') 
axis([7 23 0 300]); 
xlabel('Horas') 
ylabel('Potencia (W)') 



title('Rutina del día Domingo') 
  
%% 
subplot(2,2,3) 
bar((1:160)/10 +7 ,martes,'b') 
axis([7 23 0 1]); 
xlabel('Horas') 
ylabel('ON/OFF') 
title('Rutina del día Martes') 
  
subplot(2,2,3) 
bar((1:160)/10 +7 ,miercoles,'g') 
axis([7 23 0 1]); 
xlabel('Horas') 
ylabel('ON/OFF') 
title('Rutina del día Miercoles') 
  
subplot(2,2,4) 
bar((1:160)/10 +7 ,jueves,'y') 
axis([7 23 0 1]); 
xlabel('Horas') 
ylabel('ON/OFF') 
title('Rutina del día Jueves') 
  
  
subplot(2,2,1) 
bar((1:160)/10 +7 ,viernes,'b') 
axis([7 23 0 1]); 
xlabel('Horas') 
ylabel('ON/OFF') 
title('Rutina del día Viernes') 
  
subplot(2,2,2) 
bar((1:160)/10 +7 ,sabado,'r') 
axis([7 23 0 1]); 
xlabel('Horas') 
ylabel('ON/OFF') 
title('Rutina del día Sabado') 
  
subplot(2,2,3) 
bar((1:160)/10 +7 ,domingo,'g') 
axis([7 23 0 1]); 
xlabel('Horas') 
ylabel('ON/OFF') 
title('Rutina del día Domingo') 
%% 
for i=1:160 
    lunesr(i)=c(i+160*0); 
    martesr(i)=c(i+160*1); 
    miercolesr(i)=c(i+160*2); 
    juevesr(i)= c(i+160*3); 
    viernesr(i)= c(i+160*4); 
    sabador(i)=c(i+160*5); 
    domingor(i)=c(i+160*6); 
     



     
end 
subplot(2,2,1) 
bar((1:160)/10 +7 ,lunesr,'b') 
axis([7 23 0 1]); 
xlabel('Horas') 
ylabel('ON/OFF') 
title('Rutina del día Lunes') 
  
subplot(2,2,2) 
bar((1:160)/10 +7 ,martesr,'r') 
axis([7 23 0 1]); 
xlabel('Horas') 
ylabel('ON/OFF') 
title('Rutina del día Martes') 
  
subplot(2,2,3) 
bar((1:160)/10 +7 ,miercolesr,'g') 
axis([7 23 0 1]); 
xlabel('Horas') 
ylabel('ON/OFF') 
title('Rutina del día Miercoles') 
  
subplot(2,2,4) 
bar((1:160)/10 +7 ,juevesr,'y') 
axis([7 23 0 1]); 
xlabel('Horas') 
ylabel('ON/OFF') 
title('Rutina del día Jueves') 
  
  
subplot(2,2,1) 
bar((1:160)/10 +7 ,viernesr,'b') 
axis([7 23 0 1]); 
xlabel('Horas') 
ylabel('ON/OFF') 
title('Rutina del día Viernes') 
  
subplot(2,2,2) 
bar((1:160)/10 +7 ,sabador,'r') 
axis([7 23 0 1]); 
xlabel('Horas') 
ylabel('ON/OFF') 
title('Rutina del día Sabado') 
  
subplot(2,2,3) 
bar((1:160)/10 +7 ,domingor,'g') 
axis([7 23 0 1]); 
xlabel('Horas') 
ylabel('ON/OFF') 
title('Rutina del día Domingo') 
  
  
  
%% con sensores de presencia 



  
  
t21=[1*ones(1,10) 0*ones(1,10) 0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 
0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  
0*ones(1,10) 1*ones(1,10)  0*ones(1,10) 1*ones(1,10)  0*ones(1,10) 
0*ones(1,10)  ] 
t22=[0*ones(1,10) 1*ones(1,10) 0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 
0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  
0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  1*ones(1,10) 
0*ones(1,10)  ] 
t23=[0*ones(1,10) 1*ones(1,10) 0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 
0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  
0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  1*ones(1,10) 
0*ones(1,10)  ] 
t24=[1*ones(1,10) 0*ones(1,10) 0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 
0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  
0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 
0*ones(1,10)  ] 
t25=[0*ones(1,10) 0*ones(1,10) 0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 
0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  
0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  1*ones(1,10) 
0*ones(1,10)  ] 
t26=[0*ones(1,10) 0*ones(1,10) 0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 
0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  
0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  1*ones(1,10) 
0*ones(1,10)  ] 
t27=[0*ones(1,10) 0*ones(1,10) 0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 
0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 0*ones(1,10)  
0*ones(1,10) 0*ones(1,10)  0*ones(1,10) 1*ones(1,10)  1*ones(1,10) 
0*ones(1,10)  ] 
t= [t21 t22 t23 t24 t25 t26 t27] 
  
for i=1:160 
    lunes(i)=t(i+160*0); 
    potencia= 200+20*rand(1) 
    consumol(i)= potencia*t(i+160*0) 
    
    martes(i)=t(i+160*1); 
    potencia= 200+20*rand(1) 
    consumom(i)= potencia*t(i+160*1) 
     
    miercoles(i)=t(i+160*2); 
     potencia= 200+20*rand(1) 
     consumomi(i)= potencia*t(i+160*2) 
    
      
     jueves(i)= t(i+160*3); 
      potencia= 200+20*rand(1) 
    consumoj(i)= potencia*t(i+160*3) 
     
    viernes(i)= t(i+160*4); 
     potencia= 200+20*rand(1) 
    consumov(i)= potencia*t(i+160*4) 
     
    sabado(i)=t(i+160*5); 



     potencia= 200+20*rand(1) 
    consumos(i)= potencia*t(i+160*5) 
     
    domingo(i)=t(i+160*6); 
     potencia= 200+20*rand(1) 
    consumod(i)= potencia*t(i+160*6) 
     
end 
subplot(2,2, 1) 
bar((1:160)/10 +7 ,consumol,'k') 
axis([7 23 0 300]); 
xlabel('Horas') 
ylabel('Potencia (W)') 
title('Rutina del día Lunes') 
  
  
subplot(2,2, 2) 
bar((1:160)/10 +7 ,consumom,'r') 
axis([7 23 0 300]); 
xlabel('Horas') 
ylabel('Potencia (W)') 
title('Rutina del día Martes') 
  
  
  
subplot(2,2, 3) 
bar((1:160)/10 +7 ,consumomi,'y') 
axis([7 23 0 300]); 
xlabel('Horas') 
ylabel('Potencia (W)') 
title('Rutina del día Miercoles') 
  
subplot(2,2, 4) 
bar((1:160)/10 +7 ,consumoj,'g') 
axis([7 23 0 300]); 
xlabel('Horas') 
ylabel('Potencia (W)') 
title('Rutina del día Jueves') 
  
subplot(2,2, 1) 
bar((1:160)/10 +7 ,consumov,'b') 
axis([7 23 0 300]); 
xlabel('Horas') 
ylabel('Potencia (W)') 
title('Rutina del día Viernes') 
  
subplot(2,2, 2) 
bar((1:160)/10 +7 ,consumos,'m') 
axis([7 23 0 300]); 
xlabel('Horas') 
ylabel('Potencia (W)') 
title('Rutina del día Sabado') 
  
subplot(2,2, 3) 
bar((1:160)/10 +7 ,consumod,'c') 



axis([7 23 0 300]); 
xlabel('Horas') 
ylabel('Potencia (W)') 
title('Rutina del día Domingo') 
  
consumopir=sum(consumol) +sum(consumom) +sum(consumomi) +sum(consumoj) 
+sum(consumov) +sum(consumos) +sum(consumod)  
 



ANEXO 11 

ECUACIONES DE LA RED NEURONAL 

Pesos U y umbrales Q 

Luego, trabajaremos con la matriz de peso de la primera fila  U  la matriz de umbrales  de 

la primera fila Q. 

Reemplazando el peso V1.1 en la ecuación dos: 

𝑈𝑈1.1(𝑛𝑛) = 𝑈𝑈1.1(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).
𝜕𝜕𝐸𝐸(𝑛𝑛)

𝜕𝜕𝑈𝑈1.1(𝑛𝑛)
… … … … . (𝑎𝑎) 

𝜕𝜕𝐸𝐸(𝑛𝑛)
𝜕𝜕𝑈𝑈1.1(𝑛𝑛)

= −�𝑆𝑆(𝑛𝑛) − 𝑌𝑌(𝑛𝑛)�.
𝜕𝜕𝑌𝑌(𝑛𝑛)
𝜕𝜕𝑈𝑈1.1

… … … … . . (𝑏𝑏) 



 

Arquitectura de la segunda capar con la primera capa oculta 

Realizando el mismo procedimiento 

𝑌𝑌(𝑛𝑛) = 𝑓𝑓(𝑉𝑉1.1 ∗ 𝑌𝑌12 +  𝑉𝑉2.1 ∗ 𝑌𝑌22 +  𝑉𝑉3.1 ∗ 𝑌𝑌32 + … … … … +  𝑉𝑉30.1 ∗ 𝑌𝑌302 + 𝑅𝑅1) … … … (𝑐𝑐) 

𝑌𝑌12(𝑛𝑛) = 𝑓𝑓(𝑈𝑈1.1 ∗ 𝑌𝑌11 +  𝑈𝑈2.1 ∗ 𝑌𝑌21 +  𝑈𝑈3.1 ∗ 𝑌𝑌31 +  … … … … +  𝑈𝑈20.1 ∗ 𝑌𝑌201 + 𝑄𝑄1) … … (𝑑𝑑) 

Reemplazando c en b tenemos: 

𝜕𝜕𝐸𝐸(𝑛𝑛)
𝜕𝜕𝑈𝑈1.1(𝑛𝑛)

= −�𝑆𝑆(𝑛𝑛) − 𝑌𝑌(𝑛𝑛)�
𝜕𝜕𝑌𝑌(𝑛𝑛)
𝜕𝜕𝑌𝑌12(𝑛𝑛)

.
𝜕𝜕𝑌𝑌12(𝑛𝑛)
𝜕𝜕𝑈𝑈1.1(𝑛𝑛)

 

𝜕𝜕𝐸𝐸(𝑛𝑛)
𝜕𝜕𝑈𝑈1.1(𝑛𝑛)

= −�𝑆𝑆(𝑛𝑛) − 𝑌𝑌(𝑛𝑛)�𝑓𝑓´(𝑉𝑉1.1 ∗ 𝑌𝑌12 +  𝑉𝑉2.1 ∗ 𝑌𝑌22 +  𝑉𝑉3.1 ∗ 𝑌𝑌32 + … … … … +  𝑉𝑉30.1 ∗ 𝑌𝑌302 + 𝑅𝑅1).𝑉𝑉1.1(𝑛𝑛).
𝜕𝜕𝑌𝑌12(𝑛𝑛)
𝜕𝜕𝑈𝑈1.1(𝑛𝑛)

 



Como definimos 

𝝋𝝋𝝋𝝋(𝒏𝒏) = −�𝑺𝑺(𝒏𝒏) − 𝒀𝒀(𝒏𝒏)�𝒇𝒇´�𝑽𝑽𝑽𝑽.𝑽𝑽 ∗ 𝒀𝒀𝑽𝑽𝟐𝟐 +  𝑽𝑽𝟐𝟐.𝑽𝑽 ∗ 𝒀𝒀𝟐𝟐𝟐𝟐 +  𝑽𝑽𝝋𝝋.𝑽𝑽 ∗ 𝒀𝒀𝝋𝝋𝟐𝟐 + … … … … +  𝑽𝑽𝝋𝝋𝑽𝑽.𝑽𝑽 ∗ 𝒀𝒀𝝋𝝋𝑽𝑽𝟐𝟐 + 𝑹𝑹𝑽𝑽�  

𝜕𝜕𝐸𝐸(𝑛𝑛)
𝜕𝜕𝑈𝑈1.1(𝑛𝑛)

=.𝝋𝝋𝝋𝝋(𝒏𝒏).𝑉𝑉1.1. 𝑓𝑓´(𝑈𝑈1.1 ∗ 𝑌𝑌11 +  𝑈𝑈2.1 ∗ 𝑌𝑌21 +  𝑈𝑈3.1 ∗ 𝑌𝑌31 +  … … … … +  𝑈𝑈20.1 ∗ 𝑌𝑌201 + 𝑄𝑄1)𝑌𝑌11(𝑛𝑛) 

Definimos: 

𝝋𝝋𝟐𝟐.𝑽𝑽(𝒏𝒏) = 𝝋𝝋𝝋𝝋(𝒏𝒏).𝑓𝑓´(𝑈𝑈1.1 ∗ 𝑌𝑌11 +  𝑈𝑈2.1 ∗ 𝑌𝑌21 +  𝑈𝑈3.1 ∗ 𝑌𝑌31 + … … … … +  𝑈𝑈20.1 ∗ 𝑌𝑌201 + 𝑄𝑄1)𝑉𝑉1.1(𝑛𝑛) 

Reemplazando en a) 

𝑈𝑈1.1(𝑛𝑛) = 𝑈𝑈1.1(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑2.1(𝑛𝑛).𝑌𝑌11(𝑛𝑛)  

Aplicando el mismo criterio  para el resto de los pesos sinópticos de la primera fila se 

obtiene: 

𝑈𝑈2.1(𝑛𝑛) = 𝑈𝑈1.1(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑2.1(𝑛𝑛).𝑌𝑌21(𝑛𝑛) 

𝑈𝑈3.1(𝑛𝑛) = 𝑈𝑈1.1(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑2.1(𝑛𝑛).𝑌𝑌31(𝑛𝑛)  

𝑈𝑈4.1(𝑛𝑛) = 𝑈𝑈1.1(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑2.1(𝑛𝑛).𝑌𝑌41(𝑛𝑛) 

⋮                         ⋮                         ⋮               ⋮             ⋮ 

⋮                         ⋮                         ⋮               ⋮             ⋮ 

𝑈𝑈20.1(𝑛𝑛) = 𝑈𝑈20.1(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑2.1(𝑛𝑛).𝑌𝑌201(𝑛𝑛) 

De igual forma para el umbral Q1 

𝜕𝜕𝐸𝐸(𝑛𝑛)
𝜕𝜕𝑄𝑄1(𝑛𝑛)

= −�𝑆𝑆(𝑛𝑛) − 𝑌𝑌(𝑛𝑛)�.
𝜕𝜕𝑌𝑌(𝑛𝑛)
𝜕𝜕𝑄𝑄1

 

𝑄𝑄1(𝑛𝑛) = 𝑄𝑄1(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑2.1(𝑛𝑛) 

Realizando el mismo procedimiento para la segunda fila  



 

𝑌𝑌(𝑛𝑛) = 𝑓𝑓(𝑉𝑉1.1 ∗ 𝑌𝑌12 +  𝑉𝑉2.1 ∗ 𝑌𝑌22 +  𝑉𝑉3.1 ∗ 𝑌𝑌32 + … … … … +  𝑉𝑉30.1 ∗ 𝑌𝑌302 + 𝑅𝑅1) … … … (𝑐𝑐) 

𝑌𝑌22(𝑛𝑛) = 𝑓𝑓(𝑈𝑈1.2 ∗ 𝑌𝑌11 +  𝑈𝑈2.2 ∗ 𝑌𝑌21 +  𝑈𝑈3.2 ∗ 𝑌𝑌31 +  … … … … +  𝑈𝑈20.2 ∗ 𝑌𝑌201 + 𝑄𝑄2) … (𝑑𝑑) 

Reemplazando c en b tenemos: 

𝜕𝜕𝐸𝐸(𝑛𝑛)
𝜕𝜕𝑈𝑈1.2(𝑛𝑛)

= −�𝑆𝑆(𝑛𝑛) − 𝑌𝑌(𝑛𝑛)�
𝜕𝜕𝑌𝑌(𝑛𝑛)
𝜕𝜕𝑌𝑌22(𝑛𝑛)

.
𝜕𝜕𝑌𝑌22(𝑛𝑛)
𝜕𝜕𝑈𝑈1.2(𝑛𝑛)

 

𝜕𝜕𝐸𝐸(𝑛𝑛)
𝜕𝜕𝑈𝑈1.2(𝑛𝑛)

= −�𝑆𝑆(𝑛𝑛) − 𝑌𝑌(𝑛𝑛)�𝑓𝑓´(𝑉𝑉1.1 ∗ 𝑌𝑌12 +  𝑉𝑉2.1 ∗ 𝑌𝑌22 +  𝑉𝑉3.1 ∗ 𝑌𝑌32 + … … … … +  𝑉𝑉30.1 ∗ 𝑌𝑌302 + 𝑅𝑅1).𝑉𝑉2.1(𝑛𝑛).
𝜕𝜕𝑌𝑌22(𝑛𝑛)
𝜕𝜕𝑈𝑈1.2(𝑛𝑛)

 

Como definimos 



𝝋𝝋𝝋𝝋(𝒏𝒏) = −�𝑺𝑺(𝒏𝒏) − 𝒀𝒀(𝒏𝒏)�𝒇𝒇´�𝑽𝑽𝑽𝑽.𝑽𝑽 ∗ 𝒀𝒀𝑽𝑽𝟐𝟐 +  𝑽𝑽𝟐𝟐.𝑽𝑽 ∗ 𝒀𝒀𝟐𝟐𝟐𝟐 +  𝑽𝑽𝝋𝝋.𝑽𝑽 ∗ 𝒀𝒀𝝋𝝋𝟐𝟐 + … … … … +  𝑽𝑽𝝋𝝋𝑽𝑽.𝑽𝑽 ∗ 𝒀𝒀𝝋𝝋𝑽𝑽𝟐𝟐 + 𝑹𝑹𝑽𝑽�  

𝜕𝜕𝐸𝐸(𝑛𝑛)
𝜕𝜕𝑈𝑈1.2(𝑛𝑛)

=.𝝋𝝋𝝋𝝋(𝒏𝒏).𝑉𝑉2.1. 𝑓𝑓´(𝑈𝑈1.2 ∗ 𝑌𝑌11 +  𝑈𝑈2.2 ∗ 𝑌𝑌21 +  𝑈𝑈3.2 ∗ 𝑌𝑌31 +  … … … … +  𝑈𝑈20.2 ∗ 𝑌𝑌201 + 𝑄𝑄2)𝑌𝑌11(𝑛𝑛) 

Definimos: 

𝝋𝝋𝟐𝟐.𝟐𝟐(𝒏𝒏) = 𝝋𝝋𝝋𝝋(𝒏𝒏).𝑓𝑓´(𝑈𝑈1.2 ∗ 𝑌𝑌11 +  𝑈𝑈2.2 ∗ 𝑌𝑌21 +  𝑈𝑈3.2 ∗ 𝑌𝑌31 + … … … … +  𝑈𝑈20.2 ∗ 𝑌𝑌201 + 𝑄𝑄2).𝑉𝑉2.1(𝑛𝑛) 

Reemplazando en a) 

𝑈𝑈1.2(𝑛𝑛) = 𝑈𝑈1.2(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑2.2(𝑛𝑛).𝑌𝑌21(𝑛𝑛)  

Aplicando el mismo criterio  para el resto de los pesos sinópticos de la primera fila se 

obtiene: 

𝑈𝑈2.2(𝑛𝑛) = 𝑈𝑈2.1(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑2.2(𝑛𝑛).𝑌𝑌21(𝑛𝑛) 

𝑈𝑈3.2(𝑛𝑛) = 𝑈𝑈3.1(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑2.2(𝑛𝑛).𝑌𝑌31(𝑛𝑛)  

𝑈𝑈4.2(𝑛𝑛) = 𝑈𝑈4.1(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑2.2(𝑛𝑛).𝑌𝑌41(𝑛𝑛) 

⋮                         ⋮                         ⋮               ⋮             ⋮ 

⋮                         ⋮                         ⋮               ⋮             ⋮ 

𝑈𝑈20.2(𝑛𝑛) = 𝑈𝑈20.1(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑2.2(𝑛𝑛).𝑌𝑌201(𝑛𝑛) 

𝑄𝑄2(𝑛𝑛) = 𝑄𝑄1(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑2.2(𝑛𝑛) 

 

 

Generalizando 

Para la tercera fila 

𝑈𝑈1.3(𝑛𝑛) = 𝑈𝑈1.3(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑2.3(𝑛𝑛).𝑌𝑌11(𝑛𝑛)  

𝑈𝑈2.3(𝑛𝑛) = 𝑈𝑈2.3(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑2.3(𝑛𝑛).𝑌𝑌21(𝑛𝑛) 

𝑈𝑈3.3(𝑛𝑛) = 𝑈𝑈3.3(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑2.3(𝑛𝑛).𝑌𝑌31(𝑛𝑛)  



𝑈𝑈4.3(𝑛𝑛) = 𝑈𝑈4.3(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑2.3(𝑛𝑛).𝑌𝑌41(𝑛𝑛) 

⋮                         ⋮                         ⋮               ⋮             ⋮ 

⋮                         ⋮                         ⋮               ⋮             ⋮ 

𝑈𝑈20.3(𝑛𝑛) = 𝑈𝑈20.3(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑2.3(𝑛𝑛).𝑌𝑌201(𝑛𝑛) 

𝑄𝑄3(𝑛𝑛) = 𝑄𝑄3(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑2.3(𝑛𝑛) 

𝝋𝝋𝟐𝟐.𝝋𝝋(𝒏𝒏) = 𝝋𝝋𝝋𝝋(𝒏𝒏).𝑓𝑓´(𝑈𝑈1.3 ∗ 𝑌𝑌11 +  𝑈𝑈2.3 ∗ 𝑌𝑌21 +  𝑈𝑈3.3 ∗ 𝑌𝑌31 + … … … … +  𝑈𝑈20.3 ∗ 𝑌𝑌201 + 𝑄𝑄3).𝑉𝑉3.1(𝑛𝑛) 

 

Para la cuarta fila 

𝑈𝑈1.4(𝑛𝑛) = 𝑈𝑈1.4(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑2.4(𝑛𝑛).𝑌𝑌11(𝑛𝑛)  

𝑈𝑈2.4(𝑛𝑛) = 𝑈𝑈2.4(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑2.4(𝑛𝑛).𝑌𝑌21(𝑛𝑛) 

𝑈𝑈3.4(𝑛𝑛) = 𝑈𝑈3.4(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑2.4(𝑛𝑛).𝑌𝑌31(𝑛𝑛)  

𝑈𝑈4.4(𝑛𝑛) = 𝑈𝑈4.4(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑2.4(𝑛𝑛).𝑌𝑌41(𝑛𝑛) 

⋮                         ⋮                         ⋮               ⋮             ⋮ 

⋮                         ⋮                         ⋮               ⋮             ⋮ 

𝑈𝑈20.4(𝑛𝑛) = 𝑈𝑈20.4(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑2.4(𝑛𝑛).𝑌𝑌201(𝑛𝑛) 

𝑄𝑄4(𝑛𝑛) = 𝑄𝑄4(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑2.4(𝑛𝑛) 

𝝋𝝋𝟐𝟐.𝟒𝟒(𝒏𝒏) = 𝝋𝝋𝝋𝝋(𝒏𝒏).𝑓𝑓´(𝑈𝑈1.4 ∗ 𝑌𝑌11 +  𝑈𝑈2.4 ∗ 𝑌𝑌21 +  𝑈𝑈3.4 ∗ 𝑌𝑌31 + … … … … +  𝑈𝑈20.4 ∗ 𝑌𝑌201 + 𝑄𝑄4).𝑉𝑉4.1(𝑛𝑛) 

 

Para la trigésima fila 

𝑈𝑈1.30(𝑛𝑛) = 𝑈𝑈1.30(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑2.30(𝑛𝑛).𝑌𝑌11(𝑛𝑛)  

𝑈𝑈2.30(𝑛𝑛) = 𝑈𝑈1.30(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑2.30(𝑛𝑛).𝑌𝑌21(𝑛𝑛) 

𝑈𝑈3.30(𝑛𝑛) = 𝑈𝑈1.30(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑2.30(𝑛𝑛).𝑌𝑌31(𝑛𝑛)  

𝑈𝑈4.30(𝑛𝑛) = 𝑈𝑈1.30(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑2.30(𝑛𝑛).𝑌𝑌41(𝑛𝑛) 



⋮                         ⋮                         ⋮               ⋮             ⋮ 

⋮                         ⋮                         ⋮               ⋮             ⋮ 

𝑈𝑈20.4(𝑛𝑛) = 𝑈𝑈20.4(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑2.30(𝑛𝑛).𝑌𝑌201(𝑛𝑛) 

𝑄𝑄4(𝑛𝑛) = 𝑄𝑄4(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑2.30(𝑛𝑛) 

𝝋𝝋𝟐𝟐.𝝋𝝋𝑽𝑽(𝒏𝒏) = 𝝋𝝋𝝋𝝋(𝒏𝒏).𝑓𝑓´(𝑈𝑈1.30 ∗ 𝑌𝑌11 +  𝑈𝑈2.30 ∗ 𝑌𝑌21 +  𝑈𝑈3.30 ∗ 𝑌𝑌31 +  … … +  𝑈𝑈20.30 ∗ 𝑌𝑌201 + 𝑄𝑄4).𝑉𝑉30.1(𝑛𝑛) 

Pesos W y umbrales P 

Luego, trabajaremos con la matriz de peso de la primera fila  W  la matriz de umbrales  de 

la primera fila P. 

Reemplazando el peso W1.1 en la ecuación dos: 

𝑊𝑊1.1(𝑛𝑛) = 𝑊𝑊1.1(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).
𝜕𝜕𝐸𝐸(𝑛𝑛)

𝜕𝜕𝑊𝑊1.1(𝑛𝑛)
… … … … . (𝑎𝑎) 

𝜕𝜕𝐸𝐸(𝑛𝑛)
𝜕𝜕𝑊𝑊1.1(𝑛𝑛)

= −�𝑆𝑆(𝑛𝑛) − 𝑌𝑌(𝑛𝑛)�
𝜕𝜕𝑌𝑌(𝑛𝑛)
𝜕𝜕𝑌𝑌12(𝑛𝑛)

.
𝜕𝜕𝑌𝑌12(𝑛𝑛)
𝜕𝜕𝑌𝑌11(𝑛𝑛)

.
𝜕𝜕𝑌𝑌11(𝑛𝑛)
𝜕𝜕𝑊𝑊1.1(𝑛𝑛)

 

Como ya se definió: 

𝑌𝑌(𝑛𝑛) = 𝑓𝑓(𝑉𝑉1.1 ∗ 𝑌𝑌12 +  𝑉𝑉2.1 ∗ 𝑌𝑌22 +  𝑉𝑉3.1 ∗ 𝑌𝑌32 + … … … … +  𝑉𝑉30.1 ∗ 𝑌𝑌302 + 𝑅𝑅1) … … … (𝑐𝑐) 

𝑌𝑌12(𝑛𝑛) = 𝑓𝑓(𝑈𝑈1.1 ∗ 𝑌𝑌11 +  𝑈𝑈2.1 ∗ 𝑌𝑌21 +  𝑈𝑈3.1 ∗ 𝑌𝑌31 +  … … … … +  𝑈𝑈20.1 ∗ 𝑌𝑌201 + 𝑄𝑄1) … (𝑑𝑑) 

𝑌𝑌11(𝑛𝑛) = 𝑓𝑓(𝑊𝑊1.1 ∗ 𝑋𝑋1 + 𝑊𝑊2.1 ∗ 𝑋𝑋2 + 𝑊𝑊3.1 ∗ 𝑋𝑋3 + 𝑃𝑃1) … (𝑒𝑒) 

 

 

 



 

𝜕𝜕𝐸𝐸(𝑛𝑛)
𝜕𝜕𝑊𝑊1.1(𝑛𝑛)

= −�𝑆𝑆(𝑛𝑛) − 𝑌𝑌(𝑛𝑛)�
𝜕𝜕𝑌𝑌(𝑛𝑛)
𝜕𝜕𝑌𝑌12(𝑛𝑛)

.
𝜕𝜕𝑌𝑌12(𝑛𝑛)
𝜕𝜕𝑌𝑌1(𝑛𝑛)

.
𝜕𝜕𝑌𝑌1(𝑛𝑛)
𝜕𝜕𝑊𝑊1.1(𝑛𝑛)

 

𝜕𝜕𝐸𝐸(𝑛𝑛)
𝜕𝜕𝑊𝑊1.1(𝑛𝑛)

= 𝜑𝜑3(𝑛𝑛).𝑉𝑉1.1.𝑈𝑈1.1.𝑓𝑓´(𝑈𝑈1.1 ∗ 𝑌𝑌11 +  𝑈𝑈2.1 ∗ 𝑌𝑌21 +  𝑈𝑈3.1 ∗ 𝑌𝑌31 +  … … … … +  𝑈𝑈20.1 ∗ 𝑌𝑌201 + 𝑄𝑄1).
𝜕𝜕𝑌𝑌11(𝑛𝑛)
𝜕𝜕𝑊𝑊1.1(𝑛𝑛)

 

Como definimos 

𝝋𝝋𝟐𝟐.𝑽𝑽(𝒏𝒏) = 𝝋𝝋𝝋𝝋(𝒏𝒏).𝑓𝑓´(𝑈𝑈1.1 ∗ 𝑌𝑌11 +  𝑈𝑈2.1 ∗ 𝑌𝑌21 +  𝑈𝑈3.1 ∗ 𝑌𝑌31 + … … … … +  𝑈𝑈20.1 ∗ 𝑌𝑌201 + 𝑄𝑄1)𝑉𝑉1.1(𝑛𝑛) 

𝜕𝜕𝐸𝐸(𝑛𝑛)
𝜕𝜕𝑊𝑊1.1(𝑛𝑛)

= 𝜑𝜑2.1(𝑛𝑛).𝑈𝑈1.1.
𝜕𝜕𝑌𝑌11(𝑛𝑛)
𝜕𝜕𝑊𝑊1.1(𝑛𝑛)

 

 

𝜕𝜕𝐸𝐸(𝑛𝑛)
𝜕𝜕𝑊𝑊1.1(𝑛𝑛)

= 𝜑𝜑2.1(𝑛𝑛).𝑈𝑈1.1.𝑓𝑓′(𝑊𝑊1.1 ∗ 𝑋𝑋1 + 𝑊𝑊2.1 ∗ 𝑋𝑋2 + 𝑊𝑊3.1 ∗ 𝑋𝑋3 + 𝑃𝑃1).𝑋𝑋1 



Definimos: 

𝜑𝜑1.1(𝑛𝑛) = 𝜑𝜑2.1(𝑛𝑛).𝑈𝑈1.1.𝑓𝑓′(𝑊𝑊1.1 ∗ 𝑋𝑋1 + 𝑊𝑊2.1 ∗ 𝑋𝑋2 +𝑊𝑊3.1 ∗ 𝑋𝑋3 + 𝑃𝑃1) 

𝜕𝜕𝐸𝐸(𝑛𝑛)
𝜕𝜕𝑊𝑊1.1(𝑛𝑛)

= 𝜑𝜑1.1(𝑛𝑛).𝑋𝑋1 

𝑊𝑊1.1(𝑛𝑛) = 𝑊𝑊1.1(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑1.1(𝑛𝑛).𝑋𝑋1 

Aplicando el mismo criterio  para el resto de los pesos sinópticos se obtiene: 

𝑊𝑊2.1(𝑛𝑛) = 𝑊𝑊2.1(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑1.1(𝑛𝑛).𝑋𝑋2 

𝑊𝑊3.1(𝑛𝑛) = 𝑊𝑊3.1(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑1.1(𝑛𝑛).𝑋𝑋3 

De igual forma para el umbral Q1 

𝜕𝜕𝐸𝐸(𝑛𝑛)
𝜕𝜕𝑃𝑃1(𝑛𝑛)

= −�𝑆𝑆(𝑛𝑛) − 𝑌𝑌(𝑛𝑛)�.
𝜕𝜕𝑌𝑌(𝑛𝑛)
𝜕𝜕𝑃𝑃1

 

𝑃𝑃1(𝑛𝑛) = 𝑃𝑃1(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑1.1(𝑛𝑛) 

 

Realizando el mismo procedimiento para la segunda fila  



 

𝑊𝑊1.2(𝑛𝑛) = 𝑊𝑊1.2(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑1.2(𝑛𝑛).𝑋𝑋1 

𝑊𝑊1.2(𝑛𝑛) = 𝑊𝑊1.2(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).
𝜕𝜕𝐸𝐸(𝑛𝑛)

𝜕𝜕𝑊𝑊1.2(𝑛𝑛)
… … … … . (𝑎𝑎) 

𝜕𝜕𝐸𝐸(𝑛𝑛)
𝜕𝜕𝑊𝑊1.2(𝑛𝑛)

= −�𝑆𝑆(𝑛𝑛) − 𝑌𝑌(𝑛𝑛)�
𝜕𝜕𝑌𝑌(𝑛𝑛)
𝜕𝜕𝑌𝑌22(𝑛𝑛)

.
𝜕𝜕𝑌𝑌22(𝑛𝑛)
𝜕𝜕𝑌𝑌21(𝑛𝑛)

.
𝜕𝜕𝑌𝑌21(𝑛𝑛)
𝜕𝜕𝑊𝑊1.2(𝑛𝑛)

 

Como ya se definió: 

𝑌𝑌(𝑛𝑛) = 𝑓𝑓(𝑉𝑉1.1 ∗ 𝑌𝑌12 +  𝑉𝑉2.1 ∗ 𝑌𝑌22 +  𝑉𝑉3.1 ∗ 𝑌𝑌32 + … … … … +  𝑉𝑉30.1 ∗ 𝑌𝑌302 + 𝑅𝑅1) … … … (𝑐𝑐) 

𝑌𝑌22(𝑛𝑛) = 𝑓𝑓(𝑈𝑈1.2 ∗ 𝑌𝑌11 +  𝑈𝑈2.2 ∗ 𝑌𝑌21 +  𝑈𝑈3.2 ∗ 𝑌𝑌31 +  … … … … +  𝑈𝑈20.2 ∗ 𝑌𝑌201 + 𝑄𝑄2) … (𝑑𝑑) 

𝑌𝑌21(𝑛𝑛) = 𝑓𝑓(𝑊𝑊1.2 ∗ 𝑋𝑋1 + 𝑊𝑊2.2 ∗ 𝑋𝑋2 + 𝑊𝑊3.2 ∗ 𝑋𝑋3 + 𝑃𝑃2) … (𝑒𝑒) 



𝜕𝜕𝐸𝐸(𝑛𝑛)
𝜕𝜕𝑊𝑊1.2(𝑛𝑛)

= 𝜑𝜑3(𝑛𝑛).𝑉𝑉2.1.𝑈𝑈2.2.𝑓𝑓´(𝑈𝑈1.2 ∗ 𝑌𝑌11 +  𝑈𝑈2.2 ∗ 𝑌𝑌21 +  𝑈𝑈3.2 ∗ 𝑌𝑌31 +  … … … … +  𝑈𝑈20.2 ∗ 𝑌𝑌201 + 𝑄𝑄2).
𝜕𝜕𝑌𝑌21(𝑛𝑛)
𝜕𝜕𝑊𝑊2.1(𝑛𝑛)

 

Como definimos 

𝝋𝝋𝟐𝟐.𝟐𝟐(𝒏𝒏) = 𝝋𝝋𝝋𝝋(𝒏𝒏).𝑓𝑓´(𝑈𝑈1.2 ∗ 𝑌𝑌11 +  𝑈𝑈2.2 ∗ 𝑌𝑌21 +  𝑈𝑈3.2 ∗ 𝑌𝑌31 + … … … … +  𝑈𝑈20.2 ∗ 𝑌𝑌201 + 𝑄𝑄2).𝑉𝑉2.1(𝑛𝑛) 

𝜕𝜕𝐸𝐸(𝑛𝑛)
𝜕𝜕𝑊𝑊1.2(𝑛𝑛)

= 𝜑𝜑2.2(𝑛𝑛).𝑈𝑈2.2.
𝜕𝜕𝑌𝑌21(𝑛𝑛)
𝜕𝜕𝑊𝑊1.2(𝑛𝑛)

 

 

𝜕𝜕𝐸𝐸(𝑛𝑛)
𝜕𝜕𝑊𝑊1.2(𝑛𝑛)

= 𝜑𝜑2.2(𝑛𝑛).𝑈𝑈2.2.𝑓𝑓′(𝑊𝑊1.2 ∗ 𝑋𝑋1 + 𝑊𝑊2.2 ∗ 𝑋𝑋2 + 𝑊𝑊3.2 ∗ 𝑋𝑋3 + 𝑃𝑃2).𝑋𝑋1 

Definimos: 

𝜑𝜑1.2(𝑛𝑛) = 𝜑𝜑2.2(𝑛𝑛).𝑈𝑈2.2.𝑓𝑓′(𝑊𝑊1.2 ∗ 𝑋𝑋1 + 𝑊𝑊2.2 ∗ 𝑋𝑋2 +𝑊𝑊3.2 ∗ 𝑋𝑋3 + 𝑃𝑃2) 

𝜕𝜕𝐸𝐸(𝑛𝑛)
𝜕𝜕𝑊𝑊1.2(𝑛𝑛)

= 𝜑𝜑1.2(𝑛𝑛).𝑋𝑋1 

𝑊𝑊1.2(𝑛𝑛) = 𝑊𝑊1.2(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑1.2(𝑛𝑛).𝑋𝑋1 

Aplicando el mismo criterio  para el resto de los pesos sinópticos se obtiene: 

𝑊𝑊2.2(𝑛𝑛) = 𝑊𝑊2.2(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑1.2(𝑛𝑛).𝑋𝑋2 

𝑊𝑊3.2(𝑛𝑛) = 𝑊𝑊3.2(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑1.2(𝑛𝑛).𝑋𝑋3 

De igual forma para el umbral Q1 

𝜕𝜕𝐸𝐸(𝑛𝑛)
𝜕𝜕𝑃𝑃1(𝑛𝑛)

= −�𝑆𝑆(𝑛𝑛) − 𝑌𝑌(𝑛𝑛)�.
𝜕𝜕𝑌𝑌(𝑛𝑛)
𝜕𝜕𝑃𝑃1

 

𝑃𝑃2(𝑛𝑛) = 𝑃𝑃1(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑1.2(𝑛𝑛) 

 

Generalizando: 

Para la tercera fila 



𝑊𝑊1.3(𝑛𝑛) = 𝑊𝑊1.3(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑1.3(𝑛𝑛).𝑋𝑋1 

𝑊𝑊2.3(𝑛𝑛) = 𝑊𝑊2.3(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑1.3(𝑛𝑛).𝑋𝑋2 

𝑊𝑊3.3(𝑛𝑛) = 𝑊𝑊3.3(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑1.3(𝑛𝑛).𝑋𝑋3 

𝑃𝑃3(𝑛𝑛) = 𝑃𝑃3(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑1.3(𝑛𝑛) 

𝜑𝜑1.3(𝑛𝑛) = 𝜑𝜑2.3(𝑛𝑛).𝑈𝑈3.3.𝑓𝑓′(𝑊𝑊1.3 ∗ 𝑋𝑋1 + 𝑊𝑊2.3 + 𝑋𝑋2 + 𝑊𝑊3.3 ∗ 𝑋𝑋3 + 𝑃𝑃3) 

Para la vigésima fial 

𝑊𝑊1.20(𝑛𝑛) = 𝑊𝑊1.20(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑1.20(𝑛𝑛).𝑋𝑋1 

𝑊𝑊2.20(𝑛𝑛) = 𝑊𝑊2.20(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑1.20(𝑛𝑛).𝑋𝑋2 

𝑊𝑊3.20(𝑛𝑛) = 𝑊𝑊3.20(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑1.20(𝑛𝑛).𝑋𝑋3 

𝑃𝑃20(𝑛𝑛) = 𝑃𝑃20(𝑛𝑛 − 1) + 𝜶𝜶(𝒏𝒏).𝜑𝜑1.20(𝑛𝑛) 

𝜑𝜑1.20(𝑛𝑛) = 𝜑𝜑2.20(𝑛𝑛).𝑈𝑈20.20.𝑓𝑓′(𝑊𝑊1.20 ∗ 𝑋𝑋1 + 𝑊𝑊2.20 + 𝑋𝑋2 + 𝑊𝑊3.20 ∗ 𝑋𝑋3 + 𝑃𝑃20) 
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book
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Neural Networks
Neural networks are composed of simple elements operating in parallel. These 
elements are inspired by biological nervous systems. As in nature, the network 
function is determined largely by the connections between elements. We can 
train a neural network to perform a particular function by adjusting the values 
of the connections (weights) between elements.

Commonly neural networks are adjusted, or trained, so that a particular input 
leads to a specific target output. Such a situation is shown below. There, the 
network is adjusted, based on a comparison of the output and the target, until 
the network output matches the target. Typically many such input/target pairs 
are used, in this supervised learning, to train a network.

Batch training of a network proceeds by making weight and bias changes based 
on an entire set (batch) of input vectors. Incremental training changes the 
weights and biases of a network as needed after presentation of each individual 
input vector. Incremental training is sometimes referred to as “on line” or 
“adaptive” training.

Neural networks have been trained to perform complex functions in various 
fields of application including pattern recognition, identification, classification, 
speech, vision and control systems. A list of applications is given in Chapter 1.

Today neural networks can be trained to solve problems that are difficult for 
conventional computers or human beings. Throughout the toolbox emphasis is 
placed on neural network paradigms that build up to or are themselves used in 
engineering, financial and other practical applications.

Neural Network 
including connections 
(called weights) 
between neurons Input Output

Target

Adjust 
weights

Compare
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The supervised training methods are commonly used, but other networks can 
be obtained from unsupervised training techniques or from direct design 
methods. Unsupervised networks can be used, for instance, to identify groups 
of data. Certain kinds of linear networks and Hopfield networks are designed 
directly. In summary, there are a variety of kinds of design and learning 
techniques that enrich the choices that a user can make.

The field of neural networks has a history of some five decades but has found 
solid application only in the past fifteen years, and the field is still developing 
rapidly. Thus, it is distinctly different from the fields of control systems or 
optimization where the terminology, basic mathematics, and design 
procedures have been firmly established and applied for many years. We do not 
view the Neural Network Toolbox as simply a summary of established 
procedures that are known to work well. Rather, we hope that it will be a useful 
tool for industry, education and research, a tool that will help users find what 
works and what doesn’t, and a tool that will help develop and extend the field 
of neural networks. Because the field and the material are so new, this toolbox 
will explain the procedures, tell how to apply them, and illustrate their 
successes and failures with examples. We believe that an understanding of the 
paradigms and their application is essential to the satisfactory and successful 
use of this toolbox, and that without such understanding user complaints and 
inquiries would bury us. So please be patient if we include a lot of explanatory 
material. We hope that such material will be helpful to you.
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Basic Chapters
The Neural Network Toolbox is written so that if you read Chapter 2, Chapter 
3 and Chapter 4 you can proceed to a later chapter, read it and use its functions 
without difficulty. To make this possible, Chapter 2 presents the fundamentals 
of the neuron model, the architectures of neural networks. It also will discuss 
notation used in the architectures. All of this is basic material. It is to your 
advantage to understand this Chapter 2 material thoroughly.

The neuron model and the architecture of a neural network describe how a 
network transforms its input into an output. This transformation can be 
viewed as a computation. The model and the architecture each place 
limitations on what a particular neural network can compute. The way a 
network computes its output must be understood before training methods for 
the network can be explained.
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Mathematical Notation for Equations and Figures

Basic Concepts
Scalars-small italic letters.....a,b,c

Vectors - small bold non-italic letters.....a,b,c

Matrices - capital BOLD non-italic letters.....A,B,C 

Language
Vector means a column of numbers.

Weight Matrices

Scalar Element 
 - row,  - column,  - time or iteration

Matrix 

Column Vector 

Row Vector ...vector made of ith row of weight matrix W

Bias Vector

Scalar Element 

Vector 

Layer Notation
A single superscript is used to identify elements of layer. For instance, the net 
input of layer 3 would be shown as n3. 

Superscripts  are used to identify the source (l) connection and the 
destination (k) connection of layer weight matrices ans input weight matrices. 
For instance, the layer weight matrix from layer 2 to layer 4 would be shown 
as LW4,2.

wi j, t( )
i j t

W t( )

wj t( )

wi t( )

bi t( )

b t( )

k l,
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Input Weight Matrix 

Layer Weight Matrix 

Figure and Equation Examples
The following figure, taken from Chapter 12 illustrates notation used in such 
advanced figures.

IWk l,

LWk l,

p1(k)

a1(k)1

n1(k) 2 x 1

4 x 2

 4 x 1

 4 x 1

4 x 1

Inputs 

��
��IW1,1

��
��

b1

2 4

Layers 1 and 2 Layer 3

a1(k) = tansig (IW1,1p1(k) +b1)

�
�
�

5

3 x (2*2)��
��

IW2,1

3 x (1*5)��
��IW2,2

n2(k)

3 x 1

3�
�
�
�

�
�
TDL

p2(k)

 5 x 1

�
�TDL

1 x 4
��IW3,1

1 x 3��
��

1 x (1*1)��
��

1
1 x 1��
��b3

��
��

TDL

3 x 1

a2(k)

a3(k)n3(k)
1 x 1 1 x 1

1��
��
��

a2(k) = logsig (IW2,1 [p1(k);p1(k-1) ]+ IW2,2p2(k-1))

0,1

1

1

a3(k)=purelin(LW3,3a3(k-1)+IW3,1 a1 (k)+b3+LW3,2a2 (k))

LW3,2

LW3,3

y2(k)
1 x 1

y1(k)

3 x 1

Outputs
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Mathematics and Code Equivalents
The transition from mathematics to code or vice versa can be made with the aid 
of a few rules. They are listed here for future reference.

To change from mathematics notation to MATLAB® notation, the user needs 
to:

• Change superscripts to cell array indices.

For example, 

• Change subscripts to parentheses indices.

For example, , and 

• Change parentheses indices to a second cell array index.

For example, 

• Change mathematics operators to MATLAB operators and toolbox functions.

For example, 

The following equations illustrate the notation used in figures.

p1 p 1{ }→

p2 p 2( )→ p2
1 p 1{ } 2( )→

p1 k 1–( ) p 1 k 1–,{ }→

ab a*b→

n w1 1, p1 w1 2, p2 ... w1 R, pR b+ + + +=

W

w1 1, w1 2, … w1 R,

w2 1, w2 2, … w2 R,

wS 1, wS 2, … wS R,

=
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Neural Network Design Book
Professor Martin Hagan of Oklahoma State University, and Neural Network 
Toolbox authors Howard Demuth and Mark Beale have written a textbook, 
Neural Network Design (ISBN 0-9717321-0-8). The book presents the theory of 
neural networks, discusses their design and application, and makes 
considerable use of MATLAB and the Neural Network Toolbox. Demonstration 
programs from the book are used in various chapters of this Guide. (You can 
find all the book demonstration programs in the Neural Network Toolbox by 
typing nnd.)

The book has:

• An INSTRUCTOR’S MANUAL for adopters and

• TRANSPARENCY OVERHEADS for class use.

This book can be obtained from the University of Colorado Bookstore at 
1-303-492-3648 or at the online purchase web site, cubooks.colorado.edu.

To obtain a copy of the INSTRUCTOR’S MANUAL contact the University of 
Colorado Bookstore phone 1-303-492-3648. Ask specifically for an instructor’s 
manual if you are instructing a class and want one. 

You can go directly to the Neural Network Design page at 

http://ee.okstate.edu/mhagan/nnd.html

Once there, you can download the TRANSPARENCY MASTERS with a click 
on “Transparency Masters(3.6MB)”. 

You can get the Transparency Masters in Powerpoint or PDF format. You can 
obtain sample book chapters in PDF format as well.
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Introduction

Getting Started (p. 1-2) Identifies the chapters of the book with basic information, 
and provides information about installing and getting help

What’s New in Version 4.0 (p. 1-3) Describes the new features in the last major release of the 
product

Neural Network Applications (p. 1-5) Lists applications of neural networks
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Getting Started

Basic Chapters
Chapter 2 contains basic material about network architectures and notation 
specific to this toolbox.Chapter 3 includes the first reference to basic functions 
such as init and adapt. Chapter 4 describes the use of the functions designd 
and train, and discusses delays. Chapter 2, Chapter 3, and Chapter 4 should 
be read before going to later chapters

Help and Installation
The Neural Network Toolbox is contained in a directory called nnet. Type help 
nnet for a listing of help topics.

A number of demonstrations are included in the toolbox. Each example states 
a problem, shows the network used to solve the problem, and presents the final 
results. Lists of the neural network demonstration and application scripts that 
are discussed in this guide can be found by typing help nndemos

Instructions for installing the Neural Network Toolbox are found in one of two 
MATLAB® documents: the Installation Guide for PC or the Installation Guide 
for UNIX.
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What’s New in Version 4.0
A few of the new features and improvements introduced with this version of the 
Neural Network Toolbox are discussed below.

Control System Applications
A new Chapter 6 presents three practical control systems applications:

• Network model predictive control 

• Model reference adaptive control 

• Feedback linearization controller

Graphical User Interface
A graphical user interface has been added to the toolbox. This interface allows 
you to:

• Create networks

• Enter data into the GUI

• Initialize, train, and simulate networks

• Export the training results from the GUI to the command line workspace

• Import data from the command line workspace to the GUI

To open the Network/Data Manager window type nntool. 

New Training Functions
The toolbox now has four training algorithms that apply weight and bias 
learning rules. One algorithm applies the learning rules in batch mode. Three 
algorithms apply learning rules in three different incremental modes:

• trainb - Batch training function

• trainc - Cyclical order incremental training function

• trainr - Random order incremental training function

• trains - Sequential order incremental training function

All four functions present the whole training set in each epoch (pass through 
the entire input set).
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Note  We no longer recommend using trainwb and trainwb1, which have 
been replaced by trainb and trainr. The function trainr differs from 
trainwb1 in that trainwb1 only presented a single vector each epoch instead 
of going through all vectors, as is done by trainr.

These new training functions are relatively fast because they generate M-code. 
The functions trainb, trainc, trainr, and trains all generate a temporary 
M-file consisting of specialized code for training the current network in 
question.

Design of General Linear Networks
The function newlind now allows the design of linear networks with multiple 
inputs, outputs, and input delays.

Improved Early Stopping
Early stopping can now be used in combination with Bayesian regularization. 
In some cases this can improve the generalization capability of the trained 
network.

Generalization and Speed Benchmarks
Generalization benchmarks comparing the performance of Bayesian 
regularization and early stopping are provided. We also include speed 
benchmarks, which compare the speed of convergence of the various training 
algorithms on a variety of problems in pattern recognition and function 
approximation. These benchmarks can aid users in selecting the appropriate 
algorithm for their problem.

Demonstration of a Sample Training Session
A new demonstration that illustrates a sample training session is included in 
Chapter 5. A sample training session script is also provided. Users can modify 
this script to fit their problem.
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Neural Network Applications 

Applications in this Toolbox
Chapter 6 describes three practical neural network control system 
applications, including neural network model predictive control, model 
reference adaptive control, and a feedback linearization controller.

Other neural network applications are described in Chapter 11.

Business Applications
The 1988 DARPA Neural Network Study [DARP88] lists various neural 
network applications, beginning in about 1984 with the adaptive channel 
equalizer. This device, which is an outstanding commercial success, is a single- 
neuron network used in long-distance telephone systems to stabilize voice 
signals. The DARPA report goes on to list other commercial applications, 
including a small word recognizer, a process monitor, a sonar classifier, and a 
risk analysis system.

Neural networks have been applied in many other fields since the DARPA 
report was written. A list of some applications mentioned in the literature 
follows.

Aerospace
• High performance aircraft autopilot, flight path simulation, aircraft control 

systems, autopilot enhancements, aircraft component simulation, aircraft 
component fault detection

Automotive
• Automobile automatic guidance system, warranty activity analysis

Banking
• Check and other document reading, credit application evaluation

Credit Card Activity Checking
• Neural networks are used to spot unusual credit card activity that might 

possibly be associated with loss of a credit card
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Defense
• Weapon steering, target tracking, object discrimination, facial recognition, 

new kinds of sensors, sonar, radar and image signal processing including 
data compression, feature extraction and noise suppression, signal/image 
identification

Electronics
• Code sequence prediction, integrated circuit chip layout, process control, 

chip failure analysis, machine vision, voice synthesis, nonlinear modeling

Entertainment
• Animation, special effects, market forecasting

Financial
• Real estate appraisal, loan advisor, mortgage screening, corporate bond 

rating, credit-line use analysis, portfolio trading program, corporate 
financial analysis, currency price prediction 

Industrial
• Neural networks are being trained to predict the output gasses of furnaces 

and other industrial processes. They then replace complex and costly 
equipment used for this purpose in the past.

Insurance
• Policy application evaluation, product optimization

Manufacturing
• Manufacturing process control, product design and analysis, process and 

machine diagnosis, real-time particle identification, visual quality 
inspection systems, beer testing, welding quality analysis, paper quality 
prediction, computer-chip quality analysis, analysis of grinding operations, 
chemical product design analysis, machine maintenance analysis, project 
bidding, planning and management, dynamic modeling of chemical process 
system
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Medical
• Breast cancer cell analysis, EEG and ECG analysis, prosthesis design, 

optimization of transplant times, hospital expense reduction, hospital 
quality improvement, emergency-room test advisement

Oil and Gas
• Exploration

Robotics
• Trajectory control, forklift robot, manipulator controllers, vision systems

Speech
• Speech recognition, speech compression, vowel classification, text-to-speech 

synthesis

Securities
• Market analysis, automatic bond rating, stock trading advisory systems

Telecommunications
• Image and data compression, automated information services, real-time 

translation of spoken language, customer payment processing systems

Transportation
• Truck brake diagnosis systems, vehicle scheduling, routing systems

Summary
The list of additional neural network applications, the money that has been 
invested in neural network software and hardware, and the depth and breadth 
of interest in these devices have been growing rapidly. The authors hope that 
this toolbox will be useful for neural network educational and design purposes 
within a broad field of neural network applications.
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2
Neuron Model and 
Network Architectures

Neuron Model (p. 2-2) Describes the neuron model; including simple neurons, transfer 
functions, and vector inputs

Network Architectures (p. 2-8) Discusses single and multiple layers of neurons

Data Structures (p. 2-13) Discusses how the format of input data structures affects the 
simulation of both static and dynamic networks

Training Styles (p. 2-18) Describes incremental and batch training

Summary (p. 2-24) Provides a consolidated review of the chapter concepts
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Neuron Model

Simple Neuron
A neuron with a single scalar input and no bias appears on the left below.

The scalar input p is transmitted through a connection that multiplies its 
strength by the scalar weight w, to form the product wp, again a scalar. Here 
the weighted input wp is the only argument of the transfer function f, which 
produces the scalar output a. The neuron on the right has a scalar bias, b. You 
may view the bias as simply being added to the product wp as shown by the 
summing junction or as shifting the function f to the left by an amount b. The 
bias is much like a weight, except that it has a constant input of 1. 

The transfer function net input n, again a scalar, is the sum of the weighted 
input wp and the bias b. This sum is the argument of the transfer function f. 
(Chapter 7, “Radial Basis Networks” discusses a different way to form the net 
input n.) Here f is a transfer function, typically a step function or a sigmoid 
function, which takes the argument n and produces the output a. Examples of 
various transfer functions are given in the next section. Note that w and b are 
both adjustable scalar parameters of the neuron. The central idea of neural 
networks is that such parameters can be adjusted so that the network exhibits 
some desired or interesting behavior. Thus, we can train the network to do a 
particular job by adjusting the weight or bias parameters, or perhaps the 
network itself will adjust these parameters to achieve some desired end.

Input - Title -

- Exp -

anp w

�� f

Neuron without bias

a = f (wp )

Input - Title -

- Exp -

anp
�� f

Neuron with bias

a = f (wp + b)

b

1

w
��
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All of the neurons in this toolbox have provision for a bias, and a bias is used 
in many of our examples and will be assumed in most of this toolbox. However, 
you may omit a bias in a neuron if you want.

As previously noted, the bias b is an adjustable (scalar) parameter of the 
neuron. It is not an input. However, the constant 1 that drives the bias is an 
input and must be treated as such when considering the linear dependence of 
input vectors in Chapter 4, “Linear Filters.”

Transfer Functions 

Many transfer functions are included in this toolbox. A complete list of them 
can be found in “Transfer Function Graphs” on page 14-14. Three of the most 
commonly used functions are shown below.

The hard-limit transfer function shown above limits the output of the neuron 
to either 0, if the net input argument n is less than 0; or 1, if n is greater than 
or equal to 0. We will use this function in Chapter 3 “Perceptrons” to create 
neurons that make classification decisions.

The toolbox has a function, hardlim, to realize the mathematical hard-limit 
transfer function shown above. Try the code shown below.

n = -5:0.1:5;
plot(n,hardlim(n),'c+:');

It produces a plot of the function hardlim over the range -5 to +5.

All of the mathematical transfer functions in the toolbox can be realized with 
a function having the same name.

The linear transfer function is shown below.

��
��

a = hardlim(n)

Hard-Limit Transfer Function

-1

n
0

+1
a
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Neurons of this type are used as linear approximators in “Linear Filters” on 
page 4-1.

The sigmoid transfer function shown below takes the input, which may have 
any value between plus and minus infinity, and squashes the output into the 
range 0 to 1.

This transfer function is commonly used in backpropagation networks, in part 
because it is differentiable.

The symbol in the square to the right of each transfer function graph shown 
above represents the associated transfer function. These icons will replace the 
general f in the boxes of network diagrams to show the particular transfer 
function being used.

For a complete listing of transfer functions and their icons, see the “Transfer 
Function Graphs” on page 14-14. You can also specify your own transfer 
functions. You are not limited to the transfer functions listed in Chapter 14, 
“Reference.” 

n
0

-1

+1

�
�

a = purelin(n)

Linear Transfer Function

a

-1

n
0

+1

��
��

a 

Log-Sigmoid Transfer Function

a = logsig(n)
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You can experiment with a simple neuron and various transfer functions by 
running the demonstration program nnd2n1.

Neuron with Vector Input
A neuron with a single R-element input vector is shown below. Here the 
individual element inputs 

are multiplied by weights

and the weighted values are fed to the summing junction. Their sum is simply 
Wp, the dot product of the (single row) matrix W and the vector p.

The neuron has a bias b, which is summed with the weighted inputs to form 
the net input n. This sum, n, is the argument of the transfer function f.

This expression can, of course, be written in MATLAB® code as:

n = W*p + b

However, the user will seldom be writing code at this low level, for such code is 
already built into functions to define and simulate entire networks.

p1, p2,... pR

w1 1, , w1 2, , ... w1 R,

Input

p
1

an
p

2p
3

p
R

w
1,

 
R

w
1,1

��
�� f

b

1

Where...

R = number of    
elements in
input vector

Neuron w Vector Input 

��
��

a = f(Wp +b)

n w1 1, p1 w1 2, p2 ... w1 R, pR b+ + + +=
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The figure of a single neuron shown above contains a lot of detail. When we 
consider networks with many neurons and perhaps layers of many neurons, 
there is so much detail that the main thoughts tend to be lost. Thus, the 
authors have devised an abbreviated notation for an individual neuron. This 
notation, which will be used later in circuits of multiple neurons, is illustrated 
in the diagram shown below. 

Here the input vector p is represented by the solid dark vertical bar at the left. 
The dimensions of p are shown below the symbol p in the figure as Rx1. (Note 
that we will use a capital letter, such as R in the previous sentence, when 
referring to the size of a vector.) Thus, p is a vector of R input elements. These 
inputs post multiply the single row, R column matrix W. As before, a constant 
1 enters the neuron as an input and is multiplied by a scalar bias b. The net 
input to the transfer function f is n, the sum of the bias b and the product Wp. 
This sum is passed to the transfer function f to get the neuron’s output a, which 
in this case is a scalar. Note that if we had more than one neuron, the network 
output would be a vector.

A layer of a network is defined in the figure shown above. A layer includes the 
combination of the weights, the multiplication and summing operation (here 
realized as a vector product Wp), the bias b, and the transfer function f. The 
array of inputs, vector p, is not included in or called a layer.

Each time this abbreviated network notation is used, the size of the matrices 
will be shown just below their matrix variable names. We hope that this 
notation will allow you to understand the architectures and follow the matrix 
mathematics associated with them.

p a

1

n��
��W

��b

R x 1
1 x R

1 x 1

1 x 1

1  x  1

Input

R 1
��
��
��

f

Where...

R = number of    
elements in
input vector

Neuron

a = f(Wp +b)
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As discussed previously, when a specific transfer function is to be used in a 
figure, the symbol for that transfer function will replace the f shown above. 
Here are some examples.

You can experiment with a two-element neuron by running the demonstration 
program nnd2n2.

��
��
��

��
��
��

��
��
��

purelinhardlim logsig
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Network Architectures
Two or more of the neurons shown earlier can be combined in a layer, and a 
particular network could contain one or more such layers. First consider a 
single layer of neurons.

A Layer of Neurons
A one-layer network with R input elements and S neurons follows.

In this network, each element of the input vector p is connected to each neuron 
input through the weight matrix W. The ith neuron has a summer that gathers 
its weighted inputs and bias to form its own scalar output n(i). The various n(i) 
taken together form an S-element net input vector n. Finally, the neuron layer 
outputs form a column vector a. We show the expression for a at the bottom of 
the figure.

Note that it is common for the number of inputs to a layer to be different from 
the number of neurons (i.e., R ¦ S). A layer is not constrained to have the 
number of its inputs equal to the number of its neurons.

p
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a
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n
2

Input
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p
3

p
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w
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Layer of Neurons

a= f (Wp + b)

R = number of 
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S = number of 
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You can create a single (composite) layer of neurons having different transfer 
functions simply by putting two of the networks shown earlier in parallel. Both 
networks would have the same inputs, and each network would create some of 
the outputs.

The input vector elements enter the network through the weight matrix W.

Note that the row indices on the elements of matrix W indicate the destination 
neuron of the weight, and the column indices indicate which source is the input 
for that weight. Thus, the indices in say that the strength of the signal 
from the second input element to the first (and only) neuron is . 

The S neuron R input one-layer network also can be drawn in abbreviated 
notation.

Here p is an R length input vector, W is an SxR matrix, and a and b are S 
length vectors. As defined previously, the neuron layer includes the weight 
matrix, the multiplication operations, the bias vector b, the summer, and the 
transfer function boxes.

W

w1 1, w1 2, … w1 R,

w2 1, w2 2, … w2 R,

wS 1, wS 2, … wS R,

=

w1 2,
w1 2,

a= f (Wp + b)

p a

1

n���W

���
���b

R x 1
S x R

S x 1

S  x  1

Input Layer of Neurons

R S��
��
��f

S x 1

R = number of 
elements in
input vector 

Where...

 
 

S = number of 
neurons in layer 1
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Inputs and Layers
We are about to discuss networks having multiple layers so we will need to 
extend our notation to talk about such networks. Specifically, we need to make 
a distinction between weight matrices that are connected to inputs and weight 
matrices that are connected between layers. We also need to identify the source 
and destination for the weight matrices.

We will call weight matrices connected to inputs, input weights; and we will call 
weight matrices coming from layer outputs, layer weights. Further, we will use 
superscripts to identify the source (second index) and the destination (first 
index) for the various weights and other elements of the network. To illustrate, 
we have taken the one-layer multiple input network shown earlier and 
redrawn it in abbreviated form below. 

As you can see, we have labeled the weight matrix connected to the input vector 
p as an Input Weight matrix (IW1,1) having a source 1 (second index) and a 
destination 1 (first index). Also, elements of layer one, such as its bias, net 
input, and output have a superscript 1 to say that they are associated with the 
first layer.

In the next section, we will use Layer Weight (LW) matrices as well as Input 
Weight (IW) matrices.

You might recall from the notation section of the Preface that conversion of the 
layer weight matrix from math to code for a particular network called net is: 

Thus, we could write the code to obtain the net input to the transfer function as:

p a1

1

n1
S 1 x R 

S 1 x 1

S 1  x 1

S 1 x  1

Input 

��
��

IW1,1

��b1

Layer 1

S1
��
��
��

f1

R

a1 = f1(IW1,1p +b1)

S 1 x 1

R  x 1
R = number of 
elements in
input vector 

S = number of 
neurons in Layer 1
     

Where...

IW1 1, net.IW 1 1,{ }→
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n{1} = net.IW{1,1}*p + net.b{1};

Multiple Layers of Neurons
A network can have several layers. Each layer has a weight matrix W, a bias 
vector b, and an output vector a. To distinguish between the weight matrices, 
output vectors, etc., for each of these layers in our figures, we append the 
number of the layer as a superscript to the variable of interest. You can see the 
use of this layer notation in the three-layer network shown below, and in the 
equations at the bottom of the figure. 

The network shown above has R1 inputs, S1 neurons in the first layer, S2 

neurons in the second layer, etc. It is common for different layers to have 
different numbers of neurons. A constant input 1 is fed to the biases for each 
neuron.

Note that the outputs of each intermediate layer are the inputs to the following 
layer. Thus layer 2 can be analyzed as a one-layer network with S1 inputs, S2 
neurons, and an S2xS1 weight matrix W2. The input to layer 2 is a1; the output 

a1 = f1 (IW1,1p +b1) a2 = f2 (LW2,1a1 +b2) a3 =f3 (LW3,2 a2 + b3)

Layer 1 Layer 2 Layer 3
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is a2. Now that we have identified all the vectors and matrices of layer 2, we 
can treat it as a single-layer network on its own. This approach can be taken 
with any layer of the network.

The layers of a multilayer network play different roles. A layer that produces 
the network output is called an output layer. All other layers are called hidden 
layers. The three-layer network shown earlier has one output layer (layer 3) 
and two hidden layers (layer 1 and layer 2). Some authors refer to the inputs 
as a fourth layer. We will not use that designation.

The same three-layer network discussed previously also can be drawn using 
our abbreviated notation.

Multiple-layer networks are quite powerful. For instance, a network of two 
layers, where the first layer is sigmoid and the second layer is linear, can be 
trained to approximate any function (with a finite number of discontinuities) 
arbitrarily well. This kind of two-layer network is used extensively in Chapter 
5, “Backpropagation.”

Here we assume that the output of the third layer, a3, is the network output of 
interest, and we have labeled this output as y. We will use this notation to 
specify the output of multilayer networks.

p a1 a2

1 1

n1 n2

a3 = y

n3

1

S 2 x S 1

S 2 x 1

S 2 x 1

 S 2 x 1
S 3x S 2

S 3 x 1

S 3 x 1

S 3 x 1 R x 1

S 1 x R 
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Data Structures
This section discusses how the format of input data structures affects the 
simulation of networks. We will begin with static networks, and then move to 
dynamic networks.

We are concerned with two basic types of input vectors: those that occur 
concurrently (at the same time, or in no particular time sequence), and those 
that occur sequentially in time. For concurrent vectors, the order is not 
important, and if we had a number of networks running in parallel, we could 
present one input vector to each of the networks. For sequential vectors, the 
order in which the vectors appear is important. 

Simulation With Concurrent Inputs in a Static 
Network
The simplest situation for simulating a network occurs when the network to be 
simulated is static (has no feedback or delays). In this case, we do not have to 
be concerned about whether or not the input vectors occur in a particular time 
sequence, so we can treat the inputs as concurrent. In addition, we make the 
problem even simpler by assuming that the network has only one input vector. 
Use the following network as an example.

To set up this feedforward network, we can use the following command.

net = newlin([1 3;1 3],1);

For simplicity assign the weight matrix and bias to be

p
1 an

Inputs

bp
2 w

1,2

w
1,1

1
a = purelin (Wp + b)

Linear Neuron

��
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��
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 and .

The commands for these assignments are

net.IW{1,1} = [1 2];
net.b{1} = 0;

Suppose that the network simulation data set consists of Q = 4 concurrent 
vectors:

Concurrent vectors are presented to the network as a single matrix:

P = [1 2 2 3; 2 1 3 1];

We can now simulate the network:

A = sim(net,P)
A =
     5     4     8     5

A single matrix of concurrent vectors is presented to the network and the 
network produces a single matrix of concurrent vectors as output. The result 
would be the same if there were four networks operating in parallel and each 
network received one of the input vectors and produced one of the outputs. The 
ordering of the input vectors is not important as they do not interact with each 
other.

Simulation With Sequential Inputs in a Dynamic 
Network
When a network contains delays, the input to the network would normally be 
a sequence of input vectors that occur in a certain time order. To illustrate this 
case, we use a simple network that contains one delay.

W 1 2= b 0=

p1
1
2

= , p2
2
1

= , p3
2
3

= , p4
3
1

= ,
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The following commands create this network:

net = newlin([-1 1],1,[0 1]);
net.biasConnect = 0;

Assign the weight matrix to be

.

The command is

net.IW{1,1} = [1 2];

Suppose that the input sequence is

Sequential inputs are presented to the network as elements of a cell array:

P = {1 2 3 4};

We can now simulate the network:

A = sim(net,P)
A = 
    [1]    [4]    [7]    [10]

We input a cell array containing a sequence of inputs, and the network 
produced a cell array containing a sequence of outputs. Note that the order of 
the inputs is important when they are presented as a sequence. In this case, 

a(t)n(t)

Inputs

w
1,1

�
�D w

1,2

Linear Neuron
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p(t)

a(t) = w
1,1

p(t) + w
1,2

p(t - 1)
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W 1 2=
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the current output is obtained by multiplying the current input by 1 and the 
preceding input by 2 and summing the result. If we were to change the order of 
the inputs, it would change the numbers we would obtain in the output.

Simulation With Concurrent Inputs in a Dynamic 
Network
If we were to apply the same inputs from the previous example as a set of 
concurrent inputs instead of a sequence of inputs, we would obtain a 
completely different response. (Although, it is not clear why we would want to 
do this with a dynamic network.) It would be as if each input were applied 
concurrently to a separate parallel network. For the previous example, if we 
use a concurrent set of inputs we have

which can be created with the following code:

P = [1 2 3 4];

When we simulate with concurrent inputs we obtain

A = sim(net,P)
A =
     1     2     3     4

The result is the same as if we had concurrently applied each one of the inputs 
to a separate network and computed one output. Note that since we did not 
assign any initial conditions to the network delays, they were assumed to be 
zero. For this case the output will simply be 1 times the input, since the weight 
that multiplies the current input is 1.

In certain special cases, we might want to simulate the network response to 
several different sequences at the same time. In this case, we would want to 
present the network with a concurrent set of sequences. For example, let’s say 
we wanted to present the following two sequences to the network:

p1 1= , p2 2= , p3 3= , p4 4=

p1 1( ) 1 ,= p1 2( ) 2 ,= p1 3( ) 3 ,= p1 4( ) 4=

p2 1( ) 4 ,= p2 2( ) 3 ,= p2 3( ) 2 ,= p2 4( ) 1=
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The input P should be a cell array, where each element of the array contains 
the two elements of the two sequences that occur at the same time:

P = {[1 4] [2 3] [3 2] [4 1]};

We can now simulate the network:

A = sim(net,P);

The resulting network output would be

A = {[ 1 4] [4 11] [7 8] [10 5]}

As you can see, the first column of each matrix makes up the output sequence 
produced by the first input sequence, which was the one we used in an earlier 
example. The second column of each matrix makes up the output sequence 
produced by the second input sequence. There is no interaction between the 
two concurrent sequences. It is as if they were each applied to separate 
networks running in parallel.

The following diagram shows the general format for the input P to the sim 
function when we have Q concurrent sequences of TS time steps. It covers all 
cases where there is a single input vector. Each element of the cell array is a 
matrix of concurrent vectors that correspond to the same point in time for each 
sequence. If there are multiple input vectors, there will be multiple rows of 
matrices in the cell array.

In this section, we have applied sequential and concurrent inputs to dynamic 
networks. In the previous section, we applied concurrent inputs to static 
networks. It is also possible to apply sequential inputs to static networks. It 
will not change the simulated response of the network, but it can affect the way 
in which the network is trained. This will become clear in the next section.

p1 1( ) p2 1( ) … pQ 1( ), , ,[ ] p1 2( ) p2 2( ) … pQ 2( ), , ,[ ]· … p1 TS( ) p2 TS( ) … pQ TS( ), , ,[ ], , ,{ }

First Sequence

Qth Sequence
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Training Styles
In this section, we describe two different styles of training. In incremental 
training the weights and biases of the network are updated each time an input 
is presented to the network. In batch training the weights and biases are only 
updated after all of the inputs are presented.

Incremental Training (of Adaptive and Other 
Networks)
Incremental training can be applied to both static and dynamic networks, 
although it is more commonly used with dynamic networks, such as adaptive 
filters. In this section, we demonstrate how incremental training is performed 
on both static and dynamic networks.

Incremental Training with Static Networks
Consider again the static network we used for our first example. We want to 
train it incrementally, so that the weights and biases will be updated after each 
input is presented. In this case we use the function adapt, and we present the 
inputs and targets as sequences.

Suppose we want to train the network to create the linear function 

.

Then for the previous inputs we used,

the targets would be

We first set up the network with zero initial weights and biases. We also set 
the learning rate to zero initially, to show the effect of the incremental training.

net = newlin([-1 1;-1 1],1,0,0);
net.IW{1,1} = [0 0];
net.b{1} = 0;

t 2p1 p2+=

p1
1
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= , p2
2
1

= , p3
2
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t1 4= , t2 5= , t3 7= , t4 7=
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For incremental training we want to present the inputs and targets as 
sequences:

P = {[1;2] [2;1] [2;3] [3;1]};
T = {4 5 7 7};

Recall from the earlier discussion that for a static network the simulation of the 
network produces the same outputs whether the inputs are presented as a 
matrix of concurrent vectors or as a cell array of sequential vectors. This is not 
true when training the network, however. When using the adapt function, if 
the inputs are presented as a cell array of sequential vectors, then the weights 
are updated as each input is presented (incremental mode). As we see in the 
next section, if the inputs are presented as a matrix of concurrent vectors, then 
the weights are updated only after all inputs are presented (batch mode).

We are now ready to train the network incrementally.

[net,a,e,pf] = adapt(net,P,T);

The network outputs will remain zero, since the learning rate is zero, and the 
weights are not updated. The errors will be equal to the targets:

a = [0]    [0]    [0]    [0]
e = [4]    [5]    [7]    [7]

If we now set the learning rate to 0.1 we can see how the network is adjusted 
as each input is presented:

net.inputWeights{1,1}.learnParam.lr=0.1;
net.biases{1,1}.learnParam.lr=0.1;
[net,a,e,pf] = adapt(net,P,T);
a = [0]    [2]    [6.0]    [5.8]
e = [4]    [3]    [1.0]    [1.2]

The first output is the same as it was with zero learning rate, since no update 
is made until the first input is presented. The second output is different, since 
the weights have been updated. The weights continue to be modified as each 
error is computed. If the network is capable and the learning rate is set 
correctly, the error will eventually be driven to zero.

Incremental Training with Dynamic Networks
We can also train dynamic networks incrementally. In fact, this would be the 
most common situation. Let’s take the linear network with one delay at the 
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input that we used in a previous example. We initialize the weights to zero and 
set the learning rate to 0.1.

net = newlin([-1 1],1,[0 1],0.1);
net.IW{1,1} = [0 0];
net.biasConnect = 0;

To train this network incrementally we present the inputs and targets as 
elements of cell arrays. 

Pi = {1};
P = {2 3 4};
T = {3 5 7};

Here we attempt to train the network to sum the current and previous inputs 
to create the current output. This is the same input sequence we used in the 
previous example of using sim, except that we assign the first term in the 
sequence as the initial condition for the delay. We now can sequentially train 
the network using adapt.

[net,a,e,pf] = adapt(net,P,T,Pi);
a = [0] [2.4] [ 7.98]
e = [3] [2.6] [-0.98]

The first output is zero, since the weights have not yet been updated. The 
weights change at each subsequent time step.

Batch Training
Batch training, in which weights and biases are only updated after all of the 
inputs and targets are presented, can be applied to both static and dynamic 
networks. We discuss both types of networks in this section.

Batch Training with Static Networks
Batch training can be done using either adapt or train, although train is 
generally the best option, since it typically has access to more efficient training 
algorithms. Incremental training can only be done with adapt; train can only 
perform batch training.

Let’s begin with the static network we used in previous examples. The learning 
rate will be set to 0.1.

net = newlin([-1 1;-1 1],1,0,0.1);
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net.IW{1,1} = [0 0];
net.b{1} = 0;

For batch training of a static network with adapt, the input vectors must be 
placed in one matrix of concurrent vectors.

P = [1 2 2 3; 2 1 3 1];
T = [4 5 7 7];

When we call adapt, it will invoke trains (which is the default adaptation 
function for the linear network) and learnwh (which is the default learning 
function for the weights and biases). Therefore, Widrow-Hoff learning is used.

[net,a,e,pf] = adapt(net,P,T);
a = 0 0 0 0
e = 4 5 7 7

Note that the outputs of the network are all zero, because the weights are not 
updated until all of the training set has been presented. If we display the 
weights we find:

»net.IW{1,1}
ans = 4.9000    4.1000

»net.b{1}
ans =

    2.3000

This is different that the result we had after one pass of adapt with 
incremental updating.

Now let’s perform the same batch training using train. Since the Widrow-Hoff 
rule can be used in incremental or batch mode, it can be invoked by adapt or 
train. There are several algorithms that can only be used in batch mode (e.g., 
Levenberg-Marquardt), and so these algorithms can only be invoked by train.

The network will be set up in the same way.

net = newlin([-1 1;-1 1],1,0,0.1);
net.IW{1,1} = [0 0];
net.b{1} = 0;

For this case, the input vectors can either be placed in a matrix of concurrent 
vectors or in a cell array of sequential vectors. Within train any cell array of 
sequential vectors is converted to a matrix of concurrent vectors. This is 
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because the network is static, and because train always operates in the batch 
mode. Concurrent mode operation is generally used whenever possible, 
because it has a more efficient MATLAB implementation.

P = [1 2 2 3; 2 1 3 1];
T = [4 5 7 7];

Now we are ready to train the network. We will train it for only one epoch, since 
we used only one pass of adapt. The default training function for the linear 
network is trainc, and the default learning function for the weights and biases 
is learnwh, so we should get the same results that we obtained using adapt in 
the previous example, where the default adaptation function was trains.

net.inputWeights{1,1}.learnParam.lr = 0.1;
net.biases{1}.learnParam.lr = 0.1;
net.trainParam.epochs = 1;
net = train(net,P,T);

If we display the weights after one epoch of training we find:

»net.IW{1,1}
ans = 4.9000    4.1000

»net.b{1}
ans =

    2.3000

This is the same result we had with the batch mode training in adapt. With 
static networks, the adapt function can implement incremental or batch 
training depending on the format of the input data. If the data is presented as 
a matrix of concurrent vectors, batch training will occur. If the data is 
presented as a sequence, incremental training will occur. This is not true for 
train, which always performs batch training, regardless of the format of the 
input.

Batch Training With Dynamic Networks
Training static networks is relatively straightforward. If we use train the 
network is trained in the batch mode and the inputs is converted to concurrent 
vectors (columns of a matrix), even if they are originally passed as a sequence 
(elements of a cell array). If we use adapt, the format of the input determines 
the method of training. If the inputs are passed as a sequence, then the 
network is trained in incremental mode. If the inputs are passed as concurrent 
vectors, then batch mode training is used.
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With dynamic networks, batch mode training is typically done with train only, 
especially if only one training sequence exists. To illustrate this, let’s consider 
again the linear network with a delay. We use a learning rate of 0.02 for the 
training. (When using a gradient descent algorithm, we typically use a smaller 
learning rate for batch mode training than incremental training, because all of 
the individual gradients are summed together before determining the step 
change to the weights.)

net = newlin([-1 1],1,[0 1],0.02);
net.IW{1,1}=[0 0];
net.biasConnect=0;
net.trainParam.epochs = 1;
Pi = {1};
P = {2 3 4};
T = {3 5 6};

We want to train the network with the same sequence we used for the 
incremental training earlier, but this time we want to update the weights only 
after all of the inputs are applied (batch mode). The network is simulated in 
sequential mode because the input is a sequence, but the weights are updated 
in batch mode.

net=train(net,P,T,Pi);

The weights after one epoch of training are

»net.IW{1,1}
ans = 0.9000    0.6200

These are different weights than we would obtain using incremental training, 
where the weights would be updated three times during one pass through the 
training set. For batch training the weights are only updated once in each 
epoch.
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Summary
The inputs to a neuron include its bias and the sum of its weighted inputs 
(using the inner product). The output of a neuron depends on the neuron’s 
inputs and on its transfer function. There are many useful transfer functions.

A single neuron cannot do very much. However, several neurons can be 
combined into a layer or multiple layers that have great power. Hopefully this 
toolbox makes it easy to create and understand such large networks. 

The architecture of a network consists of a description of how many layers a 
network has, the number of neurons in each layer, each layer’s transfer 
function, and how the layers connect to each other. The best architecture to use 
depends on the type of problem to be represented by the network.

A network effects a computation by mapping input values to output values. The 
particular mapping problem to be performed fixes the number of inputs, as well 
as the number of outputs for the network.

Aside from the number of neurons in a network’s output layer, the number of 
neurons in each layer is up to the designer. Except for purely linear networks, 
the more neurons in a hidden layer, the more powerful the network.

If a linear mapping needs to be represented linear neurons should be used. 
However, linear networks cannot perform any nonlinear computation. Use of a 
nonlinear transfer function makes a network capable of storing nonlinear 
relationships between input and output.

A very simple problem can be represented by a single layer of neurons. 
However, single-layer networks cannot solve certain problems. Multiple 
feed-forward layers give a network greater freedom. For example, any 
reasonable function can be represented with a two-layer network: a sigmoid 
layer feeding a linear output layer.

Networks with biases can represent relationships between inputs and outputs 
more easily than networks without biases. (For example, a neuron without a 
bias will always have a net input to the transfer function of zero when all of its 
inputs are zero. However, a neuron with a bias can learn to have any net 
transfer function input under the same conditions by learning an appropriate 
value for the bias.)

Feed-forward networks cannot perform temporal computation. More complex 
networks with internal feedback paths are required for temporal behavior.
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If several input vectors are to be presented to a network, they may be presented 
sequentially or concurrently. Batching of concurrent inputs is computationally 
more efficient and may be what is desired in any case. The matrix notation 
used in MATLAB makes batching simple. 

Figures and Equations
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Neuron With Vector Input
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Icons for Transfer Functions
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A Layer of Neurons
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Layer of Neurons, Abbreviated Notation

Layer of Neurons Showing Indices
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Three Layers, Abbreviated Notation
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Linear Neuron With Two-Element Vector Input

Dynamic Network With One Delay
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Introduction
This chapter has a number of objectives. First we want to introduce you to 
learning rules, methods of deriving the next changes that might be made in a 
network, and training, a procedure whereby a network is actually adjusted to 
do a particular job. Along the way we discuss a toolbox function to create a 
simple perceptron network, and we also cover functions to initialize and 
simulate such networks. We use the perceptron as a vehicle for tying these 
concepts together.

Rosenblatt [Rose61] created many variations of the perceptron. One of the 
simplest was a single-layer network whose weights and biases could be trained 
to produce a correct target vector when presented with the corresponding input 
vector. The training technique used is called the perceptron learning rule. The 
perceptron generated great interest due to its ability to generalize from its 
training vectors and learn from initially randomly distributed connections. 
Perceptrons are especially suited for simple problems in pattern classification. 
They are fast and reliable networks for the problems they can solve. In 
addition, an understanding of the operations of the perceptron provides a good 
basis for understanding more complex networks. 

In this chapter we define what we mean by a learning rule, explain the 
perceptron network and its learning rule, and tell you how to initialize and 
simulate perceptron networks.

The discussion of perceptron in this chapter is necessarily brief. For a more 
thorough discussion, see Chapter 4 “Perceptron Learning Rule” of [HDB1996], 
which discusses the use of multiple layers of perceptrons to solve more difficult 
problems beyond the capability of one layer.

You also may want to refer to the original book on the perceptron, Rosenblatt, 
F., Principles of Neurodynamics, Washington D.C.: Spartan Press, 1961. 
[Rose61].

Important Perceptron Functions
Entering help percept at the MATLAB® command line displays all the 
functions that are related to perceptrons.

Perceptron networks can be created with the function newp. These networks 
can be initialized, simulated and trained with the init, sim and train. The 
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following material describes how perceptrons work and introduces these 
functions.
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Neuron Model
A perceptron neuron, which uses the hard-limit transfer function hardlim, is 
shown below.

Each external input is weighted with an appropriate weight w1j, and the sum 
of the weighted inputs is sent to the hard-limit transfer function, which also 
has an input of 1 transmitted to it through the bias. The hard-limit transfer 
function, which returns a 0 or a 1, is shown below. 

The perceptron neuron produces a 1 if the net input into the transfer function 
is equal to or greater than 0; otherwise it produces a 0.

The hard-limit transfer function gives a perceptron the ability to classify input 
vectors by dividing the input space into two regions. Specifically, outputs will 
be 0 if the net input n is less than 0, or 1 if the net input n is 0 or greater. The 
input space of a two-input hard limit neuron with the weights 

 and a bias , is shown below.
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Two classification regions are formed by the decision boundary line L at 
. This line is perpendicular to the weight matrix W and shifted 

according to the bias b. Input vectors above and to the left of the line L will 
result in a net input greater than 0; and therefore, cause the hard-limit neuron 
to output a 1. Input vectors below and to the right of the line L cause the neuron 
to output 0. The dividing line can be oriented and moved anywhere to classify 
the input space as desired by picking the weight and bias values.

Hard-limit neurons without a bias will always have a classification line going 
through the origin. Adding a bias allows the neuron to solve problems where 
the two sets of input vectors are not located on different sides of the origin. The 
bias allows the decision boundary to be shifted away from the origin as shown 
in the plot above.

You may want to run the demonstration program nnd4db. With it you can move 
a decision boundary around, pick new inputs to classify, and see how the 
repeated application of the learning rule yields a network that does classify the 
input vectors properly.
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Perceptron Architecture
The perceptron network consists of a single layer of S perceptron neurons 
connected to R inputs through a set of weights wi,j as shown below in two 
forms. As before, the network indices i and j indicate that wi,j is the strength 
of the connection from the jth input to the ith neuron. 

The perceptron learning rule that we will describe shortly is capable of training 
only a single layer. Thus, here we will consider only one-layer networks. This 
restriction places limitations on the computation a perceptron can perform. 
The types of problems that perceptrons are capable of solving are discussed 
later in this chapter in the “Limitations and Cautions” section.
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Creating a Perceptron (newp)
A perceptron can be created with the function newp

net = newp(PR, S)

where input arguments:

PR is an R-by-2 matrix of minimum and maximum values for R input 
elements.

S is the number of neurons.

Commonly the hardlim function is used in perceptrons, so it is the default.

The code below creates a perceptron network with a single one-element input 
vector and one neuron. The range for the single element of the single input 
vector is [0 2].

net = newp([0 2],1);

We can see what network has been created by executing the following code

inputweights = net.inputweights{1,1}

which yields:

inputweights = 
        delays: 0
       initFcn: 'initzero'
         learn: 1
      learnFcn: 'learnp'
    learnParam: []
          size: [1 1]
      userdata: [1x1 struct]
     weightFcn: 'dotprod'

Note that the default learning function is learnp, which is discussed later in 
this chapter. The net input to the hardlim transfer function is dotprod, which 
generates the product of the input vector and weight matrix and adds the bias 
to compute the net input.

Also note that the default initialization function, initzero, is used to set the 
initial values of the weights to zero. 

Similarly, 
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biases = net.biases{1}

gives

biases = 
       initFcn: 'initzero'
         learn: 1
      learnFcn: 'learnp'
    learnParam: []
          size: 1
      userdata: [1x1 struct]

We can see that the default initialization for the bias is also 0.

Simulation (sim)
To show how sim works we examine a simple problem.

Suppose we take a perceptron with a single two-element input vector, like that 
discussed in the decision boundary figure. We define the network with

net = newp([-2 2;-2 +2],1);

As noted above, this gives us zero weights and biases, so if we want a particular 
set other than zeros, we have to create them. We can set the two weights and 
the one bias to -1, 1 and 1 as they were in the decision boundary figure with the 
following two lines of code.

net.IW{1,1}= [-1 1];
net.b{1} = [1];

To make sure that these parameters were set correctly, we check them with

net.IW{1,1}
ans =
    -1     1
net.b{1}
ans =

     1

Now let us see if the network responds to two signals, one on each side of the 
perceptron boundary.

p1 = [1;1];
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a1 = sim(net,p1)
a1 =

     1

and for 

p2 = [1;-1]
a2 = sim(net,p2)
a2 =

     0

Sure enough, the perceptron classified the two inputs correctly. 

Note that we could present the two inputs in a sequence and get the outputs in 
a sequence as well.

p3 = {[1;1] [1;-1]};
a3 = sim(net,p3)
a3 = 

    [1]    [0]

You may want to read more about sim in “Advanced Topics” in Chapter 12.

Initialization (init)
You can use the function init to reset the network weights and biases to their 
original values. Suppose, for instance that you start with the network

net = newp([-2 2;-2 +2],1);

Now check its weights with

wts = net.IW{1,1}

which gives, as expected, 

wts =

     0     0

In the same way, you can verify that the bias is 0 with

bias = net.b{1}
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which gives 

bias =

     0

Now set the weights to the values 3 and 4 and the bias to the value 5 with 

net.IW{1,1} = [3,4];
net.b{1} = 5;

Recheck the weights and bias as shown above to verify that the change has 
been made. Sure enough, 

wts =
     3     4
bias =

     5

Now use init to reset the weights and bias to their original values.

net = init(net);

We can check as shown above to verify that.

wts =
     0     0
bias =

     0

We can change the way that a perceptron is initialized with init. For instance, 
we can redefine the network input weights and bias initFcns as rands, and 
then apply init as shown below.

net.inputweights{1,1}.initFcn = 'rands';
net.biases{1}.initFcn = 'rands';
net = init(net);

Now check on the weights and bias.

wts =
    0.2309    0.5839
biases =
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   -0.1106

We can see that the weights and bias have been given random numbers.

You may want to read more about init in “Advanced Topics” in Chapter 12.
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Learning Rules
We define a learning rule as a procedure for modifying the weights and biases 
of a network. (This procedure may also be referred to as a training algorithm.) 
The learning rule is applied to train the network to perform some particular 
task. Learning rules in this toolbox fall into two broad categories: supervised 
learning, and unsupervised learning. 

In supervised learning, the learning rule is provided with a set of examples (the 
training set) of proper network behavior

where  is an input to the network, and  is the corresponding correct 
(target) output. As the inputs are applied to the network, the network outputs 
are compared to the targets. The learning rule is then used to adjust the 
weights and biases of the network in order to move the network outputs closer 
to the targets. The perceptron learning rule falls in this supervised learning 
category. 

In unsupervised learning, the weights and biases are modified in response to 
network inputs only. There are no target outputs available. Most of these 
algorithms perform clustering operations. They categorize the input patterns 
into a finite number of classes. This is especially useful in such applications as 
vector quantization.

As noted, the perceptron discussed in this chapter is trained with supervised 
learning. Hopefully, a network that produces the right output for a particular 
input will be obtained.

p1 t1{ , } p2 t2{ , } … pQ tQ{ , }, , ,

pq tq
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Perceptron Learning Rule (learnp)
Perceptrons are trained on examples of desired behavior. The desired behavior 
can be summarized by a set of input, output pairs

where p is an input to the network and t is the corresponding correct (target) 
output. The objective is to reduce the error e, which is the difference  
between the neuron response a, and the target vector t. The perceptron 
learning rule learnp calculates desired changes to the perceptron’s weights 
and biases given an input vector p, and the associated error e. The target 
vector t must contain values of either 0 or 1, as perceptrons (with hardlim 
transfer functions) can only output such values.

Each time learnp is executed, the perceptron has a better chance of producing 
the correct outputs. The perceptron rule is proven to converge on a solution in 
a finite number of iterations if a solution exists.

If a bias is not used, learnp works to find a solution by altering only the weight 
vector w to point toward input vectors to be classified as 1, and away from 
vectors to be classified as 0. This results in a decision boundary that is 
perpendicular to w, and which properly classifies the input vectors.

There are three conditions that can occur for a single neuron once an input 
vector p is presented and the network’s response a is calculated:

CASE 1. If an input vector is presented and the output of the neuron is correct 
(a = t, and e = t – a = 0), then the weight vector w is not altered.

CASE 2. If the neuron output is 0 and should have been 1 (a = 0 and t = 1, and 
e = t – a = 1), the input vector p is added to the weight vector w. This makes 
the weight vector point closer to the input vector, increasing the chance that 
the input vector will be classified as a 1 in the future.

CASE 3. If the neuron output is 1 and should have been 0 (a = 1and t = 0, and e 
= t – a = –1), the input vector p is subtracted from the weight vector w. This 
makes the weight vector point farther away from the input vector, increasing 
the chance that the input vector is classified as a 0 in the future.

The perceptron learning rule can be written more succinctly in terms of the 
error e = t – a, and the change to be made to the weight vector ∆w:

p1t1,p2t1,..., pQtQ

t a–
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CASE 1. If e = 0, then make a change ∆w equal to 0.

CASE 2. If e = 1, then make a change ∆w equal to pT.

CASE 3. If e = –1, then make a change ∆w equal to –pT.

All three cases can then be written with a single expression:

We can get the expression for changes in a neuron’s bias by noting that the bias 
is simply a weight that always has an input of 1:

For the case of a layer of neurons we have:

 and

The Perceptron Learning Rule can be summarized as follows

 and 

where .

Now let us try a simple example. We start with a single neuron having a input 
vector with just two elements.

net = newp([-2 2;-2 +2],1);

To simplify matters we set the bias equal to 0 and the weights to 1 and -0.8.

net.b{1} =  [0];
w = [1 -0.8];
net.IW{1,1} = w;

The input target pair is given by

p = [1; 2];
t = [1];

∆w t a–( )pT epT= =

∆b t a–( ) 1( ) e= =

∆W t a–( ) p( )T e p( )T= =

∆b t a–( ) E= =

Wnew Wold epT
+=

bnew bold e+=

e t a–=
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We can compute the output and error with

a = sim(net,p)
a =
     0
e = t-a
e =
     1

and finally use the function learnp to find the change in the weights.

dw = learnp(w,p,[],[],[],[],e,[],[],[])
dw =
     1     2

The new weights, then, are obtained as

w = w + dw
w =
    2.0000    1.2000

The process of finding new weights (and biases) can be repeated until there are 
no errors. Note that the perceptron learning rule is guaranteed to converge in 
a finite number of steps for all problems that can be solved by a perceptron. 
These include all classification problems that are “linearly separable.” The 
objects to be classified in such cases can be separated by a single line.

You might want to try demo nnd4pr. It allows you to pick new input vectors and 
apply the learning rule to classify them.
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Training (train)
If sim and learnp are used repeatedly to present inputs to a perceptron, and to 
change the perceptron weights and biases according to the error, the 
perceptron will eventually find weight and bias values that solve the problem, 
given that the perceptron can solve it. Each traverse through all of the training 
input and target vectors is called a pass. 

The function train carries out such a loop of calculation. In each pass the 
function train proceeds through the specified sequence of inputs, calculating 
the output, error and network adjustment for each input vector in the sequence 
as the inputs are presented. 

Note that train does not guarantee that the resulting network does its job. 
The new values of W and b must be checked by computing the network output 
for each input vector to see if all targets are reached. If a network does not 
perform successfully it can be trained further by again calling train with the 
new weights and biases for more training passes, or the problem can be 
analyzed to see if it is a suitable problem for the perceptron. Problems which 
are not solvable by the perceptron network are discussed in the “Limitations 
and Cautions” section.

To illustrate the training procedure, we will work through a simple problem. 
Consider a one neuron perceptron with a single vector input having two 
elements.

This network, and the problem we are about to consider are simple enough that 
you can follow through what is done with hand calculations if you want. The 
problem discussed below follows that found in [HDB1996].
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Let us suppose we have the following classification problem and would like to 
solve it with our single vector input, two-element perceptron network.

Use the initial weights and bias. We denote the variables at each step of this 
calculation by using a number in parentheses after the variable. Thus, above, 
we have the initial values, W(0) and b(0).

We start by calculating the perceptron’s output a for the first input vector p1, 
using the initial weights and bias.

The output a does not equal the target value t1, so we use the perceptron rule 
to find the incremental changes to the weights and biases based on the error.

You can calculate the new weights and bias using the Perceptron update rules 
shown previously. 

Now present the next input vector, p2. The output is calculated below.

p1
2
2

= t1 0=,
⎩ ⎭
⎨ ⎬
⎧ ⎫

  p2
1
2–

= t2 1=,
⎩ ⎭
⎨ ⎬
⎧ ⎫

  p3
2–

2
= t3 0=,

⎩ ⎭
⎨ ⎬
⎧ ⎫

  p4
1–

1
= t4 1=,

⎩ ⎭
⎨ ⎬
⎧ ⎫

W 0( ) 0 0= b 0( ) 0=

a hardlim W 0( )p1 b 0( )+( )

hardlim 0 0
2
2

0+
⎝ ⎠
⎜ ⎟
⎛ ⎞

hardlim 0( ) 1

=

= = =

e t1 a– 0 1– 1

∆W

–

ep1
T 1–( ) 2 2 2– 2–

∆b e 1–( ) 1–

= = =

= = =

= = =

Wnew Wold epT
+ 0 0 2– 2–+ 2– 2– W 1( )= = = =

bnew bold e+ 0 1–( )+ 1– b 1( )= = = =
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On this occasion, the target is 1, so the error is zero. Thus there are no changes 
in weights or bias, so  and 

We can continue in this fashion, presenting p3 next, calculating an output and 
the error, and making changes in the weights and bias, etc. After making one 
pass through all of the four inputs, you get the values:  and 

. To determine if we obtained a satisfactory solution, we must make 
one pass through all input vectors to see if they all produce the desired target 
values. This is not true for the 4th input, but the algorithm does converge on 
the 6th presentation of an input. The final values are:

 and 

This concludes our hand calculation. Now, how can we do this using the train 
function?

The following code defines a perceptron like that shown in the previous figure, 
with initial weights and bias values of 0. 

net = newp([-2 2;-2 +2],1);

Now consider the application of a single input. 

p =[2; 2];

having the target

t =[0];

Now set epochs to 1, so that train will go through the input vectors (only one 
here) just one time.

net.trainParam.epochs = 1;
net = train(net,p,t);

The new weights and bias are

w =
    -2    -2

a hardlim W 1( )p2 b 1( )+( )

hardlim 2– 2–
2–

2–
1–

⎝ ⎠
⎜ ⎟
⎛ ⎞

hardlim 1( ) 1

=

= = =

W 2( ) W 1( ) 2– 2–= = p 2( ) p 1( ) 1–= =

W 4( ) 3– 1–=
b 4( ) 0=

W 6( ) 2– 3–= b 6( ) 1=
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b =
    -1

Thus, the initial weights and bias are 0, and after training on only the first 
vector, they have the values [-2 -2] and -1, just as we hand calculated.

We now apply the second input vector . The output is 1, as it will be until the 
weights and bias are changed, but now the target is 1, the error will be 0 and 
the change will be zero. We could proceed in this way, starting from the 
previous result and applying a new input vector time after time. But we can do 
this job automatically with train.

Now let’s apply train for one epoch, a single pass through the sequence of all 
four input vectors. Start with the network definition.

net = newp([-2 2;-2 +2],1);
net.trainParam.epochs = 1;

The input vectors and targets are

p = [[2;2] [1;-2] [-2;2] [-1;1]]
t =[0 1 0 1]

Now train the network with

net = train(net,p,t);

The new weights and bias are

w =
    -3    -1
b =
     0

Note that this is the same result as we got previously by hand. Finally simulate 
the trained network for each of the inputs.

a = sim(net,p)
a = 
    [0]    [0]    [1]    [1]

The outputs do not yet equal the targets, so we need to train the network for 
more than one pass. We will try four epochs. This run gives the following 
results.

p2
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TRAINC, Epoch 0/20
TRAINC, Epoch 3/20
TRAINC, Performance goal met.

Thus, the network was trained by the time the inputs were presented on the 
third epoch. (As we know from our hand calculation, the network converges on 
the presentation of the sixth input vector. This occurs in the middle of the 
second epoch, but it takes the third epoch to detect the network convergence.) 
The final weights and bias are

w =
    -2    -3
b =
     1

The simulated output and errors for the various inputs are

a =
             0          1.00             0          1.00
error = [a(1)-t(1) a(2)-t(2) a(3)-t(3) a(4)-t(4)]
error =
             0             0             0             0

Thus, we have checked that the training procedure was successful. The 
network converged and produces the correct target outputs for the four input 
vectors. 

Note that the default training function for networks created with newp is 
trains. (You can find this by executing net.trainFcn.) This training function 
applies the perceptron learning rule in its pure form, in that individual input 
vectors are applied individually in sequence, and corrections to the weights and 
bias are made after each presentation of an input vector. Thus, perceptron 
training with train will converge in a finite number of steps unless the 
problem presented can not be solved with a simple perceptron.

The function train can be used in various ways by other networks as well. Type 
help train to read more about this basic function.

You may want to try various demonstration programs. For instance, demop1 
illustrates classification and training of a simple perceptron. 
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Limitations and Cautions
Perceptron networks should be trained with adapt, which presents the input 
vectors to the network one at a time and makes corrections to the network 
based on the results of each presentation. Use of adapt in this way guarantees 
that any linearly separable problem is solved in a finite number of training 
presentations. Perceptrons can also be trained with the function train, which 
is presented in the next chapter. When train is used for perceptrons, it 
presents the inputs to the network in batches, and makes corrections to the 
network based on the sum of all the individual corrections. Unfortunately, 
there is no proof that such a training algorithm converges for perceptrons. On 
that account the use of train for perceptrons is not recommended.

Perceptron networks have several limitations. First, the output values of a 
perceptron can take on only one of two values (0 or 1) due to the hard-limit 
transfer function. Second, perceptrons can only classify linearly separable sets 
of vectors. If a straight line or a plane can be drawn to separate the input 
vectors into their correct categories, the input vectors are linearly separable. If 
the vectors are not linearly separable, learning will never reach a point where 
all vectors are classified properly. Note, however, that it has been proven that 
if the vectors are linearly separable, perceptrons trained adaptively will always 
find a solution in finite time. You might want to try demop6. It shows the 
difficulty of trying to classify input vectors that are not linearly separable.

It is only fair, however, to point out that networks with more than one 
perceptron can be used to solve more difficult problems. For instance, suppose 
that you have a set of four vectors that you would like to classify into distinct 
groups, and that two lines can be drawn to separate them. A two neuron 
network can be found such that its two decision boundaries classify the inputs 
into four categories. For additional discussion about perceptrons and to 
examine more complex perceptron problems, see [HDB1996].

Outliers and the Normalized Perceptron Rule
Long training times can be caused by the presence of an outlier input vector 
whose length is much larger or smaller than the other input vectors. Applying 
the perceptron learning rule involves adding and subtracting input vectors 
from the current weights and biases in response to error. Thus, an input vector 
with large elements can lead to changes in the weights and biases that take a 
long time for a much smaller input vector to overcome. You might want to try 
demop4 to see how an outlier affects the training.
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By changing the perceptron learning rule slightly, training times can be made 
insensitive to extremely large or small outlier input vectors. 

Here is the original rule for updating weights: 

As shown above, the larger an input vector p, the larger its effect on the weight 
vector w. Thus, if an input vector is much larger than other input vectors, the 
smaller input vectors must be presented many times to have an effect.

The solution is to normalize the rule so that effect of each input vector on the 
weights is of the same magnitude: 

The normalized perceptron rule is implemented with the function learnpn, 
which is called exactly like learnpn. The normalized perceptron rule function 
learnpn takes slightly more time to execute, but reduces number of epochs 
considerably if there are outlier input vectors. You might try demop5 to see how 
this normalized training rule works.

∆w t a–( )pT epT= =

∆w t a–( ) pT

p
-------- e pT

p
--------= =
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Graphical User Interface

Introduction to the GUI
The graphical user interface (GUI) is designed to be simple and user friendly, 
but we will go through a simple example to get you started.

In what follows you bring up a GUI Network/Data Manager window. This 
window has its own work area, separate from the more familiar command line 
workspace. Thus, when using the GUI, you might “export” the GUI results to 
the (command line) workspace. Similarly you may want to “import” results 
from the command line workspace to the GUI.

Once the Network/Data Manager is up and running, you can create a 
network, view it, train it, simulate it and export the final results to the 
workspace. Similarly, you can import data from the workspace for use in the 
GUI.

The following example deals with a perceptron network. We go through all the 
steps of creating a network and show you what you might expect to see as you 
go along.

Create a Perceptron Network (nntool)
We create a perceptron network to perform the AND function in this example. 
It has an input vector p= [0 0 1 1;0 1 0 1] and a target vector t=[0 0 0 1]. 
We call the network ANDNet. Once created, the network will be trained. We can 
then save the network, its output, etc., by “exporting” it to the command line.

Input and target
To start, type nntool. The following window appears.
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Click on Help to get started on a new problem and to see descriptions of the 
buttons and lists.

First, we want to define the network input, which we call p, as having the 
particular value [0 0 1 1;0 1 0 1]. Thus, the network had a two-element input 
and four sets of such two-element vectors are presented to it in training. To 
define this data, click on New Data, and a new window, Create New Data 
appears. Set the Name to p, the Value to [0 0 1 1;0 1 0 1], and make sure that 
Data Type is set to Inputs.The Create New Data window will then look like 
this:
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Now click Create to actually create an input file p. The Network/Data 
Manager window comes up and p shows as an input.

Next we create a network target. Click on New Data again, and this time enter 
the variable name t, specify the value [0 0 0 1], and click on Target under 
data type. Again click on Create and you will see in the resulting 
Network/Data Manager window that you now have t as a target as well as the 
previous p as an input.

Create Network
Now we want to create a new network, which we will call ANDNet.To do this, 
click on New Network, and a CreateNew Network window appears. Enter 
ANDNet under Network Name. Set the Network Type to Perceptron, for that 
is the kind of network we want to create. The input ranges can be set by 
entering numbers in that field, but it is easier to get them from the particular 
input data that you want to use. To do this, click on the down arrow at the right 
side of Input Range. This pull-down menu shows that you can get the input 
ranges from the file p if you want. That is what we want to do, so click on p. 
This should lead to input ranges [0 1;0 1].We want to use a hardlim transfer 
function and a learnp learning function, so set those values using the arrows 
for Transfer function and Learning function respectively. By now your 
Create New Network window should look like:
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Next you might look at the network by clicking on View. For example:

This picture shows that you are about to create a network with a single input 
(composed of two elements), a hardlim transfer function, and a single output. 
This is the perceptron network that we wanted.

Now click Create to generate the network. You will get back the 
Network/Data Manager window. Note that ANDNet is now listed as a network.
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Train the Perceptron
To train the network, click on ANDNet to highlight it. Then click on Train. This 
leads to a new window labeled Network:ANDNet. At this point you can view 
the network again by clicking on the top tab Train. You can also check on the 
initialization by clicking on the top tab Initialize. Now click on the top tab 
Train. Specify the inputs and output by clicking on the left tab Training Info 
and selecting p from the pop-down list of inputs and t from the pull-down list 
of targets. The Network:ANDNet window should look like:

Note that the Training Result Outputs and Errors have the name ANDNet 
appended to them. This makes them easy to identify later when they are 
exported to the command line.

While you are here, click on the Training Parameters tab. It shows you 
parameters such as the epochs and error goal. You can change these 
parameters at this point if you want.

Now click Train Network to train the perceptron network. You will see the 
following training results.
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Thus, the network was trained to zero error in four epochs. (Note that other 
kinds of networks commonly do not train to zero error and their error 
commonly cover a much larger range. On that account, we plot their errors on 
a log scale rather than on a linear scale such as that used above for 
perceptrons.)

You can check that the trained network does indeed give zero error by using 
the input p and simulating the network. To do this, get to the Network/Data 
Manager window and click on Network Only: Simulate). This will bring up 
the Network:ANDNet window. Click there on Simulate. Now use the Input 
pull-down menu to specify p as the input, and label the output as 
ANDNet_outputsSim to distinguish it from the training output. Now click 
Simulate Network in the lower right corner. Look at the Network/Data 
Manager and you will see a new variable in the output: ANDNet_outputsSim. 



Graphical User Interface

3-29

Double-click on it and a small window Data:ANDNet_outputsSim appears 
with the value 

[0 0 0 1] 

Thus, the network does perform the AND of the inputs, giving a 1 as an output 
only in this last case, when both inputs are 1.

Export Perceptron Results to Workspace
To export the network outputs and errors to the MATLAB command line 
workspace, click in the lower left of the Network:ANDNet window to go back 
to the Network/Data Manager. Note that the output and error for the ANDNet 
are listed in the Outputs and Error lists on the right side. Next click on 
Export This will give you an Export or Save from Network/Data Manager 
window. Click on ANDNet_outputs and ANDNet_errors to highlight them, and 
then click the Export button. These two variables now should be in the 
command line workspace. To check this, go to the command line and type who 
to see all the defined variables. The result should be

who
Your variables are:
ANDNet_errors       ANDNet_outputs

You might type ANDNet_outputs and ANDNet_errors to obtain the following

ANDNet_outputs =
0     0     0     1

and

ANDNet_errors =
0     0     0     0.

You can export p, t, and ANDNet in a similar way. You might do this and check 
with who to make sure that they got to the command line.

Now that ANDNet is exported you can view the network description and 
examine the network weight matrix. For instance, the command 

ANDNet.iw{1,1} 

gives

ans =
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2 1

Similarly, 

ANDNet.b{1}

yields

ans =
-3.

Clear Network/Data Window
You can clear the Network/Data Manager window by highlighting a variable 
such as p and clicking the Delete button until all entries in the list boxes are 
gone. By doing this, we start from clean slate.

Alternatively, you can quit MATLAB. A restart with a new MATLAB, followed 
by nntool, gives a clean Network/Data Manager window.

Recall however, that we exported p, t, etc., to the command line from the 
perceptron example. They are still there for your use even after you clear the 
Network/Data Manager.

Importing from the Command Line
To make thing simple, quit MATLAB. Start it again, and type nntool to begin 
a new session.

Create a new vector.

r= [0; 1; 2; 3]
r =
     0
     1
     2
     3

Now click on Import, and set the destination Name to R (to distinguish 
between the variable named at the command line and the variable in the GUI). 
You will have a window that looks like this
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.

Now click Import and verify by looking at the Network/DAta Manager that 
the variable R is there as an input.

Save a Variable to a File and Load It Later
Bring up the Network/Data Manager and click on New Network. Set the 
name to mynet. Click on Create. The network name mynet should appear in the 
Network/Data Manager. In this same manager window click on Export. 
Select mynet in the variable list of the Export or Save window and click on 
Save. This leads to the Save to a MAT file window. Save to a file mynetfile.

Now lets get rid of mynet in the GUI and retrieve it from the saved file. First go 
to the Data/Network Manager, highlight mynet, and click Delete. Next click 
on Import. This brings up the Import or Load to Network/Data Manager 
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window. Select the Load from Disk button and type mynetfile as the 
MAT-file Name. Now click on Browse. This brings up the Select MAT file 
window with mynetfile as an option that you can select as a variable to be 
imported. Highlight mynetfile, press Open, and you return to the Import or 
Load to Network/Data Manager window. On the Import As list, select 
Network. Highlight mynet and lick on Load to bring mynet to the GUI. Now 
mynet is back in the GUI Network/Data Manager window.
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Summary
Perceptrons are useful as classifiers. They can classify linearly separable input 
vectors very well. Convergence is guaranteed in a finite number of steps 
providing the perceptron can solve the problem.

The design of a perceptron network is constrained completely by the problem 
to be solved. Perceptrons have a single layer of hard-limit neurons. The number 
of network inputs and the number of neurons in the layer are constrained by 
the number of inputs and outputs required by the problem.

Training time is sensitive to outliers, but outlier input vectors do not stop the 
network from finding a solution.

Single-layer perceptrons can solve problems only when data is linearly 
separable. This is seldom the case. One solution to this difficulty is to use a 
preprocessing method that results in linearly separable vectors. Or you might 
use multiple perceptrons in multiple layers. Alternatively, you can use other 
kinds of networks such as linear networks or backpropagation networks, which 
can classify nonlinearly separable input vectors.

A graphical user interface can be used to create networks and data, train the 
networks, and export the networks and data to the command line workspace.

Figures and Equations

Perceptron Neuron

Input

p
1

an
p

2p
3

p
R

w
1,

 
R

w
1,1

�
� f

 a = hardlim (Wp + b)

b

1

Where...

R = number of 
elements in
input vector

Perceptron Neuron 

��
��
�
�



3 Perceptrons

3-34

Perceptron Transfer Function, hardlim

Decision Boundary
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Perceptron Architecture

The Perceptron Learning Rule 
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One Perceptron Neuron

New Functions
This chapter introduces the following new functions.

Function Description

hardlim A hard limit transfer function

initzero Zero weight/bias initialization function

dotprod Dot product weight function

newp Creates a new perceptron network.

sim Simulates a neural network.

init Initializes a neural network

learnp Perceptron learning function

learnpn Normalized perceptron learning function

nntool Starts the Graphical User Interface (GUI)
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Linear Filters

Introduction (p. 4-2) Introduces the chapter

Neuron Model (p. 4-3) Provides a model of a linear neuron

Network Architecture (p. 4-4) Graphically displays linear network architecture

Mean Square Error (p. 4-8) Discusses Least Mean Square Error supervised training

Linear System Design (newlind) 
(p. 4-9)

Discusses the linear system design function newlind

Linear Networks with Delays (p. 4-10) Introduces and graphically depicts tapped delay lines and 
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Introduction
The linear networks discussed in this chapter are similar to the perceptron, but 
their transfer function is linear rather than hard-limiting. This allows their 
outputs to take on any value, whereas the perceptron output is limited to either 
0 or 1. Linear networks, like the perceptron, can only solve linearly separable 
problems. 

Here we will design a linear network that, when presented with a set of given 
input vectors, produces outputs of corresponding target vectors. For each input 
vector we can calculate the network’s output vector. The difference between an 
output vector and its target vector is the error. We would like to find values for 
the network weights and biases such that the sum of the squares of the errors 
is minimized or below a specific value. This problem is manageable because 
linear systems have a single error minimum. In most cases, we can calculate a 
linear network directly, such that its error is a minimum for the given input 
vectors and targets vectors. In other cases, numerical problems prohibit direct 
calculation. Fortunately, we can always train the network to have a minimum 
error by using the Least Mean Squares (Widrow-Hoff) algorithm.

Note that the use of linear filters in adaptive systems is discussed in Chapter 
10.

This chapter introduces newlin, a function that creates a linear layer, and 
newlind, a function that designs a linear layer for a specific purpose.

You can type help linnet to see a list of linear network functions, 
demonstrations, and applications.
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Neuron Model
A linear neuron with R inputs is shown below.

This network has the same basic structure as the perceptron. The only 
difference is that the linear neuron uses a linear transfer function, which we 
will give the name purelin.

The linear transfer function calculates the neuron’s output by simply returning 
the value passed to it.

This neuron can be trained to learn an affine function of its inputs, or to find a 
linear approximation to a nonlinear function. A linear network cannot, of 
course, be made to perform a nonlinear computation.
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Network Architecture
The linear network shown below has one layer of S neurons connected to R 
inputs through a matrix of weights W.

Note that the figure on the right defines an S-length output vector a.

We have shown a single-layer linear network. However, this network is just as 
capable as multilayer linear networks. For every multilayer linear network, 
there is an equivalent single-layer linear network.

Creating a Linear Neuron (newlin)
Consider a single linear neuron with two inputs. The diagram for this network 
is shown below.
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The weight matrix W in this case has only one row. The network output is:

 or 

Like the perceptron, the linear network has a decision boundary that is 
determined by the input vectors for which the net input n is zero. For  
the equation  specifies such a decision boundary as shown below 
(adapted with thanks from [HDB96]).

Input vectors in the upper right gray area will lead to an output greater than 
0. Input vectors in the lower left white area will lead to an output less than 0. 
Thus, the linear network can be used to classify objects into two categories. 
However, it can classify in this way only if the objects are linearly separable. 
Thus, the linear network has the same limitation as the perceptron.
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We can create a network like that shown above with the command

net = newlin( [-1 1; -1 1],1);

The first matrix of arguments specify the range of the two scalar inputs. The 
last argument, 1, says that the network has a single output. 

The network weights and biases are set to zero by default. You can see the 
current values with the commands

W = net.IW{1,1}
W =
     0     0

and 

b= net.b{1}
b =
     0

However, you can give the weights any value that you want, such as 2 and 3 
respectively, with

net.IW{1,1} = [2 3];
W = net.IW{1,1}
W =
     2     3

The bias can be set and checked in the same way.

net.b{1} =[-4];
b = net.b{1}
b =
     -4

You can simulate the linear network for a particular input vector. Try

p = [5;6];

Now you can find the network output with the function sim.

a = sim(net,p)
a =
    24
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To summarize, you can create a linear network with newlin, adjust its 
elements as you want, and simulate it with sim. You can find more about 
newlin by typing help newlin.
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Mean Square Error
Like the perceptron learning rule, the least mean square error (LMS) 
algorithm is an example of supervised training, in which the learning rule is 
provided with a set of examples of desired network behavior:

Here  is an input to the network, and  is the corresponding target output. 
As each input is applied to the network, the network output is compared to the 
target. The error is calculated as the difference between the target output and 
the network output. We want to minimize the average of the sum of these 
errors.

The LMS algorithm adjusts the weights and biases of the linear network so as 
to minimize this mean square error. 

Fortunately, the mean square error performance index for the linear network 
is a quadratic function. Thus, the performance index will either have one global 
minimum, a weak minimum or no minimum, depending on the characteristics 
of the input vectors. Specifically, the characteristics of the input vectors 
determine whether or not a unique solution exists.

You can find more about this topic in Chapter 10 of [HDB96].
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Linear System Design (newlind)
Unlike most other network architectures, linear networks can be designed 
directly if input/target vector pairs are known. Specific network values for 
weights and biases can be obtained to minimize the mean square error by using 
the function newlind.

Suppose that the inputs and targets are

P = [1 2 3];
T= [2.0 4.1 5.9];

Now you can design a network.

net = newlind(P,T);

You can simulate the network behavior to check that the design was done 
properly.

Y = sim(net,P)
Y =
    2.0500    4.0000    5.9500

Note that the network outputs are quite close to the desired targets.

You might try demolin1. It shows error surfaces for a particular problem, 
illustrates the design and plots the designed solution.

The function newlind can also be used to design linear networks having delays 
in the input. Such networks are discussed later in this chapter. First, however, 
we need to discuss delays.
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Linear Networks with Delays 

Tapped Delay Line
We need a new component, the tapped delay line, to make full use of the linear 
network. Such a delay line is shown below. There the input signal enters from 
the left, and passes through N-1 delays. The output of the tapped delay line 
(TDL) is an N-dimensional vector, made up of the input signal at the current 
time, the previous input signal, etc.

Linear Filter
We can combine a tapped delay line with an linear network to create the linear 
filter shown below.
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The output of the filter is given by

The network shown above is referred to in the digital signal-processing field as 
a finite impulse response (FIR) filter [WiSt85]. Let us take a look at the code 
that we use to generate and simulate such a specific network.

Suppose that we want a linear layer that outputs the sequence T given the 
sequence P and two initial input delay states Pi. 

P = {1 2 1 3 3 2};
Pi = {1 3};
T = {5 6 4 20 7 8};

You can use newlind to design a network with delays to give the appropriate 
outputs for the inputs. The delay initial outputs are supplied as a third 
argument as shown below. 
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net = newlind(P,T,Pi);

Now we obtain the output of the designed network with 

Y = sim(net,P,Pi)

to give

Y = [2.73]    [10.54]    [5.01]    [14.95]    [10.78]    [5.98]

As you can see, the network outputs are not exactly equal to the targets, but 
they are reasonably close, and in any case, the mean square error is minimized.
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LMS Algorithm (learnwh)
The LMS algorithm or Widrow-Hoff learning algorithm, is based on an 
approximate steepest descent procedure. Here again, linear networks are 
trained on examples of correct behavior. 

Widrow and Hoff had the insight that they could estimate the mean square 
error by using the squared error at each iteration. If we take the partial 
derivative of the squared error with respect to the weights and biases at the kth 
iteration we have

for  and

Next look at the partial derivative with respect to the error.

 or 

Here pi(k) is the ith element of the input vector at the kth iteration.
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Finally, the change to the weight matrix and the bias will be

 and . 

These two equations form the basis of the Widrow-Hoff (LMS) learning 
algorithm. 

These results can be extended to the case of multiple neurons, and written in 
matrix form as

Here the error e and the bias b are vectors and  is a learning rate. If  is 
large, learning occurs quickly, but if it is too large it may lead to instability and 
errors may even increase. To ensure stable learning, the learning rate must be 
less than the reciprocal of the largest eigenvalue of the correlation matrix  
of the input vectors.

You might want to read some of Chapter 10 of [HDB96] for more information 
about the LMS algorithm and its convergence.

Fortunately we have a toolbox function learnwh that does all of the calculation 
for us. It calculates the change in weights as 

dw = lr*e*p' 

and the bias change as 

db = lr*e

The constant 2, shown a few lines above, has been absorbed into the code 
learning rate lr. The function maxlinlr calculates this maximum stable 
learning rate lr as 0.999 * P'*P. 

Type help learnwh and help maxlinlr for more details about these two 
functions.
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Linear Classification (train)
Linear networks can be trained to perform linear classification with the 
function train. This function applies each vector of a set of input vectors and 
calculates the network weight and bias increments due to each of the inputs 
according to learnp. Then the network is adjusted with the sum of all these 
corrections. We will call each pass through the input vectors an epoch. This 
contrasts with adapt, discussed in “Adaptive Filters and Adaptive Training” in 
Chapter 10, which adjusts weights for each input vector as it is presented.

Finally, train applies the inputs to the new network, calculates the outputs, 
compares them to the associated targets, and calculates a mean square error. 
If the error goal is met, or if the maximum number of epochs is reached, the 
training is stopped and train returns the new network and a training record. 
Otherwise train goes through another epoch. Fortunately, the LMS algorithm 
converges when this procedure is executed. 

To illustrate this procedure, we will work through a simple problem. Consider 
the linear network introduced earlier in this chapter.

Next suppose we have the classification problem presented in “Linear Filters” 
in Chapter 4.

Here we have four input vectors, and we would like a network that produces 
the output corresponding to each input vector when that vector is presented.
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We will use train to get the weights and biases for a network that produces 
the correct targets for each input vector. The initial weights and bias for the 
new network will be 0 by default. We will set the error goal to 0.1 rather than 
accept its default of 0.

P = [2 1 -2 -1;2 -2 2 1];
t = [0 1 0 1];
net = newlin( [-2 2; -2 2],1);
net.trainParam.goal= 0.1;
[net, tr] = train(net,P,t); 

The problem runs, producing the following training record.

TRAINB, Epoch 0/100, MSE 0.5/0.1.
TRAINB, Epoch 25/100, MSE 0.181122/0.1.
TRAINB, Epoch 50/100, MSE 0.111233/0.1.
TRAINB, Epoch 64/100, MSE 0.0999066/0.1.
TRAINB, Performance goal met.

Thus, the performance goal is met in 64 epochs. The new weights and bias are

weights = net.iw{1,1}
weights =
   -0.0615   -0.2194
bias = net.b(1)
bias =
    [0.5899]

We can simulate the new network as shown below.

A = sim(net, p)
A =
    0.0282    0.9672    0.2741    0.4320,

We also can calculate the error.

err = t - sim(net,P)
err =
   -0.0282    0.0328   -0.2741    0.5680

Note that the targets are not realized exactly. The problem would have run 
longer in an attempt to get perfect results had we chosen a smaller error goal, 
but in this problem it is not possible to obtain a goal of 0. The network is limited 
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in its capability. See “Limitations and Cautions” at the end of this chapter for 
examples of various limitations.

This demonstration program demolin2 shows the training of a linear neuron, 
and plots the weight trajectory and error during training

You also might try running the demonstration program nnd10lc. It addresses 
a classic and historically interesting problem, shows how a network can be 
trained to classify various patterns, and how the trained network responds 
when noisy patterns are presented.
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Limitations and Cautions
Linear networks may only learn linear relationships between input and output 
vectors. Thus, they cannot find solutions to some problems. However, even if a 
perfect solution does not exist, the linear network will minimize the sum of 
squared errors if the learning rate lr is sufficiently small. The network will 
find as close a solution as is possible given the linear nature of the network’s 
architecture. This property holds because the error surface of a linear network 
is a multidimensional parabola. Since parabolas have only one minimum, a 
gradient descent algorithm (such as the LMS rule) must produce a solution at 
that minimum.

Linear networks have other various limitations. Some of them are discussed 
below.

Overdetermined Systems
Consider an overdetermined system. Suppose that we have a network to be 
trained with four 1-element input vectors and four targets. A perfect solution 
to  for each of the inputs may not exist, for there are four 
constraining equations and only one weight and one bias to adjust. However, 
the LMS rule will still minimize the error. You might try demolin4 to see how 
this is done.

Underdetermined Systems
Consider a single linear neuron with one input. This time, in demolin5, we will 
train it on only one one-element input vector and its one-element target vector:

P = [+1.0];
T = [+0.5];

Note that while there is only one constraint arising from the single input/target 
pair, there are two variables, the weight and the bias. Having more variables 
than constraints results in an underdetermined problem with an infinite 
number of solutions. You can try demoin5 to explore this topic.

Linearly Dependent Vectors 
Normally it is a straightforward job to determine whether or not a linear 
network can solve a problem. Commonly, if a linear network has at least as 
many degrees of freedom (S*R+S = number of weights and biases) as 

wp b+ t=
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constraints (Q = pairs of input/target vectors), then the network can solve the 
problem. This is true except when the input vectors are linearly dependent and 
they are applied to a network without biases. In this case, as shown with 
demonstration script demolin6, the network cannot solve the problem with 
zero error. You might want to try demolin6.

Too Large a Learning Rate 
A linear network can always be trained with the Widrow-Hoff rule to find the 
minimum error solution for its weights and biases, as long as the learning rate 
is small enough. Demonstration script demolin7 shows what happens when a 
neuron with one input and a bias is trained with a learning rate larger than 
that recommended by maxlinlr. The network is trained with two different 
learning rates to show the results of using too large a learning rate.
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Summary
Single-layer linear networks can perform linear function approximation or 
pattern association.

Single-layer linear networks can be designed directly or trained with the 
Widrow-Hoff rule to find a minimum error solution. In addition, linear 
networks can be trained adaptively allowing the network to track changes in 
its environment.

The design of a single-layer linear network is constrained completely by the 
problem to be solved. The number of network inputs and the number of 
neurons in the layer are determined by the number of inputs and outputs 
required by the problem.

Multiple layers in a linear network do not result in a more powerful network, 
so the single layer is not a limitation. However, linear networks can solve only 
linear problems.

Nonlinear relationships between inputs and targets cannot be represented 
exactly by a linear network. The networks discussed in this chapter make a 
linear approximation with the minimum sum-squared error.

If the relationship between inputs and targets is linear or a linear 
approximation is desired, then linear networks are made for the job. 
Otherwise, backpropagation may be a good alternative.
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Figures and Equations
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Linear Network Layer 
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Decision Boundary

Mean Square Error
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Linear Filter

LMS (Widrow-Hoff) Algorithm

.

New Functions
This chapter introduces the following new functions.

Function Description

newlin Creates a linear layer.

newlind Design a linear layer.

Linear Layer
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learnwh Widrow-Hoff weight/bias learning rule.

purelin A linear transfer function.

Function Description
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algorithms
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Compares the memory and speed of different backpropagation 
training algorithms
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Introduction
Backpropagation was created by generalizing the Widrow-Hoff learning rule to 
multiple-layer networks and nonlinear differentiable transfer functions. Input 
vectors and the corresponding target vectors are used to train a network until 
it can approximate a function, associate input vectors with specific output 
vectors, or classify input vectors in an appropriate way as defined by you. 
Networks with biases, a sigmoid layer, and a linear output layer are capable of 
approximating any function with a finite number of discontinuities.

Standard backpropagation is a gradient descent algorithm, as is the 
Widrow-Hoff learning rule, in which the network weights are moved along the 
negative of the gradient of the performance function. The term 
backpropagation refers to the manner in which the gradient is computed for 
nonlinear multilayer networks. There are a number of variations on the basic 
algorithm that are based on other standard optimization techniques, such as 
conjugate gradient and Newton methods. The Neural Network Toolbox 
implements a number of these variations. This chapter explains how to use 
each of these routines and discusses the advantages and disadvantages of each.

Properly trained backpropagation networks tend to give reasonable answers 
when presented with inputs that they have never seen. Typically, a new input 
leads to an output similar to the correct output for input vectors used in 
training that are similar to the new input being presented. This generalization 
property makes it possible to train a network on a representative set of 
input/target pairs and get good results without training the network on all 
possible input/output pairs. There are two features of the Neural Network 
Toolbox that are designed to improve network generalization - regularization 
and early stopping. These features and their use are discussed later in this 
chapter.

This chapter also discusses preprocessing and postprocessing techniques, 
which can improve the efficiency of network training.

Before beginning this chapter you may want to read a basic reference on 
backpropagation, such as D.E Rumelhart, G.E. Hinton, R.J. Williams, 
“Learning internal representations by error propagation,” D. Rumelhart and J. 
McClelland, editors. Parallel Data Processing, Vol.1, Chapter 8, the M.I.T. 
Press, Cambridge, MA 1986 pp. 318-362. This subject is also covered in detail 
in Chapters 11 and 12 of M.T. Hagan, H.B. Demuth, M.H. Beale, Neural 
Network Design, PWS Publishing Company, Boston, MA 1996.
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The primary objective of this chapter is to explain how to use the 
backpropagation training functions in the toolbox to train feedforward neural 
networks to solve specific problems. There are generally four steps in the 
training process:

1 Assemble the training data

2 Create the network object

3 Train the network

4 Simulate the network response to new inputs 

This chapter discusses a number of different training functions, but in using 
each function we generally follow these four steps. 

The next section, “Fundamentals”, describes the basic feedforward network 
structure and demonstrates how to create a feedforward network object. Then 
the simulation and training of the network objects are presented.
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Fundamentals 

Architecture
This section presents the architecture of the network that is most commonly 
used with the backpropagation algorithm - the multilayer feedforward 
network. The routines in the Neural Network Toolbox can be used to train 
more general networks; some of these will be briefly discussed in later 
chapters.

Neuron Model (tansig, logsig, purelin)
An elementary neuron with R inputs is shown below. Each input is weighted 
with an appropriate w. The sum of the weighted inputs and the bias forms the 
input to the transfer function f. Neurons may use any differentiable transfer 
function f to generate their output.

Multilayer networks often use the log-sigmoid transfer function logsig.
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The function logsig generates outputs between 0 and 1 as the neuron’s net 
input goes from negative to positive infinity.

Alternatively, multilayer networks may use the tan-sigmoid transfer function 
tansig.

Occasionally, the linear transfer function purelin is used in backpropagation 
networks. 

If the last layer of a multilayer network has sigmoid neurons, then the outputs 
of the network are limited to a small range. If linear output neurons are used 
the network outputs can take on any value.

In backpropagation it is important to be able to calculate the derivatives of any 
transfer functions used. Each of the transfer functions above, tansig, logsig, 
and purelin, have a corresponding derivative function: dtansig, dlogsig, and 
dpurelin. To get the name of a transfer function’s associated derivative 
function, call the transfer function with the string 'deriv'.

tansig('deriv')
ans = dtansig

Tan-Sigmoid Transfer Function

a = tansig(n)
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The three transfer functions described here are the most commonly used 
transfer functions for backpropagation, but other differentiable transfer 
functions can be created and used with backpropagation if desired. See 
Chapter 12, “Advanced Topics.”

Feedforward Network
A single-layer network of S logsig neurons having R inputs is shown below in 
full detail on the left and with a layer diagram on the right. 

Feedforward networks often have one or more hidden layers of sigmoid 
neurons followed by an output layer of linear neurons. Multiple layers of 
neurons with nonlinear transfer functions allow the network to learn nonlinear 
and linear relationships between input and output vectors. The linear output 
layer lets the network produce values outside the range –1 to +1.

On the other hand, if you want to constrain the outputs of a network (such as 
between 0 and 1), then the output layer should use a sigmoid transfer function 
(such as logsig).

As noted in Chapter 2, “Neuron Model and Network Architectures”, for 
multiple-layer networks we use the number of the layers to determine the 
superscript on the weight matrices. The appropriate notation is used in the 
two-layer tansig/purelin network shown next.
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This network can be used as a general function approximator. It can 
approximate any function with a finite number of discontinuities, arbitrarily 
well, given sufficient neurons in the hidden layer.

Creating a Network (newff). The first step in training a feedforward network is to 
create the network object. The function newff creates a feedforward network. 
It requires four inputs and returns the network object. The first input is an R 
by 2 matrix of minimum and maximum values for each of the R elements of the 
input vector. The second input is an array containing the sizes of each layer. 
The third input is a cell array containing the names of the transfer functions to 
be used in each layer. The final input contains the name of the training 
function to be used.

For example, the following command creates a two-layer network. There is one 
input vector with two elements. The values for the first element of the input 
vector range between -1 and 2, the values of the second element of the input 
vector range between 0 and 5. There are three neurons in the first layer and 
one neuron in the second (output) layer. The transfer function in the first layer 
is tan-sigmoid, and the output layer transfer function is linear. The training 
function is traingd (which is described in a later section).

net=newff([-1 2; 0 5],[3,1],{'tansig','purelin'},'traingd');

This command creates the network object and also initializes the weights and 
biases of the network; therefore the network is ready for training. There are 
times when you may want to reinitialize the weights, or to perform a custom 
initialization. The next section explains the details of the initialization process.

Initializing Weights (init). Before training a feedforward network, the weights and 
biases must be initialized. The newff command will automatically initialize the 
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weights, but you may want to reinitialize them. This can be done with the 
command init. This function takes a network object as input and returns a 
network object with all weights and biases initialized. Here is how a network 
is initialized (or reinitialized):

net = init(net);

For specifics on how the weights are initialized, see Chapter 12, “Advanced 
Topics.”

Simulation (sim)
The function sim simulates a network. sim takes the network input p, and the 
network object net, and returns the network outputs a. Here is how you can use 
sim to simulate the network we created above for a single input vector:

p = [1;2];
a = sim(net,p)
a =
   -0.1011

(If you try these commands, your output may be different, depending on the 
state of your random number generator when the network was initialized.) 
Below, sim is called to calculate the outputs for a concurrent set of three input 
vectors. This is the batch mode form of simulation, in which all of the input 
vectors are place in one matrix. This is much more efficient than presenting the 
vectors one at a time.

p = [1 3 2;2 4 1];
a=sim(net,p)
a =
-0.1011   -0.2308    0.4955

Training
Once the network weights and biases have been initialized, the network is 
ready for training. The network can be trained for function approximation 
(nonlinear regression), pattern association, or pattern classification. The 
training process requires a set of examples of proper network behavior - 
network inputs p and target outputs t. During training the weights and biases 
of the network are iteratively adjusted to minimize the network performance 
function net.performFcn. The default performance function for feedforward 
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networks is mean square error mse - the average squared error between the 
network outputs a and the target outputs t.

The remainder of this chapter describes several different training algorithms 
for feedforward networks. All of these algorithms use the gradient of the 
performance function to determine how to adjust the weights to minimize 
performance. The gradient is determined using a technique called 
backpropagation, which involves performing computations backwards through 
the network. The backpropagation computation is derived using the chain rule 
of calculus and is described in Chapter 11 of [HDB96].

The basic backpropagation training algorithm, in which the weights are moved 
in the direction of the negative gradient, is described in the next section. Later 
sections describe more complex algorithms that increase the speed of 
convergence.

Backpropagation Algorithm
There are many variations of the backpropagation algorithm, several of which 
we discuss in this chapter. The simplest implementation of backpropagation 
learning updates the network weights and biases in the direction in which the 
performance function decreases most rapidly - the negative of the gradient. 
One iteration of this algorithm can be written

where  is a vector of current weights and biases,  is the current gradient, 
and  is the learning rate.

There are two different ways in which this gradient descent algorithm can be 
implemented: incremental mode and batch mode. In the incremental mode, the 
gradient is computed and the weights are updated after each input is applied 
to the network. In the batch mode all of the inputs are applied to the network 
before the weights are updated. The next section describes the batch mode of 
training; incremental training will be discussed in a later chapter.

Batch Training (train). In batch mode the weights and biases of the network are 
updated only after the entire training set has been applied to the network. The 
gradients calculated at each training example are added together to determine 
the change in the weights and biases. For a discussion of batch training with 
the backpropagation algorithm see page 12-7 of [HDB96].

xk 1+ xk αkgk–=

xk gk
αk
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Batch Gradient Descent (traingd). The batch steepest descent training function is 
traingd. The weights and biases are updated in the direction of the negative 
gradient of the performance function. If you want to train a network using 
batch steepest descent, you should set the network trainFcn to traingd, and 
then call the function train. There is only one training function associated 
with a given network. 

There are seven training parameters associated with traingd: epochs, show, 
goal, time, min_grad, max_fail, and lr. The learning rate lr is multiplied 
times the negative of the gradient to determine the changes to the weights and 
biases. The larger the learning rate, the bigger the step. If the learning rate is 
made too large, the algorithm becomes unstable. If the learning rate is set too 
small, the algorithm takes a long time to converge. See page 12-8 of [HDB96] 
for a discussion of the choice of learning rate.

The training status is displayed for every show iteration of the algorithm. (If 
show is set to NaN, then the training status never displays.) The other 
parameters determine when the training stops. The training stops if the 
number of iterations exceeds epochs, if the performance function drops below 
goal, if the magnitude of the gradient is less than mingrad, or if the training 
time is longer than time seconds. We discuss max_fail, which is associated 
with the early stopping technique, in the section on improving generalization.

The following code creates a training set of inputs p and targets t. For batch 
training, all of the input vectors are placed in one matrix.

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];

Next, we create the feedforward network. Here we use the function minmax to 
determine the range of the inputs to be used in creating the network.

net=newff(minmax(p),[3,1],{'tansig','purelin'},'traingd');

At this point, we might want to modify some of the default training parameters.

net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;

If you want to use the default training parameters, the above commands are 
not necessary.
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Now we are ready to train the network.

[net,tr]=train(net,p,t);
TRAINGD, Epoch 0/300, MSE 1.59423/1e-05, Gradient 

2.76799/1e-10
TRAINGD, Epoch 50/300, MSE 0.00236382/1e-05, Gradient 

0.0495292/1e-10
TRAINGD, Epoch 100/300, MSE 0.000435947/1e-05, Gradient 

0.0161202/1e-10
TRAINGD, Epoch 150/300, MSE 8.68462e-05/1e-05, Gradient 

0.00769588/1e-10
TRAINGD, Epoch 200/300, MSE 1.45042e-05/1e-05, Gradient 

0.00325667/1e-10
TRAINGD, Epoch 211/300, MSE 9.64816e-06/1e-05, Gradient 

0.00266775/1e-10
TRAINGD, Performance goal met.

The training record tr contains information about the progress of training. An 
example of its use is given in the Sample Training Session near the end of this 
chapter.

Now the trained network can be simulated to obtain its response to the inputs 
in the training set.

a = sim(net,p)
a =
   -1.0010   -0.9989    1.0018    0.9985

Try the Neural Network Design Demonstration nnd12sd1[HDB96] for an 
illustration of the performance of the batch gradient descent algorithm.

Batch Gradient Descent with Momentum (traingdm). In addition to traingd, there is 
another batch algorithm for feedforward networks that often provides faster 
convergence - traingdm, steepest descent with momentum. Momentum allows 
a network to respond not only to the local gradient, but also to recent trends in 
the error surface. Acting like a low-pass filter, momentum allows the network 
to ignore small features in the error surface. Without momentum a network 
may get stuck in a shallow local minimum. With momentum a network can 
slide through such a minimum. See page 12-9 of [HDB96] for a discussion of 
momentum.
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Momentum can be added to backpropagation learning by making weight 
changes equal to the sum of a fraction of the last weight change and the new 
change suggested by the backpropagation rule. The magnitude of the effect 
that the last weight change is allowed to have is mediated by a momentum 
constant, mc, which can be any number between 0 and 1. When the momentum 
constant is 0, a weight change is based solely on the gradient. When the 
momentum constant is 1, the new weight change is set to equal the last weight 
change and the gradient is simply ignored. The gradient is computed by 
summing the gradients calculated at each training example, and the weights 
and biases are only updated after all training examples have been presented.

If the new performance function on a given iteration exceeds the performance 
function on a previous iteration by more than a predefined ratio max_perf_inc 
(typically 1.04), the new weights and biases are discarded, and the momentum 
coefficient mc is set to zero.

The batch form of gradient descent with momentum is invoked using the 
training function traingdm. The traingdm function is invoked using the same 
steps shown above for the traingd function, except that the mc, lr and 
max_perf_inc learning parameters can all be set. 

In the following code we recreate our previous network and retrain it using 
gradient descent with momentum. The training parameters for traingdm are 
the same as those for traingd, with the addition of the momentum factor mc 
and the maximum performance increase max_perf_inc. (The training 
parameters are reset to the default values whenever net.trainFcn is set to 
traingdm.)

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=newff(minmax(p),[3,1],{'tansig','purelin'},'traingdm');
net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.mc = 0.9;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);

TRAINGDM, Epoch 0/300, MSE 3.6913/1e-05, Gradient 
4.54729/1e-10

TRAINGDM, Epoch 50/300, MSE 0.00532188/1e-05, Gradient 
0.213222/1e-10
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TRAINGDM, Epoch 100/300, MSE 6.34868e-05/1e-05, Gradient 
0.0409749/1e-10

TRAINGDM, Epoch 114/300, MSE 9.06235e-06/1e-05, Gradient 
0.00908756/1e-10

TRAINGDM, Performance goal met.
a = sim(net,p)
a =

 -1.0026   -1.0044    0.9969    0.9992

Note that since we reinitialized the weights and biases before training (by 
calling newff again), we obtain a different mean square error than we did using 
traingd. If we were to reinitialize and train again using traingdm, we would 
get yet a different mean square error. The random choice of initial weights and 
biases will affect the performance of the algorithm. If you want to compare the 
performance of different algorithms, you should test each using several 
different sets of initial weights and biases. You may want to use 
net=init(net) to reinitialize the weights, rather than recreating the entire 
network with newff.

Try the Neural Network Design Demonstration nnd12mo [HDB96] for an 
illustration of the performance of the batch momentum algorithm.
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Faster Training
The previous section presented two backpropagation training algorithms: 
gradient descent, and gradient descent with momentum. These two methods 
are often too slow for practical problems. In this section we discuss several high 
performance algorithms that can converge from ten to one hundred times 
faster than the algorithms discussed previously. All of the algorithms in this 
section operate in the batch mode and are invoked using train.

These faster algorithms fall into two main categories. The first category uses 
heuristic techniques, which were developed from an analysis of the 
performance of the standard steepest descent algorithm. One heuristic 
modification is the momentum technique, which was presented in the previous 
section. This section discusses two more heuristic techniques: variable learning 
rate backpropagation, traingda; and resilient backpropagation trainrp.

The second category of fast algorithms uses standard numerical optimization 
techniques. (See Chapter 9 of [HDB96] for a review of basic numerical 
optimization.) Later in this section we present three types of numerical 
optimization techniques for neural network training: conjugate gradient 
(traincgf, traincgp, traincgb, trainscg), quasi-Newton (trainbfg, 
trainoss), and Levenberg-Marquardt (trainlm).

Variable Learning Rate (traingda, traingdx)
With standard steepest descent, the learning rate is held constant throughout 
training. The performance of the algorithm is very sensitive to the proper 
setting of the learning rate. If the learning rate is set too high, the algorithm 
may oscillate and become unstable. If the learning rate is too small, the 
algorithm will take too long to converge. It is not practical to determine the 
optimal setting for the learning rate before training, and, in fact, the optimal 
learning rate changes during the training process, as the algorithm moves 
across the performance surface.

The performance of the steepest descent algorithm can be improved if we allow 
the learning rate to change during the training process. An adaptive learning 
rate will attempt to keep the learning step size as large as possible while 
keeping learning stable. The learning rate is made responsive to the complexity 
of the local error surface.

An adaptive learning rate requires some changes in the training procedure 
used by traingd. First, the initial network output and error are calculated. At 
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each epoch new weights and biases are calculated using the current learning 
rate. New outputs and errors are then calculated.

As with momentum, if the new error exceeds the old error by more than a 
predefined ratio max_perf_inc (typically 1.04), the new weights and biases are 
discarded. In addition, the learning rate is decreased (typically by multiplying 
by lr_dec = 0.7). Otherwise, the new weights, etc., are kept. If the new error is 
less than the old error, the learning rate is increased (typically by multiplying 
by lr_inc = 1.05).

This procedure increases the learning rate, but only to the extent that the 
network can learn without large error increases. Thus, a near-optimal learning 
rate is obtained for the local terrain. When a larger learning rate could result 
in stable learning, the learning rate is increased. When the learning rate is too 
high to guarantee a decrease in error, it gets decreased until stable learning 
resumes.

Try the Neural Network Design Demonstration nnd12vl [HDB96] for an 
illustration of the performance of the variable learning rate algorithm.

Backpropagation training with an adaptive learning rate is implemented with 
the function traingda, which is called just like traingd, except for the 
additional training parameters max_perf_inc, lr_dec, and lr_inc. Here is 
how it is called to train our previous two-layer network:

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=newff(minmax(p),[3,1],{'tansig','purelin'},'traingda');
net.trainParam.show = 50;
net.trainParam.lr = 0.05;
net.trainParam.lr_inc = 1.05;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);

TRAINGDA, Epoch 0/300, MSE 1.71149/1e-05, Gradient 
2.6397/1e-06

TRAINGDA, Epoch 44/300, MSE 7.47952e-06/1e-05, Gradient 
0.00251265/1e-06

TRAINGDA, Performance goal met.
a = sim(net,p)
a =

-1.0036   -0.9960    1.0008    0.9991
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The function traingdx combines adaptive learning rate with momentum 
training. It is invoked in the same way as traingda, except that it has the 
momentum coefficient mc as an additional training parameter.

Resilient Backpropagation (trainrp)
Multilayer networks typically use sigmoid transfer functions in the hidden 
layers. These functions are often called “squashing” functions, since they 
compress an infinite input range into a finite output range. Sigmoid functions 
are characterized by the fact that their slope must approach zero as the input 
gets large. This causes a problem when using steepest descent to train a 
multilayer network with sigmoid functions, since the gradient can have a very 
small magnitude; and therefore, cause small changes in the weights and 
biases, even though the weights and biases are far from their optimal values. 

The purpose of the resilient backpropagation (Rprop) training algorithm is to 
eliminate these harmful effects of the magnitudes of the partial derivatives. 
Only the sign of the derivative is used to determine the direction of the weight 
update; the magnitude of the derivative has no effect on the weight update. The 
size of the weight change is determined by a separate update value. The update 
value for each weight and bias is increased by a factor delt_inc whenever the 
derivative of the performance function with respect to that weight has the 
same sign for two successive iterations. The update value is decreased by a 
factor delt_dec whenever the derivative with respect that weight changes sign 
from the previous iteration. If the derivative is zero, then the update value 
remains the same. Whenever the weights are oscillating the weight change will 
be reduced. If the weight continues to change in the same direction for several 
iterations, then the magnitude of the weight change will be increased. A 
complete description of the Rprop algorithm is given in [ReBr93].

In the following code we recreate our previous network and train it using the 
Rprop algorithm. The training parameters for trainrp are epochs, show, goal, 
time, min_grad, max_fail, delt_inc, delt_dec, delta0, deltamax. We have 
previously discussed the first eight parameters. The last two are the initial step 
size and the maximum step size, respectively. The performance of Rprop is not 
very sensitive to the settings of the training parameters. For the example 
below, we leave most of the training parameters at the default values. We do 
reduce show below our previous value, because Rprop generally converges 
much faster than the previous algorithms.

p = [-1 -1 2 2;0 5 0 5];
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t = [-1 -1 1 1];
net=newff(minmax(p),[3,1],{'tansig','purelin'},'trainrp');
net.trainParam.show = 10;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);

TRAINRP, Epoch 0/300, MSE 0.469151/1e-05, Gradient 
1.4258/1e-06

TRAINRP, Epoch 10/300, MSE 0.000789506/1e-05, Gradient 
0.0554529/1e-06

TRAINRP, Epoch 20/300, MSE 7.13065e-06/1e-05, Gradient 
0.00346986/1e-06

TRAINRP, Performance goal met.
a = sim(net,p)
a =

-1.0026   -0.9963    0.9978    1.0017

Rprop is generally much faster than the standard steepest descent algorithm. 
It also has the nice property that it requires only a modest increase in memory 
requirements. We do need to store the update values for each weight and bias, 
which is equivalent to storage of the gradient.

Conjugate Gradient Algorithms
The basic backpropagation algorithm adjusts the weights in the steepest 
descent direction (negative of the gradient). This is the direction in which the 
performance function is decreasing most rapidly. It turns out that, although 
the function decreases most rapidly along the negative of the gradient, this 
does not necessarily produce the fastest convergence. In the conjugate gradient 
algorithms a search is performed along conjugate directions, which produces 
generally faster convergence than steepest descent directions. In this section, 
we present four different variations of conjugate gradient algorithms.

See page 12-14 of [HDB96] for a discussion of conjugate gradient algorithms 
and their application to neural networks.

In most of the training algorithms that we discussed up to this point, a learning 
rate is used to determine the length of the weight update (step size). In most of 
the conjugate gradient algorithms, the step size is adjusted at each iteration. A 
search is made along the conjugate gradient direction to determine the step 
size, which minimizes the performance function along that line. There are five 
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different search functions included in the toolbox, and these are discussed at 
the end of this section. Any of these search functions can be used 
interchangeably with a variety of the training functions described in the 
remainder of this chapter. Some search functions are best suited to certain 
training functions, although the optimum choice can vary according to the 
specific application. An appropriate default search function is assigned to each 
training function, but this can be modified by the user.

Fletcher-Reeves Update (traincgf)
All of the conjugate gradient algorithms start out by searching in the steepest 
descent direction (negative of the gradient) on the first iteration.

A line search is then performed to determine the optimal distance to move 
along the current search direction:

Then the next search direction is determined so that it is conjugate to previous 
search directions. The general procedure for determining the new search 
direction is to combine the new steepest descent direction with the previous 
search direction:

The various versions of conjugate gradient are distinguished by the manner in 
which the constant  is computed. For the Fletcher-Reeves update the 
procedure is 

This is the ratio of the norm squared of the current gradient to the norm 
squared of the previous gradient.

See [FlRe64] or [HDB96] for a discussion of the Fletcher-Reeves conjugate 
gradient algorithm.

In the following code, we reinitialize our previous network and retrain it using 
the Fletcher-Reeves version of the conjugate gradient algorithm. The training 
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parameters for traincgf are epochs, show, goal, time, min_grad, max_fail, 
srchFcn, scal_tol, alpha, beta, delta, gama, low_lim, up_lim, maxstep, 
minstep, bmax. We have previously discussed the first six parameters. The 
parameter srchFcn is the name of the line search function. It can be any of the 
functions described later in this section (or a user-supplied function). The 
remaining parameters are associated with specific line search routines and are 
described later in this section. The default line search routine srchcha is used 
in this example. traincgf generally converges in fewer iterations than 
trainrp (although there is more computation required in each iteration).

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=newff(minmax(p),[3,1],{'tansig','purelin'},'traincgf');
net.trainParam.show = 5;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);

TRAINCGF-srchcha, Epoch 0/300, MSE 2.15911/1e-05, Gradient 
3.17681/1e-06

TRAINCGF-srchcha, Epoch 5/300, MSE 0.111081/1e-05, Gradient 
0.602109/1e-06

TRAINCGF-srchcha, Epoch 10/300, MSE 0.0095015/1e-05, Gradient 
0.197436/1e-06

TRAINCGF-srchcha, Epoch 15/300, MSE 0.000508668/1e-05, 
Gradient 0.0439273/1e-06

TRAINCGF-srchcha, Epoch 17/300, MSE 1.33611e-06/1e-05, 
Gradient 0.00562836/1e-06

TRAINCGF, Performance goal met.
a = sim(net,p)
a =

-1.0001   -1.0023    0.9999    1.0002

The conjugate gradient algorithms are usually much faster than variable 
learning rate backpropagation, and are sometimes faster than trainrp, 
although the results will vary from one problem to another. The conjugate 
gradient algorithms require only a little more storage than the simpler 
algorithms, so they are often a good choice for networks with a large number of 
weights.

Try the Neural Network Design Demonstration nnd12cg [HDB96] for an 
illustration of the performance of a conjugate gradient algorithm.
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Polak-Ribiére Update (traincgp)
Another version of the conjugate gradient algorithm was proposed by Polak 
and Ribiére. As with the Fletcher-Reeves algorithm, the search direction at 
each iteration is determined by

For the Polak-Ribiére update, the constant  is computed by

This is the inner product of the previous change in the gradient with the 
current gradient divided by the norm squared of the previous gradient. See 
[FlRe64] or [HDB96] for a discussion of the Polak-Ribiére conjugate gradient 
algorithm. 

In the following code, we recreate our previous network and train it using the 
Polak-Ribiére version of the conjugate gradient algorithm. The training 
parameters for traincgp are the same as those for traincgf. The default line 
search routine srchcha is used in this example. The parameters show and 
epoch are set to the same values as they were for traincgf.

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=newff(minmax(p),[3,1],{'tansig','purelin'},'traincgp');
net.trainParam.show = 5;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);

TRAINCGP-srchcha, Epoch 0/300, MSE 1.21966/1e-05, Gradient 
1.77008/1e-06

TRAINCGP-srchcha, Epoch 5/300, MSE 0.227447/1e-05, Gradient 
0.86507/1e-06

TRAINCGP-srchcha, Epoch 10/300, MSE 0.000237395/1e-05, 
Gradient 0.0174276/1e-06

TRAINCGP-srchcha, Epoch 15/300, MSE 9.28243e-05/1e-05, 
Gradient 0.00485746/1e-06

TRAINCGP-srchcha, Epoch 20/300, MSE 1.46146e-05/1e-05, 
Gradient 0.000912838/1e-06

pk gk– βkpk 1–+=

βk

βk
gk 1–

T∆ gk

gk 1–
T gk 1–

---------------------------=
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TRAINCGP-srchcha, Epoch 25/300, MSE 1.05893e-05/1e-05, 
Gradient 0.00238173/1e-06

TRAINCGP-srchcha, Epoch 26/300, MSE 9.10561e-06/1e-05, 
Gradient 0.00197441/1e-06

TRAINCGP, Performance goal met.
a = sim(net,p)
a =

-0.9967   -1.0018    0.9958    1.0022

The traincgp routine has performance similar to traincgf. It is difficult to 
predict which algorithm will perform best on a given problem. The storage 
requirements for Polak-Ribiére (four vectors) are slightly larger than for 
Fletcher-Reeves (three vectors).

Powell-Beale Restarts (traincgb)
For all conjugate gradient algorithms, the search direction will be periodically 
reset to the negative of the gradient. The standard reset point occurs when the 
number of iterations is equal to the number of network parameters (weights 
and biases), but there are other reset methods that can improve the efficiency 
of training. One such reset method was proposed by Powell [Powe77], based on 
an earlier version proposed by Beale [Beal72]. For this technique we will 
restart if there is very little orthogonality left between the current gradient and 
the previous gradient. This is tested with the following inequality.

If this condition is satisfied, the search direction is reset to the negative of the 
gradient.

In the following code, we recreate our previous network and train it using the 
Powell-Beale version of the conjugate gradient algorithm. The training 
parameters for traincgb are the same as those for traincgf. The default line 
search routine srchcha is used in this example. The parameters show and 
epoch are set to the same values as they were for traincgf.

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=newff(minmax(p),[3,1],{'tansig','purelin'},'traincgb');
net.trainParam.show = 5;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;

gk 1–
T gk 0.2 gk

2≥
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[net,tr]=train(net,p,t);
TRAINCGB-srchcha, Epoch 0/300, MSE 2.5245/1e-05, Gradient 

3.66882/1e-06
TRAINCGB-srchcha, Epoch 5/300, MSE 4.86255e-07/1e-05, Gradient 

0.00145878/1e-06
TRAINCGB, Performance goal met.

a = sim(net,p)
a =

-0.9997   -0.9998    1.0000    1.0014

The traincgb routine has performance that is somewhat better than traincgp 
for some problems, although performance on any given problem is difficult to 
predict. The storage requirements for the Powell-Beale algorithm (six vectors) 
are slightly larger than for Polak-Ribiére (four vectors).

Scaled Conjugate Gradient (trainscg)
Each of the conjugate gradient algorithms that we have discussed so far 
requires a line search at each iteration. This line search is computationally 
expensive, since it requires that the network response to all training inputs be 
computed several times for each search. The scaled conjugate gradient 
algorithm (SCG), developed by Moller [Moll93], was designed to avoid the 
time-consuming line search. This algorithm is too complex to explain in a few 
lines, but the basic idea is to combine the model-trust region approach (used in 
the Levenberg-Marquardt algorithm described later), with the conjugate 
gradient approach. See {Moll93] for a detailed explanation of the algorithm.

In the following code, we reinitialize our previous network and retrain it using 
the scaled conjugate gradient algorithm. The training parameters for trainscg 
are epochs, show, goal, time, min_grad, max_fail, sigma, lambda. We have 
previously discussed the first six parameters. The parameter sigma determines 
the change in the weight for the second derivative approximation. The 
parameter lambda regulates the indefiniteness of the Hessian. The parameters 
show and epoch are set to 10 and 300, respectively.

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=newff(minmax(p),[3,1],{'tansig','purelin'},'trainscg');
net.trainParam.show = 10;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);
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TRAINSCG, Epoch 0/300, MSE 4.17697/1e-05, Gradient 
5.32455/1e-06

TRAINSCG, Epoch 10/300, MSE 2.09505e-05/1e-05, Gradient 
0.00673703/1e-06

TRAINSCG, Epoch 11/300, MSE 9.38923e-06/1e-05, Gradient 
0.0049926/1e-06

TRAINSCG, Performance goal met.
a = sim(net,p)
a =

-1.0057   -1.0008    1.0019    1.0005

The trainscg routine may require more iterations to converge than the other 
conjugate gradient algorithms, but the number of computations in each 
iteration is significantly reduced because no line search is performed. The 
storage requirements for the scaled conjugate gradient algorithm are about the 
same as those of Fletcher-Reeves.

Line Search Routines
Several of the conjugate gradient and quasi-Newton algorithms require that a 
line search be performed. In this section, we describe five different line 
searches you can use. To use any of these search routines, you simply set the 
training parameter srchFcn equal to the name of the desired search function, 
as described in previous sections. It is often difficult to predict which of these 
routines provide the best results for any given problem, but we set the default 
search function to an appropriate initial choice for each training function, so 
you never need to modify this parameter.

Golden Section Search (srchgol)
The golden section search srchgol is a linear search that does not require the 
calculation of the slope. This routine begins by locating an interval in which the 
minimum of the performance occurs. This is accomplished by evaluating the 
performance at a sequence of points, starting at a distance of delta and 
doubling in distance each step, along the search direction. When the 
performance increases between two successive iterations, a minimum has been 
bracketed. The next step is to reduce the size of the interval containing the 
minimum. Two new points are located within the initial interval. The values of 
the performance at these two points determines a section of the interval that 
can be discarded, and a new interior point is placed within the new interval. 
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This procedure is continued until the interval of uncertainty is reduced to a 
width of tol, which is equal to delta/scale_tol.

See [HDB96], starting on page 12-16, for a complete description of the golden 
section search. Try the Neural Network Design Demonstration nnd12sd1 
[HDB96] for an illustration of the performance of the golden section search in 
combination with a conjugate gradient algorithm.

Brent’s Search (srchbre)
Brent’s search is a linear search, which is a hybrid combination of the golden 
section search and a quadratic interpolation. Function comparison methods, 
like the golden section search, have a first-order rate of convergence, while 
polynomial interpolation methods have an asymptotic rate that is faster than 
superlinear. On the other hand, the rate of convergence for the golden section 
search starts when the algorithm is initialized, whereas the asymptotic 
behavior for the polynomial interpolation methods may take many iterations 
to become apparent. Brent’s search attempts to combine the best features of 
both approaches.

For Brent’s search we begin with the same interval of uncertainty that we used 
with the golden section search, but some additional points are computed. A 
quadratic function is then fitted to these points and the minimum of the 
quadratic function is computed. If this minimum is within the appropriate 
interval of uncertainty, it is used in the next stage of the search and a new 
quadratic approximation is performed. If the minimum falls outside the known 
interval of uncertainty, then a step of the golden section search is performed.

See [Bren73] for a complete description of this algorithm. This algorithm has 
the advantage that it does not require computation of the derivative. The 
derivative computation requires a backpropagation through the network, 
which involves more computation than a forward pass. However, the algorithm 
may require more performance evaluations than algorithms that use 
derivative information.

Hybrid Bisection-Cubic Search (srchhyb)
Like Brent’s search, srchhyb is a hybrid algorithm. It is a combination of 
bisection and cubic interpolation. For the bisection algorithm, one point is 
located in the interval of uncertainty and the performance and its derivative 
are computed. Based on this information, half of the interval of uncertainty is 
discarded. In the hybrid algorithm, a cubic interpolation of the function is 
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obtained by using the value of the performance and its derivative at the two 
end points. If the minimum of the cubic interpolation falls within the known 
interval of uncertainty, then it is used to reduce the interval of uncertainty. 
Otherwise, a step of the bisection algorithm is used.

See [Scal85] for a complete description of the hybrid bisection-cubic search. 
This algorithm does require derivative information, so it performs more 
computations at each step of the algorithm than the golden section search or 
Brent’s algorithm.

Charalambous’ Search (srchcha)
The method of Charalambous srchcha was designed to be used in combination 
with a conjugate gradient algorithm for neural network training. Like the 
previous two methods, it is a hybrid search. It uses a cubic interpolation, 
together with a type of sectioning. 

See [Char92] for a description of Charalambous’ search. We have used this 
routine as the default search for most of the conjugate gradient algorithms, 
since it appears to produce excellent results for many different problems. It 
does require the computation of the derivatives (backpropagation) in addition 
to the computation of performance, but it overcomes this limitation by locating 
the minimum with fewer steps. This is not true for all problems, and you may 
want to experiment with other line searches.

Backtracking (srchbac)
The backtracking search routine srchbac is best suited to use with the 
quasi-Newton optimization algorithms. It begins with a step multiplier of 1 and 
then backtracks until an acceptable reduction in the performance is obtained. 
On the first step it uses the value of performance at the current point and at a 
step multiplier of 1. Also it uses the value of the derivative of performance at 
the current point, to obtain a quadratic approximation to the performance 
function along the search direction. The minimum of the quadratic 
approximation becomes a tentative optimum point (under certain conditions) 
and the performance at this point is tested. If the performance is not 
sufficiently reduced, a cubic interpolation is obtained and the minimum of the 
cubic interpolation becomes the new tentative optimum point. This process is 
continued until a sufficient reduction in the performance is obtained.
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The backtracking algorithm is described in [DeSc83]. It was used as the default 
line search for the quasi-Newton algorithms, although it may not be the best 
technique for all problems.

Quasi-Newton Algorithms

BFGS Algorithm (trainbgf)
Newton’s method is an alternative to the conjugate gradient methods for fast 
optimization. The basic step of Newton’s method is

where  is the Hessian matrix (second derivatives) of the performance index 
at the current values of the weights and biases. Newton’s method often 
converges faster than conjugate gradient methods. Unfortunately, it is complex 
and expensive to compute the Hessian matrix for feedforward neural networks. 
There is a class of algorithms that is based on Newton’s method, but which 
doesn’t require calculation of second derivatives. These are called 
quasi-Newton (or secant) methods. They update an approximate Hessian 
matrix at each iteration of the algorithm. The update is computed as a function 
of the gradient. The quasi-Newton method that has been most successful in 
published studies is the Broyden, Fletcher, Goldfarb, and Shanno (BFGS) 
update. This algorithm has been implemented in the trainbfg routine.

In the following code, we reinitialize our previous network and retrain it using 
the BFGS quasi-Newton algorithm. The training parameters for trainbfg are 
the same as those for traincgf. The default line search routine srchbac is used 
in this example. The parameters show and epoch are set to 5 and 300, 
respectively.

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=newff(minmax(p),[3,1],{'tansig','purelin'},'trainbfg');
net.trainParam.show = 5;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);

TRAINBFG-srchbac, Epoch 0/300, MSE 0.492231/1e-05, Gradient 
2.16307/1e-06

xk 1+ xk Ak
1– gk–=

Ak
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TRAINBFG-srchbac, Epoch 5/300, MSE 0.000744953/1e-05, Gradient 
0.0196826/1e-06

TRAINBFG-srchbac, Epoch 8/300, MSE 7.69867e-06/1e-05, Gradient 
0.00497404/1e-06

TRAINBFG, Performance goal met.
a = sim(net,p)
a =

-0.9995   -1.0004    1.0008    0.9945

The BFGS algorithm is described in [DeSc83]. This algorithm requires more 
computation in each iteration and more storage than the conjugate gradient 
methods, although it generally converges in fewer iterations. The approximate 
Hessian must be stored, and its dimension is , where n is equal to the 
number of weights and biases in the network. For very large networks it may 
be better to use Rprop or one of the conjugate gradient algorithms. For smaller 
networks, however, trainbfg can be an efficient training function.

One Step Secant Algorithm (trainoss)
Since the BFGS algorithm requires more storage and computation in each 
iteration than the conjugate gradient algorithms, there is need for a secant 
approximation with smaller storage and computation requirements. The one 
step secant (OSS) method is an attempt to bridge the gap between the 
conjugate gradient algorithms and the quasi-Newton (secant) algorithms. This 
algorithm does not store the complete Hessian matrix; it assumes that at each 
iteration, the previous Hessian was the identity matrix. This has the additional 
advantage that the new search direction can be calculated without computing 
a matrix inverse.

In the following code, we reinitialize our previous network and retrain it using 
the one-step secant algorithm. The training parameters for trainoss are the 
same as those for traincgf. The default line search routine srchbac is used in 
this example. The parameters show and epoch are set to 5 and 300, 
respectively.

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=newff(minmax(p),[3,1],{'tansig','purelin'},'trainoss');
net.trainParam.show = 5;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);

n n×
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TRAINOSS-srchbac, Epoch 0/300, MSE 0.665136/1e-05, Gradient 
1.61966/1e-06

TRAINOSS-srchbac, Epoch 5/300, MSE 0.000321921/1e-05, Gradient 
0.0261425/1e-06

TRAINOSS-srchbac, Epoch 7/300, MSE 7.85697e-06/1e-05, Gradient 
0.00527342/1e-06

TRAINOSS, Performance goal met.
a = sim(net,p)
a =

-1.0035   -0.9958    1.0014    0.9997

The one step secant method is described in [Batt92]. This algorithm requires 
less storage and computation per epoch than the BFGS algorithm. It requires 
slightly more storage and computation per epoch than the conjugate gradient 
algorithms. It can be considered a compromise between full quasi-Newton 
algorithms and conjugate gradient algorithms.

Levenberg-Marquardt (trainlm)
Like the quasi-Newton methods, the Levenberg-Marquardt algorithm was 
designed to approach second-order training speed without having to compute 
the Hessian matrix. When the performance function has the form of a sum of 
squares (as is typical in training feedforward networks), then the Hessian 
matrix can be approximated as

and the gradient can be computed as

where  is the Jacobian matrix that contains first derivatives of the network 
errors with respect to the weights and biases, and e is a vector of network 
errors. The Jacobian matrix can be computed through a standard 
backpropagation technique (see [HaMe94]) that is much less complex than 
computing the Hessian matrix.

The Levenberg-Marquardt algorithm uses this approximation to the Hessian 
matrix in the following Newton-like update:

H JTJ=

g JTe=

J

xk 1+ xk JTJ µI+[ ]
1–
JTe–=
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When the scalar µ is zero, this is just Newton’s method, using the approximate 
Hessian matrix. When µ is large, this becomes gradient descent with a small 
step size. Newton’s method is faster and more accurate near an error 
minimum, so the aim is to shift towards Newton’s method as quickly as 
possible. Thus, µ is decreased after each successful step (reduction in 
performance function) and is increased only when a tentative step would 
increase the performance function. In this way, the performance function will 
always be reduced at each iteration of the algorithm.

In the following code, we reinitialize our previous network and retrain it using 
the Levenberg-Marquardt algorithm. The training parameters for trainlm are 
epochs, show, goal, time, min_grad, max_fail, mu, mu_dec, mu_inc, mu_max, 
mem_reduc. We have discussed the first six parameters earlier. The parameter 
mu is the initial value for µ. This value is multiplied by mu_dec whenever the 
performance function is reduced by a step. It is multiplied by mu_inc whenever 
a step would increase the performance function. If mu becomes larger than 
mu_max, the algorithm is stopped. The parameter mem_reduc is used to control 
the amount of memory used by the algorithm. It is discussed in the next 
section. The parameters show and epoch are set to 5 and 300, respectively.

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=newff(minmax(p),[3,1],{'tansig','purelin'},'trainlm');
net.trainParam.show = 5;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);

TRAINLM, Epoch 0/300, MSE 2.7808/1e-05, Gradient 7.77931/1e-10
TRAINLM, Epoch 4/300, MSE 3.67935e-08/1e-05, Gradient 

0.000808272/1e-10
TRAINLM, Performance goal met.

a = sim(net,p)
a =

-1.0000   -1.0000    1.0000    0.9996

The original description of the Levenberg-Marquardt algorithm is given in 
[Marq63]. The application of Levenberg-Marquardt to neural network training 
is described in [HaMe94] and starting on page 12-19 of [HDB96]. This 
algorithm appears to be the fastest method for training moderate-sized 
feedforward neural networks (up to several hundred weights). It also has a 
very efficient MATLAB® implementation, since the solution of the matrix 
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equation is a built-in function, so its attributes become even more pronounced 
in a MATLAB setting.

Try the Neural Network Design Demonstration nnd12m [HDB96] for an 
illustration of the performance of the batch Levenberg-Marquardt algorithm.

Reduced Memory Levenberg-Marquardt (trainlm)
The main drawback of the Levenberg-Marquardt algorithm is that it requires 
the storage of some matrices that can be quite large for certain problems. The 
size of the Jacobian matrix is , where Q is the number of training sets and 
n is the number of weights and biases in the network. It turns out that this 
matrix does not have to be computed and stored as a whole. For example, if we 
were to divide the Jacobian into two equal submatrices we could compute the 
approximate Hessian matrix as follows:

Therefore, the full Jacobian does not have to exist at one time. The 
approximate Hessian can be computed by summing a series of subterms. Once 
one subterm has been computed, the corresponding submatrix of the Jacobian 
can be cleared.

When using the training function trainlm, the parameter mem_reduc is used to 
determine how many rows of the Jacobian are to be computed in each 
submatrix. If mem_reduc is set to 1, then the full Jacobian is computed, and no 
memory reduction is achieved. If mem_reduc is set to 2, then only half of the 
Jacobian will be computed at one time. This saves half of the memory used by 
the calculation of the full Jacobian.

There is a drawback to using memory reduction. A significant computational 
overhead is associated with computing the Jacobian in submatrices. If you 
have enough memory available, then it is better to set mem_reduc to 1 and to 
compute the full Jacobian. If you have a large training set, and you are running 
out of memory, then you should set mem_reduc to 2, and try again. If you still 
run out of memory, continue to increase mem_reduc. 

Even if you use memory reduction, the Levenberg-Marquardt algorithm will 
always compute the approximate Hessian matrix, which has dimensions . 
If your network is very large, then you may run out of memory. If this is the 

Q n×
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case, then you will want to try trainscg, trainrp, or one of the conjugate 
gradient algorithms.
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Speed and Memory Comparison
It is very difficult to know which training algorithm will be the fastest for a 
given problem. It will depend on many factors, including the complexity of the 
problem, the number of data points in the training set, the number of weights 
and biases in the network, the error goal, and whether the network is being 
used for pattern recognition (discriminant analysis) or function approximation 
(regression). In this section we perform a number of benchmark comparisons of 
the various training algorithms. We train feedforward networks on six 
different problems. Three of the problems fall in the pattern recognition 
category and the three others fall in the function approximation category. Two 
of the problems are simple “toy” problems, while the other four are “real world” 
problems. We use networks with a variety of different architectures and 
complexities, and we train the networks to a variety of different accuracy 
levels.

The following table lists the algorithms that are tested and the acronyms we 
use to identify them.

Acronym Algorithm

LM trainlm - Levenberg-Marquardt

BFG trainbfg - BFGS Quasi-Newton

RP trainrp - Resilient Backpropagation

SCG trainscg - Scaled Conjugate Gradient

CGB traincgb - Conjugate Gradient with Powell/Beale 
Restarts

CGF traincgf - Fletcher-Powell Conjugate Gradient

CGP traincgp - Polak-Ribiére Conjugate Gradient

OSS trainoss - One-Step Secant

GDX traingdx - Variable Learning Rate Backpropagation

LUIS
Resaltado
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The following table lists the six benchmark problems and some characteristics 
of the networks, training processes, and computers used.

SIN Data Set
The first benchmark data set is a simple function approximation problem. A 
1-5-1 network, with tansig transfer functions in the hidden layer and a linear 
transfer function in the output layer, is used to approximate a single period of 
a sine wave. The following table summarizes the results of training the 
network using nine different training algorithms. Each entry in the table 
represents 30 different trials, where different random initial weights are used 
in each trial. In each case, the network is trained until the squared error is less 
than 0.002. The fastest algorithm for this problem is the Levenberg-Marquardt 
algorithm. On the average, it is over four times faster than the next fastest 
algorithm. This is the type of problem for which the LM algorithm is best suited 
— a function approximation problem where the network has less than one 
hundred weights and the approximation must be very accurate.

Problem Title Problem 
Type

Network 
Structure

Error 
Goal

Computer

SIN Function 
Approx.

1-5-1 0.002 Sun Sparc 2

PARITY Pattern 
Recog.

3-10-10-1 0.001 Sun Sparc 2

ENGINE Function 
Approx.

2-30-2 0.005 Sun Enterprise 
4000

CANCER Pattern 
Recog.

9-5-5-2 0.012 Sun Sparc 2

CHOLESTEROL Function 
Approx.

21-15-3 0.027 Sun Sparc 20

DIABETES Pattern 
Recog.

8-15-15-2 0.05 Sun Sparc 20

LUIS
Resaltado

LUIS
Resaltado
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The performance of the various algorithms can be affected by the accuracy 
required of the approximation. This is demonstrated in the following figure, 
which plots the mean square error versus execution time (averaged over the 30 
trials) for several representative algorithms. Here we can see that the error in 
the LM algorithm decreases much more rapidly with time than the other 
algorithms shown.

Algorithm Mean 
Time (s)

Ratio  Min. 
Time (s) 

 Max. 
Time (s)

Std. 
(s)

       LM      1.14       1.00       0.65       1.83     0.38

      BFG      5.22       4.58       3.17     14.38     2.08

       RP      5.67       4.97       2.66     17.24     3.72

      SCG      6.09       5.34       3.18     23.64     3.81

      CGB      6.61       5.80       2.99     23.65     3.67

      CGF      7.86       6.89       3.57     31.23     4.76

      CGP      8.24       7.23       4.07     32.32     5.03

      OSS      9.64       8.46       3.97     59.63     9.79

      GDX    27.69     24.29     17.21   258.15   43.65
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The relationship between the algorithms is further illustrated in the following 
figure, which plots the time required to converge versus the mean square error 
convergence goal. Here, we can see that as the error goal is reduced, the 
improvement provided by the LM algorithm becomes more pronounced. Some 
algorithms perform better as the error goal is reduced (LM and BFG), and 
other algorithms degrade as the error goal is reduced (OSS and GDX).
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PARITY Data Set
The second benchmark problem is a simple pattern recognition problem — 
detect the parity of a 3-bit number. If the number of ones in the input pattern 
is odd, then the network should output a one; otherwise, it should output a 
minus one. The network used for this problem is a 3-10-10-1 network with 
tansig neurons in each layer. The following table summarizes the results of 
training this network with the nine different algorithms. Each entry in the 
table represents 30 different trials, where different random initial weights are 
used in each trial. In each case, the network is trained until the squared error 
is less than 0.001. The fastest algorithm for this problem is the resilient 
backpropagation algorithm, although the conjugate gradient algorithms (in 
particular, the scaled conjugate gradient algorithm) are almost as fast. Notice 
that the LM algorithm does not perform well on this problem. In general, the 
LM algorithm does not perform as well on pattern recognition problems as it 
does on function approximation problems. The LM algorithm is designed for 
least squares problems that are approximately linear. Since the output 
neurons in pattern recognition problems will generally be saturated, we will 
not be operating in the linear region.
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As with function approximation problems, the performance of the various 
algorithms can be affected by the accuracy required of the network. This is 
demonstrated in the following figure, which plots the mean square error versus 
execution time for some typical algorithms. The LM algorithm converges 
rapidly after some point, but only after the other algorithms have already 
converged.

Algorithm Mean 
Time (s)

Ratio  Min. 
Time (s) 

 Max. 
Time (s)

Std. 
(s)

        RP   3.73 1.00    2.35     6.89     1.26

      SCG   4.09 1.10    2.36     7.48     1.56

      CGP   5.13 1.38    3.50     8.73     1.05

      CGB   5.30 1.42    3.91   11.59     1.35

      CGF   6.62 1.77    3.96   28.05     4.32

      OSS   8.00 2.14    5.06   14.41     1.92

       LM 13.07 3.50    6.48   23.78     4.96

      BFG 19.68 5.28   14.19   26.64     2.85

      GDX 27.07 7.26   25.21   28.52     0.86
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The relationship between the algorithms is further illustrated in the following 
figure, which plots the time required to converge versus the mean square error 
convergence goal. Again we can see that some algorithms degrade as the error 
goal is reduced (OSS and BFG).
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ENGINE Data Set
The third benchmark problem is a realistic function approximation (or 
nonlinear regression) problem. The data is obtained from the operation of an 
engine. The inputs to the network are engine speed and fueling levels and the 
network outputs are torque and emission levels. The network used for this 
problem is a 2-30-2 network with tansig neurons in the hidden layer and linear 
neurons in the output layer. The following table summarizes the results of 
training this network with the nine different algorithms. Each entry in the 
table represents 30 different trials (10 trials for RP and GDX because of time 
constraints), where different random initial weights are used in each trial. In 
each case, the network is trained until the squared error is less than 0.005. The 
fastest algorithm for this problem is the LM algorithm, although the BFGS 
quasi-Newton algorithm and the conjugate gradient algorithms (the scaled 
conjugate gradient algorithm in particular) are almost as fast. Although this is 
a function approximation problem, the LM algorithm is not as clearly superior 
as it was on the SIN data set. In this case, the number of weights and biases in 
the network is much larger than the one used on the SIN problem (152 versus. 
16), and the advantages of the LM algorithm decrease as the number of 
network parameters increase.

Algorithm Mean 
Time (s)

Ratio  Min. 
Time (s) 

 Max. 
Time (s)

Std. 
(s)

       LM      18.45       1.00       12.01       30.03     4.27

      BFG      27.12       1.47       16.42       47.36     5.95

      SCG      36.02       1.95       19.39       52.45     7.78

      CGF      37.93       2.06       18.89       50.34     6.12

      CGB      39.93       2.16       23.33       55.42     7.50

      CGP      44.30       2.40       24.99       71.55     9.89

      OSS      48.71       2.64       23.51       80.90   12.33 

       RP      65.91       3.57       31.83     134.31   34.24 

      GDX    188.50     10.22       81.59     279.90   66.67
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The following figure plots the mean square error versus execution time for 
some typical algorithms. The performance of the LM algorithm improves over 
time relative to the other algorithms.

The relationship between the algorithms is further illustrated in the following 
figure, which plots the time required to converge versus the mean square error 
convergence goal. Again we can see that some algorithms degrade as the error 
goal is reduced (GDX and RP), while the LM algorithm improves.
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CANCER Data Set
The fourth benchmark problem is a realistic pattern recognition (or nonlinear 
discriminant analysis) problem. The objective of the network is to classify a 
tumor as either benign or malignant based on cell descriptions gathered by 
microscopic examination. Input attributes include clump thickness, uniformity 
of cell size and cell shape, the amount of marginal adhesion, and the frequency 
of bare nuclei. The data was obtained from the University of Wisconsin 
Hospitals, Madison, from Dr. William H. Wolberg. The network used for this 
problem is a 9-5-5-2 network with tansig neurons in all layers. The following 
table summarizes the results of training this network with the nine different 
algorithms. Each entry in the table represents 30 different trials, where 
different random initial weights are used in each trial. In each case, the 
network is trained until the squared error is less than 0.012. A few runs failed 
to converge for some of the algorithms, so only the top 75% of the runs from 
each algorithm were used to obtain the statistics.

The conjugate gradient algorithms and resilient backpropagation all provide 
fast convergence, and the LM algorithm is also reasonably fast. As we 
mentioned with the parity data set, the LM algorithm does not perform as well 

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

mean−square−error

tim
e 

(s
)

Time Comparison on ENGINE

lm 
bfg
scg
gdx
cgb
oss
rp 



5 Backpropagation

5-42

on pattern recognition problems as it does on function approximation 
problems.

The following figure plots the mean square error versus execution time for 
some typical algorithms. For this problem we don’t see as much variation in 
performance as we have seen in previous problems.

Algorithm Mean 
Time (s)

Ratio  Min. 
Time (s) 

 Max. 
Time (s)

Std. 
(s)

      CGB       80.27     1.00        55.07       102.31      13.17

       RP       83.41     1.04        59.51       109.39      13.44

      SCG       86.58     1.08        41.21       112.19      18.25

      CGP       87.70     1.09        56.35       116.37      18.03

      CGF     110.05     1.37        63.33       171.53      30.13

       LM     110.33     1.37        58.94       201.07      38.20

      BFG     209.60     2.61      118.92       318.18      58.44

      GDX     313.22     3.90      166.48       446.43      75.44

       OSS     463.87     5.78      250.62       599.99      97.35
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The relationship between the algorithms is further illustrated in the following 
figure, which plots the time required to converge versus the mean square error 
convergence goal. Again we can see that some algorithms degrade as the error 
goal is reduced (OSS and BFG) while the LM algorithm improves. It is typical 
of the LM algorithm on any problem that its performance improves relative to 
other algorithms as the error goal is reduced.
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CHOLESTEROL Data Set
The fifth benchmark problem is a realistic function approximation (or 
nonlinear regression) problem. The objective of the network is to predict 
cholesterol levels (ldl, hdl and vldl) based on measurements of 21 spectral 
components. The data was obtained from Dr. Neil Purdie, Department of 
Chemistry, Oklahoma State University [PuLu92]. The network used for this 
problem is a 21-15-3 network with tansig neurons in the hidden layers and 
linear neurons in the output layer. The following table summarizes the results 
of training this network with the nine different algorithms. Each entry in the 
table represents 20 different trials (10 trials for RP and GDX), where different 
random initial weights are used in each trial. In each case, the network is 
trained until the squared error is less than 0.027. 

The scaled conjugate gradient algorithm has the best performance on this 
problem, although all of the conjugate gradient algorithms perform well. The 
LM algorithm does not perform as well on this function approximation problem 
as it did on the other two. That is because the number of weights and biases in 
the network has increased again (378 versus 152 versus 16). As the number of 
parameters increases, the computation required in the LM algorithm increases 
geometrically.
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The following figure plots the mean square error versus execution time for 
some typical algorithms. For this problem, we can see that the LM algorithm 
is able to drive the mean square error to a lower level than the other 
algorithms. The SCG and RP algorithms provide the fastest initial 
convergence.

Algorithm Mean 
Time (s)

Ratio  Min. 
Time (s) 

 Max. 
Time (s)

Std. 
(s)

      SCG       99.73      1.00        83.10       113.40        9.93

      CGP     121.54      1.22      101.76       162.49      16.34

      CGB     124.06      1.24      107.64       146.90      14.62

      CGF     136.04      1.36      106.46       167.28      17.67

       LM     261.50      2.62      103.52       398.45    102.06

      OSS     268.55      2.69      197.84       372.99      56.79

      BFG     550.92      5.52      471.61       676.39      46.59

       RP   1519.00    15.23      581.17     2256.10    557.34

      GDX   3169.50    31.78    2514.90     4168.20    610.52
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The relationship between the algorithms is further illustrated in the following 
figure, which plots the time required to converge versus the mean square error 
convergence goal. We can see that the LM and BFG algorithms improve 
relative to the other algorithms as the error goal is reduced.
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DIABETES Data Set
The sixth benchmark problem is a pattern recognition problem. The objective 
of the network is to decide if an individual has diabetes, based on personal data 
(age, number of times pregnant) and the results of medical examinations (e.g., 
blood pressure, body mass index, result of glucose tolerance test, etc.). The data 
was obtained from the University of California, Irvine, machine learning data 
base. The network used for this problem is an 8-15-15-2 network with tansig 
neurons in all layers. The following table summarizes the results of training 
this network with the nine different algorithms. Each entry in the table 
represents 10 different trials, where different random initial weights are used 
in each trial. In each case, the network is trained until the squared error is less 
than 0.05. 

The conjugate gradient algorithms and resilient backpropagation all provide 
fast convergence. The results on this problem are consistent with the other 
pattern recognition problems we have considered. The RP algorithm works 
well on all of the pattern recognition problems. This is reasonable, since that 
algorithm was designed to overcome the difficulties caused by training with 
sigmoid functions, which have very small slopes when operating far from the 
center point. For pattern recognition problems, we use sigmoid transfer 
functions in the output layer, and we want the network to operate at the tails 
of the sigmoid function.

Algorithm Mean 
Time (s)

Ratio  Min. 
Time (s) 

 Max. 
Time (s)

Std. 
(s)

       RP       323.90      1.00       187.43       576.90      111.37 

      SCG       390.53      1.21       267.99       487.17        75.07

      CGB       394.67      1.22       312.25       558.21        85.38

      CGP       415.90      1.28       320.62       614.62        94.77

      OSS       784.00      2.42       706.89       936.52        76.37

      CGF       784.50      2.42       629.42     1082.20      144.63

       LM     1028.10      3.17       802.01     1269.50       166.31 
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The following figure plots the mean square error versus execution time for 
some typical algorithms. As with other problems, we see that the SCG and RP 
have fast initial convergence, while the LM algorithm is able to provide smaller 
final error.

The relationship between the algorithms is further illustrated in the following 
figure, which plots the time required to converge versus the mean square error 
convergence goal. In this case, we can see that the BFG algorithm degrades as 
the error goal is reduced, while the LM algorithm improves. The RP algorithm 
is best, except at the smallest error goal, where SCG is better.

      BFG     1821.00      5.62     1415.80     3254.50      546.36 

      GDX     7687.00    23.73     5169.20   
10350.00  

   2015.00

Algorithm Mean 
Time (s)

Ratio  Min. 
Time (s) 

 Max. 
Time (s)

Std. 
(s)

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
−3

10
−2

10
−1

10
0

time (s)

m
ea

n−
sq

ua
re

−
er

ro
r

Comparsion of Convergency Speed on DIABETES

lm 
scg
rp 
bfg



Speed and Memory Comparison

5-49

Summary
There are several algorithm characteristics that we can deduce from the 
experiments we have described. In general, on function approximation 
problems, for networks that contain up to a few hundred weights, the 
Levenberg-Marquardt algorithm will have the fastest convergence. This 
advantage is especially noticeable if very accurate training is required. In 
many cases, trainlm is able to obtain lower mean square errors than any of the 
other algorithms tested. However, as the number of weights in the network 
increases, the advantage of the trainlm decreases. In addition, trainlm 
performance is relatively poor on pattern recognition problems. The storage 
requirements of trainlm are larger than the other algorithms tested. By 
adjusting the mem_reduc parameter, discussed earlier, the storage 
requirements can be reduced, but at a cost of increased execution time.

The trainrp function is the fastest algorithm on pattern recognition problems. 
However, it does not perform well on function approximation problems. Its 
performance also degrades as the error goal is reduced. The memory 
requirements for this algorithm are relatively small in comparison to the other 
algorithms considered.

The conjugate gradient algorithms, in particular trainscg, seem to perform 
well over a wide variety of problems, particularly for networks with a large 
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number of weights. The SCG algorithm is almost as fast as the LM algorithm 
on function approximation problems (faster for large networks) and is almost 
as fast as trainrp on pattern recognition problems. Its performance does not 
degrade as quickly as trainrp performance does when the error is reduced. 
The conjugate gradient algorithms have relatively modest memory 
requirements.

The trainbfg performance is similar to that of trainlm. It does not require as 
much storage as trainlm, but the computation required does increase 
geometrically with the size of the network, since the equivalent of a matrix 
inverse must be computed at each iteration.

The variable learning rate algorithm traingdx is usually much slower than the 
other methods, and has about the same storage requirements as trainrp, but 
it can still be useful for some problems. There are certain situations in which 
it is better to converge more slowly. For example, when using early stopping (as 
described in the next section) you may have inconsistent results if you use an 
algorithm that converges too quickly. You may overshoot the point at which the 
error on the validation set is minimized.
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Improving Generalization
One of the problems that occurs during neural network training is called 
overfitting. The error on the training set is driven to a very small value, but 
when new data is presented to the network the error is large. The network has 
memorized the training examples, but it has not learned to generalize to new 
situations. 

The following figure shows the response of a 1-20-1 neural network that has 
been trained to approximate a noisy sine function. The underlying sine 
function is shown by the dotted line, the noisy measurements are given by the 
‘+’ symbols, and the neural network response is given by the solid line. Clearly 
this network has overfit the data and will not generalize well.

One method for improving network generalization is to use a network that is 
just large enough to provide an adequate fit. The larger a network you use, the 
more complex the functions the network can create. If we use a small enough 
network, it will not have enough power to overfit the data. Run the Neural 
Network Design Demonstration nnd11gn [HDB96] to investigate how reducing 
the size of a network can prevent overfitting.

Unfortunately, it is difficult to know beforehand how large a network should be 
for a specific application. There are two other methods for improving 
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generalization that are implemented in the Neural Network Toolbox: 
regularization and early stopping. The next few subsections describe these two 
techniques, and the routines to implement them.

Note that if the number of parameters in the network is much smaller than the 
total number of points in the training set, then there is little or no chance of 
overfitting. If you can easily collect more data and increase the size of the 
training set, then there is no need to worry about the following techniques to 
prevent overfitting. The rest of this section only applies to those situations in 
which you want to make the most of a limited supply of data.

Regularization
The first method for improving generalization is called regularization. This 
involves modifying the performance function, which is normally chosen to be 
the sum of squares of the network errors on the training set. The next 
subsection explains how the performance function can be modified, and the 
following subsection describes a routine that automatically sets the optimal 
performance function to achieve the best generalization.

Modified Performance Function
The typical performance function that is used for training feedforward neural 
networks is the mean sum of squares of the network errors.

It is possible to improve generalization if we modify the performance function 
by adding a term that consists of the mean of the sum of squares of the network 
weights and biases
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Using this performance function will cause the network to have smaller 
weights and biases, and this will force the network response to be smoother and 
less likely to overfit.

In the following code we reinitialize our previous network and retrain it using 
the BFGS algorithm with the regularized performance function. Here we set 
the performance ratio to 0.5, which gives equal weight to the mean square 
errors and the mean square weights.

p = [-1 -1 2 2;0 5 0 5];
t = [-1 -1 1 1];
net=newff(minmax(p),[3,1],{'tansig','purelin'},'trainbfg');
net.performFcn = 'msereg';
net.performParam.ratio = 0.5;
net.trainParam.show = 5;
net.trainParam.epochs = 300;
net.trainParam.goal = 1e-5;
[net,tr]=train(net,p,t);

The problem with regularization is that it is difficult to determine the optimum 
value for the performance ratio parameter. If we make this parameter too 
large, we may get overfitting. If the ratio is too small, the network will not 
adequately fit the training data. In the next section we describe a routine that 
automatically sets the regularization parameters.

Automated Regularization (trainbr)
It is desirable to determine the optimal regularization parameters in an 
automated fashion. One approach to this process is the Bayesian framework of 
David MacKay [MacK92]. In this framework, the weights and biases of the 
network are assumed to be random variables with specified distributions. The 
regularization parameters are related to the unknown variances associated 
with these distributions. We can then estimate these parameters using 
statistical techniques.

A detailed discussion of Bayesian regularization is beyond the scope of this 
users guide. A detailed discussion of the use of Bayesian regularization, in 
combination with Levenberg-Marquardt training, can be found in [FoHa97].

Bayesian regularization has been implemented in the function trainbr. The 
following code shows how we can train a 1-20-1 network using this function to 
approximate the noisy sine wave shown earlier in this section.
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p = [-1:.05:1];
t = sin(2*pi*p)+0.1*randn(size(p));
net=newff(minmax(p),[20,1],{'tansig','purelin'},'trainbr');
net.trainParam.show = 10;
net.trainParam.epochs = 50;
randn('seed',192736547);
net = init(net);
[net,tr]=train(net,p,t);
TRAINBR, Epoch 0/200, SSE 273.764/0, SSW 21460.5, Grad 
2.96e+02/1.00e-10, #Par 6.10e+01/61
TRAINBR, Epoch 40/200, SSE 0.255652/0, SSW 1164.32, Grad 
1.74e-02/1.00e-10, #Par 2.21e+01/61
TRAINBR, Epoch 80/200, SSE 0.317534/0, SSW 464.566, Grad 
5.65e-02/1.00e-10, #Par 1.78e+01/61
TRAINBR, Epoch 120/200, SSE 0.379938/0, SSW 123.028, Grad 
3.64e-01/1.00e-10, #Par 1.17e+01/61
TRAINBR, Epoch 160/200, SSE 0.380578/0, SSW 108.294, Grad 
6.43e-02/1.00e-10, #Par 1.19e+01/61

One feature of this algorithm is that it provides a measure of how many 
network parameters (weights and biases) are being effectively used by the 
network. In this case, the final trained network uses approximately 12 
parameters (indicated by #Par in the printout) out of the 61 total weights and 
biases in the 1-20-1 network. This effective number of parameters should 
remain approximately the same, no matter how large the total number of 
parameters in the network becomes. (This assumes that the network has been 
trained for a sufficient number of iterations to ensure convergence.)

The trainbr algorithm generally works best when the network inputs and 
targets are scaled so that they fall approximately in the range [-1,1]. That is 
the case for the test problem we have used. If your inputs and targets do not 
fall in this range, you can use the functions premnmx, or prestd, to perform the 
scaling, as described later in this chapter.

The following figure shows the response of the trained network. In contrast to 
the previous figure, in which a 1-20-1 network overfit the data, here we see that 
the network response is very close to the underlying sine function (dotted line), 
and, therefore, the network will generalize well to new inputs. We could have 
tried an even larger network, but the network response would never overfit the 
data. This eliminates the guesswork required in determining the optimum 
network size.
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When using trainbr, it is important to let the algorithm run until the effective 
number of parameters has converged. The training may stop with the message 
“Maximum MU reached.” This is typical, and is a good indication that the 
algorithm has truly converged. You can also tell that the algorithm has 
converged if the sum squared error (SSE) and sum squared weights (SSW) are 
relatively constant over several iterations. When this occurs you may want to 
push the “Stop Training” button in the training window.

Early Stopping
Another method for improving generalization is called early stopping. In this 
technique the available data is divided into three subsets. The first subset is 
the training set, which is used for computing the gradient and updating the 
network weights and biases. The second subset is the validation set. The error 
on the validation set is monitored during the training process. The validation 
error will normally decrease during the initial phase of training, as does the 
training set error. However, when the network begins to overfit the data, the 
error on the validation set will typically begin to rise. When the validation error 
increases for a specified number of iterations, the training is stopped, and the 
weights and biases at the minimum of the validation error are returned.

The test set error is not used during the training, but it is used to compare 
different models. It is also useful to plot the test set error during the training 
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process. If the error in the test set reaches a minimum at a significantly 
different iteration number than the validation set error, this may indicate a 
poor division of the data set.

Early stopping can be used with any of the training functions that were 
described earlier in this chapter. You simply need to pass the validation data 
to the training function. The following sequence of commands demonstrates 
how to use the early stopping function. 

First we create a simple test problem. For our training set we generate a noisy 
sine wave with input points ranging from -1 to 1 at steps of 0.05.

p = [-1:0.05:1];
t = sin(2*pi*p)+0.1*randn(size(p));

Next we generate the validation set. The inputs range from -1 to 1, as in the 
test set, but we offset them slightly. To make the problem more realistic, we 
also add a different noise sequence to the underlying sine wave. Notice that the 
validation set is contained in a structure that contains both the inputs and the 
targets.

val.P = [-0.975:.05:0.975];
val.T = sin(2*pi*v.P)+0.1*randn(size(v.P));

We now create a 1-20-1 network, as in our previous example with 
regularization, and train it. (Notice that the validation structure is passed to 
train after the initial input and layer conditions, which are null vectors in this 
case since the network contains no delays. Also, in this example we are not 
using a test set. The test set structure would be the next argument in the call 
to train.) For this example we use the training function traingdx, although 
early stopping can be used with any of the other training functions we have 
discussed in this chapter.

net=newff([-1 1],[20,1],{'tansig','purelin'},'traingdx');
net.trainParam.show = 25;
net.trainParam.epochs = 300;
net = init(net);
[net,tr]=train(net,p,t,[],[],val);
TRAINGDX, Epoch 0/300, MSE 9.39342/0, Gradient 17.7789/1e-06
TRAINGDX, Epoch 25/300, MSE 0.312465/0, Gradient 0.873551/1e-06
TRAINGDX, Epoch 50/300, MSE 0.102526/0, Gradient 0.206456/1e-06
TRAINGDX, Epoch 75/300, MSE 0.0459503/0, Gradient 0.0954717/1e-06
TRAINGDX, Epoch 100/300, MSE 0.015725/0, Gradient 0.0299898/1e-06
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TRAINGDX, Epoch 125/300, MSE 0.00628898/0, Gradient 
0.042467/1e-06
TRAINGDX, Epoch 131/300, MSE 0.00650734/0, Gradient 
0.133314/1e-06
TRAINGDX, Validation stop.

The following figure shows a graph of the network response. We can see that 
the network did not overfit the data, as in the earlier example, although the 
response is not extremely smooth, as when using regularization. This is 
characteristic of early stopping.

Summary and Discussion
Both regularization and early stopping can ensure network generalization 
when properly applied. 

When using Bayesian regularization, it is important to train the network until 
it reaches convergence. The sum squared error, the sum squared weights, and 
the effective number of parameters should reach constant values when the 
network has converged. 

For early stopping, you must be careful not to use an algorithm that converges 
too rapidly. If you are using a fast algorithm (like trainlm), you want to set the 
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training parameters so that the convergence is relatively slow (e.g., set mu to a 
relatively large value, such as 1, and set mu_dec and mu_inc to values close to 
1, such as 0.8 and 1.5, respectively). The training functions trainscg and 
trainrp usually work well with early stopping. 

With early stopping, the choice of the validation set is also important. The 
validation set should be representative of all points in the training set.

With both regularization and early stopping, it is a good idea to train the 
network starting from several different initial conditions. It is possible for 
either method to fail in certain circumstances. By testing several different 
initial conditions, you can verify robust network performance.

Based on our experience, Bayesian regularization generally provides better 
generalization performance than early stopping, when training function 
approximation networks. This is because Bayesian regularization does not 
require that a validation data set be separated out of the training data set. It 
uses all of the data. This advantage is especially noticeable when the size of the 
data set is small. 

To provide you with some insight into the performance of the algorithms, we 
tested both early stopping and Bayesian regularization on several benchmark 
data sets, which are listed in the following table.

Data Set Title No. 
pts.

Network Description

BALL 67 2-10-1 Dual-sensor calibration for a ball position 
measurement.

SINE (5% N) 41 1-15-1 Single-cycle sine wave with Gaussian noise at 5% 
level.

SINE (2% N) 41 1-15-1 Single-cycle sine wave with Gaussian noise at 2% 
level.

ENGINE (ALL) 119
9

2-30-2 Engine sensor - full data set.

ENGINE (1/4) 300 2-30-2 Engine sensor - 1/4 of data set.
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These data sets are of various sizes, with different numbers of inputs and 
targets. With two of the data sets we trained the networks once using all of the 
data and then retrained the networks using only a fraction of the data. This 
illustrates how the advantage of Bayesian regularization becomes more 
noticeable when the data sets are smaller. All of the data sets are obtained from 
physical systems, except for the SINE data sets. These two were artificially 
created by adding various levels of noise to a single cycle of a sine wave. The 
performance of the algorithms on these two data sets illustrates the effect of 
noise.

The following table summarizes the performance of Early Stopping (ES) and 
Bayesian Regularization (BR) on the seven test sets. (The trainscg algorithm 
was used for the early stopping tests. Other algorithms provide similar 
performance.)

Mean Squared Test Set Error

We can see that Bayesian regularization performs better than early stopping 
in most cases. The performance improvement is most noticeable when the data 
set is small, or if there is little noise in the data set. The BALL data set, for 
example, was obtained from sensors that had very little noise.

Although the generalization performance of Bayesian regularization is often 
better than early stopping, this is not always the case. In addition, the form of 

CHOLEST 
(ALL)

264 5-15-3 Cholesterol measurement - full data set.

CHOLEST (1/2) 132 5-15-3 Cholesterol measurement - 1/2 data set.

Data Set Title No. 
pts.

Network Description

Method Ball Engine 
(All)

Engine 
(1/4)

Choles 
(All)

Choles 
(1/2)

Sine 
(5% N)

Sine (2% N)

ES 1.2e-1 1.3e-2 1.9e-2 1.2e-1 1.4e-1 1.7e-1 1.3e-1

BR 1.3e-3 2.6e-3 4.7e-3 1.2e-1 9.3e-2 3.0e-2 6.3e-3

ES/BR 92 5 4 1 1.5 5.7 21
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Bayesian regularization implemented in the toolbox does not perform as well 
on pattern recognition problems as it does on function approximation 
problems. This is because the approximation to the Hessian that is used in the 
Levenberg-Marquardt algorithm is not as accurate when the network output is 
saturated, as would be the case in pattern recognition problems. Another 
disadvantage of the Bayesian regularization method is that it generally takes 
longer to converge than early stopping.
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Preprocessing and Postprocessing
Neural network training can be made more efficient if certain preprocessing 
steps are performed on the network inputs and targets. In this section, we 
describe several preprocessing routines that you can use. 

Min and Max (premnmx, postmnmx, tramnmx)
Before training, it is often useful to scale the inputs and targets so that they 
always fall within a specified range. The function premnmx can be used to scale 
inputs and targets so that they fall in the range [-1,1]. The following code 
illustrates the use of this function.

[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t);
net=train(net,pn,tn);

The original network inputs and targets are given in the matrices p and t. The 
normalized inputs and targets, pn and tn, that are returned will all fall in the 
interval [-1,1]. The vectors minp and maxp contain the minimum and maximum 
values of the original inputs, and the vectors mint and maxt contain the 
minimum and maximum values of the original targets. After the network has 
been trained, these vectors should be used to transform any future inputs that 
are applied to the network. They effectively become a part of the network, just 
like the network weights and biases. 

If premnmx is used to scale both the inputs and targets, then the output of the 
network will be trained to produce outputs in the range [-1,1]. If you want to 
convert these outputs back into the same units that were used for the original 
targets, then you should use the routine postmnmx. In the following code, we 
simulate the network that was trained in the previous code, and then convert 
the network output back into the original units.

an = sim(net,pn);
a = postmnmx(an,mint,maxt);

The network output an will correspond to the normalized targets tn. The 
un-normalized network output a is in the same units as the original targets t.

If premnmx is used to preprocess the training set data, then whenever the 
trained network is used with new inputs they should be preprocessed with the 
minimum and maximums that were computed for the training set. This can be 
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accomplished with the routine tramnmx. In the following code, we apply a new 
set of inputs to the network we have already trained.

pnewn = tramnmx(pnew,minp,maxp);
anewn = sim(net,pnewn);
anew = postmnmx(anewn,mint,maxt);

Mean and Stand. Dev. (prestd, poststd, trastd)
Another approach for scaling network inputs and targets is to normalize the 
mean and standard deviation of the training set. This procedure is 
implemented in the function prestd. It normalizes the inputs and targets so 
that they will have zero mean and unity standard deviation. The following code 
illustrates the use of prestd.

[pn,meanp,stdp,tn,meant,stdt] = prestd(p,t);

The original network inputs and targets are given in the matrices p and t. The 
normalized inputs and targets, pn and tn, that are returned will have zero 
means and unity standard deviation. The vectors meanp and stdp contain the 
mean and standard deviations of the original inputs, and the vectors meant and 
stdt contain the means and standard deviations of the original targets. After 
the network has been trained, these vectors should be used to transform any 
future inputs that are applied to the network. They effectively become a part of 
the network, just like the network weights and biases. 

If prestd is used to scale both the inputs and targets, then the output of the 
network is trained to produce outputs with zero mean and unity standard 
deviation. If you want to convert these outputs back into the same units that 
were used for the original targets, then you should use the routine poststd. In 
the following code we simulate the network that was trained in the previous 
code, and then convert the network output back into the original units.

an = sim(net,pn);
a = poststd(an,meant,stdt);

The network output an corresponds to the normalized targets tn. The 
un-normalized network output a is in the same units as the original targets t.

If prestd is used to preprocess the training set data, then whenever the trained 
network is used with new inputs, they should be preprocessed with the means 
and standard deviations that were computed for the training set. This can be 
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accomplished with the routine trastd. In the following code, we apply a new 
set of inputs to the network we have already trained.

pnewn = trastd(pnew,meanp,stdp);
anewn = sim(net,pnewn);
anew = poststd(anewn,meant,stdt);

Principal Component Analysis (prepca, trapca)
In some situations, the dimension of the input vector is large, but the 
components of the vectors are highly correlated (redundant). It is useful in this 
situation to reduce the dimension of the input vectors. An effective procedure 
for performing this operation is principal component analysis. This technique 
has three effects: it orthogonalizes the components of the input vectors (so that 
they are uncorrelated with each other); it orders the resulting orthogonal 
components (principal components) so that those with the largest variation 
come first; and it eliminates those components that contribute the least to the 
variation in the data set. The following code illustrates the use of prepca, which 
performs a principal component analysis.

[pn,meanp,stdp] = prestd(p);
[ptrans,transMat] = prepca(pn,0.02);

Note that we first normalize the input vectors, using prestd, so that they have 
zero mean and unity variance. This is a standard procedure when using 
principal components. In this example, the second argument passed to prepca 
is 0.02. This means that prepca eliminates those principal components that 
contribute less than 2% to the total variation in the data set. The matrix 
ptrans contains the transformed input vectors. The matrix transMat contains 
the principal component transformation matrix. After the network has been 
trained, this matrix should be used to transform any future inputs that are 
applied to the network. It effectively becomes a part of the network, just like 
the network weights and biases. If you multiply the normalized input vectors 
pn by the transformation matrix transMat, you obtain the transformed input 
vectors ptrans. 

If prepca is used to preprocess the training set data, then whenever the trained 
network is used with new inputs they should be preprocessed with the 
transformation matrix that was computed for the training set. This can be 
accomplished with the routine trapca. In the following code, we apply a new 
set of inputs to a network we have already trained.



5 Backpropagation

5-64

pnewn = trastd(pnew,meanp,stdp);
pnewtrans = trapca(pnewn,transMat);
a = sim(net,pnewtrans);

Post-Training Analysis (postreg)
The performance of a trained network can be measured to some extent by the 
errors on the training, validation and test sets, but it is often useful to 
investigate the network response in more detail. One option is to perform a 
regression analysis between the network response and the corresponding 
targets. The routine postreg is designed to perform this analysis. 

The following commands illustrate how we can perform a regression analysis 
on the network that we previously trained in the early stopping section. 

a = sim(net,p);
[m,b,r] = postreg(a,t)
m =
    0.9874
b =
   -0.0067
r =
    0.9935

Here we pass the network output and the corresponding targets to postreg. It 
returns three parameters. The first two, m and b, correspond to the slope and 
the y-intercept of the best linear regression relating targets to network 
outputs. If we had a perfect fit (outputs exactly equal to targets), the slope 
would be 1, and the y-intercept would be 0. In this example, we can see that the 
numbers are very close. The third variable returned by postreg is the 
correlation coefficient (R-value) between the outputs and targets. It is a 
measure of how well the variation in the output is explained by the targets. If 
this number is equal to 1, then there is perfect correlation between targets and 
outputs. In our example, the number is very close to 1, which indicates a good 
fit.

The following figure illustrates the graphical output provided by postreg. The 
network outputs are plotted versus the targets as open circles. The best linear 
fit is indicated by a dashed line. The perfect fit (output equal to targets) is 
indicated by the solid line. In this example, it is difficult to distinguish the best 
linear fit line from the perfect fit line, because the fit is so good.
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Sample Training Session
We have covered a number of different concepts in this chapter. At this point it 
might be useful to put some of these ideas together with an example of how a 
typical training session might go.

For this example, we are going to use data from a medical application 
[PuLu92]. We want to design an instrument that can determine serum 
cholesterol levels from measurements of spectral content of a blood sample. We 
have a total of 264 patients for which we have measurements of 21 wavelengths 
of the spectrum. For the same patients we also have measurements of hdl, ldl, 
and vldl cholesterol levels, based on serum separation. The first step is to load 
the data into the workspace and perform a principal component analysis.

load choles_all
[pn,meanp,stdp,tn,meant,stdt] = prestd(p,t);
[ptrans,transMat] = prepca(pn,0.001);

Here we have conservatively retained those principal components which 
account for 99.9% of the variation in the data set. Let’s check the size of the 
transformed data.

[R,Q] = size(ptrans)
R =
4

Q =
264

There was apparently significant redundancy in the data set, since the 
principal component analysis has reduced the size of the input vectors from 21 
to 4.

The next step is to divide the data up into training, validation and test subsets. 
We will take one fourth of the data for the validation set, one fourth for the test 
set and one half for the training set. We pick the sets as equally spaced points 
throughout the original data.

iitst = 2:4:Q;
iival = 4:4:Q;
iitr = [1:4:Q 3:4:Q];
val.P = ptrans(:,iival); val.T = tn(:,iival);
test.P = ptrans(:,iitst); test.T = tn(:,iitst);
ptr = ptrans(:,iitr); ttr = tn(:,iitr);
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We are now ready to create a network and train it. For this example, we will 
try a two-layer network, with tan-sigmoid transfer function in the hidden layer 
and a linear transfer function in the output layer. This is a useful structure for 
function approximation (or regression) problems. As an initial guess, we use 
five neurons in the hidden layer. The network should have three output 
neurons since there are three targets. We will use the Levenberg-Marquardt 
algorithm for training.

net = newff(minmax(ptr),[5 3],{'tansig' 'purelin'},'trainlm');
[net,tr]=train(net,ptr,ttr,[],[],val,test);
TRAINLM, Epoch 0/100, MSE 3.11023/0, Gradient 804.959/1e-10
TRAINLM, Epoch 15/100, MSE 0.330295/0, Gradient 104.219/1e-10
TRAINLM, Validation stop.

The training stopped after 15 iterations because the validation error increased. 
It is a useful diagnostic tool to plot the training, validation and test errors to 
check the progress of training. We can do that with the following commands.

plot(tr.epoch,tr.perf,tr.epoch,tr.vperf,tr.epoch,tr.tperf)
legend('Training','Validation','Test',-1);
ylabel('Squared Error'); xlabel('Epoch')

The result is shown in the following figure. The result here is reasonable, since 
the test set error and the validation set error have similar characteristics, and 
it doesn’t appear that any significant overfitting has occurred. 
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The next step is to perform some analysis of the network response. We will put 
the entire data set through the network (training, validation and test) and will 
perform a linear regression between the network outputs and the 
corresponding targets. First we need to unnormalize the network outputs.

an = sim(net,ptrans);
a = poststd(an,meant,stdt);
for i=1:3
  figure(i)
  [m(i),b(i),r(i)] = postreg(a(i,:),t(i,:));
end

In this case, we have three outputs, so we perform three regressions. The 
results are shown in the following figures. 
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The first two outputs seem to track the targets reasonably well (this is a 
difficult problem), and the R-values are almost 0.9. The third output (vldl 
levels) is not well modeled. We probably need to work more on that problem. 
We might go on to try other network architectures (more hidden layer 
neurons), or to try Bayesian regularization instead of early stopping for our 
training technique. Of course there is also the possibility that vldl levels cannot 
be accurately computed based on the given spectral components.

The function demobp1 contains a Slide show demonstration of the sample 
training session. The function nnsample1 contains all of the commands that we 
used in this section. You can use it as a template for your own training sessions.
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Limitations and Cautions
The gradient descent algorithm is generally very slow because it requires small 
learning rates for stable learning. The momentum variation is usually faster 
than simple gradient descent, since it allows higher learning rates while 
maintaining stability, but it is still too slow for many practical applications. 
These two methods would normally be used only when incremental training is 
desired. You would normally use Levenberg-Marquardt training for small and 
medium size networks, if you have enough memory available. If memory is a 
problem, then there are a variety of other fast algorithms available. For large 
networks you will probably want to use trainscg or trainrp.

Multi-layered networks are capable of performing just about any linear or 
nonlinear computation, and can approximate any reasonable function 
arbitrarily well. Such networks overcome the problems associated with the 
perceptron and linear networks. However, while the network being trained 
may be theoretically capable of performing correctly, backpropagation and its 
variations may not always find a solution. See page 12-8 of [HDB96] for a 
discussion of convergence to local minimum points.

Picking the learning rate for a nonlinear network is a challenge. As with linear 
networks, a learning rate that is too large leads to unstable learning. 
Conversely, a learning rate that is too small results in incredibly long training 
times. Unlike linear networks, there is no easy way of picking a good learning 
rate for nonlinear multilayer networks. See page 12-8 of [HDB96] for examples 
of choosing the learning rate. With the faster training algorithms, the default 
parameter values normally perform adequately.

The error surface of a nonlinear network is more complex than the error 
surface of a linear network. To understand this complexity see the figures on 
pages 12-5 to 12-7 of [HDB96], which show three different error surfaces for a 
multilayer network. The problem is that nonlinear transfer functions in 
multilayer networks introduce many local minima in the error surface. As 
gradient descent is performed on the error surface it is possible for the network 
solution to become trapped in one of these local minima. This may happen 
depending on the initial starting conditions. Settling in a local minimum may 
be good or bad depending on how close the local minimum is to the global 
minimum and how low an error is required. In any case, be cautioned that 
although a multilayer backpropagation network with enough neurons can 
implement just about any function, backpropagation will not always find the 
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correct weights for the optimum solution. You may want to reinitialize the 
network and retrain several times to guarantee that you have the best solution. 

Networks are also sensitive to the number of neurons in their hidden layers. 
Too few neurons can lead to underfitting. Too many neurons can contribute to 
overfitting, in which all training points are well fit, but the fitting curve takes 
wild oscillations between these points. Ways of dealing with various of these 
issues are discussed in the section on improving generalization. This topic is 
also discussed starting on page 11-21 of [HDB96].
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Summary
Backpropagation can train multilayer feed-forward networks with 
differentiable transfer functions to perform function approximation, pattern 
association, and pattern classification. (Other types of networks can be trained 
as well, although the multilayer network is most commonly used.) The term 
backpropagation refers to the process by which derivatives of network error, 
with respect to network weights and biases, can be computed. This process can 
be used with a number of different optimization strategies.

The architecture of a multilayer network is not completely constrained by the 
problem to be solved. The number of inputs to the network is constrained by 
the problem, and the number of neurons in the output layer is constrained by 
the number of outputs required by the problem. However, the number of layers 
between network inputs and the output layer and the sizes of the layers are up 
to the designer. 

The two-layer sigmoid/linear network can represent any functional 
relationship between inputs and outputs if the sigmoid layer has enough 
neurons.

There are several different backpropagation training algorithms. They have a 
variety of different computation and storage requirements, and no one 
algorithm is best suited to all locations. The following list summarizes the 
training algorithms included in the toolbox.

Function Description

traingd Basic gradient descent. Slow response, can be used in 
incremental mode training.

traingdm Gradient descent with momentum. Generally faster than 
traingd. Can be used in incremental mode training.

traingdx Adaptive learning rate. Faster training than traingd, but 
can only be used in batch mode training.

trainrp Resilient backpropagation. Simple batch mode training 
algorithm with fast convergence and minimal storage 
requirements. 
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One problem that can occur when training neural networks is that the network 
can overfit on the training set and not generalize well to new data outside the 
training set. This can be prevented by training with trainbr, but it can also be 
prevented by using early stopping with any of the other training routines. This 
requires that the user pass a validation set to the training algorithm, in 
addition to the standard training set.

traincgf Fletcher-Reeves conjugate gradient algorithm. Has 
smallest storage requirements of the conjugate gradient 
algorithms.

traincgp Polak-Ribiére conjugate gradient algorithm. Slightly larger 
storage requirements than traincgf. Faster convergence 
on some problems.

traincgb Powell-Beale conjugate gradient algorithm. Slightly larger 
storage requirements than traincgp. Generally faster 
convergence.

trainscg Scaled conjugate gradient algorithm. The only conjugate 
gradient algorithm that requires no line search. A very 
good general purpose training algorithm.

trainbfg BFGS quasi-Newton method. Requires storage of 
approximate Hessian matrix and has more computation in 
each iteration than conjugate gradient algorithms, but 
usually converges in fewer iterations.

trainoss One step secant method. Compromise between conjugate 
gradient methods and quasi-Newton methods.

trainlm Levenberg-Marquardt algorithm. Fastest training 
algorithm for networks of moderate size. Has memory 
reduction feature for use when the training set is large.

trainbr Bayesian regularization. Modification of the 
Levenberg-Marquardt training algorithm to produce 
networks that generalize well. Reduces the difficulty of 
determining the optimum network architecture.

Function Description
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To produce the most efficient training, it is often helpful to preprocess the data 
before training. It is also helpful to analyze the network response after training 
is complete. The toolbox contains a number of routines for pre- and 
post-processing. They are summarized in the following table.

Function Description

premnmx Normalize data to fall in the range [-1,1].

postmnmx Inverse of premnmx. Used to convert data back to standard 
units.

tramnmx Normalize data using previously computed minimums and 
maximums. Used to preprocess new inputs to networks that 
have been trained with data normalized with premnmx.

prestd Normalize data to have zero mean and unity standard 
deviation.

poststd Inverse of prestd. Used to convert data back to standard 
units.

trastd Normalize data using previously computed means and 
standard deviations. Used to preprocess new inputs to 
networks that have been trained with data normalized with 
prestd.

prepca Principal component analysis. Reduces dimension of input 
vector and un-correlates components of input vectors.

trapca Preprocess data using previously computed principal 
component transformation matrix. Used to preprocess new 
inputs to networks that have been trained with data 
transformed with prepca.

postreg Linear regression between network outputs and targets. 
Used to determine the adequacy of network fit.
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Introduction
Neural networks have been applied very successfully in the identification and 
control of dynamic systems. The universal approximation capabilities of the 
multilayer perceptron make it a popular choice for modeling nonlinear systems 
and for implementing general-purpose nonlinear controllers [HaDe99]. This 
chapter introduces three popular neural network architectures for prediction 
and control that have been implemented in the Neural Network Toolbox: 

• Model Predictive Control

• NARMA-L2 (or Feedback Linearization) Control

• Model Reference Control

This chapter presents brief descriptions of each of these architectures and 
demonstrates how you can use them.

There are typically two steps involved when using neural networks for control:

1 System Identification

2 Control Design

In the system identification stage, you develop a neural network model of the 
plant that you want to control. In the control design stage, you use the neural 
network plant model to design (or train) the controller. In each of the three 
control architectures described in this chapter, the system identification stage 
is identical. The control design stage, however, is different for each 
architecture. 

• For the model predictive control, the plant model is used to predict future 
behavior of the plant, and an optimization algorithm is used to select the 
control input that optimizes future performance.

• For the NARMA-L2 control, the controller is simply a rearrangement of the 
plant model. 

• For the model reference control, the controller is a neural network that is 
trained to control a plant so that it follows a reference model. The neural 
network plant model is used to assist in the controller training.

The next three sections of this chapter discuss model predictive control, 
NARMA-L2 control and model reference control. Each section consists of a brief 
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description of the control concept, followed by a demonstration of the use of the 
appropriate Neural Network Toolbox function. These three controllers are 
implemented as Simulink® blocks, which are contained in the Neural Network 
Toolbox blockset.

To assist you in determining the best controller for your application, the 
following list summarizes the key controller features. Each controller has its 
own strengths and weaknesses. No single controller is appropriate for every 
application.

• Model Predictive Control. This controller uses a neural network model to 
predict future plant responses to potential control signals. An optimization 
algorithm then computes the control signals that optimize future plant 
performance. The neural network plant model is trained offline, in batch 
form, using any of the training algorithms discussed in Chapter 5. (This is 
true for all three control architectures.) The controller, however, requires a 
significant amount of on-line computation, since an optimization algorithm 
is performed at each sample time to compute the optimal control input.

• NARMA-L2 Control. This controller requires the least computation of the 
three architectures described in this chapter. The controller is simply a 
rearrangement of the neural network plant model, which is trained offline, 
in batch form. The only online computation is a forward pass through the 
neural network controller. The drawback of this method is that the plant 
must either be in companion form, or be capable of approximation by a 
companion form model. (The companion form model is described later in this 
chapter.)

• Model Reference Control. The online computation of this controller, like 
NARMA-L2, is minimal. However, unlike NARMA-L2, the model reference 
architecture requires that a separate neural network controller be trained 
off-line, in addition to the neural network plant model. The controller 
training is computationally expensive, since it requires the use of dynamic 
backpropagation [HaJe99]. On the positive side, model reference control 
applies to a larger class of plant than does NARMA-L2 control.
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NN Predictive Control
The neural network predictive controller that is implemented in the Neural 
Network Toolbox uses a neural network model of a nonlinear plant to predict 
future plant performance. The controller then calculates the control input that 
will optimize plant performance over a specified future time horizon. The first 
step in model predictive control is to determine the neural network plant model 
(system identification). Next, the plant model is used by the controller to 
predict future performance. (See the Model Predictive Control Toolbox 
documentation for a complete coverage of the application of various model 
predictive control strategies to linear systems.)

The following section describes the system identification process. This is 
followed by a description of the optimization process. Finally, it discusses how 
to use the model predictive controller block that has been implemented in 
Simulink®.

System Identification
The first stage of model predictive control is to train a neural network to 
represent the forward dynamics of the plant. The prediction error between the 
plant output and the neural network output is used as the neural network 
training signal. The process is represented by the following figure. 
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Learning
Algorithm

+-

Error

u

ym

yp
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The neural network plant model uses previous inputs and previous plant 
outputs to predict future values of the plant output. The structure of the neural 
network plant model is given in the following figure.

This network can be trained offline in batch mode, using data collected from 
the operation of the plant. Any of the training algorithms discussed in Chapter 
5, “Backpropagation”, can be used for network training. This process is 
discussed in more detail later in this chapter.

Predictive Control
The model predictive control method is based on the receding horizon 
technique [SoHa96]. The neural network model predicts the plant response 
over a specified time horizon. The predictions are used by a numerical 
optimization program to determine the control signal that minimizes the 
following performance criterion over the specified horizon.

where ,  and  define the horizons over which the tracking error and 
the control increments are evaluated. The  variable is the tentative control 
signal,  is the desired response and  is the network model response. The 

 value determines the contribution that the sum of the squares of the control 
increments has on the performance index. 

The following block diagram illustrates the model predictive control process. 
The controller consists of the neural network plant model and the optimization 
block. The optimization block determines the values of  that minimize , and 
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then the optimal  is input to the plant. The controller block has been 
implemented in Simulink, as described in the following section.

Using the NN Predictive Controller Block
This section demonstrates how the NN Predictive Controller block is used.The 
first step is to copy the NN Predictive Controller block from the Neural 
Network Toolbox blockset to your model window. See your Simulink 
documentation if you are not sure how to do this. This step is skipped in the 
following demonstration.

A demo model is provided with the Neural Network Toolbox to demonstrate the 
predictive controller. This demo uses a catalytic Continuous Stirred Tank 
Reactor (CSTR). A diagram of the process is shown in the following figure.

u

Optimization

Plant
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u yp

ymu'
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The dynamic model of the system is

where  is the liquid level,  is the product concentration at the output 
of the process,  is the flow rate of the concentrated feed , and  
is the flow rate of the diluted feed . The input concentrations are set to 

 and . The constants associated with the rate of 
consumption are  and . 

The objective of the controller is to maintain the product concentration by 
adjusting the flow . To simplify the demonstration, we set . 
The level of the tank  is not controlled for this experiment.

To run this demo, follow these steps.

1 Start MATLAB®.

2 Run the demo model by typing predcstr in the MATLAB command window. 
This command starts Simulink and creates the following model window. The 
NN Predictive Controller block has already been placed in the model.
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3 Double-click the NN Predictive Controller block. This brings up the 
following window for designing the model predictive controller. This window 
enables you to change the controller horizons  and . (  is fixed at 1.) 
The weighting parameter , described earlier, is also defined in this 
window. The parameter  is used to control the optimization. It determines 
how much reduction in performance is required for a successful optimization 
step. You can select which linear minimization routine is used by the 
optimization algorithm, and you can decide how many iterations of the 
optimization algorithm are performed at each sample time. The linear 
minimization routines are slight modifications of those discussed in Chapter 
5, “Backpropagation.”

This block contains the Simulink 
CSTR plant model.

This NN Predictive Controller block was copied from the Neural Network Toolbox 
blockset to this model window. The Control Signal was connected to the input of 
the plant model. The output of the plant model was connected to Plant Output. 
The reference signal was connected to Reference.

N2 Nu N1
ρ

α
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4 Select Plant Identification. This opens the following window. The neural 
network plant model must be developed before the controller is used. The 
plant model predicts future plant outputs. The optimization algorithm uses 
these predictions to determine the control inputs that optimize future 
performance. The plant model neural network has one hidden layer, as 
shown earlier. The size of that layer, the number of delayed inputs and 
delayed outputs, and the training function are selected in this window. You 
can select any of the training functions described in Chapter 5, 
“Backpropagation”, to train the neural network plant model.

The Cost Horizon N2 is the 
number of time steps over which 
the prediction errors are 
minimized.

The File menu has several 
items, including ones that 
allow you to import and 
export controller and plant 
networks.

The Control Horizon Nu is 
the number of time steps 
over which the control 
increments are minimized.

The Control Weighting Factor 
multiplies the sum of squared 
control increments in the 
performance function.

You can select from several 
line search routines to be 
used in the performance 
optimization algorithm.

This button opens the Plant 
Identification window. The plant 
must be identified before the 
controller is used.

After the controller parameters 
have been set, select OK or Apply 
to load the parameters into the 
Simulink model.

This selects the number of 
iterations of the 
optimization algorithm to 
be performed at each 
sample time.

This parameter 
determines when the 
line search stops.
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.

This button begins the 
plant model training. 
Generate or import data 
before training.

After the plant model has been 
trained, select OK or Apply to 
load the network into the Simulink 
model.

You can use validation 
(early stopping) and 
testing data during 
training. 

Number of data points 
generated for training, 
validation, and test 
sets.

Simulink plant model 
used to generate 
training data (file with 
.mdl extension).

The random plant input is 
a series of steps of random 
height occurring at 
random intervals. These 
fields set the minimum and 
maximum height and 
interval.

You can use any 
training function to 
train the plant model.

You can define the size 
of the two tapped 
delay lines coming into 
the plant model.

The number of neurons in the first 
layer of the plant model network.

Interval at which the program collects data 
from the Simulink plant model.

The File menu has several items, including ones that 
allow you to import and export plant model 
networks.

You can normalize the 
data using the premnmx 
function.

This button starts the 
training data generation.

You can use existing data 
to train the network. If you 
select this, a field will 
appear for the filename.

You can select a range 
on the output data to 
be used in training.

Select this option to continue 
training with current weights. 
Otherwise, you use randomly 
generated weights.

Number of 
iterations of plant 
training to be 
performed.
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5 Select the Generate Training Data button. The program generates 
training data by applying a series of random step inputs to the Simulink 
plant model. The potential training data is then displayed in a figure similar 
to the following.

6 Select Accept Data, and then select Train Network from the Plant 
Identification window. Plant model training begins. The training proceeds 

Accept the data if it is sufficiently 
representative of future plant 
activity. Then plant training begins.

If you refuse the training data, you 
return to the Plant Identification 
window and restart the training.
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according to the selected training algorithm (trainlm in this case). This is a 
straightforward application of batch training, as described in Chapter 5, 
“Backpropagation.” After the training is complete, the response of the 
resulting plant model is displayed, as in the following figure. (There are also 
separate plots for validation and testing data, if they exist.) You can then 
continue training with the same data set by selecting Train Network 
again, you can Erase Generated Data and generate a new data set, or you 
can accept the current plant model and begin simulating the closed loop 
system. For this demonstration, begin the simulation, as shown in the 
following steps.

7 Select OK in the Plant Identification window. This loads the trained 
neural network plant model into the NN Predictive Controller block.

8 Select OK in the Neural Network Predictive Control window. This loads 
the controller parameters into the NN Predictive Controller block.

9 Return to the Simulink model and start the simulation by choosing the 
Start command from the Simulation menu. As the simulation runs, the 

Random plant input – 
steps of random height 
and width.

Difference between 
plant output and 
neural network model 
output.

Output of Simulink 
plant model.

Neural network plant 
model output (one step 
ahead prediction).
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plant output and the reference signal are displayed, as in the following 
figure.
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NARMA-L2 (Feedback Linearization) Control
The neurocontroller described in this section is referred to by two different 
names: feedback linearization control and NARMA-L2 control. It is referred to 
as feedback linearization when the plant model has a particular form 
(companion form). It is referred to as NARMA-L2 control when the plant model 
can be approximated by the same form. The central idea of this type of control 
is to transform nonlinear system dynamics into linear dynamics by canceling 
the nonlinearities. This section begins by presenting the companion form 
system model and demonstrating how you can use a neural network to identify 
this model. Then it describes how the identified neural network model can be 
used to develop a controller. This is followed by a demonstration of how to use 
the NARMA-L2 Control block, which is contained in the Neural Network 
Toolbox blockset.

Identification of the NARMA-L2 Model
As with the model predictive control, the first step in using feedback 
linearization (or NARMA-L2 control) is to identify the system to be controlled. 
You train a neural network to represent the forward dynamics of the system. 
The first step is to choose a model structure to use. One standard model that 
has been used to represent general discrete-time nonlinear systems is the 
Nonlinear Autoregressive-Moving Average (NARMA) model:

where  is the system input, and  is the system output. For the 
identification phase, you could train a neural network to approximate the 
nonlinear function . This is the identification procedure used for the NN 
Predictive Controller.

If you want the system output to follow some reference trajectory, 
, the next step is to develop a nonlinear controller of the 

form:

The problem with using this controller is that if you want to train a neural 
network to create the function  that will minimize mean square error, you 
need to use dynamic backpropagation ([NaPa91] or [HaJe99]). This can be 
quite slow. One solution proposed by Narendra and Mukhopadhyay [NaMu97] 
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is to use approximate models to represent the system. The controller used in 
this section is based on the NARMA-L2 approximate model:

This model is in companion form, where the next controller input  is not 
contained inside the nonlinearity. The advantage of this form is that you can 
solve for the control input that causes the system output to follow the reference 

. The resulting controller would have the form

Using this equation directly can cause realization problems, because you must 
determine the control input  based on the output at the same time, . 
So, instead, use the model

where . The following figure shows the structure of a neural network 
representation.

ŷ k d+( ) f y k( ) y k 1–( ) … y k n– 1+( ) u k 1–( ) … u k m– 1+( ), , , , , ,[ ]
g y k( ) y k 1–( ) … y k n– 1+( ) u k 1–( ) … u k m– 1+( ), , , , , ,[ ] u k( )⋅+

=

u k( )

y k d+( ) yr k d+( )=

u k( )
yr k d+( ) f y k( ) y k 1–( ) … y k n– 1+( ) u k 1–( ) … u k n– 1+( ), , , , , ,[ ]–

g y k( ) y k 1–( ) … y k n– 1+( ) u k 1–( ) … u k n– 1+( ), , , , , ,[ ]
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NARMA-L2 Controller
Using the NARMA-L2 model, you can obtain the controller

which is realizable for . The following figure is a block diagram of the 
NARMA-L2 controller.
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This controller can be implemented with the previously identified NARMA-L2 
plant model, as shown in the following figure.
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Using the NARMA-L2 Controller Block
This section demonstrates how the NARMA-L2 controller is trained.The first 
step is to copy the NARMA-L2 Controller block from the Neural Network 
Toolbox blockset to your model window. See your Simulink documentation if 
you are not sure how to do this. This step is skipped in the following 
demonstration.

A demo model is provided with the Neural Network Toolbox to demonstrate the 
NARMA-L2 controller. In this demo, the objective is to control the position of a 
magnet suspended above an electromagnet, where the magnet is constrained 
so that it can only move in the vertical direction, as in the following figure.
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The equation of motion for this system is

where  is the distance of the magnet above the electromagnet,  is the 
current flowing in the electromagnet,  is the mass of the magnet, and  is 
the gravitational constant. The parameter  is a viscous friction coefficient 
that is determined by the material in which the magnet moves, and  is a field 
strength constant that is determined by the number of turns of wire on the 
electromagnet and the strength of the magnet. 

To run this demo, follow these steps.

1 Start MATLAB.

2 Run the demo model by typing narmamaglev in the MATLAB command 
window. This command starts Simulink and creates the following model 
window. The NARMA-L2 Control block has already been placed in the 
model.
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3 Double-click the NARMA-L2 Controller block. This brings up the following 
window. Notice that this window enables you to train the NARMA-L2 model. 
There is no separate window for the controller, since the controller is 
determined directly from the model, unlike the model predictive controller.
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4 Since this window works the same as the other Plant Identification 
windows, we won’t go through the training process again now. Instead, let’s 
simulate the NARMA-L2 controller.

5 Return to the Simulink model and start the simulation by choosing the 
Start command from the Simulation menu. As the simulation runs, the 
plant output and the reference signal are displayed, as in the following 
figure.
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Model Reference Control
The neural model reference control architecture uses two neural networks: a 
controller network and a plant model network, as shown in the following 
figure. The plant model is identified first, and then the controller is trained so 
that the plant output follows the reference model output.

The figure on the following page shows the details of the neural network plant 
model and the neural network controller, as they are implemented in the 
Neural Network Toolbox. Each network has two layers, and you can select the 
number of neurons to use in the hidden layers. There are three sets of 
controller inputs:

• Delayed reference inputs

• Delayed controller outputs

• Delayed plant outputs

For each of these inputs, you can select the number of delayed values to use. 
Typically, the number of delays increases with the order of the plant. There are 
two sets of inputs to the neural network plant model:

• Delayed controller outputs

• Delayed plant outputs

As with the controller, you can set the number of delays. The next section 
demonstrates how you can set the parameters.
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Using the Model Reference Controller Block
This section demonstrates how the neural network controller is trained. The 
first step is to copy the Model Reference Control block from the Neural Network 
Toolbox blockset to your model window. See your Simulink documentation if 
you are not sure how to do this. This step is skipped in the following 
demonstration.

A demo model is provided with the Neural Network Toolbox to demonstrate the 
model reference controller. In this demo, the objective is to control the 
movement of a simple, single-link robot arm, as shown in the following figure.

The equation of motion for the arm is

where  is the angle of the arm, and  is the torque supplied by the DC motor. 

The objective is to train the controller so that the arm tracks the reference 
model

where  is the output of the reference model, and  is the input reference 
signal. 
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This demo uses a neural network controller with a 5-13-1 architecture. The 
inputs to the controller consist of two delayed reference inputs, two delayed 
plant outputs, and one delayed controller output. A sampling interval of 0.05 
seconds is used.

To run this demo, follow these steps.

1 Start MATLAB.

2 Run the demo model by typing mrefrobotarm in the MATLAB command 
window. This command starts Simulink and creates the following model 
window. The Model Reference Control block has already been placed in the 
model. 

3 Double-click the Model Reference Control block. This brings up the following 
window for training the model reference controller.
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4 The next step would normally be to select Plant Identification, which 
opens the Plant Identification window. You would then train the plant 
model. Since the Plant Identification window is identical to the one used 
with the previous controllers, we won’t go through that process here.

The file menu has several 
items, including ones that 
allow you to import and 
export controller and plant 
networks. You must specify a 

Simulink reference 
model for the plant 
to follow.

The parameters in this block 
specify the random 
reference input for training. 
The reference is a series of 
random steps at random 
intervals.

This button opens the Plant 
Identification window. The plant 
must be identified before the 
controller is trained.

This block specifies 
the inputs to the 
controller. 

The training data is 
broken into 
segments. Specify 
the number of 
training epochs for 
each segment.

After the controller has been 
trained, select OK or Apply to 
load the network into the Simulink 
model.

Current weights are used 
as initial conditions to 
continue training.

If selected, 
segments of data 
are added to the 
training set as 
training continues. 
Otherwise, only one 
segment at a time is 
used.

You must generate or 
import training data 
before you can train the 
controller.
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5 Select Generate Data. The program then starts generating the data for 
training the controller. After the data is generated, the following window 
appears.

6 Select Accept Data. Return to the Model Reference Control window and 
select Train Controller. The program presents one segment of data to the 
network and trains the network for a specified number of iterations (five in 
this case). This process continues one segment at a time until the entire 
training set has been presented to the network. Controller training can be 
significantly more time consuming than plant model training. This is 

Select this if the training data 
shows enough variation to 
adequately train the controller.

If the data is not adequate, select 
this button and then go back to the 
controller window and select 
Generate Data again.
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because the controller must be trained using dynamic backpropagation (see 
[HaJe99]). After the training is complete, the response of the resulting 
closed loop system is displayed, as in the following figure.

7 Go back to the Model Reference Control window. If the performance of the 
controller is not accurate, then you can select Train Controller again, 
which continues the controller training with the same data set. If you would 
like to use a new data set to continue training, the select Generate Data or 
Import Data before you select Train Controller. (Be sure that Use 
Current Weights is selected, if you want to continue training with the 
same weights.) It may also be necessary to retrain the plant model. If the 
plant model is not accurate, it can affect the controller training. For this 
demonstration, the controller should be accurate enough, so select OK. This 
loads the controller weights into the Simulink model.

This axis displays the 
random reference input 
that was used for training.

This axis displays the 
response of the reference 
model and the response of 
the closed loop plant. The 
plant response should 
follow the reference 
model.
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8 Return to the Simulink model and start the simulation by selecting the 
Start command from the Simulation menu. As the simulation runs, the 
plant output and the reference signal are displayed, as in the following 
figure.
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Importing and Exporting
You can save networks and training data to the workspace or to a disk file. The 
following two sections demonstrate how you can do this.

Importing and Exporting Networks
The controller and plant model networks that you develop are stored within 
Simulink controller blocks. At some point you may want to transfer the 
networks into other applications, or you may want to transfer a network from 
one controller block to another. You can do this by using the Import Network 
and Export Network menu options. The following demonstration leads you 
through the export and import processes. (We use the NARMA-L2 window for 
this demonstration, but the same procedure applies to all of the controllers.)

1 Repeat the first three steps of the NARMA-L2 demonstration. The 
NARMA-L2 Plant Identification window should then be open.

2 Select Export from the File menu, as shown below.

This causes the following window to open.
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3 Select Export to Disk. The following window opens. Enter the filename 
test in the box, and select Save. This saves the controller and plant 
networks to disk.

4 Retrieve that data with the Import menu option. Select Import Network 
from the File menu, as in the following figure.

Here you can select 
which variables or 
networks will be 
exported.

You can save the 
networks as network 
objects, or as weights 
and biases.

You can send the 
networks to disk, or 
to the workspace.

Here you can choose 
names for the network 
objects.

You can also save the 
networks as Simulink 
models.

The filename goes 
here.
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This causes the following window to appear. Follow the steps indicated on 
the following page to retrieve the data that you previously exported. Once 
the data is retrieved, you can load it into the controller block by selecting OK 
or Apply. Notice that the window only has an entry for the plant model, 
even though you saved both the plant model and the controller. This is 
because the NARMA-L2 controller is derived directly from the plant model, 
so you don’t need to import both networks.
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Select MAT-file and 
select Browse.

Available MAT-files will 
appear here. Select the 
appropriate file; then select 
Open.

The available networks 
appear here.

Select the appropriate plant 
and/or controller and move 
them into the desired 
position and select OK.



Importing and Exporting

6-35

Importing and Exporting Training Data
The data that you generate to train networks exists only in the corresponding 
plant identification or controller training window. You may wish to save the 
training data to the workspace or to a disk file so that you can load it again at 
a later time. You may also want to combine data sets manually and then load 
them back into the training window. You can do this by using the Import and 
Export buttons. The following demonstration leads you through the import and 
export processes. (We use the NN Predictive Control window for this 
demonstration, but the same procedure applies to all of the controllers.)

1 Repeat the first five steps of the NN Predictive Control demonstration. Then 
select Accept Data. The Plant Identification window should then be open, 
and the Import and Export buttons should be active.

2 Select the Export button. This causes the following window to open.

3 Select Export to Disk. The following window opens. Enter the filename 
testdat in the box, and select Save. This saves the training data structure 
to disk.

You can select a name 
for the data structure. 
The structure contains 
at least two fields: 
name.U, and name.Y. 
These two fields 
contain the input and 
output arrays.

You can export the 
data to the workspace 
or to a disk file.
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4 Now let’s retrieve the data with the import command. Select the Import 
button in the Plant Identification window.This causes the following 
window to appear. Follow the steps indicated on the following page to 
retrieve the data that you previously exported. Once the data is imported, 
you can train the neural network plant model.

The filename goes 
here.
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Select MAT-file and 
select Browse. Available MAT-files will 

appear here. Select the 
appropriate file; then select 
Open.

The available data appears 
here.

Select the appropriate data 
structure or array and move 
it into the desired position 
and select OK.

The data can be imported as two 
arrays (input and output), or as a 
structure that contains at least two 
fields: name.U and name.Y.
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Summary
The following table summarizes the controllers discussed in this chapter.

Block Description

NN Predictive Control Uses a neural network plant model to predict 
future plant behavior. An optimization 
algorithm determines the control input that 
optimizes plant performance over a finite time 
horizon. The plant training requires only a 
batch algorithm for static networks and is 
reasonably fast. The controller requires an 
online optimization algorithm, which requires 
more computation than the other controllers.

NARMA-L2 Control An approximate plant model is in companion 
form. The next control input is computed to force 
the plant output to follow a reference signal. The 
neural network plant model is trained with 
static backpropagation and is reasonably fast. 
The controller is a rearrangement of the plant 
model, and requires minimal online 
computation.

Model Reference 
Control

A neural network plant model is first developed. 
The plant model is then used to train a neural 
network controller to force the plant output to 
follow the output of a reference model. This 
control architecture requires the use of dynamic 
backpropagation for training the controller. This 
generally takes more time than training static 
networks with the standard backpropagation 
algorithm. However, this approach applies to a 
more general class of plant than does the 
NARMA-L2 control architecture. The controller 
requires minimal online computation.
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Introduction
Radial basis networks may require more neurons than standard feed-forward 
backpropagation networks, but often they can be designed in a fraction of the 
time it takes to train standard feed-forward networks. They work best when 
many training vectors are available. 

You may want to consult the following paper on this subject:

Chen, S., C.F.N. Cowan, and P. M. Grant, “Orthogonal Least Squares Learning 
Algorithm for Radial Basis Function Networks,” IEEE Transactions on Neural 
Networks, vol. 2, no. 2, March 1991, pp. 302-309.

This chapter discusses two variants of radial basis networks, Generalized 
Regression networks (GRNN) and Probabilistic neural networks (PNN). You 
may want to read about them in P.D. Wasserman, Advanced Methods in 
Neural Computing, New York: Van Nostrand Reinhold, 1993 on pp. 155-61, 
and pp. 35-55 respectively.

Important Radial Basis Functions
Radial basis networks can be designed with either newrbe or newrb. GRNN and 
PNN can be designed with newgrnn and newpnn, respectively.

Type help radbasis to see a listing of all functions and demonstrations related 
to radial basis networks.
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Radial Basis Functions

Neuron Model
Here is a radial basis network with R inputs.

Notice that the expression for the net input of a radbas neuron is different from 
that of neurons in previous chapters. Here the net input to the radbas transfer 
function is the vector distance between its weight vector w and the input vector 
p, multiplied by the bias b. (The  box in this figure accepts the input 
vector p and the single row input weight matrix, and produces the dot product 
of the two.)

The transfer function for a radial basis neuron is:

Here is a plot of the radbas transfer function.
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The radial basis function has a maximum of 1 when its input is 0. As the 
distance between w and p decreases, the output increases. Thus, a radial basis 
neuron acts as a detector that produces 1 whenever the input p is identical to 
its weight vector p.

The bias b allows the sensitivity of the radbas neuron to be adjusted. For 
example, if a neuron had a bias of 0.1 it would output 0.5 for any input vector 
p at vector distance of 8.326 (0.8326/b) from its weight vector w. 

Network Architecture
Radial basis networks consist of two layers: a hidden radial basis layer of S1 
neurons, and an output linear layer of S2 neurons.

The  box in this figure accepts the input vector p and the input weight 
matrix IW1,1, and produces a vector having S1 elements. The elements are the 
distances between the input vector and vectors iIW1,1 formed from the rows of 
the input weight matrix. 

The bias vector b1 and the output of  are combined with the MATLAB® 
operation .* , which does element-by-element multiplication.

The output of the first layer for a feed forward network net can be obtained with 
the following code:

a{1} = radbas(netprod(dist(net.IW{1,1},p),net.b{1}))

n1  S 2 x 1

 S 1 x 1

 S 1 x 1

S 1 x 1

S 1 x R 

��
��IW1,1

��
��b1

a1

1

n2
S 2 x S 1

S 2 x 1

S 2 x 1

��
��b2

��
LW2,1

1

p
 R x 1

R S1 S2

Input Radial Basis Layer Linear Layer

a
i
1 = radbas ( || 

i
IW1,1 - p || b

i
1) a2 = purelin (LW2,1 a1 +b2)

��
��
��

��
��
��

Where...

 

R = number of 
      elements in 
      input vector
 

a
i
1 is i th element of a1 where  

i
IW1,1 is a vector made of the i th row of IW1,1   

��|| dist ||
 S 1 x 1

.*

a2 = y

S1 = number of 
       neurons in
       layer 1

S2 =number of 
       neurons in 
       layer 2

 dist 

 dist 
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Fortunately, you won’t have to write such lines of code. All of the details of 
designing this network are built into design functions newrbe and newrb, and 
their outputs can be obtained with sim.

We can understand how this network behaves by following an input vector p 
through the network to the output a2. If we present an input vector to such a 
network, each neuron in the radial basis layer will output a value according to 
how close the input vector is to each neuron’s weight vector.

Thus, radial basis neurons with weight vectors quite different from the input 
vector p have outputs near zero. These small outputs have only a negligible 
effect on the linear output neurons.

In contrast, a radial basis neuron with a weight vector close to the input vector 
p produces a value near 1. If a neuron has an output of 1 its output weights in 
the second layer pass their values to the linear neurons in the second layer.

In fact, if only one radial basis neuron had an output of 1, and all others had 
outputs of 0’s (or very close to 0), the output of the linear layer would be the 
active neuron’s output weights. This would, however, be an extreme case. 
Typically several neurons are always firing, to varying degrees.

Now let us look in detail at how the first layer operates. Each neuron's 
weighted input is the distance between the input vector and its weight vector, 
calculated with dist. Each neuron's net input is the element-by-element 
product of its weighted input with its bias, calculated with netprod. Each 
neuron’s output is its net input passed through radbas. If a neuron's weight 
vector is equal to the input vector (transposed), its weighted input is 0, its net 
input is 0, and its output is 1. If a neuron's weight vector is a distance of spread 
from the input vector, its weighted input is spread, its net input is sqrt(-log(.5)) 
(or 0.8326), therefore its output is 0.5.

Exact Design (newrbe)
Radial basis networks can be designed with the function newrbe. This function 
can produce a network with zero error on training vectors. It is called in the 
following way.

net = newrbe(P,T,SPREAD)

The function newrbe takes matrices of input vectors P and target vectors T, and 
a spread constant SPREAD for the radial basis layer, and returns a network with 
weights and biases such that the outputs are exactly T when the inputs are P.
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This function newrbe creates as many radbas neurons as there are input 
vectors in P, and sets the first-layer weights to P'. Thus, we have a layer of 
radbas neurons in which each neuron acts as a detector for a different input 
vector. If there are Q input vectors, then there will be Q neurons.

Each bias in the first layer is set to 0.8326/SPREAD. This gives radial basis 
functions that cross 0.5 at weighted inputs of +/- SPREAD. This determines the 
width of an area in the input space to which each neuron responds. If SPREAD 
is 4, then each radbas neuron will respond with 0.5 or more to any input vectors 
within a vector distance of 4 from their weight vector. As we shall see, SPREAD 
should be large enough that neurons respond strongly to overlapping regions 
of the input space.

The second-layer weights IW 2,1 (or in code, IW{2,1}) and biases b2 (or in code, 
b{2}) are found by simulating the first-layer outputs a1 (A{1}), and then solving 
the following linear expression. 

[W{2,1} b{2}] * [A{1}; ones] = T

We know the inputs to the second layer (A{1}) and the target (T), and the layer 
is linear. We can use the following code to calculate the weights and biases of 
the second layer to minimize the sum-squared error.

Wb = T/[P; ones(1,Q)]

Here Wb contains both weights and biases, with the biases in the last column. 
The sum-squared error will always be 0, as explained below.

We have a problem with C constraints (input/target pairs) and each neuron has 
C +1 variables (the C weights from the C radbas neurons, and a bias). A linear 
problem with C constraints and more than C variables has an infinite number 
of zero error solutions! 

Thus, newrbe creates a network with zero error on training vectors. The only 
condition we have to meet is to make sure that SPREAD is large enough so that 
the active input regions of the radbas neurons overlap enough so that several 
radbas neurons always have fairly large outputs at any given moment. This 
makes the network function smoother and results in better generalization for 
new input vectors occurring between input vectors used in the design. 
(However, SPREAD should not be so large that each neuron is effectively 
responding in the same, large, area of the input space.)

The drawback to newrbe is that it produces a network with as many hidden 
neurons as there are input vectors. For this reason, newrbe does not return an 
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acceptable solution when many input vectors are needed to properly define a 
network, as is typically the case.

More Efficient Design (newrb)
The function newrb iteratively creates a radial basis network one neuron at a 
time. Neurons are added to the network until the sum-squared error falls 
beneath an error goal or a maximum number of neurons has been reached. The 
call for this function is:

net = newrb(P,T,GOAL,SPREAD)

The function newrb takes matrices of input and target vectors, P and T, and 
design parameters GOAL and, SPREAD, and returns the desired network.

The design method of newrb is similar to that of newrbe. The difference is that 
newrb creates neurons one at a time. At each iteration the input vector that 
results in lowering the network error the most, is used to create a radbas 
neuron. The error of the new network is checked, and if low enough newrb is 
finished. Otherwise the next neuron is added. This procedure is repeated until 
the error goal is met, or the maximum number of neurons is reached.

As with newrbe, it is important that the spread parameter be large enough that 
the radbas neurons respond to overlapping regions of the input space, but not 
so large that all the neurons respond in essentially the same manner.

Why not always use a radial basis network instead of a standard feed-forward 
network? Radial basis networks, even when designed efficiently with newrbe, 
tend to have many times more neurons than a comparable feed-forward 
network with tansig or logsig neurons in the hidden layer.

This is because sigmoid neurons can have outputs over a large region of the 
input space, while radbas neurons only respond to relatively small regions of 
the input space. The result is that the larger the input space (in terms of 
number of inputs, and the ranges those inputs vary over) the more radbas 
neurons required.

On the other hand, designing a radial basis network often takes much less time 
than training a sigmoid/linear network, and can sometimes result in fewer 
neurons being used, as can be seen in the next demonstration.



7 Radial Basis Networks

7-8

Demonstrations
The demonstration script demorb1 shows how a radial basis network is used to 
fit a function. Here the problem is solved with only five neurons.

Demonstration scripts demorb3 and demorb4 examine how the spread constant 
affects the design process for radial basis networks.

In demorb3, a radial basis network is designed to solve the same problem as in 
demorb1. However, this time the spread constant used is 0.01. Thus, each 
radial basis neuron returns 0.5 or lower, for any input vectors with a distance 
of 0.01 or more from its weight vector.

Because the training inputs occur at intervals of 0.1, no two radial basis 
neurons have a strong output for any given input.

In demorb3, it was demonstrated that having too small a spread constant can 
result in a solution that does not generalize from the input/target vectors used 
in the design. This demonstration, demorb4, shows the opposite problem. If the 
spread constant is large enough, the radial basis neurons will output large 
values (near 1.0) for all the inputs used to design the network.

If all the radial basis neurons always output 1, any information presented to 
the network becomes lost. No matter what the input, the second layer outputs 
1’s. The function newrb will attempt to find a network, but will not be able to 
do so because to numerical problems that arise in this situation.

The moral of the story is, choose a spread constant larger than the distance 
between adjacent input vectors, so as to get good generalization, but smaller 
than the distance across the whole input space.

For this problem that would mean picking a spread constant greater than 0.1, 
the interval between inputs, and less than 2, the distance between the 
left-most and right-most inputs.
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Generalized Regression Networks
A generalized regression neural network (GRNN) is often used for function 
approximation. As discussed below, it has a radial basis layer and a special 
linear layer.

Network Architecture 
The architecture for the GRNN is shown below. It is similar to the radial basis 
network, but has a slightly different second layer.

Here the nprod box shown above (code function normprod) produces S2 
elements in vector n2. Each element is the dot product of a row of LW2,1 and 
the input vector a1, all normalized by the sum of the elements of a1. For 
instance, suppose that:

LW{1,2}= [1 -2;3 4;5 6];
a{1} = [7; -8;

Then

aout = normprod(LW{1,2},a{1})
aout =
   -23
    11
    13

n1

 Q  x 1

 Q  x 1

Q  x R 

��
��

IW1,1

��
��b11

p
 R x 1

R Q

Input Radial Basis Layer Special Linear Layer

a2 = purelin ( n2)

��
��
�� n2
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 Q  x 1

Q��
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��
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a
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i
IW1,1 - p || b

i
1)

a
i
1 is i th element of a1 where  

i
IW1,1 is a vector made of the i th row of IW1,1   

a2 = y
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The first layer is just like that for newrbe networks. It has as many neurons as 
there are input/ target vectors in P. Specifically, the first layer weights are set 
to P'. The bias b1 is set to a column vector of 0.8326/SPREAD. The user chooses 
SPREAD, the distance an input vector must be from a neuron’s weight vector to 
be 0.5.

Again, the first layer operates just like the newbe radial basis layer described 
previously. Each neuron's weighted input is the distance between the input 
vector and its weight vector, calculated with dist. Each neuron's net input is 
the product of its weighted input with its bias, calculated with netprod. Each 
neurons' output is its net input passed through radbas. If a neuron's weight 
vector is equal to the input vector (transposed), its weighted input will be 0, its 
net input will be 0, and its output will be 1. If a neuron's weight vector is a 
distance of spread from the input vector, its weighted input will be spread, and 
its net input will be sqrt(-log(.5)) (or 0.8326). Therefore its output will be 0.5.

The second layer also has as many neurons as input/target vectors, but here 
LW{2,1} is set to T.

Suppose we have an input vector p close to pi, one of the input vectors among 
the input vector/target pairs used in designing layer one weights. This input p 
produces a layer 1 ai output close to 1. This leads to a layer 2 output close to ti, 
one of the targets used forming layer 2 weights.

A larger spread leads to a large area around the input vector where layer 1 
neurons will respond with significant outputs.Therefore if spread is small the 
radial basis function is very steep so that the neuron with the weight vector 
closest to the input will have a much larger output than other neurons. The 
network will tend to respond with the target vector associated with the nearest 
design input vector.

As spread gets larger the radial basis function's slope gets smoother and 
several neuron's may respond to an input vector. The network then acts like it 
is taking a weighted average between target vectors whose design input vectors 
are closest to the new input vector. As spread gets larger more and more 
neurons contribute to the average with the result that the network function 
becomes smoother.

Design (newgrnn)
You can use the function newgrnn to create a GRNN. For instance, suppose that 
three input and three target vectors are defined as
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P = [4 5 6];
T = [1.5 3.6 6.7];

We can now obtain a GRNN with

net = newgrnn(P,T);

and simulate it with

P = 4.5;
v = sim(net,P)

You might want to try demogrn1. It shows how to approximate a function with 
a GRNN.
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Probabilistic Neural Networks
Probabilistic neural networks can be used for classification problems. When an 
input is presented, the first layer computes distances from the input vector to 
the training input vectors, and produces a vector whose elements indicate how 
close the input is to a training input. The second layer sums these contributions 
for each class of inputs to produce as its net output a vector of probabilities. 
Finally, a compete transfer function on the output of the second layer picks the 
maximum of these probabilities, and produces a 1 for that class and a 0 for the 
other classes. The architecture for this system is shown below.

Network Architecture

It is assumed that there are Q input vector/target vector pairs. Each target 
vector has K elements. One of these element is 1 and the rest is 0. Thus, each 
input vector is associated with one of K classes.

The first-layer input weights, IW1,1 (net.IW{1,1}) are set to the transpose of 
the matrix formed from the Q training pairs, P'. When an input is presented 
the ||dist|| box produces a vector whose elements indicate how close the 
input is to the vectors of the training set. These elements are multiplied, 
element by element, by the bias and sent the radbas transfer function. An 
input vector close to a training vector is represented by a number close to 1 in 
the output vector a1. If an input is close to several training vectors of a single 
class, it is represented by several elements of a1 that are close to 1.
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The second-layer weights, LW1,2 (net.LW{2,1}), are set to the matrix T of 
target vectors. Each vector has a 1 only in the row associated with that 
particular class of input, and 0’s elsewhere. (A function ind2vec is used to 
create the proper vectors.) The multiplication Ta1 sums the elements of a1 due 
to each of the K input classes. Finally, the second-layer transfer function, 
compete, produces a 1 corresponding to the largest element of n2, and 0’s 
elsewhere. Thus, the network has classified the input vector into a specific one 
of K classes because that class had the maximum probability of being correct. 

Design (newpnn)
You can use the function newpnn to create a PNN. For instance, suppose that 
seven input vectors and their corresponding targets are

P = [0 0;1 1;0 3;1 4;3 1;4 1;4 3]'

which yields

P =
     0     1     0     1     3     4     4
     0     1     3     4     1     1     3
Tc = [1 1 2 2 3 3 3];

which yields 

Tc =
     1     1     2     2     3     3     3

We need a target matrix with 1’s in the right place. We can get it with the 
function ind2vec. It gives a matrix with 0’s except at the correct spots. So 
execute 

T = ind2vec(Tc) 

which gives

T =
   (1,1)        1
   (1,2)        1
   (2,3)        1
   (2,4)        1
   (3,5)        1
   (3,6)        1
   (3,7)        1
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Now we can create a network and simulate it, using the input P to make sure 
that it does produce the correct classifications. We use the function vec2ind to 
convert the output Y into a row Yc to make the classifications clear.

net = newpnn(P,T);
Y = sim(net,P)
Yc = vec2ind(Y)

Finally we get

Yc =
     1     1     2     2     3     3     3

We might try classifying vectors other than those that were used to design the 
network. We will try to classify the vectors shown below in P2.

P2 = [1 4;0 1;5 2]'

P2 =
     1     0     5
     4     1     2

Can you guess how these vectors will be classified? If we run the simulation 
and plot the vectors as we did before, we get

Yc =
     2     1     3

These results look good, for these test vectors were quite close to members of 
classes 2, 1 and 3 respectively. The network has managed to generalize its 
operation to properly classify vectors other than those used to design the 
network.

You might want to try demopnn1. It shows how to design a PNN, and how the 
network can successfully classify a vector not used in the design.
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Summary
Radial basis networks can be designed very quickly in two different ways.

The first design method, newrbe, finds an exact solution. The function newrbe 
creates radial basis networks with as many radial basis neurons as there are 
input vectors in the training data.

The second method, newrb, finds the smallest network that can solve the 
problem within a given error goal. Typically, far fewer neurons are required by 
newrb than are returned newrbe. However, because the number of radial basis 
neurons is proportional to the size of the input space, and the complexity of the 
problem, radial basis networks can still be larger than backpropagation 
networks.

A generalized regression neural network (GRNN) is often used for function 
approximation. It has been shown that, given a sufficient number of hidden 
neurons, GRNNs can approximate a continuous function to an arbitrary 
accuracy.

Probabilistic neural networks (PNN) can be used for classification problems. 
Their design is straightforward and does not depend on training. A PNN is 
guaranteed to converge to a Bayesian classifier providing it is given enough 
training data. These networks generalize well. 

The GRNN and PNN have many advantages, but they both suffer from one 
major disadvantage. They are slower to operate because they use more 
computation than other kinds of networks to do their function approximation 
or classification.
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Radial Basis Network Architecture

Generalized Regression Neural Network Architecture
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Probabilistic Neural Network Architecture

New Functions
This chapter introduced the following functions.
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Q = number of input/target pairs        = number of neurons in layer 1
K = number of classes of input data   = number of neurons in layer 2

a2 = y

Function Description

compet Competitive transfer function.

dist Euclidean distance weight function

dotprod Dot product weight function.

ind2vec Convert indices to vectors.

negdist Negative euclidean distance weight function

netprod Product net input function.

newgrnn Design a generalized regression neural network.
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newpnn Design a probabilistic neural network.

newrb Design a radial basis network.

newrbe Design an exact radial basis network.

normprod Normalized dot product weight function.

radbas Radial basis transfer function.

vec2ind Convert vectors to indices.

Function Description
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Introduction
Self-organizing in networks is one of the most fascinating topics in the neural 
network field. Such networks can learn to detect regularities and correlations 
in their input and adapt their future responses to that input accordingly. The 
neurons of competitive networks learn to recognize groups of similar input 
vectors. Self-organizing maps learn to recognize groups of similar input vectors 
in such a way that neurons physically near each other in the neuron layer 
respond to similar input vectors. A basic reference is

Kohonen, T. Self-Organization and Associative Memory, 2nd Edition, Berlin: 
Springer-Verlag, 1987.

Learning vector quantization (LVQ) is a method for training competitive layers 
in a supervised manner. A competitive layer automatically learns to classify 
input vectors. However, the classes that the competitive layer finds are 
dependent only on the distance between input vectors. If two input vectors are 
very similar, the competitive layer probably will put them in the same class. 
There is no mechanism in a strictly competitive layer design to say whether or 
not any two input vectors are in the same class or different classes.

LVQ networks, on the other hand, learn to classify input vectors into target 
classes chosen by the user.

You might consult the following reference:

Kohonen, T. Self-Organization and Associative Memory, 2nd Edition, Berlin: 
Springer-Verlag, 1987.

Important Self-Organizing and LVQ Functions
Competitive layers and self organizing maps can be created with newc and 
newsom, respectively. A listing of all self-organizing functions and 
demonstrations can be found by typing help selforg.

An LVQ network can be created with the function newlvq. For a list of all LVQ 
functions and demonstrations type help lvq.
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Competitive Learning
The neurons in a competitive layer distribute themselves to recognize 
frequently presented input vectors. 

Architecture
The architecture for a competitive network is shown below.

The  box in this figure accepts the input vector p and the input weight 
matrix IW1,1, and produces a vector having S1 elements. The elements are the 
negative of the distances between the input vector and vectors iIW1,1 formed 
from the rows of the input weight matrix.

The net input n1 of a competitive layer is computed by finding the negative 
distance between input vector p and the weight vectors and adding the biases 
b. If all biases are zero, the maximum net input a neuron can have is 0. This 
occurs when the input vector p equals that neuron’s weight vector.

The competitive transfer function accepts a net input vector for a layer and 
returns neuron outputs of 0 for all neurons except for the winner, the neuron 
associated with the most positive element of net input n1. The winner’s output 
is 1. If all biases are 0, then the neuron whose weight vector is closest to the 
input vector has the least negative net input and, therefore, wins the 
competition to output a 1.

Reasons for using biases with competitive layers are introduced in a later 
section on training.
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Creating a Competitive Neural Network (newc)
A competitive neural network can be created with the function newc. We show 
how this works with a simple example.

Suppose we want to divide the following four two-element vectors into two 
classes.

p = [.1 .8  .1 .9; .2 .9 .1 .8]
p =
    0.1000    0.8000    0.1000    0.9000
    0.2000    0.9000    0.1000    0.8000

Thus, we have two vectors near the origin and two vectors near (1,1).

First, create a two-neuron layer with two input elements ranging from 0 to 1. 
The first argument gives the range of the two input vectors and the second 
argument says that there are to be two neurons.

net = newc([0 1; 0 1],2);

The weights are initialized to the center of the input ranges with the function 
midpoint. We can check to see these initial values as follows:

wts = net.IW{1,1}
wts =
    0.5000    0.5000
    0.5000    0.5000

These weights are indeed the values at the midpoint of the range (0 to 1) of the 
inputs, as we would expect when using midpoint for initialization.

The biases are computed by initcon, which gives

biases =
    5.4366
    5.4366

Now we have a network, but we need to train it to do the classification job.

Recall that each neuron competes to respond to an input vector p. If the biases 
are all 0, the neuron whose weight vector is closest to p gets the highest net 
input and, therefore, wins the competition and outputs 1. All other neurons 
output 0. We would like to adjust the winning neuron so as to move it closer to 
the input. A learning rule to do this is discussed in the next section.
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Kohonen Learning Rule (learnk)
The weights of the winning neuron (a row of the input weight matrix) are 
adjusted with the Kohonen learning rule. Supposing that the ith neuron wins, 
the elements of the ith row of the input weight matrix are adjusted as shown 
below.

The Kohonen rule allows the weights of a neuron to learn an input vector, and 
because of this it is useful in recognition applications. 

Thus, the neuron whose weight vector was closest to the input vector is 
updated to be even closer. The result is that the winning neuron is more likely 
to win the competition the next time a similar vector is presented, and less 
likely to win when a very different input vector is presented. As more and more 
inputs are presented, each neuron in the layer closest to a group of input 
vectors soon adjusts its weight vector toward those input vectors. Eventually, 
if there are enough neurons, every cluster of similar input vectors will have a 
neuron that outputs 1 when a vector in the cluster is presented, while 
outputting a 0 at all other times. Thus, the competitive network learns to 
categorize the input vectors it sees.

The function learnk is used to perform the Kohonen learning rule in this 
toolbox.

Bias Learning Rule (learncon)
One of the limitations of competitive networks is that some neurons may not 
always get allocated. In other words, some neuron weight vectors may start out 
far from any input vectors and never win the competition, no matter how long 
the training is continued. The result is that their weights do not get to learn 
and they never win. These unfortunate neurons, referred to as dead neurons, 
never perform a useful function.

To stop this from happening, biases are used to give neurons that only win the 
competition rarely (if ever) an advantage over neurons that win often. A 
positive bias, added to the negative distance, makes a distant neuron more 
likely to win. 

To do this job a running average of neuron outputs is kept. It is equivalent to 
the percentages of times each output is 1. This average is used to update the 
biases with the learning function learncon so that the biases of frequently 

IW1 1, q( )i IW1 1, q 1–( )i α p q( ) IW1 1, q 1–( )i–( )+=
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active neurons will get smaller, and biases of infrequently active neurons will 
get larger.

The learning rates for learncon are typically set an order of magnitude or more 
smaller than for learnk. Doing this helps make sure that the running average 
is accurate. 

The result is that biases of neurons that haven’t responded very frequently will 
increase versus biases of neurons that have responded frequently. As the 
biases of infrequently active neurons increase, the input space to which that 
neuron responds increases. As that input space increases, the infrequently 
active neuron responds and moves toward more input vectors. Eventually the 
neuron will respond to an equal number of vectors as other neurons.

This has two good effects. First, if a neuron never wins a competition because 
its weights are far from any of the input vectors, its bias will eventually get 
large enough so that it will be able to win. When this happens, it will move 
toward some group of input vectors. Once the neuron’s weights have moved 
into a group of input vectors and the neuron is winning consistently, its bias 
will decrease to 0. Thus, the problem of dead neurons is resolved.

The second advantage of biases is that they force each neuron to classify 
roughly the same percentage of input vectors. Thus, if a region of the input 
space is associated with a larger number of input vectors than another region, 
the more densely filled region will attract more neurons and be classified into 
smaller subsections.

Training
Now train the network for 500 epochs. Either train or adapt can be used.

net.trainParam.epochs = 500
net = train(net,p);

Note that train for competitive networks uses the training function trainr. 
You can verify this by executing the following code after creating the network. 

net.trainFcn

This code produces

ans =
trainr



Competitive Learning

8-7

Thus, during each epoch, a single vector is chosen randomly and presented to 
the network and weight and bias values are updated accordingly.

Next, supply the original vectors as input to the network, simulate the 
network, and finally convert its output vectors to class indices.

a = sim(net,p)
ac = vec2ind(a)

This yields 

ac =
     1     2     1     2

We see that the network is trained to classify the input vectors into two groups, 
those near the origin, class 1, and those near (1,1), class 2.

It might be interesting to look at the final weights and biases. They are

wts =
    0.8208    0.8263
    0.1348    0.1787
biases =
    5.3699
    5.5049

(You may get different answers if you run this problem, as a random seed is 
used to pick the order of the vectors presented to the network for training.) 
Note that the first vector (formed from the first row of the weight matrix) is 
near the input vectors close to (1,1), while the vector formed from the second 
row of the weight matrix is close to the input vectors near the origin. Thus, the 
network has been trained, just by exposing it to the inputs, to classify them.

During training each neuron in the layer closest to a group of input vectors 
adjusts its weight vector toward those input vectors. Eventually, if there are 
enough neurons, every cluster of similar input vectors has a neuron that 
outputs 1 when a vector in the cluster is presented, while outputting a 0 at all 
other times. Thus, the competitive network learns to categorize the input.

Graphical Example
Competitive layers can be understood better when their weight vectors and 
input vectors are shown graphically. The diagram below shows 48 two-element 
input vectors represented as with ‘+’ markers. 
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The input vectors above appear to fall into clusters. You can use a competitive 
network of eight neurons to classify the vectors into such clusters.

Try democ1 to see a dynamic example of competitive learning.
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Self-Organizing Maps
Self-organizing feature maps (SOFM) learn to classify input vectors according 
to how they are grouped in the input space. They differ from competitive layers 
in that neighboring neurons in the self-organizing map learn to recognize 
neighboring sections of the input space. Thus, self-organizing maps learn both 
the distribution (as do competitive layers) and topology of the input vectors 
they are trained on.

The neurons in the layer of an SOFM are arranged originally in physical 
positions according to a topology function. The functions gridtop, hextop or 
randtop can arrange the neurons in a grid, hexagonal, or random topology. 
Distances between neurons are calculated from their positions with a distance 
function. There are four distance functions, dist, boxdist, linkdist and 
mandist. Link distance is the most common. These topology and distance 
functions are described in detail later in this section.

Here a self-organizing feature map network identifies a winning neuron  
using the same procedure as employed by a competitive layer. However, 
instead of updating only the winning neuron, all neurons within a certain 
neighborhood of the winning neuron are updated using the Kohonen 
rule. Specifically, we adjust all such neurons  as follows.

 or 

Here the neighborhood  contains the indices for all of the neurons that 
lie within a radius  of the winning neuron .

Thus, when a vector  is presented, the weights of the winning neuron and its 
close neighbors move toward . Consequently, after many presentations, 
neighboring neurons will have learned vectors similar to each other.

To illustrate the concept of neighborhoods, consider the figure given below. The 
left diagram shows a two-dimensional neighborhood of radius  around 
neuron . The right diagram shows a neighborhood of radius . 

i∗

Ni∗ d( )
i Ni∗ d( )∈

wi q( ) wi q 1–( ) α p q( ) wi q 1–( )–( )+=

wi q( ) 1 α–( ) wi q 1–( ) αp q( )+=

Ni∗ d( )
d i∗

Ni d( ) j dij d≤,{ }=

p
p

d 1=
13 d 2=



8 Self-Organizing and Learn. Vector Quant. Nets

8-10

These neighborhoods could be written as

 and 

Note that the neurons in an SOFM do not have to be arranged in a 
two-dimensional pattern. You can use a one-dimensional arrangement, or even 
three or more dimensions. For a one-dimensional SOFM, a neuron has only two 
neighbors within a radius of 1 (or a single neighbor if the neuron is at the end 
of the line).You can also define distance in different ways, for instance, by using 
rectangular and hexagonal arrangements of neurons and neighborhoods. The 
performance of the network is not sensitive to the exact shape of the 
neighborhoods.

Topologies (gridtop, hextop, randtop)
You can specify different topologies for the original neuron locations with the 
functions gridtop, hextop or randtop. 

The gridtop topology starts with neurons in a rectangular grid similar to that 
shown in the previous figure. For example, suppose that you want a 2-by-3 
array of six neurons You can get this with:

pos = gridtop(2,3)
pos =
     0     1     0     1     0     1
     0     0     1     1     2     2
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Here neuron 1 has the position (0,0); neuron 2 has the position (1,0); neuron 3 
had the position (0,1); etc.

Note that had we asked for a gridtop with the arguments reversed we would 
have gotten a slightly different arrangement.

pos = gridtop(3,2)
pos =
     0     1     2     0     1     2
     0     0     0     1     1     1

An 8-by-10 set of neurons in a gridtop topology can be created and plotted with 
the code shown below

pos = gridtop(8,10);
plotsom(pos)

to give the following graph.
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As shown, the neurons in the gridtop topology do indeed lie on a grid.

The hextop function creates a similar set of neurons, but they are in a 
hexagonal pattern. A 2-by-3 pattern of hextop neurons is generated as follows:

pos = hextop(2,3)
pos =
         0    1.0000    0.5000    1.5000         0    1.0000
         0         0    0.8660    0.8660    1.7321    1.7321 

Note that hextop is the default pattern for SOFM networks generated with 
newsom.

An 8-by-10 set of neurons in a hextop topology can be created and plotted with 
the code shown below.

pos = hextop(8,10);
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plotsom(pos)

to give the following graph.

Note the positions of the neurons in a hexagonal arrangement.

Finally, the randtop function creates neurons in an N dimensional random 
pattern. The following code generates a random pattern of neurons.

pos = randtop(2,3)
pos =
         0    0.7787    0.4390    1.0657    0.1470    0.9070
         0    0.1925    0.6476    0.9106    1.6490    1.4027

An 8-by-10 set of neurons in a randtop topology can be created and plotted with 
the code shown below

pos = randtop(8,10);
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plotsom(pos)

to give the following graph.

For examples, see the help for these topology functions. 

Distance Funct. (dist, linkdist, mandist, boxdist)
In this toolbox, there are four distinct ways to calculate distances from a 
particular neuron to its neighbors. Each calculation method is implemented 
with a special function.

The dist function has been discussed before. It calculates the Euclidean 
distance from a home neuron to any other neuron. Suppose we have three 
neurons:

pos2 = [ 0 1 2; 0 1 2]
pos2 =
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     0     1     2
     0     1     2

We find the distance from each neuron to the other with

D2 = dist(pos2)
D2 =
         0    1.4142    2.8284
    1.4142         0    1.4142
    2.8284    1.4142         0

Thus, the distance from neuron 1 to itself is 0, the distance from neuron 1 to 
neuron 2 is 1.414, etc. These are indeed the Euclidean distances as we know 
them.

The graph below shows a home neuron in a two-dimensional (gridtop) layer of 
neurons. The home neuron has neighborhoods of increasing diameter 
surrounding it. A neighborhood of diameter 1 includes the home neuron and its 
immediate neighbors. The neighborhood of diameter 2 includes the diameter 1 
neurons and their immediate neighbors. 

As for the dist function, all the neighborhoods for an S neuron layer map are 
represented by an S-by-S matrix of distances. The particular distances shown 
above (1 in the immediate neighborhood, 2 in neighborhood 2, etc.), are 
generated by the function boxdist. Suppose that we have six neurons in a 
gridtop configuration.

2-Dimensional 
Layer of Neurons

Home Neuron

Neighborhood 1

Neighborhood 2

Neighborhood 3

Columns
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pos = gridtop(2,3)
pos =
     0     1     0     1     0     1
     0     0     1     1     2     2

Then the box distances are

d = boxdist(pos)
d =
     0     1     1     1     2     2
     1     0     1     1     2     2
     1     1     0     1     1     1
     1     1     1     0     1     1
     2     2     1     1     0     1
     2     2     1     1     1     0

The distance from neuron 1 to 2, 3, and 4 is just 1, for they are in the immediate 
neighborhood. The distance from neuron 1 to both 5 and 6 is 2. The distance 
from both 3 and 4 to all other neurons is just 1.

The link distance from one neuron is just the number of links, or steps, that 
must be taken to get to the neuron under consideration. Thus, if we calculate 
the distances from the same set of neurons with linkdist we get

dlink =
     0     1     1     2     2     3
     1     0     2     1     3     2
     1     2     0     1     1     2
     2     1     1     0     2     1
     2     3     1     2     0     1
     3     2     2     1     1     0

The Manhattan distance between two vectors x and y is calculated as 

D = sum(abs(x-y))

Thus if we have 

W1 = [ 1 2; 3 4; 5 6]
W1 =
     1     2
     3     4
     5     6
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and 

P1= [1;1]
P1 =
     1
     1

then we get for the distances

Z1 = mandist(W1,P1)
Z1 =
     1
     5
     9

The distances calculated with mandist do indeed follow the mathematical 
expression given above.

Architecture
The architecture for this SOFM is shown below.

This architecture is like that of a competitive network, except no bias is used 
here. The competitive transfer function produces a 1 for output element a1

i 
corresponding to ,the winning neuron. All other output elements in a1 are 0.

Now, however, as described above, neurons close to the winning neuron are 
updated along with the winning neuron. As described previously, one can chose 

n1
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from various topologies of neurons. Similarly, one can choose from various 
distance expressions to calculate neurons that are close to the winning neuron.

Creating a Self Organizing MAP Neural Network 
(newsom)
You can create a new SOFM network with the function newsom. This function 
defines variables used in two phases of learning:

•  Ordering-phase learning rate

•  Ordering-phase steps

•  Tuning-phase learning rate

•  Tuning-phase neighborhood distance

These values are used for training and adapting. 

Consider the following example.

Suppose that we want to create a network having input vectors with two 
elements that fall in the range 0 to 2 and 0 to 1 respectively. Further suppose 
that we want to have six neurons in a hexagonal 2-by-3 network. The code to 
obtain this network is 

net = newsom([0 2; 0 1] , [2 3]);

Suppose also that the vectors to train on are

P = [.1 .3 1.2 1.1 1.8 1.7 .1 .3 1.2 1.1 1.8 1.7;...
0.2 0.1 0.3 0.1 0.3 0.2 1.8 1.8 1.9 1.9 1.7 1.8]

We can plot all of this with 

plot(P(1,:),P(2,:),'.g','markersize',20)
hold on
plotsom(net.iw{1,1},net.layers{1}.distances)
hold off

to give
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The various training vectors are seen as fuzzy gray spots around the perimeter 
of this figure. The initialization for newsom is midpoint. Thus, the initial 
network neurons are all concentrated at the black spot at (1, 0.5). 

When simulating a network, the negative distances between each neuron's 
weight vector and the input vector are calculated (negdist) to get the weighted 
inputs. The weighted inputs are also the net inputs (netsum). The net inputs 
compete (compete) so that only the neuron with the most positive net input will 
output a 1.

Training (learnsom)
Learning in a self-organizing feature map occurs for one vector at a time, 
independent of whether the network is trained directly (trainr) or whether it 
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is trained adaptively (trains). In either case, learnsom is the self-organizing 
map weight learning function.

First the network identifies the winning neuron. Then the weights of the 
winning neuron, and the other neurons in its neighborhood, are moved closer 
to the input vector at each learning step using the self-organizing map learning 
function learnsom. The winning neuron's weights are altered proportional to 
the learning rate. The weights of neurons in its neighborhood are altered 
proportional to half the learning rate. The learning rate and the neighborhood 
distance used to determine which neurons are in the winning neuron's 
neighborhood are altered during training through two phases.

Phase 1: Ordering Phase
This phase lasts for the given number of steps. The neighborhood distance 
starts as the maximum distance between two neurons, and decreases to the 
tuning neighborhood distance. The learning rate starts at the ordering-phase 
learning rate and decreases until it reaches the tuning-phase learning rate. As 
the neighborhood distance and learning rate decrease over this phase, the 
neurons of the network typically order themselves in the input space with the 
same topology in which they are ordered physically. 

Phase 2: Tuning Phase 
This phase lasts for the rest of training or adaption. The neighborhood distance 
stays at the tuning neighborhood distance, (which should include only close 
neighbors (i.e., typically 1.0). The learning rate continues to decrease from the 
tuning phase learning rate, but very slowly. The small neighborhood and 
slowly decreasing learning rate fine tune the network, while keeping the 
ordering learned in the previous phase stable. The number of epochs for the 
tuning part of training (or time steps for adaption) should be much larger than 
the number of steps in the ordering phase, because the tuning phase usually 
takes much longer.

Now let us take a look at some of the specific values commonly used in these 
networks.
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Learning occurs according to the learnsom learning parameter, shown here 
with its default value.

learnsom calculates the weight change dW for a given neuron from the neuron's 
input P, activation A2, and learning rate LR:

dw =  lr*a2*(p'-w)

where the activation A2 is found from the layer output A and neuron distances 
D and the current neighborhood size ND:

a2(i,q) = 1,   if a(i,q) = 1
 = 0.5, if a(j,q) = 1 and D(i,j) <= nd
 = 0,   otherwise

The learning rate LR and neighborhood size NS are altered through two phases: 
an ordering phase, and a tuning phase.

The ordering phase lasts as many steps as LP.order_steps. During this phase, 
LR is adjusted from LP.order_lr down to LP.tune_lr, and ND is adjusted from 
the maximum neuron distance down to 1. It is during this phase that neuron 
weights are expected to order themselves in the input space consistent with the 
associated neuron positions.

During the tuning phase LR decreases slowly from LP.tune_lr and ND is always 
set to LP.tune_nd. During this phase, the weights are expected to spread out 
relatively evenly over the input space while retaining their topological order 
found during the ordering phase.

Thus, the neuron’s weight vectors initially take large steps all together toward 
the area of input space where input vectors are occurring. Then as the 
neighborhood size decreases to 1, the map tends to order itself topologically 
over the presented input vectors. Once the neighborhood size is 1, the network 
should be fairly well ordered and the learning rate is slowly decreased over a 

LP.order_lr 0.9 Ordering-phase learning rate.

LP.order_steps 1000 Ordering-phase steps.

LP.tune_lr 0.02 Tuning-phase learning rate.

LP.tune_nd 1 Tuning-phase neighborhood distance.
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longer period to give the neurons time to spread out evenly across the input 
vectors.

As with competitive layers, the neurons of a self-organizing map will order 
themselves with approximately equal distances between them if input vectors 
appear with even probability throughout a section of the input space. Also, if 
input vectors occur with varying frequency throughout the input space, the 
feature map layer tends to allocate neurons to an area in proportion to the 
frequency of input vectors there.

Thus, feature maps, while learning to categorize their input, also learn both 
the topology and distribution of their input.

We can train the network for 1000 epochs with

net.trainParam.epochs = 1000;
net = train(net,P);

This training produces the following plot.
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We can see that the neurons have started to move toward the various training 
groups. Additional training is required to get the neurons closer to the various 
groups.

As noted previously, self-organizing maps differ from conventional competitive 
learning in terms of which neurons get their weights updated. Instead of 
updating only the winner, feature maps update the weights of the winner and 
its neighbors. The result is that neighboring neurons tend to have similar 
weight vectors and to be responsive to similar input vectors.

Examples
Two examples are described briefly below. You might try the demonstration 
scripts demosm1 and demosm2 to see similar examples.
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One-Dimensional Self-Organizing Map
Consider 100 two-element unit input vectors spread evenly between 0° and 90°.

angles = 0:0.5∗pi/99:0.5∗pi;

Here is a plot of the data.

P = [sin(angles); cos(angles)];

We define a a self-organizing map as a one-dimensional layer of 10 neurons. 
This map is to be trained on these input vectors shown above. Originally these 
neurons will be at the center of the figure.
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Of course, since all the weight vectors start in the middle of the input vector 
space, all you see now is a single circle.

As training starts the weight vectors move together toward the input vectors. 
They also become ordered as the neighborhood size decreases. Finally the layer 
adjusts its weights so that each neuron responds strongly to a region of the 
input space occupied by input vectors. The placement of neighboring neuron 
weight vectors also reflects the topology of the input vectors. 
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Note that self-organizing maps are trained with input vectors in a random 
order, so starting with the same initial vectors does not guarantee identical 
training results.

Two-Dimensional Self-Organizing Map
This example shows how a two-dimensional self-organizing map can be 
trained.

First some random input data is created with the following code.

P = rands(2,1000);

Here is a plot of these 1000 input vectors.
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A two-dimensional map of 30 neurons is used to classify these input vectors. 
The two-dimensional map is five neurons by six neurons, with distances 
calculated according to the Manhattan distance neighborhood function 
mandist. 

The map is then trained for 5000 presentation cycles, with displays every 20 
cycles.

Here is what the self-organizing map looks like after 40 cycles.
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The weight vectors, shown with circles, are almost randomly placed. However, 
even after only 40 presentation cycles, neighboring neurons, connected by 
lines, have weight vectors close together.

Here is the map after 120 cycles.
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After 120 cycles, the map has begun to organize itself according to the topology 
of the input space which constrains input vectors.

The following plot, after 500 cycles, shows the map is more evenly distributed 
across the input space.

Finally, after 5000 cycles, the map is rather evenly spread across the input 
space. In addition, the neurons are very evenly spaced reflecting the even 
distribution of input vectors in this problem.
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Thus a two-dimensional self-organizing map has learned the topology of its 
inputs’ space.

It is important to note that while a self-organizing map does not take long to 
organize itself so that neighboring neurons recognize similar inputs, it can take 
a long time for the map to finally arrange itself according to the distribution of 
input vectors.
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Learning Vector Quantization Networks

Architecture
The LVQ network architecture is shown below.

An LVQ network has a first competitive layer and a second linear layer. The 
competitive layer learns to classify input vectors in much the same way as the 
competitive layers of “Self-Organizing and Learn. Vector Quant. Nets” 
described in this chapter. The linear layer transforms the competitive layer’s 
classes into target classifications defined by the user. We refer to the classes 
learned by the competitive layer as subclasses and the classes of the linear 
layer as target classes.

Both the competitive and linear layers have one neuron per (sub or target) 
class. Thus, the competitive layer can learn up to S1 subclasses. These, in turn, 
are combined by the linear layer to form S2 target classes. (S1 is always larger 
than S2.)

For example, suppose neurons 1, 2, and 3 in the competitive layer all learn 
subclasses of the input space that belongs to the linear layer target class No. 2. 
Then competitive neurons 1, 2, and 3, will have LW2,1 weights of 1.0 to neuron 
n2 in the linear layer, and weights of 0 to all other linear neurons. Thus, the 
linear neuron produces a 1 if any of the three competitive neurons (1,2, and 3) 
win the competition and output a 1. This is how the subclasses of the 
competitive layer are combined into target classes in the linear layer.
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In short, a 1 in the ith row of a1 (the rest to the elements of a1 will be zero) 
effectively picks the ith column of LW2,1 as the network output. Each such 
column contains a single 1, corresponding to a specific class. Thus, subclass 1s 
from layer 1 get put into various classes, by the LW2,1a1 multiplication in layer 
2.

We know ahead of time what fraction of the layer 1 neurons should be classified 
into the various class outputs of layer 2, so we can specify the elements of 
LW2,1 at the start. However, we have to go through a training procedure to get 
the first layer to produce the correct subclass output for each vector of the 
training set. We discuss this training shortly. First consider how to create the 
original network.

Creating an LVQ Network (newlvq)
An LVQ network can be created with the function newlvq 

net = newlvq(PR,S1,PC,LR,LF)

where:

• PR is an R-by-2 matrix of minimum and maximum values for R input 
elements. 

• S1 is the number of first layer hidden neurons. 

• PC is an S2 element vector of typical class percentages.

• LR is the learning rate (default 0.01).

• LF is the learning function (default is learnlv1).

Suppose we have 10 input vectors. We create a network that assigns each of 
these input vectors to one of four subclasses. Thus, we have four neurons in the 
first competitive layer. These subclasses are then assigned to one of two output 
classes by the two neurons in layer 2. The input vectors and targets are 
specified by

P = [-3 -2 -2  0  0  0  0 +2 + 2 +3; ...
0 +1 -1 +2 +1 -1 -2 +1 -1  0]

and 

Tc = [1 1 1 2 2 2 2 1 1 1];

It may help to show the details of what we get from these two lines of code.
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P =
    -3    -2    -2     0     0     0     0     2     2     3
     0     1    -1     2     1    -1    -2     1    -1     0
Tc =
     1     1     1     2     2     2     2     1     1     1

A plot of the input vectors follows.

As you can see, there are four subclasses of input vectors. We want a network 
that classifies p1, p2, p3, p8, p9, and p10 to produce an output of 1, and that 
classifies vectors p4, p5, p6 and p7 to produce an output of 2. Note that this 
problem is nonlinearly separable, and so cannot be solved by a perceptron, but 
an LVQ network has no difficulty.

Next we convert the Tc matrix to target vectors.

T = ind2vec(Tc)

This gives a sparse matrix T that can be displayed in full with

targets = full(T)

which gives

targets =
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     1     1     1     0     0     0     0     1     1     1
     0     0     0     1     1     1     1     0     0     0

This looks right. It says, for instance, that if we have the first column of P as 
input, we should get the first column of targets as an output; and that output 
says the input falls in class 1, which is correct. Now we are ready to call newlvq.

We call newlvq with the proper arguments so that it creates a network with 
four neurons in the first layer and two neurons in the second layer. The 
first-layer weights are initialized to the center of the input ranges with the 
function midpoint. The second-layer weights have 60% (6 of the 10 in Tc above) 
of its columns with a 1 in the first row, (corresponding to class 1), and 40% of 
its columns will have a 1 in the second row (corresponding to class 2). 

net = newlvq(minmax(P),4,[.6 .4], 0,1);

We can check to see the initial values of the first-layer weight matrix.

net.IW{1,1}
ans =
     0     0
     0     0
     0     0
     0     0

These zero weights are indeed the values at the midpoint of the range (-3 to +3) 
of the inputs, as we would expect when using midpoint for initialization.

We can look at the second-layer weights with 

net.LW{2,1}
ans =
     1     1     0     0
     0     0     1     1

This makes sense too. It says that if the competitive layer produces a 1 as the 
first or second element. The input vector is classified as class 1; otherwise it is 
a class 2.

You may notice that the first two competitive neurons are connected to the first 
linear neuron (with weights of 1), while the second two competitive neurons are 
connected to the second linear neuron. All other weights between the 
competitive neurons and linear neurons have values of 0. Thus, each of the two 
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target classes (the linear neurons) is, in fact, the union of two subclasses (the 
competitive neurons).

We can simulate the network with sim. We use the original P matrix as input 
just to see what we get.

Y = sim(net,P);
Y = vec2ind(Yb4t)
Y =
     1     1     1     1     1     1     1     1     1     1

The network classifies all inputs into class 1. Since tis not what we want, we 
have to train the network (adjusting the weights of layer 1 only), before we can 
expect a good result. First we discuss two LVQ learning rules, and then we look 
at the training process.

LVQ1 Learning Rule (learnlv1)
LVQ learning in the competitive layer is based on a set of input/target pairs.

Each target vector has a single 1. The rest of its elements are 0. The 1 tells the 
proper classification of the associated input. For instance, consider the 
following training pair.

Here we have input vectors of three elements, and each input vector is to be 
assigned to one of four classes. The network is to be trained so that it classifies 
the input vector shown above into the third of four classes.

To train the network, an input vector p is presented, and the distance from p 
to each row of the input weight matrix IW1,1 is computed with the function 
ndist. The hidden neurons of layer 1 compete. Suppose that the ith element of 
n1 is most positive, and neuron i* wins the competition. Then the competitive 
transfer function produces a 1 as the i*th element of a1. All other elements of 
a1 are 0. 
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When a1 is multiplied by the layer 2 weights LW2,1, the single 1 in a1 selects 
the class, k* associated with the input. Thus, the network has assigned the 
input vector p to class k* and  will be 1. Of course, this assignment may be 
a good one or a bad one, for  may be 1 or 0, depending on whether the input 
belonged to class k* or not. 

We adjust the i*th row of IW1,1 in such a way as to move this row closer to the 
input vector p if the assignment is correct, and to move the row away from p if 
the assignment is incorrect. So if p is classified correctly, 

we compute the new value of the i*th row of IW1,1 as:

.

On the other hand, if p is classified incorrectly,

,

we compute the new value of the i*th row of IW1,1 as:

These corrections to the i*th row of IW1,1 can be made automatically without 
affecting other rows of IW1,1 by backpropagating the output errors back to layer 
1. 

Such corrections move the hidden neuron towards vectors that fall into the 
class for which it forms a subclass, and away from vectors that fall into other 
classes.

The learning function that implements these changes in the layer 1 weights in 
LVQ networks is learnlv1. It can be applied during training. 

Training
Next we need to train the network to obtain first-layer weights that lead to the 
correct classification of input vectors. We do this with train as shown below. 
First set the training epochs to 150. Then, use train.

net.trainParam.epochs = 150;
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net = train(net,P,T);

Now check on the first-layer weights.

net.IW{1,1}
ans =
    1.0927    0.0051
   -1.1028   -0.1288
         0   -0.5168
         0    0.3710

The following plot shows that these weights have moved toward their 
respective classification groups.

To check to see that these weights do indeed lead to the correct classification, 
take the matrix P as input and simulate the network. Then see what 
classifications are produced by the network.

Y = sim(net,P)
Yc = vec2ind(Y)

This gives

Yc =
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     1     1     1     2     2     2     2     1     1     1

which is what we expected. As a last check, try an input close to a vector that 
was used in training.

pchk1 = [0; 0.5];
Y = sim(net,pchk1);
Yc1 = vec2ind(Y)

This gives

Yc1 =
     2

This looks right, for pchk1 is close to other vectors classified as 2. Similarly,

pchk2 = [1; 0];
Y = sim(net,pchk2);
Yc2 = vec2ind(Y)

gives

Yc2 =
     1

This looks right too, for pchk2 is close to other vectors classified as 1.

You might want to try the demonstration program demolvq1. It follows the 
discussion of training given above. 

Supplemental LVQ2.1 Learning Rule (learnlv2)
The following learning rule is one that might be applied after first applying 
LVQ1. It may improve the result of the first learning. This particular version 
of LVQ2 (referred to as LVQ2.1 in the literature [Koho97]) is embodied in the 
function learnlv2. Note again that LVQ2.1 is to be used only after LVQ1 has 
been applied

Learning here is similar to that in learnlv1 except now two vectors of layer 1 
that are closest to the input vector may be updated providing that one belongs 
to the correct class and one belongs to a wrong class and further providing that 
the input falls into a “window” near the midplane of the two vectors. 

The window is defined by
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, 

(where  and  are the Euclidean distances of p from  and  
respectively). We take a value for  in the range 0.2 to 0.3. If we pick, for 
instance, 0.25, then . This means that if the minimum of the two 
distance ratios is greater than 0.6, we adjust the two vectors. i.e., if the input 
is “near” the midplane, adjust the two vectors providing also that the input 
vector p and  belong to the same class, and p and  do not belong 
in the same class.

The adjustments made are

.

Thus, given two vector closest to the input, as long as one belongs to the wrong 
class and the other to the correct class, and as long as the input falls in a 
midplane window, the two vectors will be adjusted. Such a procedure allows a 
vector that is just barely classified correctly with LVQ1 to be moved even closer 
to the input, so the results are more robust.
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Summary

Self-Organizing Maps
A competitive network learns to categorize the input vectors presented to it. If 
a neural network only needs to learn to categorize its input vectors, then a 
competitive network will do. Competitive networks also learn the distribution 
of inputs by dedicating more neurons to classifying parts of the input space 
with higher densities of input.

A self-organizing map learns to categorize input vectors. It also learns the 
distribution of input vectors. Feature maps allocate more neurons to recognize 
parts of the input space where many input vectors occur and allocate fewer 
neurons to parts of the input space where few input vectors occur.

Self-organizing maps also learn the topology of their input vectors. Neurons 
next to each other in the network learn to respond to similar vectors. The layer 
of neurons can be imagined to be a rubber net that is stretched over the regions 
in the input space where input vectors occur. 

Self-organizing maps allow neurons that are neighbors to the winning neuron 
to output values. Thus the transition of output vectors is much smoother than 
that obtained with competitive layers, where only one neuron has an output at 
a time.

Learning Vector Quantizaton Networks
LVQ networks classify input vectors into target classes by using a competitive 
layer to find subclasses of input vectors, and then combining them into the 
target classes.

Unlike perceptrons, LVQ networks can classify any set of input vectors, not 
just linearly separable sets of input vectors. The only requirement is that the 
competitive layer must have enough neurons, and each class must be assigned 
enough competitive neurons.

To ensure that each class is assigned an appropriate amount of competitive 
neurons, it is important that the target vectors used to initialize the LVQ 
network have the same distributions of targets as the training data the 
network is trained on. If this is done, target classes with more vectors will be 
the union of more subclasses.
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Figures

Competitive Network Architecture

Self Organizing Feature Map Architecture

p
 R x 1

R

Input 

S 1 x R 

n1

 S 1 x 1

 S 1 x 1

S 1 x 1

��
��

IW1,1

��
��b1

a1

1

S1

Competitive Layer

��
��  S 1 x 1

 
|| ndist ||

��
��
��

C

n1

 S 1 x 1

Input 

S 1 x R 
��IW1,1

R

Self Organizing Map Layer

a1 = compet (n1)

p
 R  x 1

a1

S 1 x 1

S1���
���|| ndist ||

��
��
��

C

n
i
1 = - || 

i
IW1,1 - p ||



8 Self-Organizing and Learn. Vector Quant. Nets

8-42

LVQ Architecture

New Functions
This chapter introduced the following functions.
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Function Description

newc Create a competitive layer.

learnk Kohonen learning rule.

newsom Create a self-organizing map.

learncon Conscience bias learning function.

boxdist Distance between two position vectors.

dist Euclidean distance weight function.

linkdist Link distance function.

mandist Manhattan distance weight function.

gridtop Gridtop layer topology function.

hextop Hexagonal layer topology function.

randtop Random layer topology function.
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newlvq Create a learning vector quantization network.

learnlv1 LVQ1 weight learning function.

learnlv2 LVQ2 weight learning function.

Function Description
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Introduction
Recurrent networks is a topic of considerable interest. This chapter covers two 
recurrent networks: Elman, and Hopfield networks.

Elman networks are two-layer backpropagation networks, with the addition of 
a feedback connection from the output of the hidden layer to its input. This 
feedback path allows Elman networks to learn to recognize and generate 
temporal patterns, as well as spatial patterns. The best paper on the Elman 
network is:

Elman, J. L., “Finding structure in time,” Cognitive Science, vol. 14, 1990, pp. 
179-211.

The Hopfield network is used to store one or more stable target vectors. These 
stable vectors can be viewed as memories that the network recalls when 
provided with similar vectors that act as a cue to the network memory. You 
may want to pursue a basic paper in this field: 

Li, J., A. N. Michel, and W. Porod, “Analysis and synthesis of a class of neural 
networks: linear systems operating on a closed hypercube,” IEEE Transactions 
on Circuits and Systems, vol. 36, no. 11, November 1989, pp. 1405-1422.

Important Recurrent Network Functions
Elman networks can be created with the function newelm.

Hopfield networks can be created with the function newhop.

Type help elman or help hopfield to see a list of functions and 
demonstrations related to either of these networks.
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Elman Networks

Architecture
The Elman network commonly is a two-layer network with feedback from the 
first-layer output to the first layer input. This recurrent connection allows the 
Elman network to both detect and generate time-varying patterns. A two-layer 
Elman network is shown below.

The Elman network has tansig neurons in its hidden (recurrent) layer, and 
purelin neurons in its output layer. This combination is special in that 
two-layer networks with these transfer functions can approximate any 
function (with a finite number of discontinuities) with arbitrary accuracy. The 
only requirement is that the hidden layer must have enough neurons. More 
hidden neurons are needed as the function being fit increases in complexity.

Note that the Elman network differs from conventional two-layer networks in 
that the first layer has a recurrent connection. The delay in this connection 
stores values from the previous time step, which can be used in the current 
time step.

Thus, even if two Elman networks, with the same weights and biases, are given 
identical inputs at a given time step, their outputs can be different due to 
different feedback states.
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Because the network can store information for future reference, it is able to 
learn temporal patterns as well as spatial patterns. The Elman network can be 
trained to respond to, and to generate, both kinds of patterns.

Creating an Elman Network (newelm)
An Elman network with two or more layers can be created with the function 
newelm. The hidden layers commonly have tansig transfer functions, so that is 
the default for newelm. As shown in the architecture diagram, purelin is 
commonly the output-layer transfer function.

The default backpropagation training function is trainbfg. One might use 
trainlm, but it tends to proceed so rapidly that it does not necessarily do well 
in the Elman network. The backprop weight/bias learning function default is 
learngdm, and the default performance function is mse.

When the network is created, each layer’s weights and biases are initialized 
with the Nguyen-Widrow layer initialization method implemented in the 
function initnw.

Now consider an example. Suppose that we have a sequence of single-element 
input vectors in the range from 0 to 1. Suppose further that we want to have 
five hidden-layer tansig neurons and a single logsig output layer. The following 
code creates the desired network.

net = newelm([0 1],[5 1],{'tansig','logsig'});

Simulation
Suppose that we want to find the response of this network to an input sequence 
of eight digits that are either 0 or 1.

P = round(rand(1,8))
P =
     0     1     0     1     1     0     0     0

Recall that a sequence to be presented to a network is to be in cell array form. 
We can convert P to this form with

Pseq = con2seq(P)
Pseq = 
    [0]    [1]    [0]    [1]    [1]    [0]    [0]    [0]

Now we can find the output of the network with the function sim.
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Y = sim(net,Pseq)
Y = 
Columns 1 through 5
    [1.9875e-04]    [0.1146]    [5.0677e-05]    [0.0017]    [0.9544]
Columns 6 through 8
    [0.0014]    [5.7241e-05]    [3.6413e-05]

We convert this back to concurrent form with

z = seq2con(Y);

and can finally display the output in concurrent form with 

z{1,1}
ans =
  Columns 1 through 7 
    0.0002    0.1146    0.0001    0.0017    0.9544    0.0014    0.0001
Column 8 
    0.0000

Thus, once the network is created and the input specified, one need only call 
sim.

Training an Elman Network
Elman networks can be trained with either of two functions, train or adapt.

When using the function train to train an Elman network the following occurs.

At each epoch:

1 The entire input sequence is presented to the network, and its outputs are 
calculated and compared with the target sequence to generate an error 
sequence.

2 For each time step, the error is backpropagated to find gradients of errors 
for each weight and bias. This gradient is actually an approximation since 
the contributions of weights and biases to errors via the delayed recurrent 
connection are ignored. 

3 This gradient is then used to update the weights with the backprop training 
function chosen by the user. The function traingdx is recommended. 
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When using the function adapt to train an Elman network, the following 
occurs.

At each time step:

1 Input vectors are presented to the network, and it generates an error. 

2 The error is backpropagated to find gradients of errors for each weight and 
bias. This gradient is actually an approximation since the contributions of 
weights and biases to the error, via the delayed recurrent connection, are 
ignored. 

3 This approximate gradient is then used to update the weights with the 
learning function chosen by the user. The function learngdm is 
recommended. 

Elman networks are not as reliable as some other kinds of networks because 
both training and adaption happen using an approximation of the error 
gradient.

For an Elman to have the best chance at learning a problem it needs more 
hidden neurons in its hidden layer than are actually required for a solution by 
another method. While a solution may be available with fewer neurons, the 
Elman network is less able to find the most appropriate weights for hidden 
neurons since the error gradient is approximated. Therefore, having a fair 
number of neurons to begin with makes it more likely that the hidden neurons 
will start out dividing up the input space in useful ways. 

The function train trains an Elman network to generate a sequence of target 
vectors when it is presented with a given sequence of input vectors. The input 
vectors and target vectors are passed to train as matrices P and T. Train takes 
these vectors and the initial weights and biases of the network, trains the 
network using backpropagation with momentum and an adaptive learning 
rate, and returns new weights and biases.

Let us continue with the example of the previous section, and suppose that we 
want to train a network with an input P and targets T as defined below

P = round(rand(1,8))
P =
     1     0     1     1     1     0     1     1

and
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T = [0 (P(1:end-1)+P(2:end) == 2)]
T =
     0     0     0     1     1     0     0     1

Here T is defined to be 0, except when two 1’s occur in P, in which case T is 1.

As noted previously, our network has five hidden neurons in the first layer.

net = newelm([0 1],[5 1],{'tansig','logsig'});

We use trainbfg as the training function and train for 100 epochs. After 
training we simulate the network with the input P and calculate the difference 
between the target output and the simulated network output.

net = train(net,Pseq,Tseq); 
Y = sim(net,Pseq);
z = seq2con(Y);
z{1,1};
diff1 = T - z{1,1}

Note that the difference between the target and the simulated output of the 
trained network is very small. Thus, the network is trained to produce the 
desired output sequence on presentation of the input vector P.

See Chapter 11 for an application of the Elman network to the detection of 
wave amplitudes.
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Hopfield Network

Fundamentals
The goal here is to design a network that stores a specific set of equilibrium 
points such that, when an initial condition is provided, the network eventually 
comes to rest at such a design point. The network is recursive in that the output 
is fed back as the input, once the network is in operation. Hopefully, the 
network output will settle on one of the original design points

The design method that we present is not perfect in that the designed network 
may have undesired spurious equilibrium points in addition to the desired 
ones. However, the number of these undesired points is made as small as 
possible by the design method. Further, the domain of attraction of the 
designed equilibrium points is as large as possible.

The design method is based on a system of first-order linear ordinary 
differential equations that are defined on a closed hypercube of the state space. 
The solutions exist on the boundary of the hypercube. These systems have the 
basic structure of the Hopfield model, but are easier to understand and design 
than the Hopfield model.

The material in this section is based on the following paper: Jian-Hua Li, 
Anthony N. Michel and Wolfgang Porod, “Analysis and synthesis of a class of 
neural networks: linear systems operating on a closed hypercube,” IEEE 
Trans. on Circuits and Systems vol 36, no. 11, pp. 1405-22, November 1989.

For further information on Hopfield networks, read Chapter 18 of the Hopfield 
Network [HDB96].

Architecture
The architecture of the network that we are using follows. 
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As noted, the input p to this network merely supplies the initial conditions.

The Hopfield network uses the saturated linear transfer function satlins.

For inputs less than -1 satlins produces -1. For inputs in the range -1 to +1 it 
simply returns the input value. For inputs greater than +1 it produces +1. 

This network can be tested with one or more input vectors which are presented 
as initial conditions to the network. After the initial conditions are given, the 
network produces an output which is then fed back to become the input. This 
process is repeated over and over until the output stabilizes. Hopefully, each 
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output vector eventually converges to one of the design equilibrium point 
vectors that is closest to the input that provoked it.

Design (newhop)
Li et. al. [LiMi89] have studied a system that has the basic structure of the 
Hopfield network but is, in Li’s own words, “easier to analyze, synthesize, and 
implement than the Hopfield model.” The authors are enthusiastic about the 
reference article, as it has many excellent points and is one of the most 
readable in the field. However, the design is mathematically complex, and even 
a short justification of it would burden this guide. Thus, we present the Li 
design method, with thanks to Li et al., as a recipe that is found in the function 
newhop.

Given a set of target equilibrium points represented as a matrix T of vectors, 
newhop returns weights and biases for a recursive network. The network is 
guaranteed to have stable equilibrium points at the target vectors, but it could 
contain other spurious equilibrium points as well. The number of these 
undesired points is made as small as possible by the design method. 

Once the network has been designed, it can be tested with one or more input 
vectors. Hopefully those input vectors close to target equilibrium points will 
find their targets. As suggested by the network figure, an array of input vectors 
may be presented at one time or in a batch. The network proceeds to give 
output vectors that are fed back as inputs. These output vectors can be can be 
compared to the target vectors to see how the solution is proceeding.

The ability to run batches of trial input vectors quickly allows you to check the 
design in a relatively short time. First you might check to see that the target 
equilibrium point vectors are indeed contained in the network. Then you could 
try other input vectors to determine the domains of attraction of the target 
equilibrium points and the locations of spurious equilibrium points if they are 
present.

Consider the following design example. Suppose that we want to design a 
network with two stable points in a three-dimensional space.

T = [-1 -1 1; 1 -1 1]'
T =
    -1     1
    -1    -1
     1     1
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We can execute the design with 

net = newhop(T);

Next we can check to make sure that the designed network is at these two 
points. We can do this as follows. (Since Hopfield networks have no inputs, the 
second argument to sim below is Q = 2 when using matrix notation).

Ai = T;
[Y,Pf,Af] = sim(net,2,[],Ai);
Y

This gives us

Y =
    -1     1
    -1    -1
     1     1

Thus, the network has indeed been designed to be stable at its design points. 
Next we can try another input condition that is not a design point, such as:

Ai = {[-0.9; -0.8; 0.7]}

This point is reasonably close to the first design point, so one might anticipate 
that the network would converge to that first point. To see if this happens, we 
run the following code. Note, incidentally, that we specified the original point 
in cell array form. This allows us to run the network for more than one step.

[Y,Pf,Af] = sim(net,{1 5},{},Ai);
Y{1}

We get

Y =
    -1
    -1
     1

Thus, an original condition close to a design point did converge to that point.

This is, of course, our hope for all such inputs. Unfortunately, even the best 
known Hopfield designs occasionally include undesired spurious stable points 
that attract the solution.
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Example 
Consider a Hopfield network with just two neurons. Each neuron has a bias 
and weights to accommodate two-element input vectors weighted. We define 
the target equilibrium points to be stored in the network as the two columns of 
the matrix T.

T = [1 -1; -1 1]'
T =
     1    -1
    -1     1

Here is a plot of the Hopfield state space with the two stable points labeled with 
‘*’ markers.

These target stable points are given to newhop to obtain weights and biases of 
a Hopfield network. 

net = newhop(T);

The design returns a set of weights and a bias for each neuron. The results are 
obtained from

W= net.LW{1,1}
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which gives

W =
    0.6925   -0.4694
   -0.4694    0.6925

and from 

b = net.b{1,1}

which gives

b =
   1.0e-16 *
    0.6900
    0.6900

Next the design is tested with the target vectors T to see if they are stored in 
the network. The targets are used as inputs for the simulation function sim.

Ai = T;
[Y,Pf,Af] = sim(net,2,[],Ai);
Y =
     1    -1
    -1     1

As hoped, the new network outputs are the target vectors. The solution stays 
at its initial conditions after a single update and, therefore, will stay there for 
any number of updates.
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Now you might wonder how the network performs with various random input 
vectors. Here is a plot showing the paths that the network took through its 
state space, to arrive at a target point.

This plot show the trajectories of the solution for various starting points. You 
can try the demonstration demohop1 to see more of this kind of network 
behavior.

Hopfield networks can be designed for an arbitrary number of dimensions. You 
can try demohop3 to see a three-dimensional design.

Unfortunately, Hopfield networks could have both unstable equilibrium points 
and spurious stable points. You can try demonstration programs demohop2 and 
demohop4 to investigate these issues.
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Summary
Elman networks, by having an internal feedback loop, are capable of learning 
to detect and generate temporal patterns. This makes Elman networks useful 
in such areas as signal processing and prediction where time plays a dominant 
role.

Because Elman networks are an extension of the two-layer sigmoid/linear 
architecture, they inherit the ability to fit any input/output function with a 
finite number of discontinuities. They are also able to fit temporal patterns, but 
may need many neurons in the recurrent layer to fit a complex function.

Hopfield networks can act as error correction or vector categorization 
networks. Input vectors are used as the initial conditions to the network, which 
recurrently updates until it reaches a stable output vector.

Hopfield networks are interesting from a theoretical standpoint, but are 
seldom used in practice. Even the best Hopfield designs may have spurious 
stable points that lead to incorrect answers. More efficient and reliable error 
correction techniques, such as backpropagation, are available.
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Figures
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Hopfield Network 

��
��D

n1

 S 1 x 1

a1(k)

S 1 x 1
S 1 x R1

��
��IW1,1

1
 S 1 x 1��
��

b1

p
 R1 x 1

R1 S1�
�
�

a1(k) = tansig (IW1,1p +LW1,1a1(k-1) + b1) a2(k) = purelin (LW2,1a1(k) + b2)

n2
S 2 x S 1

S 2 x 1��
��LW2,1

S2

 S 2 x 1

a2(k) = y

1
 S 1 x 1��
��

b2

��
��
��

Input Recurrent tansig layer Output purelin layer

��
��

a1(k-1)

LW1,1

Initial
conditions

p

 R1 x 1

R1

a1(k-1)

1

 S 1 x 1
��b1

��
��D

n1

 S 1 x 1

a1(k)

S 1 x 1
S 1 x R1��
��LW1,1

S1

Symmetric saturated linear layer 

��
��
��

a1(k) = satlins (LW1,1a1(k-1)) + b1)

a1(0) = p   and then for k = 1, 2, ...  

a1(0)



Summary

9-17

New Functions
This chapter introduces the following new functions.

Function Description

newelm Create an Elman backpropagation network.

newhop Create a Hopfield recurrent network.

satlins Symmetric saturating linear transfer function.
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Introduction
The ADALINE (Adaptive Linear Neuron networks) networks discussed in this 
chapter are similar to the perceptron, but their transfer function is linear 
rather than hard-limiting. This allows their outputs to take on any value, 
whereas the perceptron output is limited to either 0 or 1. Both the ADALINE 
and the perceptron can only solve linearly separable problems. However, here 
we will make use of the LMS (Least Mean Squares) learning rule, which is 
much more powerful than the perceptron learning rule. The LMS or 
Widrow-Hoff learning rule minimizes the mean square error and, thus, moves 
the decision boundaries as far as it can from the training patterns.

In this chapter, we design an adaptive linear system that responds to changes 
in its environment as it is operating. Linear networks that are adjusted at each 
time step based on new input and target vectors can find weights and biases 
that minimize the network’s sum-squared error for recent input and target 
vectors. Networks of this sort are often used in error cancellation, signal 
processing, and control systems.

The pioneering work in this field was done by Widrow and Hoff, who gave the 
name ADALINE to adaptive linear elements. The basic reference on this 
subject is: Widrow B. and S. D. Sterns, Adaptive Signal Processing, New York: 
Prentice-Hall 1985.

We also consider the adaptive training of self organizing and competitive 
networks in this chapter.

Important Adaptive Functions
This chapter introduces the function adapt, which changes the weights and 
biases of a network incrementally during training.

You can type help linnet to see a list of linear and adaptive network 
functions, demonstrations, and applications.
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Linear Neuron Model
A linear neuron with R inputs is shown below.

This network has the same basic structure as the perceptron. The only 
difference is that the linear neuron uses a linear transfer function, which we 
name purelin. 

The linear transfer function calculates the neuron’s output by simply returning 
the value passed to it.

This neuron can be trained to learn an affine function of its inputs, or to find a 
linear approximation to a nonlinear function. A linear network cannot, of 
course, be made to perform a nonlinear computation.
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Adaptive Linear Network Architecture
The ADALINE network shown below has one layer of S neurons connected to 
R inputs through a matrix of weights W.

This network is sometimes called a MADALINE for Many ADALINES. Note 
that the figure on the right defines an S-length output vector a.

The Widrow-Hoff rule can only train single-layer linear networks. This is not 
much of a disadvantage, however, as single-layer linear networks are just as 
capable as multilayer linear networks. For every multilayer linear network, 
there is an equivalent single-layer linear network.

Single ADALINE (newlin)
Consider a single ADALINE with two inputs. The diagram for this network is 
shown below.
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The weight matrix W in this case has only one row. The network output is:

 or 

Like the perceptron, the ADALINE has a decision boundary that is determined 
by the input vectors for which the net input n is zero. For  the equation 

 specifies such a decision boundary as shown below (adapted with 
thanks from [HDB96])
.

Input vectors in the upper right gray area lead to an output greater than 0. 
Input vectors in the lower left white area lead to an output less than 0. Thus, 
the ADALINE can be used to classify objects into two categories. Now you can 
find the network output with the function sim.
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a = sim(net,p)
a =
    24

To summarize, you can create an ADALINE network with newlin, adjust its 
elements as you want and simulate it with sim. You can find more about newlin 
by typing help newlin.
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Mean Square Error
Like the perceptron learning rule, the least mean square error (LMS) 
algorithm is an example of supervised training, in which the learning rule is 
provided with a set of examples of desired network behavior.

Here  is an input to the network, and  is the corresponding target output. 
As each input is applied to the network, the network output is compared to the 
target. The error is calculated as the difference between the target output and 
the network output. We want to minimize the average of the sum of these 
errors.

The LMS algorithm adjusts the weights and biases of the ADALINE so as to 
minimize this mean square error. 

Fortunately, the mean square error performance index for the ADALINE 
network is a quadratic function. Thus, the performance index will either have 
one global minimum, a weak minimum, or no minimum, depending on the 
characteristics of the input vectors. Specifically, the characteristics of the input 
vectors determine whether or not a unique solution exists.

You can learn more about this topic in Chapter 10 of [HDB96].
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LMS Algorithm (learnwh)
Adaptive networks will use the The LMS algorithm or Widrow-Hoff learning 
algorithm based on an approximate steepest descent procedure. Here again, 
adaptive linear networks are trained on examples of correct behavior.

The LMS algorithm, shown below, is discussed in detail in Chapter 4, “Linear 
Filters.”

.

W k 1+( ) W k( ) 2αe k( )pT k( )+=

b k 1+( ) b k( ) 2αe k( )+=
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Adaptive Filtering (adapt)
The ADALINE network, much like the perceptron, can only solve linearly 
separable problems. Nevertheless, the ADALINE has been and is today one of 
the most widely used neural networks found in practical applications. Adaptive 
filtering is one of its major application areas. 

Tapped Delay Line
We need a new component, the tapped delay line, to make full use of the 
ADALINE network. Such a delay line is shown below. There the input signal 
enters from the left, and passes through N-1 delays. The output of the tapped 
delay line (TDL) is an N-dimensional vector, made up of the input signal at the 
current time, the previous input signal, etc.

Adaptive Filter
We can combine a tapped delay line with an ADALINE network to create the 
adaptive filter shown below.
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The output of the filter is given by

The network shown above is referred to in the digital signal processing field as 
a finite impulse response (FIR) filter [WiSt85]. Let us take a look at the code 
that we use to generate and simulate such an adaptive network.

Adaptive Filter Example
First we will define a new linear network using newlin.
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Assume that the input values have a range from 0 to 10. We can now define our 
single output network.

net = newlin([0,10],1);

We can specify the delays in the tapped delay line with

net.inputWeights{1,1}.delays = [0 1 2];

This says that the delay line is connected to the network weight matrix through 
delays of 0, 1, and 2 time units. (You can specify as many delays as you want, 
and can omit some values if you like. They must be in ascending order.)

We can give the various weights and the bias values with

net.IW{1,1} = [7 8 9];
net.b{1} = [0];

Finally we will define the initial values of the outputs of the delays as

pi ={1 2}

Note that these are ordered from left to right to correspond to the delays taken 
from top to bottom in the figure. This concludes the setup of the network. Now 
how about the input?

Input
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We assume that the input scalars arrive in a sequence, first the value 3, then 
the value 4, next the value 5, and finally the value 6. We can indicate this 
sequence by defining the values as elements of a cell array. (Note the curly 
brackets.)

p = {3 4 5 6}

Now we have a network and a sequence of inputs. We can simulate the network 
to see what its output is as a function of time.

[a,pf] = sim(net,p,pi);

This yields an output sequence 

a = 
    [46]    [70]    [94]    [118]

and final values for the delay outputs of

pf = 
    [5]    [6].

The example is sufficiently simple that you can check it by hand to make sure 
that you understand the inputs, initial values of the delays, etc.

The network that we have defined can be trained with the function adapt to 
produce a particular output sequence. Suppose, for instance, we would like the 
network to produce the sequence of values 10, 20, 30, and 40. 

T = {10 20 30 40}

We can train our defined network to do this, starting from the initial delay 
conditions that we used above. We specify 10 passes through the input 
sequence with

net.adaptParam.passes = 10;

Then we can do the training with

[net,y,E pf,af] = adapt(net,p,T,pi);

This code returns the final weights, bias, and output sequence shown below.

wts = net.IW{1,1}
wts =
    0.5059    3.1053    5.7046
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bias = net.b{1}
bias =
   -1.5993
y = 
    [11.8558]    [20.7735]    [29.6679]    [39.0036]

Presumably, if we ran for additional passes the output sequence would have 
been even closer to the desired values of 10, 20, 30, and 40.

Thus, adaptive networks can be specified, simulated, and finally trained with 
adapt. However, the outstanding value of adaptive networks lies in their use 
to perform a particular function, such as or prediction or noise cancellation.

Prediction Example
Suppose that we want to use an adaptive filter to predict the next value of a 
stationary random process, p(t). We use the network shown below to do this.

The signal to be predicted, p(t), enters from the left into a tapped delay line. 
The previous two values of p(t) are available as outputs from the tapped delay 
line. The network uses adapt to change the weights on each time step so as to 
minimize the error e(t) on the far right. If this error is zero, then the network 
output a(t) is exactly equal to p(t), and the network has done its prediction 
properly.
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A detailed analysis of this network is not appropriate here, but we can state the 
main points. Given the autocorrelation function of the stationary random 
process p(t), the error surface, the maximum learning rate, and the optimum 
values of the weights can be calculated. Commonly, of course, one does not have 
detailed information about the random process, so these calculations cannot be 
performed. But this lack does not matter to the network. The network, once 
initialized and operating, adapts at each time step to minimize the error and 
in a relatively short time is able to predict the input p(t). 

Chapter 10 of [HDB96] presents this problem, goes through the analysis, and 
shows the weight trajectory during training. The network finds the optimum 
weights on its own without any difficulty whatsoever. 

You also can try demonstration program nnd10nc to see an adaptive noise 
cancellation program example in action. This demonstration allows you to pick 
a learning rate and momentum (see Chapter 5, “Backpropagation”), and shows 
the learning trajectory, and the original and cancellation signals verses time.

Noise Cancellation Example
Consider a pilot in an airplane. When the pilot speaks into a microphone, the 
engine noise in the cockpit is added to the voice signal, and the resultant signal 
heard by passengers would be of low quality. We would like to obtain a signal 
that contains the pilot’s voice, but not the engine noise. We can do this with an 
adaptive filter if we obtain a sample of the engine noise and apply it as the 
input to the adaptive filter.
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Here we adaptively train the neural linear network to predict the combined 
pilot/engine signal m from an engine signal n. Notice that the engine signal n 
does not tell the adaptive network anything about the pilot’s voice signal 
contained in m. However, the engine signal n. does give the network 
information it can use to predict the engine’s contribution to the pilot/engine 
signal m. 

The network will do its best to adaptively output m. In this case, the network 
can only predict the engine interference noise in the pilot/engine signal m. The 
network error e is equal to m, the pilot/engine signal, minus the predicted 
contaminating engine noise signal. Thus, e contains only the pilot’s voice! Our 
linear adaptive network adaptively learns to cancel the engine noise. 

Note, in closing, that such adaptive noise canceling generally does a better job 
than a classical filter because the noise here is subtracted from rather than 
filtered out of the signal m.
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   Filter Engine Noise

Noise Path
    Filter

Pilot’s 
Voice

Contaminating
Noise       

Pilot’s Voice 
Contaminated with 
Engine Noise

"Error"

Restored Signal

+
-

Adaptive Filter Adjusts to Minimize Error. 
This removes the engine noise from contaminated 
signal, leaving the pilot’s voice as the “error.”
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c

v
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e

m
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Try demolin8 for an example of adaptive noise cancellation.

Multiple Neuron Adaptive Filters
We may want to use more than one neuron in an adaptive system, so we need 
some additional notation. A tapped delay line can be used with S linear 
neurons as shown below.

Alternatively, we can show this same network in abbreviated form.
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If we want to show more of the detail of the tapped delay line and there are not 
too many delays, we can use the following notation.

Here we have a tapped delay line that sends the current signal, the previous 
signal, and the signal delayed before that to the weight matrix. We could have 
a longer list, and some delay values could be omitted if desired. The only 
requirement is that the delays are shown in increasing order as they go from 
top to bottom.
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Summary
The ADALINE (Adaptive Linear Neuron networks) networks discussed in this 
chapter are similar to the perceptron, but their transfer function is linear 
rather than hard-limiting. They make use of the LMS (Least Mean Squares) 
learning rule, which is much more powerful that the perceptron learning rule. 
The LMS or Widrow-Hoff learning rule minimizes the mean square error and, 
thus, moves the decision boundaries as far as it can from the training patterns.

In this chapter, we design an adaptive linear system that responds to changes 
in its environment as it is operating. Linear networks that are adjusted at each 
time step based on new input and target vectors can find weights and biases 
that minimize the network’s sum-squared error for recent input and target 
vectors.

Adaptive linear filters have many practical applications such as noise 
cancellation, signal processing, and prediction in control and communication 
systems.

This chapter introduces the function adapt, which changes the weights and 
biases of a network incrementally during training.

Figures and Equations
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Purelin Transfer Function

MADALINE 
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ADALINE

Decision Boundary

Mean Square Error
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LMS (Widrow-Hoff) Algorithm

Tapped Delay Line
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Adaptive Filter

Linear Layer
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Adaptive Filter Example

Prediction Example
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Noise Cancellation Example
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Adaptive Filter Adjusts to Minimize Error. 
This removes the engine noise from contaminated 
signal, leaving the pilot’s voice as the “error.”
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Multiple Neuron Adaptive Filter

Abbreviated Form of Adaptive Filter
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Small Specific Adaptive Filter

New Functions
This chapter introduced the following function.

Function Description

adapt Trains a network using a sequence of inputs
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Applications

Introduction (p. 11-2) Introduces the chapter and provides a list of the 
application scripts

Applin1: Linear Design (p. 11-3) Discusses a script which demonstrates linear design 
using the Neural Network Toolbox

Applin2: Adaptive Prediction (p. 11-7) Discusses a script which demonstrates adaptive 
prediction using the Neural Network Toolbox

Appelm1: Amplitude Detection (p. 11-11) Discusses a script which demonstrates amplitude 
detection using the Neural Network Toolbox

Appcr1: Character Recognition (p. 11-16) Discusses a script which demonstrates character 
recognition using the Neural Network Toolbox



11 Applications

11-2

Introduction
Today, neural networks can solve problems of economic importance that could 
not be approached previously in any practical way. Some of the recent neural 
network applications are discussed in this chapter. See Chapter 1, 
“Introduction” for a list of many areas where neural networks already have 
been applied.

Note  The rest of this chapter describes applications that are practical and 
make extensive use of the neural network functions described throughout this 
documentation. 

Application Scripts
The linear network applications are contained in scripts applin1 and applin2.

The Elman network amplitude detection application is contained in the script 
appelm1.

The character recognition application is in appcr1.

Type help nndemos to see a listing of all neural network demonstrations or 
applications.
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Applin1: Linear Design

Problem Definition
Here is the definition of a signal T, which lasts 5 seconds, and is defined at a 
sampling rate of 40 samples per second.

time = 0:0.025:5;
T = sin(time*4*pi);
Q = length(T);

At any given time step, the network is given the last five values of the signal t, 
and expected to give the next value. The inputs P are found by delaying the 
signal T from one to five time steps.

P = zeros(5,Q);
P(1,2:Q) = T(1,1:(Q-1));
P(2,3:Q) = T(1,1:(Q-2));
P(3,4:Q) = T(1,1:(Q-3));
P(4,5:Q) = T(1,1:(Q-4));
P(5,6:Q) = T(1,1:(Q-5));

Here is a plot of the signal T.
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Network Design
Because the relationship between past and future values of the signal is not 
changing, the network can be designed directly from examples using newlind.

The problem as defined above has five inputs (the five delayed signal values), 
and one output (the next signal value). Thus, the network solution must consist 
of a single neuron with five inputs.

Here newlind finds the weights and biases, for the neuron above, that 
minimize the sum-squared error for this problem.

net = newlind(P,T);

The resulting network can now be tested.

Network Testing
To test the network, its output a is computed for the five delayed signals P and 
compared with the actual signal T.

a = sim(net,P);

Here is a plot of a compared to T.
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The network’s output a and the actual signal t appear to match up perfectly. 
Just to be sure, let us plot the error e = T – a.

The network did have some error for the first few time steps. This occurred 
because the network did not actually have five delayed signal values available 
until the fifth time step. However, after the fifth time step error was negligible. 
The linear network did a good job. Run the script applin1 to see these plots.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time

O
ut

pu
t -

  T
ar

ge
t +

Output and Target Signals

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time

E
rr

or

Error Signal



11 Applications

11-6

Thoughts and Conclusions
While newlind is not able to return a zero error solution for nonlinear 
problems, it does minimize the sum-squared error. In many cases, the solution, 
while not perfect, may model a nonlinear relationship well enough to meet the 
application specifications. Giving the linear network many delayed signal 
values gives it more information with which to find the lowest error linear fit 
for a nonlinear problem.

Of course, if the problem is very nonlinear and/or the desired error is very low, 
backpropagation or radial basis networks would be more appropriate.
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Applin2: Adaptive Prediction 
In application script applin2, a linear network is trained incrementally with 
adapt to predict a time series. Because the linear network is trained 
incrementally, it can respond to changes in the relationship between past and 
future values of the signal.

Problem Definition
The signal T to be predicted lasts 6 seconds with a sampling rate of 20 samples 
per second. However, after 4 seconds the signal’s frequency suddenly doubles. 

time1 = 0:0.05:4;
time2 = 4.05:0.024:6;
time = [time1 time2];
T = [sin(time1*4*pi) sin(time2*8*pi)];

Since we are training the network incrementally, we change t to a sequence.

T = con2seq(T);

Here is a plot of this signal.

The input to the network is the same signal that makes up the target.

P = T;
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Network Initialization
The network has only one neuron, as only one output value of the signal T is 
being generated at each time step. This neuron has five inputs, the five delayed 
values of the signal T.

The function newlin creates the network shown above. We use a learning rate 
of 0.1 for incremental training.

lr = 0.1;
delays = [1 2 3 4 5];
net = newlin(minmax(cat(2,P{:})),1,delays,lr);
[w,b] = initlin(P,t)

Network Training
The above neuron is trained incrementally with adapt. Here is the code to train 
the network on input/target signals P and T.

[net,a,e]=adapt(net,P,T);

Network Testing
Once the network is adapted, we can plot its output signal and compare it to 
the target signal.
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Initially, it takes the network 1.5 seconds (30 samples) to track the target 
signal. Then, the predictions are accurate until the fourth second when the 
target signal suddenly changes frequency. However, the adaptive network 
learns to track the new signal in an even shorter interval as it has already 
learned a behavior (a sine wave) similar to the new signal.

A plot of the error signal makes these effects easier to see.
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Thoughts and Conclusions
The linear network was able to adapt very quickly to the change in the target 
signal. The 30 samples required to learn the wave form are very impressive 
when one considers that in a typical signal processing application, a signal may 
be sampled at 20 kHz. At such a sampling frequency, 30 samples go by in 1.5 
milliseconds.

For example, the adaptive network can be monitored so as to give a warning 
that its constants were nearing values that would result in instability.

Another use for an adaptive linear model is suggested by its ability to find a 
minimum sum-squared error linear estimate of a nonlinear system’s behavior. 
An adaptive linear model is highly accurate as long as the nonlinear system 
stays near a given operating point. If the nonlinear system moves to a different 
operating point, the adaptive linear network changes to model it at the new 
point.

The sampling rate should be high to obtain the linear model of the nonlinear 
system at its current operating point in the shortest amount of time. However, 
there is a minimum amount of time that must occur for the network to see 
enough of the system’s behavior to properly model it. To minimize this time, a 
small amount of noise can be added to the input signals of the nonlinear 
system. This allows the network to adapt faster as more of the operating points 
dynamics are expressed in a shorter amount of time. Of course, this noise 
should be small enough so it does not affect the system’s usefulness.
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Appelm1: Amplitude Detection
Elman networks can be trained to recognize and produce both spatial and 
temporal patterns. An example of a problem where temporal patterns are 
recognized and classified with a spatial pattern is amplitude detection.

Amplitude detection requires that a wave form be presented to a network 
through time, and that the network output the amplitude of the wave form. 
This is not a difficult problem, but it demonstrates the Elman network design 
process.

The following material describes code that is contained in the demonstration 
script appelm1.

Problem Definition
The following code defines two sine wave forms, one with an amplitude of 1.0, 
the other with an amplitude of 2.0.

p1 = sin(1:20);
p2 = sin(1:20)*2;

The target outputs for these wave forms is their amplitudes.

t1 = ones(1,20);
t2 = ones(1,20)*2;

These wave forms can be combined into a sequence where each wave form 
occurs twice. These longer wave forms are used to train the Elman network.

p = [p1 p2 p1 p2];
t = [t1 t2 t1 t2];

We want the inputs and targets to be considered a sequence, so we need to 
make the conversion from the matrix format.

Pseq = con2seq(p);
Tseq = con2seq(t);

Network Initialization
This problem requires that the Elman network detect a single value (the 
signal), and output a single value (the amplitude), at each time step. Therefore 
the network must have one input element, and one output neuron.
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R = 1;% 1 input element
S2 = 1;% 1 layer 2 output neuron

The recurrent layer can have any number of neurons. However, as the 
complexity of the problem grows, more neurons are needed in the recurrent 
layer for the network to do a good job.

This problem is fairly simple, so only 10 recurrent neurons are used in the first 
layer.

S1 = 10;% 10 recurrent neurons in the first layer

Now the function newelm can be used to create initial weight matrices and bias 
vectors for a network with one input that can vary between –2 and +2. We use 
variable learning rate (traingdx) for this example.

net = newelm([-2 2],[S1 S2],{'tansig','purelin'},'traingdx');

Network Training
Now call train.

[net,tr] = train(net,Pseq,Tseq);

As this function finishes training at 500 epochs, it displays the following plot 
of errors.
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The final mean-squared error was about 1.8e-2. We can test the network to see 
what this means.

Network Testing
To test the network, the original inputs are presented, and its outputs are 
calculated with simuelm.

a = sim(net,Pseq);

Here is the plot.

The network does a good job. New wave amplitudes are detected with a few 
samples. More neurons in the recurrent layer and longer training times would 
result in even better performance.

The network has successfully learned to detect the amplitudes of incoming sine 
waves.

Network Generalization
Of course, even if the network detects the amplitudes of the training wave 
forms, it may not detect the amplitude of a sine wave with an amplitude it has 
not seen before.
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The following code defines a new wave form made up of two repetitions of a sine 
wave with amplitude 1.6 and another with amplitude 1.2.

p3 = sin(1:20)*1.6;
t3 = ones(1,20)*1.6;
p4 = sin(1:20)*1.2;
t4 = ones(1,20)*1.2;
pg = [p3 p4 p3 p4];
tg = [t3 t4 t3 t4];
pgseq = con2seq(pg);

The input sequence pg and target sequence tg are used to test the ability of our 
network to generalize to new amplitudes.

Once again the function sim is used to simulate the Elman network and the 
results are plotted.

a = sim(net,pgseq);

This time the network did not do as well. It seems to have a vague idea as to 
what it should do, but is not very accurate!

Improved generalization could be obtained by training the network on more 
amplitudes than just 1.0 and 2.0. The use of three or four different wave forms 
with different amplitudes can result in a much better amplitude detector.
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Improving Performance
Run appelm1 to see plots similar to those above. Then make a copy of this file 
and try improving the network by adding more neurons to the recurrent layer, 
using longer training times, and giving the network more examples in its 
training data.
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Appcr1: Character Recognition
It is often useful to have a machine perform pattern recognition. In particular, 
machines that can read symbols are very cost effective. A machine that reads 
banking checks can process many more checks than a human being in the same 
time. This kind of application saves time and money, and eliminates the 
requirement that a human perform such a repetitive task. The script appcr1 
demonstrates how character recognition can be done with a backpropagation 
network.

Problem Statement
A network is to be designed and trained to recognize the 26 letters of the 
alphabet. An imaging system that digitizes each letter centered in the system’s 
field of vision is available. The result is that each letter is represented as a 5 by 
7 grid of boolean values.

For example, here is the letter A.

However, the imaging system is not perfect and the letters may suffer from 
noise.
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Perfect classification of ideal input vectors is required, and reasonably accurate 
classification of noisy vectors.

The twenty-six 35-element input vectors are defined in the function prprob as 
a matrix of input vectors called alphabet. The target vectors are also defined 
in this file with a variable called targets. Each target vector is a 26-element 
vector with a 1 in the position of the letter it represents, and 0’s everywhere 
else. For example, the letter A is to be represented by a 1 in the first element 
(as A is the first letter of the alphabet), and 0’s in elements two through 
twenty-six.

Neural Network
The network receives the 35 Boolean values as a 35-element input vector. It is 
then required to identify the letter by responding with a 26-element output 
vector. The 26 elements of the output vector each represent a letter. To operate 
correctly, the network should respond with a 1 in the position of the letter being 
presented to the network. All other values in the output vector should be 0.

In addition, the network should be able to handle noise. In practice, the 
network does not receive a perfect Boolean vector as input. Specifically, the 
network should make as few mistakes as possible when classifying vectors with 
noise of mean 0 and standard deviation of 0.2 or less.

Architecture
The neural network needs 35 inputs and 26 neurons in its output layer to 
identify the letters. The network is a two-layer log-sigmoid/log-sigmoid 
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network. The log-sigmoid transfer function was picked because its output 
range (0 to 1) is perfect for learning to output boolean values.

The hidden (first) layer has 10 neurons. This number was picked by guesswork 
and experience. If the network has trouble learning, then neurons can be added 
to this layer.

The network is trained to output a 1 in the correct position of the output vector 
and to fill the rest of the output vector with 0’s. However, noisy input vectors 
may result in the network not creating perfect 1’s and 0’s. After the network is 
trained the output is passed through the competitive transfer function compet. 
This makes sure that the output corresponding to the letter most like the noisy 
input vector takes on a value of 1, and all others have a value of 0. The result 
of this post-processing is the output that is actually used.

Initialization
The two-layer network is created with newff.

S1 = 10;
[R,Q] = size(alphabet);
[S2,Q] = size(targets);
P = alphabet;
net = newff(minmax(P),[S1 S2],{'logsig' 'logsig'},'traingdx');

Training
To create a network that can handle noisy input vectors it is best to train the 
network on both ideal and noisy vectors. To do this, the network is first trained 
on ideal vectors until it has a low sum-squared error.
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Then, the network is trained on 10 sets of ideal and noisy vectors. The network 
is trained on two copies of the noise-free alphabet at the same time as it is 
trained on noisy vectors. The two copies of the noise-free alphabet are used to 
maintain the network’s ability to classify ideal input vectors.

Unfortunately, after the training described above the network may have 
learned to classify some difficult noisy vectors at the expense of properly 
classifying a noise-free vector. Therefore, the network is again trained on just 
ideal vectors. This ensures that the network responds perfectly when 
presented with an ideal letter. 

All training is done using backpropagation with both adaptive learning rate 
and momentum with the function trainbpx.

Training Without Noise
The network is initially trained without noise for a maximum of 5000 epochs 
or until the network sum-squared error falls beneath 0.1.

P = alphabet;
T = targets;
net.performFcn = 'sse';
net.trainParam.goal = 0.1;
net.trainParam.show = 20;
net.trainParam.epochs = 5000;
net.trainParam.mc = 0.95;
[net,tr] = train(net,P,T);

Training with Noise
To obtain a network not sensitive to noise, we trained with two ideal copies and 
two noisy copies of the vectors in alphabet. The target vectors consist of four 
copies of the vectors in target. The noisy vectors have noise of mean 0.1 and 
0.2 added to them. This forces the neuron to learn how to properly identify 
noisy letters, while requiring that it can still respond well to ideal vectors.

To train with noise, the maximum number of epochs is reduced to 300 and the 
error goal is increased to 0.6, reflecting that higher error is expected because 
more vectors (including some with noise), are being presented.

netn = net;
netn.trainParam.goal = 0.6;
netn.trainParam.epochs = 300;
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T = [targets targets targets targets];
for pass = 1:10
P = [alphabet, alphabet, ...
      (alphabet + randn(R,Q)*0.1), ...
      (alphabet + randn(R,Q)*0.2)];
[netn,tr] = train(netn,P,T);
end

Training Without Noise Again
Once the network is trained with noise, it makes sense to train it without noise 
once more to ensure that ideal input vectors are always classified correctly. 
Therefore, the network is again trained with code identical to the “Training 
Without Noise” on page 11-19.

System Performance
The reliability of the neural network pattern recognition system is measured 
by testing the network with hundreds of input vectors with varying quantities 
of noise. The script file appcr1 tests the network at various noise levels, and 
then graphs the percentage of network errors versus noise. Noise with a mean 
of 0 and a standard deviation from 0 to 0.5 is added to input vectors. At each 
noise level, 100 presentations of different noisy versions of each letter are made 
and the network’s output is calculated. The output is then passed through the 
competitive transfer function so that only one of the 26 outputs (representing 
the letters of the alphabet), has a value of 1.

The number of erroneous classifications is then added and percentages are 
obtained. 
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The solid line on the graph shows the reliability for the network trained with 
and without noise. The reliability of the same network when it had only been 
trained without noise is shown with a dashed line. Thus, training the network 
on noisy input vectors greatly reduces its errors when it has to classify noisy 
vectors.

The network did not make any errors for vectors with noise of mean 0.00 or 
0.05. When noise of mean 0.2 was added to the vectors both networks began 
making errors. 

If a higher accuracy is needed, the network can be trained for a longer time or 
retrained with more neurons in its hidden layer. Also, the resolution of the 
input vectors can be increased to a 10-by-14 grid. Finally, the network could be 
trained on input vectors with greater amounts of noise if greater reliability 
were needed for higher levels of noise.

To test the system, a letter with noise can be created and presented to the 
network.

noisyJ = alphabet(:,10)+randn(35,1) ∗ 0.2;
plotchar(noisyJ);
A2 = sim(net,noisyJ);
A2 = compet(A2);
answer = find(compet(A2) == 1);
plotchar(alphabet(:,answer));
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Here is the noisy letter and the letter the network picked (correctly). 

Summary
This problem demonstrates how a simple pattern recognition system can be 
designed. Note that the training process did not consist of a single call to a 
training function. Instead, the network was trained several times on various 
input vectors. 

In this case, training a network on different sets of noisy vectors forced the 
network to learn how to deal with noise, a common problem in the real world.
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Custom Networks (p. 12-2) Describes how to create custom networks with Neural 
Network Toolbox functions

Additional Toolbox Functions (p. 12-16) Provides notes on additional advanced functions

Custom Functions (p. 12-18) Discusses creating custom functions with the Neural 
Network Toolbox
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Custom Networks
The Neural Network Toolbox is designed to allow for many kinds of networks. 
This makes it possible for many functions to use the same network object data 
type. 

Here are all the standard network creation functions in the toolbox.

This flexibility is possible because we have an object-oriented representation 
for networks. The representation allows various architectures to be defined 
and allows various algorithms to be assigned to those architectures.

New Networks 

newc Create a competitive layer.

newcf Create a cascade-forward backpropagation network.

newelm Create an Elman backpropagation network.

newff Create a feed-forward backpropagation network.

newfftd Create a feed-forward input-delay backprop network.

newgrnn Design a generalized regression neural network.

newhop Create a Hopfield recurrent network.

newlin Create a linear layer.

newlind Design a linear layer.

newlvq Create a learning vector quantization network

newp Create a perceptron.

newpnn Design a probabilistic neural network.

newrb Design a radial basis network.

newrbe Design an exact radial basis network.

newsom Create a self-organizing map.
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To create custom networks, start with an empty network (obtained with the 
network function) and set its properties as desired.

network  - Create a custom neural network.

The network object consists of many properties that you can set to specify the 
structure and behavior of your network. See Chapter 13, “Network Object 
Reference” for descriptions of all network properties.

The following sections demonstrate how to create a custom network by using 
these properties.

Custom Network
Before you can build a network you need to know what it looks like. For 
dramatic purposes (and to give the toolbox a workout) this section leads you 
through the creation of the wild and complicated network shown below.

Each of the two elements of the first network input is to accept values ranging 
between 0 and 10. Each of the five elements of the second network input ranges 
from -2 to 2.
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Before you can complete your design of this network, the algorithms it employs 
for initialization and training must be specified.

We agree here that each layer’s weights and biases are initialized with the 
Nguyen-Widrow layer initialization method (initnw). Also, the network is 
trained with the Levenberg-Marquardt backpropagation (trainlm), so that, 
given example input vectors, the outputs of the third layer learn to match the 
associated target vectors with minimal mean squared error (mse).

Network Definition
The first step is to create a new network. Type in the following code to create a 
network and view its many properties.

net = network

Architecture Properties
The first group of properties displayed are labeled architecture properties. 
These properties allow you to select of the number of inputs and layers, and 
their connections.

Number of Inputs and Layers. The first two properties displayed are numInputs 
and numLayers. These properties allow us to select how many inputs and layers 
we want our network to have.

net =

Neural Network object:

    architecture:

         numInputs: 0
         numLayers: 0

Note that the network has no inputs or layers at this time.

Change that by setting these properties to the number of inputs and number of 
layers in our custom network diagram.

net.numInputs = 2;
net.numLayers = 3;

…
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Note that net.numInputs is the number of input sources, not the number of 
elements in an input vector (net.inputs{i}.size).

Bias Connections. Type net and press Return to view its properties again. The 
network now has two inputs and three layers.

net =

Neural Network object:

    architecture:

         numInputs: 2
         numLayers: 3

Now look at the next five properties.

biasConnect: [0; 0; 0]
      inputConnect: [0 0; 0 0; 0 0]
      layerConnect: [0 0 0; 0 0 0; 0 0 0]
     outputConnect: [0 0 0]
     targetConnect: [0 0 0]

These matrices of 1’s and 0’s represent the presence or absence of bias, input 
weight, layer weight, output, and target connections. They are currently all 
zeros, indicating that the network does not have any such connections.

Note that the bias connection matrix is a 3-by-1 vector. To create a bias 
connection to the ith layer you can set net.biasConnect(i) to 1. Specify that 
the first and third layer’s are to have bias connections, as our diagram 
indicates, by typing in the following code.

net.biasConnect(1) = 1;
net.biasConnect(3) = 1;

Note that you could also define those connections with a single line of code.

net.biasConnect = [1; 0; 1];

Input and Layer Weight Connections. The input connection matrix is 3-by-2, 
representing the presence of connections from two sources (the two inputs) to 
three destinations (the three layers). Thus, net.inputConnect(i,j) 
represents the presence of an input weight connection going to the ith layer 
from the jth input.
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To connect the first input to the first and second layers, and the second input 
to the second layer (as is indicated by the custom network diagram), type

net.inputConnect(1,1) = 1;
net.inputConnect(2,1) = 1;
net.inputConnect(2,2) = 1;

or this single line of code:

net.inputConnect = [1 0; 1 1; 0 0];

Similarly, net.layerConnect(i.j) represents the presence of a layer-weight 
connection going to the ith layer from the jth layer. Connect layers 1, 2, and 3 
to layer 3 as follows.

net.layerConnect = [0 0 0; 0 0 0; 1 1 1];

Output and Target Connections. Both the output and target connection matrices 
are 1-by-3 matrices, indicating that they connect to one destination (the 
external world) from three sources (the three layers).

To connect layers 2 and 3 to network outputs, type

net.outputConnect = [0 1 1];

To give layer 3 a target connection, type

net.targetConnect = [0 0 1];

The layer 3 target is compared to the output of layer 3 to generate an error for 
use when measuring the performance of the network, or when updating the 
network during training or adaption.

Number of Outputs and Targets
Type net and press Enter to view the updated properties. The final four 
architecture properties are read-only values, which means their values are 
determined by the choices we make for other properties. The first two read-only 
properties have the following values.

numOutputs: 2  (read-only)
numTargets: 1  (read-only)

By defining output connections from layers 2 and 3, and a target connection 
from layer 3, you specify that the network has two outputs and one target.
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Subobject Properties
The next group of properties is

subobject structures:

inputs: {2x1 cell} of inputs
layers: {3x1 cell} of layers
outputs: {1x3 cell} containing 2 outputs
targets: {1x3 cell} containing 1 target
biases: {3x1 cell} containing 2 biases

inputWeights: {3x2 cell} containing 3 input weights
layerWeights: {3x3 cell} containing 3 layer weights

Inputs
When you set the number of inputs (net.numInputs) to 2, the inputs property 
becomes a cell array of two input structures. Each ith input structure 
(net.inputs{i}) contains addition properties associated with the ith input.

To see how the input structures are arranged, type

net.inputs
ans = 

    [1x1 struct]
    [1x1 struct]

To see the properties associated with the first input, type

net.inputs{1}

The properties appear as follows.

ans = 

range: [0 1]
        size: 1
    userdata: [1x1 struct]

Note that the range property only has one row. This indicates that the input 
has only one element, which varies from 0 to 1. The size property also 
indicates that this input has just one element.
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The first input vector of the custom network is to have two elements ranging 
from 0 to 10. Specify this by altering the range property of the first input as 
follows.

net.inputs{1}.range = [0 10; 0 10];

If we examine the first input’s structure again, we see that it now has the 
correct size, which was inferred from the new range values.

ans = 

       range: [2x2 double]
        size: 2
    userdata: [1x1 struct]

Set the second input vector ranges to be from -2 to 2 for five elements as follows.

net.inputs{2}.range = [-2 2; -2 2; -2 2; -2 2; -2 2];

Layers. When we set the number of layers (net.numLayers) to 3, the layers 
property becomes a cell array of three-layer structures. Type the following line 
of code to see the properties associated with the first layer.

net.layers{1}

ans = 

     dimensions: 1
    distanceFcn: 'dist'
      distances: 0
        initFcn: 'initwb'
    netInputFcn: 'netsum'
      positions: 0
           size: 1
    topologyFcn: 'hextop'
    transferFcn: 'purelin'
       userdata: [1x1 struct]

Type the following three lines of code to change the first layer’s size to 4 
neurons, its transfer function to tansig, and its initialization function to the 
Nguyen-Widrow function as required for the custom network diagram.

net.layers{1}.size = 4;
net.layers{1}.transferFcn = 'tansig';
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net.layers{1}.initFcn = 'initnw';

The second layer is to have three neurons, the logsig transfer function, and be 
initialized with initnw. Thus, set the second layer’s properties to the desired 
values as follows.

net.layers{2}.size = 3;
net.layers{2}.transferFcn = 'logsig';
net.layers{2}.initFcn = 'initnw';

The third layer’s size and transfer function properties don’t need to be changed 
since the defaults match those shown in the network diagram. You only need 
to set its initialization function as follows.

net.layers{3}.initFcn = 'initnw';

Output and Targets. Take a look at how the outputs property is arranged with 
this line of code.

net.outputs
ans = 

     []    [1x1 struct]    [1x1 struct]

Note that outputs contains two output structures, one for layer 2 and one for 
layer 3. This arrangement occurs automatically when net.outputConnect was 
set to [0 1 1].

View the second layer’s output structure with the following expression.

net.outputs{2}
ans = 

        size: 3
    userdata: [1x1 struct]

The size is automatically set to 3 when the second layer’s size 
(net.layers{2}.size) is set to that value. Take a look at the third layer’s 
output structure if you want to verify that it also has the correct size.

Similarly, targets contains one structure representing the third layer’s target. 
Type these two lines of code to see how targets is arranged and to view the 
third layer’s target properties.

net.targets
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ans = 
     []    []    [1x1 struct]

net.targets{3}
ans = 
        size: 1
    userdata: [1x1 struct]

Biases, Input Weights, and Layer Weights. Enter the following lines of code to see 
how bias and weight structures are arranged.

net.biases
net.inputWeights
net.layerWeights

Here are the results for typing net.biases.

ans = 
    [1x1 struct]
              []
    [1x1 struct]

If you examine the results you will note that each contains a structure where 
the corresponding connections (net.biasConnect, net.inputConnect, and 
net.layerConnect) contain a 1.

Take a look at their structures with these lines of code.

net.biases{1}
net.biases{3}
net.inputWeights{1,1}
net.inputWeights{2,1}
net.inputWeights{2,2}
net.layerWeights{3,1}
net.layerWeights{3,2}
net.layerWeights{3,3}

For example, typing net.biases{1} results in the following output.

ans = 
       initFcn: ''
         learn: 1
      learnFcn: ''
    learnParam: ''
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          size: 4
      userdata: [1x1 struct]

Specify the weights tap delay lines in accordance with the network diagram, by 
setting each weights delays property.

net.inputWeights{2,1}.delays = [0 1];
net.inputWeights{2,2}.delays = 1;
net.layerWeights{3,3}.delays = 1;

Network Functions
Type net and press return again to see the next set of properties.

functions:

adaptFcn: (none)
           initFcn: (none)
        performFcn: (none)
          trainFcn: (none)

Each of these properties defines a function for a basic network operation.

Set the initialization function to initlay so the network initializes itself 
according to the layer initialization functions that we have already set to 
initnw the Nguyen-Widrow initialization function.

net.initFcn = 'initlay';

This meets the initialization requirement of our network.

Set the performance function to mse (mean squared error) and the training 
function to trainlm (Levenberg-Marquardt backpropagation) to meet the final 
requirement of the custom network.

net.performFcn = 'mse';
net.trainFcn = 'trainlm';

Weight and Bias Values
Before initializing and training the network, take a look at the final group of 
network properties (aside from the userdata property).

weight and bias values:

                IW: {3x2 cell} containing 3 input weight matrices
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                LW: {3x3 cell} containing 3 layer weight matrices
                 b: {3x1 cell} containing 2 bias vectors

These cell arrays contain weight matrices and bias vectors in the same 
positions that the connection properties (net.inputConnect, 
net.layerConnect, net.biasConnect) contain 1’s and the subobject properties 
(net.inputWeights, net.layerWeights, net.biases) contain structures.

Evaluating each of the following lines of code reveals that all the bias vectors 
and weight matrices are set to zeros.

net.IW{1,1}, net.IW{2,1}, net.IW{2,2}
net.IW{3,1}, net.LW{3,2}, net.LW{3,3}
net.b{1}, net.b{3}

Each input weight net.IW{i,j}, layer weight net.LW{i,j}, and bias vector 
net.b{i} has as many rows as the size of the ith layer (net.layers{i}.size). 

Each input weight net.IW{i,j} has as many columns as the size of the jth 
input (net.inputs{j}.size) multiplied by the number of its delay values 
(length(net.inputWeights{i,j}.delays)).

Likewise, each layer weight has as many columns as the size of the jth layer 
(net.layers{j}.size) multiplied by the number of its delay values 
(length(net.layerWeights{i,j}.delays)).

Network Behavior

Initialization
Initialize your network with the following line of code.

net = init(net)

Reference the network’s biases and weights again to see how they have 
changed.

net.IW{1,1}, net.IW{2,1}, net.IW{2,2}
net.IW{3,1}, net.LW{3,2}, net.LW{3,3}
net.b{1}, net.b{3}

For example,

net.IW{1,1}
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ans =
   -0.3040    0.4703
   -0.5423   -0.1395
    0.5567    0.0604
    0.2667    0.4924

Training
Define the following cell array of two input vectors (one with two elements, one 
with five) for two time steps (i.e., two columns).

P = {[0; 0] [2; 0.5]; [2; -2; 1; 0; 1] [-1; -1; 1; 0; 1]}

We want the network to respond with the following target sequence.

T = {1 -1}

Before training, we can simulate the network to see whether the initial 
network’s response Y is close to the target T.

Y = sim(net,P)

Y = 

    [3x1 double]    [3x1 double]
    [    0.0456]    [    0.2119]

The second row of the cell array Y is the output sequence of the second network 
output, which is also the output sequence of the third layer. The values you got 
for the second row may differ from those shown due to different initial weights 
and biases. However, they will almost certainly not be equal to our targets T, 
which is also true of the values shown.

The next task is to prepare the training parameters. The following line of code 
displays the default Levenberg-Marquardt training parameters (which were 
defined when we set net.trainFcn to trainlm).

net.trainParam

The following properties should be displayed.

ans = 

       epochs: 100
         goal: 0
     max_fail: 5
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    mem_reduc: 1
     min_grad: 1.0000e-10
           mu: 1.0000e-03
       mu_dec: 0.1000
       mu_inc: 10
       mu_max: 1.0000e+10
         show: 25
         time: 

Change the performance goal to 1e-10.

net.trainParam.goal = 1e-10;

Next, train the network with the following call.

net = train(net,P,T);

Below is a typical training plot.

After training you can simulate the network to see if it has learned to respond 
correctly.

Y = sim(net,P)
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Y = 

    [3x1 double]    [3x1 double]
    [    1.0000]    [   -1.0000]

Note that the second network output (i.e., the second row of the cell array Y), 
which is also the third layer’s output, does match the target sequence T.
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Additional Toolbox Functions
Most toolbox functions are explained in chapters dealing with networks that 
use them. However, some functions are not used by toolbox networks, but are 
included as they may be useful to you in creating custom networks.

Each of these is documented in Chapter 14, “Reference.” However, the notes 
given below may also prove to be helpful.

Initialization Functions

randnc
This weight initialization function generates random weight matrices whose 
columns are normalized to a length of 1.

randnr
This weight initialization function generates random weight matrices whose 
rows are normalized to a length of 1.

Transfer Functions

satlin
This transfer function is similar to satlins, but has a linear region going from 
0 to 1 (instead of -1 to 1), and minimum and maximum values of 0 and 1 
(instead of -1 and 1).

softmax
This transfer function is a softer version of the hard competitive transfer 
function compet. The neuron with the largest net input gets an output closest 
to one, while other neurons have outputs close to zero.

tribas
The triangular-basis transfer function is similar to the radial-basis transfer 
function radbas, but has a simpler shape.



Additional Toolbox Functions

12-17

Learning Functions

learnh
The Hebb weight learning function increases weights in proportion to the 
product, the weights input, and the neuron’s output. This allows neurons to 
learn associations between their inputs and outputs.

learnhd
The Hebb-with-decay learning function is similar to the Hebb function, but 
adds a term that decreases weights each time step exponentially. This weight 
decay allows neurons to forget associations that are not reinforced regularly, 
and solves the problem that the Hebb function has with weights growing 
without bounds.

learnis
The instar weight learning function moves a neuron’s weight vector towards 
the neuron’s input vector with steps proportional to the neuron’s output. This 
function allows neurons to learn association between input vectors and their 
outputs.

learnos
The outstar weight learning function acts in the opposite way as the instar 
learning rule. The outstar rule moves the weight vector coming from an input 
toward the output vector of a layer of neurons with step sizes proportional to 
the input value. This allows inputs to learn to recall vectors when stimulated.



12 Advanced Topics

12-18

Custom Functions
The toolbox allows you to create and use many kinds of functions. This gives 
you a great deal of control over the algorithms used to initialize, simulate, and 
train; and allow adaption for your networks.

The following sections describe how to create your own versions of these kinds 
of functions:

• Simulation functions

- transfer functions

- net input functions

- weight functions

• Initialization functions

- network initialization functions

- layer initialization functions

- weight and bias initialization functions

• Learning functions

- network training functions

- network adapt functions

- network performance functions

- weight and bias learning functions

• Self-organizing map functions

- topology functions

- distance functions

Simulation Functions
You can create three kinds of simulation functions: transfer, net input, and 
weight functions. You can also provide associated derivative functions to 
enable backpropagation learning with your functions.

Transfer Functions
Transfer functions calculate a layer’s output vector (or matrix) A, given its net 
input vector (or matrix) N. The only constraint on the relationship between the 
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output and net input is that the output must have the same dimensions as the 
input.

Once defined, you can assign your transfer function to any layer of a network. 
For example, the following line of code assigns the transfer function yourtf to 
the second layer of a network.

net.layers{2}.transferFcn = 'yourtf';

Your transfer function then is used whenever you simulate your network.

[Y,Pf,Af] = sim(net,P,Pi,Ai)

To be a valid transfer function, your function must calculate outputs A from net 
inputs N as follows,

A = yourtf(N)

where:

• N is an S x Q matrix of Q net input (column) vectors.

• A is an S x Q matrix of Q output (column) vectors.

Your transfer function must also provide information about itself, using this 
calling format,

info = yourtf(code)

where the correct information is returned for each of the following string codes:

• 'version' - Returns the Neural Network Toolbox version (3.0).

• 'deriv' - Returns the name of the associated derivative function.

• 'output' - Returns the output range.

• 'active' - Returns the active input range.

The toolbox contains an example custom transfer function called mytf. Enter 
the following lines of code to see how it is used.

help mytf
n = -5:.1:5;
a = mytf(n);
plot(n,a)
mytf('deriv')
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Enter the following command to see how mytf is implemented.

type mytf

You can use mytf as a template to create your own transfer function.

Transfer Derivative Functions. If you want to use backpropagation with your custom 
transfer function, you need to create a custom derivative function for it. The 
function needs to calculate the derivative of the layer’s output with respect to 
its net input,

dA_dN = yourdtf(N,A)

where:

• N is an  matrix of Q net input (column) vectors.

• A is an  matrix of Q output (column) vectors.

• dA_dN is the  derivative dA/dN.

This only works for transfer functions whose output elements are independent. 
In other words, where each A(i) is only a function of N(i). Otherwise, a 
three-dimensional array is required to store the derivatives in the case of 
multiple vectors (instead of a matrix as defined above). Such 3-D derivatives 
are not supported at this time.

To see how the example custom transfer derivative function mydtf works, type 

help mydtf
da_dn = mydtf(n,a)
subplot(2,1,1), plot(n,a)
subplot(2,1,2), plot(n,dn_da)

Use this command to see how mydtf was implemented.

type mydtf

You can use mydtf as a template to create your own transfer derivative 
functions.

Net Input Functions
Net input functions calculate a layer’s net input vector (or matrix) N, given its 
weighted input vectors (or matrices) Zi. The only constraints on the 
relationship between the net input and the weighted inputs are that the net 

S Q×

S Q×

S Q×
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input must have the same dimensions as the weighted inputs, and that the 
function cannot be sensitive to the order of the weight inputs.

Once defined, you can assign your net input function to any layer of a network. 
For example, the following line of code assigns the transfer function yournif to 
the second layer of a network.

net.layers{2}.netInputFcn = 'yournif';

Your net input function then is used whenever you simulate your network.

[Y,Pf,Af] = sim(net,P,Pi,Ai)

To be a valid net input function your function must calculate outputs A from 
net inputs N as follows,

N = yournif(Z1,Z2,...)

where

• Zi is the ith  matrix of Q weighted input (column) vectors.

• N is an  matrix of Q net input (column) vectors.

Your net input function must also provide information about itself using this 
calling format,

info = yournif(code)

where the correct information is returned for each of the following string codes:

• 'version' - Returns the Neural Network Toolbox version (3.0).

• 'deriv' - Returns the name of the associated derivative function.

The toolbox contains an example custom net input function called mynif. Enter 
the following lines of code to see how it is used.

help mynif
z1 = rand(4,5);
z2 = rand(4,5);
z3 = rand(4,5);
n = mynif(z1,z2,z3)
mynif('deriv')

Enter the following command to see how mynif is implemented.

type mynif

S Q×

S Q×



12 Advanced Topics

12-22

You can use mynif as a template to create your own net input function.

Net Input Derivative Functions. If you want to use backpropagation with your 
custom net input function, you need to create a custom derivative function for 
it. It needs to calculate the derivative of the layer’s net input with respect to 
any of its weighted inputs,

dN_dZ = dtansig(Z,N)

where:

• Z is one of the  matrices of Q weighted input (column) vectors.

• N is an  matrix of Q net input (column) vectors.

• dN_dZ is the  derivative dN/dZ.

To see how the example custom net input derivative function mydtf works, type 

help mydnif
dn_dz1 = mydnif(z1,n)
dn_dz2 = mydnif(z1,n)
dn_dz3 = mydnif(z1,n)

Use this command to see how mydtf was implemented.

type mydnif

You can use mydnif as a template to create your own net input derivative 
functions.

Weight Functions
Weight functions calculate a weighted input vector (or matrix) Z, given an 
input vector (or matrices) P and a weight matrix W.

Once defined, you can assign your weight function to any input weight or layer 
weight of a network. For example, the following line of code assigns the weight 
function yourwf to the weight going to the second layer from the first input of 
a network.

net.inputWeights{2,1}.weightFcn = 'yourwf';

Your weight function is used whenever you simulate your network.

[Y,Pf,Af] = sim(net,P,Pi,Ai)

S Q×

S Q×

S Q×



Custom Functions

12-23

To be a valid weight function your function must calculate weight inputs Z from 
inputs P and a weight matrix W as follows,

Z = yourwf(W,P)

where:

• W is an  weight matrix.

• P is an  matrix of Q input (column) vectors.

• Z is an  matrix of Q weighted input (column) vectors.

Your net input function must also provide information about itself using this 
calling format,

info = yourwf(code)

where the correct information is returned for each of the following string codes:

• 'version' - Returns the Neural Network Toolbox version (3.0).

• 'deriv' - Returns the name of the associated derivative function.

The toolbox contains an example custom weight called mywf. Enter the 
following lines of code to see how it is used.

help mywf
w = rand(1,5);
p = rand(5,1);
z = mywf(w,p);
mywf('deriv')

Enter the following command to see how mywf is implemented.

type mywf

You can use mywf as a template to create your own weight functions.

Weight Derivative Functions. If you want to use backpropagation with your custom 
weight function, you need to create a custom derivative function for it. It needs 
to calculate the derivative of the weight inputs with respect to both the input 
and weight,

dZ_dP = mydwf('p',W,P,Z)
dZ_dW = mydwf('w',W,P,Z)

S R×

R Q×

S Q×
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where:

• W is an  weight matrix.

• P is an  matrix of Q input (column) vectors.

• Z is an  matrix of Q weighted input (column) vectors.

• dZ_dP is the  derivative dZ/dP.

• dZ_dW is the  derivative dZ/dW.

This only works for weight functions whose output consists of a sum of i term, 
where each ith term is a function of only W(i) and P(i). Otherwise a 
three-dimensional array is required to store the derivatives in the case of 
multiple vectors (instead of a matrix as defined above). Such 3-D derivatives 
are not supported at this time.

To see how the example custom net input derivative function mydwf works, type 

help mydwf
dz_dp = mydwf('p',w,p,z)
dz_dw = mydwf('w',w,p,z)

Use this command to see how mydwf is implemented.

type mydwf

You can use mydwf as a template to create your own net input derivative 
function.

Initialization Functions
You can create three kinds of initialization functions: network, layer, and 
weight/bias initialization.

Network Initialization Functions
The most general kind of initialization function is the network initialization 
function which sets all the weights and biases of a network to values suitable 
as a starting point for training or adaption.

Once defined, you can assign your network initialization function to a network.

net.initFcn = 'yournif';

S R×

R Q×

S Q×

S R×

R Q×
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Your network initialization function is used whenever you initialize your 
network.

net = init(net)

To be a valid network initialization function, it must take and return a 
network.

net = yournif(net)

Your function can set the network’s weight and bias values in any way you 
want. However, you should be careful not to alter any other properties, or to set 
the weight matrices and bias vectors of the wrong size. For performance 
reasons, init turns off the normal type checking for network properties before 
calling your initialization function. So if you set a weight matrix to the wrong 
size, it won’t immediately generate an error, but could cause problems later 
when you try to simulate or train the network.

You can examine the implementation of the toolbox function initlay if you are 
interested in creating your own network initialization function.

Layer Initialization Functions
The layer initialization function sets all the weights and biases of a layer to 
values suitable as a starting point for training or adaption. 

Once defined, you can assign your layer initialization function to a layer of a 
network. For example, the following line of code assigns the layer initialization 
function yourlif to the second layer of a network.

net.layers{2}.initFcn = 'yourlif';

Layer initialization functions are only called to initialize a layer if the network 
initialization function (net.initFcn) is set to the toolbox function initlay. If 
this is the case, then your function is used to initialize the layer whenever you 
initialize your network with init.

net = init(net)

To be a valid layer initialization function, it must take a network and a layer 
index i, and return the network after initializing the ith layer.

net = yournif(net,i)
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Your function can then set the ith layer’s weight and bias values in any way 
you see fit. However, you should be careful not to alter any other properties, or 
to set the weight matrices and bias vectors to the wrong size.

If you are interested in creating your own layer initialization function, you can 
examine the implementations of the toolbox functions initwb and initnw.

Weight and Bias Initialization Functions
The weight and bias initialization function sets all the weights and biases of a 
weight or bias to values suitable as a starting point for training or adaption.

Once defined, you can assign your initialization function to any weight and bias 
in a network. For example, the following lines of code assign the weight and 
bias initialization function yourwbif to the second layer’s bias, and the weight 
coming from the first input to the second layer.

net.biases{2}.initFcn = 'yourwbif';
net.inputWeights{2,1}.initFcn = 'yourwbif';

Weight and bias initialization functions are only called to initialize a layer if 
the network initialization function (net.initFcn) is set to the toolbox function 
initlay, and the layer’s initialization function (net.layers{i}.initFcn) is set 
to the toolbox function initwb. If this is the case, then your function is used to 
initialize the weight and biases it is assigned to whenever you initialize your 
network with init.

net = init(net)

To be a valid weight and bias initialization function, it must take a the number 
of neurons in a layer S, and a two-column matrix PR of R rows defining the 
minimum and maximum values of R inputs and return a new weight matrix W,

W = rands(S,PR)

where:

• S is the number of neurons in the layer.

• PR is an  matrix defining the minimum and maximum values of R 
inputs.

• W is a new  weight matrix.

Your function also needs to generate a new bias vector as follows,

R 2×

S R×
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b = rands(S)

where:

• S is the number of neurons in the layer.

• b is a new  bias vector.

To see how an example custom weight and bias initialization function works, 
type

help mywbif
W = mywbif(4,[0 1; -2 2])
b = mywbif(4,[1 1])

Use this command to see how mywbif was implemented.

type mywbif

You can use mywbif as a template to create your own weight and bias 
initialization function.

Learning Functions
You can create four kinds of initialization functions: training, adaption, 
performance, and weight/bias learning.

Training Functions
One kind of general learning function is a network training function. Training 
functions repeatedly apply a set of input vectors to a network, updating the 
network each time, until some stopping criteria is met. Stopping criteria can 
consists of a maximum number of epochs, a minimum error gradient, an error 
goal, etc.

Once defined, you can assign your training function to a network.

net.trainFcn = 'yourtf';

Your network initialization function is used whenever you train your network.

[net,tr] = train(NET,P,T,Pi,Ai)

To be a valid training function your function must take and return a network,

[net,tr] = yourtf(net,Pd,Tl,Ai,Q,TS,VV,TV)

S 1×
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where:

• Pd is an  cell array of tap delayed inputs.

- Each Pd{i,j,ts} is the  delayed input matrix to the weight 
going to the ith layer from the jth input at time step ts. (Pd{i,j,ts} is an 
empty matrix [] if the ith layer doesn’t have a weight from the jth input.)

• Tl is an  cell array of layer targets.

- Each Tl{i,ts} is the  target matrix for the ith layer. (Tl{i,ts} is 
an empty matrix if the ith layer doesn’t have a target.)

• Ai is an  cell array of initial layer delay states.

- Each Ai{l,k} is the  delayed ith layer output for time step ts = 
k-LD, where ts goes from 0 to LD-1.

• Q is the number of concurrent vectors.

• TS is the number of time steps.

• VV and TV are optional structures defining validation and test vectors in the 
same form as the training vectors defined above: Pd, Tl, Ai, Q, and TS. Note 
that the validation and testing Q and TS values can be different from each 
other and from those used by the training vectors.

The dimensions above have the following definitions:

•  is the number of network layers (net.numLayers).

•  is the number of network inputs (net.numInputs).

•  is the size of the jth input (net.inputs{j}.size).

•  is the size of the ith layer (net.layers{i}.size)

• LD is the number of layer delays (net.numLayerDelays).

•  is the number of delay lines associated with the weight going to the ith 
layer from the jth input (length(net.inputWeights{i,j}.delays)).

Your training function must also provide information about itself using this 
calling format,

info = yourtf(code)

where the correct information is returned for each of the following string codes:

• 'version' - Returns the Neural Network Toolbox version (3.0).

• 'pdefaults' - Returns a structure of default training parameters.

Nl Ni TS××

Rj Di
ijQ( )×
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When you set the network training function (net.trainFcn) to be your 
function, the network’s training parameters (net.trainParam) automatically 
is set to your default structure. Those values can be altered (or not) before 
training.

Your function can update the network’s weight and bias values in any way you 
see fit. However, you should be careful not to alter any other properties, or to 
set the weight matrices and bias vectors to the wrong size. For performance 
reasons, train turns off the normal type checking for network properties before 
calling your training function. So if you set a weight matrix to the wrong size, 
it won’t immediately generate an error, but will cause problems later when you 
try to simulate or adapt the network.

If you are interested in creating your own training function, you can examine 
the implementations of toolbox functions such as trainc and trainr. The help 
for each of these utility functions lists the input and output arguments they 
take.

Utility Functions. If you examine training functions such as trainc, traingd, and 
trainlm, note that they use a set of utility functions found in the nnet/nnutils 
directory.

These functions are not listed in Chapter 14, “Reference” because they may be 
altered in the future. However, you can use these functions if you are willing to 
take the risk that you might have to update your functions for future versions 
of the toolbox. Use help on each function to view the function’s input and 
output arguments.

These two functions are useful for creating a new training record and 
truncating it once the final number of epochs is known:

• newtr - New training record with any number of optional fields.

• cliptr - Clip training record to the final number of epochs.

These three functions calculate network signals going forward, errors, and 
derivatives of performance coming back:

• calca - Calculate network outputs and other signals.

• calcerr - Calculate matrix or cell array errors.

• calcgrad - Calculate bias and weight performance gradients.
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These two functions get and set a network’s weight and bias values with single 
vectors. Being able to treat all these adjustable parameters as a single vector 
is often useful for implementing optimization algorithms:

• getx - Get all network weight and bias values as a single vector.

• setx - Set all network weight and bias values with a single vector.

These next three functions are also useful for implementing optimization 
functions. One calculates all network signals going forward, including errors 
and performance. One backpropagates to find the derivatives of performance 
as a single vector. The third function backpropagates to find the Jacobian of 
performance. This latter function is used by advanced optimization techniques 
like Levenberg-Marquardt:

• calcperf - Calculate network outputs, signals, and performance.

• calcgx - Calculate weight and bias performance gradient as a single vector.

• calcjx - Calculate weight and bias performance Jacobian as a single matrix.

Adapt Functions
The other kind of the general learning function is a network adapt function. 
Adapt functions simulate a network, while updating the network for each time 
step of the input before continuing the simulation to the next input.

Once defined, you can assign your adapt function to a network.

net.adaptFcn = 'youraf';

Your network initialization function is used whenever you adapt your network.

[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)

To be a valid adapt function, it must take and return a network,

[net,Ac,El] = youraf(net,Pd,Tl,Ai,Q,TS)

where:

• Pd is an  cell array of tap delayed inputs.

- Each Pd{i,j,ts} is the  delayed input matrix to the weight 
going to the ith layer from the jth input at time step ts. Note that 
(Pd{i,j,ts} is an empty matrix [] if the ith layer doesn’t have a weight 
from the jth input.)

Nl Ni TS××
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• Tl is an  cell array of layer targets.

- Each Tl{i,ts} is the  target matrix for the ith layer. Note that 
(Tl{i,ts} is an empty matrix if the ith layer doesn’t have a target.)

• Ai is an  cell array of initial layer delay states.

- Each Ai{l,k} is the  delayed ith layer output for time step ts = 
k-LD, where ts goes from 0 to LD-1.

• Q is the number of concurrent vectors.

• TS is the number of time steps.

The dimensions above have the following definitions:

•  is the number of network layers (net.numLayers).

•  is the number of network inputs (net.numInputs).

•  is the size of the jth input (net.inputs{j}.size).

•  is the size of the ith layer (net.layers{i}.size)

• LD is the number of layer delays (net.numLayerDelays).

•  is the number of delay lines associated with the weight going to the ith 
layer from the jth input (length(net.inputWeights{i,j}.delays)).

Your adapt function must also provide information about itself using this 
calling format,

info = youraf(code)

where the correct information is returned for each of the following string codes:

• 'version' - Returns the Neural Network Toolbox version (3.0).

• 'pdefaults' - Returns a structure of default adapt parameters.

When you set the network adapt function (net.adaptFcn) to be your function, 
the network’s adapt parameters (net.adaptParam) automatically is set to your 
default structure. Those values can then be altered (or not) before adapting.

Your function can update the network’s weight and bias values in any way you 
see fit. However, you should be careful not to alter any other properties, or to 
set the weight matrices and bias vectors of the wrong size. For performance 
reasons, adapt turns off the normal type checking for network properties before 
calling your adapt function. So if you set a weight matrix to the wrong size, it 
won’t immediately generate an error, but will cause problems later when you 
try to simulate or train the network.
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If you are interested in creating your own training function, you can examine 
the implementation of a toolbox function such as trains.

Utility Functions. If you examine the toolbox’s only adapt function trains, note 
that it uses a set of utility functions found in the nnet/nnutils directory. The 
help for each of these utility functions lists the input and output arguments 
they take.

These functions are not listed in Chapter 14, “Reference” because they may be 
altered in the future. However, you can use these functions if you are willing to 
take the risk that you will have to update your functions for future versions of 
the toolbox.

These two functions are useful for simulating a network, and calculating its 
derivatives of performance:

• calca1 - New training record with any number of optional fields.

• calce1 - Clip training record to the final number of epochs.

• calcgrad - Calculate bias and weight performance gradients.

Performance Functions
Performance functions allow a network’s behavior to be graded. This is useful 
for many algorithms, such as backpropagation, which operate by adjusting 
network weights and biases to improve performance.

Once defined you can assign your training function to a network.

net.performFcn = 'yourpf';

Your network initialization function will then be used whenever you train your 
adapt your network.

[net,tr] = train(NET,P,T,Pi,Ai)
[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)

To be a valid performance function your function must be called as follows,

perf = yourpf(E,X,PP)

where:

• E is either an S x Q matrix or an  cell array of layer errors.Nl TS×
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- Each E{i,ts} is the  target matrix for the ith layer. (Tl(i,ts) is an 
empty matrix if the ith layer doesn’t have a target.)

• X is an M x 1 vector of all the network’s weights and biases.

• PP is a structure of network performance parameters.

If E is a cell array you can convert it to a matrix as follows.

E = cell2mat(E);

Alternatively, your function must also be able to be called as follows,

perf = yourpf(E,net)

where you can get X and PP (if needed) as follows.

X = getx(net);
PP = net.performParam;

Your performance function must also provide information about itself using 
this calling format,

info = yourpf(code)

where the correct information is returned for each of the following string codes:

• 'version' - Returns the Neural Network Toolbox version (3.0).

• 'deriv' - Returns the name of the associated derivative function.

• 'pdefaults' - Returns a structure of default performance parameters.

When you set the network performance function (net.performFcn) to be your 
function, the network’s adapt parameters (net.performParam) will 
automatically get set to your default structure. Those values can then be 
altered or not before training or adaption.

To see how an example custom performance function works type in these lines 
of code.

help mypf
e = rand(4,5);
x = rand(12,1);
pp = mypf('pdefaults')
perf = mypf(e,x,pp)

Si Q×
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Use this command to see how mypf was implemented.

type mypf

You can use mypf as a template to create your own weight and bias 
initialization function.

Performance Derivative Functions. If you want to use backpropagation with your 
performance function, you need to create a custom derivative function for it. It 
needs to calculate the derivative of the network’s errors and combined weight 
and bias vector, with respect to performance,

dPerf_dE = dmsereg('e',E,X,perf,PP)
dPerf_dX = dmsereg('x',E,X,perf,PP)

where:

• E is an  cell array of layer errors.

- Each E{i,ts} is the  target matrix for the ith layer. Note that 
(Tl(i,ts) is an empty matrix if the ith layer doesn’t have a target.)

• X is an  vector of all the network’s weights and biases.

• PP is a structure of network performance parameters.

• dPerf_dE is the  cell array of derivatives dPerf/dE.

- Each E{i,ts} is the  derivative matrix for the ith layer. Note that 
(Tl(i,ts) is an empty matrix if the ith layer doesn’t have a target.)

• dPerf_dX is the  derivative dPerf/dX.

To see how the example custom performance derivative function mydpf works, 
type

help mydpf
e = {e};
dperf_de = mydpf('e',e,x,perf,pp)
dperf_dx = mydpf('x',e,x,perf,pp)

Use this command to see how mydpf was implemented.

type mydpf

You can use mydpf as a template to create your own performance derivative 
functions.
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Weight and Bias Learning Functions
The most specific kind of learning function is a weight and bias learning 
function. These functions are used to update individual weights and biases 
during learning. with some training and adapt functions.

Once defined. you can assign your learning function to any weight and bias in 
a network. For example, the following lines of code assign the weight and bias 
learning function yourwblf to the second layer’s bias, and the weight coming 
from the first input to the second layer.

net.biases{2}.learnFcn = 'yourwblf';
net.inputWeights{2,1}.learnFcn = 'yourwblf';

Weight and bias learning functions are only called to update weights and 
biases if the network training function (net.trainFcn) is set to trainb, trainc, 
or trainr, or if the network adapt function (net.adaptFcn) is set to trains. If 
this is the case, then your function is used to update the weight and biases it is 
assigned to whenever you train or adapt your network with train or adapt.

[net,tr] = train(NET,P,T,Pi,Ai)
[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)

To be a valid weight and bias learning function, it must be callable as follows,

[dW,LS] = yourwblf(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

where:

• W is an  weight matrix.

• P is an  matrix of Q input (column) vectors.

• Z is an  matrix of Q weighted input (column) vectors.

• N is an  matrix of Q net input (column) vectors.

• A is an  matrix of Q layer output (column) vectors.

• T is an  matrix of Q target (column) vectors.

• E is an  matrix of Q error (column) vectors.

• gW is an  gradient of W with respect to performance.

• gA is an  gradient of A with respect to performance.

• D is an  matrix of neuron distances.

• LP is a a structure of learning parameters.
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• LS is a structure of the learning state that is updated for each call. (Use a null 
matrix [] the first time.)

• dW is the resulting  weight change matrix.

Your function is called as follows to update bias vector

[db,LS] = yourwblf(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)

where:

• S is the number of neurons in the layer.

• b is a new  bias vector.

Your learning function must also provide information about itself using this 
calling format,

info = yourwblf(code)

where the correct information is returned for each of the following string codes:

• 'version' - Returns the Neural Network Toolbox version (3.0).

• 'deriv' - Returns the name of the associated derivative function.

• 'pdefaults' - Returns a structure of default performance parameters.

To see how an example custom weight and bias initialization function works, 
type

help mywblf

Use this command to see how mywbif was implemented.

type mywblf

You can use mywblf as a template to create your own weight and bias learning 
function.

Self-Organizing Map Functions
There are two kinds of functions that control how neurons in self-organizing 
maps respond. They are topology and distance functions.

Topology Functions
Topology functions calculate the positions of a layer’s neurons given its 
dimensions.
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Once defined, you can assign your topology function to any layer of a network. 
For example, the following line of code assigns the topology function yourtopf 
to the second layer of a network.

net.layers{2}.topologyFcn = 'yourtopf';

Your topology function is used whenever your network is trained or adapts.

[net,tr] = train(NET,P,T,Pi,Ai)
[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)

To be a valid topology function your function must calculate positions pos from 
dimensions dim as follows,

pos = yourtopf(dim1,dim2,...,dimN)

where:

• dimi is the number of neurons along the ith dimension of the layer.

• pos is an  matrix of S position vectors, where S is the total number of 
neurons that is defined by the product dim1*dim1*...*dimN.

The toolbox contains an example custom topology function called mytopf. Enter 
the following lines of code to see how it is used.

help mytopf
pos = mytopf(20,20);
plotsom(pos)

If you type that code, you get the following plot.
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Enter the following command to see how mytf is implemented.

type mytopf

You can use mytopf as a template to create your own topology function.

Distance Functions
Distance functions calculate the distances of a layer’s neurons given their 
position.

Once defined, you can assign your distance function to any layer of a network. 
For example, the following line of code assigns the topology function yourdistf 
to the second layer of a network.

net.layers{2}.distanceFcn = 'yourdistf';

Your distance function is used whenever your network is trained or adapts.

[net,tr] = train(NET,P,T,Pi,Ai)
[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)
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To be a valid distance function, it must calculate distances d from position pos 
as follows,

pos = yourtopf(dim1,dim2,...,dimN)

where:

• pos is an  matrix of S neuron position vectors.

• d is an  matrix of neuron distances.

The toolbox contains an example custom distance function called mydistf. 
Enter the following lines of code to see how it is used.

help mydistf
pos = gridtop(4,5);
d = mydistf(pos)

Enter the following command to see how mytf is implemented.

type mydistf

You can use mydistf as a template to create your own distance function.
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Network Properties
The properties define the basic features of a network. “Subobject Properties” on 
page 13-17 describes properties that define network details.

Architecture
These properties determine the number of network subobjects (which include 
inputs, layers, outputs, targets, biases, and weights), and how they are 
connected.

numInputs
This property defines the number of inputs a network receives.

net.numInputs

It can be set to 0 or a positive integer.

Clarification. The number of network inputs and the size of a network input are 
not the same thing. The number of inputs defines how many sets of vectors the 
network receives as input. The size of each input (i.e. the number of elements 
in each input vector) is determined by the input size (net.inputs{i}.size).

Most networks have only one input, whose size is determined by the problem.

Side Effects. Any change to this property results in a change in the size of the 
matrix defining connections to layers from inputs, (net.inputConnect) and the 
size of the cell array of input subobjects (net.inputs). 

numLayers
This property defines the number of layers a network has.

net.numLayers

It can be set to 0 or a positive integer.

Side Effects. Any change to this property changes the size of each of these 
Boolean matrices that define connections to and from layers,

net.biasConnect
net.inputConnect
net.layerConnect
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net.outputConnect
net.targetConnect

and changes the size each cell array of subobject structures whose size depends 
on the number of layers,

net.biases
net.inputWeights
net.layerWeights
net.outputs
net.targets

and also changes the size of each of the network’s adjustable parameters 
properties.

net.IW
net.LW
net.b

biasConnect
This property defines which layers have biases.

net.biasConnect

It can be set to any N-by-1 matrix of Boolean values, where  is the number 
of network layers (net.numLayers). The presence (or absence) of a bias to the 
ith layer is indicated by a 1 (or 0) at:

net.biasConnect(i)

Side Effects. Any change to this property alters the presence or absence of 
structures in the cell array of biases (net.biases) and, in the presence or 
absence of vectors in the cell array, of bias vectors (net.b).

inputConnect
This property defines which layers have weights coming from inputs.

net.inputConnect

It can be set to any  matrix of Boolean values, where  is the number 
of network layers (net.numLayers), and  is the number of network inputs 
(net.numInputs). The presence (or absence) of a weight going to the ith layer 
from the jth input is indicated by a 1 (or 0) at

Nl
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net.inputConnect(i,j)

Side Effects. Any change to this property will alter the presence or absence of 
structures in the cell array of input weight subobjects (net.inputWeights) and 
in the presence or absence of matrices in the cell array of input weight matrices 
(net.IW).

layerConnect
This property defines which layers have weights coming from other layers.

net.layerConnect

It can be set to any  matrix of Boolean values, where  is the number 
of network layers (net.numLayers). The presence (or absence) of a weight going 
to the ith layer from the jth layer is indicated by a 1 (or 0) at

net.layerConnect(i,j)

Side Effects. Any change to this property will alter the presence or absence of 
structures in the cell array of layer weight subobjects (net.layerWeights) and 
in the presence or absence of matrices in the cell array of layer weight matrices 
(net.LW).

outputConnect
This property defines which layers generate network outputs.

net.outputConnect

It can be set to any  matrix of Boolean values, where  is the number 
of network layers (net.numLayers). The presence (or absence) of a network 
output from the ith layer is indicated by a 1 (or 0) at

net.outputConnect(i)

Side Effects. Any change to this property will alter the number of network 
outputs (net.numOutputs) and the presence or absence of structures in the cell 
array of output subobjects (net.outputs).

targetConnect
This property defines which layers have associated targets.

net.targetConnect

Nl Nl× Nl
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It can be set to any  matrix of Boolean values, where  is the number 
of network layers (net.numLayers). The presence (or absence) of a target 
associated with the ith layer is indicated by a 1 (or 0) at

net.targetConnect(i)

Side Effects. Any change to this property alters the number of network targets 
(net.numTargets) and the presence or absence of structures in the cell array of 
target subobjects (net.targets).

numOutputs (read-only)
This property indicates how many outputs the network has.

net.numOutputs

It is always set to the number of 1’s in the matrix of output connections.

numOutputs = sum(net.outputConnect)

numTargets (read-only)
This property indicates how many targets the network has.

net.numTargets

It is always set to the number of 1’s in the matrix of target connections.

numTargets = sum(net.targetConnect)

numInputDelays (read-only)
This property indicates the number of time steps of past inputs that must be 
supplied to simulate the network.

net.numInputDelays

It is always set to the maximum delay value associated any of the network’s 
input weights.

numInputDelays = 0;
for i=1:net.numLayers
for j=1:net.numInputs

if net.inputConnect(i,j)
numInputDelays = max( ...
[numInputDelays net.inputWeights{i,j}.delays]);

1 Nl× Nl
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end
end

end

numLayerDelays (read-only)
This property indicates the number of time steps of past layer outputs that 
must be supplied to simulate the network.

net.numLayerDelays

It is always set to the maximum delay value associated any of the network’s 
layer weights.

numLayerDelays = 0;
for i=1:net.numLayers
for j=1:net.numLayers

if net.layerConnect(i,j)
numLayerDelays = max( ...
[numLayerDelays net.layerWeights{i,j}.delays]);

end
end

end

Subobject Structures
These properties consist of cell arrays of structures that define each of the 
network’s inputs, layers, outputs, targets, biases, and weights.

The properties for each kind of subobject are described in “Subobject 
Properties” on page 13-17.

inputs
This property holds structures of properties for each of the network’s inputs.

net.inputs

It is always an  cell array of input structures, where  is the number 
of network inputs (net.numInputs).

The structure defining the properties of the ith network input is located at

net.inputs{i}

Ni 1× Ni
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Input Properties. See “Inputs” on page 13-17 for descriptions of input properties.

layers
This property holds structures of properties for each of the network’s layers.

net.layers

It is always an  cell array of layer structures, where  is the number of 
network layers (net.numLayers).

The structure defining the properties of the ith layer is located at

net.layers{i}

Layer Properties. See “Layers” on page 13-18 for descriptions of layer properties.

outputs
This property holds structures of properties for each of the network’s outputs.

net.outputs

It is always an  cell array, where  is the number of network layers 
(net.numLayers).

The structure defining the properties of the output from the ith layer (or a null 
matrix []) is located at

net.outputs{i}

if the corresponding output connection is 1 (or 0).

net.outputConnect(i)

Output Properties. See “Outputs” on page 13-25 for descriptions of output 
properties.

targets
This property holds structures of properties for each of the network’s targets.

net.targets

It is always an  cell array, where  is the number of network layers 
(net.numLayers).
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The structure defining the properties of the target associated with the ith layer 
(or a null matrix []) is located at

net.targets{i}

if the corresponding target connection is 1 (or 0).

net.targetConnect(i)

Target Properties. See “Targets” on page 13-25 for descriptions of target 
properties.

biases
This property holds structures of properties for each of the network’s biases.

net.biases

It is always an  cell array, where  is the number of network layers 
(net.numLayers).

The structure defining the properties of the bias associated with the ith layer 
(or a null matrix []) is located at

net.biases{i}

if the corresponding bias connection is 1 (or 0).

net.biasConnect(i)

Bias Properties. See “Biases” on page 13-26 for descriptions of bias properties.

inputWeights
This property holds structures of properties for each of the network’s input 
weights.

net.inputWeights

It is always an  cell array, where  is the number of network layers 
(net.numLayers), and  is the number of network inputs (net.numInputs).

The structure defining the properties of the weight going to the ith layer from 
the jth input (or a null matrix []) is located at

net.inputWeights{i,j}

Nl 1× Nl
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if the corresponding input connection is 1 (or 0).

net.inputConnect(i,j)

Input Weight Properties. See “Input Weights” on page 13-28 for descriptions of 
input weight properties.

layerWeights
This property holds structures of properties for each of the network’s layer 
weights.

net.layerWeights

It is always an  cell array, where  is the number of network layers 
(net.numLayers).

The structure defining the properties of the weight going to the ith layer from 
the jth layer (or a null matrix []) is located at

net.layerWeights{i,j}

if the corresponding layer connection is 1 (or 0).

net.layerConnect(i,j)

Layer Weight Properties. See “Layer Weights” on page 13-32 for descriptions of 
layer weight properties.

Functions
These properties define the algorithms to use when a network is to adapt, is to 
be initialized, is to have its performance measured, or is to be trained.

adaptFcn
This property defines the function to be used when the network adapts.

net.adaptFcn

It can be set to the name of any network adapt function, including this toolbox 
function:

trains - By-weight-and-bias network adaption function.

Nl Nl× Nl
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The network adapt function is used to perform adaption whenever adapt is 
called.

[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)

Custom Functions. See Chapter 12, “Advanced Topics” for information on creating 
custom adapt functions.

Side Effects. Whenever this property is altered, the network’s adaption 
parameters (net.adaptParam) are set to contain the parameters and default 
values of the new function.

initFcn
This property defines the function used to initialize the network’s weight 
matrices and bias vectors.

net.initFcn

It can be set to the name of any network initialization function, including this 
toolbox function.

initlay  - Layer-by-layer network initialization function.

The initialization function is used to initialize the network whenever init is 
called.

net = init(net)

Custom Functions. See Chapter 12, “Advanced Topics” for information on creating 
custom initialization functions.

Side Effects. Whenever this property is altered, the network’s initialization 
parameters (net.initParam) are set to contain the parameters and default 
values of the new function.

performFcn
This property defines the function used to measure the network’s performance.

net.performFcn
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It can be set to the name of any performance function, including these toolbox 
functions.

The performance function is used to calculate network performance during 
training whenever train is called.

[net,tr] = train(NET,P,T,Pi,Ai)

Custom functions. See Chapter 12, “Advanced Topics” for information on creating 
custom performance functions.

Side Effects. Whenever this property is altered, the network’s performance 
parameters (net.performParam) are set to contain the parameters and default 
values of the new function.

trainFcn
This property defines the function used to train the network.

net.trainFcn

It can be set to the name of any training function, including these toolbox 
functions.

Performance Functions

mae Mean absolute error-performance function.

mse Mean squared error-performance function.

msereg Mean squared error w/reg performance function.

sse Sum squared error-performance function.

Training Functions

trainbfg BFGS quasi-Newton backpropagation.

trainbr Bayesian regularization.

traincgb Powell-Beale conjugate gradient backpropagation.

traincgf Fletcher-Powell conjugate gradient backpropagation.
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The training function is used to train the network whenever train is called.

[net,tr] = train(NET,P,T,Pi,Ai)

Custom Functions. See Chapter 12, “Advanced Topics” for information on creating 
custom training functions.

Side Effects. Whenever this property is altered, the network’s training 
parameters (net.trainParam) are set to contain the parameters and default 
values of the new function.

Parameters

adaptParam
This property defines the parameters and values of the current adapt function.

net.adaptParam

traincgp Polak-Ribiere conjugate gradient backpropagation.

traingd Gradient descent backpropagation.

traingda Gradient descent with adaptive lr backpropagation.

traingdm Gradient descent with momentum backpropagation.

traingdx Gradient descent with momentum and adaptive lr backpropagation

trainlm Levenberg-Marquardt backpropagation.

trainoss One-step secant backpropagation.

trainrp Resilient backpropagation (Rprop).

trainscg Scaled conjugate gradient backpropagation.

trainb Batch training with weight and bias learning rules.

trainc Cyclical order incremental training with learning functions.

trainr Random order incremental training with learning functions.

Training Functions
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The fields of this property depend on the current adapt function 
(net.adaptFcn). Evaluate the above reference to see the fields of the current 
adapt function.

Call help on the current adapt function to get a description of what each field 
means.

help(net.adaptFcn)

initParam
This property defines the parameters and values of the current initialization 
function.

net.initParam

The fields of this property depend on the current initialization function 
(net.initFcn). Evaluate the above reference to see the fields of the current 
initialization function.

Call help on the current initialization function to get a description of what each 
field means.

help(net.initFcn)

performParam
This property defines the parameters and values of the current performance 
function.

net.performParam

The fields of this property depend on the current performance function 
(net.performFcn). Evaluate the above reference to see the fields of the current 
performance function.

Call help on the current performance function to get a description of what each 
field means.

help(net.performFcn)

trainParam
This property defines the parameters and values of the current training 
function.

net.trainParam
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The fields of this property depend on the current training function 
(net.trainFcn). Evaluate the above reference to see the fields of the current 
training function.

Call help on the current training function to get a description of what each field 
means.

help(net.trainFcn)

Weight and Bias Values
These properties define the network’s adjustable parameters: its weight 
matrices and bias vectors.

IW
This property defines the weight matrices of weights going to layers from 
network inputs.

net.IW

It is always an  cell array, where  is the number of network layers 
(net.numLayers), and  is the number of network inputs (net.numInputs).

The weight matrix for the weight going to the ith layer from the jth input (or a 
null matrix []) is located at

net.IW{i,j}

if the corresponding input connection is 1 (or 0).

net.inputConnect(i,j)

The weight matrix has as many rows as the size of the layer it goes to 
(net.layers{i}.size). It has as many columns as the product of the input size 
with the number of delays associated with the weight.

net.inputs{j}.size * length(net.inputWeights{i,j}.delays)

These dimensions can also be obtained from the input weight properties.

net.inputWeights{i,j}.size

Nl Ni× Nl
Ni
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LW
This property defines the weight matrices of weights going to layers from other 
layers.

net.LW

It is always an  cell array, where  is the number of network layers 
(net.numLayers).

The weight matrix for the weight going to the ith layer from the jth layer (or a 
null matrix []) is located at

net.LW{i,j}

if the corresponding layer connection is 1 (or 0).

net.layerConnect(i,j)

The weight matrix has as many rows as the size of the layer it goes to 
(net.layers{i}.size). It has as many columns as the product of the size of the 
layer it comes from with the number of delays associated with the weight.

net.layers{j}.size * length(net.layerWeights{i,j}.delays)

These dimensions can also be obtained from the layer weight properties.

net.layerWeights{i,j}.size

b
This property defines the bias vectors for each layer with a bias.

net.b

It is always an  cell array, where  is the number of network layers 
(net.numLayers).

The bias vector for the ith layer (or a null matrix []) is located at

net.b{i}

if the corresponding bias connection is 1 (or 0).

net.biasConnect(i)

The number of elements in the bias vector is always equal to the size of the 
layer it is associated with (net.layers{i}.size).

Nl Nl× Nl

Nl 1× Nl



13 Network Object Reference

13-16

This dimension can also be obtained from the bias properties.

net.biases{i}.size

Other
The only other property is a user data property.

userdata
This property provides a place for users to add custom information to a network 
object.

net.userdata

Only one field is predefined. It contains a secret message to all Neural Network 
Toolbox users.

net.userdata.note
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Subobject Properties
These properties define the details of a network’s inputs, layers, outputs, 
targets, biases, and weights.

Inputs
These properties define the details of each ith network input.

net.inputs{i}

range
This property defines the ranges of each element of the ith network input.

net.inputs{i}.range

It can be set to any  matrix, where  is the number of elements in the 
input (net.inputs{i}.size), and each element in column 1 is less than the 
element next to it in column 2.

Each jth row defines the minimum and maximum values of the jth input 
element, in that order

net.inputs{i}(j,:)

Uses. Some initialization functions use input ranges to find appropriate initial 
values for input weight matrices.

Side Effects. Whenever the number of rows in this property is altered, the 
layers’s size (net.inputs{i}.size) changes to remain consistent. The size of 
any weights coming from this input (net.inputWeights{:,i}.size) and the 
dimensions of their weight matrices (net.IW{:,i}) also changes size.

size
This property defines the number of elements in the ith network input.

net.inputs{i}.size

It can be set to 0 or a positive integer.

Side Effects. Whenever this property is altered, the input’s ranges 
(net.inputs{i}.ranges), any input weights (net.inputWeights{:,i}.size) 
and their weight matrices (net.IW{:,i}) change size to remain consistent.

Ri 2× Ri
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userdata
This property provides a place for users to add custom information to the ith 
network input.

net.inputs{i}.userdata

Only one field is predefined. It contains a secret message to all Neural Network 
Toolbox users.

net.inputs{i}.userdata.note

Layers
These properties define the details of each ith network layer.

net.layers{i}

dimensions
This property defines the physical dimensions of the ith layer’s neurons. Being 
able to arrange a layer’s neurons in a multidimensional manner is important 
for self-organizing maps.

net.layers{i}.dimensions

It can be set to any row vector of 0 or positive integer elements, where the 
product of all the elements will becomes the number of neurons in the layer 
(net.layers{i}.size).

Uses. Layer dimensions are used to calculate the neuron positions within the 
layer (net.layers{i}.positions) using the layer’s topology function 
(net.layers{i}.topologyFcn).

Side Effects. Whenever this property is altered, the layers’s size 
(net.layers{i}.size) changes to remain consistent. The layer’s neuron 
positions (net.layers{i}.positions) and the distances between the neurons 
(net.layers{i}.distances) are also updated.

distanceFcn
This property defines the function used to calculate distances between neurons 
in the ith layer (net.layers{i}.distances) from the neuron positions 
(net.layers{i}.positions). Neuron distances are used by self-organizing 
maps.
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net.layers{i}.distanceFcn

It can be set to the name of any distance function, including these toolbox 
functions.

Custom Functions. See Chapter 12, “Advanced Topics” for information on creating 
custom distance functions.

Side Effects. Whenever this property is altered, the distance between the layer’s 
neurons (net.layers{i}.distances) is updated.

distances (read-only)
This property defines the distances between neurons in the ith layer. These 
distances are used by self-organizing maps.

net.layers{i}.distances

It is always set to the result of applying the layer’s distance function 
(net.layers{i}.distanceFcn) to the positions of the layers neurons 
(net.layers{i}.positions).

initFcn
This property defines the initialization function used to initialize the ith layer, 
if the network initialization function (net.initFcn) is initlay.

net.layers{i}.initFcn

Distance Functions

boxdist Distance between two position vectors.

dist Euclidean distance weight function.

linkdist Link distance function.

mandist Manhattan distance weight function.
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It can be set to the name of any layer initialization function, including these 
toolbox functions.

If the network initialization is set to initlay, then the function indicated by 
this property is used to initialize the layer’s weights and biases when init is 
called.

net = init(net)

Custom Functions. See Chapter 12, “Advanced Topics” for information on creating 
custom initialization functions.

netInputFcn
This property defines the net input function use to calculate the ith layer’s net 
input, given the layer’s weighted inputs and bias.

net.layers{i}.netInputFcn

It can be set to the name of any net input function, including these toolbox 
functions.

The net input function is used to simulate the network when sim is called.

[Y,Pf,Af] = sim(net,P,Pi,Ai)

Custom Functions. See Chapter 12, “Advanced Topics” for information on creating 
custom net input functions.

Layer Initialization Functions

initnw Nguyen-Widrow layer initialization function.

initwb By-weight-and-bias layer initialization function.

Net Input Functions

netprod Product net input function.

netsum Sum net input function.
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positions (read-only)
This property defines the positions of neurons in the ith layer. These positions 
are used by self-organizing maps.

net.layers{i}.positions

It is always set to the result of applying the layer’s topology function 
(net.layers{i}.topologyFcn) to the positions of the layer’s dimensions 
(net.layers{i}.dimensions).

Plotting. Use plotsom to plot the positions of a layer’s neurons.

For instance, if the first layer neurons of a network are arranged with 
dimensions (net.layers{1}.dimensions) of [4 5] and the topology function 
(net.layers{1}.topologyFcn) is hextop, the neuron’s positions can be plotted 
as shown below.

plotsom(net.layers{1}.positions)
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size
This property defines the number of neurons in the ith layer.

net.layers{i}.size

It can be set to 0 or a positive integer.

Side Effects. Whenever this property is altered, the sizes of any input weights 
going to the layer (net.inputWeights{i,:}.size), and any layer weights 
going to the layer (net.layerWeights{i,:}.size) or coming from the layer 
(net.inputWeights{i,:}.size), and the layer’s bias (net.biases{i}.size) 
change.

The dimensions of the corresponding weight matrices (net.IW{i,:}, 
net.LW{i,:}, net.LW{:,i}) and biases (net.b{i}) also change.

Changing this property also changes the size of the layer’s output 
(net.outputs{i}.size) and target (net.targets{i}.size) if they exist.

Finally, when this property is altered, the dimensions of the layer’s neurons 
(net.layers{i}.dimension) are set to the same value. (This results in a 
one-dimensional arrangement of neurons. If another arrangement is required, 
set the dimensions property directly instead of using size).

topologyFcn
This property defines the function used to calculate the ith layer’s neuron 
positions (net.layers{i}.positions) from the layer’s dimensions 
(net.layers{i}.dimensions).

net.topologyFcn

It can be set to the name of any topology function, including these toolbox 
functions.

Topology Functions

gridtop Gridtop layer topology function.

hextop Hexagonal layer topology function.

randtop Random layer topology function.
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Custom functions. See Chapter 12, “Advanced Topics” for information on creating 
custom topology functions.

Side Effects. Whenever this property is altered, the positions of the layer’s 
neurons (net.layers{i}.positions) is updated.

Plotting. Use plotsom to plot the positions of a layer’s neurons.

For instance, if the first layer neurons of a network are arranged with 
dimensions (net.layers{1}.dimensions) of [8 10] and the topology function 
(net.layers{1}.topologyFcn) is randtop, the neuron’s positions are arranged 
something like those shown in the plot below.

plotsom(net.layers{1}.positions)

transferFcn
This function defines the transfer function used to calculate the ith layer’s 
output, given the layer’s net input.

net.layers{i}.transferFcn
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It can be set to the name of any transfer function, including these toolbox 
functions.

The transfer function is used to simulate the network when sim is called.

[Y,Pf,Af] = sim(net,P,Pi,Ai)

Custom functions. See Chapter 12, “Advanced Topics” for information on creating 
custom transfer functions.

userdata
This property provides a place for users to add custom information to the ith 
network layer.

net.layers{i}.userdata

Only one field is predefined. It contains a secret message to all Neural Network 
Toolbox users.

Transfer Functions

compet Competitive transfer function.

hardlim Hard-limit transfer function.

hardlims Symmetric hard-limit transfer function.

logsig Log-sigmoid transfer function.

poslin Positive linear transfer function.

purelin Hard-limit transfer function.

radbas Radial basis transfer function.

satlin Saturating linear transfer function.

satlins Symmetric saturating linear transfer function.

softmax Soft max transfer function.

tansig Hyperbolic tangent sigmoid transfer function.

tribas Triangular basis transfer function.
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net.layers{i}.userdata.note

Outputs

size (read-only)
This property defines the number of elements in the ith layer’s output.

net.outputs{i}.size

It is always set to the size of the ith layer (net.layers{i}.size).

userdata
This property provides a place for users to add custom information to the ith 
layer’s output.

net.outputs{i}.userdata

Only one field is predefined. It contains a secret message to all Neural Network 
Toolbox users.

net.outputs{i}.userdata.note

Targets

size (read-only)
This property defines the number of elements in the ith layer’s target.

net.targets{i}.size

It is always set to the size of the ith layer (net.layers{i}.size).

userdata
This property provides a place for users to add custom information to the ith 
layer’s target.

net.targets{i}.userdata

Only one field is predefined. It contains a secret message to all Neural Network 
Toolbox users.

net.targets{i}.userdata.note
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Biases

initFcn
This property defines the function used to initialize the ith layer’s bias vector, 
if the network initialization function is initlay, and the ith layer’s 
initialization function is initwb.

net.biases{i}.initFcn

This function can be set to the name of any bias initialization function, 
including the toolbox functions.

This function is used to calculate an initial bias vector for the ith layer 
(net.b{i}) when init is called, if the network initialization function 
(net.initFcn) is initlay, and the ith layer’s initialization function 
(net.layers{i}.initFcn) is initwb.

net = init(net)

Custom functions. See Chapter 12, “Advanced Topics” for information on creating 
custom initialization functions.

learn
This property defines whether the ith bias vector is to be altered during 
training and adaption.

net.biases{i}.learn

It can be set to 0 or 1.

It enables or disables the bias’ learning during calls to either adapt or train.

[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)
[net,tr] = train(NET,P,T,Pi,Ai)

 Bias Initialization Functions

initcon Conscience bias initialization function.

initzero Zero-weight/bias initialization function.

rands Symmetric random weight/bias initialization function.
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learnFcn
This property defines the function used to update the ith layer’s bias vector 
during training, if the network training function is trainb, trainc, or trainr, 
or during adaption, if the network adapt function is trains.

net.biases{i}.learnFcn

It can be set to the name of any bias learning function, including these toolbox 
functions.

The learning function updates the ith bias vector (net.b{i}) during calls to 
train, if the network training function (net.trainFcn) is trainb, trainc, or 
trainr, or during calls to adapt, if the network adapt function (net.adaptFcn) 
is trains.

[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)
[net,tr] = train(NET,P,T,Pi,Ai)

Custom functions. See Chapter 12, “Advanced Topics” for information on creating 
custom learning functions.

Side Effects. Whenever this property is altered, the biases’s learning parameters 
(net.biases{i}.learnParam) are set to contain the fields and default values of 
the new function.

learnParam
This property defines the learning parameters and values for the current 
learning function of the ith layer’s bias.

Learning Functions

learncon Conscience bias learning function.

learngd Gradient descent weight/bias learning function.

learngdm Grad. descent w/momentum weight/bias learning function.

learnp Perceptron weight/bias learning function.

learnpn Normalized perceptron weight/bias learning function.

learnwh Widrow-Hoff weight/bias learning rule.
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net.biases{i}.learnParam

The fields of this property depend on the current learning function 
(net.biases{i}.learnFcn). Evaluate the above reference to see the fields of 
the current learning function.

Call help on the current learning function to get a description of what each 
field means.

help(net.biases{i}.learnFcn)

size (read-only)
This property defines the size of the ith layer’s bias vector.

net.biases{i}.size

It is always set to the size of the ith layer (net.layers{i}.size).

userdata
This property provides a place for users to add custom information to the ith 
layer’s bias.

net.biases{i}.userdata

Only one field is predefined. It contains a secret message to all Neural Network 
Toolbox users.

net.biases{i}.userdata.note

Input Weights

delays
This property defines a tapped delay line between the jth input and its weight 
to the ith layer.

net.inputWeights{i,j}.delays

It must be set to a row vector of increasing 0 or positive integer values.

Side Effects. Whenever this property is altered, the weight’s size 
(net.inputWeights{i,j}.size) and the dimensions of its weight matrix 
(net.IW{i,j}) are updated.
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initFcn
This property defines the function used to initialize the weight matrix going to 
the ith layer from the jth input, if the network initialization function is 
initlay, and the ith layer’s initialization function is initwb.

net.inputWeights{i,j}.initFcn

This function can be set to the name of any weight initialization function, 
including these toolbox functions.

This function is used to calculate an initial weight matrix for the weight going 
to the ith layer from the jth input (net.IW{i,j}) when init is called, if the 
network initialization function (net.initFcn) is initlay, and the ith layer’s 
initialization function (net.layers{i}.initFcn) is initwb.

net = init(net)

Custom Functions. See Chapter 12, “Advanced Topics” for information on creating 
custom initialization functions.

learn
This property defines whether the weight matrix to the ith layer from the jth 
input is to be altered during training and adaption.

net.inputWeights{i,j}.learn

It can be set to 0 or 1.

It enables or disables the weights learning during calls to either adapt or 
train.

Weight Initialization Functions

initzero Zero-weight/bias initialization function.

midpoint Midpoint-weight initialization function.

randnc Normalized column-weight initialization function.

randnr Normalized row-weight initialization function.

rands Symmetric random-weight/bias initialization function.
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[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)
[net,tr] = train(NET,P,T,Pi,Ai)

learnFcn
This property defines the function used to update the weight matrix going to 
the ith layer from the jth input during training, if the network training 
function is trainb, trainc, or trainr, or during adaption, if the network adapt 
function is trains.

net.inputWeights{i,j}.learnFcn

It can be set to the name of any weight learning function, including these 
toolbox functions.

The learning function updates the weight matrix of the ith layer from the jth 
input (net.IW{i,j}) during calls to train, if the network training function 

Weight Learning Functions

learngd Gradient descent weight/bias learning function.

learngdm Grad. descent w/ momentum weight/bias learning function.

learnh Hebb-weight learning function.

learnhd Hebb with decay weight learning function.

learnis Instar-weight learning function.

learnk Kohonen-weight learning function.

learnlv1 LVQ1-weight learning function.

learnlv2 LVQ2-weight learning function.

learnos Outstar-weight learning function.

learnp Perceptron weight/bias learning function.

learnpn Normalized perceptron-weight/bias learning function.

learnsom Self-organizing map-weight learning function.

learnwh Widrow-Hoff weight/bias learning rule.
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(net.trainFcn) is trainb, trainc, or trainr, or during calls to adapt, if the 
network adapt function (net.adaptFcn) is trains.

[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)
[net,tr] = train(NET,P,T,Pi,Ai)

Custom Functions. See Chapter 12, “Advanced Topics” for information on creating 
custom learning functions.

learnParam
This property defines the learning parameters and values for the current 
learning function of the ith layer’s weight coming from the jth input.

net.inputWeights{i,j}.learnParam

The fields of this property depend on the current learning function 
(net.inputWeights{i,j}.learnFcn). Evaluate the above reference to see the 
fields of the current learning function.

Call help on the current learning function to get a description of what each 
field means.

help(net.inputWeights{i,j}.learnFcn)

size (read-only)
This property defines the dimensions of the ith layer’s weight matrix from the 
jth network input.

net.inputWeights{i,j}.size

It is always set to a two-element row vector indicating the number of rows and 
columns of the associated weight matrix (net.IW{i,j}). The first element is 
equal to the size of the ith layer (net.layers{i}.size). The second element is 
equal to the product of the length of the weights delay vectors with the size of 
the jth input:

length(net.inputWeights{i,j}.delays) * net.inputs{j}.size

userdata
This property provides a place for users to add custom information to the (i,j)th 
input weight.

net.inputWeights{i,j}.userdata
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Only one field is predefined. It contains a secret message to all Neural Network 
Toolbox users.

net.inputWeights{i,j}.userdata.note

weightFcn
This property defines the function used to apply the ith layer’s weight from the 
jth input to that input.

net.inputWeights{i,j}.weightFcn

It can be set to the name of any weight function, including these toolbox 
functions.

The weight function is used when sim is called to simulate the network.

[Y,Pf,Af] = sim(net,P,Pi,Ai)

Custom functions. See Chapter 12, “Advanced Topics” for information on creating 
custom weight functions.

Layer Weights

delays
This property defines a tapped delay line between the jth layer and its weight 
to the ith layer.

net.layerWeights{i,j}.delays

It must be set to a row vector of increasing 0 or positive integer values.

Weight Functions

dist Conscience bias initialization function.

dotprod Zero-weight/bias initialization function.

mandist Manhattan-distance weight function.

negdist Normalized column-weight initialization function.

normprod Normalized row-weight initialization function.
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initFcn
This property defines the function used to initialize the weight matrix going to 
the ith layer from the jth layer, if the network initialization function is 
initlay, and the ith layer’s initialization function is initwb.

net.layerWeights{i,j}.initFcn

This function can be set to the name of any weight initialization function, 
including the toolbox functions.

This function is used to calculate an initial weight matrix for the weight going 
to the ith layer from the jth layer (net.LW{i,j}) when init is called, if the 
network initialization function (net.initFcn) is initlay, and the ith layer’s 
initialization function (net.layers{i}.initFcn) is initwb.

net = init(net)

Custom Functions. See Chapter 12, “Advanced Topics” for information on creating 
custom initialization functions.

learn
This property defines whether the weight matrix to the ith layer from the jth 
layer is to be altered during training and adaption.

net.layerWeights{i,j}.learn

It can be set to 0 or 1.

It enables or disables the weights learning during calls to either adapt or 
train.

Weight and Bias Initialization Functions

initzero Zero-weight/bias initialization function.

midpoint Midpoint-weight initialization function.

randnc Normalized column-weight initialization function.

randnr Normalized row-weight initialization function.

rands Symmetric random-weight/bias initialization function.
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[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)
[net,tr] = train(NET,P,T,Pi,Ai)

learnFcn
This property defines the function used to update the weight matrix going to 
the ith layer from the jth layer during training, if the network training function 
is trainb, trainc, or trainr, or during adaption, if the network adapt function 
is trains.

net.layerWeights{i,j}.learnFcn

It can be set to the name of any weight learning function, including these 
toolbox functions.

The learning function updates the weight matrix of the ith layer form the jth 
layer (net.LW{i,j}) during calls to train, if the network training function 

Learning Functions

learngd Gradient-descent weight/bias learning function.

learngdm Grad. descent w/momentum weight/bias learning function.

learnh Hebb-weight learning function.

learnhd Hebb with decay weight learning function.

learnis Instar-weight learning function.

learnk Kohonen-weight learning function.

learnlv1 LVQ1-weight learning function.

learnlv2 LVQ2-weight learning function.

learnos Outstar-weight learning function.

learnp Perceptron-weight/bias learning function.

learnpn Normalized perceptron-weight/bias learning function.

learnsom Self-organizing map-weight learning function.

learnwh Widrow-Hoff weight/bias learning rule.
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(net.trainFcn) is trainb, trainc, or trainr, or during calls to adapt, if the 
network adapt function (net.adaptFcn) is trains.

[net,Y,E,Pf,Af] = adapt(NET,P,T,Pi,Ai)
[net,tr] = train(NET,P,T,Pi,Ai)

Custom Functions. See Chapter 12, “Advanced Topics” for information on creating 
custom learning functions.

learnParam
This property defines the learning parameters fields and values for the current 
learning function of the ith layer’s weight coming from the jth layer.

net.layerWeights{i,j}.learnParam

The subfields of this property depend on the current learning function 
(net.layerWeights{i,j}.learnFcn). Evaluate the above reference to see the 
fields of the current learning function.

Get help on the current learning function to get a description of what each field 
means.

help(net.layerWeights{i,j}.learnFcn)

size (read-only)
This property defines the dimensions of the ith layer’s weight matrix from the 
jth layer.

net.layerWeights{i,j}.size

It is always set to a two-element row vector indicating the number of rows and 
columns of the associated weight matrix (net.LW{i,j}). The first element is 
equal to the size of the ith layer (net.layers{i}.size). The second element is 
equal to the product of the length of the weights delay vectors with the size of 
the jth layer.

length(net.layerWeights{i,j}.delays) * net.layers{j}.size

userdata
This property provides a place for users to add custom information to the (i,j)th 
layer weight.

net.layerWeights{i,j}.userdata
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Only one field is predefined. It contains a secret message to all Neural Network 
Toolbox users.

net.layerWeights{i,j}.userdata.note

weightFcn
This property defines the function used to apply the ith layer’s weight from the 
jth layer to that layer’s output.

net.layerWeights{i,j}.weightFcn

It can be set to the name of any weight function, including these toolbox 
functions.

The weight function is used when sim is called to simulate the network.

[Y,Pf,Af] = sim(net,P,Pi,Ai)

Custom Functions. See Chapter 12, “Advanced Topics” for information on creating 
custom weight functions.

Weight Functions

dist Euclidean-distance weight function.

dotprod Dot-product weight function.

mandist Manhattan-distance weight function.

negdist Dot-product weight function.

normprod Normalized dot-product weight function.
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functions
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Functions — Categorical List

Analysis Functions

Distance Functions

Graphical Interface Function

Layer Initialization Functions

errsurf Error surface of a single input neuron.

maxlinlr Maximum learning rate for a linear neuron.

boxdist Distance between two position vectors.

dist Euclidean distance weight function.

linkdist Link distance function.

mandist Manhattan distance weight function.

nntool Neural Network Tool - Graphical User Interface.

initnw Nguyen-Widrow layer initialization function.

initwb By-weight-and-bias layer initialization function.
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Learning Functions

Line Search Functions

Net Input Derivative Functions

learncon Conscience bias learning function.

learngd Gradient descent weight/bias learning function.

learngdm Grad. descent w/momentum weight/bias learning function.

learnh Hebb weight learning function.

learnhd Hebb with decay weight learning rule.

learnis Instar weight learning function.

learnk Kohonen weight learning function.

learnlv1 LVQ1 weight learning function.

learnlv2 LVQ2 weight learning function.

learnos Outstar weight learning function.

learnp Perceptron weight and bias learning function.

learnpn Normalized perceptron weight and bias learning function.

learnsom Self-organizing map weight learning function.

learnwh Widrow-Hoff weight and bias learning rule.

srchbac One-dim. minimization using backtracking search.

srchbre One-dim. interval location using Brent’s method. 

srchcha One-dim. minimization using Charalambous’ method.

srchgol One-dim. minimization using Golden section search.

srchhyb One-dim. minimization using Hybrid bisection/cubic search.

dnetprod Product net input derivative function.

dnetsum Sum net input derivative function.
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Net Input Functions

Network Functions

Network Initialization Function

Network Use Functions

netprod Product net input function.

netsum Sum net input function.

assoclr Associative learning rules

backprop Backpropagation networks

elman Elman recurrent networks

hopfield Hopfield recurrent networks

linnet Linear networks

lvq Learning vector quantization

percept Perceptrons

radbasis Radial basis networks

selforg Self-organizing networks

initlay Layer-by-layer network initialization function.

adapt Allow a neural network to adapt.

disp Display a neural network's properties.

display Display a neural network variable’s name and properties.

init Initialize a neural network.

sim Simulate a neural network.

train Train a neural network.
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New Networks Functions

Performance Derivative Functions

network Create a custom neural network.

newc Create a competitive layer.

newcf Create a cascade-forward backpropagation network.

newelm Create an Elman backpropagation network.

newff Create a feed-forward backpropagation network.

newfftd Create a feed-forward input-delay backprop network.

newgrnn Design a generalized regression neural network.

newhop Create a Hopfield recurrent network.

newlin Create a linear layer.

newlind Design a linear layer.

newlvq Create a learning vector quantization network

newp Create a perceptron.

newpnn Design a probabilistic neural network.

newrb Design a radial basis network.

newrbe Design an exact radial basis network.

newsom Create a self-organizing map.

dmae Mean absolute error performance derivative function.

dmse Mean squared error performance derivatives function.

dmsereg Mean squared error w/reg performance derivative function.

dsse Sum squared error performance derivative function.
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Performance Functions

Plotting Functions

mae Mean absolute error performance function.

mse Mean squared error performance function.

msereg Mean squared error w/reg performance function.

sse Sum squared error performance function.

hintonw Hinton graph of weight matrix.

hintonwb Hinton graph of weight matrix and bias vector.

plotbr Plot network perf. for Bayesian regularization training.

plotep Plot weight and bias position on error surface.

plotes Plot error surface of single input neuron.

plotpc Plot classification line on perceptron vector plot.

plotperf Plot network performance.

plotpv Plot perceptron input target vectors.

plotsom Plot self-organizing map. 

plotv Plot vectors as lines from the origin.

plotvec Plot vectors with different colors.
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Pre- and Postprocessing Functions

Simulink Support Function

Topology Functions

postmnmx Unnormalize data which has been norm. by prenmmx.

postreg Postprocess network response w. linear regression analysis.

poststd Unnormalize data which has been normalized by prestd.

premnmx Normalize data for maximum of 1 and minimum of -1.

prepca Principal component analysis on input data.

prestd Normalize data for unity standard deviation and zero mean.

tramnmx Transform data with precalculated minimum and max.

trapca Transform data with PCA matrix computed by prepca.

trastd Transform data with precalc. mean & standard deviation.

gensim Generate a Simulink® block for neural network simulation.

gridtop Gridtop layer topology function.

hextop Hexagonal layer topology function.

randtop Random layer topology function.
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Training Functions
trainb Batch training with weight and bias learning rules.

trainbfg BFGS quasi-Newton backpropagation.

trainbr Bayesian regularization.

trainc Cyclical order incremental update.

traincgb Powell-Beale conjugate gradient backpropagation.

traincgf Fletcher-Powell conjugate gradient backpropagation.

traincgp Polak-Ribiere conjugate gradient backpropagation.

traingd Gradient descent backpropagation.

traingda Gradient descent with adaptive lr backpropagation.

traingdm Gradient descent with momentum backpropagation.

traingdx Gradient descent with momentum & adaptive lr backprop.

trainlm Levenberg-Marquardt backpropagation.

trainoss One step secant backpropagation.

trainr Random order incremental update.

trainrp Resilient backpropagation (Rprop).

trains Sequential order incremental update.

trainscg Scaled conjugate gradient backpropagation.
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Transfer Derivative Functions
dhardlim Hard limit transfer derivative function.

dhardlms Symmetric hard limit transfer derivative function.

dlogsig Log sigmoid transfer derivative function.

dposlin Positive linear transfer derivative function.

dpurelin Linear transfer derivative function.

dradbas Radial basis transfer derivative function.

dsatlin Saturating linear transfer derivative function.

dsatlins Symmetric saturating linear transfer derivative function.

dtansig Hyperbolic tangent sigmoid transfer derivative function.

dtribas Triangular basis transfer derivative function.
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Transfer Functions
compet Competitive transfer function.

hardlim Hard limit transfer function.

hardlims Symmetric hard limit transfer function

logsig Log sigmoid transfer function.

poslin Positive linear transfer function

purelin Linear transfer function.

radbas Radial basis transfer function.

satlin Saturating linear transfer function.

satlins Symmetric saturating linear transfer function

softmax Softmax transfer function.

tansig Hyperbolic tangent sigmoid transfer function.

tribas Triangular basis transfer function.

C

S
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Utility Functions
calca Calculate network outputs and other signals.

calca1 Calculate network signals for one time step.

calce Calculate layer errors.

calce1 Calculate layer errors for one time step.

calcgx Calc. weight and bias perform. gradient as a single vector.

calcjejj Calculate Jacobian performance vector.

calcjx Calculate weight and bias performance Jacobian as a single 
matrix.

calcpd Calculate delayed network inputs.

calcperf Calculation network outputs, signals, and performance.

formx Form bias and weights into single vector.

getx Get all network weight and bias values as a single vector.

setx Set all network weight and bias values with a single vector.



14 Reference

14-12

Vector Functions

Weight and Bias Initialization Functions

cell2mat Combine a cell array of matrices into one matrix.

combvec Create all combinations of vectors.

con2seq Converts concurrent vectors to sequential vectors.

concur Create concurrent bias vectors.

ind2vec Convert indices to vectors.

mat2cell Break matrix up into cell array of matrices.

minmax Ranges of matrix rows.

normc Normalize columns of matrix.

normr Normalize rows of matrix.

pnormc Pseudo-normalize columns of matrix.

quant Discretize value as multiples of a quantity.

seq2con Convert sequential vectors to concurrent vectors.

sumsqr Sum squared elements of matrix.

vec2ind Convert vectors to indices.

initcon Conscience bias initialization function.

initzero Zero weight and bias initialization function.

midpoint Midpoint weight initialization function.

randnc Normalized column weight initialization function.

randnr Normalized row weight initialization function.

rands Symmetric random weight/bias initialization function.

revert Change ntwk wts. and biases to prev. initialization values. 
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Weight Derivative Functions

Weight Functions

ddotprod Dot product weight derivative function.

dist Euclidean distance weight function.

dotprod Dot product weight function.

mandist Manhattan distance weight function.

negdist Negative distance weight function.

normprod Normalized dot product weight function.
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Transfer Function Graphs
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adapt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-23
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14adaptPurpose Allow a neural network to adapt (change weights and biases on each 
presentation of an input)

Syntax [net,Y,E,Pf,Af] = adapt(net,P,T,Pi,Ai)

To Get Help Type help network/adapt

Description This function calculates network outputs and errors after each presentation of 
an input.

[net,Y,E,Pf,Af,tr] = adapt(net,P,T,Pi,Ai) takes,

net — Network

P    — Network inputs

T    — Network targets, default = zeros

Pi  — Initial input delay conditions, default = zeros

Ai  — Initial layer delay conditions, default = zeros

and returns the following after applying the adapt function net.adaptFcn with 
the adaption parameters net.adaptParam:

net — Updated network

Y    — Network outputs

E    — Network errors

Pf  — Final input delay conditions

Af  — Final layer delay conditions

tr  — Training record (epoch and perf)

Note that T is optional and only needs to be used for networks that require 
targets. Pi and Pf are also optional and only need to be used for networks that 
have input or layer delays.

adapt’s signal arguments can have two formats: cell array or matrix.
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The cell array format is easiest to describe. It is most convenient for networks 
with multiple inputs and outputs, and allows sequences of inputs to be 
presented:

P   — Ni x TS cell array, each element P{i,ts} is an Ri x Q matrix

T   — Nt x TS cell array, each element T{i,ts} is a Vi x Q matrix

Pi — Ni x ID cell array, each element Pi{i,k} is an Ri x Q matrix

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix

Y   — NO x TS cell array, each element Y{i,ts} is a Ui x Q matrix

E   — Nt x TS cell array, each element E{i,ts} is a Vi x Q matrix

Pf — Ni x ID cell array, each element Pf{i,k} is an Ri x Q matrix

Af — Nl x LD cell array, each element Af{i,k} is an Si x Q matrix

where

Ni = net.numInputs
Nl = net.numLayers
No = net.numOutputs
Nt = net.numTargets
ID = net.numInputDelays
LD = net.numLayerDelays

TS = Number of time steps

Q  = Batch size
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Ui = net.outputs{i}.size
Vi = net.targets{i}.size

The columns of Pi, Pf, Ai, and Af are ordered from oldest delay condition to 
most recent:

Pi{i,k} = input i at time ts = k ID

Pf{i,k} = input i at time ts = TS+k ID

Ai{i,k} = layer output i at time ts = k LD

Af{i,k} = layer output i at time ts = TS+k LD
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The matrix format can be used if only one time step is to be simulated (TS = 1). 
It is convenient for network’s with only one input and output, but can be used 
with networks that have more. 

Each matrix argument is found by storing the elements of the corresponding 
cell array argument in a single matrix:

P   — (sum of Ri) x Q matrix

T   — (sum of Vi) x Q matrix

Pi — (sum of Ri) x (ID*Q) matrix

Ai — (sum of Si) x (LD*Q) matrix

Y   — (sum of Ui) x Q matrix

Pf — (sum of Ri) x (ID*Q) matrix

Af — (sum of Si) x (LD*Q) matrix

Examples Here two sequences of 12 steps (where T1 is known to depend on P1) are used 
to define the operation of a filter.

p1 = {-1  0 1 0 1 1 -1  0 -1 1 0 1};
t1 = {-1 -1 1 1 1 2  0 -1 -1 0 1 1};

Here newlin is used to create a layer with an input range of [-1 1]), one 
neuron, input delays of 0 and 1, and a learning rate of 0.5. The linear layer is 
then simulated.

net = newlin([-1 1],1,[0 1],0.5);

Here the network adapts for one pass through the sequence.

The network’s mean squared error is displayed. (Since this is the first call of 
adapt, the default Pi is used.)

[net,y,e,pf] = adapt(net,p1,t1);
mse(e)

Note the errors are quite large. Here the network adapts to another 12 time 
steps (using the previous Pf as the new initial delay conditions.)

p2 = {1 -1 -1 1 1 -1  0 0 0 1 -1 -1};
t2 = {2  0 -2 0 2  0 -1 0 0 1  0 -1};
[net,y,e,pf] = adapt(net,p2,t2,pf);
mse(e)
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Here the network adapts for 100 passes through the entire sequence.

p3 = [p1 p2];
t3 = [t1 t2];
net.adaptParam.passes = 100;
[net,y,e] = adapt(net,p3,t3);
mse(e)

The error after 100 passes through the sequence is very small. The network has 
adapted to the relationship between the input and target signals.

Algorithm adapt calls the function indicated by net.adaptFcn, using the adaption 
parameter values indicated by net.adaptParam.

Given an input sequence with TS steps, the network is updated as follows. 
Each step in the sequence of inputs is presented to the network one at a time. 
The network’s weight and bias values are updated after each step, before the 
next step in the sequence is presented. Thus the network is updated TS times.

See Also sim, init, train, revert
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14boxdistPurpose Box distance function

Syntax d = boxdist(pos);

Description boxdist is a layer distance function that is used to find the distances between 
the layer’s neurons, given their positions.

boxdist(pos) takes one argument,

pos  N x S matrix of neuron positions

and returns the S x S matrix of distances

boxdist is most commonly used in conjunction with layers whose topology 
function is gridtop.

Examples Here we define a random matrix of positions for 10 neurons arranged in 
three-dimensional space and then find their distances.

pos = rand(3,10);
d = boxdist(pos)

Network Use You can create a standard network that uses boxdist as a distance function by 
calling newsom.

To change a network so that a layer’s topology uses boxdist, set 
net.layers{i}.distanceFcn to 'boxdist'.

In either case, call sim to simulate the network with boxdist. See newsom for 
training and adaption examples.

Algorithm The box distance D between two position vectors Pi and Pj from a set of S 
vectors is:

Dij = max(abs(Pi-Pj))

See Also sim, dist, mandist, linkdist
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14calcaPurpose Calculate network outputs and other signals

Syntax [Ac,N,LWZ,IWZ,BZ] = calca(net,Pd,Ai,Q,TS)

Description This function calculates the outputs of each layer in response to a network’s 
delayed inputs and initial layer delay conditions. 

[Ac,N,LWZ,IWZ,BZ] = calca(net,Pd,Ai,Q,TS) takes,

  net — Neural network

  Pd   — Delayed inputs

  Ai   — Initial layer delay conditions

  Q     — Concurrent size

  TS   — Time steps

 and returns,

 Ac   — Combined layer outputs = [Ai, calculated layer outputs]

 N     — Net inputs

 LWZ — Weighted layer outputs

 IWZ — Weighted inputs

 BZ   — Concurrent biases

Examples Here we create a linear network with a single input element ranging from 0 to 
1, three neurons, and a tap delay on the input with taps at zero, two, and four 
time steps. The network is also given a recurrent connection from layer 1 to 
itself with tap delays of [1 2].

net = newlin([0 1],3,[0 2 4]);
net.layerConnect(1,1) = 1;
net.layerWeights{1,1}.delays = [1 2]; 

Here is a single (Q = 1) input sequence P with eight time steps (TS = 8), and 
the four initial input delay conditions Pi, combined inputs Pc, and delayed 
inputs Pd.

P = {0 0.1 0.3 0.6 0.4 0.7 0.2 0.1};
Pi = {0.2 0.3 0.4 0.1};
Pc = [Pi P];
Pd = calcpd(net,8,1,Pc)
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 Here the two initial layer delay conditions for each of the three neurons are 
defined:

Ai = {[0.5; 0.1; 0.2] [0.6; 0.5; 0.2]};

 Here we calculate the network’s combined outputs Ac, and other signals 
described above. 

[Ac,N,LWZ,IWZ,BZ] = calca(net,Pd,Ai,1,8)
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14calca1Purpose Calculate network signals for one time step

Syntax [Ac,N,LWZ,IWZ,BZ] = calca1(net,Pd,Ai,Q)

Description This function calculates the outputs of each layer in response to a network’s 
delayed inputs and initial layer delay conditions, for a single time step.

Calculating outputs for a single time step is useful for sequential iterative 
algorithms such as trains, which need to calculate the network response for 
each time step individually.

[Ac,N,LWZ,IWZ,BZ] = calca1(net,Pd,Ai,Q) takes,

 net — Neural network

 Pd   — Delayed inputs for a single time step

  Ai   — Initial layer delay conditions for a single time step

  Q     — Concurrent size

 and returns,

  A    —  Layer outputs for the time step

  N    —  Net inputs for the time step

  LWZ — Weighted layer outputs for the time step

  IWZ — Weighted inputs for the time step

  BZ   — Concurrent biases for the time step

Examples Here we create a linear network with a single input element ranging from 0 to 
1, three neurons, and a tap delay on the input with taps at zero, two, and four 
time steps. The network is also given a recurrent connection from layer 1 to 
itself with tap delays of [1 2].

net = newlin([0 1],3,[0 2 4]);
net.layerConnect(1,1) = 1;
net.layerWeights{1,1}.delays = [1 2]; 

Here is a single (Q = 1) input sequence P with eight time steps (TS = 8), and 
the four initial input delay conditions Pi, combined inputs Pc, and delayed 
inputs Pd.

P = {0 0.1 0.3 0.6 0.4 0.7 0.2 0.1};
Pi = {0.2 0.3 0.4 0.1};
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Pc = [Pi P];
Pd = calcpd(net,8,1,Pc)

Here the two initial layer delay conditions for each of the three neurons are 
defined:

Ai = {[0.5; 0.1; 0.2] [0.6; 0.5; 0.2]};

Here we calculate the network’s combined outputs Ac, and other signals 
described above. 

[Ac,N,LWZ,IWZ,BZ] = calca(net,Pd,Ai,1,8)
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14calcePurpose Calculate layer errors

Syntax El = calce(net,Ac,Tl,TS)

Description This function calculates the errors of each layer in response to layer outputs 
and targets.

El = calce(net,Ac,Tl,TS) takes,

net — Neural network

Ac   — Combined layer outputs

Tl   — Layer targets

Q    —  Concurrent size

and returns,

El   — Layer errors

Examples Here we create a linear network with a single input element ranging from 0 to 
1, two neurons, and a tap delay on the input with taps at 0, 2, and 4 time steps. 
The network is also given a recurrent connection from layer 1 to itself with tap 
delays of [1 2].

net = newlin([0 1],2);
net.layerConnect(1,1) = 1;
net.layerWeights{1,1}.delays = [1 2];

Here is a single (Q = 1) input sequence P with five time steps (TS = 5), and the 
four initial input delay conditions Pi, combined inputs Pc, and delayed inputs 
Pd.

P = {0 0.1 0.3 0.6 0.4};
Pi = {0.2 0.3 0.4 0.1};
Pc = [Pi P];
Pd = calcpd(net,5,1,Pc);

Here the two initial layer delay conditions for each of the two neurons are 
defined, and the networks combined outputs Ac and other signals are 
calculated.

Ai = {[0.5; 0.1] [0.6; 0.5]};
[Ac,N,LWZ,IWZ,BZ] = calca(net,Pd,Ai,1,5);
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Here we define the layer targets for the two neurons for each of the five time 
steps, and calculate the layer errors.

Tl = {[0.1;0.2] [0.3;0.1], [0.5;0.6] [0.8;0.9], [0.5;0.1]};
El = calce(net,Ac,Tl,5)

Here we view the network’s error for layer 1 at time step 2.

El{1,2}
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14calce1Purpose Calculate layer errors for one time step

Syntax El = calce1(net,A,Tl)

Description This function calculates the errors of each layer in response to layer outputs 
and targets, for a single time step. Calculating errors for a single time step is 
useful for sequential iterative algorithms such as trains which need to 
calculate the network response for each time step individually.

El = calce1(net,A,Tl) takes,

net — Neural network

A    — Layer outputs, for a single time step

Tl  — Layer targets, for a single time step

and returns,

El  — Layer errors, for a single time step

Examples Here we create a linear network with a single input element ranging from 0 to 
1, two neurons, and a tap delay on the input with taps at zero, two, and four 
time steps. The network is also given a recurrent connection from layer 1 to 
itself with tap delays of [1 2].

net = newlin([0 1],2);
net.layerConnect(1,1) = 1;
net.layerWeights{1,1}.delays = [1 2];

Here is a single (Q = 1) input sequence P with five time steps (TS = 5), and the 
four initial input delay conditions Pi, combined inputs Pc, and delayed inputs 
Pd.

P = {0 0.1 0.3 0.6 0.4};
Pi = {0.2 0.3 0.4 0.1};
Pc = [Pi P];
Pd = calcpd(net,5,1,Pc);

Here the two initial layer delay conditions for each of the two neurons are 
defined, and the networks combined outputs Ac and other signals are 
calculated.

Ai = {[0.5; 0.1] [0.6; 0.5]};
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[Ac,N,LWZ,IWZ,BZ] = calca(net,Pd,Ai,1,5);

Here we define the layer targets for the two neurons for each of the five time 
steps, and calculate the layer error using the first time step layer output 
Ac(:,5) (The five is found by adding the number of layer delays, 2, to the time 
step 1.), and the first time step targets Tl(:,1).

Tl = {[0.1;0.2] [0.3;0.1], [0.5;0.6] [0.8;0.9], [0.5;0.1]};
El = calce1(net,Ac(:,3),Tl(:,1))

Here we view the network’s error for layer 1.

El{1}
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14calcgxPurpose Calculate weight and bias performance gradient as a single vector

Syntax [gX,normgX] = calcgx(net,X,Pd,BZ,IWZ,LWZ,N,Ac,El,perf,Q,TS);

Description This function calculates the gradient of a network’s performance with respect 
to its vector of weight and bias values X. 

If the network has no layer delays with taps greater than 0 the result is the 
true gradient.

If the network as layer delays greater than 0, the result is the Elman gradient, 
an approximation of the true gradient.

[gX,normgX] = calcgx(net,X,Pd,BZ,IWZ,LWZ,N,Ac,El,perf,Q,TS) takes,

net  — Neural network

X      — Vector of weight and bias values

Pd    — Delayed inputs

BZ    — Concurrent biases

IWZ  — Weighted inputs

LWZ  — Weighted layer outputs

N      — Net inputs

Ac    — Combined layer outputs

El    — Layer errors

perf — Network performance

Q      — Concurrent size

TS    — Time steps

and returns,

gX        — Gradient dPerf/dX

normgX — Norm of gradient

Examples Here we create a linear network with a single input element ranging from 0 to 
1, two neurons, and a tap delay on the input with taps at zero, two, and four 
time steps. The network is also given a recurrent connection from layer 1 to 
itself with tap delays of [1 2].

net = newlin([0 1],2);
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net.layerConnect(1,1) = 1;
net.layerWeights{1,1}.delays = [1 2];

Here is a single (Q = 1) input sequence P with five time steps (TS = 5), and the 
four initial input delay conditions Pi, combined inputs Pc, and delayed inputs 
Pd.

P = {0 0.1 0.3 0.6 0.4};
Pi = {0.2 0.3 0.4 0.1};
Pc = [Pi P];
Pd = calcpd(net,5,1,Pc);

Here the two initial layer delay conditions for each of the two neurons, and the 
layer targets for the two neurons over five time steps are defined.

Ai = {[0.5; 0.1] [0.6; 0.5]};
Tl = {[0.1;0.2] [0.3;0.1], [0.5;0.6] [0.8;0.9], [0.5;0.1]};

Here the network’s weight and bias values are extracted, and the network’s 
performance and other signals are calculated.

X = getx(net);
[perf,El,Ac,N,BZ,IWZ,LWZ] = calcperf(net,X,Pd,Tl,Ai,1,5);

Finally we can use calcgz to calculate the gradient of performance with respect 
to the weight and bias values X.

[gX,normgX] = calcgx(net,X,Pd,BZ,IWZ,LWZ,N,Ac,El,perf,1,5);

See Also calcjx, calcjejj
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14calcjejjPurpose Calculate Jacobian performance vector

Syntax [je,jj,normje] = calcjejj(net,Pd,BZ,IWZ,LWZ,N,Ac,El,Q,TS,MR)

Description This function calculates two values (related to the Jacobian of a network) 
required to calculate the network’s Hessian, in a memory efficient way.

Two values needed to calculate the Hessian of a network are J*E (Jacobian 
times errors) and J'J (Jacobian squared). However the Jacobian J can take up 
a lot of memory. This function calculates J*E and J'J by dividing up training 
vectors into groups, calculating partial Jacobians Ji and its associated values 
Ji*Ei and Ji'Ji, then summing the partial values into the full J*E and J'J 
values.

This allows the J*E and J'J values to be calculated with a series of smaller Ji 
matrices, instead of a larger J matrix.

[je,jj,normgX] = calcjejj(net,PD,BZ,IWZ,LWZ,N,Ac,El,Q,TS,MR) takes,

net — Neural network

PD   — Delayed inputs

BZ   — Concurrent biases

IWZ — Weighted inputs

LWZ — Weighted layer outputs

N     — Net inputs

Ac   — Combined layer outputs

El   — Layer errors

Q     — Concurrent size

TS   — Time steps

MR   — Memory reduction factor

and returns,

je         — Jacobian times errors

jj         — Jacobian transposed time the Jacobian.normgX 

normgX — Norm of gradient
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Examples Here we create a linear network with a single input element ranging from 0 to 
1, two neurons, and a tap delay on the input with taps at zero, two, and four 
time steps. The network is  also given a recurrent connection from layer 1 to 
itself with tap delays of [1 2].

net = newlin([0 1],2);
net.layerConnect(1,1) = 1;
net.layerWeights{1,1}.delays = [1 2];

Here is a single (Q = 1) input sequence P with five time steps (TS = 5), and the 
four initial input delay conditions Pi, combined inputs Pc, and delayed inputs 
Pd.

P = {0 0.1 0.3 0.6 0.4};
Pi = {0.2 0.3 0.4 0.1};
Pc = [Pi P];
Pd = calcpd(net,5,1,Pc);

Here the two initial layer delay conditions for each of the two neurons, and the 
layer targets for the two neurons over five time steps are defined.

Ai = {[0.5; 0.1] [0.6; 0.5]};
Tl = {[0.1;0.2] [0.3;0.1], [0.5;0.6] [0.8;0.9], [0.5;0.1]};

Here the network’s weight and bias values are extracted, and the network’s 
performance and other signals are calculated.

[perf,El,Ac,N,BZ,IWZ,LWZ] = calcperf(net,X,Pd,Tl,Ai,1,5);

Finally we can use calcgx to calculate the Jacobian times error, Jacobian 
squared, and the norm of the Jocobian times error using a memory reduction 
of 2.

[je,jj,normje] = calcjejj(net,Pd,BZ,IWZ,LWZ,N,Ac,El,1,5,2);

The results should be the same whatever the memory reduction used. Here a 
memory reduction of 3 is used.

[je,jj,normje] = calcjejj(net,Pd,BZ,IWZ,LWZ,N,Ac,El,1,5,3);

See Also calcjx, calcjejj
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14calcjxPurpose Calculate weight and bias performance Jacobian as a single matrix

Syntax jx = calcjx(net,PD,BZ,IWZ,LWZ,N,Ac,Q,TS)

Description This function calculates the Jacobian of a network’s errors with respect to its 
vector of weight and bias values X.

[jX] = calcjx(net,PD,BZ,IWZ,LWZ,N,Ac,Q,TS) takes,

net — Neural network

PD   — Delayed inputs

BZ   — Concurrent biases

IWZ — Weighted inputs

LWZ — Weighted layer outputs

N     — Net inputs

Ac    — Combined layer outputs

Q      — Concurrent size

TS    — Time steps

and returns,

jX    — Jacobian of network errors with respect to X 

Examples Here we create a linear network with a single input element ranging from 0 to 
1, two neurons, and a tap delay on the input with taps at zero, two, and four 
time steps. The network is also given a recurrent connection from layer 1 to 
itself with tap delays of [1 2]. 

net = newlin([0 1],2);
net.layerConnect(1,1) = 1;
net.layerWeights{1,1}.delays = [1 2];

Here is a single (Q = 1) input sequence P with five time steps (TS = 5), and the 
four initial input delay conditions Pi, combined inputs Pc, and delayed inputs 
Pd.

P = {0 0.1 0.3 0.6 0.4};
Pi = {0.2 0.3 0.4 0.1};
Pc = [Pi P];
Pd = calcpd(net,5,1,Pc);
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Here the two initial layer delay conditions for each of the two neurons, and the 
layer targets for the two neurons over five time steps are defined.

Ai = {[0.5; 0.1] [0.6; 0.5]};
Tl = {[0.1;0.2] [0.3;0.1], [0.5;0.6] [0.8;0.9], [0.5;0.1]};

Here the network’s weight and bias values are extracted, and the network’s 
performance and other signals are calculated.

[perf,El,Ac,N,BZ,IWZ,LWZ] = calcperf(net,X,Pd,Tl,Ai,1,5);

Finally we can use calcjx to calculate the Jacobian.

jX = calcjx(net,Pd,BZ,IWZ,LWZ,N,Ac,1,5);calcpd

See Also calcgx, calcjejj
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14calcpdPurpose Calculate delayed network inputs

Syntax Pd = calcpd(net,TS,Q,Pc)

Description This function calculates the results of passing the network inputs through each 
input weights tap delay line.

Pd = calcpd(net,TS,Q,Pc) takes,

net — Neural network

TS   — Time steps

Q     — Concurrent size

Pc   — Combined inputs = [initial delay conditions, network inputs]

and returns,

Pd   — Delayed inputs

Examples Here we create a linear network with a single input element ranging from 0 to 
1, three neurons, and a tap delay on the input with taps at zero, two, and four 
time steps.

net = newlin([0 1],3,[0 2 4]);

Here is a single (Q = 1) input sequence P with eight time steps (TS = 8).

P = {0 0.1 0.3 0.6 0.4 0.7 0.2 0.1};

Here we define the four initial input delay conditions Pi.

Pi = {0.2 0.3 0.4 0.1};

The delayed inputs (the inputs after passing through the tap delays) can be 
calculated with calcpd.

Pc = [Pi P];
Pd = calcpd(net,8,1,Pc)

Here we view the delayed inputs for input weight going to layer 1, from input 
1 at time steps 1 and 2.

Pd{1,1,1}
Pd{1,1,2}
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14calcperfPurpose Calculate network outputs, signals, and performance

Syntax [perf,El,Ac,N,BZ,IWZ,LWZ]=calcperf(net,X,Pd,Tl,Ai,Q,TS)

Description This function calculates the outputs of each layer in response to a networks 
delayed inputs and initial layer delay conditions.

[perf,El,Ac,N,LWZ,IWZ,BZ] = calcperf(net,X,Pd,Tl,Ai,Q,TS) takes,

net — Neural network

X    — Network weight and bias values in a single vector

Pd  — Delayed inputs

Tl  — Layer targets

Ai  — Initial layer delay conditions

Q    — Concurrent size

TS  — Time steps

and returns,

perf — Network performance

El     — Layer errors

Ac     — Combined layer outputs = [Ai, calculated layer outputs]

N       — Net inputs

LWZ   — Weighted layer outputs

IWZ   — Weighted inputs

BZ     — Concurrent biases

Examples Here we create a linear network with a single input element ranging from 0 to 
1, two neurons, and a tap delay on the input with taps at zero, two, and four 
time steps. The network is also given a recurrent connection from layer 1 to 
itself with tap delays of [1 2].

net = newlin([0 1],2);
net.layerConnect(1,1) = 1;
net.layerWeights{1,1}.delays = [1 2];
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Here is a single (Q = 1) input sequence P with five time steps (TS = 5),and the 
four initial input delay conditions Pi, combined inputs Pc, and delayed inputs 
Pd.

P = {0 0.1 0.3 0.6 0.4};
Pi = {0.2 0.3 0.4 0.1};
Pc = [Pi P];
Pd = calcpd(net,5,1,Pc);

Here the two initial layer delay conditions for each of the two neurons are 
defined.

Ai = {[0.5; 0.1] [0.6; 0.5]};

Here we define the layer targets for the two neurons for each of the five time 
steps.

Tl = {[0.1;0.2] [0.3;0.1], [0.5;0.6] [0.8;0.9], [0.5;0.1]};

Here the network’s weight and bias values are extracted.

X = getx(net);

Here we calculate the network’s combined outputs Ac, and other signals 
described above.

[perf,El,Ac,N,BZ,IWZ,LWZ] = calcperf(net,X,Pd,Tl,Ai,1,5)
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14combvecPurpose Create all combinations of vectors

Syntax combvec(a1,a2...)

Description combvec(A1,A2...) takes any number of inputs,

A1 — Matrix of N1 (column) vectors

A2 — Matrix of N2 (column) vectors

and returns a matrix of (N1*N2*...) column vectors, where the columns 
consist of all possibilities of A2 vectors, appended to A1 vectors, etc.

Examples a1 = [1 2 3; 4 5 6];
a2 = [7 8; 9 10];
a3 = combvec(a1,a2)



compet

14-46

14competPurpose Competitive transfer function

Graph and 
Symbol

Syntax A = compet(N)

info = compet(code)

Description compet is a transfer function. Transfer functions calculate a layer’s output from 
its net input. 

compet(N) takes one input argument,

N - S x Q matrix of net input (column) vectors.

and returns output vectors with 1 where each net input vector has its 
maximum value, and 0 elsewhere.

compet(code) returns information about this function.

These codes are defined:

'deriv'   — Name of derivative function

'name'     — Full name

'output' — Output range

'active' — Active input range

compet does not have a derivative function

In many network paradigms it is useful to have a layer whose neurons compete 
for the ability to output a 1. In biology this is done by strong inhibitory 
connections between each of the neurons in a layer. The result is that the only 
neuron that can respond with appreciable output is the neuron whose net input 
is the highest. All other neurons are inhibited so strongly by the winning 
neuron that their outputs are negligible. 

Compet Transfer Function C

2 1 4 3

Input  n

0 0 1 0

Output  a

a = softmax(n)
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To model this type of layer efficiently on a computer, a competitive transfer 
function is often used. Such a function transforms the net input vector of a 
layer of neurons so that the neuron receiving the greatest net input has an 
output of 1 and all other neurons have outputs of 0.

Examples Here we define a net input vector N, calculate the output, and plot both with 
bar graphs. 

n = [0; 1; -0.5; 0.5];
a = compet(n);
subplot(2,1,1), bar(n), ylabel('n')
subplot(2,1,2), bar(a), ylabel('a')

Network Use You can create a standard network that uses compet by calling newc or newpnn.

To change a network so a layer uses compet, set 
net.layers{i,j}.transferFcn to 'compet'. 

In either case, call sim to simulate the network with compet.

See newc or newpnn for simulation examples.

See Also sim, softmax
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14con2seqPurpose Convert concurrent vectors to sequential vectors

Syntax s = con2seq(b)

Description The Neural Network Toolbox arranges concurrent vectors with a matrix, and 
sequential vectors with a cell array (where the second index is the time step).

con2seq and seq2con allow concurrent vectors to be converted to sequential 
vectors, and back again.

con2seq(b)takes one input,

b   — R x TS matrix

and returns one output,

S   — 1 x TS cell array of R x 1 vectors

con2seq(b,TS) can also convert multiple batches,

b   — N x 1 cell array of matrices with M*TS columns

TS — Time steps

and will return,

S   — N x TS cell array of matrices with M columns

Examples Here a batch of three values is converted to a sequence.

p1 = [1 4 2]
p2 = con2seq(p1)

Here two batches of vectors are converted to two sequences with two time steps.

p1 = {[1 3 4 5; 1 1 7 4]; [7 3 4 4; 6 9 4 1]}
p2 = con2seq(p1,2)

See Also seq2con, concur 
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14concurPurpose Create concurrent bias vectors

Syntax concur(B,Q)

Description concur(B,Q)

B — S x 1 bias vector (or Nl x 1 cell array of vectors)

Q — Concurrent size

Returns an S x B matrix of copies of B (or Nl x 1 cell array of matrices).

Examples Here concur creates three copies of a bias vector.

b = [1; 3; 2; -1];
concur(b,3)

Network Use To calculate a layer’s net input, the layer’s weighted inputs must be combined 
with its biases. The following expression calculates the net input for a layer 
with the netsum net input function, two input weights, and a bias:

n = netsum(z1,z2,b)

The above expression works if Z1, Z2, and B are all S x 1 vectors. However, if 
the network is being simulated by sim (or adapt or train) in response to Q 
concurrent vectors, then Z1 and Z2 will be S x Q matrices. Before B can be 
combined with Z1 and Z2, we must make Q copies of it.

n = netsum(z1,z2,concur(b,q))

See Also netsum, netprod, sim, seq2con, con2seq
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14ddotprodPurpose Dot product weight derivative function

Syntax dZ_dP = ddotprod('p',W,P,Z)

dZ_dW = ddotprod('w',W,P,Z)

Description ddotprod is a weight derivative function.

ddotprod('p',W,P,Z) takes three arguments,

W — S x R weight matrix

P — R x Q inputs

Z — S x Q weighted input

and returns the S x R derivative dZ/dP.

ddotprod('w',W,P,Z) returns the R x Q derivative dZ/dW.

Examples Here we define a weight W and input P for an input with three elements and a 
layer with two neurons.

W = [0 -1 0.2; -1.1 1 0];
P = [0.1; 0.6; -0.2];

Here we calculate the weighted input with dotprod, then calculate each 
derivative with ddotprod.

Z = dotprod(W,P)
dZ_dP = ddotprod('p',W,P,Z)
dZ_dW = ddotprod('w',W,P,Z)

Algorithm The derivative of a product of two elements with respect to one element is the 
other element.

dZ/dP = W
dZ/dW = P

See Also dotprod
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14dhardlimPurpose Derivative of hard limit transfer function

Syntax dA_dN = dhardlim(N,A)

Description dhardlim is the derivative function for hardlim.

dhardlim(N,A) takes two arguments,

N — S x Q net input

A — S x Q output

and returns the S x Q derivative dA/dN.

Examples Here we define the net input N for a layer of 3 hardlim neurons.

N = [0.1; 0.8; -0.7];

We calculate the layer’s output A with hardlim and then the derivative of A 
with respect to N.

A = hardlim(N)
dA_dN = dhardlim(N,A)

Algorithm The derivative of hardlim is calculated as follows:

d = 0

See Also hardlim
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14dhardlmsPurpose Derivative of symmetric hard limit transfer function

Syntax dA_dN = dhardlms(N,A)

Description dhardlms is the derivative function for hardlims.

dhardlms(N,A) takes two arguments,

N — S x Q net input

A — S x Q output

and returns the S x Q derivative dA/dN.

Examples Here we define the net input N for a layer of 3 hardlims neurons.

N = [0.1; 0.8; -0.7];

We calculate the layer’s output A with hardlims and then the derivative of A 
with respect to N.

A = hardlims(N)
dA_dN = dhardlms(N,A)

Algorithm The derivative of hardlims is calculated as follows: 

d = 0

See Also hardlims
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14dispPurpose Display a neural network’s properties

Syntax disp(net)

To Get Help Type help network/disp

Description disp(net) displays a network’s properties.

Examples Here a perceptron is created and displayed.

net = newp([-1 1; 0 2],3);
disp(net)

See Also display, sim, init, train, adapt
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14displayPurpose Display the name and properties of a neural network’s variables

Syntax display(net)

To Get Help Type help network/disp

Description display(net) displays a network variable’s name and properties.

Examples Here a perceptron variable is defined and displayed.

net = newp([-1 1; 0 2],3);
display(net)

display is automatically called as follows:

net

See Also disp, sim, init, train, adapt
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14distPurpose Euclidean distance weight function

Syntax Z = dist(W,P)

df = dist('deriv')

D = dist(pos)

Description dist is the Euclidean distance weight function. Weight functions apply weights 
to an input to get weighted inputs.

 dist (W,P) takes these inputs,

W — S x R weight matrix

P — R x Q matrix of Q input (column) vectors

and returns the S x Q matrix of vector distances.

dist('deriv') returns '' because dist does not have a derivative function.

dist is also a layer distance function, which can be used to find the distances 
between neurons in a layer.

dist(pos) takes one argument,

pos  N x S matrix of neuron positions

and returns the S x S matrix of distances.

Examples Here we define a random weight matrix W and input vector P and calculate the 
corresponding weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = dist(W,P)

Here we define a random matrix of positions for 10 neurons arranged in 
three-dimensional space and find their distances.

pos = rand(3,10);
D = dist(pos)

Network Use You can create a standard network that uses dist by calling newpnn or 
newgrnn.
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To change a network so an input weight uses dist, set 
net.inputWeight{i,j}.weightFcn to 'dist'. 

For a layer weight set net.inputWeight{i,j}.weightFcn to 'dist'.

To change a network so that a layer’s topology uses dist, set 
net.layers{i}.distanceFcn to 'dist'.

In either case, call sim to simulate the network with dist. 

See newpnn or newgrnn for simulation examples.

Algorithm The Euclidean distance d between two vectors X and Y is:

d = sum((x-y).^2).^0.5

See Also sim, dotprod, negdist, normprod, mandist, linkdist
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14dlogsigPurpose Log sigmoid transfer derivative function

Syntax dA_dN = dlogsig(N,A)

Description dlogsig is the derivative function for logsig.

dlogsig(N,A) takes two arguments,

N — S x Q net input

A — S x Q output

and returns the S x Q derivative dA/dN.

Examples Here we define the net input N for a layer of 3 tansig neurons.

N = [0.1; 0.8; -0.7];

We calculate the layer’s output A with logsig and then the derivative of A with 
respect to N.

A = logsig(N)
dA_dN = dlogsig(N,A)

Algorithm The derivative of logsig is calculated as follows:

d = a * (1 - a)

See Also logsig, tansig, dtansig



dmae

14-58

14dmaePurpose Mean absolute error performance derivative function

Syntax dPerf_dE = dmae('e',E,X,PERF,PP)

dPerf_dX = dmae('x',E,X,PERF,PP)

Description dmae is the derivative function for mae.

dmae('d',E,X,PERF,PP) takes these arguments,

E      — Matrix or cell array of error vector(s)

X      — Vector of all weight and bias values

perf — Network performance (ignored)

PP     — Performance parameters (ignored)

and returns the derivative dPerf/dE.

dmae('x',E,X,PERF,PP) returns the derivative dPerf/dX.

Examples Here we define E and X for a network with one 3-element output and six weight 
and bias values.

E = {[1; -2; 0.5]};
X = [0; 0.2; -2.2; 4.1; 0.1; -0.2];

Here we calculate the network’s mean absolute error performance, and 
derivatives of performance.

perf = mae(E)
dPerf_dE = dmae('e',E,X)
dPerf_dX = dmae('x',E,X)

Note that mae can be called with only one argument and dmae with only three 
arguments because the other arguments are ignored. The other arguments 
exist so that mae and dmae conform to standard performance function argument 
lists.

See Also mae
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14dmsePurpose Mean squared error performance derivatives function

Syntax dPerf_dE = dmse('e',E,X,perf,PP)

dPerf_dX = dmse('x',E,X,perf,PP)

Description dmse is the derivative function for mse.

dmse('d',E,X,PERF,PP) takes these arguments,

E      — Matrix or cell array of error vector(s)

X      — Vector of all weight and bias values

perf — Network performance (ignored)

PP     — Performance parameters (ignored)

and returns the derivative dPerf/dE.

dmse('x',E,X,PERF,PP) returns the derivative dPerf/dX.

Examples Here we define E and X for a network with one 3-element output and six weight 
and bias values.

E = {[1; -2; 0.5]};
X = [0; 0.2; -2.2; 4.1; 0.1; -0.2];

Here we calculate the network’s mean squared error performance, and 
derivatives of performance.

perf = mse(E)
dPerf_dE = dmse('e',E,X)
dPerf_dX = dmse('x',E,X)

Note that mse can be called with only one argument and dmse with only three 
arguments because the other arguments are ignored. The other arguments 
exist so that mse and dmse conform to standard performance function argument 
lists.

See Also mse
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14dmseregPurpose Mean squared error with regularization or performance derivative function

Syntax dPerf_dE = dmsereg('e',E,X,perf,PP)

dPerf_dX = dmsereg('x',E,X,perf,PP)

Description dmsereg is the derivative function for msereg.

dmsereg('d',E,X,perf,PP) takes these arguments,

E      — Matrix or cell array of error vector(s)

X      — Vector of all weight and bias values

perf — Network performance (ignored)

PP    — mse performance parameter

where PP defines one performance parameters, 

PP.ratio — Relative importance of errors vs. weight and bias values

and returns the derivative dPerf/dE.

dmsereg('x',E,X,perf) returns the derivative dPerf/dX.

mse has only one performance parameter.

Examples Here we define an error E and X for a network with one 3-element output and 
six weight and bias values.

E = {[1; -2; 0.5]};
X = [0; 0.2; -2.2; 4.1; 0.1; -0.2];

Here the ratio performance parameter is defined so that squared errors are 5 
times as important as squared weight and bias values.

pp.ratio = 5/(5+1);

Here we calculate the network’s performance, and derivatives of performance.

perf = msereg(E,X,pp)
dPerf_dE = dmsereg('e',E,X,perf,pp)
dPerf_dX = dmsereg('x',E,X,perf,pp)

See Also msereg
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14dnetprodPurpose Derivative of net input product function

Syntax dN_dZ = dnetprod(Z,N)

Description dnetprod is the net input derivative function for netprod.

dnetprod takes two arguments,

Z — S x Q weighted input

N — S x Q net input

and returns the S x Q derivative dN/dZ.

Examples Here we define two weighted inputs for a layer with three neurons.

Z1 = [0; 1; -1];
Z2 = [1; 0.5; 1.2];

We calculate the layer’s net input N with netprod and then the derivative of N 
with respect to each weighted input.

N = netprod(Z1,Z2)
dN_dZ1 = dnetprod(Z1,N)
dN_dZ2 = dnetprod(Z2,N)

Algorithm The derivative of a product with respect to any element of that product is the 
product of the other elements.

See Also netsum, netprod, dnetsum
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14dnetsumPurpose Sum net input derivative function

Syntax dN_dZ = dnetsum(Z,N)

Description dnetsum is the net input derivative function for netsum.

dnetsum takes two arguments,

Z — S x Q weighted input

N — S x Q net input

and returns the S x Q derivative dN/dZ.

Examples Here we define two weighted inputs for a layer with three neurons.

Z1 = [0; 1; -1];
Z2 = [1; 0.5; 1.2];

We calculate the layer’s net input N with netsum and then the derivative of N 
with respect to each weighted input.

N = netsum(Z1,Z2)
dN_dZ1 = dnetsum(Z1,N)
dN_dZ2 = dnetsum(Z2,N)

Algorithm The derivative of a sum with respect to any element of that sum is always a 
ones matrix that is the same size as the sum.

See Also netsum, netprod, dnetprod
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14dotprodPurpose Dot product weight function

Syntax Z = dotprod(W,P)

df = dotprod('deriv')

Description dotprod is the dot product weight function. Weight functions apply weights to 
an input to get weighted inputs.

dotprod(W,P) takes these inputs,

W — S x R weight matrix

P — R x Q matrix of Q input (column) vectors

and returns the S x Q dot product of W and P.

Examples Here we define a random weight matrix W and input vector P and calculate the 
corresponding weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = dotprod(W,P)

Network Use You can create a standard network that uses dotprod by calling newp or 
newlin.

To change a network so an input weight uses dotprod, set 
net.inputWeight{i,j}.weightFcn to 'dotprod'. For a layer weight, set 
net.inputWeight{i,j}.weightFcn to 'dotprod'.

In either case, call sim to simulate the network with dotprod.

See newp and newlin for simulation examples.

See Also sim, ddotprod, dist, negdist, normprod



dposlin

14-64

14dposlinPurpose Derivative of positive linear transfer function

Syntax dA_dN = dposlin(N,A)

Description dposlin is the derivative function for poslin.

dposlin(N,A) takes two arguments, and returns the S x Q derivative dA/dN.

Examples Here we define the net input N for a layer of 3 poslin neurons.

N = [0.1; 0.8; -0.7];

We calculate the layer’s output A with poslin and then the derivative of A with 
respect to N.

A = poslin(N)
dA_dN = dposlin(N,A)

Algorithm The derivative of poslin is calculated as follows:

d = 1, if 0 <= n; 0, Otherwise.

See Also poslin
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14dpurelinPurpose Linear transfer derivative function

Syntax dA_dN = dpurelin(N,A)

Description dpurelin is the derivative function for logsig.

dpurelin(N,A) takes two arguments,

N — S x Q net input

A — S x Q output

and returns the S x Q derivative dA_dN.

Examples Here we define the net input N for a layer of 3 purelin neurons.

N = [0.1; 0.8; -0.7];

We calculate the layer’s output A with purelin and then the derivative of A 
with respect to N.

A = purelin(N)
dA_dN = dpurelin(N,A)

Algorithm The derivative of purelin is calculated as follows:

D(i,q) = 1

See Also purelin
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14dradbasPurpose Derivative of radial basis transfer function

Syntax dA_dN = dradbas(N,A)

Description dradbas is the derivative function for radbas.

dradbas(N,A) takes two arguments,

N — S x Q net input

A — S x Q output

and returns the S x Q derivative dA/dN.

Examples Here we define the net input N for a layer of 3 radbas neurons.

N = [0.1; 0.8; -0.7];

We calculate the layer’s output A with radbas and then the derivative of A with 
respect to N.

A = radbas(N)

Algorithm The derivative of radbas is calculated as follows:

d = -2*n*a

See Also radbas
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14dsatlinPurpose Derivative of saturating linear transfer function

Syntax dA_dN = dsatlin(N,A)

Description dsatlin is the derivative function for satlin.

dsatlin(N,A) takes two arguments,

N — S x Q net input

A — S x Q output

and returns the S x Q derivative dA/dN.

Examples Here we define the net input N for a layer of 3 satlin neurons.

N = [0.1; 0.8; -0.7];

We calculate the layer’s output A with satlin and then the derivative of A with 
respect to N.

A = satlin(N)
dA_dN = dsatlin(N,A)

Algorithm The derivative of satlin is calculated as follows:

d = 1, if 0 <= n <= 1; 0, otherwise.

See Also satlin
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14dsatlinsPurpose Derivative of symmetric saturating linear transfer function

Syntax dA_dN = dsatlins(N,A)

Description dsatlins is the derivative function for satlins.

dsatlins(N,A) takes two arguments,

N — S x Q net input

A — S x Q output

and returns the S x Q derivative dA/dN.

Examples Here we define the net input N for a layer of 3 satlins neurons.

N = [0.1; 0.8; -0.7];

We calculate the layer’s output A with satlins and then the derivative of A 
with respect to N.

A = satlins(N)
dA_dN = dsatlins(N,A)

Algorithm The derivative of satlins is calculated as follows:

d = 1, if -1 <= n <= 1; 0, otherwise.

See Also satlins
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14dssePurpose Sum squared error performance derivative function

Syntax dPerf_dE = dsse('e',E,X,perf,PP)

dPerf_dX = dsse('x',E,X,perf,PP)

Description dsse is the derivative function for sse.

dsse('d',E,X,perf,PP) takes these arguments,

E      — Matrix or cell array of error vector(s)

X      — Vector of all weight and bias values

perf — Network performance (ignored)

PP     — Performance parameters (ignored)

and returns the derivative dPerf_dE.

dsse('x',E,X,perf,PP)returns the derivative dPerf_dX.

Examples Here we define an error E and X for a network with one 3-element output and 
six weight and bias values.

E = {[1; -2; 0.5]};
X = [0; 0.2; -2.2; 4.1; 0.1; -0.2];

Here we calculate the network’s sum squared error performance, and 
derivatives of performance.

perf = sse(E)
dPerf_dE = dsse('e',E,X)
dPerf_dX = dsse('x',E,X)

Note that sse can be called with only one argument and dsse with only three 
arguments because the other arguments are ignored. The other arguments 
exist so that sse and dsse conform to standard performance function argument 
lists.

See Also sse
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14dtansigPurpose Hyperbolic tangent sigmoid transfer derivative function

Syntax dA_dN = dtansig(N,A)

Description dtansig is the derivative function for tansig.

dtansig(N,A) takes two arguments,

N — S x Q net input

A — S x Q output

and returns the S x Q derivative dA/dN.

Examples Here we define the net input N for a layer of 3 tansig neurons.

N = [0.1; 0.8; -0.7];

We calculate the layer’s output A with tansig and then the derivative of A with 
respect to N.

A = tansig(N)
dA_dN = dtansig(N,A)

Algorithm The derivative of tansig is calculated as follows:

d = 1-a^2

See Also tansig, logsig, dlogsig
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14dtribasPurpose Derivative of triangular basis transfer function

Syntax dA_dN = dtribas(N,A)

Description dtribas is the derivative function for tribas.

dtribas(N,A) takes two arguments,

N — S x Q net input

A — S x Q output

and returns the S x Q derivative dA/dN.

Examples Here we define the net input N for a layer of 3 tribas neurons.

N = [0.1; 0.8; -0.7];

We calculate the layer’s output A with tribas and then the derivative of A with 
respect to N.

A = tribas(N)
dA_dN = dtribas(N,A)

Algorithm The derivative of tribas is calculated as follows:

d = 1, if -1 <= n < 0; -1, if 0 < n <= 1; 0, otherwise.

See Also tribas
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14errsurfPurpose Error surface of single input neuron

Syntax errsurf(P,T,WV,BV,F)

Description errsurf(P,T,WV,BV,F) takes these arguments,

P   — 1 x Q matrix of input vectors

T   — 1 x Q matrix of target vectors

WV — Row vector of values of W

BV — Row vector of values of B

F   — Transfer function (string)

and returns a matrix of error values over WV and BV.

Examples p = [-6.0 -6.1 -4.1 -4.0 +4.0 +4.1 +6.0 +6.1];
t = [+0.0 +0.0 +.97 +.99 +.01 +.03 +1.0 +1.0];
wv = -1:.1:1; bv = -2.5:.25:2.5;
es = errsurf(p,t,wv,bv,'logsig');
plotes(wv,bv,ES,[60 30])

See Also plotes
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14formxPurpose Form bias and weights into single vector

Syntax X = formx(net,B,IW,LW)

Description This function takes weight matrices and bias vectors for a network and 
reshapes them into a single vector.

X = formx(net,B,IW,LW) takes these arguments,

net — Neural network

B    — Nlx1 cell array of bias vectors

IW  — NlxNi cell array of input weight matrices

LW  — NlxNl cell array of layer weight matrices

and returns,

X    — Vector of weight and bias values

Examples Here we create a network with a two-element input, and one layer of three 
neurons.

net = newff([0 1; -1 1],[3]);

We can get view its weight matrices and bias vectors as follows:

b = net.b
iw = net.iw
lw = net.lw

We can put these values into a single vector as follows:

x = formx(net,net.b,net.iw,net.lw))

See Also getx, setx 
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14gensimPurpose Generate a Simulink® block for neural network simulation

Syntax gensim(net,st)

To Get Help Type help network/gensim

Description gensim(net,st) creates a Simulink system containing a block that simulates 
neural network net.

gensim(net,st) takes these inputs,

net — Neural network

st  — Sample time (default = 1)

and creates a Simulink system containing a block that simulates neural 
network net with a sampling time of st.

If net has no input or layer delays (net.numInputDelays and 
net.numLayerDelays are both 0) then you can use -1 for st to get a 
continuously sampling network. 

Examples net = newff([0 1],[5 1]);
gensim(net)
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14getxPurpose Get all network weight and bias values as a single vector

Syntax X = getx(net)

Description This function gets a network’s weight and biases as a vector of values.

X = getx(NET)

NET — Neural network

X     — Vector of weight and bias values

Examples Here we create a network with a two-element input, and one layer of three 
neurons.

net = newff([0 1; -1 1],[3]);

We can get its weight and bias values as follows:

net.iw{1,1}
net.b{1}

We can get these values as a single vector as follows:

x = getx(net);

See Also setx, formx
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14gridtopPurpose Grid layer topology function

Syntax pos = gridtop(dim1,dim2,...,dimN)

Description gridtop calculates neuron positions for layers whose neurons are arranged in 
an N dimensional grid.

gridtop(dim1,dim2,...,dimN) takes N arguments,

dimi — Length of layer in dimension i

and returns an N x S matrix of N coordinate vectors where S is the product of 
dim1*dim2*...*dimN.

Examples This code creates and displays a two-dimensional layer with 40 neurons 
arranged in a 8-by-5 grid.

pos = gridtop(8,5); plotsom(pos)

This code plots the connections between the same neurons, but shows each 
neuron at the location of its weight vector. The weights are generated randomly 
so the layer is very disorganized as is evident in the plot generated by the 
following code.

W = rands(40,2); plotsom(W,dist(pos))

See Also hextop, randtop
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14hardlimPurpose Hard limit transfer function

Graph and 
Symbol

Syntax A = hardlim(N)

info = hardlim(code)

Description The hard limit transfer function forces a neuron to output a 1 if its net input 
reaches a threshold, otherwise it outputs 0. This allows a neuron to make a 
decision or classification. It can say yes or no. This kind of neuron is often 
trained with the perceptron learning rule.

hardlim is a transfer function. Transfer functions calculate a layer’s output 
from its net input.

hardlim(N) takes one input,

N — S x Q matrix of net input (column) vectors

and returns 1 where N is positive, 0 elsewhere

hardlim(code) returns useful information for each code string,

'deriv'  — Name of derivative function

'name'    — Full name

'output' — Output range

'active' — Active input range

Examples Here is the code to create a plot of the hardlim transfer function.

n = -5:0.1:5;
a = hardlim(n);
plot(n,a)

��
��

a = hardlim(n)

Hard-Limit Transfer Function

-1

n
0

+1
a
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Network Use You can create a standard network that uses hardlim by calling newp.

To change a network so that a layer uses hardlim, set 
net.layers{i}.transferFcn to 'hardlim'.

In either case call sim to simulate the network with hardlim.

See newp for simulation examples.

Algorithm The transfer function output is one is n is less than or equal to 0 and zero if n 
is less than 0.

hardlim(n) = 1, if n >= 0; 0 otherwise.

See Also sim, hardlims
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14hardlimsPurpose Symmetric hard limit transfer function

Graph and 
Symbol 

Syntax A = hardlims(N)

info = hardlims(code)

Description The symmetric hard limit transfer function forces a neuron to output a 1 if its 
net input reaches a threshold. Otherwise it outputs -1. Like the regular hard 
limit function, this allows a neuron to make a decision or classification. It can 
say yes or no.

hardlims is a transfer function. Transfer functions calculate a layer’s output 
from its net input.

hardlims(N) takes one input,

N — S x Q matrix of net input (column) vectors

and returns 1 where N is positive, -1 elsewhere.

hardlims(code) return useful information for each code string:

'deriv'   — Name of derivative function

'name'     — Full name

'output' — Output range

'active' — Active input range

Examples Here is the code to create a plot of the hardlims transfer function.

n = -5:0.1:5;
a = hardlims(n);
plot(n,a)

��
��

a = hardlims(n)

Symmetric Hard-Limit Trans. Funct.
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Network Use You can create a standard network that uses hardlims by calling newp.

To change a network so that a layer uses hardlims, set 
net.layers{i}.transferFcn to 'hardlims'.

In either case call sim to simulate the network with hardlims.

See newp for simulation examples.

Algorithm The transfer function output is one is n is greater than or equal to 0 and -1 
otherwise.

hardlim(n) = 1, if n >= 0; -1 otherwise.

See Also sim, hardlim
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14hextopPurpose Hexagonal layer topology function

Syntax pos = hextop(dim1,dim2,...,dimN)

Description hextop calculates the neuron positions for layers whose neurons are arranged 
in a N dimensional hexagonal pattern.

hextop(dim1,dim2,...,dimN) takes N arguments,

dimi — Length of layer in dimension i

and returns an N-by-S matrix of N coordinate vectors where S is the product of 
dim1*dim2*...*dimN.

Examples This code creates and displays a two-dimensional layer with 40 neurons 
arranged in a 8-by-5 hexagonal pattern.

pos = hextop(8,5); plotsom(pos)

This code plots the connections between the same neurons, but shows each 
neuron at the location of its weight vector. The weights are generated randomly 
so that the layer is very disorganized, as is evident in the fplo generated by the 
following code.

W = rands(40,2); plotsom(W,dist(pos))

See Also gridtop, randtop
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14hintonwPurpose Hinton graph of weight matrix

Syntax hintonw(W,maxw,minw)

Description hintonw(W,maxw,minw) takes these inputs,

W      — S x R weight matrix

maxw — Maximum weight, default = max(max(abs(W)))

minw — Minimum weight, default = M1/100

and displays a weight matrix represented as a grid of squares.

Each square’s area represents a weight’s magnitude. Each square’s projection 
(color) represents a weight’s sign; inset (red) for negative weights, projecting 
(green) for positive.

Examples W = rands(4,5);

The following code displays the matrix graphically.

hintonw(W)

See Also hintonwb
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14hintonwbPurpose Hinton graph of weight matrix and bias vector

Syntax hintonwb(W,B,maxw,minw)

Description hintonwb(W,B,maxw,minw) takes these inputs, 

W      — S x R weight matrix

B    — S x 1 bias vector

maxw — Maximum weight, default = max(max(abs(W)))

minw — Minimum weight, default = M1/100

and displays a weight matrix and a bias vector represented as a grid of squares.

Each square’s area represents a weight’s magnitude. Each square’s projection 
(color) represents a weight’s sign; inset (red) for negative weights, projecting 
(green) for positive. The weights are shown on the left.

Examples The following code produces the result shown below.

W = rands(4,5);
b = rands(4,1);
hintonwb(W,B)

See Also hintonw
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14ind2vecPurpose Convert indices to vectors

Syntax vec = ind2vec(ind)

Description ind2vec and vec2ind allow indices to either be represented by themselves, or 
as vectors containing a 1 in the row of the index they represent.

ind2vec(ind) takes one argument,

ind — Row vector of indices

and returns a sparse matrix of vectors, with one 1 in each column, as indicated 
by ind.

Examples Here four indices are defined and converted to vector representation.

ind = [1 3 2 3]
vec = ind2vec(ind)

See Also vec2ind
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14initPurpose Initialize a neural network

Syntax net = init(net)

To Get Help Type help network/init

Description init(net) returns neural network net with weight and bias values updated 
according to the network initialization function, indicated by net.initFcn, and 
the parameter values, indicated by net.initParam.

Examples Here a perceptron is created with a two-element input (with ranges of 0 to 1, 
and -2 to 2) and 1 neuron. Once it is created we can display the neuron’s 
weights and bias.

net = newp([0 1;-2 2],1);
net.iw{1,1}
net.b{1}

Training the perceptron alters its weight and bias values.

P = [0 1 0 1; 0 0 1 1];
T = [0 0 0 1];
net = train(net,P,T);
net.iw{1,1}
net.b{1}

init reinitializes those weight and bias values.

net = init(net);
net.iw{1,1}
net.b{1}

The weights and biases are zeros again, which are the initial values used by 
perceptron networks (see newp).

Algorithm init calls net.initFcn to initialize the weight and bias values according to the 
parameter values net.initParam. 

Typically, net.initFcn is set to 'initlay' which initializes each layer’s 
weights and biases according to its net.layers{i}.initFcn. 



init

14-86

Backpropagation networks have net.layers{i}.initFcn set to 'initnw', 
which calculates the weight and bias values for layer i using the 
Nguyen-Widrow initialization method.

Other networks have net.layers{i}.initFcn set to 'initwb', which 
initializes each weight and bias with its own initialization function. The most 
common weight and bias initialization function is rands, which generates 
random values between -1 and 1.

See Also sim, adapt, train, initlay, initnw, initwb, rands, revert 
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14initconPurpose Conscience bias initialization function

Syntax b = initcon(s,pr)

Description initcon is a bias initialization function that initializes biases for learning with 
the learncon learning function.

initcon (S,PR) takes two arguments,

S   — Number of rows (neurons)

PR — R x 2 matrix of R = [Pmin Pmax], default = [1 1]

and returns an S x 1 bias vector.

Note that for biases, R is always 1. initcon could also be used to initialize 
weights, but it is not recommended for that purpose.

Examples Here initial bias values are calculated for a 5 neuron layer.

b = initcon(5)

Network Use You can create a standard network that uses initcon to initialize weights by 
calling newc.

To prepare the bias of layer i of a custom network to initialize with initcon:

1 Set net.initFcn to 'initlay'. (net.initParam will automatically become 
initlay’s default parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.

3 Set net.biases{i}.initFcn to 'initcon'.

To initialize the network, call init. See newc for initialization examples.

Algorithm learncon updates biases so that each bias value b(i) is a function of the 
average output c(i) of the neuron i associated with the bias.

initcon gets initial bias values by assuming that each neuron has responded 
to equal numbers of vectors in the “past.”

See Also initwb, initlay, init, learncon
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14initlayPurpose Layer-by-layer network initialization function

Syntax net = initlay(net)

info = initlay(code)

Description initlay is a network initialization function that initializes each layer i 
according to its own initialization function net.layers{i}.initFcn.

initlay(net) takes,

net — Neural network

and returns the network with each layer updated. initlay(code) returns 
useful information for each code string:

'pnames'      — Names of initialization parameters

'pdefaults' — Default initialization parameters

initlay does not have any initialization parameters

Network Use You can create a standard network that uses initlay by calling newp, newlin, 
newff, newcf, and many other new network functions.

To prepare a custom network to be initialized with initlay

1 Set net.initFcn to 'initlay'. (This will set net.initParam to the empty 
matrix [ ] since initlay has no initialization parameters.)

2 Set each net.layers{i}.initFcn to a layer initialization function. 
(Examples of such functions are initwb and initnw).

To initialize the network, call init. See newp and newlin for initialization 
examples.

Algorithm The weights and biases of each layer i are initialized according to 
net.layers{i}.initFcn.

See Also initwb, initnw, init
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14initnwPurpose Nguyen-Widrow layer initialization function

Syntax net = initnw(net,i)

Description initnw is a layer initialization function that initializes a layer’s weights and 
biases according to the Nguyen-Widrow initialization algorithm. This 
algorithm chooses values in order to distribute the active region of each neuron 
in the layer approximately evenly across the layer’s input space.

initnw(net,i) takes two arguments,

net — Neural network

i     — Index of a layer

and returns the network with layer i’s weights and biases updated.

Network Use You can create a standard network that uses initnw by calling newff or newcf.

To prepare a custom network to be initialized with initnw

1 Set net.initFcn to 'initlay'. (This will set net.initParam to the empty 
matrix [ ] since initlay has no initialization parameters.)

2 Set net.layers{i}.initFcn to 'initnw'.

To initialize the network call init. See newff and newcf for training examples.

Algorithm The Nguyen-Widrow method generates initial weight and bias values for a 
layer, so that the active regions of the layer’s neurons will be distributed 
approximately evenly over the input space.

Advantages over purely random weights and biases are

• Few neurons are wasted (since all the neurons are in the input space).

• Training works faster (since each area of the input space has neurons). The 
Nguyen-Widrow method can only be applied to layers

- with a bias

- with weights whose "weightFcn" is dotprod

- with "netInputFcn" set to netsum

If these conditions are not met, then initnw uses rands to initialize the layer’s 
weights and biases.
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See Also initwb, initlay, init
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14initwbPurpose By-weight-and-bias layer initialization function

Syntax net = initwb(net,i)

Description initwb is a layer initialization function that initializes a layer’s weights and 
biases according to their own initialization functions.

initwb(net,i) takes two arguments,

net — Neural network

i    — Index of a layer

and returns the network with layer i’s weights and biases updated.

Network Use You can create a standard network that uses initwb by calling newp or newlin.

To prepare a custom network to be initialized with initwb

1 Set net.initFcn to 'initlay'. (This will set net.initParam to the empty 
matrix [ ] since initlay has no initialization parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.

3 Set each net.inputWeights{i,j}.initFcn to a weight initialization 
function. Set each net.layerWeights{i,j}.initFcn to a weight 
initialization function. Set each net.biases{i}.initFcn to a bias 
initialization function. (Examples of such functions are rands and 
midpoint.)

To initialize the network, call init.

See newp and newlin for training examples.

Algorithm Each weight (bias) in layer i is set to new values calculated according to its 
weight (bias) initialization function.

See Also initnw, initlay, init
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14initzeroPurpose Zero weight and bias initialization function

Syntax W = initzero(S,PR)

b = initzero(S,[1 1])

Description initzero(S,PR) takes two arguments,

S  — Number of rows (neurons)

PR — R x 2 matrix of input value ranges = [Pmin Pmax]

and returns an S x R weight matrix of zeros.

initzero(S,[1 1]) returns S x 1 bias vector of zeros.

Examples Here initial weights and biases are calculated for a layer with two inputs 
ranging over [0 1] and [-2 2], and 4 neurons.

W = initzero(5,[0 1; -2 2])
b = initzero(5,[1 1])

Network Use You can create a standard network that uses initzero to initialize its weights 
by calling newp or newlin.

To prepare the weights and the bias of layer i of a custom network to be 
initialized with midpoint

1 Set net.initFcn to 'initlay'. (net.initParam will automatically become 
initlay’s default parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.

3 Set each net.inputWeights{i,j}.initFcn to 'initzero'. Set each 
net.layerWeights{i,j}.initFcn to 'initzero'. Set each 
net.biases{i}.initFcn to 'initzero'.

To initialize the network, call init.

See newp or newlin for initialization examples.

See Also initwb, initlay, init
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14learnconPurpose Conscience bias learning function

Syntax [dB,LS] = learncon(B,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learncon(code)

Description learncon is the conscience bias learning function used to increase the net input 
to neurons that have the lowest average output until each neuron responds 
approximately an equal percentage of the time.

learncon(B,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

B  — S x 1 bias vector

P  — 1x Q ones vector

Z  — S x Q weighted input vectors

N  — S x Q net input vectors

A  — S x Q output vectors

T  — S x Q layer target vectors

E  — S x Q layer error vectors

gW — S x R gradient with respect to performance

gA — S x Q output gradient with respect to performance

D   — S x S neuron distances

LP — Learning parameters, none, LP = []

LS — Learning state, initially should be = []

and returns

dB — S x 1 weight (or bias) change matrix

LS — New learning state

Learning occurs according to learncon’s learning parameter, shown here with 
its default value.

LP.lr - 0.001 — Learning rate

learncon(code) returns useful information for each code string.

'pnames'      — Names of learning parameters

'pdefaults' — Default learning parameters

'needg'        — Returns 1 if this function uses gW or gA
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Neural Network Toolbox 2.0 compatibility: The LP.lr described above equals 
1 minus the bias time constant used by trainc in Neural Network Toolbox 2.0.

Examples Here we define a random output A, and bias vector W for a layer with 3 neurons. 
We also define the learning rate LR.

a = rand(3,1);
b = rand(3,1);
lp.lr = 0.5;

Since learncon only needs these values to calculate a bias change (see 
algorithm below), we will use them to do so.

dW = learncon(b,[],[],[],a,[],[],[],[],[],lp,[])

Network Use To prepare the bias of layer i of a custom network to learn with learncon

1 Set net.trainFcn to 'trainr'. (net.trainParam will automatically become 
trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam will automatically become 
trains’s default parameters.)

3 Set net.inputWeights{i}.learnFcn to 'learncon'. Set each 
net.layerWeights{i,j}.learnFcn to 'learncon'. (Each weight learning 
parameter property will automatically be set to learncon’s default 
parameters.)

To train the network (or enable it to adapt)

1 Set net.trainParam (or net.adaptParam) properties as desired.

2 Call train (or adapt).

Algorithm learncon calculates the bias change db for a given neuron by first updating 
each neuron’s conscience, i.e. the running average of its output:

c = (1-lr)*c + lr*a

The conscience is then used to compute a bias for the neuron that is greatest 
for smaller conscience values.

b = exp(1-log(c)) - b
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(Note that learncon is able to recover C each time it is called from the bias 
values.)

See Also learnk, learnos, adapt, train
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14learngdPurpose Gradient descent weight and bias learning function

Syntax [dW,LS] = learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

[db,LS] = learngd(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)

info = learngd(code)

Description learngd is the gradient descent weight and bias learning function.

learngd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W  — S x R weight matrix (or S x 1 bias vector)

P  — R x Q input vectors (or ones(1,Q))

Z  — S x Q weighted input vectors

N  — S x Q net input vectors

A  — S x Q output vectors

T  — S x Q layer target vectors

E  — S x Q layer error vectors

gW — S x R gradient with respect to performance

gA — S x Q output gradient with respect to performance

D   — S x S neuron distances

LP — Learning parameters, none, LP = []

LS — Learning state, initially should be = []

and returns,

dW — S x R weight (or bias) change matrix

LS — New learning state

Learning occurs according to learngd’s learning parameter shown here with 
its default value.

LP.lr - 0.01 — Learning rate

learngd(code) returns useful information for each code string:

'pnames'     -— Names of learning parameters

'pdefaults' — Default learning parameters

'needg'        — Returns 1 if this function uses gW or gA
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Examples Here we define a random gradient gW for a weight going to a layer with 3 
neurons, from an input with 2 elements. We also define a learning rate of 0.5.

gW = rand(3,2);
lp.lr = 0.5;

Since learngd only needs these values to calculate a weight change (see 
algorithm below), we will use them to do so.

dW = learngd([],[],[],[],[],[],[],gW,[],[],lp,[])

Network Use You can create a standard network that uses learngd with newff, newcf, or 
newelm. To prepare the weights and the bias of layer i of a custom network to 
adapt with learngd

1 Set net.adaptFcn to 'trains'. net.adaptParam will automatically become 
trains’s default parameters.

2 Set each net.inputWeights{i,j}.learnFcn to 'learngd'. Set each 
net.layerWeights{i,j}.learnFcn to 'learngd'. Set 
net.biases{i}.learnFcn to 'learngd'. Each weight and bias learning 
parameter property will automatically be set to learngd’s default 
parameters.

To allow the network to adapt

1 Set net.adaptParam properties to desired values.

2 Call adapt with the network.

See newff or newcf for examples.

Algorithm learngd calculates the weight change dW for a given neuron from the neuron’s 
input P and error E, and the weight (or bias) learning rate LR, according to the 
gradient descent: dw = lr*gW.

See Also learngdm, newff, newcf, adapt, train
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14learngdmPurpose Gradient descent with momentum weight and bias learning function

Syntax [dW,LS] = learngdm(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

[db,LS] = learngdm(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)

info = learngdm(code)

Description learngdm is the gradient descent with momentum weight and bias learning 
function.

learngdm(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W   — S x R weight matrix (or S x 1 bias vector)

P   — R x Q input vectors (or ones(1,Q))

Z   — S x Q weighted input vectors

N   — S x Q net input vectors

A   — S x Q output vectors

T   — S x Q layer target vectors

E   — S x Q layer error vectors

gW — S x R gradient with respect to performance

gA — S x Q output gradient with respect to performance

D   — S x S neuron distances

LP — Learning parameters, none, LP = []

LS — Learning state, initially should be = []

and returns,

dW — S x R weight (or bias) change matrix

LS — New learning state

Learning occurs according to learngdm’s learning parameters, shown here with 
their default values.

LP.lr - 0.01 — Learning rate

LP.mc - 0.9  — Momentum constant
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learngdm(code) returns useful information for each code string:

'pnames'  Names of learning parameters

'pdefaults'  Default learning parameters

'needg'  Returns 1 if this function uses gW or gA

Examples Here we define a random gradient G for a weight going to a layer with 3 
neurons, from an input with 2 elements. We also define a learning rate of 0.5 
and momentum constant of 0.8;

gW = rand(3,2);
lp.lr = 0.5;
lp.mc = 0.8;

Since learngdm only needs these values to calculate a weight change (see 
algorithm below), we will use them to do so. We will use the default initial 
learning state.

ls = [];
[dW,ls] = learngdm([],[],[],[],[],[],[],gW,[],[],lp,ls)

learngdm returns the weight change and a new learning state.

Network Use You can create a standard network that uses learngdm with newff, newcf, or 
newelm.

To prepare the weights and the bias of layer i of a custom network to adapt 
with learngdm

1 Set net.adaptFcn to 'trains'. net.adaptParam will automatically become 
trains’s default parameters.

2 Set each net.inputWeights{i,j}.learnFcn to 'learngdm'. Set each 
net.layerWeights{i,j}.learnFcn to 'learngdm'. Set 
net.biases{i}.learnFcn to 'learngdm'. Each weight and bias learning 
parameter property will automatically be set to learngdm’s default 
parameters.

To allow the network to adapt

1 Set net.adaptParam properties to desired values.

2 Call adapt with the network.
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See newff or newcf for examples.

Algorithm learngdm calculates the weight change dW for a given neuron from the neuron’s 
input P and error E, the weight (or bias) W, learning rate LR, and momentum 
constant MC, according to gradient descent with momentum:

dW = mc*dWprev + (1-mc)*lr*gW

The previous weight change dWprev is stored and read from the learning state 
LS.

See Also learngd, newff, newcf, adapt, train
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14learnhPurpose Hebb weight learning rule

Syntax [dW,LS] = learnh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnh(code)

Description learnh is the Hebb weight learning function.

learnh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W  — S x R weight matrix (or S x 1 bias vector)

P  — R x Q input vectors (or ones(1,Q))

Z  — S x Q weighted input vectors

N  — S x Q net input vectors

A  — S x Q output vectors

T  — S x Q layer target vectors

E  — S x Q layer error vectors

gW — S x R gradient with respect to performance

gA — S x Q output gradient with respect to performance

D   — S x S neuron distances

LP — Learning parameters, none, LP = []

LS — Learning state, initially should be = []

and returns,

dW — S x R weight (or bias) change matrix

LS — New learning state

Learning occurs according to learnh’s learning parameter, shown here with its 
default value.

LP.lr - 0.01 — Learning rate

learnh(code) returns useful information for each code string:

'pnames'      — Names of learning parameters

'pdefaults' — Default learning parameters

'needg'        — Returns 1 if this function uses gW or gA
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Examples Here we define a random input P and output A for a layer with a two-element 
input and three neurons. We also define the learning rate LR.

p = rand(2,1);
a = rand(3,1);
lp.lr = 0.5;

Since learnh only needs these values to calculate a weight change (see 
algorithm below), we will use them to do so.

dW = learnh([],p,[],[],a,[],[],[],[],[],lp,[])

Network Use To prepare the weights and the bias of layer i of a custom network to learn with 
learnh

1 Set net.trainFcn to 'trainr'. (net.trainParam will automatically become 
trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam will automatically become 
trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnh'. Set each 
net.layerWeights{i,j}.learnFcn to 'learnh'. Each weight learning 
parameter property will automatically be set to learnh’s default 
parameters.)

To train the network (or enable it to adapt)

1 Set net.trainParam (net.adaptParam) properties to desired values.

2 Call train (adapt).

Algorithm learnh calculates the weight change dW for a given neuron from the neuron’s 
input P, output A, and learning rate LR according to the Hebb learning rule:

dw =  lr*a*p'

See Also learnhd, adapt, train

References Hebb, D.O., The Organization of Behavior, New York: Wiley, 1949.
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14learnhdPurpose Hebb with decay weight learning rule

Syntax [dW,LS] = learnhd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnhd(code)

Description learnhd is the Hebb weight learning function.

learnhd(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W  — S x R weight matrix (or S x 1 bias vector)

P  — R x Q input vectors (or ones(1,Q))

Z  — S x Q weighted input vectors

N  — S x Q net input vectors

A  — S x Q output vectors

T  — S x Q layer target vectors

E  — S x Q layer error vectors

gW — S x R gradient with respect to performance

gA — S x Q output gradient with respect to performance

D   — S x S neuron distances

LP — Learning parameters, none, LP = []

LS — Learning state, initially should be = []

and returns,

dW — S x R weight (or bias) change matrix

LS — New learning state

Learning occurs according to learnhd’s learning parameters shown here with 
default values.

LP.dr - 0.01 — Decay rate

LP.lr - 0.1   — Learning rate

learnhd(code) returns useful information for each code string:

'pnames' -    — Names of learning parameters

'pdefaults' — Default learning parameters

'needg'        — Returns 1 if this function uses gW or gA
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Examples Here we define a random input P, output A, and weights W for a layer with a 
two-element input and three neurons. We also define the decay and learning 
rates.

p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.dr = 0.05;
lp.lr = 0.5;

Since learnhd only needs these values to calculate a weight change (see 
algorithm below), we will use them to do so.

dW = learnhd(w,p,[],[],a,[],[],[],[],[],lp,[])

Network Use To prepare the weights and the bias of layer i of a custom network to learn with 
learnhd

1 Set net.trainFcn to 'trainr'. (net.trainParam will automatically become 
trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam will automatically become 
trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnhd'. Set each 
net.layerWeights{i,j}.learnFcn to 'learnhd'. (Each weight learning 
parameter property will automatically be set to learnhd’s default 
parameters.)

To train the network (or enable it to adapt)

1 Set net.trainParam (net.adaptParam) properties to desired values.

2 Call train (adapt).

Algorithm learnhd calculates the weight change dW for a given neuron from the neuron’s 
input P, output A, decay rate DR, and learning rate LR according to the Hebb 
with decay learning rule:

dw =  lr*a*p' - dr*w

See Also learnh, adapt, train
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14learnisPurpose Instar weight learning function

Syntax [dW,LS] = learnis(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnis(code)

Description learnis is the instar weight learning function.

learnis(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W   — S x R weight matrix (or S x 1 bias vector)

P   — R x Q input vectors (or ones(1,Q))

Z   — S x Q weighted input vectors

N   — S x Q net input vectors

A   — S x Q output vectors

T   — S x Q layer target vectors

E   — S x Q layer error vectors

gW — S x R gradient with respect to performance

gA — S x Q output gradient with respect to performance

D   — S x S neuron distances

LP — Learning parameters, none, LP = []

LS — Learning state, initially should be = []

and returns,

dW — S x R weight (or bias) change matrix

LS — New learning state

Learning occurs according to learnis’s learning parameter, shown here with 
its default value.

LP.lr - 0.01 — Learning rate

learnis(code) return useful information for each code string:

'pnames'      — Names of learning parameters

'pdefaults' — Default learning parameters

'needg'        — Returns 1 if this function uses gW or gA
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Examples Here we define a random input P, output A, and weight matrix W for a layer with 
a two-element input and three neurons. We also define the learning rate LR.

p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.lr = 0.5;

Since learnis only needs these values to calculate a weight change (see 
algorithm below), we will use them to do so.

dW = learnis(w,p,[],[],a,[],[],[],[],[],lp,[])

Network Use To prepare the weights and the bias of layer i of a custom network so that it 
can learn with learnis

1 Set net.trainFcn to 'trainr'. (net.trainParam will automatically become 
trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam will automatically become 
trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnis'. Set each 
net.layerWeights{i,j}.learnFcn to 'learnis'. (Each weight learning 
parameter property will automatically be set to learnis’s default 
parameters.)

To train the network (or enable it to adapt)

1 Set net.trainParam (net.adaptParam) properties to desired values.

2 Call train (adapt).

Algorithm learnis calculates the weight change dW for a given neuron from the neuron’s 
input P, output A, and learning rate LR according to the instar learning rule:

dw =  lr*a*(p'-w)

See Also learnk, learnos, adapt, train

References Grossberg, S., Studies of the Mind and Brain, Drodrecht, Holland: Reidel 
Press, 1982.
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14learnkPurpose Kohonen weight learning function

Syntax [dW,LS] = learnk(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnk(code)

Description learnk is the Kohonen weight learning function.

learnk(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W  — S x R weight matrix (or S x 1 bias vector)

P  — R x Q input vectors (or ones(1,Q))

Z  — S x Q weighted input vectors

N  — S x Q net input vectors

A  — S x Q output vectors

T  — S x Q layer target vectors

E  — S x Q layer error vectors

gW — S x R gradient with respect to performance

gA — S x Q output gradient with respect to performance

D  — S x S neuron distances

LP — Learning parameters, none, LP = []

LS — Learning state, initially should be = []

and returns,

dW — S x R weight (or bias) change matrix

LS — New learning state

Learning occurs according to learnk’s learning parameter, shown here with its 
default value.

LP.lr - 0.01 — Learning rate

learnk(code) returns useful information for each code string:

'pnames'      — Names of learning parameters

'pdefaults' — Default learning parameters

'needg'        — Returns 1 if this function uses gW or gA



learnk

14-108

Examples Here we define a random input P, output A, and weight matrix W for a layer with 
a two-element input and three neurons. We also define the learning rate LR.

p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.lr = 0.5;

Since learnk only needs these values to calculate a weight change (see 
algorithm below), we will use them to do so.

dW = learnk(w,p,[],[],a,[],[],[],[],[],lp,[])

Network Use To prepare the weights of layer i of a custom network to learn with learnk

1 Set net.trainFcn to 'trainr'. (net.trainParam will automatically become 
trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam will automatically become 
trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnk'. Set each 
net.layerWeights{i,j}.learnFcn to 'learnk'. (Each weight learning 
parameter property will automatically be set to learnk’s default 
parameters.)

To train the network (or enable it to adapt)

1 Set net.trainParam (or net.adaptParam) properties as desired.

2 Call train (or adapt).

Algorithm learnk calculates the weight change dW for a given neuron from the neuron’s 
input P, output A, and learning rate LR according to the Kohonen learning rule:

dw = lr*(p'-w), if a ~= 0; =  0, otherwise.

See Also learnis, learnos, adapt, train 

References Kohonen, T., Self-Organizing and Associative Memory, New York: 
Springer-Verlag, 1984.
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14learnlv1Purpose LVQ1 weight learning function

Syntax [dW,LS] = learnlv1(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnlv1(code)

Description learnlv1 is the LVQ1 weight learning function.

learnlv1(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W   — S x R weight matrix (or S x 1 bias vector)

P   — R x Q input vectors (or ones(1,Q))

Z   — S x Q weighted input vectors

N  — S x Q net input vectors

A   — S x Q output vectors

T   — S x Q layer target vectors

E   — S x Q layer error vectors

gW — S x R weight gradient with respect to performance

gA — S x Q output gradient with respect to performance

D   — S x R neuron distances

LP — Learning parameters, none, LP = []

LS — Learning state, initially should be = []

and returns,

dW — S x R weight (or bias) change matrix

LS — New learning state

Learning occurs according to learnlv1’s learning parameter shown here with 
its default value.

LP.lr - 0.01 — Learning rate

learnlv1(code) returns useful information for each code string:

'pnames'      — Names of learning parameters

'pdefaults' — Default learning parameters

needg'         — Returns 1 if this function uses gW or gA
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Examples Here we define a random input P, output A, weight matrix W, and output 
gradient gA for a layer with a two-element input and three neurons.

We also define the learning rate LR.

p = rand(2,1);
w = rand(3,2);
a = compet(negdist(w,p));
gA = [-1;1; 1];
lp.lr = 0.5;

Since learnlv1 only needs these values to calculate a weight change (see 
algorithm below), we will use them to do so.

dW = learnlv1(w,p,[],[],a,[],[],[],gA,[],lp,[])

Network Use You can create a standard network that uses learnlv1 with newlvq. To prepare 
the weights of layer i of a custom network to learn with learnlv1

1 Set net.trainFcn to ‘trainr'. (net.trainParam will automatically become 
trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam will automatically become 
trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnlv1'. Set each 
net.layerWeights{i,j}.learnFcn to 'learnlv1'. (Each weight learning 
parameter property will automatically be set to learnlv1’s default 
parameters.)

To train the network (or enable it to adapt)

1 Set net.trainParam (or net.adaptParam) properties as desired.

2 Call train (or adapt).

Algorithm learnlv1 calculates the weight change dW for a given neuron from the neuron’s 
input P, output A, output gradient gA and learning rate LR, according to the 
LVQ1 rule, given i the index of the neuron whose output a(i) is 1:

dw(i,:) = +lr*(p-w(i,:)) if gA(i) = 0;= -lr*(p-w(i,:)) if gA(i) = -1

See Also learnlv2, adapt, train
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14learnlv2Purpose LVQ2.1 weight learning function

Syntax [dW,LS] = learnlv2(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnlv2(code)

Description learnlv2 is the LVQ2 weight learning function.

learnlv2(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W   — S x R weight matrix (or S x 1 bias vector)

P   — R x Q input vectors (or ones(1,Q))

Z   — S x Q weighted input vectors

N   — S x Q net input vectors

A   — S x Q output vectors

T   — S x Q layer target vectors

E   — S x Q layer error vectors

gW — S x R weight gradient with respect to performance

gA — S x Q output gradient with respect to performance

D   — S x S neuron distances

LP — Learning parameters, none, LP = []

LS — Learning state, initially should be = []

and returns,

dW — S x R weight (or bias) change matrix

LS — New learning state

Learning occurs according to learnlv1’s learning parameter, shown here with 
its default value.

LP.lr - 0.01        — Learning rate

LP.window - 0.25 — Window size (0 to 1, typically 0.2 to 0.3)

learnlv2(code) returns useful information for each code string:

'pnames'      — Names of learning parameters

'pdefaults' — Default learning parameters

'needg'        — Returns 1 if this function uses gW or gA
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Examples Here we define a sample input P, output A, weight matrix W, and output 
gradient gA for a layer with a two-element input and three neurons.

We also define the learning rate LR.

p = rand(2,1);
w = rand(3,2);
n = negdist(w,p);
a = compet(n);
gA = [-1;1; 1];
lp.lr = 0.5;

Since learnlv2 only needs these values to calculate a weight change (see 
algorithm below), we will use them to do so.

dW = learnlv2(w,p,[],n,a,[],[],[],gA,[],lp,[])

Network Use You can create a standard network that uses learnlv2 with newlvq.

To prepare the weights of layer i of a custom network to learn with learnlv2

1 Set net.trainFcn to 'trainr'. (net.trainParam will automatically become 
trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam will automatically become 
trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnlv2'. Set each 
net.layerWeights{i,j}.learnFcn to 'learnlv2'. (Each weight learning 
parameter property will automatically be set to learnlv2’s default 
parameters.)

To train the network (or enable it to adapt)

1 Set net.trainParam (or net.adaptParam) properties as desired.

2 Call train (or adapt).

Algorithm learnlv2 implements Learning Vector Quantization 2.1, which works as 
follows:

For each presentation, if the winning neuron i should not have won, and the 
runner up j should have, and the distance di between the winning neuron and 
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the input p is roughly equal to the distance dj from the runner up neuron to 
the input p according to the given window,

min(di/dj, dj/di) > (1-window)/(1+window)

then move the winning neuron i weights away from the input vector, and move 
the runner up neuron j weights toward the input according to:

dw(i,:) = - lp.lr*(p'-w(i,:))
dw(j,:) = + lp.lr*(p'-w(j,:))

See Also learnlv1, adapt, train
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14learnosPurpose Outstar weight learning function

Syntax [dW,LS] = learnos(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnos(code)

Description learnos is the outstar weight learning function.

learnos(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W   — S x R weight matrix (or S x 1 bias vector)

P   — R x Q input vectors (or ones(1,Q))

Z   — S x Q weighted input vectors

N   — S x Q net input vectors

A   — S x Q output vectors

T   — S x Q layer target vectors

E   — S x Q layer error vectors

gW — S x R weight gradient with respect to performance

gA — S x Q output gradient with respect to performance

D   — S x S neuron distances

LP — Learning parameters, none, LP = []

LS — Learning state, initially should be = []

and returns

dW — S x R weight (or bias) change matrix

LS — New learning state

Learning occurs according to learnos’s learning parameter, shown here with 
its default value.

LP.lr - 0.01 — Learning rate

learnos(code) returns useful information for each code string:

'pnames'      — Names of learning parameters

'pdefaults' — Default learning parameters

'needg'        — Returns 1 if this function uses gW or gA
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Examples Here we define a random input P, output A, and weight matrix W for a layer with 
a two-element input and three neurons. We also define the learning rate LR.

p = rand(2,1);
a = rand(3,1);
w = rand(3,2);
lp.lr = 0.5;

Since learnos only needs these values to calculate a weight change (see 
algorithm below), we will use them to do so.

dW = learnos(w,p,[],[],a,[],[],[],[],[],lp,[])

Network Use To prepare the weights and the bias of layer i of a custom network to learn with 
learnos

1 Set net.trainFcn to 'trainr'. (net.trainParam will automatically become 
trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam will automatically become 
trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnos'. Set each 
net.layerWeights{i,j}.learnFcn to 'learnos'. (Each weight learning 
parameter property will automatically be set to learnos’s default 
parameters.)

To train the network (or enable it to adapt)

1 Set net.trainParam (net.adaptParam) properties to desired values.

2 Call train (adapt).

Algorithm learnos calculates the weight change dW for a given neuron from the neuron’s 
input P, output A, and learning rate LR according to the outstar learning rule:

dw =  lr*(a-w)*p'

See Also learnis, learnk, adapt, train

References Grossberg, S., Studies of the Mind and Brain, Drodrecht, Holland: Reidel 
Press, 1982.
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14learnpPurpose Perceptron weight and bias learning function

Syntax [dW,LS] = learnp(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

[db,LS] = learnp(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnp(code)

Description learnp is the perceptron weight/bias learning function.

learnp(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W  —  S x R weight matrix (or b, and S x 1 bias vector)

P  —  R x Q input vectors (or ones(1,Q))

Z  —  S x Q weighted input vectors

N  —  S x Q net input vectors

A  —  S x Q output vectors

T  —  S x Q layer target vectors

E  —  S x Q layer error vectors

gW — S x R weight gradient with respect to performance

gA — S x Q output gradient with respect to performance

D  —  S x S neuron distances

LP — Learning parameters, none, LP = []

LS — Learning state, initially should be = []

and returns,

dW — S x R weight (or bias) change matrix

LS — New learning state

learnp(code) returns useful information for each code string:

'pnames'      — Names of learning parameters

'pdefaults' — Default learning parameters

'needg'        — Returns 1 if this function uses gW or gA

Examples Here we define a random input P and error E to a layer with a two-element 
input and three neurons.

p = rand(2,1);
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e = rand(3,1);

Since learnp only needs these values to calculate a weight change (see 
algorithm below), we will use them to do so.

dW = learnp([],p,[],[],[],[],e,[],[],[],[],[])

Network Use You can create a standard network that uses learnp with newp.

To prepare the weights and the bias of layer i of a custom network to learn with 
learnp

1 Set net.trainFcn to 'trainb'. (net.trainParam will automatically become 
trainb’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam will automatically become 
trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnp'. Set each 
net.layerWeights{i,j}.learnFcn to 'learnp'. Set 
net.biases{i}.learnFcn to 'learnp'. (Each weight and bias learning 
parameter property will automatically become the empty matrix since 
learnp has no learning parameters.) 

To train the network (or enable it to adapt)

1 Set net.trainParam (net.adaptParam) properties to desired values.

2 Call train (adapt).

See newp for adaption and training examples.

Algorithm learnp calculates the weight change dW for a given neuron from the neuron’s 
input P and error E according to the perceptron learning rule:

dw =  0,  if e =  0
=  p', if e =  1
= -p', if e = -1

This can be summarized as:

dw = e*p'

See Also learnpn, newp, adapt, train
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References Rosenblatt, F., Principles of Neurodynamics, Washington D.C.: Spartan Press, 
1961.
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14learnpnPurpose Normalized perceptron weight and bias learning function

Syntax [dW,LS] = learnpn(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnpn(code)

Description learnpn is a weight and bias learning function. It can result in faster learning 
than learnp when input vectors have widely varying magnitudes.

learnpn(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W   — S x R weight matrix (or S x 1 bias vector)

P   — R x Q input vectors (or ones(1,Q))

Z  — S x Q weighted input vectors

N   — S x Q net input vectors

A   — S x Q output vectors

T   — S x Q layer target vectors

E   — S x Q layer error vectors

gW — S x R weight gradient with respect to performance

gA — S x Q output gradient with respect to performance

D   — S x S neuron distances

LP — Learning parameters, none, LP = []

LS — Learning state, initially should be = []

and returns,

dW — S x R weight (or bias) change matrix

LS — New learning state

learnpn(code) returns useful information for each code string:

'pnames'      — Names of learning parameters

'pdefaults' — Default learning parameters

'needg'        — Returns 1 if this function uses gW or gA

Examples Here we define a random input P and error E to a layer with a two-element 
input and three neurons.

p = rand(2,1);
e = rand(3,1);
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Since learnpn only needs these values to calculate a weight change (see 
algorithm below), we will use them to do so.

dW = learnpn([],p,[],[],[],[],e,[],[],[],[],[])

Network Use You can create a standard network that uses learnpn with newp.

To prepare the weights and the bias of layer i of a custom network to learn with 
learnpn

1 Set net.trainFcn to 'trainb'. (net.trainParam will automatically become 
trainb’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam will automatically become 
trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnpn'. Set each 
net.layerWeights{i,j}.learnFcn to 'learnpn'. Set 
net.biases{i}.learnFcn to 'learnpn'. (Each weight and bias learning 
parameter property will automatically become the empty matrix since 
learnpn has no learning parameters.) 

To train the network (or enable it to adapt):

1 Set net.trainParam (net.adaptParam) properties to desired values.

2 Call train (adapt).

See newp for adaption and training examples.

Algorithm learnpn calculates the weight change dW for a given neuron from the neuron’s 
input P and error E according to the normalized perceptron learning rule

pn = p / sqrt(1 + p(1)^2 + p(2)^2) + ... + p(R)^2)
dw =  0,   if e =  0
=  pn', if e =  1
= -pn', if e = -1

The expression for dW can be summarized as:

dw = e*pn'

Limitations Perceptrons do have one real limitation. The set of input vectors must be 
linearly separable if a solution is to be found. That is, if the input vectors with 
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targets of 1 cannot be separated by a line or hyperplane from the input vectors 
associated with values of 0, the perceptron will never be able to classify them 
correctly.

See Also learnp, newp, adapt, train
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14learnsomPurpose Self-organizing map weight learning function

Syntax [dW,LS] = learnsom(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)

info = learnsom(code)

Description learnsom is the self-organizing map weight learning function.

learnsom(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W   — S x R weight matrix (or S x 1 bias vector)

P   — R x Q input vectors (or ones(1,Q))

Z   — S x Q weighted input vectors

N   — S x Q net input vectors

A   — S x Q output vectors

T   — S x Q layer target vectors

E   — S x Q layer error vectors

gW — S x R weight gradient with respect to performance

gA — S x Q output gradient with respect to performance

D   — S x S neuron distances

LP — Learning parameters, none, LP = []

LS — Learning state, initially should be = []

and returns,

dW — S x R weight (or bias) change matrix

LS — New learning state

Learning occurs according to learnsom’s learning parameter, shown here with 
its default value.

LP.order_lr 0.9 Ordering phase learning rate.

LP.order_steps 1000 Ordering phase steps.

LP.tune_lr 0.02 Tuning phase learning rate.

LP.tune_nd 1  Tuning phase neighborhood distance.
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learnpn(code) returns useful information for each code string:

'pnames'      — Names of learning parameters

'pdefaults' — Default learning parameters

'needg'        — Returns 1 if this function uses gW or gA

Examples Here we define a random input P, output A, and weight matrix W, for a layer 
with a two-element input and six neurons. We also calculate positions and 
distances for the neurons, which are arranged in a 2-by-3 hexagonal pattern. 
Then we define the four learning parameters.

p = rand(2,1);
a = rand(6,1);
w = rand(6,2);
pos = hextop(2,3);
d = linkdist(pos);
lp.order_lr = 0.9;
lp.order_steps = 1000;
lp.tune_lr = 0.02;
lp.tune_nd = 1;

Since learnsom only needs these values to calculate a weight change (see 
algorithm below), we will use them to do so.

ls = [];
[dW,ls] = learnsom(w,p,[],[],a,[],[],[],[],d,lp,ls)

Network Use You can create a standard network that uses learnsom with newsom.

1 Set net.trainFcn to 'trainr'. (net.trainParam will automatically become 
trainr’s default parameters.)

2 Set net.adaptFcn to 'trains'. (net.adaptParam will automatically become 
trains’s default parameters.)

3 Set each net.inputWeights{i,j}.learnFcn to 'learnsom'. Set each 
net.layerWeights{i,j}.learnFcn to 'learnsom'. Set 
net.biases{i}.learnFcn to 'learnsom'. (Each weight learning parameter 
property will automatically be set to learnsom’s default parameters.)

To train the network (or enable it to adapt)

1 Set net.trainParam (net.adaptParam) properties to desired values.
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2 Call train (adapt).

Algorithm learnsom calculates the weight change dW for a given neuron from the neuron’s 
input P, activation A2, and learning rate LR:

dw =  lr*a2*(p'-w)

where the activation A2 is found from the layer output A and neuron distances 
D and the current neighborhood size ND:

a2(i,q) = 1,   if a(i,q) = 1
 = 0.5, if a(j,q) = 1 and D(i,j) <= nd
 = 0,   otherwise

The learning rate LR and neighborhood size NS are altered through two phases: 
an ordering phase and a tuning phase.

The ordering phases lasts as many steps as LP.order_steps. During this 
phase LR is adjusted from LP.order_lr down to LP.tune_lr, and ND is adjusted 
from the maximum neuron distance down to 1. It is during this phase that 
neuron weights are expected to order themselves in the input space consistent 
with the associated neuron positions.

During the tuning phase LR decreases slowly from LP.tune_lr and ND is always 
set to LP.tune_nd. During this phase the weights are expected to spread out 
relatively evenly over the input space while retaining their topological order 
found during the ordering phase.

See Also adapt, train



learnwh

14-125

14learnwhPurpose Widrow-Hoff weight/bias learning function

Syntax [dW,LS] = learnwh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS)
[db,LS] = learnwh(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS)
info = learnwh(code)

Description learnwh is the Widrow-Hoff weight/bias learning function, and is also known 
as the delta or least mean squared (LMS) rule.

learnwh(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs,

W   — S x R weight matrix (or b, and S x 1 bias vector)

P   — R x Q input vectors (or ones(1,Q))

Z   — S x Q weighted input vectors

N   — S x Q net input vectors

A   — S x Q output vectors

T   — S x Q layer target vectors

E   — S x Q layer error vectors

gW — S x R weight gradient with respect to performance

gA — S x Q output gradient with respect to performance

D  —  S x S neuron distances

LP — Learning parameters, none, LP = []

LS — Learning state, initially should be = []

and returns,

dW — S x R weight (or bias) change matrix

LS — New learning state

Learning occurs according to learnwh’s learning parameter shown here with 
its default value.

LP.lr  0.01 — Learning rate

learnwh(code) returns useful information for each code string:

'pnames' — Names of learning parameters

'pdefaults' — Default learning parameters

'needg' — Returns 1 if this function uses gW or gA
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Examples Here we define a random input P and error E to a layer with a two-element 
input and three neurons. We also define the learning rate LR learning 
parameter.

p = rand(2,1);
e = rand(3,1);
lp.lr = 0.5;

Since learnwh only needs these values to calculate a weight change (see 
algorithm below), we will use them to do so.

dW = learnwh([],p,[],[],[],[],e,[],[],[],lp,[])

Network Use You can create a standard network that uses learnwh with newlin.

To prepare the weights and the bias of layer i of a custom network to learn with 
learnwh

1 Set net.trainFcn to 'trainb'. net.trainParam will automatically become 
trainb’s default parameters.

2 Set net.adaptFcn to 'trains'. net.adaptParam will automatically become 
trains’s default parameters.

3 Set each net.inputWeights{i,j}.learnFcn to 'learnwh'. Set each 
net.layerWeights{i,j}.learnFcn to 'learnwh'. Set 
net.biases{i}.learnFcn to 'learnwh'.

 Each weight and bias learning parameter property will automatically be set to 
learnwh’s default parameters.

To train the network (or enable it to adapt)

1 Set net.trainParam (net.adaptParam) properties to desired values.

2 Call train(adapt).

See newlin for adaption and training examples.

Algorithm learnwh calculates the weight change dW for a given neuron from the neuron’s 
input P and error E, and the weight (or bias) learning rate LR, according to the 
Widrow-Hoff learning rule:

dw = lr*e*pn'
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See Also newlin, adapt, train

References Widrow, B., and M. E. Hoff, “Adaptive switching circuits,” 1960 IRE WESCON 
Convention Record, New York IRE, pp. 96-104, 1960.

Widrow B. and S. D. Sterns, Adaptive Signal Processing, New York: 
Prentice-Hall, 1985.
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14linkdistPurpose Link distance function

Syntax d = linkdist(pos)

Description linkdist is a layer distance function used to find the distances between the 
layer’s neurons given their positions.

linkdist(pos) takes one argument,

pos — N x S matrix of neuron positions

and returns the S x S matrix of distances.

Examples Here we define a random matrix of positions for 10 neurons arranged in three- 
dimensional space and find their distances.

pos = rand(3,10);
D = linkdist(pos)

Network Use You can create a standard network that uses linkdist as a distance function 
by calling newsom.

To change a network so that a layer’s topology uses linkdist, set 
net.layers{i}.distanceFcn to 'linkdist'.

In either case, call sim to simulate the network with dist. See newsom for 
training and adaption examples.

Algorithm The link distance D between two position vectors Pi and Pj from a set of S 
vectors is

Dij = 0, if i==j
= 1, if (sum((Pi-Pj).^2)).^0.5 is <= 1
= 2, if k exists, Dik = Dkj = 1
= 3, if k1, k2 exist, Dik1 = Dk1k2 = Dk2j = 1
= N, if k1..kN exist, Dik1 = Dk1k2 = ...= DkNj = 1
= S, if none of the above conditions apply.

See Also sim, dist, mandist
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14logsigPurpose Log sigmoid transfer function

Graph and 
Symbol 

Syntax A = logsig(N)

info = logsig(code)

Description logsig is a transfer function. Transfer functions calculate a layer’s output from 
its net input.

logsig(N) takes one input,

N — S x Q matrix of net input (column) vectors

and returns each element of N squashed between 0 and 1.

logsig(code) returns useful information for each code string:

'deriv'  — Name of derivative function

'name'    — Full name

'output' — Output range

'active' — Active input range

Examples Here is the code to create a plot of the logsig transfer function.

n = -5:0.1:5;
a = logsig(n);
plot(n,a)

Network Use You can create a standard network that uses logsig by calling newff or newcf.

-1

n
0

+1

��
��

a 

Log-Sigmoid Transfer Function

a = logsig(n)
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To change a network so a layer uses logsig, set net.layers{i}.transferFcn 
to 'logsig'.

In either case, call sim to simulate the network with purelin.

See newff or newcf for simulation examples.

Algorithm logsig(n) = 1 / (1 + exp(-n))

See Also sim, dlogsig, tansig
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14maePurpose Mean absolute error performance function

Syntax perf = mae(E,X,PP)

perf = mae(E,net,PP)

info = mae(code)

Description mae is a network performance function.

mae(E,X,PP) takes from one to three arguments,

E  — Matrix or cell array of error vector(s)

X  — Vector of all weight and bias values (ignored)

PP — Performance parameters (ignored)

and returns the mean absolute error.

The errors E can be given in cell array form,

E — Nt x TS cell array, each element E{i,ts} is a Vi x Q matrix or[]

or as a matrix,

E — (sum of Vi) x Q matrix

where

Nt = net.numTargets

TS = Number of time steps

Q  = Batch size

Vi = net.targets{i}.size

mae(E,net,PP) can take an alternate argument to X, 

net - Neural network from which X can be obtained (ignored).

mae(code) returns useful information for each code string:

'deriv'  Name of derivative function

'name'  Full name

'pnames'  Names of training parameters

'pdefaults' — Default training parameters
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Examples Here a perceptron is created with a 1-element input ranging from -10 to 10, and 
one neuron.

net = newp([-10 10],1);

Here the network is given a batch of inputs P. The error is calculated by 
subtracting the output A from target T. Then the mean absolute error is 
calculated.

p = [-10 -5 0 5 10];
t = [0 0 1 1 1];
y = sim(net,p)
e = t-y
perf = mae(e)

Note that mae can be called with only one argument because the other 
arguments are ignored. mae supports those arguments to conform to the 
standard performance function argument list.

Network Use You can create a standard network that uses mae with newp.

To prepare a custom network to be trained with mae, set net.performFcn to 
'mae'. This will automatically set net.performParam to the empty matrix [], as 
mae has no performance parameters.

In either case, calling train or adapt will result in mae being used to calculate 
performance.

See newp for examples.

See Also mse, msereg, dmae
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14mandistPurpose Manhattan distance weight function

Syntax Z = mandist(W,P)

df = mandist('deriv')

D = mandist(pos);

Description mandist is the Manhattan distance weight function. Weight functions apply 
weights to an input to get weighted inputs.

mandist(W,P) takes these inputs,

W — S x R weight matrix

P — R x Q matrix of Q input (column) vectors

and returns the S x Q matrix of vector distances.

mandist('deriv') returns '' because mandist does not have a derivative 
function.

mandist is also a layer distance function, which can be used to find the 
distances between neurons in a layer.

mandist(pos) takes one argument,

pos — An S row matrix of neuron positions

and returns the S x S matrix of distances.

Examples Here we define a random weight matrix W and input vector P and calculate the 
corresponding weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = mandist(W,P)

Here we define a random matrix of positions for 10 neurons arranged in three- 
dimensional space and then find their distances.

pos = rand(3,10);
D = mandist(pos)

Network Use You can create a standard network that uses mandist as a distance function by 
calling newsom.
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To change a network so an input weight uses mandist, set 
net.inputWeight{i,j}.weightFcn to 'mandist'. For a layer weight, set 
net.inputWeight{i,j}.weightFcn to 'mandist'.

To change a network so a layer’s topology uses mandist, set 
net.layers{i}.distanceFcn to 'mandist'.

In either case, call sim to simulate the network with dist. See newpnn or 
newgrnn for simulation examples.

Algorithm The Manhattan distance D between two vectors X and Y is:

D = sum(abs(x-y))

See Also sim, dist, linkdist
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14maxlinlrPurpose Maximum learning rate for a linear layer

Syntax lr = maxlinlr(P)
lr = maxlinlr(P,'bias')

Description maxlinlr is used to calculate learning rates for newlin.

maxlinlr(P) takes one argument,

P — R x Q matrix of input vectors

and returns the maximum learning rate for a linear layer without a bias that 
is to be trained only on the vectors in P.

maxlinlr(P,'bias') returns the maximum learning rate for a linear layer 
with a bias.

Examples Here we define a batch of four two-element input vectors and find the 
maximum learning rate for a linear layer with a bias.

P = [1 2 -4 7; 0.1 3 10 6];
lr = maxlinlr(P,'bias')

See Also linnet, newlin, newlind
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14midpointPurpose Midpoint weight initialization function

Syntax W = midpoint(S,PR)

Description midpoint is a weight initialization function that sets weight (row) vectors to 
the center of the input ranges.

midpoint(S,PR) takes two arguments,

S   — Number of rows (neurons)

PR — R x 2 matrix of input value ranges = [Pmin Pmax]

and returns an S x R matrix with rows set to (Pmin+Pmax)'/2.

Examples Here initial weight values are calculated for a 5 neuron layer with input 
elements ranging over [0 1] and [-2 2].

W = midpoint(5,[0 1; -2 2])

Network Use You can create a standard network that uses midpoint to initialize weights by 
calling newc.

To prepare the weights and the bias of layer i of a custom network to initialize 
with midpoint:

1 Set net.initFcn to 'initlay'. (net.initParam will automatically become 
initlay’s default parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.

3 Set each net.inputWeights{i,j}.initFcn to 'midpoint'. Set each 
net.layerWeights{i,j}.initFcn to 'midpoint';

To initialize the network call init.

See Also initwb, initlay, init
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14minmaxPurpose Ranges of matrix rows

Syntax pr = minmax(p)

Description minmax(P) takes one argument,

P — R x Q matrix

and returns the R x 2 matrix PR of minimum and maximum values for each row 
of P.

Examples P = [0 1 2; -1 -2 -0.5]
pr = minmax(P)
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14msePurpose Mean squared error performance function

Syntax perf = mse(E,X,PP)

perf = mse(E,net,PP)

info = mse(code)

Description mse is a network performance function. It measures the network’s performance 
according to the mean of squared errors.

mse(E,X,PP) takes from one to three arguments,

E  — Matrix or cell array of error vector(s)

X  — Vector of all weight and bias values (ignored)

PP — Performance parameters (ignored)

and returns the mean squared error.

mse(E,net,PP) can take an alternate argument to X, 

net — Neural network from which X can be obtained (ignored)

mse(code) returns useful information for each code string:

'deriv'       — Name of derivative function

'name'     — Full name

'pnames'      — Names of training parameters

'pdefaults' — Default training parameters

Examples Here a two-layer feed-forward network is created with a 1-element input 
ranging from -10 to 10, four hidden tansig neurons, and one purelin output 
neuron.

net = newff([-10 10],[4 1],{'tansig','purelin'});

Here the network is given a batch of inputs P. The error is calculated by 
subtracting the output A from target T. Then the mean squared error is 
calculated.

p = [-10 -5 0 5 10];
t = [0 0 1 1 1];
y = sim(net,p)
e = t-y
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perf = mse(e)

Note that mse can be called with only one argument because the other 
arguments are ignored. mse supports those ignored arguments to conform to 
the standard performance function argument list.

Network Use You can create a standard network that uses mse with newff, newcf, or newelm.

To prepare a custom network to be trained with mse, set net.performFcn to 
'mse'. This will automatically set net.performParam to the empty matrix [], 
as mse has no performance parameters.

In either case, calling train or adapt will result in mse being used to calculate 
performance.

See newff or newcf for examples.

See Also msereg, mae, dmse
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14mseregPurpose Mean squared error with regularization performance function

Syntax perf = msereg(E,X,PP)

perf = msereg(E,net,PP)

info = msereg(code)

Description msereg is a network performance function. It measures network performance 
as the weight sum of two factors: the mean squared error and the mean 
squared weight and bias values.

msereg(E,X,PP) takes from three arguments,

E  — Matrix or cell array of error vector(s)

X  — Vector of all weight and bias values

PP — Performance parameter

where PP defines one performance parameters, 

PP.ratio — Relative importance of errors vs. weight and bias values

and returns the sum of mean squared errors (times PP.ratio) with the mean 
squared weight and bias values (times 1 PP.ratio).

The errors E can be given in cell array form,

E — Nt x TS cell array, each element E{i,ts} is an Vi x Q matrix or []

or as a matrix,

E — (sum of Vi) x Q matrix

where

Nt = net.numTargets

TS = Number of time steps

Q  = Batch size
Vi = net.targets{i}.size

msereg(E,net) takes an alternate argument to X and PP,

net — Neural network from which X and PP can be obtained
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msereg(code) returns useful information for each code string:

'deriv'       — Name of derivative function

'name'         — Full name

'pnames'      — Names of training parameters

'pdefaults' — Default training parameters

Examples Here a two-layer feed-forward is created with a one-element input ranging 
from -2 to 2, four hidden tansig neurons, and one purelin output neuron.

net = newff([-2 2],[4 1]
{'tansig','purelin'},'trainlm','learngdm','msereg');

Here the network is given a batch of inputs P. The error is calculated by 
subtracting the output A from target T. Then the mean squared error is 
calculated using a ratio of 20/(20+1). (Errors are 20 times as important as 
weight and bias values).

p = [-2 -1 0 1 2];
t = [0 1 1 1 0];
y = sim(net,p)
e = t-y
net.performParam.ratio = 20/(20+1);
perf = msereg(e,net)

Network Use You can create a standard network that uses msereg with newff, newcf, or 
newelm.

To prepare a custom network to be trained with msereg, set net.performFcn to 
'msereg'. This will automatically set net.performParam to msereg’s default 
performance parameters.

In either case, calling train or adapt will result in msereg being used to 
calculate performance.

See newff or newcf for examples.

See Also mse, mae, dmsereg
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14negdistPurpose Negative distance weight function

Syntax Z = negdist(W,P)

df = negdist('deriv')

Description negdist is a weight function. Weight functions apply weights to an input to get 
weighted inputs.

negdist(W,P) takes these inputs,

W — S x R weight matrix

P — R x Q matrix of Q input (column) vectors

and returns the S x Q matrix of negative vector distances.

negdist('deriv') returns '' because negdist does not have a derivative 
function.

Examples Here we define a random weight matrix W and input vector P and calculate the 
corresponding weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = negdist(W,P)

Network Use You can create a standard network that uses negdist by calling newc or 
newsom.

To change a network so an input weight uses negdist, set 
net.inputWeight{i,j}.weightFcn to 'negdist'. For a layer weight set 
net.inputWeight{i,j}.weightFcn to 'negdist'.

In either case, call sim to simulate the network with negdist. See newc or 
newsom for simulation examples.

Algorithm negdist returns the negative Euclidean distance:

z = -sqrt(sum(w-p)^2)

See Also sim, dotprod, dist
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14netprodPurpose Product net input function

Syntax N = netprod(Z1,Z2,...,Zn)

df = netprod('deriv')

Description netprod is a net input function. Net input functions calculate a layer’s net 
input by combining its weighted inputs and biases.

netprod(Z1,Z2,...,Zn) takes,

Zi — S x Q matrices

and returns an element-wise sum of Zi’s.

netprod('deriv') returns netprod’s derivative function.

Examples Here netprod combines two sets of weighted input vectors (which we have 
defined ourselves).

z1 = [1 2 4;3 4 1];
z2 = [-1 2 2; -5 -6 1];
n = netprod(Z1,Z2)

Here netprod combines the same weighted inputs with a bias vector. Because 
Z1 and Z2 each contain three concurrent vectors, three concurrent copies of B 
must be created with concur so that all sizes match up.

b = [0; -1];
n = netprod(z1,z2,concur(b,3))

Network Use You can create a standard network that uses netprod by calling newpnn or 
newgrnn.

To change a network so that a layer uses netprod, set 
net.layers{i}.netInputFcn to 'netprod'.

In either case, call sim to simulate the network with netprod. See newpnn or 
newgrnn for simulation examples.

See Also sim, dnetprod, netsum, concur
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14netsumPurpose Sum net input function

Syntax N = netsum(Z1,Z2,...,Zn)

df = netsum('deriv')

Description netsum is a net input function. Net input functions calculate a layer’s net input 
by combining its weighted inputs and biases.

netsum(Z1,Z2,...,Zn) takes any number of inputs,

Zi — S x Q matrices,

and returns N, the element-wise sum of Zi’s.

netsum('deriv') returns netsum’s derivative function.

Examples Here netsum combines two sets of weighted input vectors (which we have 
defined ourselves).

z1 = [1 2 4;3 4 1];
z2 = [-1 2 2; -5 -6 1];
n = netsum(Z1,Z2)

Here netsum combines the same weighted inputs with a bias vector. Because 
Z1 and Z2 each contain three concurrent vectors, three concurrent copies of B 
must be created with concur so that all sizes match up.

b = [0; -1];
n = netsum(z1,z2,concur(b,3))

Network Use You can create a standard network that uses netsum by calling newp or newlin.

To change a network so a layer uses netsum, set net.layers{i}.netInputFcn 
to 'netsum'.

In either case, call sim to simulate the network with netsum. See newp or 
newlin for simulation examples.

See Also sim, dnetprod, netprod, concur
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14networkPurpose Create a custom neural network

Syntax net = network

net = network(numInputs,numLayers,biasConnect,inputConnect, 
layerConnect,outputConnect,targetConnect)

To Get Help Type help network/network

Description network creates new custom networks. It is used to create networks that are 
then customized by functions such as newp, newlin, newff, etc.

network takes these optional arguments (shown with default values):

numInputs        — Number of inputs, 0

numLayers        — Number of layers, 0

biasConnect     — numLayers-by-1 Boolean vector, zeros

inputConnect   — numLayers-by-numInputs Boolean matrix, zeros

layerConnect   — numLayers-by-numLayers Boolean matrix, zeros

outputConnect — 1-by-numLayers Boolean vector, zeros

targetConnect — 1-by-numLayers Boolean vector, zeros

and returns,

net — New network with the given property values.
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Properties Architecture properties:

net.numInputs: 0 or a positive integer.

Number of inputs.

net.numLayers: 0 or a positive integer.

Number of layers.

net.biasConnect: numLayer-by-1 Boolean vector.

If net.biasConnect(i) is 1, then the layer i has a bias and net.biases{i} 
is a structure describing that bias.

net.inputConnect: numLayer-by-numInputs Boolean vector.

If net.inputConnect(i,j) is 1, then layer i has a weight coming from 
input j and net.inputWeights{i,j} is a structure describing that weight.

net.layerConnect: numLayer-by-numLayers Boolean vector.

If net.layerConnect(i,j) is 1, then layer i has a weight coming from 
layer j and net.layerWeights{i,j} is a structure describing that weight.

net.outputConnect: 1-by-numLayers Boolean vector.

If net.outputConnect(i) is 1, then the network has an output from layer 
i and net.outputs{i} is a structure describing that output.

net.targetConnect: 1-by-numLayers Boolean vector.

If net.outputConnect(i) is 1, then the network has a target from layer i 
and net.targets{i} is a structure describing that target.

net.numOutputs: 0 or a positive integer. Read only.

Number of network outputs according to net.outputConnect.

net.numTargets: 0 or a positive integer. Read only.

Number of targets according to net.targetConnect.

net.numInputDelays: 0 or a positive integer. Read only.

Maximum input delay according to all net.inputWeight{i,j}.delays.

net.numLayerDelays: 0 or a positive number. Read only.

Maximum layer delay according to all net.layerWeight{i,j}.delays.
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Subobject structure properties:

net.inputs: numInputs-by-1 cell array.

net.inputs{i} is a structure defining input i.

net.layers: numLayers-by-1 cell array.

net.layers{i} is a structure defining layer i.

net.biases: numLayers-by-1 cell array.

If net.biasConnect(i) is 1, then net.biases{i} is a structure defining 
the bias for layer i.

net.inputWeights: numLayers-by-numInputs cell array.

If net.inputConnect(i,j) is 1, then net.inputWeights{i,j} is a 
structure defining the weight to layer i from input j.

net.layerWeights: numLayers-by-numLayers cell array.

If net.layerConnect(i,j) is 1, then net.layerWeights{i,j} is a 
structure defining the weight to layer i from layer j.

net.outputs: 1-by-numLayers cell array.

If net.outputConnect(i) is 1, then net.outputs{i} is a structure 
defining the network output from layer i.

net.targets: 1-by-numLayers cell array.

If net.targetConnect(i) is 1, then net.targets{i} is a structure 
defining the network target to layer i.

Function properties:

net.adaptFcn: name of a network adaption function or ''.

net.initFcn: name of a network initialization function or ''.

net.performFcn: name of a network performance function or ''.

net.trainFcn: name of a network training function or ''.

Parameter properties:

net.adaptParam: network adaption parameters.

net.initParam: network initialization parameters.

net.performParam: network performance parameters.

net.trainParam: network training parameters.
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Weight and bias value properties:

net.IW: numLayers-by-numInputs cell array of input weight values.

net.LW: numLayers-by-numLayers cell array of layer weight values.

net.b: numLayers-by-1 cell array of bias values.

Other properties:

net.userdata: structure you can use to store useful values.

Examples Here is the code to create a network without any inputs and layers, and then 
set its number of inputs and layer to 1 and 2 respectively.

net = network
net.numInputs = 1
net.numLayers = 2

Here is the code to create the same network with one line of code.

net = network(1,2)

Here is the code to create a 1 input, 2 layer, feed-forward network. Only the 
first layer will have a bias. An input weight will connect to layer 1 from input 
1. A layer weight will connect to layer 2 from layer 1. Layer 2 will be a network 
output, and have a target.

net = network(1,2,[1;0],[1; 0],[0 0; 1 0],[0 1],[0 1])

We can then see the properties of subobjects as follows:

net.inputs{1}
net.layers{1}, net.layers{2}
net.biases{1}
net.inputWeights{1,1}, net.layerWeights{2,1}
net.outputs{2}
net.targets{2}

We can get the weight matrices and bias vector as follows:

net.iw.{1,1}, net.iw{2,1}, net.b{1}

We can alter the properties of any of these subobjects. Here we change the 
transfer functions of both layers:
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net.layers{1}.transferFcn = 'tansig';
net.layers{2}.transferFcn = 'logsig';

Here we change the number of elements in input 1 to 2, by setting each 
element’s range:

net.inputs{1}.range = [0 1; -1 1];

Next we can simulate the network for a two-element input vector:

p = [0.5; -0.1];
y = sim(net,p)

See Also sim
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14newcPurpose Create a competitive layer

Syntax net = newc

net = newc(PR,S,KLR,CLR)

Description Competitive layers are used to solve classification problems.

net = newc creates a new network with a dialog box.

net = newc(PR,S,KLR,CLR) takes these inputs,

PR   — R x 2 matrix of min and max values for R input elements

S    — Number of neurons

KLR — Kohonen learning rate, default = 0.01

CLR — Conscience learning rate, default = 0.001

and returns a new competitive layer.

Properties Competitive layers consist of a single layer with the negdist weight function, 
netsum net input function, and the compet transfer function.

The layer has a weight from the input, and a bias.

Weights and biases are initialized with midpoint and initcon.

Adaption and training are done with trains and trainr, which both update 
weight and bias values with the learnk and learncon learning functions.

Examples Here is a set of four two-element vectors P.

P = [.1 .8  .1 .9; .2 .9 .1 .8];

A competitive layer can be used to divide these inputs into two classes. First a 
two neuron layer is created with two input elements ranging from 0 to 1, then 
it is trained.

net = newc([0 1; 0 1],2);
net = train(net,P);

The resulting network can then be simulated and its output vectors converted 
to class indices.

Y = sim(net,P)
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Yc = vec2ind(Y)

See Also sim, init, adapt, train, trains, trainr, newcf 
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14newcfPurpose Create a trainable cascade-forward backpropagation network

Syntax net = newcf

net = newcf(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)

Description net = newcf creates a new network with a dialog box.

newcf(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) takes,

PR   — R x 2 matrix of min and max values for R input elements

Si   — Size of ith layer, for Nl layers

TFi — Transfer function of ith layer, default = 'tansig'

BTF — Backpropagation network training function, default = 'traingd'

BLF — Backpropagation weight/bias learning function, default = 'learngdm'

PF   — Performance function, default = 'mse'

and returns an N layer cascade-forward backprop network.

The transfer functions TFi can be any differentiable transfer function such as 
tansig, logsig, or purelin.

The training function BTF can be any of the backprop training functions such 
as trainlm, trainbfg, trainrp, traingd, etc.

Caution: trainlm is the default training function because it is very fast, but it 
requires a lot of memory to run.  If you get an “out-of-memory” error when 
training try doing one of these:

1 Slow trainlm training, but reduce memory requirements by setting 
net.trainParam.mem_reduc to 2 or more. (See help trainlm.)

2 Use trainbfg, which is slower but more memory-efficient than trainlm.

3 Use trainrp, which is slower but more memory-efficient than trainbfg.

The learning function BLF can be either of the backpropagation learning 
functions such as learngd or learngdm.

The performance function can be any of the differentiable performance 
functions such as mse or msereg.
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Examples Here is a problem consisting of inputs P and targets T that we would like to 
solve with a network.

P = [0 1 2 3 4 5 6 7 8 9 10];
T = [0 1 2 3 4 3 2 1 2 3 4];

Here a two-layer cascade-forward network is created. The network’s input 
ranges from [0 to 10]. The first layer has five tansig neurons, the second layer 
has one purelin neuron. The trainlm network training function is to be used.

net = newcf([0 10],[5 1],{'tansig' 'purelin'});

Here the network is simulated and its output plotted against the targets.

Y = sim(net,P);
plot(P,T,P,Y,'o')

Here the network is trained for 50 epochs. Again the network’s output is 
plotted.

net.trainParam.epochs = 50;
net = train(net,P,T);
Y = sim(net,P);
plot(P,T,P,Y,'o')

Algorithm Cascade-forward networks consist of Nl layers using the dotprod weight 
function, netsum net input function, and the specified transfer functions.

The first layer has weights coming from the input. Each subsequent layer has 
weights coming from the input and all previous layers. All layers have biases. 
The last layer is the network output.

Each layer’s weights and biases are initialized with initnw.

Adaption is done with trains, which updates weights with the specified 
learning function. Training is done with the specified training function. 
Performance is measured according to the specified performance function.

See Also newff, newelm, sim, init, adapt, train, trains
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14newelmPurpose Create an Elman backpropagation network

Syntax net = newelm

net = newelm(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)

Description net = newelm creates a new network with a dialog box.

newelm(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) takes several 
arguments,

PR   — R x 2 matrix of min and max values for R input elements

Si   — Size of ith layer, for Nl layers

TFi — Transfer function of ith layer, default = 'tansig'

BTF — Backpropagation network training function, default = 'traingdx'

BLF — Backpropagation weight/bias learning function, default = 'learngdm'

PF   — Performance function, default = 'mse'

and returns an Elman network.

The training function BTF can be any of the backprop training functions such 
as trainlm, trainbfg, trainrp, traingd, etc.

Caution: trainlm is the default training function because it is very fast, but it 
requires a lot of memory to run. If you get an “out-of-memory” error when 
training try doing one of these:

1 Slow trainlm training, but reduce memory requirements by setting 
net.trainParam.mem_reduc to 2 or more. (See help trainlm.)

2 Use trainbfg, which is slower but more memory-efficient than trainlm.

3 Use trainrp, which is slower but more memory-efficient than trainbfg.

The learning function BLF can be either of the backpropagation learning 
functions such as learngd or learngdm.

The performance function can be any of the differentiable performance 
functions such as mse or msereg.
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Examples Here is a series of Boolean inputs P, and another sequence T, which is 1 
wherever P has had two 1’s in a row.

P = round(rand(1,20));
T = [0 (P(1:end-1)+P(2:end) == 2)];

We would like the network to recognize whenever two 1’s occur in a row. First 
we arrange these values as sequences.

Pseq = con2seq(P);
Tseq = con2seq(T);

Next we create an Elman network whose input varies from 0 to 1, and has five 
hidden neurons and 1 output.

net = newelm([0 1],[10 1],{'tansig','logsig'});

Then we train the network with a mean squared error goal of 0.1, and simulate 
it.

net = train(net,Pseq,Tseq);
Y = sim(net,Pseq)

Algorithm Elman networks consist of Nl layers using the dotprod weight function, netsum 
net input function, and the specified transfer functions.

The first layer has weights coming from the input. Each subsequent layer has 
a weight coming from the previous layer. All layers except the last have a 
recurrent weight. All layers have biases. The last layer is the network output.

Each layer’s weights and biases are initialized with initnw.

Adaption is done with trains, which updates weights with the specified 
learning function. Training is done with the specified training function. 
Performance is measured according to the specified performance function.

See Also newff, newcf, sim, init, adapt, train, trains
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14newffPurpose Create a feed-forward backpropagation network

Syntax net = newff

net = newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)

Description net = newff creates a new network with a dialog box.

newff(PR,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) takes,

PR   — R x 2 matrix of min and max values for R input elements

Si   — Size of ith layer, for Nl layers

TFi — Transfer function of ith layer, default = 'tansig'

BTF — Backpropagation network training function, default = 'traingdx'

BLF — Backpropagation weight/bias learning function, default = 'learngdm'

PF   — Performance function, default = 'mse'

and returns an N layer feed-forward backprop network.

The transfer functions TFi can be any differentiable transfer function such as 
tansig, logsig, or purelin.

The training function BTF can be any of the backprop training functions such 
as trainlm, trainbfg, trainrp, traingd, etc.

Caution: trainlm is the default training function because it is very fast, but it 
requires a lot of memory to run. If you get an "out-of-memory" error when 
training try doing one of these:

1 Slow trainlm training, but reduce memory requirements by setting 
net.trainParam.mem_reduc to 2 or more. (See help trainlm.)

2 Use trainbfg, which is slower but more memory-efficient than trainlm.

3 Use trainrp, which is slower but more memory-efficient than trainbfg.

The learning function BLF can be either of the backpropagation learning 
functions such as learngd or learngdm.

The performance function can be any of the differentiable performance 
functions such as mse or msereg.
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Examples Here is a problem consisting of inputs P and targets T that we would like to 
solve with a network.

P = [0 1 2 3 4 5 6 7 8 9 10];
T = [0 1 2 3 4 3 2 1 2 3 4];

Here a two-layer feed-forward network is created. The network’s input ranges 
from [0 to 10]. The first layer has five tansig neurons, the second layer has one 
purelin neuron. The trainlm network training function is to be used.

net = newff([0 10],[5 1],{'tansig' 'purelin'});

Here the network is simulated and its output plotted against the targets.

Y = sim(net,P);
plot(P,T,P,Y,'o')

Here the network is trained for 50 epochs. Again the network’s output is 
plotted.

net.trainParam.epochs = 50;
net = train(net,P,T);
Y = sim(net,P);
plot(P,T,P,Y,'o')

Algorithm Feed-forward networks consist of Nl layers using the dotprod weight function, 
netsum net input function, and the specified transfer functions.

The first layer has weights coming from the input. Each subsequent layer has 
a weight coming from the previous layer. All layers have biases. The last layer 
is the network output.

Each layer’s weights and biases are initialized with initnw.

Adaption is done with trains, which updates weights with the specified 
learning function. Training is done with the specified training function. 
Performance is measured according to the specified performance function.

See Also newcf, newelm, sim, init, adapt, train, trains 
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14newfftdPurpose Create a feed-forward input-delay backpropagation network

Syntax net = newfftd

net = newfftd(PR,ID,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF)

Description net = newfftd creates a new network with a dialog box.

newfftd(PR,ID,[S1 S2...SNl],{TF1 TF2...TFNl},BTF,BLF,PF) takes,

PR  — R x 2 matrix of min and max values for R input elements

ID  — Input delay vector

Si   — Size of ith layer, for Nl layers

TFi — Transfer function of ith layer, default = 'tansig'

BTF — Backprop network training function, default = 'traingdx'

BLF — Backprop weight/bias learning function, default = 'learngdm'

PF   — Performance function, default = 'mse'

and returns an N layer feed-forward backprop network.

The transfer functions TFi can be any differentiable transfer function such as 
tansig, logsig, or purelin.

The training function BTF can be any of the backprop training functions such 
as trainlm, trainbfg, trainrp, traingd, etc.

Caution: trainlm is the default training function because it is very fast, but it 
requires a lot of memory to run. If you get an "out-of-memory" error when 
training try doing one of these:

1 Slow trainlm training, but reduce memory requirements by setting 
net.trainParam.mem_reduc to 2 or more. (See help trainlm.)

2 Use trainbfg, which is slower but more memory-efficient than trainlm.

3 Use trainrp, which is slower but more memory-efficient than trainbfg.

The learning function BLF can be either of the backpropagation learning 
functions such as learngd or learngdm.
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The performance function can be any of the differentiable performance 
functions such as mse or msereg.

Examples Here is a problem consisting of an input sequence P and target sequence T that 
can be solved by a network with one delay.

P = {1  0 0 1 1  0 1  0 0 0 0 1 1  0 0 1};
T = {1 -1 0 1 0 -1 1 -1 0 0 0 1 0 -1 0 1};

Here a two-layer feed-forward network is created with input delays of 0 and 1. 
The network’s input ranges from [0 to 1]. The first layer has five tansig 
neurons, the second layer has one purelin neuron. The trainlm network 
training function is to be used.

net = newfftd([0 1],[0 1],[5 1],{'tansig' 'purelin'});

Here the network is simulated.

Y = sim(net,P)

Here the network is trained for 50 epochs. Again the network’s output is 
calculated.

net.trainParam.epochs = 50;
net = train(net,P,T);
Y = sim(net,P)

Algorithm Feed-forward networks consist of Nl layers using the dotprod weight function, 
netsum net input function, and the specified transfer functions.

The first layer has weights coming from the input with the specified input 
delays. Each subsequent layer has a weight coming from the previous layer. All 
layers have biases. The last layer is the network output.

Each layer’s weights and biases are initialized with initnw.

Adaption is done with trains, which updates weights with the specified 
learning function. Training is done with the specified training function. 
Performance is measured according to the specified performance function.

See Also newcf, newelm, sim, init, adapt, train, trains 
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14newgrnnPurpose Design a generalized regression neural network (grnn)

Syntax net = newgrnn

net = newgrnn(P,T,spread)

Description net = newgrnn creates a new network with a dialog box.

Generalized regression neural networks are a kind of radial basis network that 
is often used for function approximation.  grnn's can be designed very quickly.

newgrnn(P,T,spread) takes three inputs,

P         — R x Q matrix of Q input vectors

T         — S x Q matrix of Q target class vectors

spread — Spread of radial basis functions, default = 1.0

and returns a new generalized regression neural network.

The larger the spread, is the smoother the function approximation will be. To 
fit data very closely, use a spread smaller than the typical distance between 
input vectors. To fit the data more smoothly, use a larger spread.

Properties newgrnn creates a two-layer network. The first layer has radbas neurons, 
calculates weighted inputs with dist and net input with netprod. The second 
layer has purelin neurons, calculates weighted input with normprod and net 
inputs with netsum. Only the first layer has biases.

newgrnn sets the first layer weights to P', and the first layer biases are all set 
to 0.8326/spread, resulting in radial basis functions that cross 0.5 at weighted 
inputs of +/- spread. The second layer weights W2 are set to T.

Examples Here we design a radial basis network given inputs P and targets T.

P = [1 2 3];
T = [2.0 4.1 5.9];
net = newgrnn(P,T);

Here the network is simulated for a new input.

P = 1.5;
Y = sim(net,P)



newgrnn

14-161

See Also sim, newrb, newrbe, newpnn

References Wasserman, P.D., Advanced Methods in Neural Computing, New York: Van 
Nostrand Reinhold, pp. 155-61, 1993.
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14newhopPurpose Create a Hopfield recurrent network

Syntax net = newhop

net = newhop(T)

Description Hopfield networks are used for pattern recall.

net = newhop creates a new network with a dialog box.

newhop(T) takes one input argument,

T — R x Q matrix of Q target vectors (values must be +1 or -1)

and returns a new Hopfield recurrent neural network with stable points at the 
vectors in T.

Properties Hopfield networks consist of a single layer with the dotprod weight function, 
netsum net input function, and the satlins transfer function.

The layer has a recurrent weight from itself and a bias.

Examples Here we create a Hopfield network with two three-element stable points T.

T = [-1 -1 1; 1 -1 1]';
net = newhop(T);

Below we check that the network is stable at these points by using them as 
initial layer delay conditions. If the network is stable we would expect that the 
outputs Y will be the same. (Since Hopfield networks have no inputs, the second 
argument to sim is Q = 2 when using matrix notation).

Ai = T;
[Y,Pf,Af] = sim(net,2,[],Ai);
Y

To see if the network can correct a corrupted vector, run the following code, 
which simulates the Hopfield network for five time steps. (Since Hopfield 
networks have no inputs, the second argument to sim is {Q TS} = [1 5] when 
using cell array notation.)

Ai = {[-0.9; -0.8; 0.7]};
[Y,Pf,Af] = sim(net,{1 5},{},Ai);
Y{1}
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If you run the above code, Y{1} will equal T(:,1) if the network has managed 
to convert the corrupted vector Ai to the nearest target vector.

Algorithm Hopfield networks are designed to have stable layer outputs as defined by user- 
supplied targets. The algorithm minimizes the number of unwanted stable 
points.

See Also sim, satlins

References Li, J., A. N. Michel, and W. Porod, “Analysis and synthesis of a class of neural 
networks: linear systems operating on a closed hypercube,” IEEE Transactions 
on Circuits and Systems, vol. 36, no. 11, pp. 1405-1422, November 1989.
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14newlinPurpose Create a linear layer

Syntax net = newlin

net = newlin(PR,S,ID,LR)

Description Linear layers are often used as adaptive filters for signal processing and 
prediction.

net = newlin creates a new network with a dialog box.

newlin(PR,S,ID,LR) takes these arguments,

PR — R x 2 matrix of min and max values for R input elements

S   — Number of elements in the output vector

ID — Input delay vector, default = [0]

LR — Learning rate, default = 0.01

and returns a new linear layer.

net = newlin(PR,S,0,P) takes an alternate argument,

P  — Matrix of input vectors

and returns a linear layer with the maximum stable learning rate for learning 
with inputs P.

Examples This code creates a single input (range of [-1 1] linear layer with one neuron, 
input delays of 0 and 1, and a learning rate of 0.01. It is simulated for an input 
sequence P1.

net = newlin([-1 1],1,[0 1],0.01);
P1 = {0 -1 1 1 0 -1 1 0 0 1};
Y = sim(net,P1)

Here targets T1 are defined and the layer adapts to them. (Since this is the first 
call to adapt, the default input delay conditions are used.)

T1 = {0 -1 0 2 1 -1 0 1 0 1};
[net,Y,E,Pf] = adapt(net,P1,T1); Y

Here the linear layer continues to adapt for a new sequence using the previous 
final conditions PF as initial conditions.
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P2 = {1 0 -1 -1 1 1 1 0 -1};
T2 = {2 1 -1 -2 0 2 2 1 0};
[net,Y,E,Pf] = adapt(net,P2,T2,Pf); Y

Here we initialize the layer’s weights and biases to new values.

net = init(net);

Here we train the newly initialized layer on the entire sequence for 200 epochs 
to an error goal of 0.1.

P3 = [P1 P2];
T3 = [T1 T2];
net.trainParam.epochs = 200;
net.trainParam.goal = 0.1;
net = train(net,P3,T3);
Y = sim(net,[P1 P2])

Algorithm Linear layers consist of a single layer with the dotprod weight function, netsum 
net input function, and purelin transfer function.

The layer has a weight from the input and a bias.

Weights and biases are initialized with initzero.

Adaption and training are done with trains and trainb, which both update 
weight and bias values with learnwh. Performance is measured with mse.

See Also newlind, sim, init, adapt, train, trains, trainb
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14newlindPurpose Design a linear layer

Syntax net = newlind

net = newlind(P,T,Pi)

Description net = newlind creates a new network with a dialog box.

newlind(P,T,Pi) takes these input arguments,

P  — R x Q matrix of Q input vectors

T   — S x Q matrix of Q target class vectors

Pi — 1 x ID cell array of initial input delay states

where each element Pi{i,k} is an RixQ matrix, default = []

and returns a linear layer designed to output T (with minimum sum square 
error) given input P.

newlind(P,T,Pi) can also solve for linear networks with input delays and 
multiple inputs and layers by supplying input and target data in cell array 
form:

P  — NixTS cell array, each element P{i,ts} is an Ri x Q input matrix

T  — NtxTS cell array, each element P{i,ts} is an Vi x Q matrix

Pi — NixID cell array, each element Pi{i,k} is an Ri x Q matrix, default =  []

returns a linear network with ID input delays, Ni network inputs, Nl layers,  
and designed to output T (with minimum sum square error) given input P.

Examples We would like a linear layer that outputs T given P for the following definitions.

P = [1 2 3];
T = [2.0 4.1 5.9];

Here we use newlind to design such a network and check its response.

net = newlind(P,T);
Y = sim(net,P)

We would like another linear layer that outputs the sequence T given the 
sequence P and two initial input delay states Pi.

P = {1 2 1 3 3 2};
Pi = {1 3};
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T = {5.0 6.1 4.0 6.0 6.9 8.0};
net = newlind(P,T,Pi);
Y = sim(net,P,Pi)

We would like a linear network with two outputs Y1 and Y2 that generate 
sequences T1 and T2, given the sequences P1 and P2 with three initial input  
delay states Pi1 for input 1, and three initial delays states Pi2 for input 2.

P1 = {1 2 1 3 3 2}; Pi1 = {1 3 0};
P2 = {1 2 1 1 2 1}; Pi2 = {2 1 2};
T1 = {5.0 6.1 4.0 6.0 6.9 8.0};
T2 = {11.0 12.1 10.1 10.9 13.0 13.0};
net = newlind([P1; P2],[T1; T2],[Pi1; Pi2]);
Y = sim(net,[P1; P2],[Pi1; Pi2]);
Y1 = Y(1,:)
Y2 = Y(2,:)

Algorithm newlind calculates weight W and bias B values for a linear layer from inputs P 
and targets T by solving this linear equation in the least squares sense:

[W b] * [P; ones] = T

See Also sim, newlin
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14newlvqPurpose Create a learning vector quantization network

Syntax net = newlvq

net = newlvq(PR,S1,PC,LR,LF)

Description Learning vector quantization (LVQ) networks are used to solve classification 
problems.

net = newlvq creates a new network with a dialog box.

net = newlvq(PR,S1,PC,LR,LF) takes these inputs,

PR  R x 2 matrix of min and max values for R input elements

S1  Number of hidden neurons

PC  S2 element vector of typical class percentages

LR  Learning rate, default = 0.01

LF  Learning function, default = 'learnlv2'

returns a new LVQ network.

The learning function LF can be learnlv1 or learnlv2.

Properties newlvq creates a two-layer network. The first layer uses the compet transfer 
function, calculates weighted inputs with negdist, and net input with netsum. 
The second layer has purelin neurons, calculates weighted input with dotprod 
and net inputs with netsum. Neither layer has biases.

First layer weights are initialized with midpoint. The second layer weights are 
set so that each output neuron i has unit weights coming to it from PC(i) 
percent of the hidden neurons.

Adaption and training are done with trains and trainr, which both update 
the first layer weights with the specified learning functions.

Examples The input vectors P and target classes Tc below define a classification problem 
to be solved by an LVQ network.

P = [-3 -2 -2  0  0  0  0 +2 +2 +3; ...
0 +1 -1 +2 +1 -1 -2 +1 -1  0];
Tc = [1 1 1 2 2 2 2 1 1 1];
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The target classes Tc are converted to target vectors T. Then, an LVQ network 
is created (with inputs ranges obtained from P, four hidden neurons, and class 
percentages of 0.6 and 0.4) and is trained.

T = ind2vec(Tc);
net = newlvq(minmax(P),4,[.6 .4]);
net = train(net,P,T);

The resulting network can be tested.

Y = sim(net,P)
Yc = vec2ind(Y)

See Also sim, init, adapt, train, trains, trainr, learnlv1, learnlv2
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14newpPurpose Create a perceptron

Syntax net = newp

net = newp(PR,S,TF,LF)

Description Perceptrons are used to solve simple (i.e. linearly separable) classification 
problems.

net = newp creates a new network with a dialog box.

net = newp(PR,S,TF,LF) takes these inputs,

PR  — R x 2 matrix of min and max values for R input elements

S   — Number of neurons

TF — Transfer function, default = 'hardlim'

LF — Learning function, default = 'learnp'

and returns a new perceptron.

The transfer function TF can be hardlim or hardlims. The learning function LF 
can be learnp or learnpn.

Properties Perceptrons consist of a single layer with the dotprod weight function, the 
netsum net input function, and the specified transfer function.

The layer has a weight from the input and a bias.

Weights and biases are initialized with initzero.

Adaption and training are done with trains and trainc, which both update 
weight and bias values with the specified learning function. Performance is 
measured with mae.

Examples This code creates a perceptron layer with one two-element input (ranges [0 1] 
and [-2 2]) and one neuron. (Supplying only two arguments to newp results in 
the default perceptron learning function learnp being used.)

net = newp([0 1; -2 2],1);

Here we simulate the network to a sequence of inputs P.

P1 = {[0; 0] [0; 1] [1; 0] [1; 1]};
Y = sim(net,P1)
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Here we define a sequence of targets T (together P and T define the operation of 
an AND gate), and then let the network adapt for 10 passes through the 
sequence. We then simulate the updated network.

T1 = {0 0 0 1};
net.adaptParam.passes = 10;
net = adapt(net,P1,T1);
Y = sim(net,P1)

Now we define a new problem, an OR gate, with batch inputs P and targets T.

P2 = [0 0 1 1; 0 1 0 1];
T2 = [0 1 1 1];

Here we initialize the perceptron (resulting in new random weight and bias 
values), simulate its output, train for a maximum of 20 epochs, and then 
simulate it again.

net = init(net);
Y = sim(net,P2)
net.trainParam.epochs = 20;
net = train(net,P2,T2);
Y = sim(net,P2)

Notes Perceptrons can classify linearly separable classes in a finite amount of time. 
If input vectors have a large variance in their lengths, the learnpn can be 
faster than learnp.

See Also sim, init, adapt, train, hardlim, hardlims, learnp, learnpn, trains, trainc 
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14newpnnPurpose Design a probabilistic neural network

Syntax net = newpnn

net = newpnn(P,T,spread)

Description Probabilistic neural networks (PNN) are a kind of radial basis network 
suitable for classification problems.

net = newpnn creates a new network with a dialog box.

net = newpnn(P,T,spread)takes two or three arguments,

P      — R x Q matrix of Q input vectors

T          — S x Q matrix of Q target class vectors

spread — Spread of radial basis functions, default = 0.1

and returns a new probabilistic neural network.

If spread is near zero, the network will act as a nearest neighbor classifier. As 
spread becomes larger, the designed network will take into account several 
nearby design vectors.

Examples Here a classification problem is defined with a set of inputs P and class indices 
Tc.

P = [1 2 3 4 5 6 7];
Tc = [1 2 3 2 2 3 1];

Here the class indices are converted to target vectors, and a PNN is designed 
and tested.

T = ind2vec(Tc)
net = newpnn(P,T);
Y = sim(net,P)
Yc = vec2ind(Y)

Algorithm newpnn creates a two-layer network. The first layer has radbas neurons, and 
calculates its weighted inputs with dist, and its net input with netprod. The 
second layer has compet neurons, and calculates its weighted input with 
dotprod and its net inputs with netsum. Only the first layer has biases.
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newpnn sets the first layer weights to P', and the first layer biases are all set to 
0.8326/spread, resulting in radial basis functions that cross 0.5 at weighted 
inputs of +/- spread. The second layer weights W2 are set to T.

See Also sim, ind2vec, vec2ind, newrb, newrbe, newgrnn

References Wasserman, P.D., Advanced Methods in Neural Computing, New York: Van 
Nostrand Reinhold, pp. 35-55, 1993.
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14newrbPurpose Design a radial basis network

Syntax net = newrb

[net,tr] = newrb(P,T,goal,spread,MN,DF)

Description Radial basis networks can be used to approximate functions. newrb adds 
neurons to the hidden layer of a radial basis network until it meets the 
specified mean squared error goal.

net = newrb creates a new network with a dialog box.

newrb(P,T,goal,spread,MN, DF) takes two to these arguments,

P      — R x Q matrix of Q input vectors

T      — S x Q matrix of Q target class vectors

goal   — Mean squared error goal, default = 0.0

spread — Spread of radial basis functions, default = 1.0

MN        — Maximum number of neurons, default is Q

DF        — Number of neurons to add between displays, default = 25

and returns a new radial basis network.

The larger that spread is, the smoother the function approximation will be. Too 
large a spread means a lot of neurons will be required to fit a fast changing 
function. Too small a spread means many neurons will be required to fit a 
smooth function, and the network may not generalize well. Call newrb with 
different spreads to find the best value for a given problem.

Examples Here we design a radial basis network given inputs P and targets T.

P = [1 2 3];
T = [2.0 4.1 5.9];
net = newrb(P,T);

Here the network is simulated for a new input.

P = 1.5;
Y = sim(net,P)

Algorithm newrb creates a two-layer network. The first layer has radbas neurons, and 
calculates its weighted inputs with dist, and its net input with netprod. The 



newrb

14-175

second layer has purelin neurons, and calculates its weighted input with 
dotprod and its net inputs with netsum. Both layers have biases.

Initially the radbas layer has no neurons. The following steps are repeated 
until the network’s mean squared error falls below goal.

1 The network is simulated.

2 The input vector with the greatest error is found.

3 A radbas neuron is added with weights equal to that vector.

4 The purelin layer weights are redesigned to minimize error.

See Also sim, newrbe, newgrnn, newpnn
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14newrbePurpose Design an exact radial basis network

Syntax net = newrbe

net = newrbe(P,T,spread)

Description Radial basis networks can be used to approximate functions. newrbe very 
quickly designs a radial basis network with zero error on the design vectors.

net = newrbe creates a new network with a dialog box.

newrbe(P,T,spread) takes two or three arguments,

P          — R x Q matrix of Q input vectors

T          — S x Q matrix of Q target class vectors

spread — Spread of radial basis functions, default = 1.0

and returns a new exact radial basis network.

The larger the spread is, the smoother the function approximation will be. Too 
large a spread can cause numerical problems.

Examples Here we design a radial basis network given inputs P and targets T.

P = [1 2 3];
T = [2.0 4.1 5.9];
net = newrbe(P,T);

Here the network is simulated for a new input.

P = 1.5;
Y = sim(net,P)

Algorithm newrbe creates a two-layer network. The first layer has radbas neurons, and 
calculates its weighted inputs with dist, and its net input with netprod. The 
second layer has purelin neurons, and calculates its weighted input with 
dotprod and its net inputs with netsum. Both layers have biases.

newrbe sets the first layer weights to P', and the first layer biases are all set to 
0.8326/spread, resulting in radial basis functions that cross 0.5 at weighted 
inputs of +/- spread.

The second layer weights IW{2,1} and biases b{2} are found by simulating the 
first layer outputs A{1}, and then solving the following linear expression:
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[W{2,1} b{2}] * [A{1}; ones] = T

See Also sim, newrb, newgrnn, newpnn
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14newsomPurpose Create a self-organizing map

Syntax net = newsom

net = newsom(PR,[D1,D2,...],TFCN,DFCN,OLR,OSTEPS,TLR,TND)

Description Competitive layers are used to solve classification problems.

net = newsom creates a new network with a dialog box.

net = newsom (PR,[D1,D2,...],TFCN,DFCN,OLR,OSTEPS,TLR,TND) takes,

PR        — R x 2 matrix of min and max values for R input elements

Di        — Size of ith layer dimension, defaults = [5 8]

TFCN    — Topology function, default ='hextop'

DFCN   — Distance function, default ='linkdist'

OLR      — Ordering phase learning rate, default = 0.9

OSTEPS — Ordering phase steps, default = 1000

TLR      — Tuning phase learning rate, default = 0.02

TND      — Tuning phase neighborhood distance, default = 1

and returns a new self-organizing map.

The topology function TFCN can be hextop, gridtop, or randtop. The distance 
function can be linkdist, dist, or mandist.

Properties Self-organizing maps (SOM) consist of a single layer with the negdist weight 
function, netsum net input function, and the compet transfer function.

The layer has a weight from the input, but no bias. The weight is initialized 
with midpoint.

Adaption and training are done with trains and trainr, which both update 
the weight with learnsom.

Examples The input vectors defined below are distributed over an two-dimension input 
space varying over [0 2] and [0 1]. This data will be used to train a SOM with 
dimensions [3 5].

P = [rand(1,400)*2; rand(1,400)];
net = newsom([0 2; 0 1],[3 5]);



newsom

14-179

plotsom(net.layers{1}.positions)

Here the SOM is trained and the input vectors are plotted with the map that 
the SOM’s weights have formed.

net = train(net,P);
plot(P(1,:),P(2,:),'.g','markersize',20)
hold on
plotsom(net.iw{1,1},net.layers{1}.distances)
hold off

See Also sim, init, adapt, train



nncopy

14-180

14nncopyPurpose Copy matrix or cell array

Syntax nncopy(X,M,N)

Description nncopy(X,M,N) takes two arguments,

X — R x C matrix (or cell array)

M — Number of vertical copies

N — Number of horizontal copies

and returns a new (R*M) x (C*N) matrix (or cell array).

Examples x1 = [1 2 3; 4 5 6];
y1 = nncopy(x1,3,2)
x2 = {[1 2]; [3; 4; 5]}
y2 = nncopy(x2,2,3)
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14nnt2cPurpose Update NNT 2.0 competitive layer

Syntax net = nnt2c(PR,W,KLR,CLR)

Description nnt2c(PR,W,KLR,CLR) takes these arguments,

PR  — R x 2 matrix of min and max values for R input elements

W    — S x R weight matrix

KLR — Kohonen learning rate, default = 0.01

CLR — Conscience learning rate, default = 0.001

and returns a competitive layer.

Once a network has been updated, it can be simulated, initialized, or trained 
with sim, init, adapt, and train.

See Also newc
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14nnt2elmPurpose Update NNT 2.0 Elman backpropagation network 

Syntax net = nnt2elm(PR,W1,B1,W2,B2,BTF,BLF,PF)

Description nnt2elm(PR,W1,B1,W2,B2,BTF,BLF,PF) takes these arguments,

PR   — R x 2 matrix of min and max values for R input elements

W1   — S1 x (R+S1) weight matrix

B1   — S1 x 1 bias vector

W2   — S2 x S1 weight matrix

B2   — S2 x 1 bias vector

BTF — Backpropagation network training function, default = 'traingdx'

BLF — Backpropagation weight/bias learning function, default = 'learngdm'

PF   — Performance function, default = 'mse'

and returns a feed-forward network.

The training function BTF can be any of the backpropagation training functions 
such as traingd, traingdm, traingda, and traingdx. Large step-size 
algorithms, such as trainlm, are not recommended for Elman networks.

The learning function BLF can be either of the backpropagation learning 
functions such as learngd or learngdm.

The performance function can be any of the differentiable performance 
functions such as mse or msereg.

Once a network has been updated, it can be simulated, initialized, adapted, or 
trained with sim, init, adapt, and train.

See Also newelm
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14nnt2ffPurpose Update NNT 2.0 feed-forward network 

Syntax net = nnt2ff(PR,{W1 W2 ...},{B1 B2 ...},{TF1 TF2 ...},BTF,BLR,PF)

Description nnt2ff(PR,{W1 W2 ...},{B1 B2 ...},{TF1 TF2 ...},BTF,BLR,PF) takes 
these arguments,

PR  — R x 2 matrix of min and max values for R input elements

Wi  — Weight matrix for the ith layer

Bi  — Bias vector for the ith layer

TFi — Transfer function of ith layer, default = 'tansig'

BTF — Backpropagation network training function, default = 'traingdx'

BLF — Backpropagation weight/bias learning function, default = 'learngdm'

PF  — Performance function, default = 'mse'

and returns a feed-forward network.

The training function BTF can be any of the backpropagation training functions 
such as traingd, traingdm, traingda, traingdx or trainlm.

The learning function BLF can be either of the backpropagation learning 
functions such as learngd or learngdm.

The performance function can be any of the differentiable performance 
functions such as mse or msereg.

Once a network has been updated, it can be simulated, initialized, adapted, or 
trained with sim, init, adapt, and train.

See Also newff, newcf, newfftd, newelm
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14nnt2hopPurpose Update NNT 2.0 Hopfield recurrent network 

Syntax net = nnt2hop(W,B)

Description nnt2hop(W,B) takes these arguments,

W — S x S weight matrix

B — S x 1 bias vector

and returns a perceptron.

Once a network has been updated, it can be simulated, initialized, adapted, or 
trained with sim, init, adapt, and train.

See Also newhop
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14nnt2linPurpose Update NNT 2.0 linear layer 

Syntax net = nnt2lin(PR,W,B,LR)

Description nnt2lin(PR,W,B) takes these arguments,

PR — R x 2 matrix of min and max values for R input elements

W   — S x R weight matrix

B   — S x 1 bias vector

LR — Learning rate, default = 0.01

and returns a linear layer.

Once a network has been updated, it can be simulated, initialized, adapted, or 
trained with sim, init, adapt, and train.

See Also newlin
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14nnt2lvqPurpose Update NNT 2.0 learning vector quantization network 

Syntax net = nnt2lvq(PR,W1,W2,LR,LF)

Description nnt2lvq(PR,W1,W2,LR,LF) takes these arguments,

PR — R x 2 matrix of min and max values for R input elements

W1 — S1 x R weight matrix

W2 — S2 x S1 weight matrix

LR — Learning rate, default = 0.01

LF — Learning function, default = 'learnlv2'

and returns a radial basis network.

The learning function LF can be learnlv1 or learnlv2.

Once a network has been updated, it can be simulated, initialized, adapted, or 
trained with sim, init, adapt, and train.

See Also newlvq
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14nnt2pPurpose Update NNT 2.0 perceptron 

Syntax net = nnt2p(PR,W,B,TF,LF)

Description nnt2p(PR,W,B,TF,LF) takes these arguments,

PR — R x 2 matrix of min and max values for R input elements

W   — S x R weight matrix

B   — S x 1 bias vector

TF — Transfer function, default = 'hardlim'

LF — Learning function, default = 'learnp'

and returns a perceptron.

The transfer function TF can be hardlim or hardlims. The learning function LF 
can be learnp or learnpn.

Once a network has been updated, it can be simulated, initialized, adapted, or 
trained with sim, init, adapt, and train.

See Also newp
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14nnt2rbPurpose Update NNT 2.0 radial basis network 

Syntax net = nnt2rb(PR,W1,B1,W2,B2)

Description nnt2rb(PR,W1,B1,W2,B2) takes these arguments,

PR — R x 2 matrix of min and max values for R input elements

W1 — S1 x R weight matrix

B1 — S1 x 1 bias vector

W2 — S2 x S1 weight matrix

B2 — S2 x 1 bias vector

and returns a radial basis network.

Once a network has been updated, it can be simulated, initialized, adapted, or 
trained with sim, init, adapt, and train.

See Also newrb, newrbe, newgrnn, newpnn
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14nnt2somPurpose Update NNT 2.0 self-organizing map 

Syntax net = nnt2som(PR,[D1,D2,...],W,OLR,OSTEPS,TLR,TND)

Description nnt2som(PR,[D1,D2,...],W,OLR,OSTEPS,TLR,TND) takes these arguments,

PR      — R x 2 matrix of min and max values for R input elements

Di      — Size of ith layer dimension

W          — S x R weight matrix

OLR      — Ordering phase learning rate, default = 0.9

OSTEPS — Ordering phase steps, default = 1000

TLR       — Tuning phase learning rate, default = 0.02

TND       — Tuning phase neighborhood distance, default = 1

and returns a self-organizing map.

nnt2som assumes that the self-organizing map has a grid topology (gridtop) 
using link distances (linkdist). This corresponds with the neighborhood 
function in NNT 2.0.

The new network will only output 1 for the neuron with the greatest net input. 
In NNT 2.0 the network would also output 0.5 for that neuron’s neighbors.

Once a network has been updated, it can be simulated, initialized, adapted, or 
trained with sim, init, adapt, and train.

See Also newsom



nntool

14-190

14nntoolPurpose Neural Network Tool - Graphical User Interface

Syntax nntool

Description nntool opens the Network/Data Manager window, which allows you to import, 
create, use, and export neural networks and data.
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14normcPurpose Normalize the columns of a matrix

Syntax normc(M)

Description normc(M) normalizes the columns of M to a length of 1.

Examples m = [1 2; 3 4];
normc(m)
ans =

0.3162 0.4472
0.9487 0.8944

See Also normr
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14normprodPurpose Normalized dot product weight function

Syntax Z = normprod(W,P)

df = normprod('deriv')

Description normprod is a weight function. Weight functions apply weights to an input to 
get weighted inputs.

normprod(W,P) takes these inputs,

W — S x R weight matrix

P — R x Q matrix of Q input (column) vectors

and returns the S x Q matrix of normalized dot products.

normprod('deriv') returns '' because normprod does not have a derivative 
function.

Examples Here we define a random weight matrix W and input vector P and calculate the 
corresponding weighted input Z.

W = rand(4,3);
P = rand(3,1);
Z = normprod(W,P)

Network Use You can create a standard network that uses normprod by calling newgrnn.

To change a network so an input weight uses normprod, set 
net.inputWeight{i,j}.weightFcn to 'normprod'. For a layer weight, set 
net.inputWeight{i,j}.weightFcn to 'normprod'.

In either case call sim to simulate the network with normprod. See newgrnn for 
simulation examples.

Algorithm normprod returns the dot product normalized by the sum of the input vector 
elements.

z = w*p/sum(p)

See Also sim, dotprod, negdist, dist
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14normrPurpose Normalize the rows of a matrix

Syntax normr(M)

Description normr(M) normalizes the columns of M to a length of 1.

Examples m = [1 2; 3 4];
normr(m)
ans =

 0.4472 0.8944
0.6000 0.8000

See Also normc
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14plotbr

Purpose Plot network performance for Bayesian regularization training.

Syntax plotbr(TR,name,epoch)

Description plotbr(tr,name,epoch) takes these inputs,

TR      — Training record returned by train

name  — Training function name, default = ''

epoch — Number of epochs, default = length of training record

and plots the training sum squared error, the sum squared weight, and the 
effective number of parameters.

Examples Here are input values P and associated targets T.

p = [-1:.05:1];
t = sin(2*pi*p)+0.1*randn(size(p));

The code below creates a network and trains it on this problem.

net=newff([-1 1],[20,1],{'tansig','purelin'},'trainbr');
[net,tr] = train(net,p,t);

During training plotbr was called to display the training record. You can also 
call plotbr directly with the final training record TR, as shown below.

plotbr(tr)
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14plotepPurpose Plot a weight-bias position on an error surface

Syntax h = plotep(W,B,E)
h = plotep(W,B,E,H)

Description plotep is used to show network learning on a plot already created by plotes.

plotep(W,B,E) takes these arguments,

W — Current weight value

B — Current bias value

E — Current error

and returns a vector H, containing information for continuing the plot.

plotep(W,B,E,H) continues plotting using the vector H returned by the last call 
to plotep.

H contains handles to dots plotted on the error surface, so they can be deleted 
next time, as well as points on the error contour, so they can be connected.

See Also errsurf, plotes
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14plotesPurpose Plot the error surface of a single input neuron

Syntax plotes(WV,BV,ES,V)

Description plotes(WV,BV,ES,V) takes these arguments,

WV — 1 x N row vector of values of W

BV — 1 x M row vector of values of B

ES — M x N matrix of error vectors

V   — View, default = [-37.5, 30]

and plots the error surface with a contour underneath.

Calculate the error surface ES with errsurf.

Examples p = [3 2];
t = [0.4 0.8];
wv = -4:0.4:4; bv = wv;
ES = errsurf(p,t,wv,bv,'logsig');
plotes(wv,bv,ES,[60 30])

See Also errsurf
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14plotpcPurpose Plot a classification line on a perceptron vector plot

Syntax plotpc(W,B)

plotpc(W,B,H)

Description plotpc(W,B) takes these inputs,

W — S x R weight matrix (R must be 3 or less)

B — S x 1 bias vector

and returns a handle to a plotted classification line.

plotpc(W,B,H) takes anadditional input,

H — Handle to last plotted line

and deletes the last line before plotting the new one.

This function does not change the current axis and is intended to be called after 
plotpv.

Examples The code below defines and plots the inputs and targets for a perceptron:

p = [0 0 1 1; 0 1 0 1];
t = [0 0 0 1];
plotpv(p,t)

The following code creates a perceptron with inputs ranging over the values in 
P, assigns values to its weights and biases, and plots the resulting classification 
line.

net = newp(minmax(p),1);
net.iw{1,1} = [-1.2 -0.5];
net.b{1} = 1;
plotpc(net.iw{1,1},net.b{1})

See Also plotpv
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14plotperfPurpose Plot network performance

Syntax plotperf(TR,goal,name,epoch)

Description plotperf(TR,goal,name,epoch) takes these inputs,

TR       — Training record returned by train.

goal   — Performance goal, default = NaN.

name   — Training function name, default = ''.

epoch — Number of epochs, default = length of training record.

and plots the training performance, and if available, the performance goal, 
validation performance, and test performance.

Examples Here are eight input values P and associated targets T, plus a like number of 
validation inputs VV.P and targets VV.T.

P = 1:8; T = sin(P);
VV.P = P; VV.T = T+rand(1,8)*0.1;

The code below creates a network and trains it on this problem.

net = newff(minmax(P),[4 1],{'tansig','tansig'});
[net,tr] = train(net,P,T,[],[],VV);

During training plotperf was called to display the training record. You can 
also call plotperf directly with the final training record TR, as shown below.

plotperf(tr)
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14plotpvPurpose Plot perceptron input/target vectors

Syntax plotpv(P,T)

plotpv(P,T,V)

Description plotpv(P,T) take these inputs,

P — R x Q matrix of input vectors (R must be 3 or less)

T — S x Q matrix of binary target vectors (S must be 3 or less)

and plots column vectors in P with markers based on T

plotpv(P,T,V) takes an additional input,

V — Graph limits = [x_min x_max y_min y_max]

and plots the column vectors with limits set by V.

Examples The code below defines and plots the inputs and targets for a perceptron:

p = [0 0 1 1; 0 1 0 1];
t = [0 0 0 1];
plotpv(p,t)

The following code creates a perceptron with inputs ranging over the values in 
P, assigns values to its weights and biases, and plots the resulting classification 
line.

net = newp(minmax(p),1);
net.iw{1,1} = [-1.2 -0.5];
net.b{1} = 1;
plotpc(net.iw{1,1},net.b{1})

See Also plotpc
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14plotsomPurpose Plot self-organizing map

Syntax plotsom(pos)

plotsom(W,D,ND)

Description plotsom(pos) takes one argument,

POS — NxS matrix of S N-dimension neural positions and plots the neuron 
positions with red dots, linking the neurons within a Euclidean distance of 1

plotsom(W,d,nd) takes three arguments,

W   — SxR weight matrix

D   — SxS distance matrix

ND — Neighborhood distance, default = 1

and plots the neuron’s weight vectors with connections between weight vectors 
whose neurons are within a distance of 1.

Examples Here are some neat plots of various layer topologies:

pos = hextop(5,6); plotsom(pos)
pos = gridtop(4,5); plotsom(pos)
pos = randtop(18,12); plotsom(pos)
pos = gridtop(4,5,2); plotsom(pos)
pos = hextop(4,4,3); plotsom(pos)

See newsom for an example of plotting a layer’s weight vectors with the input 
vectors they map.

See Also newsom, learnsom, initsom.
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14plotvPurpose Plot vectors as lines from the origin

Syntax plotv(M,T)

Description plotv(M,T) takes two inputs,

M — R x Q matrix of Q column vectors with R elements

T — (optional) the line plotting type, default = '-'

and plots the column vectors of M.

R must be 2 or greater. If R is greater than two, only the first two rows of M are 
used for the plot.

Examples plotv([-.4 0.7 .2; -0.5 .1 0.5],'-')
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14plotvecPurpose Plot vectors with different colors

Syntax plotvec(X,C,M)

Description plotvec(X,C,M) takes these inputs,

X — Matrix of (column) vectors

C — Row vector of color coordinate

M — Marker, default = '+'

and plots each ith vector in X with a marker M and using the ith value in C as 
the color coordinate.

plotvec(X) only takes a matrix X and plots each ith vector in X with marker 
'+' using the index i as the color coordinate.

Examples x = [0 1 0.5 0.7; -1 2 0.5 0.1];
c = [1 2 3 4];
plotvec(x,c)
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14pnormcPurpose Pseudo-normalize columns of a matrix

Syntax pnormc(X,R)

Description pnormc(X,R) takes these arguments,

X — M x N matrix

R — (optional) radius to normalize columns to, default = 1

and returns X with an additional row of elements, which results in new column 
vector lengths of R.

Caution: For this function to work properly, the columns of X must originally 
have vector lengths less than R.

Examples x = [0.1 0.6; 0.3 0.1];
y = pnormc(x)

See Also normc, normr
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14poslinPurpose Positive linear transfer function

Graph and 
Symbol

Syntax A = poslin(N)

info = poslin(code)

Description poslin is a transfer function. Transfer functions calculate a layer’s output from 
its net input.

poslin(N) takes one input,

N — S x Q matrix of net input (column) vectors

and returns the maximum of 0 and each element of N.

poslin(code) returns useful information for each code string:

'deriv'   — Name of derivative function

'name'   — Full name

'output' — Output range

'active' — Active input range

Examples Here is the code to create a plot of the poslin transfer function.

n = -5:0.1:5;
a = poslin(n);
plot(n,a)

Network Use To change a network so that a layer uses poslin, set 
net.layers{i}.transferFcn to 'poslin'.

n
0

-1

+1

a = poslin(n)

Positive Linear Transfer Funct.

a

��1
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Call sim to simulate the network with poslin.

Algorithm The transfer function poslin returns the output n if n is greater than or equal 
to zero and 0 if n is less than or equal to zero.

poslin(n) = n, if n >= 0; = 0, if n <= 0.

See Also sim, purelin, satlin, satlins
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14postmnmxPurpose Postprocess data that has been preprocessed by premnmx

Syntax [P,T] = postmnmx(PN,minp,maxp,TN,mint,maxt)

[p] = postmnmx(PN,minp,maxp)

Description postmnmx postprocesses the network training set that was preprocessed by 
premnmx. It converts the data back into unnormalized units.

postmnmx takes these inputs,

PN     — R x Q matrix of normalized input vectors

minp — R x 1 vector containing minimums for each P

maxp — R x 1 vector containing maximums for each P

TN     — S x Q matrix of normalized target vectors

mint — S x 1 vector containing minimums for each T

maxt — S x 1 vector containing maximums for each T

and returns,

P — R x Q matrix of input (column) vectors

T — R x Q matrix of target vectors

Examples In this example we normalize a set of training data with premnmx, create and 
train a network using the normalized data, simulate the network, unnormalize 
the output of the network using postmnmx, and perform a linear regression 
between the network outputs (unnormalized) and the targets to check the 
quality of the network training.

p = [-0.92 0.73 -0.47 0.74 0.29; -0.08 0.86 -0.67 -0.52 0.93];
t = [-0.08 3.4 -0.82 0.69 3.1];
[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t);
net = newff(minmax(pn),[5 1],{'tansig' 'purelin'},'trainlm');
net = train(net,pn,tn);
an = sim(net,pn);
[a] = postmnmx(an,mint,maxt);
[m,b,r] = postreg(a,t);

Algorithm p = 0.5(pn+1)*(maxp-minp) + minp;
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See Also premnmx, prepca, poststd
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14postregPurpose Postprocess the trained network response with a linear regression

Syntax [M,B,R] = postreg(A,T)

Description postreg postprocesses the network training set by performing a linear 
regression between each element of the network response and the 
corresponding target.

postreg(A,T) takes these inputs,

A — 1 x Q array of network outputs. One element of the network output

T — 1 x Q array of targets. One element of the target vector

and returns,

M — Slope of the linear regression

B — Y intercept of the linear regression

R — Regression R-value.  R=1 means perfect correlation

Examples In this example we normalize a set of training data with prestd, perform a 
principal component transformation on the normalized data, create and train 
a network using the pca data, simulate the network, unnormalize the output 
of the network using poststd, and perform a linear regression between the 
network outputs (unnormalized) and the targets to check the quality of the 
network training.

p = [-0.92 0.73 -0.47 0.74 0.29; -0.08 0.86 -0.67 -0.52 0.93];
t = [-0.08 3.4 -0.82 0.69 3.1];
[pn,meanp,stdp,tn,meant,stdt] = prestd(p,t);
[ptrans,transMat] = prepca(pn,0.02);
net = newff(minmax(ptrans),[5 1],{'tansig''purelin'},'trainlm');
net = train(net,ptrans,tn);
an = sim(net,ptrans);
a = poststd(an,meant,stdt);
[m,b,r] = postreg(a,t);

Algorithm Performs a linear regression between the network response and the target, and 
then computes the correlation coefficient (R-value) between the network 
response and the target.
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See Also premnmx, prepca
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14poststdPurpose Postprocess data which has been preprocessed by prestd

Syntax [P,T] = poststd(PN,meanp,stdp,TN,meant,stdt)

[p] = poststd(PN,meanp,stdp)

Description poststd postprocesses the network training set that was preprocessed by 
prestd. It converts the data back into unnormalized units.

poststd takes these inputs,

PN      — R x Q matrix of normalized input vectors

meanp — R x 1 vector containing standard deviations for each P

stdp  — R x 1 vector containing standard deviations for each P

TN    — S x Q matrix of normalized target vectors

meant — S x 1 vector containing standard deviations for each T

stdt  — S x 1 vector containing standard deviations for each T

and returns,

P — R x Q matrix of input (column) vectors

T — S x Q matrix of target vectors

Examples In this example we normalize a set of training data with prestd, create and 
train a network using the normalized data, simulate the network, unnormalize 
the output of the network using poststd, and perform a linear regression 
between the network outputs (unnormalized) and the targets to check the 
quality of the network training.

p = [-0.92 0.73 -0.47 0.74 0.29; -0.08 0.86 -0.67 -0.52 0.93];
t = [-0.08 3.4 -0.82 0.69 3.1];
[pn,meanp,stdp,tn,meant,stdt] = prestd(p,t);
net = newff(minmax(pn),[5 1],{'tansig' 'purelin'},'trainlm');
net = train(net,pn,tn);
an = sim(net,pn);
a = poststd(an,meant,stdt);
[m,b,r] = postreg(a,t);

Algorithm p = stdp*pn + meanp;
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See Also premnmx, prepca, postmnmx, prestd
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14premnmxPurpose Preprocess data so that minimum is -1 and maximum is 1

Syntax [PN,minp,maxp,TN,mint,maxt] = premnmx(P,T)

[PN,minp,maxp] = premnmx(P)

Description premnmx preprocesses the network training set by normalizing the inputs and 
targets so that they fall in the interval [-1,1].

premnmx(P,T) takes these inputs,

P — R x Q matrix of input (column) vectors

T — S x Q matrix of target vectors

and returns,

PN     — R x Q matrix of normalized input vectors

minp — R x 1 vector containing minimums for each P

maxp — R x 1 vector containing maximums for each P

TN     — S x Q matrix of normalized target vectors

mint — S x 1 vector containing minimums for each T

maxt — S x 1 vector containing maximums for each T

Examples Here is the code to normalize a given data set so that the inputs and targets 
will fall in the range [-1,1].

p = [-10 -7.5 -5 -2.5 0 2.5 5 7.5 10];
t = [0 7.07 -10 -7.07 0 7.07 10 7.07 0];
[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t);

If you just want to normalize the input,

[pn,minp,maxp] = premnmx(p);

Algorithm pn = 2*(p-minp)/(maxp-minp) - 1;

See Also prestd, prepca, postmnmx
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14prepcaPurpose Principal component analysis

Syntax [ptrans,transMat] = prepca(P,min_frac)

Description prepca preprocesses the network input training set by applying a principal 
component analysis. This analysis transforms the input data so that the 
elements of the input vector set will be uncorrelated. In addition, the size of the 
input vectors may be reduced by retaining only those components which 
contribute more than a specified fraction (min_frac) of the total variation in 
the data set.

prepca(P,min_frac) takes these inputs

P              — R x Q matrix of centered input (column) vectors

min_frac — Minimum fraction variance component to keep

and returns

ptrans     — Transformed data set

transMat  — Transformation matrix

Examples Here is the code to perform a principal component analysis and retain only 
those components that contribute more than two percent to the variance in the 
data set. prestd is called first to create zero mean data, which is needed for 
prepca.

p=[-1.5 -0.58 0.21 -0.96 -0.79; -2.2 -0.87 0.31 -1.4  -1.2];
[pn,meanp,stdp] = prestd(p);
[ptrans,transMat] = prepca(pn,0.02);

Since the second row of p is almost a multiple of the first row, this example will 
produce a transformed data set that contains only one row.

Algorithm This routine uses singular value decomposition to compute the principal 
components. The input vectors are multiplied by a matrix whose rows consist 
of the eigenvectors of the input covariance matrix. This produces transformed 
input vectors whose components are uncorrelated and ordered according to the 
magnitude of their variance. 

Those components that contribute only a small amount to the total variance in 
the data set are eliminated. It is assumed that the input data set has already 
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been normalized so that it has a zero mean. The function prestd can be used 
to normalize the data.

See Also prestd, premnmx

References Jolliffe, I.T., Principal Component Analysis, New York: Springer-Verlag, 1986.
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14prestdPurpose Preprocess data so that its mean is 0 and the standard deviation is 1

Syntax [pn,meanp,stdp,tn,meant,stdt] = prestd(p,t)

[pn,meanp,stdp] = prestd(p)

Description prestd preprocesses the network training set by normalizing the inputs and 
targets so that they have means of zero and standard deviations of 1.

prestd(p,t) takes these inputs,

p — R x Q matrix of input (column) vectors

t — S x Q matrix of target vectors

and returns,

pn      — R x Q matrix of normalized input vectors

meanp — R x 1 vector containing mean for each P

stdp  — R x 1 vector containing standard deviations for each P

tn    — S x Q matrix of normalized target vectors

meant — S x 1 vector containing mean for each T

stdt  — S x 1 vector containing standard deviations for each T

Examples Here is the code to normalize a given data set so that the inputs and targets 
will have means of zero and standard deviations of 1.

p = [-0.92 0.73 -0.47 0.74 0.29; -0.08 0.86 -0.67 -0.52 0.93];
t = [-0.08 3.4 -0.82 0.69 3.1];
[pn,meanp,stdp,tn,meant,stdt] = prestd(p,t);

If you just want to normalize the input,

[pn,meanp,stdp] = prestd(p);

Algorithm pn = (p-meanp)/stdp;

See Also premnmx, prepca
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14purelinPurpose Linear transfer function

Graph and 
Symbol

Syntax A = purelin(N)
info = purelin(code)

Description purelin is a transfer function. Transfer functions calculate a layer’s output 
from its net input.

purelin(N) takes one input,

N — S x Q matrix of net input (column) vectors

and returns N.

purelin(code) returns useful information for each code string:

'deriv'  — Name of derivative function

'name'    — Full name

'output' — Output range

'active' — Active input range

Examples Here is the code to create a plot of the purelin transfer function.

n = -5:0.1:5;
a = purelin(n);
plot(n,a)

Network Use You can create a standard network that uses purelin by calling newlin or 
newlind.

n
0

-1

+1

�
�

a = purelin(n)

Linear Transfer Function

a
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To change a network so a layer uses purelin, set net.layers{i}.transferFcn 
to 'purelin'.

In either case, call sim to simulate the network with purelin. See newlin or 
newlind for simulation examples.

Algorithm purelin(n) = n

See Also sim, dpurelin, satlin, satlins
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14quantPurpose Discretize values as multiples of a quantity

Syntax quant(X,Q)

Description quant(X,Q) takes two inputs,

X — Matrix, vector or scalar

Q — Minimum value

and returns values in X rounded to nearest multiple of Q.

Examples x = [1.333 4.756 -3.897];
y = quant(x,0.1)
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14radbasPurpose Radial basis transfer function

Graph and 
Symbol

Syntax A = radbas(N)
info = radbas(code)

Description radbas is a transfer function. Transfer functions calculate a layer’s output from 
its net input.

radbas(N) takes one input,

N — S x Q matrix of net input (column) vectors

and returns each element of N passed through a radial basis function.

radbas(code) returns useful information for each code string:

'deriv'  — Name of derivative function

'name'    — Full name

'output' — Output range

'active' — Active input range

Examples Here we create a plot of the radbas transfer function.

n = -5:0.1:5;
a = radbas(n);
plot(n,a)

Network Use You can create a standard network that uses radbas by calling newpnn or 
newgrnn.

a = radbas(n)

Radial Basis Function

n0.0

1.0

+0.833-0.833

a

0.5 ��
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To change a network so that a layer uses radbas, set 
net.layers{i}.transferFcn to 'radbas'.

In either case, call sim to simulate the network with radbas. See newpnn or 
newgrnn for simulation examples.

Algorithm radbas(N) calculates its output as:

a = exp(-n2)

See Also sim, tribas, dradbas
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14randncPurpose Normalized column weight initialization function

Syntax W = randnc(S,PR)
W = randnc(S,R)

Description randnc is a weight initialization function.

randnc(S,P) takes two inputs,

S   — Number of rows (neurons)

PR — R x 2 matrix of input value ranges = [Pmin Pmax]

and returns an S x R random matrix with normalized columns.

Can also be called as randnc(S,R).

Examples A random matrix of four normalized three-element columns is generated:

M = randnc(3,4)
M =

0.6007   0.4715   0.2724    0.5596
0.7628   0.6967   0.9172    0.7819
0.2395    0.5406   0.2907    0.2747

See Also randnr
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14randnrPurpose Normalized row weight initialization function

Syntax W = randnr(S,PR)
W = randnr(S,R)

Description randnr is a weight initialization function.

randnr(S,PR) takes two inputs,

S  — Number of rows (neurons)

PR — R x 2 matrix of input value ranges = [Pmin Pmax]

and returns an S x R random matrix with normalized rows.

Can also be called as randnr(S,R).

Examples A matrix of three normalized four-element rows is generated:

M = randnr(3,4)
M =

0.9713 0.0800 0.1838 0.1282
0.8228 0.0338 0.1797 0.5381
0.3042 0.5725 0.5436 0.5331

See Also randnc
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14randsPurpose Symmetric random weight/bias initialization function

Syntax W = rands(S,PR)
M = rands(S,R)
v = rands(S);

Description rands is a weight/bias initialization function.

rands(S,PR) takes,

S  — Number of neurons

PR — R x 2 matrix of R input ranges

and returns an S-by-R weight matrix of random values between -1 and 1.

rands(S,R) returns an S-by-R matrix of random values. rands(S) returns an 
S-by-1 vector of random values.

Examples Here three sets of random values are generated with rands.

rands(4,[0 1; -2 2])
rands(4)
rands(2,3)

Network Use To prepare the weights and the bias of layer i of a custom network to be 
initialized with rands

1 Set net.initFcn to 'initlay'. (net.initParam will automatically become 
initlay’s default parameters.)

2 Set net.layers{i}.initFcn to 'initwb'.

3 Set each net.inputWeights{i,j}.initFcn to 'rands'. Set each 
net.layerWeights{i,j}.initFcn to 'rands'. Set each 
net.biases{i}.initFcn to 'rands'.

To initialize the network call init.

See Also randnr, randnc, initwb, initlay, init
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14randtopPurpose Random layer topology function

Syntax pos = randtop(dim1,dim2,...,dimN)

Description randtop calculates the neuron positions for layers whose neurons are arranged 
in an N dimensional random pattern.

randtop(dim1,dim2,...,dimN)) takes N arguments,

dimi — Length of layer in dimension i

and returns an N x S matrix of N coordinate vectors, where S is the product of 
dim1*dim2*...*dimN.

Examples This code creates and displays a two-dimensional layer with 192 neurons 
arranged in a 16-by-12 random pattern.

pos = randtop(16,12); plotsom(pos)

This code plots the connections between the same neurons, but shows each 
neuron at the location of its weight vector. The weights are generated randomly 
so that the layer is very unorganized, as is evident in the plot.

W = rands(192,2); plotsom(W,dist(pos))

See Also gridtop, hextop
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14revertPurpose Change network weights and biases to previous initialization values

Syntax net = revert(net)

Description revert (net) returns neural network net with weight and bias values  
restored to the values generated the last time the network was initialized.

If the network has been altered so that it has different weight and bias 
connections or different input or layer sizes, then revert cannot set the 
weights and biases to their previous values and they will be set to zeros 
instead.

Examples Here a perceptron is created with a two-element input (with ranges  of 0 to 1, 
and -2 to 2) and one neuron. Once it is created we can display the neuron’s 
weights and bias.

net = newp([0 1;-2 2],1);

  The initial network has weights and biases with zero values.

net.iw{1,1}, net.b{1}

 We can change these values as follows.

net.iw{1,1} = [1 2]; 
net.b{1} = 5;
net.iw{1,1}, net.b{1}

 We can recover the network’s initial values as follows.

net = revert(net);
net.iw{1,1}, net.b{1}

See Also init, sim, adapt, train.
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14satlinPurpose Saturating linear transfer function

Graph and 
Symbol

Syntax A = satlin(N)
info = satlin(code)

Description satlin is a transfer function. Transfer functions calculate a layer’s output from 
its net input.

satlin(N)  takes one input,

N — S x Q matrix of net input (column) vectors

and returns values of N truncated into the interval [-1, 1].

satlin(code) returns useful information for each code string:

'deriv'  — Name of derivative function.

'name'    — Full name.

'output' — Output range.

'active' — Active input range.

Examples Here is the code to create a plot of the satlin transfer function.

n = -5:0.1:5;
a = satlin(n);
plot(n,a)

Network Use To change a network so that a layer uses satlin, set 
net.layers{i}.transferFcn to 'satlin'.

a = satlin(n)

n
0

-1

+1

+1-1

Satlin Transfer Function

�
�

a
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Call sim to simulate the network with satlin. See newhop for simulation 
examples.

Algorithm satlin(n) = 0, if n <= 0; n, if 0 <= n <= 1; 1, if 1 <= n.

See Also sim, poslin, satlins, purelin
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14satlinsPurpose Symmetric saturating linear transfer function

Graph and 
Symbol

Syntax A = satlins(N)
info = satlins(code)

Description satlins is a transfer function. Transfer functions calculate a layer’s output 
from its net input.

satlins(N)  takes one input,

N — S x Q matrix of net input (column) vectors

and returns values of N truncated into the interval [-1, 1].

satlins(code) returns useful information for each code string:

'deriv'  — Name of derivative function

'name'    — Full name

'output' — Output range

'active' — Active input range

Examples Here is the code to create a plot of the satlins transfer function.

n = -5:0.1:5;
a = satlins(n);
plot(n,a)

Network Use You can create a standard network that uses satlins by calling newhop.

��
��

a = satlins(n)

n
0
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+1-1

Satlins Transfer Function

a
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To change a network so that a layer uses satlins, set 
net.layers{i}.transferFcn to 'satlins'.

In either case, call sim to simulate the network with satlins. See newhop for 
simulation examples.

Algorithm satlins(n) = -1, if n <= -1; n, if -1 <= n <= 1; 1, if 1 <= n.

See Also sim, satlin, poslin, purelin
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14seq2conPurpose Convert sequential vectors to concurrent vectors

Syntax b = seq2con(s)

Description The Neural Network Toolbox represents batches of vectors with a matrix, and 
sequences of vectors with multiple columns of a cell array.

seq2con and con2seq allow concurrent vectors to be converted to sequential 
vectors, and back again.

seq2con(S) takes one input,

S — N x TS cell array of matrices with M columns

and returns,

B — N x 1 cell array of matrices with M*TS columns.

Examples Here three sequential values are converted to concurrent values.

p1 = {1 4 2}
p2 = seq2con(p1)

Here two sequences of vectors over three time steps are converted to concurrent 
vectors.

p1 = {[1; 1] [5; 4] [1; 2]; [3; 9] [4; 1] [9; 8]}
p2 = seq2con(p1)

See Also con2seq, concur
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14setxPurpose Set all network weight and bias values with a single vector

Syntax net = setx(net,X)

Description This function sets a networks weight and biases to a vector of values.

net = setx(net,X)

net — Neural network

X     — Vector of weight and bias values

Examples Here we create a network with a two-element input, and one layer of three 
neurons.

net = newff([0 1; -1 1],[3]);

The network has six weights (3 neurons * 2 input elements) and three biases 
(3 neurons) for a total of nine weight and bias values. We can set them to 
random values as follows:

net = setx(net,rand(9,1));

We can then view the weight and bias values as follows:

net.iw{1,1}
net.b{1}

See Also getx, formx
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14simPurpose Simulate a neural network

Syntax [Y,Pf,Af,E,perf] = sim(net,P,Pi,Ai,T)

[Y,Pf,Af,E,perf] = sim(net,{Q TS},Pi,Ai,T)

[Y,Pf,Af,E,perf] = sim(net,Q,Pi,Ai,T)

To Get Help Type help network/sim

Description sim simulates neural networks.

[Y,Pf,Af,E,perf] = sim(net,P,PiAi,T) takes,

net   — Network

P       — Network inputs

Pi     — Initial input delay conditions, default = zeros

Ai     — Initial layer delay conditions, default = zeros

T       — Network targets, default = zeros

and returns,

Y       — Network outputs

Pf     — Final input delay conditions

Af     — Final layer delay conditions

E       — Network errors

perf — Network performance

Note that arguments Pi, Ai, Pf, and Af are optional and need only be used for 
networks that have input or layer delays.

sim’s signal arguments can have two formats: cell array or matrix.
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The cell array format is easiest to describe. It is most convenient for networks 
with multiple inputs and outputs, and allows sequences of inputs to be 
presented:

P   — Ni x TS cell array, each element P{i,ts} is an Ri x Q matrix

Pi — Ni x ID cell array, each element Pi{i,k} is an Ri x Q matrix

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix

T   — Nt x TS cell array, each element P{i,ts} is an Vi x Q matrix

Y   — NO x TS cell array, each element Y{i,ts} is a Ui x Q matrix

Pf — Ni x ID cell array, each element Pf{i,k} is an Ri x Q matrix

Af — Nl x LD cell array, each element Af{i,k} is an Si x Q matrix

E   — Nt x TS cell array, each element P{i,ts} is an Vi x Q matrix

where

Ni = net.numInputs

Nl = net.numLayers

No = net.numOutputs
D  = net.numInputDelays
LD = net.numLayerDelays

TS = Number of time steps

Q  = Batch size

Ri = net.inputs{i}.size
Si = net.layers{i}.size

Ui = net.outputs{i}.size

The columns of Pi, Ai, Pf, and Af are ordered from oldest delay condition to 
most recent:

Pi{i,k} = input i at time ts=k ID

Pf{i,k} = input i at time ts=TS+k ID

Ai{i,k} = layer output i at time ts=k LD

Af{i,k} = layer output i at time ts=TS+k LD

The matrix format can be used if only one time step is to be simulated 
(TS = 1). It is convenient for networks with only one input and output, but can 
also be used with networks that have more.
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Each matrix argument is found by storing the elements of the corresponding 
cell array argument into a single matrix:

P  — (sum of Ri) x Q matrix

Pi — (sum of Ri) x (ID*Q) matrix

Ai — (sum of Si) x (LD*Q) matrix

T  — (sum of Vi)xQ matrix

Y  — (sum of Ui) x Q matrix

Pf — (sum of Ri) x (ID*Q) matrix

Af — (sum of Si) x (LD*Q) matrix

E  — (sum of Vi)xQ matrix

[Y,Pf,Af] = sim(net,{Q TS},Pi,Ai) is used for networks which do not have 
an input, such as Hopfield networks, when cell array notation is used.

Examples Here newp is used to create a perceptron layer with a two-element input (with 
ranges of [0 1]), and a single neuron.

net = newp([0 1;0 1],1);

Here the perceptron is simulated for an individual vector, a batch of three 
vectors, and a sequence of three vectors.

p1 = [.2; .9]; a1 = sim(net,p1)
p2 = [.2 .5 .1; .9 .3 .7]; a2 = sim(net,p2)
p3 = {[.2; .9] [.5; .3] [.1; .7]}; a3 = sim(net,p3)

Here newlind is used to create a linear layer with a three-element input, two 
neurons.

net = newlin([0 2;0 2;0 2],2,[0 1]);

Here the linear layer is simulated with a sequence of two input vectors using 
the default initial input delay conditions (all zeros).

p1 = {[2; 0.5; 1] [1; 1.2; 0.1]};
[y1,pf] = sim(net,p1)

Here the layer is simulated for three more vectors using the previous final 
input delay conditions as the new initial delay conditions.

p2 = {[0.5; 0.6; 1.8] [1.3; 1.6; 1.1] [0.2; 0.1; 0]};
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[y2,pf] = sim(net,p2,pf)

Here newelm is used to create an Elman network with a one-element input, and 
a layer 1 with three tansig neurons followed by a layer 2 with two purelin 
neurons. Because it is an Elman network it has a tap delay line with a delay of 
1 going from layer 1 to layer 1.

net = newelm([0 1],[3 2],{'tansig','purelin'});

Here the Elman network is simulated for a sequence of three values using 
default initial delay conditions.

p1 = {0.2 0.7 0.1};
[y1,pf,af] = sim(net,p1)

Here the network is simulated for four more values, using the previous final 
delay conditions as the new initial delay conditions.

p2 = {0.1 0.9 0.8 0.4};
[y2,pf,af] = sim(net,p2,pf,af)

Algorithm sim uses these properties to simulate a network net.

net.numInputs, net.numLayers
net.outputConnect, net.biasConnect
net.inputConnect, net.layerConnect

These properties determine the network’s weight and bias values, and the 
number of delays associated with each weight:

net.IW{i,j}
net.LW{i,j}
net.b{i}
net.inputWeights{i,j}.delays
net.layerWeights{i,j}.delays

These function properties indicate how sim applies weight and bias values to 
inputs to get each layer’s output:

net.inputWeights{i,j}.weightFcn
net.layerWeights{i,j}.weightFcn
net.layers{i}.netInputFcn
net.layers{i}.transferFcn
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See Chapter 2, “Neuron Model and Network Architectures” for more 
information on network simulation.

See Also init, adapt, train, revert
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14softmaxPurpose Soft max transfer function

Graph and 
Symbol

Syntax A = softmax(N)

info = softmax(code)

Description softmax is a transfer function. Transfer functions calculate a layer’s output 
from its net input.

softmax(N) takes one input argument,

N — S x Q matrix of net input (column) vectors

and returns output vectors with elements between 0 and 1, but with their size 
relations intact.

softmax('code') returns information about this function.

These codes are defined:

'deriv'  — Name of derivative function.

'name'    — Full name.

'output' — Output range.

'active' — Active input range.

compet does not have a derivative function.

Examples Here we define a net input vector N, calculate the output, and plot both with 
bar graphs.

n = [0; 1; -0.5; 0.5];
a = softmax(n);
subplot(2,1,1), bar(n), ylabel('n')

Softmax Transfer Function S

0 1
-0.5

0.5

Input  n

0.17 0.46 0.1 0.28

Output  a

a = softmax(n)
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subplot(2,1,2), bar(a), ylabel('a')

Network Use To change a network so that a layer uses softmax, set 
net.layers{i,j}.transferFcn to 'softmax'.

Call sim to simulate the network with softmax. See newc or newpnn for 
simulation examples.

See Also sim, compet
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14srchbacPurpose One-dimensional minimization using backtracking

Syntax [a,gX,perf,retcode,delta,tol] = 
srchbac(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,TOL,ch_perf)

Description srchbac is a linear search routine. It searches in a given direction to locate the 
minimum of the performance function in that direction. It uses a technique 
called backtracking.

srchbac(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,TOL,ch_perf) 
takes these inputs,

net     — Neural network

X           — Vector containing current values of weights and biases

Pd         — Delayed input vectors

Tl      — Layer target vectors

Ai      — Initial input delay conditions

Q           — Batch size

TS         — Time steps

dX         — Search direction vector

gX      — Gradient vector

perf      — Performance value at current X

dperf    — Slope of performance value at current X in direction of dX

delta    — Initial step size

tol     — Tolerance on search

ch_perf — Change in performance on previous step

and returns,

a            — Step size, which minimizes performance

gX          — Gradient at new minimum point

perf    — Performance value at new minimum point

retcode — Return code which has three elements. The first two elements 
correspond to the number of function evaluations in the two stages of the 
search. The third element is a return code. These will have different 
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meanings for different search algorithms. Some may not be used in this 
function.

0 - normal; 1 - minimum step taken;

2 - maximum step taken; 3 - beta condition not met.

delta       — New initial step size. Based on the current step size

tol          — New tolerance on search

Parameters used for the backstepping algorithm are:

alpha     — Scale factor that determines sufficient reduction in perf

beta      — Scale factor that determines sufficiently large step size

low_lim    — Lower limit on change in step size

up_lim      — Upper limit on change in step size

maxstep    — Maximum step length

minstep    — Minimum step length

scale_tol — Parameter which relates the tolerance tol to the initial step 
size delta. Usually set to 20

The defaults for these parameters are set in the training function that calls it. 
See traincgf, traincgb, traincgp, trainbfg, trainoss.

Dimensions for these variables are:

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix

Tl — Nl x TS cell array, each element P{i,ts} is an Vi x Q matrix

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

Examples Here is a problem consisting of inputs p and targets t that we would like to 
solve with a network.
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p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

Here a two-layer feed-forward network is created. The network’s input ranges 
from [0 to 10]. The first layer has two tansig neurons, and the second layer 
has one logsig neuron. The traincgf network training function and the 
srchbac search function are to be used.

Create and Test a Network
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)

Train and Retest the Network
net.trainParam.searchFcn = 'srchbac';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

Network Use You can create a standard network that uses srchbac with newff, newcf, or 
newelm.

To prepare a custom network to be trained with traincgf, using the line search 
function srchbac

1 Set net.trainFcn to 'traincgf'. This will set net.trainParam to traincgf’s 
default parameters.

2 Set net.trainParam.searchFcn to 'srchbac'. 

The srchbac function can be used with any of the following training functions: 
traincgf, traincgb, traincgp, trainbfg, trainoss.

Algorithm srchbac locates the minimum of the performance function in the search 
direction dX, using the backtracking algorithm described on page 126 and 328 
of Dennis and Schnabel’s book noted below.

See Also srchcha, srchgol, srchhyb
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References Dennis, J. E., and R. B. Schnabel, Numerical Methods for Unconstrained 
Optimization and Nonlinear Equations, Englewood Cliffs, NJ: Prentice-Hall, 
1983.
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14srchbrePurpose One-dimensional interval location using Brent’s method

Syntax [a,gX,perf,retcode,delta,tol] = 
srchbre(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)

Description srchbre is a linear search routine. It searches in a given direction to locate the 
minimum of the performance function in that direction. It uses a technique 
called Brent’s technique.

srchbre(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf) 
takes these inputs,

net         — Neural network

X            — Vector containing current values of weights and biases

Pd          — Delayed input vectors

Tl      — Layer target vectors

Ai      — Initial input delay conditions

Q            — Batch size

TS          — Time steps

dX          — Search direction vector

gX          — Gradient vector

perf    — Performance value at current X

dperf     — Slope of performance value at current X in direction of dX

delta     — Initial step size

tol     — Tolerance on search

ch_perf — Change in performance on previous step

and returns,

a            — Step size, which minimizes performance

gX          — Gradient at new minimum point

perf    — Performance value at new minimum point

retcode — Return code, which has three elements. The first two elements 
correspond to the number of function evaluations in the two stages of the 
search. The third element is a return code. These will have different 
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meanings for different search algorithms. Some may not be used in this 
function.

0 - normal; 1 - minimum step taken;

2 - maximum step taken; 3 - beta condition not met.

delta       — New initial step size. Based on the current step size

tol         — New tolerance on search

Parameters used for the brent algorithm are:

alpha     — Scale factor, which determines sufficient reduction in perf

beta      — Scale factor, which determines sufficiently large step size

bmax      — Largest step size

scale_tol — Parameter which relates the tolerance tol to the initial step 
size delta. Usually set to 20

The defaults for these parameters are set in the training function that calls it. 
See traincgf, traincgb, traincgp, trainbfg, trainoss.

Dimensions for these variables are:

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix

Tl — Nl x TS cell array, each element P{i,ts} is an Vi x Q matrix

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

Examples Here is a problem consisting of inputs p and targets t that we would like to 
solve with a network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];
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Here a two-layer feed-forward network is created. The network’s input ranges 
from [0 to 10]. The first layer has two tansig neurons, and the second layer 
has one logsig neuron. The traincgf network training function and the 
srchbac search function are to be used.

Create and Test a Network
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)

Train and Retest the Network
net.trainParam.searchFcn = 'srchbre';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

Network Use You can create a standard network that uses srchbre with newff, newcf, or 
newelm.

To prepare a custom network to be trained with traincgf, using the line search 
function srchbre

1 Set net.trainFcn to 'traincgf'. This will set net.trainParam to traincgf’s 
default parameters.

2 Set net.trainParam.searchFcn to 'srchbre'. 

The srchbre function can be used with any of the following training functions: 
traincgf, traincgb, traincgp, trainbfg, trainoss.

Algorithm srchbre brackets the minimum of the performance function in the search 
direction dX, using Brent’s algorithm described on page 46 of Scales (see 
reference below). It is a hybrid algorithm based on the golden section search 
and the quadratic approximation.

See Also srchbac, srchcha, srchgol, srchhyb

References Scales, L. E., Introduction to Non-Linear Optimization, New York: 
Springer-Verlag, 1985.
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14srchchaPurpose One-dimensional minimization using Charalambous’ method

Syntax [a,gX,perf,retcode,delta,tol] = 
srchcha(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)

Description srchcha is a linear search routine. It searches in a given direction to locate the 
minimum of the performance function in that direction. It uses a technique 
based on Charalambous’ method.

srchcha(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf) 
takes these inputs,

net       — Neural network

X           — Vector containing current values of weights and biases

Pd         — Delayed input vectors

Tl         — Layer target vectors

Ai         — Initial input delay conditions

Q           — Batch size

TS         — Time steps

dX         — Search direction vector

gX         — Gradient vector

perf     — Performance value at current X

dperf    — Slope of performance value at current X in direction of dX

delta    — Initial step size

tol     — Tolerance on search

ch_perf — Change in performance on previous step

and returns,

a       — Step size, which minimizes performance

gX         — Gradient at new minimum point

perf      — Performance value at new minimum point

retcode — Return code, which has three elements. The first two elements 
correspond to the number of function evaluations in the two stages of the 
search. The third element is a return code. These will have different 
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meanings for different search algorithms. Some may not be used in this 
function.

0 - normal; 1 - minimum step taken;

2 - maximum step taken; 3 - beta condition not met.

delta        — New initial step size. Based on the current step size

tol          — New tolerance on search

Parameters used for the Charalambous algorithm are:

alpha        — Scale factor, which determines sufficient reduction in perf

beta          — Scale factor, which determines sufficiently large step size

gama          — Parameter to avoid small reductions in performance. Usually 
set to 0.1

scale_tol — Parameter, which relates the tolerance tol to the initial step 
size delta. Usually set to 20

The defaults for these parameters are set in the training function that calls it. 
See traincgf, traincgb, traincgp, trainbfg, trainoss.

Dimensions for these variables are

Pd  No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix

Tl  Nl x TS cell array, each element P{i,ts} is an Vi x Q matrix

Ai  Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

Examples Here is a problem consisting of inputs p and targets t that we would like to 
solve with a network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];
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Here a two-layer feed-forward network is created. The network’s input ranges 
from [0 to 10]. The first layer has two tansig neurons, and the second layer 
has one logsig neuron. The traincgf network training function and the 
srchcha search function are to be used.

Create and Test a Network
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)

Train and Retest the Network
net.trainParam.searchFcn = 'srchcha';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

Network Use You can create a standard network that uses srchcha with newff, newcf, or 
newelm.

To prepare a custom network to be trained with traincgf, using the line search 
function srchcha

1 Set net.trainFcn to 'traincgf'. This will set net.trainParam to traincgf’s 
default parameters.

2 Set net.trainParam.searchFcn to 'srchcha'. 

The srchcha function can be used with any of the following training functions: 
traincgf, traincgb, traincgp, trainbfg, trainoss.

Algorithm srchcha locates the minimum of the performance function in the search 
direction dX, using an algorithm based on the method described in 
Charalambous (see reference below).

See Also srchbac, srchbre, srchgol, srchhyb

References Charalambous, C.,“Conjugate gradient algorithm for efficient training of 
artificial neural networks,” IEEE Proceedings, vol. 139, no. 3, pp. 301–310, June 
1992.
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14srchgolPurpose One-dimensional minimization using golden section search

Syntax [a,gX,perf,retcode,delta,tol] = 
srchgol(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)

Description srchgol is a linear search routine. It searches in a given direction to locate the 
minimum of the performance function in that direction. It uses a technique 
called the golden section search.

srchgol(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf) 
takes these inputs,

net       — Neural network

X           — Vector containing current values of weights and biases

Pd         — Delayed input vectors

Tl         — Layer target vectors

Ai         — Initial input delay conditions

Q          — Batch size

TS         — Time steps

dX         — Search direction vector

gX         — Gradient vector

perf    — Performance value at current X

dperf     — Slope of performance value at current X in direction of dX

delta     — Initial step size

tol     — Tolerance on search

ch_perf — Change in performance on previous step

and returns,

a            — Step size, which minimizes performance

gX          — Gradient at new minimum point

perf    — Performance value at new minimum point

retcode — Return code, which has three elements. The first two elements 
correspond to the number of function evaluations in the two stages of the 
search. The third element is a return code. These will have different 
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meanings for different search algorithms. Some may not be used in this 
function.

0 - normal; 1 - minimum step taken;

2 - maximum step taken; 3 - beta condition not met.

delta     — New initial step size. Based on the current step size.

tol           — New tolerance on search

Parameters used for the golden section algorithm are:

alpha        — Scale factor, which determines sufficient reduction in perf

bmax          — Largest step size

scale_tol — Parameter, which relates the tolerance tol to the initial step 
size delta. Usually set to 20

The defaults for these parameters are set in the training function that calls it. 
See traincgf, traincgb, traincgp, trainbfg, trainoss.

Dimensions for these variables are:

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix

Tl — Nl x TS cell array, each element P{i,ts} is an Vi x Q matrix

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

Examples Here is a problem consisting of inputs p and targets t that we would like to 
solve with a network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

Here a two-layer feed-forward network is created. The network’s input ranges 
from [0 to 10]. The first layer has two tansig neurons, and the second layer 
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has one logsig neuron. The traincgf network training function and the 
srchgol search function are to be used.

Create and Test a Network
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)

Train and Retest the Network
net.trainParam.searchFcn = 'srchgol';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

Network Use You can create a standard network that uses srchgol with newff, newcf, or 
newelm.

To prepare a custom network to be trained with traincgf, using the line search 
function srchgol

1 Set net.trainFcn to 'traincgf'. This will set net.trainParam to traincgf’s 
default parameters.

2 Set net.trainParam.searchFcn to 'srchgol'. 

The srchgol function can be used with any of the following training functions: 
traincgf, traincgb, traincgp, trainbfg, trainoss.

Algorithm srchgol locates the minimum of the performance function in the search 
direction dX, using the golden section search. It is based on the algorithm as 
described on page 33 of Scales (see reference below).

See Also srchbac, srchbre, srchcha, srchhyb

References Scales, L. E., Introduction to Non-Linear Optimization, New York: 
Springer-Verlag, 1985.
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14srchhybPurpose One-dimensional minimization using a hybrid bisection-cubic search

Syntax [a,gX,perf,retcode,delta,tol] = 
srchhyb(net,X,P,T,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf)

Description srchhyb is a linear search routine. It searches in a given direction to locate the 
minimum of the performance function in that direction. It uses a technique 
that is a combination of a bisection and a cubic interpolation.

srchhyb(net,X,Pd,Tl,Ai,Q,TS,dX,gX,perf,dperf,delta,tol,ch_perf) 
takes these inputs,

net     — Neural network

X           — Vector containing current values of weights and biases

Pd         — Delayed input vectors

Tl          — Layer target vectors

Ai      — Initial input delay conditions

Q       — Batch size

TS          — Time steps

dX      — Search direction vector

gX          — Gradient vector

perf    — Performance value at current X

dperf   — Slope of performance value at current X in direction of dX

delta   — Initial step size

tol        — Tolerance on search

ch_perf — Change in performance on previous step

and returns,

a           — Step size, which minimizes performance

gX         — Gradient at new minimum point

perf    — Performance value at new minimum point

retcode — Return code, which has three elements. The first two elements 
correspond to the number of function evaluations in the two stages of the 
search. The third element is a return code. These will have different 
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meanings for different search algorithms. Some may not be used in this 
function.

0 - normal; 1 - minimum step taken;

2 - maximum step taken; 3 - beta condition not met.

delta     — New initial step size. Based on the current step size.

tol           — New tolerance on search

Parameters used for the hybrid bisection-cubic algorithm are:

alpha        — Scale factor, which determines sufficient reduction in perf

beta      — Scale factor, which determines sufficiently large step size

bmax      — Largest step size

scale_tol — Parameter, which relates the tolerance tol to the initial step 
size delta. Usually set to 20.

The defaults for these parameters are set in the training function that calls it. 
See traincgf, traincgb, traincgp, trainbfg, trainoss.

Dimensions for these variables are:

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix

Tl — Nl x TS cell array, each element P{i,ts} is an Vi x Q matrix

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

Examples Here is a problem consisting of inputs p and targets t that we would like to 
solve with a network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];
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Here a two-layer feed-forward network is created. The network’s input ranges 
from [0 to 10]. The first layer has two tansig neurons, and the second layer 
has one logsig neuron. The traincgf network training function and the 
srchhyb search function are to be used.

Create and Test a Network
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)

Train and Retest the Network
net.trainParam.searchFcn = 'srchhyb';
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

Network Use You can create a standard network that uses srchhyb with newff, newcf, or 
newelm.

To prepare a custom network to be trained with traincgf, using the line search 
function srchhyb

1 Set net.trainFcn to 'traincgf'. This will set net.trainParam to traincgf’s 
default parameters.

2 Set net.trainParam.searchFcn to 'srchhyb'. 

The srchhyb function can be used with any of the following training functions: 
traincgf, traincgb, traincgp, trainbfg, trainoss.

Algorithm srchhyb locates the minimum of the performance function in the search 
direction dX, using the hybrid bisection-cubic interpolation algorithm described 
on page 50 of Scales (see reference below).

See Also srchbac, srchbre, srchcha, srchgol

References Scales, L. E., Introduction to Non-Linear Optimization, New York: 
Springer-Verlag, 1985.
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14ssePurpose Sum squared error performance function

Syntax perf = sse(E,X,PP)

perf = sse(E,net,PP)

info = sse(code)

Description sse is a network performance function. It measures performance according to 
the sum of squared errors.

sse(E,X,PP) takes from one to three arguments,

E  — Matrix or cell array of error vector(s)

X   — Vector of all weight and bias values (ignored)

PP — Performance parameters (ignored)

and returns the sum squared error.

sse(E,net,PP) can take an alternate argument to X,

net — Neural network from which X can be obtained (ignored)

sse(code) returns useful information for each code string:

'deriv'        — Name of derivative function

'name'         — Full name

'pnames'      — Names of training parameters

'pdefaults' — Default training parameters

Examples Here a two-layer feed-forward is created with a 1-element input ranging from 
-10 to 10, four hidden tansig neurons, and one purelin output neuron.

net = newff([-10 10],[4 1],{'tansig','purelin'});

Here the network is given a batch of inputs P. The error is calculated by 
subtracting the output A from target T. Then the sum squared error is 
calculated.

p = [-10 -5 0 5 10];
t = [0 0 1 1 1];
y = sim(net,p)
e = t-y
perf = sse(e)
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Note that sse can be called with only one argument because the other 
arguments are ignored. sse supports those arguments to conform to the 
standard performance function argument list.

Network Use To prepare a custom network to be trained with sse, set net.performFcn to 
'sse'. This will automatically set net.performParam to the empty matrix [], as 
sse has no performance parameters.

Calling train or adapt will result in sse being used to calculate performance.

See Also dsse
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14sumsqrPurpose Sum squared elements of a matrix

Syntax sumsqr(m)

Description sumsqr(M) returns the sum of the squared elements in M.

Examples s = sumsqr([1 2;3 4])
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14tansigPurpose Hyperbolic tangent sigmoid transfer function

Graph and 
Symbol 

Syntax A = tansig(N)
info = tansig(code)

Description tansig is a transfer function. Transfer functions calculate a layer’s output from 
its net input.

tansig(N) takes one input,

N — S x Q matrix of net input (column) vectors

and returns each element of N squashed between -1 and 1.

tansig(code) return useful information for each code string:

'deriv'  — Name of derivative function

'name'    — Full name

'output' — Output range

'active' — Active input range

tansig is named after the hyperbolic tangent, which has the same shape. 
However, tanh may be more accurate and is recommended for applications that 
require the hyperbolic tangent.

Examples Here is the code to create a plot of the tansig transfer function.

n = -5:0.1:5;
a = tansig(n);
plot(n,a)

Tan-Sigmoid Transfer Function

a = tansig(n)

n
0

-1

+1

a
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Network Use You can create a standard network that uses tansig by calling newff or newcf.

To change a network so a layer uses tansig, set 
net.layers{i,j}.transferFcn to 'tansig'.

In either case, call sim to simulate the network with tansig. See newff or 
newcf for simulation examples.

Algorithm tansig(N) calculates its output according to:

n = 2/(1+exp(-2*n))-1

This is mathematically equivalent to tanh(N). It differs in that it runs faster 
than the MATLAB® implementation of tanh, but the results can have very 
small numerical differences. This function is a good trade off for neural 
networks, where speed is important and the exact shape of the transfer 
function is not.

See Also sim, dtansig, logsig

References Vogl, T. P., J.K. Mangis, A.K. Rigler, W.T. Zink, and D.L. Alkon, “Accelerating 
the convergence of the backpropagation method,” Biological Cybernetics, vol. 
59, pp. 257-263, 1988.
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14trainPurpose Train a neural network

Syntax [net,tr,Y,E,Pf,Af] = train(net,P,T,Pi,Ai,VV,TV)

To Get Help Type help network/train

Description train trains a network net according to net.trainFcn and net.trainParam.

train(NET,P,T,Pi,Ai,VV,TV) takes,

net — Neural Network

P    — Network inputs

T    — Network targets, default = zeros

Pi  — Initial input delay conditions, default = zeros

Ai  — Initial layer delay conditions, default = zeros

VV  — Structure of validation vectors, default = []

TV  — Structure of test vectors, default = []

and returns,

net — New network

TR  — Training record (epoch and perf)

Y    — Network outputs

E    — Network errors.

Pf  — Final input delay conditions

Af  — Final layer delay conditions

Note that T is optional and need only be used for networks that require targets. 
Pi and Pf are also optional and need only be used for networks that have input 
or layer delays.

Optional arguments VV and TV are described below.

train’s signal arguments can have two formats: cell array or matrix.
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The cell array format is easiest to describe. It is most convenient for networks 
with multiple inputs and outputs, and allows sequences of inputs to be 
presented:

P   — Ni x TS cell array, each element P{i,ts} is an Ri x Q matrix

T   — Nt x TS cell array, each element P{i,ts} is an Vi x Q matrix

Pi — Ni x ID cell array, each element Pi{i,k} is an Ri x Q matrix

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix

Y   — NO x TS cell array, each element Y{i,ts} is an Ui x Q matrix

E   — Nt x TS cell array, each element P{i,ts} is an Vi x Q matrix

Pf — Ni x ID cell array, each element Pf{i,k} is an Ri x Q matrix

Af — Nl x LD cell array, each element Af{i,k} is an Si x Q matrix

where

Ni = net.numInputs

Nl = net.numLayers

Nt = net.numTargets

ID = net.numInputDelays

LD = net.numLayerDelays

TS = Number of time steps

Q  = Batch size

Ri = net.inputs{i}.size

Si = net.layers{i}.size

Vi = net.targets{i}.size

The columns of Pi, Pf, Ai, and Af are ordered from the oldest delay condition to 
the most recent:

Pi{i,k} = input i at time ts=k ID.

Pf{i,k} = input i at time ts=TS+k ID.

Ai{i,k} = layer output i at time ts=k LD.

Af{i,k} = layer output i at time ts=TS+k LD.

The matrix format can be used if only one time step is to be simulated (TS = 1). 
It is convenient for networks with only one input and output, but can be used 
with networks that have more.
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Each matrix argument is found by storing the elements of the corresponding 
cell array argument into a single matrix:

P   — (sum of Ri) x Q matrix

T   — (sum of Vi) x Q matrix

Pi — (sum of Ri) x (ID*Q) matrix

Ai — (sum of Si) x (LD*Q) matrix

Y   — (sum of Ui) x Q matrix

E   — (sum of Vi) x Q matrix

Pf — (sum of Ri) x (ID*Q) matrix

Af — (sum of Si) x (LD*Q) matrix

If VV and TV are supplied they should be an empty matrix [] or a structure with 
the following fields:

VV.P,  TV.P  — Validation/test inputs

VV.T,  TV.T  — Validation/test targets, default = zeros

VV.Pi, TV.Pi — Validation/test initial input delay conditions, default =  
zeros

VV.Ai, TV.Ai — Validation/test layer delay conditions, default = zeros

The validation vectors are used to stop training early if further training on the 
primary vectors will hurt generalization to the validation vectors. Test vector 
performance can be used to measure how well the network generalizes beyond 
primary and validation vectors. If VV.T, VV.Pi, or VV.Ai are set to an empty 
matrix or cell array, default values will be used. The same is true for TV.T, 
TV.Pi, TV.Ai.

Examples Here input P and targets T define a simple function which we can plot:

p = [0 1 2 3 4 5 6 7 8];
t = [0 0.84 0.91 0.14 -0.77 -0.96 -0.28 0.66 0.99];
plot(p,t,'o')

Here newff is used to create a two-layer feed-forward network. The network 
will have an input (ranging from 0 to 8), followed by a layer of 10 tansig 
neurons, followed by a layer with 1 purelin neuron. trainlm backpropagation 
is used. The network is also simulated.

net = newff([0 8],[10 1],{'tansig' 'purelin'},'trainlm');
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y1 = sim(net,p)
plot(p,t,'o',p,y1,'x')

Here the network is trained for up to 50 epochs to a error goal of 0.01, and then 
resimulated.

net.trainParam.epochs = 50;
net.trainParam.goal = 0.01;
net = train(net,p,t);
y2 = sim(net,p)
plot(p,t,'o',p,y1,'x',p,y2,'*')

Algorithm train calls the function indicated by net.trainFcn, using the training 
parameter values indicated by net.trainParam.

Typically one epoch of training is defined as a single presentation of all input 
vectors to the network. The network is then updated according to the results of 
all those presentations.

Training occurs until a maximum number of epochs occurs, the performance 
goal is met, or any other stopping condition of the function net.trainFcn 
occurs.

Some training functions depart from this norm by presenting only one input 
vector (or sequence) each epoch. An input vector (or sequence) is chosen 
randomly each epoch from concurrent input vectors (or sequences). newc and 
newsom return networks that use trainr, a training function that presents 
each input vector once in random order.

See Also sim, init, adapt, revert
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14trainbPurpose Batch training with weight and bias learning rules.

Syntax [net,TR,Ac,El] = trainb(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = trainb(code)

Description trainb is not called directly. Instead it is called by train for networks whose 
net.trainFcn property is set to 'trainb'.

trainb trains a network with weight and bias learning rules with batch 
updates. The weights and biases are updated at the end of an entire pass 
through the input data.

trainb(net,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,

net — Neural network

Pd  — Delayed inputs

Tl  — Layer targets

Ai  — Initial input conditions

Q    — Batch size

TS  — Time steps

VV  — Empty matrix [] or structure of validation vectors

TV  — Empty matrix [] or structure of test vectors

and returns,

net — Trained network

TR   — Training record of various values over each epoch:

TR.epoch — Epoch number

TR.perf   — Training performance

TR.vperf — Validation performance

TR.tperf — Test performance

Ac  — Collective layer outputs for last epoch.

El  — Layer errors for last epoch
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Training occurs according to the trainb’s training parameters, shown here 
with their default values:

net.trainParam.epochs  100  Maximum number of epochs to train

net.trainParam.goal  0  Performance goal

net.trainParam.max_fail  5  Maximum validation failures

net.trainParam.show  25  Epochs between displays (NaN for no  
       displays)

net.trainParam.time  inf  Maximum time to train in seconds

Dimensions for these variables are:

Pd — No x Ni x TS cell array, each element Pd{i,j,ts} is a Dij x Q matrix

Tl — Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix or []

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV or TV is not [], it must be a structure of vectors:

VV.PD, TV.PD — Validation/test delayed inputs

VV.Tl, TV.Tl — Validation/test layer targets

VV.Ai, TV.Ai — Validation/test initial input conditions

VV.Q,  TV.Q   — Validation/test batch size

VV.TS, TV.TS — Validation/test time steps

Validation vectors are used to stop training early if the network performance 
on the validation vectors fails to improve or remains the same for max_fail 
epochs in a row. Test vectors are used as a further check that the network is 
generalizing well, but do not have any effect on training.



trainb

14-266

trainb(CODE) returns useful information for each CODE string:

'pnames'      — Names of training parameters

'pdefaults' — Default training parameters

Network Use You can create a standard network that uses trainb by calling newlin.

To prepare a custom network to be trained with trainb

1 Set net.trainFcn to 'trainb'.

(This will set NET.trainParam to trainb’s default parameters.)

2 Set each NET.inputWeights{i,j}.learnFcn to a learning function.

3 Set each NET.layerWeights{i,j}.learnFcn to a learning function.

4 Set each NET.biases{i}.learnFcn to a learning function. (Weight and bias 
learning parameters will automatically be set to default values for the given 
learning function.)

To train the network

1 Set NET.trainParam properties to desired values.

2 Set weight and bias learning parameters to desired values.

3 Call train.

See newlin for training examples

Algorithm Each weight and bias updates according to its learning function after each 
epoch (one pass through the entire set of input vectors).

Training stops when any of these conditions are met:

• The maximum number of epochs (repetitions) is reached.

• Performance has been minimized to the goal.

• The maximum amount of time has been exceeded.

• Validation performance has increase more than max_fail times since the 
last time it decreased (when using validation).

See Also newp, newlin, train



trainbfg

14-267

14trainbfgPurpose BFGS quasi-Newton backpropagation

Syntax [net,TR,Ac,El] = trainbfg(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = trainbfg(code)

Description trainbfg is a network training function that updates weight and bias values 
according to the BFGS quasi-Newton method.

trainbfg(net,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,

net — Neural network

Pd   — Delayed input vectors

Tl   — Layer target vectors

Ai   — Initial input delay conditions

Q     — Batch size

TS   — Time steps

VV   — Either empty matrix [] or structure of validation vectors

TV   — Either empty matrix [] or structure of test vectors

and returns,

net — Trained network

TR   — Training record of various values over each epoch:

TR.epoch — Epoch number

TR.perf   — Training performance

TR.vperf — Validation performance

TR.tperf — Test performance

Ac  — Collective layer outputs for last epoch

El  — Layer errors for last epoch
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Training occurs according to trainbfg’s training parameters, shown here with 
their default values:

net.trainParam.epochs 100  Maximum number of epochs to train

net.trainParam.show 25  Epochs between showing progress

net.trainParam.goal 0  Performance goal

net.trainParam.time inf  Maximum time to train in seconds

net.trainParam.min_grad 1e-6  Minimum performance gradient

net.trainParam.max_fail 5  Maximum validation failures

net.trainParam.searchFcn Name of line search routine to use.
'srchcha' 

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol         20  

Divide into delta to determine tolerance for linear search.

net.trainParam.alpha         0.001  

Scale factor, which determines sufficient reduction in perf.

net.trainParam.beta            0.1 

Scale factor, which determines sufficiently large step size.

net.trainParam.delta          0.01  

Initial step size in interval location step.

net.trainParam.gama            0.1  

Parameter to avoid small reductions in performance. Usually set to 0.1. 
(See use in srch_cha.)



trainbfg

14-269

net.trainParam.low_lim         0.1  Lower limit on change in step size.

net.trainParam.up_lim          0.5  Upper limit on change in step size.

net.trainParam.maxstep         100  Maximum step length.

net.trainParam.minstep      1.0e-6  Minimum step length.

net.trainParam.bmax             26  Maximum step size.

Dimensions for these variables are:

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix

Tl — Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV is not [], it must be a structure of validation vectors,

VV.PD — Validation delayed inputs

VV.Tl — Validation layer targets

VV.Ai — Validation initial input conditions

VV.Q   — Validation batch size

VV.TS — Validation time steps

which is used to stop training early if the network performance on the 
validation vectors fails to improve or remains the same for max_fail epochs in 
a row.
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If TV is not [], it must be a structure of validation vectors,

TV.PD — Validation delayed inputs

TV.Tl — Validation layer targets

TV.Ai — Validation initial input conditions

TV.Q   — Validation batch size

TV.TS — Validation time steps

which is used to test the generalization capability of the trained network.

trainbfg(code) returns useful information for each code string:

'pnames'      — Names of training parameters

'pdefaults' — Default training parameters

Examples Here is a problem consisting of inputs P and targets T that we would like to 
solve with a network.

P = [0 1 2 3 4 5];
T = [0 0 0 1 1 1];

Here a two-layer feed-forward network is created. The network’s input ranges 
from [0 to 10]. The first layer has two tansig neurons, and the second layer 
has one logsig neuron. The trainbfg network training function is to be used.

Create and Test a Network
net = newff([0 5],[2 1],{'tansig','logsig'},'trainbfg');
a = sim(net,p)

Train and Retest the Network
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

See newff, newcf, and newelm for other examples

Network Use You can create a standard network that uses trainbfg with newff, newcf, or 
newelm.
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To prepare a custom network to be trained with trainbfg:

1 Set net.trainFcn to 'trainbfg'. This will set net.trainParam to trainbfg’s 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network 
with trainbfg.

Algorithm trainbfg can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the 
performance along the search direction. The line search function searchFcn is 
used to locate the minimum point. The first search direction is the negative of 
the gradient of performance. In succeeding iterations the search direction is 
computed according to the following formula:

dX = -H\gX;

where gX is the gradient and H is an approximate Hessian matrix. See page 119 
of Gill, Murray, and Wright (see reference below) for a more detailed discussion 
of the BFGS quasi-Newton method.

Training stops when any of these conditions occur:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time has been exceeded.

• Performance has been minimized to the goal.

• The performance gradient falls below mingrad.

• Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

See Also newff, newcf, traingdm, traingda, traingdx, trainlm, trainrp, 
traincgf, traincgb, trainscg, traincgp, trainoss.
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References Gill, P. E.,W. Murray, and M. H. Wright, Practical Optimization, New York: 
Academic Press, 1981.
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14trainbrPurpose Bayesian regularization backpropagation

Syntax [net,TR,Ac,El] = trainbr(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = trainbr(code)

Description trainbr is a network training function that updates the weight and bias values 
according to Levenberg-Marquardt optimization. It minimizes a combination of 
squared errors and weights, and then determines the correct combination so as 
to produce a network that generalizes well. The process is called Bayesian 
regularization.

trainbr(net,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,

net — Neural network

Pd   — Delayed input vectors

Tl   — Layer target vectors

Ai   — Initial input delay conditions

Q     — Batch size

TS   — Time steps

VV   — Either empty matrix [] or structure of validation vectors

TV   — Either empty matrix [] or structure of test vectors

and returns,

net — Trained network

TR   — Training record of various values over each epoch:

TR.epoch — Epoch number

TR.perf   — Training performance

TR.vperf — Validation performance

TR.tperf — Test performance

TR.mu — Adaptive mu value

Ac  — Collective layer outputs for last epoch.

El  — Layer errors for last epoch
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Training occurs according to the trainlm’s training parameters, shown here 
with their default values:

net.trainParam.epochs     100  Maximum number of epochs to train

net.trainParam.goal         0  Performance goal

net.trainParam.mu       0.005  Marquardt adjustment parameter

net.trainParam.mu_dec     0.1  Decrease factor for mu

net.trainParam.mu_inc      10  Increase factor for mu

net.trainParam.mu_max   1e-10  Maximum value for mu

net.trainParam.max_fail     5  Maximum validation failures
net.trainParam.mem_reduc 1

Factor to use for memory/speed trade-off

net.trainParam.min_grad 1e-10  Minimum performance gradient

net.trainParam.show        25  Epochs between showing progress

net.trainParam.time       inf  Maximum time to train in seconds

Dimensions for these variables are:

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix

Tl — Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)
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If VV is not [], it must be a structure of validation vectors,

VV.PD — Validation delayed inputs

VV.Tl — Validation layer targets

VV.Ai — Validation initial input conditions

VV.Q   — Validation batch size

VV.TS — Validation time steps

which is normally used to stop training early if the network performance on the 
validation vectors fails to improve or remains the same for max_fail epochs in 
a row.

If TV is not [], it must be a structure of validation vectors,

  TV.PD — Validation delayed inputs

  TV.Tl — Validation layer targets

  TV.Ai — Validation initial input conditions

 TV.Q   — Validation batch size

 TV.TS — Validation time steps

 which is used to test the generalization capability of the trained network.

trainbr(code) returns useful information for each code string:

'pnames' — Names of training parameters

'pdefaults' — Default training parameters

Examples Here is a problem consisting of inputs p and targets t that we would like to 
solve with a network. It involves fitting a noisy sine wave.

p = [-1:.05:1];
t = sin(2*pi*p)+0.1*randn(size(p));

Here a two-layer feed-forward network is created. The network’s input ranges 
from [-1 to 1]. The first layer has 20 tansig neurons, the second layer has one 
purelin neuron. The trainbr network training function is to be used. The plot 
of the resulting network output should show a smooth response, without 
overfitting.

Create a Network
net=newff([-1 1],[20,1],{'tansig','purelin'},'trainbr');
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Train and Test the Network
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net = train(net,p,t);
a = sim(net,p)
plot(p,a,p,t,'+')

Network Use You can create a standard network that uses trainbr with newff, newcf, or 
newelm.

To prepare a custom network to be trained with trainbr

1 Set net.trainFcn to 'trainlm'. This will set net.trainParam to trainbr’s 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network 
with trainbr.

See newff, newcf, and newelm for examples.

Algorithm trainbr can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Bayesian regularization minimizes a linear combination of squared errors and 
weights. It also modifies the linear combination so that at the end of training 
the resulting network has good generalization qualities. See MacKay (Neural 
Computation) and Foresee and Hagan (Proceedings of the International Joint 
Conference on Neural Networks) for more detailed discussions of Bayesian 
regularization.

This Bayesian regularization takes place within the Levenberg-Marquardt 
algorithm. Backpropagation is used to calculate the Jacobian jX of 
performance perf with respect to the weight and bias variables X. Each 
variable is adjusted according to Levenberg-Marquardt,

jj = jX * jX
je = jX * E
dX = -(jj+I*mu) \ je

where E is all errors and I is the identity matrix.
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The adaptive value mu is increased by mu_inc until the change shown above 
results in a reduced performance value. The change is then made to the 
network and mu is decreased by mu_dec.

The parameter mem_reduc indicates how to use memory and speed to calculate 
the Jacobian jX. If mem_reduc is 1, then trainlm runs the fastest, but can 
require a lot of memory. Increasing mem_reduc to 2 cuts some of the memory 
required by a factor of two, but slows trainlm somewhat. Higher values 
continue to decrease the amount of memory needed and increase the training 
times.

Training stops when any one of these conditions occurs:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time has been exceeded.

• Performance has been minimized to the goal.

• The performance gradient falls below mingrad.

• mu exceeds mu_max.

• Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

See Also newff, newcf, traingdm, traingda, traingdx, trainlm, trainrp, 
traincgf, traincgb, trainscg, traincgp, trainoss

References Foresee, F. D., and M. T. Hagan, “Gauss-Newton approximation to Bayesian 
regularization,” Proceedings of the 1997 International Joint Conference on 
Neural Networks, 1997.

MacKay, D. J. C., “Bayesian interpolation,” Neural Computation, vol. 4, no. 3, 
pp. 415-447, 1992.
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14traincPurpose Cyclical order incremental training with learning functions

Syntax [net,TR,Ac,El] = trainc(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = trainc(code)

Description trainc is not called directly. Instead it is called by train for networks whose 
net.trainFcn property is set to 'trainc'.

trainc trains a network with weight and bias learning rules with incremental 
updates after each presentation of an input. Inputs are presented in cyclic 
order.

trainc(net,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,

net — Neural network

Pd   — Delayed inputs

Tl   — Layer targets

Ai   — Initial input conditions

Q     — Batch size

TS   — Time steps

VV   — Ignored

TV   — Ignored

and returns,

net — Trained network

TR   — Training record of various values over each epoch:

TR.epoch — Epoch number

TR.perf   — Training performance

Ac  — Collective layer outputs

El  — Layer errors
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Training occurs according to the trainc’s training parameters shown here with 
their default values:

net.trainParam.epochs  100  Maximum number of epochs to train

net.trainParam.goal      0  Performance goal

net.trainParam.show     25  Epochs between displays (NaN for no  
      displays)

net.trainParam.time    inf  Maximum time to train in seconds

Dimensions for these variables are:

Pd — No x Ni x TS cell array, each element Pd{i,j,ts} is a Dij x Q matrix

Tl — Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix or []

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

trainc does not implement validation or test vectors, so arguments VV and TV 
are ignored.

trainc(code) returns useful information for each code string:

'pnames'      — Names of training parameters

'pdefaults' — Default training parameters

Network Use You can create a standard network that uses trainc by calling newp.

To prepare a custom network to be trained with trainc

1 Set net.trainFcn to 'trainc'.

(This will set net.trainParam to trainc default parameters.)

2 Set each net.inputWeights{i,j}.learnFcn to a learning function.

3 Set each net.layerWeights{i,j}.learnFcn to a learning function.
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4 Set each net.biases{i}.learnFcn to a learning function. (Weight and bias 
learning parameters will automatically be set to default values for the given 
learning function.)

To train the network

1 Set net.trainParam properties to desired values.

2 Set weight and bias learning parameters to desired values.

3 Call train.

See newp for training examples.

Algorithm For each epoch, each vector (or sequence) is presented in order to the network 
with the weight and bias values updated accordingly after each individual 
presentation.

Training stops when any of these conditions are met:

• The maximum number of epochs (repetitions) is reached.

• Performance has been minimized to the goal.

• The maximum amount of time has been exceeded.

See Also newp, newlin, train 
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14traincgbPurpose Conjugate gradient backpropagation with Powell-Beale restarts

Syntax [net,TR,Ac,El] = traincgb(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = traincgb(code)

Description traincgb is a network training function that updates weight and bias values 
according to the conjugate gradient backpropagation with Powell-Beale 
restarts.

traincgb(net,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,

net — Neural network

Pd   — Delayed input vectors

Tl   — Layer target vectors

Ai   — Initial input delay conditions

Q     — Batch size

TS   — Time steps

VV   — Either empty matrix [] or structure of validation vectors

TV   — Either empty matrix [] or structure of test vectors

and returns,

net — Trained network

TR   — Training record of various values over each epoch:

TR.epoch — Epoch number

TR.perf   — Training performance

TR.vperf — Validation performance

TR.tperf — Test performance

Ac  — Collective layer outputs for last epoch

El  — Layer errors for last epoch
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Training occurs according to the traincgb’s training parameters, shown here 
with their default values:

net.trainParam.epochs 100  Maximum number of epochs to train

net.trainParam.show 25  Epochs between showing progress

net.trainParam.goal 0  Performance goal

net.trainParam.time inf  Maximum time to train in seconds

net.trainParam.min_grad 1e-6  Minimum performance gradient

net.trainParam.max_fail 5  Maximum validation failures

net.trainParam.searchFcn  Name of line search routine to use.
'srchcha'

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol         20  

Divide into delta to determine tolerance for linear search.

net.trainParam.alpha         0.001  

Scale factor, which determines sufficient reduction in perf.

net.trainParam.beta            0.1 

Scale factor, which determines sufficiently large step size.

net.trainParam.delta          0.01  

Initial step size in interval location step.

net.trainParam.gama            0.1  

Parameter to avoid small reductions in performance. Usually set to 0.1. 
(See use in srch_cha.)

net.trainParam.low_lim         0.1  Lower limit on change in step size.

net.trainParam.up_lim          0.5  Upper limit on change in step size.

net.trainParam.maxstep         100  Maximum step length.

net.trainParam.minstep      1.0e-6  Minimum step length.

net.trainParam.bmax             26  Maximum step size.
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Dimensions for these variables are

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl  — Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV is not [], it must be a structure of validation vectors,

VV.PD — Validation delayed inputs.

VV.Tl — Validation layer targets.

VV.Ai — Validation initial input conditions.

VV.Q   — Validation batch size.

VV.TS — Validation time steps.

which is used to stop training early if the network performance on the 
validation vectors fails to improve or remains the same for max_fail epochs in 
a row.

If TV is not [], it must be a structure of validation vectors,

TV.PD — Validation delayed inputs.

TV.Tl — Validation layer targets.

TV.Ai — Validation initial input conditions.

TV.Q   — Validation batch size.

TV.TS — Validation time steps.

which is used to test the generalization capability of the trained network.
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traincgb(code) returns useful information for each code string:

'pnames'      — Names of training parameters.

'pdefaults' — Default training parameters.

Examples Here is a problem consisting of inputs p and targets t that we would like to 
solve with a network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

Here a two-layer feed-forward network is created. The network’s input ranges 
from [0 to 10]. The first layer has two tansig neurons, and the second layer 
has one logsig neuron. The traincgb network training function is to be used.

Create and Test a Network
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgb');
a = sim(net,p)

Train and Retest the Network
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

See newff, newcf, and newelm for other examples.

Network Use You can create a standard network that uses traincgb with newff, newcf, or 
newelm.

To prepare a custom network to be trained with traincgb

1 Set net.trainFcn to 'traincgb'. This will set net.trainParam to traincgb’s 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network 
with traincgb.
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Algorithm traincgb can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the 
performance along the search direction. The line search function searchFcn is 
used to locate the minimum point. The first search direction is the negative of 
the gradient of performance. In succeeding iterations the search direction is 
computed from the new gradient and the previous search direction according 
to the formula:

dX = -gX + dX_old*Z;

where gX is the gradient. The parameter Z can be computed in several different 
ways. The Powell-Beale variation of conjugate gradient is distinguished by two 
features. First, the algorithm uses a test to determine when to reset the search 
direction to the negative of the gradient. Second, the search direction is 
computed from the negative gradient, the previous search direction, and the 
last search direction before the previous reset. See Powell, Mathematical 
Programming, for a more detailed discussion of the algorithm.

Training stops when any of these conditions occur:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time has been exceeded.

• Performance has been minimized to the goal.

• The performance gradient falls below mingrad.

• Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

See Also newff, newcf, traingdm, traingda, traingdx, trainlm, traincgp, 
traincgf, traincgb, trainscg, trainoss, trainbfg

References Powell, M. J. D.,“Restart procedures for the conjugate gradient method,” 
Mathematical Programming, vol. 12, pp. 241-254, 1977.
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14traincgfPurpose Conjugate gradient backpropagation with Fletcher-Reeves updates

Syntax [net,TR,Ac,El] = traincgf(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = traincgf(code)

Description traincgf is a network training function that updates weight and bias values 
according to the conjugate gradient backpropagation with Fletcher-Reeves 
updates.

traincgf(NET,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,

net — Neural network.

Pd  — Delayed input vectors.

Tl   — Layer target vectors.

Ai   — Initial input delay conditions.

Q     — Batch size.

TS   — Time steps.

VV   — Either empty matrix [] or structure of validation vectors.

TV   — Either empty matrix [] or structure of test vectors.

and returns,

net — Trained network.

TR   — Training record of various values over each epoch:

TR.epoch — Epoch number.

TR.perf  — Training performance.

TR.vperf — Validation performance.

TR.tperf — Test performance.

Ac  — Collective layer outputs for last epoch.

El  — Layer errors for last epoch.
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Training occurs according to the traincgf’s training parameters, shown here 
with their default values:

net.trainParam.epochs 100  Maximum number of epochs to train

net.trainParam.show 25  Epochs between showing progress

net.trainParam.goal 0  Performance goal

net.trainParam.time inf  Maximum time to train in seconds

net.trainParam.min_grad 1e-6  Minimum performance gradient

net.trainParam.max_fail 5  Maximum validation failures

net.trainParam.searchFcn  Name of line search routine to use
'srchcha'

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol         20  

Divide into delta to determine tolerance for linear search.

net.trainParam.alpha         0.001  

Scale factor, which determines sufficient reduction in perf.

net.trainParam.beta            0.1 

Scale factor, which determines sufficiently large step size.

net.trainParam.delta          0.01  

Initial step size in interval location step.

net.trainParam.gama            0.1  

Parameter to avoid small reductions in performance. Usually set to 0.1. 
(See use in srch_cha.)

net.trainParam.low_lim         0.1  Lower limit on change in step size.

net.trainParam.up_lim          0.5  Upper limit on change in step size.

net.trainParam.maxstep         100  Maximum step length.

net.trainParam.minstep      1.0e-6  Minimum step length.

net.trainParam.bmax             26  Maximum step size.
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Dimensions for these variables are:

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl — Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV is not [], it must be a structure of validation vectors,

VV.PD — Validation delayed inputs.

VV.Tl — Validation layer targets.

VV.Ai — Validation initial input conditions.

VV.Q   — Validation batch size.

VV.TS — Validation time steps.

which is used to stop training early if the network performance on the 
validation vectors fails to improve or remains the same for max_fail epochs in 
a row.

If TV is not [], it must be a structure of validation vectors,

TV.PD — Validation delayed inputs.

TV.Tl — Validation layer targets.

TV.Ai — Validation initial input conditions.

TV.Q   — Validation batch size.

TV.TS — Validation time steps.

which is used to test the generalization capability of the trained network.
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traincgf(code) returns useful information for each code string:

'pnames'      — Names of training parameters

'pdefaults' — Default training parameters

Examples Here is a problem consisting of inputs p and targets t that we would like to 
solve with a network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

Here a two-layer feed-forward network is created. The network’s input ranges 
from [0 to 10]. The first layer has two tansig neurons, and the second layer 
has one logsig neuron. The traincgf network training function is to be used.

Create and Test a Network
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgf');
a = sim(net,p)

Train and Retest the Network
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

See newff, newcf, and newelm for other examples.

Network Use You can create a standard network that uses traincgf with newff, newcf, or 
newelm.

To prepare a custom network to be trained with traincgf

1 Set net.trainFcn to 'traincgf'. This will set net.trainParam to traincgf’s 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network 
with traincgf.
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Algorithm traincgf can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the 
performance along the search direction. The line search function searchFcn is 
used to locate the minimum point. The first search direction is the negative of 
the gradient of performance. In succeeding iterations the search direction is 
computed from the new gradient and the previous search direction, according 
to the formula:

dX = -gX + dX_old*Z;

where gX is the gradient. The parameter Z can be computed in several different 
ways. For the Fletcher-Reeves variation of conjugate gradient it is computed 
according to

Z=normnew_sqr/norm_sqr;

where norm_sqr is the norm square of the previous gradient and normnew_sqr 
is the norm square of the current gradient. See page 78 of Scales (Introduction 
to Non-Linear Optimization) for a more detailed discussion of the algorithm.

Training stops when any of these conditions occur:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time has been exceeded.

• Performance has been minimized to the goal.

• The performance gradient falls below mingrad.

• Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

See Also newff, newcf, traingdm, traingda, traingdx, trainlm, traincgp, 
traincgb, trainscg, traincgp, trainoss, trainbfg
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References Scales, L. E., Introduction to Non-Linear Optimization, New York: 
Springer-Verlag, 1985.
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14traincgpPurpose Conjugate gradient backpropagation with Polak-Ribiere updates

Syntax [net,TR,Ac,El] = traincgp(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = traincgp(code)

Description traincgp is a network training function that updates weight and bias values 
according to the conjugate gradient backpropagation with Polak-Ribiere 
updates.

traincgp(net,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,

net — Neural network.

Pd   — Delayed input vectors.

Tl   — Layer target vectors.

Ai   — Initial input delay conditions.

Q    — Batch size.

TS   — Time steps.

VV   — Either empty matrix [] or structure of validation vectors.

TV   — Either empty matrix [] or structure of test vectors.

and returns,

net — Trained network.

TR   — Training record of various values over each epoch:

TR.epoch — Epoch number.

TR.perf   — Training performance.

TR.vperf — Validation performance.

TR.tperf — Test performance.

Ac  — Collective layer outputs for last epoch.

El  — Layer errors for last epoch.
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Training occurs according to the traincgp’s training parameters shown here 
with their default values:

net.trainParam.epochs 100  Maximum number of epochs to train

net.trainParam.show 25  Epochs between showing progress

net.trainParam.goal 0  Performance goal

net.trainParam.time inf  Maximum time to train in seconds

net.trainParam.min_grad 1e-6  Minimum performance gradient

net.trainParam.max_fail 5  Maximum validation failures

net.trainParam.searchFcn Name of line search routine to use
'srchcha'

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol         20  

Divide into delta to determine tolerance for linear search.

net.trainParam.alpha         0.001  

Scale factor which determines sufficient reduction in perf.

net.trainParam.beta            0.1 

Scale factor which determines sufficiently large step size.

net.trainParam.delta          0.01  

Initial step size in interval location step.

net.trainParam.gama            0.1  

Parameter to avoid small reductions in performance. Usually set to 0.1. 
(See use in srch_cha.)

net.trainParam.low_lim         0.1  Lower limit on change in step size.

net.trainParam.up_lim          0.5  Upper limit on change in step size.

net.trainParam.maxstep         100  Maximum step length.

net.trainParam.minstep      1.0e-6  Minimum step length.

net.trainParam.bmax             26  Maximum step size.
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Dimensions for these variables are:

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl — Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV is not [], it must be a structure of validation vectors,

VV.PD — Validation delayed inputs.

VV.Tl — Validation layer targets.

VV.Ai — Validation initial input conditions.

VV.Q   — Validation batch size.

VV.TS — Validation time steps.

which is used to stop training early if the network performance on the 
validation vectors fails to improve or remains the same for max_fail epochs in 
a row.

If TV is not [], it must be a structure of validation vectors,

TV.PD — Validation delayed inputs.

TV.Tl — Validation layer targets.

TV.Ai — Validation initial input conditions.

TV.Q  —  Validation batch size.

TV.TS — Validation time steps.

which is used to test the generalization capability of the trained network.
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traincgp(code) returns useful information for each code string:

'pnames'      — Names of training parameters

'pdefaults' — Default training parameters

Examples Here is a problem consisting of inputs p and targets t that we would like to 
solve with a network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

Here a two-layer feed-forward network is created. The network’s input ranges 
from [0 to 10]. The first layer has two tansig neurons, and the second layer 
has one logsig neuron. The traincgp network training function is to be used.

Create and Test a Network
net = newff([0 5],[2 1],{'tansig','logsig'},'traincgp');
a = sim(net,p)

Train and Retest the Network
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

See newff, newcf, and newelm for other examples.

Network Use You can create a standard network that uses traincgp with newff, newcf, or 
newelm.

To prepare a custom network to be trained with traincgp

1 Set net.trainFcn to 'traincgp'. This will set net.trainParam to traincgp’s 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network 
with traincgp.
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Algorithm traincgp can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the 
performance along the search direction. The line search function searchFcn is 
used to locate the minimum point. The first search direction is the negative of 
the gradient of performance. In succeeding iterations the search direction is 
computed from the new gradient and the previous search direction according 
to the formula:

dX = -gX + dX_old*Z;

where gX is the gradient. The parameter Z can be computed in several different 
ways. For the Polak-Ribiere variation of conjugate gradient it is computed 
according to

Z = ((gX - gX_old)'*gX)/norm_sqr;

where norm_sqr is the norm square of the previous gradient and gX_old is the 
gradient on the previous iteration. See page 78 of Scales (Introduction to 
Non-Linear Optimization) for a more detailed discussion of the algorithm.

Training stops when any of these conditions occur:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time has been exceeded.

• Performance has been minimized to the goal.

• The performance gradient falls below mingrad.

• Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

See Also newff, newcf, traingdm, traingda, traingdx, trainlm, trainrp, 
traincgf, traincgb, trainscg, trainoss, trainbfg
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References Scales, L. E., Introduction to Non-Linear Optimization, New York: 
Springer-Verlag, 1985.
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14traingdPurpose Gradient descent backpropagation

Syntax [net,TR,Ac,El] = traingd(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = traingd(code)

Description traingd is a network training function that updates weight and bias values 
according to gradient descent.

traingd(net,Pd,Tl,Ai,Q,TS,VV) takes these inputs,

net — Neural network.

Pd   — Delayed input vectors.

Tl   — Layer target vectors.

Ai   — Initial input delay conditions.

Q     — Batch size.

TS   — Time steps.

VV   — Either an empty matrix [] or a structure of validation vectors.

TV   — Empty matrix [] or structure of test vectors.

and returns,

net — Trained network.

TR   — Training record of various values over each epoch:

TR.epoch — Epoch number.

TR.perf  — Training performance.

TR.vperf — Validation performance.

TR.tperf — Test performance.

Ac  — Collective layer outputs for last epoch.

El  — Layer errors for last epoch.
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Training occurs according to the traingd’s training parameters shown here 
with their default values:

net.trainParam.epochs      10  Maximum number of epochs to train

net.trainParam.goal         0  Performance goal

net.trainParam.lr        0.01  Learning rate

net.trainParam.max_fail     5  Maximum validation failures

net.trainParam.min_grad 1e-10  Minimum performance gradient

net.trainParam.show        25  Epochs between showing progress

net.trainParam.time       inf  Maximum time to train in seconds

Dimensions for these variables are

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl — Nl x TS cell array, each element P{i,ts} is an Vi x Q matrix.

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV or TV is not [], it must be a structure of validation vectors,

VV.PD, TV.PD — Validation/test delayed inputs.

VV.Tl, TV.Tl — Validation/test layer targets.

VV.Ai, TV.Ai — Validation/test initial input conditions.

VV.Q,  TV.Q   — Validation/test batch size.

VV.TS, TV.TS — Validation/test time steps.

Validation vectors are used to stop training early if the network  performance 
on the validation vectors fails to improve or remains  the same for max_fail 
epochs in a row. Test vectors are used as  a further check that the network is 
generalizing well, but do not  have any effect on training.
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traingd(code) returns useful information for each code string:

'pnames'  Names of training parameters.

'pdefaults'  Default training parameters.

Network Use You can create a standard network that uses traingd with newff, newcf, or 
newelm.

To prepare a custom network to be trained with traingd:

1 Set net.trainFcn to 'traingd'. This will set net.trainParam to traingd’s 
default parameters.

2 Set net.trainParam properties to desired values. 

In either case, calling train with the resulting network will train the network 
with traingd.

See newff, newcf, and newelm for examples.

Algorithm traingd can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to gradient descent:

dX = lr * dperf/dX

Training stops when any of these conditions occur:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time has been exceeded.

• Performance has been minimized to the goal.

• The performance gradient falls below mingrad.

• Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

See Also newff, newcf, traingdm, traingda, traingdx, trainlm
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14traingdaPurpose Gradient descent with adaptive learning rate backpropagation

Syntax [net,TR,Ac,El] = traingda(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = traingda(code)

Description traingda is a network training function that updates weight and bias values 
according to gradient descent with adaptive learning rate.

traingda(net,Pd,Tl,Ai,Q,TS,VV) takes these inputs,

net — Neural network.

Pd   — Delayed input vectors.

Tl   — Layer target vectors.

Ai   — Initial input delay conditions.

Q     — Batch size.

TS   — Time steps.

VV   — Either empty matrix [] or structure of validation vectors. 

TV   — Empty matrix [] or structure of test vectors.

and returns,

net — Trained network.

TR   — Training record of various values over each epoch:

TR.epoch — Epoch number.

TR.perf  — Training performance.

TR.vperf — Validation performance.

TR.tperf — Test performance.

TR.lr    — Adaptive learning rate.

Ac  — Collective layer outputs for last epoch.

El  — Layer errors for last epoch.
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Training occurs according to the traingda’s training parameters, shown here 
with their default values:

net.trainParam.epochs     10  Maximum number of epochs to train

net.trainParam.goal      0  Performance goal

net.trainParam.lr     0.01  Learning rate

net.trainParam.lr_inc 1.05  Ratio to increase learning rate

net.trainParam.lr_dec  0.7  Ratio to decrease learning rate

net.trainParam.max_fail        5  Maximum validation failures

net.trainParam.max_perf_inc 1.04  Maximum performance increase

net.trainParam.min_grad    1e-10  Minimum performance gradient

net.trainParam.show     25  Epochs between showing progress

net.trainParam.time    inf  Maximum time to train in seconds

Dimensions for these variables are

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl — Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV or TV is not [], it must be a structure of validation vectors,

VV.PD, TV.PD — Validation/test delayed inputs

VV.Tl, TV.Tl — Validation/test layer targets

VV.Ai, TV.Ai — Validation/test initial input conditions

VV.Q,  TV.Q   — Validation/test batch size

VV.TS, TV.TS — Validation/test time steps
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Validation vectors are used to stop training early if the network  performance 
on the validation vectors fails to improve or remains  the same for max_fail 
epochs in a row. Test vectors are used as  a further check that the network is 
generalizing well, but do not have any effect on training.

traingda(code) returns useful information for each code string:

'pnames'      — Names of training parameters

'pdefaults' — Default training parameters

Network Use You can create a standard network that uses traingda with newff, newcf, or 
newelm.

To prepare a custom network to be trained with traingda

1 Set net.trainFcn to 'traingda'. This will set net.trainParam to traingda’s 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network 
with traingda.

See newff, newcf, and newelm for examples.

Algorithm traingda can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance dperf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to gradient descent:

dX = lr*dperf/dX

At each epoch, if performance decreases toward the goal, then the learning rate 
is increased by the factor lr_inc. If performance increases by more than the 
factor max_perf_inc, the learning rate is adjusted by the factor lr_dec and the 
change, which increased the performance, is not made.

Training stops when any of these conditions occur:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time has been exceeded.
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• Performance has been minimized to the goal.

• The performance gradient falls below mingrad.

• Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

See Also newff, newcf, traingd, traingdm, traingdx, trainlm
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14traingdmPurpose Gradient descent with momentum backpropagation

Syntax [net,TR,Ac,El] = traingdm(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = traingdm(code)

Description traingdm is a network training function that updates weight and bias values 
according to gradient descent with momentum.

traingdm(net,Pd,Tl,Ai,Q,TS,VV) takes these inputs,

net — Neural network

Pd   — Delayed input vectors

Tl   — Layer target vectors

Ai   — Initial input delay conditions

Q     — Batch size

TS   — Time steps

VV   — Either empty matrix [] or structure of validation vectors

TV   — Empty matrix [] or structure of test vectors

and returns,

net — Trained network

TR   — Training record of various values over each epoch:

TR.epoch — Epoch number

TR.perf   — Training performance

TR.vperf — Validation performance

TR.tperf — Test performance

Ac  — Collective layer outputs for last epoch

El  — Layer errors for last epoch
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Training occurs according to the traingdm’s training parameters shown here 
with their default values:

net.trainParam.epochs         10  Maximum number of epochs to train

net.trainParam.goal            0  Performance goal

net.trainParam.lr           0.01  Learning rate

net.trainParam.max_fail        5  Maximum validation failures

net.trainParam.mc            0.9  Momentum constant.

net.trainParam.min_grad    1e-10  Minimum performance gradient

net.trainParam.show           25  Epochs between showing progress

net.trainParam.time          inf  Maximum time to train in seconds

Dimensions for these variables are

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl — Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV or TV is not [], it must be a structure of validation vectors,

VV.PD, TV.PD — Validation/test delayed inputs

VV.Tl, TV.Tl — Validation/test layer targets

VV.Ai, TV.Ai — Validation/test initial input conditions

VV.Q,  TV.Q   — Validation/test batch size

VV.TS, TV.TS — Validation/test time steps

Validation vectors are used to stop training early if the network  performance 
on the validation vectors fails to improve or remains  the same for max_fail 
epochs in a row. Test vectors are used as  a further check that the network is 
generalizing well, but do not have any effect on training.
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traingdm(code) returns useful information for each code string:

'pnames'      — Names of training parameters

'pdefaults' — Default training parameters

Network Use You can create a standard network that uses traingdm with newff, newcf, or 
newelm.

To prepare a custom network to be trained with traingdm

1 Set net.trainFcn to 'traingdm'. This will set net.trainParam to traingdm’s 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network 
with traingdm.

See newff, newcf, and newelm for examples.

Algorithm traingdm can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to gradient descent with momentum,

dX = mc*dXprev + lr*(1-mc)*dperf/dX

where dXprev is the previous change to the weight or bias.

Training stops when any of these conditions occur:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time has been exceeded.

• Performance has been minimized to the goal.

• The performance gradient falls below mingrad.

• Validation performance has increase more than max_fail times since the 
last time it decreased (when using validation).

See Also newff, newcf, traingd, traingda, traingdx, trainlm
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14traingdxPurpose Gradient descent with momentum and adaptive learning rate backpropagation

Syntax [net,TR,Ac,El] = traingdx(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = traingdx(code)

Description traingdx is a network training function that updates weight and bias values 
according to gradient descent momentum and an adaptive learning rate.

traingdx(net,Pd,Tl,Ai,Q,TS,VV) takes these inputs,

net — Neural network.

Pd   — Delayed input vectors.

Tl   — Layer target vectors.

Ai   — Initial input delay conditions.

Q     — Batch size.

TS    —Time steps.

VV   — Either empty matrix [] or structure of validation vectors.

TV   — Empty matrix [] or structure of test vectors.

and returns,

net — Trained network.

TR   — Training record of various values over each epoch:

TR.epoch — Epoch number.

TR.perf   — Training performance.

TR.vperf — Validation performance.

TR.tperf — Test performance.

TR.lr    — Adaptive learning rate.

Ac  — Collective layer outputs for last epoch.

El  — Layer errors for last epoch.
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Training occurs according to the traingdx’s training parameters shown here 
with their default values:

net.trainParam.epochs         10  Maximum number of epochs to train

net.trainParam.goal            0  Performance goal

net.trainParam.lr           0.01  Learning rate

net.trainParam.lr_inc       1.05  Ratio to increase learning rate

net.trainParam.lr_dec        0.7  Ratio to decrease learning rate

net.trainParam.max_fail        5  Maximum validation failures

net.trainParam.max_perf_inc 1.04  Maximum performance increase

net.trainParam.mc            0.9  Momentum constant.

net.trainParam.min_grad    1e-10  Minimum performance gradient

net.trainParam.show           25  Epochs between showing progress

net.trainParam.time          inf  Maximum time to train in seconds

Dimensions for these variables are

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix

Tl — Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV or TV is not [], it must be a structure of validation vectors,

VV.PD, TV.PD — Validation/test delayed inputs

VV.Tl, TV.Tl — Validation/test layer targets

VV.Ai, TV.Ai — Validation/test initial input conditions

VV.Q,  TV.Q  — Validation/test batch size

VV.TS, TV.TS — Validation/test time steps
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Validation vectors are used to stop training early if the network  performance 
on the validation vectors fails to improve or remains  the same for max_fail 
epochs in a row. Test vectors are used as  a further check that the network is 
generalizing well, but do not have any effect on training.

traingdx(code) return useful information for each code string:

'pnames'      — Names of training parameters

'pdefaults' — Default training parameters

Network Use You can create a standard network that uses traingdx with newff, newcf, or 
newelm.

To prepare a custom network to be trained with traingdx

1 Set net.trainFcn to 'traingdx'. This will set net.trainParam to traingdx’s 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network 
with traingdx.

See newff, newcf, and newelm for examples.

Algorithm traingdx can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to gradient descent with momentum,

dX = mc*dXprev + lr*mc*dperf/dX

where dXprev is the previous change to the weight or bias.

For each epoch, if performance decreases toward the goal, then the learning 
rate is increased by the factor lr_inc. If performance increases by more than 
the factor max_perf_inc, the learning rate is adjusted by the factor lr_dec and 
the change, which increased the performance, is not made.

Training stops when any of these conditions occur:

• The maximum number of epochs (repetitions) is reached.
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• The maximum amount of time has been exceeded.

• Performance has been minimized to the goal.

• The performance gradient falls below mingrad.

• Validation performance has increase more than max_fail times since the 
last time it decreased (when using validation).

See Also newff, newcf, traingd, traingdm, traingda, trainlm
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14trainlmPurpose Levenberg-Marquardt backpropagation

Syntax [net,TR] = trainlm(net,Pd,Tl,Ai,Q,TS,VV,TV)
info = trainlm(code)

Description trainlm is a network training function that updates weight and bias values 
according to Levenberg-Marquardt optimization.

trainlm(net,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,

net — Neural network.

Pd   — Delayed input vectors.

Tl   — Layer target vectors.

Ai   — Initial input delay conditions.

Q     — Batch size.

TS   — Time steps.

VV   — Either empty matrix [] or structure of validation vectors.

TV   — Either empty matrix [] or structure of validation vectors.

and returns,

net — Trained network.

TR   — Training record of various values over each epoch:

TR.epoch — Epoch number.

TR.perf   — Training performance.

TR.vperf — Validation performance.

TR.tperf — Test performance.

TR.mu    — Adaptive mu value.
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Training occurs according to the trainlm’s training parameters shown here 
with their default values:

net.trainParam.epochs      100 Maximum number of epochs to train

net.trainParam.goal         0  Performance goal

net.trainParam.max_fail     5  Maximum validation failures

net.trainParam.mem_reduc  1 Factor to use for memory/speed 
tradeoff

net.trainParam.min_grad 1e-10  Minimum performance gradient

net.trainParam.mu       0.001  Initial Mu

net.trainParam.mu_dec     0.1  Mu decrease factor

net.trainParam.mu_inc      10  Mu increase factor

net.trainParam.mu_max    1e10  Maximum Mu

net.trainParam.show        25  Epochs between showing progress

net.trainParam.time       inf  Maximum time to train in seconds

Dimensions for these variables are

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl — Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)
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If VV or TV is not [], it must be a structure of vectors,

VV.PD, TV.PD — Validation/test delayed inputs

VV.Tl, TV.Tl — Validation/test layer targets

VV.Ai, TV.Ai — Validation/test initial input conditions

VV.Q,  TV.Q  — Validation/test batch size

VV.TS, TV.TS — Validation/test time steps

Validation vectors are used to stop training early if the network performance 
on the validation vectors fails to improve or remains the same for max_fail 
epochs in a row. Test vectors are used as a further check that the network is 
generalizing well, but do not have any effect on training.

trainlm(code) returns useful information for each code string:

'pnames'      — Names of training parameters

'pdefaults' — Default training parameters

Network Use You can create a standard network that uses trainlm with newff, newcf, or 
newelm.

To prepare a custom network to be trained with trainlm

1 Set net.trainFcn to 'trainlm'. This will set net.trainParam to trainlm’s 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network 
with trainlm.

See newff, newcf, and newelm for examples.

Algorithm trainlm can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate the Jacobian jX of performance perf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to Levenberg-Marquardt,

jj = jX * jX
je = jX * E
dX = -(jj+I*mu) \ je
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where E is all errors and I is the identity matrix.

The adaptive value mu is increased by mu_inc until the change above results in 
a reduced performance value. The change is then made to the network and mu 
is decreased by mu_dec.

The parameter mem_reduc indicates how to use memory and speed to calculate 
the Jacobian jX. If mem_reduc is 1, then trainlm runs the fastest, but can 
require a lot of memory. Increasing mem_reduc to 2 cuts some of the memory 
required by a factor of two, but slows trainlm somewhat. Higher values 
continue to decrease the amount of memory needed and increase training 
times.

Training stops when any of these conditions occur:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time has been exceeded.

• Performance has been minimized to the goal.

• The performance gradient falls below mingrad.

• mu exceeds mu_max.

• Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

See Also newff, newcf, traingd, traingdm, traingda, traingdx
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14trainossPurpose One step secant backpropagation

Syntax [net,TR,Ac,El] = trainoss(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = trainoss(code)

Description trainoss is a network training function that updates weight and bias values 
according to the one step secant method.

trainoss(net,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,

net — Neural network.

Pd   — Delayed input vectors.

Tl   — Layer target vectors.

Ai   — Initial input delay conditions.

Q     — Batch size.

TS   — Time steps.

VV   — Either empty matrix [] or structure of validation vectors.

TV   — Either empty matrix [] or structure of test vectors.

TV   — Either empty matrix [] or structure of test vectors.

and returns,

net — Trained network.

TR   — Training record of various values over each epoch:

TR.epoch — Epoch number.

TR.perf   — Training performance.

TR.vperf — Validation performance.

TR.tperf — Test performance.

Ac  — Collective layer outputs for last epoch.

El  — Layer errors for last epoch.
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Training occurs according to the trainoss’s training parameters, shown here 
with their default values:

net.trainParam.epochs 100  Maximum number of epochs to train

net.trainParam.show 25  Epochs between showing progress

net.trainParam.goal 0  Performance goal

net.trainParam.time inf  Maximum time to train in seconds

net.trainParam.min_grad 1e-6  Minimum performance gradient

net.trainParam.max_fail 5  Maximum validation failures

net.trainParam.searchFcn Name of line search routine to use
'srchcha'

Parameters related to line search methods (not all used for all methods):

net.trainParam.scal_tol         20  

Divide into delta to determine tolerance for linear search.

net.trainParam.alpha         0.001  

Scale factor, which determines sufficient reduction in perf.

net.trainParam.beta            0.1 

Scale factor, which determines sufficiently large step size.

net.trainParam.delta          0.01  

Initial step size in interval location step.

net.trainParam.gama            0.1  

Parameter to avoid small reductions in performance. Usually set to 0.1. 
(See use in srch_cha.)

net.trainParam.low_lim         0.1  Lower limit on change in step size.

net.trainParam.up_lim          0.5  Upper limit on change in step size.

net.trainParam.maxstep         100  Maximum step length.

net.trainParam.minstep      1.0e-6  Minimum step length.

net.trainParam.bmax             26  Maximum step size.
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Dimensions for these variables are

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl — Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV is not [], it must be a structure of validation vectors,

VV.PD — Validation delayed inputs.

VV.Tl — Validation layer targets.

VV.Ai — Validation initial input conditions.

VV.Q   — Validation batch size.

VV.TS — Validation time steps.

which is used to stop training early if the network performance on the 
validation vectors fails to improve or remains the same for max_fail epochs in 
a row.

If TV is not [], it must be a structure of validation vectors,

TV.PD — Validation delayed inputs.

TV.Tl — Validation layer targets.

TV.Ai — Validation initial input conditions.

TV.Q   — Validation batch size.

TV.TS — Validation time steps.

which is used to test the generalization capability of the trained network.
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trainoss(code) returns useful information for each code string:

'pnames'      — Names of training parameters

'pdefaults' — Default training parameters

Examples Here is a problem consisting of inputs p and targets t that we would like to 
solve with a network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

Here a two-layer feed-forward network is created. The network’s input ranges 
from [0 to 10]. The first layer has two tansig neurons, and the second layer 
has one logsig neuron. The trainoss network training function is to be used.

Create and Test a Network
net = newff([0 5],[2 1],{'tansig','logsig'},'trainoss');
a = sim(net,p)

Train and Retest the Network
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

See newff, newcf, and newelm for other examples.

Network Use You can create a standard network that uses trainoss with newff, newcf, or 
newelm.

To prepare a custom network to be trained with trainoss

1 Set net.trainFcn to 'trainoss'. This will set net.trainParam to trainoss’s 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network 
with trainoss.
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Algorithm trainoss can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to the following:

X = X + a*dX;

where dX is the search direction. The parameter a is selected to minimize the 
performance along the search direction. The line search function searchFcn is 
used to locate the minimum point. The first search direction is the negative of 
the gradient of performance. In succeeding iterations the search direction is 
computed from the new gradient and the previous steps and gradients 
according to the following formula:

dX = -gX + Ac*X_step + Bc*dgX;

where gX is the gradient, X_step is the change in the weights on the previous 
iteration, and dgX is the change in the gradient from the last iteration. See 
Battiti (Neural Computation) for a more detailed discussion of the one step 
secant algorithm.

Training stops when any of these conditions occur:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time has been exceeded.

• Performance has been minimized to the goal.

• The performance gradient falls below mingrad.

• Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

See Also newff, newcf, traingdm, traingda, traingdx, trainlm, trainrp, 
traincgf, traincgb, trainscg, traincgp, trainbfg

References Battiti, R. “First and second order methods for learning: Between steepest 
descent and Newton’s method,” Neural Computation, vol. 4, no. 2, pp. 141–166, 
1992.
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14trainrPurpose Random order incremental training with learning functions.

Syntax [net,TR,Ac,El] = trainr(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = trainr(code)

Description trainr is not called directly. Instead it is called by train for networks whose 
net.trainFcn property is set to 'trainr'.

trainr trains a network with weight and bias learning rules with incremental 
updates after each presentation of an input. Inputs are presented in random 
order.

trainr(net,Pd,Tl,Ai,Q,TS,VV) takes these inputs,

net — Neural network.

Pd   — Delayed inputs.

Tl   — Layer targets.

Ai   — Initial input conditions.

Q     — Batch size.

TS   — Time steps.

VV   — Ignored.

TV   — Ignored.

and returns,

net — Trained network.

TR   — Training record of various values over each epoch:

TR.epoch — Epoch number.

TR.perf   — Training performance.

Ac   — Collective layer outputs.

El   — Layer errors.
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Training occurs according to trainr’s training parameters shown here with 
their default values:

net.trainParam.epochs  100  Maximum number of epochs to train

net.trainParam.goal      0  Performance goal

net.trainParam.show     25  Epochs between displays (NaN for no  
      displays)

net.trainParam.time    inf  Maximum time to train in seconds

Dimensions for these variables are:

Pd — No x Ni x TS cell array, each element Pd{i,j,ts} is a Dij x Q matrix.

Tl — Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix or [].

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

trainr does not implement validation or test vectors, so arguments VV and TV 
are ignored.

trainr(code) returns useful information for each code string:

'pnames'      — Names of training parameters

'pdefaults' — Default training parameters

Network Use You can create a standard network that uses trainr by calling newc or newsom.

To prepare a custom network to be trained with trainr

1 Set net.trainFcn to 'trainr'.

(This will set net.trainParam to trainr’s default parameters.)

2 Set each net.inputWeights{i,j}.learnFcn to a learning function.
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3 Set each net.layerWeights{i,j}.learnFcn to a learning function.

4 Set each net.biases{i}.learnFcn to a learning function. (Weight and bias 
learning parameters will automatically be set to default values for the given 
learning function.)

To train the network

1 Set net.trainParam properties to desired values.

2 Set weight and bias learning parameters to desired values.

3 Call train.

See newc and newsom for training examples.

Algorithm For each epoch, all training vectors (or sequences) are each presented once in 
a different random order with the network and weight and bias values updated 
accordingly after each individual presentation.

Training stops when any of these conditions are met:

• The maximum number of epochs (repetitions) is reached.

• Performance has been minimized to the goal.

• The maximum amount of time has been exceeded.

See Also newp, newlin, train 
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14trainrpPurpose Resilient backpropagation

Syntax [net,TR,Ac,El] = trainrp(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = trainrp(code)

Description trainrp is a network training function that updates weight and bias values 
according to the resilient backpropagation algorithm (RPROP).

trainrp(net,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,

net — Neural network.

Pd   — Delayed input vectors.

Tl   — Layer target vectors.

Ai   — Initial input delay conditions.

Q     — Batch size.

TS   — Time steps.

VV   — Either empty matrix [] or structure of validation vectors.

TV   — Either empty matrix [] or structure of test vectors.

and returns,

net — Trained network.

TR   — Training record of various values over each epoch:

TR.epoch — Epoch number.

TR.perf  — Training performance.

TR.vperf — Validation performance.

TR.tperf — Test performance.

Ac  — Collective layer outputs for last epoch.

El  — Layer errors for last epoch.
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Training occurs according to the trainrp’s training parameters shown here 
with their default values:

net.trainParam.epochs 100  Maximum number of epochs to train

net.trainParam.show 25  Epochs between showing progress

net.trainParam.goal 0  Performance goal

net.trainParam.time inf  Maximum time to train in seconds

net.trainParam.min_grad 1e-6  Minimum performance gradient

net.trainParam.max_fail 5  Maximum validation failures

net.trainParam.lr        0.01 Learning rate

net.trainParam.delt_inc   1.2  Increment to weight change

net.trainParam.delt_dec   0.5 Decrement to weight change

net.trainParam.delta0    0.07  Initial weight change

net.trainParam.deltamax  50.0  Maximum weight change

Dimensions for these variables are

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl — Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV is not [], it must be a structure of validation vectors,

VV.PD — Validation delayed inputs.

VV.Tl — Validation layer targets.

VV.Ai — Validation initial input conditions.

VV.Q   — Validation batch size.

VV.TS — Validation time steps.
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which is used to stop training early if the network performance on the 
validation vectors fails to improve or remains the same for max_fail epochs in 
a row.

If TV is not [], it must be a structure of validation vectors,

TV.PD — Validation delayed inputs

TV.Tl — Validation layer targets

TV.Ai — Validation initial input conditions

TV.Q   — Validation batch size

TV.TS — Validation time steps

which is used to test the generalization capability of the trained network.

trainrp(code) returns useful information for each code string:

'pnames'      — Names of training parameters

'pdefaults' — Default training parameters

Examples Here is a problem consisting of inputs p and targets t that we would like to 
solve with a network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

Here a two-layer feed-forward network is created. The network’s input ranges 
from [0 to 10]. The first layer has two tansig neurons, and the second layer 
has one logsig neuron. The trainrp network training function is to be used.

Create and Test a Network
net = newff([0 5],[2 1],{'tansig','logsig'},'trainrp');
a = sim(net,p)

Train and Retest the Network
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

See newff, newcf, and newelm for other examples.
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Network Use You can create a standard network that uses trainrp with newff, newcf, or 
newelm.

To prepare a custom network to be trained with trainrp

1 Set net.trainFcn to 'trainrp'. This will set net.trainParam to trainrp’s 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network 
with trainrp.

Algorithm trainrp can train any network as long as its weight, net input, and transfer 
functions have derivative functions.

Backpropagation is used to calculate derivatives of performance perf with 
respect to the weight and bias variables X. Each variable is adjusted according 
to the following:

dX = deltaX.*sign(gX);

where the elements of deltaX are all initialized to delta0 and gX is the 
gradient. At each iteration the elements of deltaX are modified. If an element 
of gX changes sign from one iteration to the next, then the corresponding 
element of deltaX is decreased by delta_dec. If an element of gX maintains the 
same sign from one iteration to the next, then the corresponding element of 
deltaX is increased by delta_inc. See Reidmiller and Braun, Proceedings of 
the IEEE International Conference on Neural Networks.

Training stops when any of these conditions occur:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time has been exceeded.

• Performance has been minimized to the goal.

• The performance gradient falls below mingrad.

• Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

See Also newff, newcf, traingdm, traingda, traingdx, trainlm, traincgp, 
traincgf, traincgb, trainscg, trainoss, trainbfg
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References Riedmiller, M., and H. Braun, “A direct adaptive method for faster 
backpropagation learning: The RPROP algorithm,” Proceedings of the IEEE 
International Conference on Neural Networks, San Francisco,1993.
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14trainsPurpose Sequential order incremental training w/learning functions

Syntax [net,TR,Ac,El] = trains(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = trains(code)

Description trains is not called directly. Instead it is called by train for networks whose 
net.trainFcn property is set to 'trains'.

trains trains a network with weight and bias learning rules with sequential 
updates. The sequence of inputs is presented to the network with updates 
occurring after each time step.

This incremental training algorithm is commonly used for adaptive 
applications.

trains takes these inputs:

net — Neural network

Pd   — Delayed inputs

Tl   — Layer targets

Ai   — Initial input conditions

Q     — Batch size

TS   — Time steps

VV    — Ignored

TV   — Ignored

and after training the network with its weight and bias learning functions 
returns:

net — Updated network

TR   — Training record

TR.time steps — Number of time steps

TR.perf            — Performance for each time step

Ac   — Collective layer outputs

El   — Layer errors
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Training occurs according to trains’s training parameter shown here with its 
default value:

net.trainParam.passes    1  Number of times to present sequence

Dimensions for these variables are

Pd — No x NixTS cell array, each element P{i,j,ts} is a Zij x Q matrix

Tl — Nl x TS cell array, each element P{i,ts} is an Vi x Q matrix or []

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix

Ac — Nl x (LD+TS) cell array, each element Ac{i,k} is an Si x Q matrix

El — Nl x TS cell array, each element El{i,k} is an Si x Q matrix or []

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Zij = Ri * length(net.inputWeights{i,j}.delays)

trains(code) returns useful information for each code string:

'pnames'      — Names of training parameters

'pdefaults' — Default training parameters

Network Use You can create a standard network that uses trains for adapting by calling 
newp or newlin.

To prepare a custom network to adapt with trains

1 Set net.adaptFcn to 'trains'.

(This will set net.adaptParam to trains’s default parameters.)

2 Set each net.inputWeights{i,j}.learnFcn to a learning function.

3 Set each net.layerWeights{i,j}.learnFcn to a learning function.

4 Set each net.biases{i}.learnFcn to a learning function. (Weight and bias 
learning parameters will automatically be set to default values for the given 
learning function.)
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To allow the network to adapt

1 Set weight and bias learning parameters to desired values.

2 Call adapt.

See newp and newlin for adaption examples.

Algorithm Each weight and bias is updated according to its learning function after each 
time step in the input sequence.

See Also newp, newlin, train, trainb, trainc, trainr 
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14trainscgPurpose Scaled conjugate gradient backpropagation

Syntax [net,TR,Ac,El] = trainscg(net,Pd,Tl,Ai,Q,TS,VV,TV)

info = trainscg(code)

Description trainscg is a network training function that updates weight and bias values 
according to the scaled conjugate gradient method.

trainscg(net,Pd,Tl,Ai,Q,TS,VV,TV) takes these inputs,

net — Neural network.

Pd   — Delayed input vectors.

Tl   — Layer target vectors.

Ai   — Initial input delay conditions.

Q     — Batch size.

TS   — Time steps.

VV   — Either empty matrix [] or structure of validation vectors.

TV   — Either empty matrix [] or structure of test vectors.

and returns,

net — Trained network.

TR   — Training record of various values over each epoch:

TR.epoch — Epoch number.

TR.perf   — Training performance.

TR.vperf — Validation performance.

TR.tperf — Test performance.

Ac  — Collective layer outputs for last epoch.

El  — Layer errors for last epoch.
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Training occurs according to the trainscg’s training parameters shown here 
with their default values:

net.trainParam.epochs 100  Maximum number of epochs to train

net.trainParam.show 25  Epochs between showing progress

net.trainParam.goal 0  Performance goal

net.trainParam.time inf  Maximum time to train in seconds

net.trainParam.min_grad 1e-6  Minimum performance gradient

net.trainParam.max_fail 5  Maximum validation failures

net.trainParam.sigma 5.0e-5 Determines change in weight for 
second derivative approximation.

net.trainParam.lambda 5.0e-7 Parameter for regulating the 
indefiniteness of the Hessian.

Dimensions for these variables are

Pd — No x Ni x TS cell array, each element P{i,j,ts} is a Dij x Q matrix.

Tl — Nl x TS cell array, each element P{i,ts} is a Vi x Q matrix.

Ai — Nl x LD cell array, each element Ai{i,k} is an Si x Q matrix.

where

Ni = net.numInputs
Nl = net.numLayers
LD = net.numLayerDelays
Ri = net.inputs{i}.size
Si = net.layers{i}.size
Vi = net.targets{i}.size
Dij = Ri * length(net.inputWeights{i,j}.delays)

If VV is not [], it must be a structure of validation vectors,

VV.PD — Validation delayed inputs.

VV.Tl — Validation layer targets.

VV.Ai — Validation initial input conditions.

VV.Q   — Validation batch size.

VV.TS — Validation time steps.
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which is used to stop training early if the network performance on the 
validation vectors fails to improve or remains the same for max_fail epochs in 
a row.

If TV is not [], it must be a structure of validation vectors,

TV.PD — Validation delayed inputs

TV.Tl — Validation layer targets

TV.Ai — Validation initial input conditions

TV.Q   — Validation batch size

TV.TS — Validation time steps

which is used to test the generalization capability of the trained network.

trainscg(code) returns useful information for each code string:

'pnames'      — Names of training parameters

'pdefaults' — Default training parameters

Examples Here is a problem consisting of inputs p and targets t that we would like to 
solve with a network.

p = [0 1 2 3 4 5];
t = [0 0 0 1 1 1];

Here a two-layer feed-forward network is created. The network’s input ranges 
from [0 to 10]. The first layer has two tansig neurons, and the second layer 
has one logsig neuron. The trainscg network training function is used.

Create and Test a Network
net = newff([0 5],[2 1],{'tansig','logsig'},'trainscg');
a = sim(net,p)

Train and Retest the Network
net.trainParam.epochs = 50;
net.trainParam.show = 10;
net.trainParam.goal = 0.1;
net = train(net,p,t);
a = sim(net,p)

See newff, newcf, and newelm for other examples.
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Network Use You can create a standard network that uses trainscg with newff, newcf, or 
newelm.

To prepare a custom network to be trained with trainscg

1 Set net.trainFcn to 'trainscg'. This will set net.trainParam to trainscg’s 
default parameters.

2 Set net.trainParam properties to desired values.

In either case, calling train with the resulting network will train the network 
with trainscg.

Algorithm trainscg can train any network as long as its weight, net input, and transfer 
functions have derivative functions. Backpropagation is used to calculate 
derivatives of performance perf with respect to the weight and bias variables 
X. 

The scaled conjugate gradient algorithm is based on conjugate directions, as in 
traincgp, traincgf and traincgb, but this algorithm does not perform a line 
search at each iteration. See Moller (Neural Networks) for a more detailed 
discussion of the scaled conjugate gradient algorithm.

Training stops when any of these conditions occur:

• The maximum number of epochs (repetitions) is reached.

• The maximum amount of time has been exceeded.

• Performance has been minimized to the goal.

• The performance gradient falls below mingrad.

• Validation performance has increased more than max_fail times since the 
last time it decreased (when using validation).

See Also newff, newcf, traingdm, traingda, traingdx, trainlm, trainrp, 
traincgf, traincgb, trainbfg, traincgp, trainoss

References Moller, M. F., “A scaled conjugate gradient algorithm for fast supervised 
learning,” Neural Networks, vol. 6, pp. 525-533, 1993.
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14tramnmxPurpose Transform data using a precalculated minimum and maximum value

Syntax [PN] = tramnmx(P,minp,maxp)

Description tramnmx transforms the network input set using minimum and maximum 
values that were previously computed by premnmx. This function needs to be 
used when a network has been trained using data normalized by premnmx. All 
subsequent inputs to the network need to be transformed using the same 
normalization.

tramnmx(P,minp, maxp)takes these inputs

P      — R x Q matrix of input (column) vectors.

minp — R x 1 vector containing original minimums for each input.

maxp — R x 1 vector containing original maximums for each input.

and returns,

PN    — R x Q matrix of normalized input vectors

Examples Here is the code to normalize a given data set, so that the inputs and targets 
will fall in the range [-1,1], using premnmx, and also code to train a network 
with the normalized data.

p = [-10 -7.5 -5 -2.5 0 2.5 5 7.5 10];
t = [0 7.07 -10 -7.07 0 7.07 10 7.07 0];
[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t);
net = newff(minmax(pn),[5 1],{'tansig' 'purelin'},'trainlm');
net = train(net,pn,tn);

If we then receive new inputs to apply to the trained network, we will use 
tramnmx to transform them first. Then the transformed inputs can be used to 
simulate the previously trained network. The network output must also be 
unnormalized using postmnmx.

p2 = [4 -7];
[p2n] = tramnmx(p2,minp,maxp);
an = sim(net,pn);
[a] = postmnmx(an,mint,maxt);

Algorithm pn = 2*(p-minp)/(maxp-minp) - 1;
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See Also premnmx, prestd, prepca, trastd, trapca
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14trapcaPurpose Principal component transformation

Syntax [Ptrans] = trapca(P,transMat)

Description trapca preprocesses the network input training set by applying the principal 
component transformation that was previously computed by prepca. This 
function needs to be used when a network has been trained using data 
normalized by prepca. All subsequent inputs to the network need to be 
transformed using the same normalization. 

trapca(P,transMat) takes these inputs,

P        — R x Q matrix of centered input (column) vectors.

transMat — Transformation matrix.

and returns,

Ptrans    — Transformed data set.

Examples Here is the code to perform a principal component analysis and retain only 
those components that contribute more than two percent to the variance in the 
data set. prestd is called first to create zero mean data, which is needed for 
prepca.

p = [-1.5 -0.58 0.21 -0.96 -0.79; -2.2 -0.87 0.31 -1.4  -1.2];
t = [-0.08 3.4 -0.82 0.69 3.1];
[pn,meanp,stdp,tn,meant,stdt] = prestd(p,t);
[ptrans,transMat] = prepca(pn,0.02);
net = newff(minmax(ptrans),[5 1],{'tansig''purelin'},'trainlm');
net = train(net,ptrans,tn);

If we then receive new inputs to apply to the trained network, we will use 
trastd and trapca to transform them first. Then the transformed inputs can 
be used to simulate the previously trained network. The network output must 
also be unnormalized using poststd.

p2 = [1.5 -0.8;0.05 -0.3];
[p2n] = trastd(p2,meanp,stdp);
[p2trans] = trapca(p2n,transMat)
an = sim(net,p2trans);
[a] = poststd(an,meant,stdt);
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Algorithm Ptrans = transMat*P;

See Also prestd, premnmx, prepca, trastd, tramnmx
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14trastdPurpose Preprocess data using a precalculated mean and standard deviation

Syntax [PN] = trastd(P,meanp,stdp)

Description trastd preprocesses the network training set using the mean and standard 
deviation that were previously computed by prestd. This function needs to be 
used when a network has been trained using data normalized by prestd. All 
subsequent inputs to the network need to be transformed using the same 
normalization.

trastd(P,T) takes these inputs,

P        — R x Q matrix of input (column) vectors.

meanp — R x 1 vector containing the original means for each input.

stdp  — R x 1 vector containing the original standard deviations for each 
input.

and returns,

PN      — R x Q matrix of normalized input vectors.

Examples Here is the code to normalize a given data set so that the inputs and targets 
will have means of zero and standard deviations of 1.

p = [-0.92 0.73 -0.47 0.74 0.29; -0.08 0.86 -0.67 -0.52 0.93];
t = [-0.08 3.4 -0.82 0.69 3.1];
[pn,meanp,stdp,tn,meant,stdt] = prestd(p,t);
net = newff(minmax(pn),[5 1],{'tansig' 'purelin'},'trainlm');
net = train(net,pn,tn);

If we then receive new inputs to apply to the trained network, we will use 
trastd to transform them first. Then the transformed inputs can be used to 
simulate the previously trained network. The network output must also be 
unnormalized using poststd.

p2 = [1.5 -0.8;0.05 -0.3];
[p2n] = trastd(p2,meanp,stdp);
an = sim(net,pn);
[a] = poststd(an,meant,stdt);

Algorithm pn = (p-meanp)/stdp;
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See Also premnmx, prepca, prestd, trapca, tramnmx 
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14tribasPurpose Triangular basis transfer function

Graph and 
Symbol

Syntax A = tribas(N)

info = tribas(code)

Description tribas is a transfer function. Transfer functions calculate a layer’s output from 
its net input.

tribas(N) takes one input,

N — S x Q matrix of net input (column) vectors.

and returns each element of N passed through a radial basis function.

tribas(code) returns useful information for each code string:

'deriv'  — Name of derivative function.

'name'    — Full name.

'output' — Output range.

'active' — Active input range.

Examples Here we create a plot of the tribas transfer function.

n = -5:0.1:5;
a = tribas(n);
plot(n,a)

Network Use To change a network so that a layer uses tribas, set 
net.layers{i}.transferFcn to 'tribas'.

n
0

-1

+1

a = tribas(n)

Triangular Basis Function

a

-1 +1
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Call sim to simulate the network with tribas.

Algorithm tribas(N) calculates its output with according to:

tribas(n) = 1-abs(n), if -1 <= n <= 1; = 0, otherwise.

See Also sim, radbas
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14vec2indPurpose Convert vectors to indices

Syntax ind = vec2ind(vec)

Description ind2vec and vec2ind allow indices to be represented either by themselves or 
as vectors containing a 1 in the row of the index they represent.

vec2ind(vec) takes one argument,

vec — Matrix of vectors, each containing a single 1.

and returns the indices of the 1’s.

Examples Here four vectors (each containing only one “1” element) are defined and the 
indices of the 1’s are found.

vec = [1 0 0 0; 0 0 1 0; 0 1 0 1]
ind = vec2ind(vec)

See Also ind2vec
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ADALINE - An acronym for a linear neuron: ADAptive LINear Element.

adaption - A training method that proceeds through the specified sequence of 
inputs, calculating the output, error and network adjustment for each input 
vector in the sequence as the inputs are presented.

adaptive learning rate - A learning rate that is adjusted according to an 
algorithm during training to minimize training time.

adaptive filter - A network that contains delays and whose weights are 
adjusted after each new input vector is presented. The network “adapts” to 
changes in the input signal properties if such occur. This kind of filter is used 
in long distance telephone lines to cancel echoes.

architecture - A description of the number of the layers in a neural network, 
each layer’s transfer function, the number of neurons per layer, and the 
connections between layers.

backpropagation learning rule - A learning rule in which weights and biases 
are adjusted by error-derivative (delta) vectors backpropagated through the 
network. Backpropagation is commonly applied to feedforward multilayer 
networks. Sometimes this rule is called the generalized delta rule.

backtracking search - Linear search routine that begins with a step 
multiplier of 1 and then backtracks until an acceptable reduction in the 
performance is obtained.

batch - A matrix of input (or target) vectors applied to the network 
“simultaneously.” Changes to the network weights and biases are made just 
once for the entire set of vectors in the input matrix. (This term is being 
replaced by the more descriptive expression “concurrent vectors.”)

batching - The process of presenting a set of input vectors for simultaneous 
calculation of a matrix of output vectors and/or new weights and biases.

Bayesian framework - Assumes that the weights and biases of the network 
are random variables with specified distributions.

BFGS quasi-Newton algorithm - A variation of Newton’s optimization 
algorithm, in which an approximation of the Hessian matrix is obtained from 
gradients computed at each iteration of the algorithm.

bias - A neuron parameter that is summed with the neuron’s weighted inputs 
and passed through the neuron’s transfer function to generate the neuron’s 
output.
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bias vector - A column vector of bias values for a layer of neurons.

Brent’s search - A linear search that is a hybrid combination of the golden 
section search and a quadratic interpolation.

Charalambous’ search - A hybrid line search that uses a cubic interpolation, 
together with a type of sectioning.

cascade forward network - A layered network in which each layer only 
receives inputs from previous layers.

classification - An association of an input vector with a particular target 
vector.

competitive layer - A layer of neurons in which only the neuron with 
maximum net input has an output of 1 and all other neurons have an output of 
0. Neurons compete with each other for the right to respond to a given input 
vector.

competitive learning - The unsupervised training of a competitive layer with 
the instar rule or Kohonen rule. Individual neurons learn to become feature 
detectors. After training, the layer categorizes input vectors among its 
neurons.

competitive transfer function - Accepts a net input vector for a layer and 
returns neuron outputs of 0 for all neurons except for the “winner,” the neuron 
associated with the most positive element of the net input n.

concurrent input vectors - Name given to a matrix of input vectors that are 
to be presented to a network “simultaneously.” All the vectors in the matrix will 
be used in making just one set of changes in the weights and biases.

conjugate gradient algorithm - In the conjugate gradient algorithms a search 
is performed along conjugate directions, which produces generally faster 
convergence than a search along the steepest descent directions. 

connection - A one-way link between neurons in a network.

connection strength - The strength of a link between two neurons in a 
network. The strength, often called weight, determines the effect that one 
neuron has on another.

cycle - A single presentation of an input vector, calculation of output, and new 
weights and biases.
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dead neurons - A competitive layer neuron that never won any competition 
during training and so has not become a useful feature detector. Dead neurons 
do not respond to any of the training vectors.

decision boundary - A line, determined by the weight and bias vectors, for 
which the net input n is zero.

delta rule - See the Widrow-Hoff learning rule.

delta vector - The delta vector for a layer is the derivative of a network’s 
output error with respect to that layer’s net input vector.

distance - The distance between neurons, calculated from their positions with 
a distance function.

distance function - A particular way of calculating distance, such as the 
Euclidean distance between two vectors.

early stopping - A technique based on dividing the data into three subsets. The 
first subset is the training set used for computing the gradient and updating 
the network weights and biases. The second subset is the validation set. When 
the validation error increases for a specified number of iterations, the training 
is stopped, and the weights and biases at the minimum of the validation error 
are returned. The third subset is the test set. It is used to verify the network 
design.

epoch - The presentation of the set of training (input and/or target) vectors to 
a network and the calculation of new weights and biases. Note that training 
vectors can be presented one at a time or all together in a batch.

error jumping - A sudden increase in a network’s sum-squared error during 
training. This is often due to too large a learning rate.

error ratio - A training parameter used with adaptive learning rate and 
momentum training of backpropagation networks.

error vector - The difference between a network’s output vector in response to 
an input vector and an associated target output vector.

feedback network - A network with connections from a layer’s output to that 
layer’s input. The feedback connection can be direct or pass through several 
layers.

feedforward network - A layered network in which each layer only receives 
inputs from previous layers.
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Fletcher-Reeves update - A method developed by Fletcher and Reeves for 
computing a set of conjugate directions. These directions are used as search 
directions as part of a conjugate gradient optimization procedure.

function approximation - The task performed by a network trained to 
respond to inputs with an approximation of a desired function.

generalization - An attribute of a network whose output for a new input vector 
tends to be close to outputs for similar input vectors in its training set.

generalized regression network - Approximates a continuous function to an 
arbitrary accuracy, given a sufficient number of hidden neurons.

global minimum - The lowest value of a function over the entire range of its 
input parameters. Gradient descent methods adjust weights and biases in 
order to find the global minimum of error for a network.

golden section search - A linear search that does not require the calculation 
of the slope. The interval containing the minimum of the performance is 
subdivided at each iteration of the search, and one subdivision is eliminated at 
each iteration.

gradient descent - The process of making changes to weights and biases, 
where the changes are proportional to the derivatives of network error with 
respect to those weights and biases. This is done to minimize network error.

hard-limit transfer function - A transfer that maps inputs greater-than or 
equal-to 0 to 1, and all other values to 0.

Hebb learning rule - Historically the first proposed learning rule for neurons. 
Weights are adjusted proportional to the product of the outputs of pre- and 
post-weight neurons.

hidden layer - A layer of a network that is not connected to the network 
output. (For instance, the first layer of a two-layer feedforward network.)

home neuron - A neuron at the center of a neighborhood.

hybrid bisection-cubicsearch - A line search that combines bisection and 
cubic interpolation.

input layer - A layer of neurons receiving inputs directly from outside the 
network.

initialization - The process of setting the network weights and biases to their 
original values.
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input space - The range of all possible input vectors.

input vector - A vector presented to the network.

input weights - The weights connecting network inputs to layers.

input weight vector - The row vector of weights going to a neuron.

Jacobian matrix - Contains the first derivatives of the network errors with 
respect to the weights and biases.

Kohonen learning rule - A learning rule that trains selected neuron’s weight 
vectors to take on the values of the current input vector.

layer - A group of neurons having connections to the same inputs and sending 
outputs to the same destinations.

layer diagram - A network architecture figure showing the layers and the 
weight matrices connecting them. Each layer’s transfer function is indicated 
with a symbol. Sizes of input, output, bias and weight matrices are shown. 
Individual neurons and connections are not shown. (See Chapter 2.)

layer weights - The weights connecting layers to other layers. Such weights 
need to have non-zero delays if they form a recurrent connection (i.e., a loop).

learning - The process by which weights and biases are adjusted to achieve 
some desired network behavior.

learning rate - A training parameter that controls the size of weight and bias 
changes during learning.

learning rules - Methods of deriving the next changes that might be made in 
a network OR a procedure for modifying the weights and biases of a network.

Levenberg-Marquardt - An algorithm that trains a neural network 10 to 100 
faster than the usual gradient descent backpropagation method. It will always 
compute the approximate Hessian matrix, which has dimensions n-by-n.

line search function - Procedure for searching along a given search direction 
(line) to locate the minimum of the network performance.

linear transfer function - A transfer function that produces its input as its 
output.

link distance - The number of links, or steps, that must be taken to get to the 
neuron under consideration.
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local minimum - The minimum of a function over a limited range of input 
values. A local minimum may not be the global minimum.

log-sigmoid transfer function - A squashing function of the form shown below 
that maps the input to the interval (0,1). (The toolbox function is logsig.) 

Manhattan distance - The Manhattan distance between two vectors x and y is 
calculated as: 

D = sum(abs(x-y))

maximum performance increase - The maximum amount by which the 
performance is allowed to increase in one iteration of the variable learning rate 
training algorithm.

maximum step size - The maximum step size allowed during a linear search. 
The magnitude of the weight vector is not allowed to increase by more than this 
maximum step size in one iteration of a training algorithm.

mean square error function - The performance function that calculates the 
average squared error between the network outputs a and the target outputs t.

momentum - A technique often used to make it less likely for a 
backpropagation networks to get caught in a shallow minima.

momentum constant - A training parameter that controls how much 
“momentum” is used.

mu parameter - The initial value for the scalar µ.

neighborhood - A group of neurons within a specified distance of a particular 
neuron. The neighborhood is specified by the indices for all of the neurons that 
lie within a radius  of the winning neuron :

net input vector - The combination, in a layer, of all the layer’s weighted input 
vectors with its bias.

neuron - The basic processing element of a neural network. Includes weights 
and bias, a summing junction and an output transfer function. Artificial 
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neurons, such as those simulated and trained with this toolbox, are 
abstractions of biological neurons.

neuron diagram - A network architecture figure showing the neurons and the 
weights connecting them. Each neuron’s transfer function is indicated with a 
symbol.

ordering phase - Period of training during which neuron weights are expected 
to order themselves in the input space consistent with the associated neuron 
positions.

output layer - A layer whose output is passed to the world outside the network.

output vector - The output of a neural network. Each element of the output 
vector is the output of a neuron.

output weight vector - The column vector of weights coming from a neuron or 
input. (See outstar learning rule.)

outstar learning rule - A learning rule that trains a neuron’s (or input’s) 
output weight vector to take on the values of the current output vector of the 
post-weight layer. Changes in the weights are proportional to the neuron’s 
output.

overfitting - A case in which the error on the training set is driven to a very 
small value, but when new data is presented to the network, the error is large.

pass - Each traverse through all of the training input and target vectors.

pattern - A vector.

pattern association - The task performed by a network trained to respond 
with the correct output vector for each presented input vector.

pattern recognition - The task performed by a network trained to respond 
when an input vector close to a learned vector is presented. The network 
“recognizes” the input as one of the original target vectors.

performance function - Commonly the mean squared error of the network 
outputs. However, the toolbox also considers other performance functions. 
Type nnets and look under performance functions.

perceptron - A single-layer network with a hard-limit transfer function. This 
network is often trained with the perceptron learning rule.
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perceptron learning rule - A learning rule for training single-layer hard-limit 
networks. It is guaranteed to result in a perfectly functioning network in finite 
time, given that the network is capable of doing so.

performance - The behavior of a network.

Polak-Ribiére update - A method developed by Polak and Ribiére for 
computing a set of conjugate directions. These directions are used as search 
directions as part of a conjugate gradient optimization procedure.

positive linear transfer function - A transfer function that produces an 
output of zero for negative inputs and an output equal to the input for positive 
inputs.

postprocessing - Converts normalized outputs back into the same units that 
were used for the original targets.

Powell-Beale restarts - A method developed by Powell and Beale for 
computing a set of conjugate directions. These directions are used as search 
directions as part of a conjugate gradient optimization procedure. This 
procedure also periodically resets the search direction to the negative of the 
gradient.

preprocessing - Perform some transformation of the input or target data 
before it is presented to the neural network.

principal component analysis - Orthogonalize the components of network 
input vectors. This procedure can also reduce the dimension of the input 
vectors by eliminating redundant components.

quasi-Newton algorithm - Class of optimization algorithm based on Newton’s 
method. An approximate Hessian matrix is computed at each iteration of the 
algorithm based on the gradients.

radial basis networks - A neural network that can be designed directly by 
fitting special response elements where they will do the most good.

radial basis transfer function - The transfer function for a radial basis 
neuron is:

radbas n( ) e n2–
=
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regularization - Involves modifying the performance function, which is 
normally chosen to be the sum of squares of the network errors on the training 
set, by adding some fraction of the squares of the network weights.

resilient backpropagation - A training algorithm that eliminates the harmful 
effect of having a small slope at the extreme ends of the sigmoid “squashing” 
transfer functions.

saturating linear transfer function - A function that is linear in the interval 
(-1,+1) and saturates outside this interval to -1 or +1. (The toolbox function is 
satlin.)

scaled conjugate gradient algorithm - Avoids the time consuming line search 
of the standard conjugate gradient algorithm.

sequential input vectors - A set of vectors that are to be presented to a 
network “one after the other.” The network weights and biases are adjusted on 
the presentation of each input vector.

sigma parameter - Determines the change in weight for the calculation of the 
approximate Hessian matrix in the scaled conjugate gradient algorithm.

sigmoid - Monotonic S-shaped function mapping numbers in the interval 
(-∞,∞) to a finite interval such as (-1,+1) or (0,1).

simulation - Takes the network input p, and the network object net, and 
returns the network outputs a.

spread constant - The distance an input vector must be from a neuron’s weight 
vector to produce an output of 0.5.

squashing function - A monotonic increasing function that takes input values 
between -∞ and +∞ and returns values in a finite interval.

star learning rule - A learning rule that trains a neuron’s weight vector to take 
on the values of the current input vector. Changes in the weights are 
proportional to the neuron’s output.

sum-squared error - The sum of squared differences between the network 
targets and actual outputs for a given input vector or set of vectors.

supervised learning - A learning process in which changes in a network’s 
weights and biases are due to the intervention of any external teacher. The 
teacher typically provides output targets.
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symmetric hard-limit transfer function - A transfer that maps inputs 
greater-than or equal-to 0 to +1, and all other values to -1.

symmetric saturating linear transfer function - Produces the input as its 
output as long as the input i in the range -1 to 1. Outside that range the output 
is -1 and +1 respectively.

tan-sigmoid transfer function - A squashing function of the form shown 
below that maps the input to the interval (-1,1). (The toolbox function is 
tansig.) 

tapped delay line - A sequential set of delays with outputs available at each 
delay output.

target vector - The desired output vector for a given input vector.

test vectors - A set of input vectors (not used directly in training) that is used 
to test the trained network.

topology functions - Ways to arrange the neurons in a grid, box, hexagonal, or 
random topology.

training - A procedure whereby a network is adjusted to do a particular job. 
Commonly viewed as an “offline” job, as opposed to an adjustment made during 
each time interval as is done in adaptive training.

training vector - An input and/or target vector used to train a network. 

transfer function - The function that maps a neuron’s (or layer’s) net output 
n to its actual output.

tuning phase - Period of SOFM training during which weights are expected to 
spread out relatively evenly over the input space while retaining their 
topological order found during the ordering phase.

underdetermined system - A system that has more variables than 
constraints.

unsupervised learning - A learning process in which changes in a network’s 
weights and biases are not due to the intervention of any external teacher. 
Commonly changes are a function of the current network input vectors, output 
vectors, and previous weights and biases.
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update - Make a change in weights and biases. The update can occur after 
presentation of a single input vector or after accumulating changes over 
several input vectors.

validation vectors - A set of input vectors (not used directly in training) that 
is used to monitor training progress so as to keep the network from overfitting.

weighted input vector - The result of applying a weight to a layer's input, 
whether it is a network input or the output of another layer.

weight function - Weight functions apply weights to an input to get weighted 
inputs as specified by a particular function.

weight matrix - A matrix containing connection strengths from a layer’s 
inputs to its neurons. The element wi,j of a weight matrix W refers to the 
connection strength from input j to neuron i.

Widrow-Hoff learning rule - A learning rule used to trained single-layer 
linear networks. This rule is the predecessor of the backpropagation rule and 
is sometimes referred to as the delta rule.
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Block Set
The Neural Network Toolbox provides a set of blocks you can use to build 
neural networks in Simulink or which can be used by the function gensim to 
generate the Simulink version of any network you have created in MATLAB®.

Bring up the Neural Network Toolbox blockset with this command.

neural

The result is a window that contains four blocks. Each of these blocks contains 
additional blocks.

Transfer Function Blocks
Double-click on the Transfer Functions block in the Neural window to bring up 
a window containing several transfer function blocks.
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Each of these blocks takes a net input vector and generates a corresponding 
output vector whose dimensions are the same as the input vector.

Net Input Blocks
Double-click on the Net Input Functions block in the Neural window to bring 
up a window containing two net-input function blocks.

Each of these blocks takes any number of weighted input vectors, weight layer 
output vectors, and bias vectors, and returns a net-input vector.

Weight Blocks
Double-click on the Weight Functions block in the Neural window to bring up 
a window containing three weight function blocks.
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Each of these blocks takes a neuron’s weight vector and applies it to an input 
vector (or a layer output vector) to get a weighted input value for a neuron.

It is important to note that the blocks above expect the neuron’s weight vector 
to be defined as a column vector. This is because Simulink signals can be 
column vectors, but cannot be matrices or row vectors.

It is also important to note that because of this limitation you have to create S 
weight function blocks (one for each row), to implement a weight matrix going 
to a layer with S neurons.

This contrasts with the other two kinds of blocks. Only one net input function 
and one transfer function block are required for each layer.



Block Generation

D-5

Block Generation
The function gensim generates block descriptions of networks so you can 
simulate them in Simulink.

gensim(net,st)

The second argument to gensim determines the sample time, which is normally 
chosen to be some positive real value.

If a network has no delays associated with its input weights or layer weights, 
this value can be set to -1. A value of -1 tells gensim to generate a network with 
continuous sampling.

Example
Here is a simple problem defining a set of inputs p and corresponding targets t.

p = [1 2 3 4 5];
t = [1 3 5 7 9];

The code below designs a linear layer to solve this problem.

net = newlind(p,t)

We can test the network on our original inputs with sim.

y = sim(net,p)

The results returned show the network has solved the problem.

y =
1.0000    3.0000    5.0000    7.0000    9.0000

Call gensim as follows to generate a Simulink version of the network.

gensim(net,-1)

The second argument is -1 so the resulting network block samples 
continuously.

The call to gensim results in the following screen. It contains a Simulink 
system consisting of the linear network connected to a sample input and a 
scope.
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To test the network, double-click on the Input 1 block at left.

The input block is actually a standard Constant block. Change the constant 
value from the initial randomly generated value to 2, and then select Close.

Select Start from the Simulation menu. Simulink momentarily pauses as it 
simulates the system.

When the simulation is over, double-click the scope at the right to see the 
following display of the network’s response.
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Note that the output is 3, which is the correct output for an input of 2.

Exercises
Here are a couple of exercises you can try.

Changing Input Signal
Replace the constant input block with a signal generator from the standard 
Simulink block set Sources. Simulate the system and view the network’s 
response.

Discrete Sample Time
Recreate the network, but with a discrete sample time of 0.5, instead of 
continuous sampling.

gensim(net,0.5)

Again replace the constant input with a signal generator. Simulate the system 
and view the network’s response.
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Code Notes 

Dimensions (p. E-2) Defines common code dimensions

Variables (p. E-3) Defines common variables to use when you define a 
simulation or training session 

Functions (p. E-7) Discusses the utility functions that you can call to perform 
a lot of the work of simulating or training a network

Code Efficiency (p. E-8) Discusses the functions you can use to convert a network 
object to a structure, and a structure to a network

Argument Checking (p. E-9) Discusses advanced functions you can use to increase 
speed
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Dimensions
The following code dimensions are used in describing both the network signals 
that users commonly see, and those used by the utility functions:

Ni = number of network inputs = net.numInputs

Ri = number of elements in input i = net.inputs{i}.size

Nl = number of layers = net.numLayers

Si = number of neurons in layer i = net.layers{i}.size

Nt = number of targets = net.numTargets

Vi = number of elements in target i, equal to Sj, where j is the ith layer with a 
target. (A layer n has a target if net.targets(n) == 1.)

No = number of network outputs = net.numOutputs

Ui = number of elements in output i, equal to Sj, where j is the ith layer with 
an output (A layer n has an output if net.outputs(n) == 1.)

 ID = number of input delays = net.numInputDelays

 LD = number of layer delays = net.numLayerDelays

 TS = number of time steps

 Q  = number of concurrent vectors or sequences.
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Variables
The variables a user commonly uses when defining a simulation or training 
session are

P

Network inputs.

Ni-by-TS cell array, each element P{i,ts} is an Ri-by-Q matrix.

Pi

Initial input delay conditions.

Ni-by-ID cell array, each element Pi{i,k} is an Ri-by-Q matrix.

Ai

Initial layer delay conditions.

Nl-by-LD cell array, each element Ai{i,k} is an Si-by-Q matrix.

T

Network targets.

Nt-by-TS cell array, each element P{i,ts} is an Vi-by-Q matrix.

These variables are returned by simulation and training

calls:

Y

 Network outputs.

 No-by-TS cell array, each element Y{i,ts} is a Ui-by-Q matrix.
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E

 Network errors.

 Nt-by-TS cell array, each element P{i,ts} is an Vi-by-Q matrix.

perf

 network performance

Utility Function Variables
These variables are used only by the utility functions.

Pc

Combined inputs.

Ni-by-(ID+TS) cell array, each element P{i,ts} is an Ri-by-Q matrix.

Pc = [Pi P] = Initial input delay conditions and network inputs.

Pd

Delayed inputs.

Ni-by-Nj-by-TS cell array, each element Pd{i,j,ts} is an (Ri*IWD(i,j))-by-Q 
matrix, where IWD(i,j) is the number of delay taps associated with input 
weight to layer i from input j.

Equivalently, IWD(i,j) = length(net.inputWeights{i,j}.delays).

Pd is the result of passing the elements of P through each input weights 
tap delay lines. Since inputs are always transformed by input delays in 
the same way it saves time to only do that operation once, instead of for 
every training step.

BZ

Concurrent bias vectors.

Nl-by-1 cell array, each element BZ{i} is a Si-by-Q matrix.

Each matrix is simply Q copies of the net.b{i} bias vector.
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IWZ

Weighted inputs.

Ni-by-Nl-by-TS cell array, each element IWZ{i,j,ts} is a Si-by--by-Q 
matrix.

LWZ

Weighed layer outputs.

Ni-by-Nl-by-TS cell array, each element LWZ{i,j,ts} is a Si-by-Q matrix.

N

Net inputs.

Ni-by-TS cell array, each element N{i,ts} is a Si-by-Q matrix.

A

Layer outputs.

Nl-by-TS cell array, each element A{i,ts} is a Si-by-Q matrix.

Ac

Combined layer outputs.

Nl-by-(LD+TS) cell array, each element A{i,ts} is a Si-by-Q matrix.

Ac = [Ai A] = Initial layer delay conditions and layer outputs.

Tl

Layer targets.

Nl-by-TS cell array, each element Tl{i,ts} is a Si-by-Q matrix.

Tl contains empty matrices [] in rows of layers i not associated with 
targets, indicated by net.targets(i) == 0.
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El

Layer errors.

Nl-by-TS cell array, each element El{i,ts} is a Si-by-Q matrix.

El contains empty matrices [] in rows of layers i not associated with 
targets, indicated by net.targets(i) == 0.

X

Column vector of all weight and bias values.
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Functions
The following functions are the utility functions that you can call to perform a 
lot of the work of simulating or training a network. You can read about them 
in their respective help comments. 

These functions calculate signals.

calcpd, calca, calca1, calce, calce1, calcperf

These functions calculate derivatives, Jacobians, and values associated with 
Jacobians.

calcgx, calcjx, calcjejj

calcgx is used for gradient algorithms; calcjx and calcjejj can be used for 
calculating approximations of the Hessian for algorithms like 
Levenberg-Marquardt.

These functions allow network weight and bias values to be accessed and 
altered in terms of a single vector X.

setx, getx, formx



E Code Notes

E-8

Code Efficiency
The functions sim, train, and adapt all convert a network object to a structure,

net = struct(net);

before simulation and training, and then recast the structure back to a 
network.

net = class(net,'network')

This is done for speed efficiency since structure fields are accessed directly, 
while object fields are accessed using the MATLAB® object method handling 
system. If users write any code that uses utility functions outside of sim, train, 
or adapt, they should use the same technique.
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Argument Checking
These functions are only recommended for advanced users.

None of the utility functions do any argument checking, which means that the 
only feedback you get from calling them with incorrectly sized arguments is an 
error.

The lack of argument checking allows these functions to run as fast as possible.

For “safer” simulation and training, use sim, train and adapt.
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ANEXO 14- Diagrama de flujo de prueba del reloj DS1307 

INICIO

-CONFIGURACION DE PUERTOS
-CONFIGURACION DE INTERRUPCIÓN 

EXTERNA
-CONFIGURACION DE I2C
-CONFIGURACION SERIAL

ESCRIBIR REGISTRO 
DEL DS1307

INICIO

MOSTRAR POR SERIAL LOS 
PARAMETROS DE TIEMPO

FIN

INTERRUPCION EXTERNA

LEER REGISTRO 
DS1307

ACTIVO INTERRUCION

PROGRAMA PRINCIPAL

CONFIGURAR RELOJ 
DS1307 A 1HZ DE 

SALIDA

INICIALIZO VALORES 
DE TIEMPO

FIN

 



ANEXO 15 –Prueba con el módulo Bluetooth 
Zigbee vs Bluetooth. 
Ahora, como se cuenta con un módulo Bluetooth, se va realizar una prueba 

comparativa con los módulos Xbee, en el aspecto del ruido. 

 
Fig4.24: Señal obtenida por medio del módulo Bluetooth 

 

 
 

Fig4.25: Señal obtenida por medio de los módulos Xbee 

Como se puede observar en las gráficas,  hay mayor inmunidad al ruido mediante el 

protocolo Zigbee, ya que por el tipo de modulación el Zigbee se presenta como más 

robusto que el Bluetooth. 

 



 

 

 Fig4.10: Gráfico comparativo de la relación señal a ruido en función del BER 

De la figura anterior se puede corroborar con las pruebas realizadas que el protocolo 

Zigbee presenta una mayor inmunidad al ruido frente al protocolo Bluetooth. 

 



Resolución vs Número de muestras 

A continuación, se muestran dos gráficas obtenidas en la captura de datos por serial y 

graficadas en el programa MATLAB, la diferencia radica en la resolución y el número de 

muestras que se obtiene para un periodo. 

 

Fig4.10: Señal de voltaje y corriente AC graficada en el programa Matlab 

 

Fig4.11: Señal de voltaje y corriente AC graficada en el programa Matlab 

Se realizó la implementación de ambos sensores con la finalidad de obtener mejores 

resultados, tal como se observan en la figura 24. La señal de voltaje es obtenida a través 

de la línea 220VRMS y la señal de corriente corresponde a la corriente consumida en este 

caso por una plancha. En ambas señales se usó el conversor ADC interno del 

microcontrolador. En la figura 23 se usó una resolución de 8 bits, con la finalidad de poder 



obtener más muestras Mientras que en la figura 24 se empleó una resolución de 10 bits, 

pero con menor número de muestras Se puede observar que se obtiene una mejor forma 

de onda en la figura 24 sobre todo en la onda de corriente. 
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Product Discription 

HC-SR501 is based on infrared technology, automatic control module, using Germany imported LHI778 probe design, high sensitivity, high 

reliability, ultra-low-voltage operating mode, widely used in various auto-sensing electrical equipment, especially for battery-powered automatic 

controlled products.

Specification:

◦ Voltage: 5V – 20V

◦ Power Consumption: 65mA

◦ TTL output: 3.3V, 0V

◦

◦ Lock time: 0.2 sec

◦ Trigger methods: L – disable repeat trigger, H enable repeat trigger

◦ Sensing range: less than 120 degree, within 7 meters

◦ Temperature: – 15 ~ +70

◦ Dimension: 32*24 mm, distance between screw 28mm, M2, Lens dimension in diameter: 23mm

Application:

Automatically sensing light for Floor, bathroom, basement, porch, warehouse, Garage, etc, ventilator, alarm, etc.

Features:

◦ Automatic induction: to enter the sensing range of the output is high, the person leaves the sensing range of the automatic delay off high, 

output low.

◦ Photosensitive control (optional, not factory-set) can be set photosensitive control, day or light intensity without induction.

◦ Temperature compensation (optional, factory reset): In the summer when the ambient temperature rises to 30 ° C to 32 ° C, the detection 

distance is slightly shorter, temperature compensation can be used for performance compensation.

◦ Triggered in two ways: (jumper selectable)

◦ non-repeatable trigger: the sensor output high, the delay time is over, the output is automatically changed from high level to low level;

◦ repeatable trigger: the sensor output high, the delay period, if there is human activity in its sensing range, the output will always remain 

high until the people left after the delay will be high level goes low (sensor module detects a time delay period will be automatically 

extended every human activity, and the starting point for the delay time to the last event of the time).

◦ With induction blocking time (the default setting: 2.5s blocked time): sensor module after each sensor output (high into low), followed by a 

blockade set period of time, during this time period sensor does not accept any sensor signal. This feature can be achieved sensor output 

time “and” blocking time “interval between the work can be applied to interval detection products; This function can inhibit a variety of 

interference in the process of load switching. (This time can be set at zero seconds – a few tens of seconds).

◦ Wide operating voltage range: default voltage DC4.5V-20V.

◦ Micropower consumption: static current <50 microamps, particularly suitable for battery-powered automatic control products.

◦ Output high signal: easy to achieve docking with the various types of circuit.

Adjustment:

◦ Adjust the distance potentiometer clockwise rotation, increased sensing distance (about 7 meters), on the contrary, the sensing distance 

decreases (about 3 meters).

◦ Adjust the delay potentiometer clockwise rotation sensor the delay lengthened (300S), on the contrary, shorten the induction delay (5S).

Instructions for use:

◦ Sensor module is powered up after a minute, in this initialization time intervals during this module will output 0-3 times, a minute later enters 

the standby state.

◦ Should try to avoid the lights and other sources of interference close direct module surface of the lens, in order to avoid the introduction of 

interference signal malfunction; environment should avoid the wind flow, the wind will cause interference on the sensor.

◦ Sensor module with dual probe, the probe window is rectangular, dual (A B) in both ends of the longitudinal direction

◦ so when the human body from left to right or right to left through the infrared spectrum to reach dual time, distance difference, the greater 

the difference, the more sensitive the sensor,

◦ when the human body from the front to the probe or from top to bottom or from bottom to top on the direction traveled, double detects 

changes in the distance of less than infrared spectroscopy, no difference value the sensor insensitive or does not work;

◦ The dual direction of sensor should be installed parallel as far as possible in inline with human movement. In order to increase the sensor 

angle range, the module using a circular lens also makes the probe surrounded induction, but the left and right sides still up and down in 

both directions sensing range, sensitivity, still need to try to install the above requirements.
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Delay time: Adjustable (.3->5min)
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1 working voltage range :DC  4.5-20V

2 Quiescent Current :50uA

3 high output level 3.3 V / Low 0V

4. Trigger L trigger can not be repeated / H repeated trigger

5. circuit board dimensions :32 * 24  mm

6. maximum 110 ° angle sensor

7. 7 m maximum sensing distance

Product Type HC--SR501 Body Sensor Module

Operating Voltage Range
Quiescent Current <50uA

Level output High 3.3 V /Low 0V

Trigger L can not be repeated trigger/H can be repeated trigger(Default repeated trigger)

Delay time

Block time 2.5S(default)Can be made a range(0.xx to tens of seconds

Board Dimensions 32mm*24mm

Angle Sensor <110 ° cone angle

Operation Temp. -15-+70 degrees

Lens size sensor Diameter:23mm(Default)

Application scope

•Security products 

•Body induction toys 

•Body induction lamps 

•Industrial automation control etc

Pyroelectric infrared switch is a passive infrared switch which consists of BISS0001 ,pyroelectric infrared sensors and a few external components. It can autom tically 

open all kinds of equipments, inculding incandescent lamp, fluorescent lamp, intercom, automatic, electric fan, dryer and automatic washing machine, etc.

It is widely used in enterprises, hotels, stores, and corridor and other sensitive area for automatical lamplight, lighting and alarm system.

Instructions

Induction module needs a minute or so to initialize. During initializing time, it will output 0-3 times. One minute later it comes into standby.

Keep the surface of the lens from close lighting source and wind, which will introduce interference.

Induction module has double -probe whose window is rectangle. The two sub-probe (A and B) is located at the two ends of rectangle. When human body move from l ft

to right, or from right to left, Time for IR to reach to reach the two sub-probes differs.The lager the time diffference is, the more sensitive this module is. When hum n

body moves face-to probe, or up to down, or down to up, there is no time difference. So it does not work. So instal the module in the direction in which most hum n

activities behaves, to guarantee the induction of human by dual sub-probes. In order to increase the induction range, this module uses round lens which can induct IR

from all direction. However, induction from right or left is more sensitivity than from up or down.

.

5-20VDC
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