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Abstract

In recent years, there is a growing interest in the development of systems capable of
performing tasks with a high level of autonomy without human supervision. This kind
of systems are known as autonomous systems and have been studied in many industrial
applications such as automotive, aerospace and industries. Autonomous vehicle have
gained a lot of interest in recent years and have been considered as a viable solution to
minimize the number of road accidents. Due to the complexity of dynamic calculation
and the physical restrictions in autonomous vehicle, for example, deterministic model
predictive control is an attractive control technique to solve the problem of path planning
and obstacle avoidance. However, an autonomous vehicle should be capable of driving
adaptively facing deterministic and stochastic events on the road. Therefore, control
design for the safe, reliable and autonomous driving should consider vehicle model
uncertainty as well uncertain external influences. The stochastic model predictive
control scheme provides the most convenient scheme for the control of autonomous
vehicles on moving horizons, where chance constraints are to be used to guarantee
the reliable fulfillment of trajectory constraints and safety against static and random
obstacles. To solve this kind of problems is known as chance constrained model predictive
control. Thus, requires the solution of a chance constrained optimization on moving
horizon. According to the literature, the major challenge for solving chance constrained
optimization is to calculate the value of probability. As a result, approximation methods
have been proposed for solving this task.
In the present thesis, the chance constrained optimization for the autonomous vehicle is
solved through approximation method, where the probability constraint is approximated
by using a smooth parametric function. This methodology presents two approaches that
allow the solution of chance constrained optimization problems in inner approximation
and outer approximation. The aim of this approximation methods is to reformulate
the chance constrained optimizations problems as a sequence of nonlinear programs.
Finally, three case studies of autonomous vehicle for tracking and obstacle avoidance
are presented in this work, in which three levels probability of reliability are considered
for the optimal solution.
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Zusammenfassung

In den letzten Jahren gibt es ein wachsendes Interesse an der Entwicklung von Syste-
men, die in der Lage sind Aufgaben mit einem hohen Maß an Autonomie und ohne
menschliche Aufsicht durchzufhren. Dies Art der Systeme werden als autonome Systeme
bezeichnet, und wurden in vielen industriellen Anwendungen der Automobil und Luft-
fahrtindustrie untersuch. Autonome Fahrzeuge (engl. autonomous vehicle) haben in
den letzten Jahren stark an Interesse gewonnen und gelten als eine tragfähige Lösungen
um die Anzahl der Unfälle im Straßenverkehr zu minimieren. Aufgrund der Komplexität
der dynamischen Gleichungen und die physikalishen Einschränkungen in autonomen
Fahrzeug, ist zum Beispiel deterministische Modellprädiktive Regelung (engl. model
predictive control) eine attraktive Steuerungsmethode Technik, um das Problem der
Bahnplanung und die Vermeidung von Hindernis zu lösen. Dennoch sollte ein autonomen
Fahrzeug die Möglichkeit besitzen trotz deterministischer und stochastischer Ereignisse
auf der Straße fahren zu können. Ein Regelungsdesign für sicheres und zuverlässiges
Fahren sollte neben der fahrzeugtechnischen Modellen Sicherheit auch externe Einflüsse
berücksichtigen. Die stochastische modellprädiktive Regelung ist als Kontrollschema
für die Bewegung von Fahrzeuge mit beweglichen Horizonten am besten geeignet, wenn
Mönglichkeitsbegrenzung (engl. chance constraint) benötigt wird um die Zuverläs-
sigkeit auf dem Fahrweg und beim Ausweichen von Hindernissen zu garantieren. Um
diese Problemstellungen zu lösen, bieten sich möglichkeitsbegrenzende modellprädiktive
Regelungen an. Für einen beweglichen Horizont kann eine möglichkeitsbegrenzende
Optimierung (engl. chance constrained optimization) genutzt werden. Laut Literatur ist
die große Herausforderung für die Lösung von möglichkeitsbegrenzende Optimierung die
korrekte Berechnung der Wahrscheinlichkeiten. Infolgedessen sind Näherungsverfahren
vorgeschlagen worden, für die Lösung dieses schwierige Aufgabe. In der vorliegenden Mas-
terarbeit ist die wahrscheinlichkeitsbeschränkte Optimierung für das autonome Fahrzeug
durch entsprechende Näherungsverfahren für die Wahrscheinlichkeitsbeschränkungen
unter Verwendung von glättenden Parameterfunktionen. Diese Methode beruht auf
zwei Ansätzen zur Lösung des wahrscheinlichkeitsbeschränkte Optimierung Problems:
der inneren und der äußeren Annäherung. Das Ziel dieser Näherungsverfahren ist die
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Formulierung die wahrscheinlichkeitsbeschränkte Optimierungsprobleme als eine Folge
von nichtlinearen Programmen. Zum Abschluss wurden drei Fallstudien der autonome
Fahrzeuge für das Tracking und das Vermeiden von Hindernissen vorgestellt. Dafür
würde eine dreitstufige Wahrscheinlichkeit als optimale Lösung ermittelt.

vi



Acknowledgment

My deep gratitude goes first to my advisor Dr. Abebe Geletu for his valuable support
and his continuous guide. I also thank Prof. Pu Li for the interest shown and the
support.My sincere thanks also to Dr. Tafur Sotelo for being my co-advisor and for
providing worthy comments and advice.

I would like to thank my family and all my friends with whom I spent this year in
Ilmenau for the support provided.

My deeply thanks to CONCYTEC for the financial support and the opportunity of
living this experience.

Master thesis vii



Contents

Abstract iii

1 Introduction and motivation 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objective of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 State of the art 5
2.1 Autonomous Vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Nonlinear Model predictive control (MPC) for Autonomous Vehicle . . . 7

2.2.1 Deterministic MPC for Autonomous Vehicle . . . . . . . . . . . 8
2.2.2 Obstacles Avoidance Approaches . . . . . . . . . . . . . . . . . . 10

2.3 Optimal Control Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Solution methods for Optimal control problem (OCP) . . . . . . 11

2.4 Methods for constrained optimization Problem . . . . . . . . . . . . . . 15
2.4.1 Constrained minimizations problems . . . . . . . . . . . . . . . . 15

2.4.1.1 Optimality conditions . . . . . . . . . . . . . . . . . . . 15
2.4.1.2 Methods for Nonlinear Optimization problem . . . . . 17

3 Chance Constrained Stochastic Model Predictive Control 25
3.1 Stochastic model predictive control (SMPC) for Autonomous Vehicle . . 25
3.2 Stochastic Linear Model Predictive Control . . . . . . . . . . . . . . . . 26

3.2.1 LMPC problem formulation . . . . . . . . . . . . . . . . . . . . . 27
3.2.1.1 Control Strategies . . . . . . . . . . . . . . . . . . . . . 28

3.3 Stochastic nonlinear Model Predictive Control . . . . . . . . . . . . . . . 33
3.3.1 Formulation of a stochastic optimization problem . . . . . . . . . 33

3.4 Approximation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.1 Analytical Inner Approximation (IA) . . . . . . . . . . . . . . . . 36
3.4.2 Analytical outer approximation (OA) . . . . . . . . . . . . . . . 37

Master thesis ix



Contents

4 Implementation Framework 39
4.1 Interior point optimizer (IpOpt) Solver . . . . . . . . . . . . . . . . . . . 39

4.1.1 Computation of the first derivatives . . . . . . . . . . . . . . . . 42
4.1.2 Computation of the second derivatives . . . . . . . . . . . . . . 44
4.1.3 Generation of random variables . . . . . . . . . . . . . . . . . . . 46

5 Case-Studies and Computational Results 47
5.1 Case 1: Car-like Vehicle Model . . . . . . . . . . . . . . . . . . . . . . . 47

5.1.1 Deterministic MPC for Car-like vehicle model . . . . . . . . . . . 49
5.1.2 Stochastic MPC for car-like vehicle model . . . . . . . . . . . . . 53

5.2 Case 2: Vehicle single track model . . . . . . . . . . . . . . . . . . . . . 59
5.2.1 Deterministic MPC for vehicle single track model . . . . . . . . . 62
5.2.2 Stochastic MPC for vehicle single track model . . . . . . . . . . 67

5.3 Case 3: Bicycle vehicle model with nonlinear tire lateral model . . . . . 74
5.3.1 Deterministic MPC for bicycle vehicle model with nonlinear tire

lateral model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.2 Stochastic MPC for bicycle vehicle model with nonlinear tire

lateral model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Conclusions and Future Work 89
6.1 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Bibliography 91

x



List of Figures

1.1 Google’s driverless project car [2] . . . . . . . . . . . . . . . . . . . . . . 2

2.1 A basic working principle of model predictive control [11] . . . . . . . . 8
2.2 Global architecture for longitudinal and lateral control [10] . . . . . . . 9
2.3 Active Front Steering (AFS) with braking system formulated in [28] . . 9
2.4 Architecture of MPC [39] . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Solution Methods for OCP . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Piecewise constant of the control variables . . . . . . . . . . . . . . . . . 13
2.7 (left) Single trajectories obtained through the solution of the Ordinary

differential equation (ODE). (right) Convergence of state and control
profiles for the direct multiple shooting method [20]. . . . . . . . . . . . 14

3.1 Different forms of uncertain variables [51] . . . . . . . . . . . . . . . . . 25
3.2 Block diagram of overall system proposed in [18] . . . . . . . . . . . . . 26
3.3 Inner Approach-Convergence limτ→0+ M(τ) = P [33] . . . . . . . . . . 36
3.4 Outer Approach-Convergence limτ→0+ S(τ) = P [33] . . . . . . . . . . . 37

4.1 Diagram of the solution procedure of chance constrained MPC problem 40
4.2 Diagram of the solution procedure of IpOpt [74]. . . . . . . . . . . . . . 45
4.3 Framework of Monte-Carlo simulation . . . . . . . . . . . . . . . . . . . 46

5.1 Kinematic vehicle model [66] . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Mobile working area and obstacle to be avoided for the Car-like vehicle

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Simulation results for the case 1: Trajectory in the X-Y plane for obstacle

avoidance using deterministic MPC. . . . . . . . . . . . . . . . . . . . . 50
5.4 Simulation results for the case 1: Optimal control inputs for obstacle

avoidance using deterministic MPC. . . . . . . . . . . . . . . . . . . . . 50
5.5 Simulation results for the case 1: Optimal states for obstacle avoidance

using deterministic MPC. . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Master thesis xi



List of Figures

5.6 Simulation results for the case 1: Convergence of the objective function
using deterministic MPC . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.7 Simulation result for the case 1: Trajectory in the X-Y plane for obstacle
avoidance under uncertainties using deterministic MPC. . . . . . . . . 52

5.8 Simulation results for the case 1: Trajectory in the X-Y plane for obstacle
avoidance (up: Inner approximation (IA) τ = 0.1)and (down:Outer
approximation (OA) τ = 0.001) with α = 0.95.(left:Ns Trajectories of
the simulation Quasi-Monte Carlo (QSM)) and (right: Expected Value
of the trajectories) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.9 Simulation results for the case 1: Trajectory in the X-Y plane for
obstacle avoidance (up: IA τ = 0.1)and (down:OA τ = 0.001) with
α = 0.90.(left:Ns Trajectories of the simulation QSM) and (right: Ex-
pected Value of the trajectories) . . . . . . . . . . . . . . . . . . . . . . 54

5.10 Simulation results for the case 1: Trajectory in the X-Y plane for
obstacle avoidance (up: IA τ = 0.1)and (down:OA τ = 0.001) with
α = 0.80.(left:Ns Trajectories of the simulation QSM) and (right: Ex-
pected Value of the trajectories) . . . . . . . . . . . . . . . . . . . . . . 55

5.11 Simulation results for the case 1: Optimal control inputs for the ob-
stacle avoidance (left: Inner Approximation τ = 0.1)and (right: Outer
Approximation τ = 0.001) with α = 0.95 . . . . . . . . . . . . . . . . . . 56

5.12 Simulation results for the case 1: Optimal states for the obstacle avoidance
using IA (τ = 0.1) with α = 0.95. (left: Ns trajectories of the simulation
QSM) and (right: expected value of the trajectories) . . . . . . . . . . . 57

5.13 Simulation results for the case 1: Optimal states for the obstacle avoidance
using OA (τ = 0.001) with α = 0.95. (left: Ns trajectories of the
simulation QSM) and (right: expected value of the trajectories) . . . . 57

5.14 Simulation results for the case 1: Optimal value of the objective function
for different values of α (left: Inner Approximation) and (right: Outer
Approximation). From top to bottom: α = 0.8, α = 0.9, α = 0.95 . . . . 58

5.15 Mobile working area and obstacle to be avoided for the Single-track
model. The dashed red line is the double lane change reference . . . . . 60

5.16 Simulation result for the case 2: Trajectory in the X-Y plane and yaw
angle for obstacle avoidance using deterministic MPC. . . . . . . . . . . 63

5.17 Simulation results for the case 2: Optimal control inputs for the tracking
problem considering the kinematic model using deterministic MPC. . . . 64

5.18 Simulation results for the case 2: Optimal states for the tracking problem
considering the kinematic model using Deterministic MPC . . . . . . . . 65

xii



List of Figures

5.19 Simulation results for the case 2: Convergence of the objective function
and computation time using Deterministic MPC . . . . . . . . . . . . . 65

5.20 Simulation result for the Case 2: Trajectory in the X-Y plane for obstacle
avoidance under uncertainties using Deterministic MPC. . . . . . . . . 66

5.21 Simulation results for the case 2: Trajectory in the X-Y plane for ob-
stacle avoidance (up: Inner Approximation τ = 0.1)and (down: Outer
Approximation τ = 0.0002) with α = 0.95.(left:Ns Trajectories of the
simulation QSM) and (right: Expected Value of the trajectories) . . . . 67

5.22 Simulation results for the case 2: Trajectory in the X-Y plane for ob-
stacle avoidance (up: Inner Approximation τ = 0.1)and (down: Outer
Approximation τ = 0.0002) with α = 0.90.(left:Ns Trajectories of the
simulation QSM) and (right: Expected Value of the trajectories) . . . . 68

5.23 Simulation results for the case 2: Trajectory in the X-Y plane for ob-
stacle avoidance (up: Inner Approximation τ = 0.1)and (down: Outer
Approximation τ = 0.0002) with α = 0.80.(left:Ns Trajectories of the
simulation QSM) and (right: Expected Value of the trajectories) . . . . 69

5.24 Simulation results for the Case 2: Optimal control inputs for the ob-
stacle avoidance (left: Inner Approximation τ = 0.1)and (right: Outer
Approximation τ = 0.0002) with α = 0.95 . . . . . . . . . . . . . . . . . 70

5.25 Simulation results for the case 2: Optimal states for the obstacle avoidance
using IA (τ = 0.1) with α = 0.95. (left: Ns trajectories of the simulation
QSM) and (right: expected value of the trajectories) . . . . . . . . . . . 71

5.26 Simulation results for the case 2: Optimal states for the obstacle avoidance
using OA (τ = 0.0002) with α = 0.95. (left: Ns trajectories of the
simulation QSM) and (right: expected value of the trajectories) . . . . 72

5.27 Simulation results for the case 2: Optimal value of the objective function
for different values of α (left: Inner Approximation) and (right: Outer
Approximation). From top to bottom: α = 0.8, α = 0.9, α = 0.95 . . . . 73

5.28 Mobile working area and obstacle to be avoided for the Non-linear Bicycle
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.29 Bicycle vehicle model of the vehicle [66] . . . . . . . . . . . . . . . . . . 77
5.30 Simulation result for the case 3: Trajectory in the X-Y plane for obstacle

avoidance using Deterministic MPC . . . . . . . . . . . . . . . . . . . . 78
5.31 Simulation results for the case 3: Optimal control inputs for obstacle

avoidance using Deterministic MPC . . . . . . . . . . . . . . . . . . . . 79
5.32 Simulation results for the case 3: Optimal states for obstacle avoidance

using Deterministic MPC . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Master thesis xiii



List of Figures

5.33 Simulation results for the case 3: Convergence of the objective function
using Deterministic MPC . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.34 Simulation result for the case 3: Trajectory in the X-Y plane for obstacle
avoidance under uncertainties using Deterministic MPC. . . . . . . . . . 81

5.35 Simulation results for the case 3: Trajectory in the X-Y plane for
obstacle avoidance (up: IA τ = 0.1)and (down:OA τ = 0.001) with
α = 0.95.(left:Ns Trajectories of the simulation QSM) and (right: Ex-
pected Value of the trajectories) . . . . . . . . . . . . . . . . . . . . . . 82

5.36 Simulation results for the case 3: Trajectory in the X-Y plane for
obstacle avoidance (up: IA τ = 0.1)and (down:OA τ = 0.001) with
α = 0.90.(left:Ns Trajectories of the simulation QSM) and (right: Ex-
pected Value of the trajectories) . . . . . . . . . . . . . . . . . . . . . . 83

5.37 Simulation results for the case 3: Trajectory in the X-Y plane for
obstacle avoidance (up: IA τ = 0.1)and (down:OA τ = 0.001) with
α = 0.80.(left:Ns Trajectories of the simulation QSM) and (right: Ex-
pected Value of the trajectories) . . . . . . . . . . . . . . . . . . . . . . 84

5.38 Simulation results for the case 3: Optimal control inputs for the ob-
stacle avoidance (left: Inner Approximation τ = 0.1)and (right: Outer
Approximation τ = 0.001) with α = 0.95 . . . . . . . . . . . . . . . . . . 85

5.39 Simulation results for the case 3: Optimal states for the obstacle avoidance
using IA (τ = 0.1) with α = 0.95. (left: Ns trajectories of the simulation
QSM) and (right: expected value of the trajectories) . . . . . . . . . . . 86

5.40 Simulation results for the case 3: Optimal states for the obstacle avoidance
using OA (τ = 0.001) with α = 0.95. (left: Ns trajectories of the
simulation QSM) and (right: expected value of the trajectories) . . . . 87

5.41 Simulation results for the case 3: Optimal value of the objective function
for different values of α (left: Inner Approximation) and (right: Outer
Approximation). From top to bottom: α = 0.8, α = 0.9, α = 0.95 . . . . 88

xiv



List of Tables

5.1 Parameters of the random variables in the Car-like vehicle model obtained
from [50] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Average computation time per iteration (ms) required for the solution of
case 1 using deterministic MPC. . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Average computation time in IpOpt per iteration (seconds) required for
the solution of case 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Average computation time in NLP function evaluations per iteration
(seconds) required for the solution of case 1. . . . . . . . . . . . . . . . . 55

5.5 Physical parameters of the single-track model [41] . . . . . . . . . . . . 59
5.6 Parameters of the random variables in the Single-track Model based on

[41] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.7 Average computation time per iteration (ms) required for the solution of

case 2 using deterministic MPC. . . . . . . . . . . . . . . . . . . . . . . 62
5.8 Average computation time in IpOpt per iteration (seconds) required for

the solution of case 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.9 Average computation time in NLP function evaluations per iteration

(seconds) required for the solution of case 2. . . . . . . . . . . . . . . . . 69
5.10 Physical parameters of the Non-Linear Bicycle model [32] . . . . . . . . 76
5.11 Parameters for the uncertain inputs obtained from [32] . . . . . . . . . 76
5.12 Average computation time per iteration (ms) required for the solution of

case 3 using deterministic MPC. . . . . . . . . . . . . . . . . . . . . . . 78
5.13 Average computation time in IpOpt per iteration (seconds) required for

the solution of case 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.14 Average computation time in NLP function evaluations per iteration

(seconds) required for the solution of case 3. . . . . . . . . . . . . . . . . 84

Master thesis xv



List of Acronyms

AFS Active Front Steering

ALV Autonomous Land Vehicle

ASM Active set method

IPM Interior point method

SQP Sequential quadratic programming

QP Quadratic programming

NLP Nonlinear programming

IpOpt Interior point optimizer

ODE Ordinary differential equation

KKT Karush-Kuhn-Tucker

BFGS Broyden-Fletcher-Goldfarb-Shanno (method)

MPC Model predictive control

SMPC Stochastic model predictive control

DMPC Deterministic model predictive control

NMPC Nonlinear model predictive control

ABS Anti-lock brake system

DCS Dynamic stability control

ECM Engine control unit

OCP Optimal control problem

Master thesis 1



List of Tables

IA Inner approximation

OA Outer approximation

CCOPT Chance constrained optimization

SAA Sample Average Approximation

QSM Quasi-Monte Carlo

ACC Adaptive Cruise Control

AV Autonomous vehicle

LP Linear programming

LTV Linear time varying

HJB Hamilton Jacobian Bellman

PDE Partial differential equation

BVP Boundary value problem

IVP Initial value problem

SAE Society of Automotive Engineers

2



Chapter 1

Introduction and motivation

1.1 Motivation

The first experiments in the autonomous vehicles field started between the decades
1920 and 1980 where car companies and universities were the first pioneers. One of the
important works was the Navlab vehicles based on vision algorithms and tested in a
realistic outdoor environment [71]. Another interesting application was Autonomous
Land Vehicle (ALV) project at the Carnegie Mellon University where a mobile robot
was developing, which is capable of operating in the real world outdoor [45]. Since
then, numerous companies and research organizations have aroused their interest in
developing prototypes for Autonomous vehicle (AV) such as Mercedes-Benz, General
Motors, Continental Automotive Systems, IAV, Autoliv Inc., Bosch, Nissan, Renault,
Toyota, Audi, Hyundai Motor Company, Volvo, Tesla Motors, Peugeot, Local Motors,
AKKA Technologies . Currently, with advanced computers, the incorporation of the
complicated dynamic of AV and tire force model to the algorithm of control can be
accounted for active steering, in comparison to the previous technologies. Since the
early 2000’s, car companies have been working on improving vehicle autonomy. Google,
Uber and Tesla are the main companies that have had success with autonomous vehicles.
Improvements are still being made today to get vehicles operate fully autonomously.
However, in the case of uncertainties that can arise due to the error in the motion
equation, measurement error or an external perturbation, the trajectory tracking or
obstacle avoidance may fail. It can be a serious and interesting issue due to the fact
that in real application the uncertainties should be considered.
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1 Introduction and motivation

Figure 1.1 – Google’s driverless project car [2]

1.2 Objective of the thesis

The major objectives of this master thesis are:

• to identify a mathematical model of vehicle dynamics for autonomous drive

• to study the source of uncertainty in the model parameters and external distur-
bances

• to study the chance constrained MPC scheme for the reliable, safe, and optimal
autonomous vehicle drive

• to study appropriate MPC algorithms and to implement on case-studies

1.3 Organization of the thesis

The content presented in this thesis is organized as follows:

• Chapter 2 briefly summarizes the state of art of the AV using Deterministic model
predictive control (DMPC) and SMPC for the solution of the tracking problem
and obstacle avoidance. Moreover, Sequential quadratic programming (SQP) and
Interior point method (IPM) are introduced as methods for solving nonlinear.
optimization problems.

• Chapter 3 describes the concept of linear and nonlinear stochastic MPC with
chance constraint, where different formulations are presented. Then, approxima-
tion method are introduced as an better alternative for the Chance constrained
optimization (CCOPT). Finally, IA and OA are presented and formulated.

2



1.3 Organization of the thesis

• Chapter 4 describes the implementation of the CCOPT in IpOpt [73] with C++
interface. To obtain the analytical expressions of the gradient vectors and Jacobian
matrices and even the Hessian matrix, CASADI[6] is employed that is an Automatic
Differentiation software with interface C++.

• Chapter 5 presents the simulation and experimental tests results of the three
case studies for AV, formulated as CCOPT problems, to verify the computational
efficiency for various reliability levels and approximation parameter τ for IA and
OA.

• Chapter 6 concludes this thesis with a summary of the main results and discusses
the outlook for possible future research.
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Chapter 2

State of the art

2.1 Autonomous Vehicles

Recent advances in the autonomous vehicle are facilitated due to advances in computing
technology and the high performance algorithms. An autonomous ground vehicle is
mechanical equipment which is capable to operate,with a certain level of autonomy, across
the surface on the ground. According to the Society of Automotive Engineers (SAE),
there exist 6 scales for grading vehicle automation [35, 46]. More details about the mean
of each level can be found in [1].

• Level 1: with driver intervention.

• Level 2: driver Assistance.

• Level 3: partial automation

• Level 4: conditional automation

• Level 5: high automation.

• Level 6: full automation.

In recent years, the autonomous vehicles have been proposed as a promising solution for
the reduction of road accidents, improved safety, reduced congestion, lower emissions,
reduction of driving stress. According to [61] , the human error is the cause of 93% of
the road accidents. Therefore, Active Safety is a viable solution for addressing this issue.
This approach has been employed to improve the vehicle controllability and stability of
the vehicle [25]. Some examples of Active Safety System are the following:

• Anti-lock brake system (ABS) designed to avoid the sliding of the wheel, through
improving the control and reducing the stopping distance [47].
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• Dynamic stability control (DCS) that avoid the car rollout [47].

• Cruise control with lane departure avoidance and anticollision brake system [65].

• Adaptive Cruise Control (ACC) is an intelligent way of cruise control that slows
down and speeds up automatically to keep pace with the car driving [66].

• Engine control unit (ECM) is preconfigured with timing-valve maps that allow a
better performance in different atmospheric conditions while reducing contaminant
emissions.

In general, the steps of the decision-making the architecture of a typical self-driving are
employed as references in several applications for AV. The decision making system of a
self-driving car is divided into four components as follow [60].

1. Route planning

2. Adaptive decision making

3. Motion planning

4. Vehicle control

On the other hand, autonomous ground vehicles systems normally must work in presence
of stochastic scenarios. This represents a new challenge for the research. Although several
works have been developed in AV, the feasible trajectory calculated may fail due to the
fact that the uncertainties are not taken into account in the control algorithm. Therefore,
the path planing under the uncertainties should be considered. The uncertainties in
autonomous vehicles may arises due to the modeling errors, measurement errors and
external perturbation.

1. Modeling errors: errors due to the linearization or simplification of the vehicle
model.

2. Measurement errors: depends on the accuracy of the sensors.

3. External Perturbation: influence of the weather, road surface, air drag coefficient,
wind force, friction coefficient, human mistake, etc.

To address this issues, the receding horizon concept provides the solution to deal with
the dynamic and uncertain nature of the vehicle planning [46]. In particular, stochastic
MPC provides the most convenient scheme the control of autonomous vehicles on
moving horizons, where chance constraints are to be used for guaranteeing the reliable
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satisfaction of trajectory constraints and safety against uncertainties. Stochastic MPC
will be presented in the chapter 3 while a briefly review of deterministic MPC will
described next.

2.2 Nonlinear MPC for Autonomous Vehicle

Model predictive control (MPC) is a modern technique control based on the receding
horizon approach [67], in which the idea is to predict and optimize the future system
behavior based on the model of process. The MPC has the advantage that introduces a
feedback controller, which allows system stability and good performance in the presence
of constraints.
At each instant time (tk) is realized a set of steps, which are shown in Algorithm 1.
Therefore, at each iteration an OCP is solved.

Algorithm 1: MPC Strategy[20]
Input : Initial value of the states
Output :Optimal control variables, Optimal state variables

1 repeat
2 Measure or estimate the process state x at time tk;
3 Formulate the MPC problem for the optimization time t ∈ [tk, tk+N ];
4 Compute the optimal control sequence ū∗(t), t ∈ [tk, tk+N ] by solving the MPC

problem;
5 Apply optimal control ū(t) = ū∗(tk), t ∈ [tk, tk+1] to the system until t = tk+1;
6 Set k = k + 1;
7 until Stopped by user;;

There is no standard rule for choosing “N”(Prediction horizon). However, the value of
“N” is determinant since it increase or decrease the complexity in solving the optimization
problem. ( ū∗ = {u∗k, u∗k+1...u

∗
k+N} ).

The MPC approach requires a model of the plant, which should depict the significant
dynamic. Moreover, this model should not be too complex, nor should pursue an
extremely high accuracy, because this causes large order models which sometimes have
a very similar dynamic than more simple models with lower order.
The MPC approach operation is illustrated in 2.1:

Advantages and disadvantages of MPC

• Constraints can be specified for the state vector x̄ and the control variables uk.

• Management of multiple-input-multiple output (MIMO) for large-scale systems.
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Figure 2.1 – A basic working principle of model predictive control [11]

• Minimization of trajectory tracking error.

• Propagation error, due to noise, is reduced.

• Compensation of disturbances is achieved by the feedback feature that is charac-
teristic of the receding horizon approach[67].

• The sampling time can be determinant in the performance for the optimization
algorithms. In particular,the sampling time and the length of the prediction
horizon are critical for autonomous vehicle.

2.2.1 Deterministic MPC for Autonomous Vehicle

Autonomous vehicle is a challenging task that requires an advanced control scheme. Due
to fact that the different vehicle dynamic models have been widely studied, MPC is an
attractive tool for precise trajectory planning and obstacle avoidance. Moreover, MPC
is a modern technique based on the system model to predict the model trajectory and
minimize the deviation from a given reference for AV. There exist in the literature a
variety of MPC approaches to AV, differing in the dynamic model, applications, robust,
etc.
Although MPC presents a good control scheme the computational burden is a challenging
task for real-time applications. Nevertheless, there exist approaches based on Linear time
varying (LTV) systems that consists in the successive linearization of the vehicle model
and they have been employed in [17, 23, 26, 28, 76]. Therefore, the computation time is
reduced and can be applied in a real-time application. On other hand, the tractability of
nonlinear MPC for autonomous vehicle has also been studied. In [25] a rapid prototyping
system is implemented but it was tested only at low velocity, because of computational
burden. In [20, 22] efficient solvers for nonlinear MPC are implemented in a real-time
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application for tracking and avoidance of obstacles. To test the perfomance of the solvers
proposed SUMMIT mobile robot [3] was used. There exist also works where LTV
systems and Nonlinear model predictive control (NMPC) have been widely in order to
compare the computational time [47, 59]. AFS system in an autonomous vehicle has

Figure 2.2 – Global architecture for longitudinal and lateral control [10]

been severally studied and implemented to perform a sequence of double lane changes
[25, 47]. The integration of AFS with braking at the four wheel has been added in
[24, 27, 28] to achieve a better yaw and lateral stabilization. However, when the system
braking is considered, the main difficulty is the modeling of the longitudinal dynamics.
Other interesting work developed in consider the integration of the longitudinal and
lateral control, where the longitudinal dynamic is modeled with the speed profile and
a cruise controller [9, 10]. The idea of coupled and decoupled longitudinal and lateral
dynamics have been considered in [44], where very detailed modeling of the vehicle,
including engine and power train modeling are taken into account.

Figure 2.3 – AFS with braking system formulated in [28]
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2.2.2 Obstacles Avoidance Approaches

As has been mentioned before, obstacle avoidance methods have been widely studied
for Autonomous vehicle (AV). A method to solve is to define a path constraint that
determines the feasibility of the state trajectory for the vehicle. Another interesting
method is to use a potential function to penalize the distance between the obstacles
defined and the vehicle. The two approaches will be presented next.

Path Constraint Approach

This approach is based on defining a safety region for vehicle using the path constraint.
This region can be defined as an ellipse due to the smooth characteristics [20, 21, 22].
The path constraint is formulates as follow.

(xpos − xobs)2

r2
a

+ (ypos − yobs)2

r2
b

≥ 1, (2.1)

Where ra and rb are the axes of the ellipse, the position of the obstacle is (xobs, yobs) that
represents the center of the ellipse and the position of vehicle is depicted by (xpos, ypos)

Potential Function Approach

Another important approaches to assure obstacle avoidance is the formulation of a
potential function, which can be added to the objective function. Therefore, the terms

Generates sequence

Discretization

Problem Nonlinear programming (NLP)

Problem OCPN

NMPC

Figure 2.4 – Architecture of MPC [39]
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Pobs penalizes the relative distance between the obstacle detected and the vehicle. The
potential function can be formulated as follow.

Pobs = Kobs

(xpos − xobs)2 + (ypos − yobs)2 + ε
≥ 1, (2.2)

Where Kobs is the gain value and ε is a parameter used to avoid non singularity. This
approach has been studied in the literature [4, 70] . However, the drawback of this
method is that the dimensions of the safety region cannot be defined as in the case of
the path constraint approach [20].

2.3 Optimal Control Problem

As has been mentioned before, MPC is a control technique that solves an OCP on each
prediction horizon. the architecture of NMPC is described in Figure 2.4, where the
NMPC generates a sub-problem of OCP. The OCP can be formulated as follow.

min
u(t)

J =
Lagrange term︷ ︸︸ ︷

Ψ(x(tf ), tf) +

Mayer term︷ ︸︸ ︷∫ tf

t0
L(x(t), u(t), t)dt (2.3a)

subject to x(t0) = x0 (2.3b)

ẋ = f(x(t), u(t), t) t ∈ [t0, tf ] (2.3c)

umin ≤u(t) ≤ umax (2.3d)

g(x(t),u(t), t) ≤ 0 (2.3e)

Where x(t) and u(t) are the state and control variables, respectively x0 is the initial
state, t0 and tf are the initial and final time. In the OCP problem (2.3), J is the
objective function. The dynamic constraint (3.3c) is represented by ODE in the time
horizon [t0, tf ]. The constraints (2.3e) and (2.3d) represented by inequality constraint
are the bound limits on the control and state variable.

2.3.1 Solution methods for OCP

The solution of an OCP is quite challenging but it has great advantage since it can be
applied in the field of industry as chemical, mechanical, electrical, etc. In the literature,
solution approaches can be divided into three categories [5],[20]. Dynamic programming,
indirect methods and direct methods has been employed for the solution of OCP as
shown in Figure 2.5.
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• Dynamic Programming: This method uses the Hamilton Jacobian Bellman
(HJB), which is a Partial differential equation (PDE) by using the principle of
optimality.

• Indirect methods: This method is known as first optimization and then dis-
cretization. The main idea is to solve the OCP using the optimality conditions
that allows to transform the OCP into nonlinear Boundary value problem (BVP).

• Direct Methods: these approaches are the most used and studied, according
to the literature. In comparison to the indirect methods are known as first
discretization an then optimization. The idea of these methods is to solve the OCP
by transforming it into an NLP as shown in the figure 2.4, which can be solved using
numerical optimization methods. There exist different discretization techniques
as Runge Kutta, Euler discretization,etc. Currently, there exist several direct
methods, for instance, direct single shooting, multiple shooting and collocation
methods that have been widely studied [5, 20, 22, 39]. In the following, a review
of the methods mentioned are presented.

a) Direct Single Shooting

The direct single shooting formulates the OCP into a finite NLP problem. The time
interval is divided into N intervals, where the control variable is piecewise constant in
each interval [tk, tk + 1].

t0 < t1 < t2 < . . . < tN = tf (2.4)

Optimal Control Problem

Dynamic
Programming

Indirect
Methods

Direct
Methods

Calculus of
Variations

Maximum Principe

Collocation

Single Shooting

Multiple Shooting

Figure 2.5 – Solution Methods for OCP
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The solver NLP provides at each iteration a given control input sequence u = [u0, u1, . . . , uN−1].
Hence, the following Initial value problem (IVP) is solved.

ẋ = f(x(t), u(t), t), x(t0) = x0, t ∈ [t0, tf ] (2.5)

t0

u0

t1

u1

t2

u2

tN−1

uN−1

tN = tf

x0
x1

x2

xk(·)

xN−1
xN

Figure 2.6 – Piecewise constant of the control variables

The idea of this method is to decouple the dynamics of the control system (3.3c) from
the OCP. Hence, the NLP problem is formulated in terms of the shooting vector uk.

min
uk

J = Ψ(xN (uN−1)) +
N−1∑
k=0

L(xk(uk), uk) (2.6a)

subject to umin ≤uk ≤ umax (2.6b)

g(xk+1(uk), uk) ≤ 0, k = 0, 1, . . . , N − 1 (2.6c)

b) Multiple Shooting

The formulation of this method is based on [15]. The reformulation of the OCP into
NLP problem starts in the same way as the single shooting method. The time interval
is divided into N intervals, where the control variable is piecewise constant in each
interval [tk, tk + 1] and the state variables are discretized in the same point grinds.

t0 < t1 < t2 < . . . < tN = tf (2.7)

Therefore, in this method the ODE is solved independently for each interval considering
an initial value states proportioned by the solver. However, to assure the continuity of
the state trajectory, the equality constraints is to be added to the formulation of NLP,
where the terminal value of state variable in each interval is equal to initial value of the

Master thesis 13



2 State of the art

state variable in the next subinterval [5]. Therefore, the state variables are considered
as part of the optimization variables.

w =



x0

u0

x1

u1
...

uN−1

xN


(2.8)

t0

u0

t1

u1

t2

u2

tN−1

uN−1

tN

x0 x1

x̂1

x2

x̂2
xk(·)

xN−1

x̂N−1
xN

t0

u0

t1

u1

t2

u2

tN−1

uN−1

tN

x̂0
x1

x2

xk(·)

xN−1
xN

Figure 2.7 – (left) Single trajectories obtained through the solution of the ODE.
(right) Convergence of state and control profiles for the direct multiple
shooting method [20].

Hence, the NLP problem is formulated as follow.

min
uk,xk

J = Ψ(xN ) +
N−1∑
k=0

L(xk, uk) (2.9a)

subject to x(t0)−x0 = 0 (2.9b)

x̂k+1−f(xk, uk) = 0, k = 0, 1, . . . , N − 1 (2.9c)

umin ≤uk ≤ umax, k = 0, 1, . . . , N − 1 (2.9d)

g(xk+1, uk) ≤ 0, k = 0, 1, . . . , N − 1 (2.9e)

c) Collocation Methods

This method is based on the collocation solution to solve ODE, which is a generalization
of the implicit Runge Kutta method. First, the time horizon is divided into N intervals
and the control variables are considered as piecewise constant in each interval [tk, tk + 1].
These are known as collocation intervals. Then, each collocation interval is divided
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into n internal points tk,i, for i = 1, 2, . . . , n, these points are referred as the collocation
points. According to the Weiertrass theorem the state trajectory can be approximated
at each collocation interval using a time dependent polynomial. Therefore, to assure the
continuity of the initial state variable of each interval to be equal to the final state of
the previous collocation interval. As a result, the OCP is formulated as very large NLP.

2.4 Methods for constrained optimization Problem

In this the section the most relevant solution methods for NLP will be presented. In an
optimization problem, a function is to be minimized or maximized that depends on real
variables, with unconstraint or constraint at all on the values of these variables. The
function is referred as an objective function f(x) that can be formulated as a quantity
of cost, profit, efficiency, size, shape, weight or output [7].

2.4.1 Constrained minimizations problems

In real application, the optimization problems carry constraint. Hence, the feasible
region is restricted due to the presence of constraint. The standard formulation of a
constrained optimization problem is given by.

min
x∈Rn

f(x) (2.10a)

subject to hi(x) = 0, i = 1, . . . ,m < n (2.10b)

gj(x) ≤ 0, j = 1, . . . , p < n (2.10c)

Where, f is the objective function to be minimize, h(x) = [h1(x), ..., hm(x)]T is the set
of equality constraint and g(x) = [g1(x), ..., gp(x)]T is the set of the inequality constraint,
respectively and x ∈ Rn is the vector of optimization variables. The functions f , hi and
gj are all differentiable [54].

2.4.1.1 Optimality conditions

There exist different solution methods to address the constrained optimization problems.
The main solution techniques are summarized next.
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a) Lagragian method

The Lagrange function is employed for the constrained optimization problems (2.10).

L(x, λ, µ) = f(x) +
m∑
i=1

λihi(x) +
p∑
j=1

µjgj(x) (2.11)

The optimality conditions are formulated as follow.

5xL = 0 (2.12a)

5λL = 0 (2.12b)

g(x) ≤ 0 (2.12c)

µjgj(x) = 0, j = 1, . . . , p (2.12d)

µj ≥ 0, j = 1, . . . , p (2.12e)

Where λi and µj are the Lagrange multipliers. The optimality conditions are known as
Karush-Kuhn-Tucker (KKT) conditions [7]. Other important condition for f(x) to be
minimum is that 52

xxL must be positive definite.

b)Penalty function method

The main idea of the penalty function method is to added a penalty function to the
objective function. Therefore, the constrained optimization problem can be solved using
algorithms for unconstrained optimization problem mentioned in the previous section.
The new objective function with the penalty functions is presented as follow.

F (x) = f(x) + rk

m∑
i=1

h2
i (x) +

p∑
j=1

< gj(x) >2 (2.13)

Where rk is the penalty parameter and the function < gj(x) >= max(0, gi(x)). At each
iteration the penalty parameter can be computed as follow [7].

rk = max(1, 1
‖(< gj(x) >, hi(x))‖) (2.14)

The main advantage of this method is that the starting point can star from an infeasible
point and the unconstrained optimization methods can be employed.

16



2.4 Methods for constrained optimization Problem

c) Augmented Lagrangian method

This method combine the Lagrange multipliers and the penalty functions [7]. The
augmented Lagrangian functions can be formulated as follow.

L(x, λ, µ) = f(x) +
m∑
i=1

λihi(x) +
p∑
j=1

µjαj(x) + rk

m∑
i=1

h2
i (x) +

p∑
j=1

< αj(x) >2 (2.15)

Where λi and µj are the Lagrange multipliers, rk is the penalty parameter. These terms
can be computed at each iteration as follow [7].

αj = max(gj(x), −µj2rk
) (2.16a)

λk+1
i = λki + 2rkhi(x) (2.16b)

µk+1
j = µkj + 2rkmax(gj(x), −µj2rk

) (2.16c)

d) Method of feasible directions

There exist special cases where the optimization problem require constraints to be
accomplished at each iteration. Therefore, this methods were formulated. The most
popular methods are Zoutendijk’s method and Rosen’s gradient projection method [7] .

2.4.1.2 Methods for Nonlinear Optimization problem

The most popular methods for the nonlinear optimization problem are Interior Point
Methods and Sequential Quadratic Programming [39].

Active Set SQP Method

The fundamental idea in this method is to define at each step of the algorithm a set
of constraints (named the "Working Set") as the Active Set. For each iteration, since
the point xk is fixed, the problem is reduced to an Linear programming (LP) with
equality constraints. Also, the KKT conditions must hold for each solution. During the
execution, the algorithm will eliminate or add constraints when it is possible to keep
decreasing the objective function [12].

a) Quadratic programming (QP) algorithm

In this section, a typical QP problem of the following form is considered.
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min
x

1
2x

TQx+ cTx (2.17a)

subject to aTi x = bi, i = 1, . . . ,m (2.17b)

aTj x <= bj , j = m+ 1, . . . , p (2.17c)

The first m constraints are linear equalities and the remaining are less than type
inequalities. Matrix Q will be assumed positive definite. The basic iteration has the
following form:

xk+1 = xk + αkdk (2.18)

The set of active constraint is defined as.

W k = {1, . . . ,m} ∪ {i ∈ I |aTi x = bi i = m+ 1, . . . , p} (2.19)

To solve the direction dk finding problem. The optimization problem (2.17) is refor-
mulated as equality constrained QP and is to be solve in each iteration k. The new
reformulation is presented as.

min
d

1
2d

T
kQdk + gkdk (2.20a)

subject to aTi (xk + dk) = bi, i ∈W k (2.20b)

Where gk = Qxk + c and the KKT conditions can be written in a matrix form.
(
Q AT

A 0

)(
dk

λk

)
=
(
−gk

0

)
(2.21)

Where A = [a1, a2, . . . , ai]T , i ∈ W k and λk = [λ1, λ2, . . . , λi]T , i ∈ W k is the
vector of Lagrange multipliers associated with the active constraint. The complete
algorithm for the Active set method (ASM) for QP problems is detailed in the algorithm
2.

b) SQP algorithm

The SQP algorithm is one of the most effective methods for solving nonlinearly con-
strained optimization problems. The advantage of SQP is its ability to deal with
nonlinear cost functions and constraints in small or large problems. At each iteration,
the algorithm is linearized by using a Taylor series approximation around the point
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Algorithm 2: Quadratic programming (QP) algorithm [12]
Input :Choose feasible point x0 and the set of active constraint W0 according to

the x0
Output : Solution point close x∗

1 Set k= 0
2 repeat
3 Compute dk and λk by solving (2.21)
4 if dk = 0 then
5 if λi ≥ 0∨ i ∈Wk ∩ I then
6 STOP
7 else
8 λj = min{λi, i ∈Wk} ;
9 Wk = Wk − {j} ;

10 GO TO step 3
11 else
12 Compute the step length α
13

αk = min

[
1, bj − a

Txk
ajdk

for ajdk > 0, j /∈Wk

]
14 if αk < 1 then
15 Include restriction to the active working set
16 Wk = Wk + {j}
17 Set xk+1 = xk + αdk ;
18 Set Wk+1 = Wk ;
19 Set k = k + 1 ;
20 until stopping criterion;

(xk, λk) . Then, it generates a QP sub-problem, which can be solved efficiently with
the methods shown in the previous section( See Algorithm 2 ). In a similar way as The
IPM, the general optimization problem (2.10) is considered. Therefore, at each iteration
step k the search direction dk is obtained by computing the following QP problem.

min
d

1
2d

T
kH(xk, λk)dk[∇f(xk)]T (2.22a)

subject to hi(xk) + [∇hi(xk)]Tdk = 0, i = 1, . . . ,m (2.22b)

gj(xk) + [∇gj(xk)]Tdk ≤ 0, j = 1, . . . , p (2.22c)

Where H is the Hessian matrix of the Lagrangian that can be approximated using
Broyden-Fletcher-Goldfarb-Shanno (method) (BFGS). The SQP algorithm is presented
in (3).
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Algorithm 3: Sequential quadratic programming (SQP) algorithm [12]
Input : Initial values x0
Output :Optimal solution for x∗

1 Set k = 0.
2 repeat
3 Compute dk by solving the QPk subproblem (2.22) using the algorithm 2.
4 Find the step length αk by a line search.
5 Set xk+1 = xk + αdk and λk+1 = λk.
6 Set k = k + 1.
7 until stopping criterion;

Interior Point Methods

Interior Point Methods (IPM) are certain class of algorithm to solve to linear or non-
linear convex optimization problems. This methods arises from the search of algorithm
with better properties than simplex method, due to the simplex method can be inefficient
on certain pathological problems [42]. The main idea of this approach is that IPM
move inside the feasible region to reach the optimal solution. There exist diverse classes
of Interior Point that depend on problem type for solving. In the literature, there are
two main approaches the primal dual and primal barrier [39] that will be presented in
the next section.

a) Primal-dual Methods

The main objective of primal-dual methods is to combine the simplicity in the formulation
of the inequality constraints with an efficient computational performance. To solve
optimization problems through the IPM, a perturbation parameter is introduced in
the complementarily KKT [54]. Therefore, a modification in the KKT conditions are
required to solve by using primal dual methods. The equations (2.28) are reformulated in
equality constraints by using the slack variables s ≥ 0 and the complementary condition
(2.12d) is relaxed through the perturbation parameter τ ≤ 0 [19]. The modification of
equations (2.12) are expressed as follow.
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5f(x) +5h(x)Tλ+5g(x)Tµ = 0 (2.23a)

h(x) = 0 (2.23b)

g(x) + s = 0 (2.23c)

Zs− τe = 0 (2.23d)

(µ, s, τ) ≥ 0 (2.23e)

Where Z = diag(µ1, µ2, . . . , µp) and e =

p︷ ︸︸ ︷
[1, 1, . . . , 1]T . The equations (2.23) are itera-

tively solved by Newton method. Define the following function.

Fτ (x, λ, µ, s) =


5f(x) +5h(x)Tλ+5g(x)Tµ

h(x)
g(x) + s

Zs− τe

 =


rd

rp

rc

rsz


Therefore, the search direction dk is calculated through the following equation for a
fixed τ .

JFτ (xk, λk, µk, sk)dk + F (xk, λk, µk, sk) = 0 (2.24)

Where d = [4xk,4λk,4µk,4sk]T and J is the Jacobian operator. The algorithm stops
when the norm of the residual vector is less than a given small tolerance ||rd|| ≤ ε1,
||rp|| ≤ ε2, ||rc|| ≤ ε3 and ||rsz|| ≤ ε4.
Moreover, the parameter of perturbation τ must converge to zero during the iterations.
This parameter can be computed through the primal-dual distance defined as m, this
distance is defined by (2.23d) and can be formulated as a function of slack variables
s. Moreover, the variable σ is added that is known as parameter of the direction
combination, which defines the trajectory of the optimal solution [19]. Therefore, τ is
expressed as follow.

τ = σm (2.25)

Where m = σ µ
T s
p . In order to select the value of σ. Two cases must be analyzed. In the

case value of σ = 0, which corresponds to the affine-scaling direction. In this approach,
the solution is obtained thorough the non-perturbed solution of the KKT conditions.
On other hand, when σ = 1, which corresponds to the centralization direction. In this
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approach, the optimal point is solved, with a primal dual distance m equal to the initial
value of τ .
In order to decrease the value of τ during each iteration, it is necessary that 0 ≤ σ ≤ 1
[8]. The primal-dual method is summarized in Algorithm 4.

Algorithm 4: Primal-Dual Interior Point Algorithm [75]
Input : Strictly feasible choose the starting point x0, λ0, µ0, s0 and σ ∈ (0, 1)
Output : Solution point close x∗

1 Set k= 0
2 repeat
3 Set τk = σ

∑p

i=0 µiksik
p

4 Compute 4xk, 4λk, 4µk, and 4sk by solving (2.24)
5 Find the step length αk by a line search such that sk+1 ≤ 0 and µ ≤ 0
6 Set (xk+1, λk+1, µk+1, sk+1) = (xk, λk, µk, sk) + αk(4xk,4λk,4µk,4sk)
7 Set k = k + 1
8 until ||rd|| ≤ ε1&||rp|| ≤ ε2&||rc|| ≤ ε3&||rsz|| ≤ ε4;

b) Primal-Barrier Methods

As mentioned earlier, the main idea of a barrier method is to use a barrier function
B(x, µ) for removing the inequality constraint (4.2c). A common approach is to use a
logarithmic barrier function, which has the property of being continuous, differentiable
and convex [20], [39].

B(x, rk) = f(x) + rk[
p∑
j=0

Ln(sj)] (2.26)

Where rk is the barrier parameter. the terms Ln are defined at the points x for which
x ≥ 0 and g(x) ≤ 0. Thereby, consider now the following parametric problem.

min
x

B(x, rk) (2.27a)

subject to hi(x) = 0 i = 1, . . . ,m (2.27b)

gj(x) + sj = 0 j = 1, . . . , p (2.27c)

Now, the objective is to find the optimal solution x for a fixed value of rk. The problem
is solved by the KKT conditions. To find the minimum point of vector x is necessary to
solve the next system.
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2.4 Methods for constrained optimization Problem

5f(x) +5h(x)Tλ+5g(x)Tµ = 0 (2.28a)

rkS−1e+ µ = 0 (2.28b)

h(x) = 0 (2.28c)

g(x) + S = 0 (2.28d)

Where e = (
p︷ ︸︸ ︷

1, . . . , 1) and S = diag(s1, . . . , sp), λ and µ are the Lagrange multiplier.
The equations system is commonly solved by Newton-Method for a fixed rk.

Frk(x, s, λ, µ) =


5f(x) +5h(x)Tλ+5g(x)Tµ

rkS−1e+ µ

h(x)
g(x) + S

 =


rp

rs

rλ

rµ


In a similar way as the equation (2.23) , the search direction dk can be computed by
using the following equation for a fixed rk.

JFrk (xk, sk, λk, µk)d+ F (xk, sk, λk, µk) = 0 (2.29)

Where d = [4xk,4λk]T . In this case, the algorithm is based on solving the equality
constrained minimization problem decreasing the barrier parameter µ at each iteration.
As rk approaches zero, the solution of (2.27) converges to the solution. The primal
barrier method is summarized in Algorithm 5

Algorithm 5: Primal Barrier Methods [75]
Input : Strictly feasible choose the starting point x0, λ0 and µ0 ≥ 0
Output : Solution point close x∗

1 Set k= 0
2 repeat
3 Compute xk+1 and λk+1 for a fixed rk by solving (2.29).
4 if rk ≤ ε then
5 STOP
6 end
7 Choose rk+1 ∈ (0, rk)
8 Set k = k + 1
9 until stopping criterion;
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Chapter 3

Chance Constrained Stochastic Model Pre-
dictive Control

DMPC has been widely developed and studied due to exceptional results in an opti-
mization problem with constraint. Moreover, DMPC can assure a certain degree of
robustness to system uncertainties due to its receding horizon. However, its determinis-
tic framework is inadequate for systems in presence of uncertainties. Therefore, it is
required to consider the possible a-priori knowledge of the statical properties of the
random variables such as mean, covariance or probability distribution function. The
uncertainties can be considered as constant or time dependent, as shown in the Figure
3.1 [51]. Their stochastic properties can be obtained base on analysis of historical data
or even experiences of experts.

Figure 3.1 – Different forms of uncertain variables [51]

3.1 SMPC for Autonomous Vehicle

In the last decades, chance constrained optimization methods has been studied in AV.
In [13, 14], a novel method for optimal control of nonlinear systems in presence of
uncertainties is presented, in which Sample Average Approximation (SAA) is employed
for the simulation of stochastic variables.
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3 Chance Constrained Stochastic Model Predictive Control

Linearization at each iteration is proposed in [50], where the error characteristics of
the motion model are considered and the obstacles is formulated as a set of linear
equations that allows the optimization problem to be solved as QP, so that it reduces
the computation time. Other work using LTV is presented in [55], in which dynamic
obstacles are considered.

In order to guarantee the safety, the driver’s behavior are modeled in [38, 53, 64] in
which the probability constraint are computed by using Chebyshev’s inequality [31].
Other interesting formulation in AV, in which the controller requires an environment
model, where the AV is operating. For instance, in [18] an integration of an environment
model with a stochastic predictive control is formulated (Figure 3.2). Moreover, double
lane change with uncertainties was tested in [41], in which the stochastic variables
arises from noise affected motion. Robust MPC has also been used in AV. In [32], the
uncertainties are considered in the equation model based on experiments. Two scenarios
are proposed, in which the vehicle is tested with obstacles and the friction coefficient is
considered as random variable.

Figure 3.2 – Block diagram of overall system proposed in [18]

3.2 Stochastic Linear Model Predictive Control

The main idea of optimization under uncertainty is to integrate the available stochastic
information into optimization problem formulation. The majority of studies in the
literature on SMPC deals with stochastic linear systems [29]. In this approach, many
SMPC algorithms have been developed considering linear systems with additive or
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3.2 Stochastic Linear Model Predictive Control

multiplicative uncertainties model [29, 30]. In the case of additive uncertainty takes
the following form.

xk+1 = Axk +Buk +Wξk, with ξ ∼ N(µ,
∑

) (3.1)

Where A, B and W are the state-space matrices, xk ∈ Rn, uk ∈ Rm and ξk ∈ Rl are
state variables, control variables and stochastic variables, respectively. In addition, µ
and ∑ are the vector of expected value and the covariance matrix of stochastic variables
ξ, respectively. In the case of systems with multiplicative uncertainty the model are
described as follow.

xk+1 = Axk +Buk +
q∑
i=0

(Cixk +Diuk)ξik with ξ ∼ N(µ,
∑

) (3.2)

3.2.1 LMPC problem formulation

In this approach, likewise to deterministic case is considered a quadratic convex objective
function for a linear discrete time system with probabilistic constraint. The objective
function is formulated for solving regulator control problem as in the case of deterministic
MPC [29, 30, 40, 77]. However, when the stochastic variables are taken into account it
is necessary to relax the objective function . The majority of cases the expected values is
merely considered in the objective function. The framework of the problem formulation
is the following.

min
xk,uk

E[xTNPxN ] +
N−1∑
k=0

E[xTk Qxk + uTk Ruk] (3.3a)

subject to x(0) = x0 (3.3b)

xk+1 = Axk +Buk +Wξk k = 0, 1, . . . , N − 1 (3.3c)

umin ≤ uk ≤ umax k = 0, 1, . . . , N − 1 (3.3d)

Pr[xkmin ≤ xk ≤ xkmax] ≤ αk k = 1, 2, . . . , N (3.3e)

Where P, Q and R are positive definite constant matrices. φ := E[xTNPxN ] is the
terminal cost function and L := ∑N−1

k=0 E[xTk Qxk + uTk Ruk] is the stage cost function
over the prediction horizon. Consider the equation (3.3c) in the formulation of stochastic
variable with a prediction horizon N and the probability constraint are formulated in
the equation (3.3e), where xkmin and xkmax are the bound of the state profiles over the
prediction horizon.

Master thesis 27



3 Chance Constrained Stochastic Model Predictive Control

3.2.1.1 Control Strategies

According to the [29] , the randomized methods have widely been employed for the
linear case. The main features of these methods will be presented in this section.

Open loop control

In this approach, the control strategy is an open-loop control. The lineal system (3.3c)
with additive uncertainties is formulated. Now, Assuming that at the sampling instant
t0 the state variable vector is available through measurement or estimate, the state x0

provides the current plant information. The future control trajectory, the state variable,
and stochastic variable are denoted by U,X and ξ, respectively.

U = [u0, u1, . . . , uN−1]T (3.4a)

X = [x1, x2, . . . , xN ]T (3.4b)

ξ = [ξ0, ξ1, . . . , ξN−1]T (3.4c)

Hence, the system (3.3c) over prediction horizon can be rewritten as follow.

X = Ax0 + BU + Wξ (3.5)

Where the matrices A,B and W are given by.

A =



A

A2

A3

...
AN



B =



B 0 0 · · · 0
AB B 0 · · · 0
A2B AB B · · · 0
...

...
... . . . ...

AN−1B AN−2B AN−3B · · · B


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3.2 Stochastic Linear Model Predictive Control

W =



W 0 0 · · · 0
AW W 0 · · · 0
A2W AW W · · · 0
...

...
... . . . ...

AN−1W AN−2W AN−3W · · · W


For notational convenience A ∈ RnN×n, B ∈ RnN×nN and W ∈ RlN . Substituting
(3.5) into (3.3a) and neglecting the terms that do not contain U. the objective function
is rewritten as follow.

min
U

J = UT (BTQB + R)U + 2(Ax0 + WE[ξ])TQBU (3.6)

Note that the minimization of J has been reduced to the quadratic programming with
respect to U. In this approach, the variance of ξ evolves in an uncontrolled fashion,
when the system is unstable, this strategy has significant drawbacks, since it may induce
serious feasibility problems [29, 37].

Disturbance feedback control

In this approach, the lineal system (3.3c) with additive uncertainties is widely formulated.
The input sequence uk is defined as a function of wk. As a result, the control input
can be directly parameterized as an affine function of the disturbance. The common
representation is formulated as follow [37, 63].

uk = vk +
k−1∑
j=0

Mk,jξj k = 0, 1, . . . , N − 1 (3.7)

Which Mk,j ∈ Rmxl and vk ∈ Rm. Note that the past disturbance sequence can be
calculated through the equation (3.3c) as the difference between the predicted and
actual state at each step.

ξk = xk+1 −Axk −Buk (3.8)
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3 Chance Constrained Stochastic Model Predictive Control

Hence, the control strategy is equivalent to an open-loop control system with feedforward
disturbance compensator. The equations (3.7) and (3.8) can be rewritten using the
prediction horizon as follow.

X = Fx0 + GU + Hξ (3.9a)

U = Mξ + V (3.9b)

Where the matrices F,G and H are given by.

F =



A

A2

A3

...
AN



G =



B 0 0 · · · 0
AB B 0 · · · 0
A2B AB B · · · 0
...

...
... . . . ...

AN−1B AN−2B AN−3B · · · B



H =



1 0 0 · · · 0
A 1 0 · · · 0
A2 A · · · 0
...

...
... . . . ...

AN−1 AN−2 AN−3 · · · 1


For notational convenience F ∈ RnNxn, G ∈ RnNxnN and H ∈ RlxN . Whereas matrices
M and V that contains the control law parameter are given by.

V =



v0

v1

v2
...

vN−1



30



3.2 Stochastic Linear Model Predictive Control

M =



0 0 0 · · · 0
M1,0 0 0 · · · 0
M2,0 M2,1 0 · · · 0
...

...
... . . . ...

MN−1,0 MN−1,1 MN−1,2 · · · MN−1,N−1



Where, we consider V ∈ RlN and M ∈ RmN×lN . Substituting (3.9a) and (3.9b) into
(3.3a) and neglecting the terms that do not contain U. the objective function is rewritten
as follow.

min
V,M

αTQα+ 2αTQτ.γ2 + tr[τTQτ.γ1]+VTRV + 2VTRMγ2 + tr[MTRM.γ1]

(3.10a)

α1 = Fx0 + GV (3.10b)

τ = H + GM (3.10c)

γ1 = E[ξξT ] (3.10d)

γ2 = E[ξ] (3.10e)

Where tr[] is the operator which indicates the trace of a matrix. The objective function
is reduced to (3.10), note that the results is a convex function of the control policy
parametrization of V and M [63].

State feedback control

In this approach the control variable is defined in terms of state variable. Assume the
pair (A,B) of the system (3.3c) can be stabilized, there exist a linear control law Kx.
Now, we define a nominal system and the linear system.

x̄k+1 = Ax̄k +Būk (3.11a)

xk+1 = Axk +Buk +Wξk (3.11b)

The most common formulation of control law is represented as follow [29, 30].

uk = ūk +K(xk − x̄k) (3.12)
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3 Chance Constrained Stochastic Model Predictive Control

Define a new state variable ek = xk − x̄k as the deviation between the linear system
and the nominal system . The error system under the linear control law is denoted by.

ek+1 =
Acl︷ ︸︸ ︷

(A+BK) ek +Wξk (3.13)

Now, the equation (3.13) can be rewritten using prediction horizon assuming that at
the sampling instant ki > 0 the state variable vector is available through measurement
or estimate. The error variable trajectory and the stochastic variable are denoted by E,
ξ, respectively.

E = [eki , eki+1, . . . , eki+N−1]T (3.14a)

ξ = [ξki , ξki+1, . . . , ξki+N−1]T (3.14b)

E = Acleki + Jξ (3.15)

Where the matrices Acl and J are given by.

Acl =



Acl

A2
cl

A3
cl
...
ANcl



J =



W 0 0 · · · 0
AclW W 0 · · · 0
A2
clW AclW W · · · 0
...

...
... . . . ...

AN−1
cl W AN−2

cl B AN−3
cl W · · · W


In this approach a proper choice of the control gain , which is an optimization variable
or a design parameter, can reduce the effect the stochastic variable sequence ξ. This
results in a larger feasibility region with respect to the approach of open-loop-control,
although that the system is unstable [29, 30].
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3.3 Stochastic nonlinear Model Predictive Control

3.3 Stochastic nonlinear Model Predictive Control

3.3.1 Formulation of a stochastic optimization problem

The model predictive formulation of a chance constrained dynamic optimization problem
takes the form.

min
xk,uk

J(xk+1, uk, ξk) (3.16a)

subject to x(0) = x0 (3.16b)

xk+1 = fk(xk, uk, ξk) k = 0, 1, . . . , N − 1 (3.16c)

umin ≤uk ≤ umax k = 0, 1, . . . , N − 1 (3.16d)

Pr[g(xk+1, uk, ξk) ≤ 0] ≥ α k = 0, 1, . . . , N − 1 (3.16e)

In which xk are the state variables, uk are the control variables, ξk are the uncertain
variables and x0 are the initial values of the state variables. J is the objective function,
the vectors g and h represent the equality (model equation) and inequality constraint,
respectively.
Due to the presence of the uncertainties ξ, the problem cannot be solved directly with
the available deterministic optimization methods. The problem has to be relaxed into
equivalent deterministic problem. It is well-known in the literature as relaxation. To
treat the new objective function J , minimizing the expected values and the variances of
the objective function f has usually been adopted. Sometimes, the cost function in a
stochastic framework is the following.

min
xk,uk
{J = E[f(xk+1, uk, ξk)] + wD[f(xk+1, uk, ξk)]} (3.17)

Where E and D are the operators of expectation and variance, respectively. The value
of w is a weighting factor between the two terms. In the case of the relaxation of the
inequality constraint will be formulated as chance or probability constraints. It means
holding the inequality constraint with a predefined probability level. There exist two
different forms of representing the chance constraints [51]. In the equation (3.18) and
(3.19) depict single chance constraint and joint chance constraint, respectively. Pr is
probability operator and α is the reliability level probability.

Pr[g(xk+1, uk, ξk) ≤ 0] ≥ αk, k = 0, 1, . . . , N − 1 (3.18)
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3 Chance Constrained Stochastic Model Predictive Control

Pr[g(xk+1, uk, ξk) ≤ 0, k = 0, 1, . . . , N − 1] ≥ α (3.19)

In the case of single chance constraint, individual probabilities have to ensure that each
inequality will be hold, whereas in the joint chance constraint the inequalities should be
satisfied simultaneously with a given probability.

3.4 Approximation Methods

The major difficulty for solving chance constrained optimization problems is in to
evaluate the probability constraint. In general, the state variables depend on the control
variables and stochastic variables while the control variables are considered deterministic.
Therefore, the state variables can be expressed in terms of the control and stochastic
variables using the non-linear dynamic equation (3.16b) and initial conditions (3.16c).
As a result, the formulation (3.16) can be rewritten as follow.

min
uk

E [f(xk(uk, ξk), uk)] (3.20a)

umin ≤uk ≤ umax k = 0, 1, . . . , N − 1 (3.20b)

p(u) = Pr[g(xk+1(uk,ξk), uk) ≤ 0] ≥ α k = 0, 1, . . . , N − 1 (3.20c)

The main challenge for solving CCOPT is to compute the probability p(u) of (3.20c).
This computation is more complicated task if the gradient 5p(u) is required for the
numerical solver. As a result, the approximation methods have been proposed for
a better tractability of CCOPT. For instance, Back mapping method, Robust
optimization, Analytic Approximation and SAA have been widely developed in
[13, 34, 52]. Therefore, in this work the new analytic approximation strategy formulated
in [33] using a parametric function will be employed.
The idea of this method is based on SAA approach that replaces the probability constraint
(3.20c) by a relative-frequency count of satisfaction of the constraint g(xk(uk, ξk), uk) > 0
for generated samples QSM [ξ1, ξ2, . . . , ξNs] with low-discrepancy properties.
The approximation of the probability distribution of random variables is considered as
a viable method for better tractability of CCOPT [13, 33, 34, 49]. The expected value
and the probability can be calculated as follow.

E[g(ξ)] =
∫
g(ξ)ρ(ξ)dξ (3.21)
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3.4 Approximation Methods

PF =
∫
g(ξ∈F )

ρ(ξ)dξ (3.22)

Where ρ(ξ) is the probability distribution function of the random variables ξ1, ξ2, . . . , ξNs

and PF is the probability of the certain event ξ ∈ F . This expressions can be approxi-
mated by.

E[g(ξ)] ' 1
Ns

Ns∑
i=1

g(ξ)(ξi) (3.23)

PF ' E[Θ(ξ)] (3.24)

Hence, the probability constraint can be expressed using the expected value (Pr[g(uk, ξk) >
0] = E[Θ(g(uk, ξk))].

Θ(g(uk, ξk)) =

0 g(uk, ξk) ≤ 0

1 g(uk, ξk) > 0

Where g(uk, ξk) := g(xk+1(uk, ξk), uk). Nevertheless, the drawback is that the function
Θ is discontinuous and is not amenable for the numerical computation. Moreover, the
feasibility of the obtained solution is guaranteed only if the number of samples Ns is very
large. For this reason, the analytic approximations approach replaces this discontinuous
function Θ by a parametric function Ψ that could be smooth and assure a-priori the
feasibility. In order to formulate a new parametric function, it is required that the
function Ψ satisfies the following properties [33].

• P1: E[Θ(g(uk, ξk))] ≤ Ψ(τ, uk) for each 0 < τ < 1.

• P2: infτ>0Ψ(τ, uk) = E[Θ(g(uk, ξk))] for each uk.

• P3: Ψ(τ, uk) is non-decreasing with respect to τ .

In the literature, there exist suggestion above the parametric function that accomplishes
some of the properties P1−P3 in [56, 58, 62, 68]. Under this assumption it is possible
to provide a good approximation to the solution of (3.16) for a decreasing sequence of
τ → 0+.
The next section two approaches of the new parametric function Ψ proposed in [33]
will presented.
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3 Chance Constrained Stochastic Model Predictive Control

3.4.1 Analytical Inner Approximation (IA)

The Analytical IA approximates the above stochastic inequality constraint by a deter-
ministic one, which is defined as follows.

Ψ(τ, g(uk, ξ)) = 1 +m1τ

1 +m2τ exp (−1
τ g(uk, ξ))

(3.25a)

Pr[g(uk, ξk) > 0] = E[Ψ(τ, g(uk, ξ))] < 1− α (3.25b)

Where 0 < τ < 1 is the approximation parameter, and m1, m2 are positive values such
that m1 > m2. The expected value can be obtained using quasi-Monte-Carlo sampling.
In this way, using the quasi-sequential approach, the chance-constrained optimization
problem (3.16) is transformed into a deterministic OCP which can be solved using
standard NLP. Therefore, on each prediction horizon the deterministic OCP must be
solved.
Other important consideration is the feasibility, where the feasible set of CCOPT in the
formulation (3.16) is P = {u ∈ U | Pr{u} ≥ α} and the feasible set of CCOPT using
the parametric function is M(τ) = {u ∈ U | Ψ(τ, u) < 1 − α}. As we can see in the
Figure 3.3 M(τ) is a subset of the feasible set of P and the sense of the convergence
of the sets when τ → 0+.
Therefore, the new formulations for IA is presented as follow.

P

M(τ)

τ → 0+

Figure 3.3 – Inner Approach-Convergence limτ→0+ M(τ) = P [33]
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min
uk

1
Ns

Ns∑
j=1

(f(xk,j(uk, ξk,j), uk)) (3.26a)

umin ≤uk ≤ umax k = 0, 1, . . . , N − 1 (3.26b)

1
Ns

Ns∑
j=1

Ψ(τ,g(xk+1,j(uk, ξk,j), uk)) ≤ 1− α k = 0, 1, . . . , N − 1 (3.26c)

3.4.2 Analytical outer approximation (OA)

Similar to the IA, the OA approach approximates the chance constraint by the following
deterministic inequality.

Ψ(τ,−g(uk, ξ)) = 1 +m1τ

1 +m2τ exp ( 1
τ g(uk, ξ))

(3.27a)

Pr[g(uk, ξk) ≤ 0] = E[Ψ(τ,−g(uk, ξ))] ≥ α (3.27b)

P

S(τ)

τ → 0+

Figure 3.4 – Outer Approach-Convergence limτ→0+ S(τ) = P [33]

In this approach,the feasible set of CCOPT in the formulation (3.16) is P = {u ∈
U | Pr{u} ≥ α} and the feasible set of CCOPT using the parametric function is
S(τ) = {u ∈ U | Ψ(τ, u) ≥ α}. As we can see in the Figure 3.4 P is a subset of the
feasible set of S(τ) and the sense of the convergence of the sets when τ → 0+.
Therefore, the new formulations for OA is presented as follow.
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min
uk

1
Ns

Ns∑
j=1

(f(xk,j(uk, ξk,j), uk)) (3.28a)

umin ≤uk ≤ umax k = 0, 1, . . . , N − 1 (3.28b)

1
Ns

Ns∑
j=1

Ψ(τ,− g(xk+1,j(uk, ξk,j), uk)) ≥ α k = 0, 1, . . . , N − 1 (3.28c)
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Chapter 4

Implementation Framework

The implementation of the SMPC using IA and OA is based on C++ programming
language to obtain high performance in run-time. The optimization task was carried
using IpOpt and 10 000 samples were generated for stochastic variables using QSM
with Sobol sequence. All the computations were carried out on a Intel Core I7-4960X
running at 3.4 GHz and with 16 GB of RAM.
As mentioned above, to solve a chance constrained MPC problem in each iteration
a CCOPT problem must be solve as defined 3.16 in the chapter 3. These types of
problems are characterized by having probability constraints. Therefore, the objective
of the methods of approximation is to transform these probability constraints. IA and
OA transform the probability constraint into inequalities that are formulated according
to the expected value 3.25 and 3.27. Finally, to transform into a deterministic problem,
QSM samples are used. Hence, the expected value and the probability are approximated
and the optimization problem as formulated as 3.26 and 3.28. Therefore, this problem
can be solved by available solver. As mentioned above,in this work IpOpt solver based
on interior point methods will used for the case studies proposed.

4.1 IpOpt Solver

IpOpt [73] is an open source software package that can be used to solve general NLP
problems of the following form.

min
x

f(x) (4.1a)

subject to gl ≤ gj(x) ≤ gu, j = 1, . . . ,m (4.1b)

xl ≤ xi ≤ xu, i = 1, . . . , n (4.1c)
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Where x ∈ <n are the optimization variables, xl and xu are the lower and upper
bounds, respectively. The function g is the set of constraints. The IpOpt implements
an interior-point line-search filter method, the algorithms and their implementation can
be found in [57, 69, 72, 73] . To implement the CCOPT with SMPC in IpOpt with
program code. It is required to formulate the CCOPT into a sequence NLP problem
on moving horizon. Then, according to the [74], the user must provide to IpOpt the
following information:

• Number of optimization variables, number of constraint and bounds.

• Starting Point.

• Function values f(xk) and g(xk).

• First derivatives ∇f(xk) and ∇g(xk).

• Second derivatives H(xk, λk) (the Hessian matrix of the Lagrangian ).

• Number of non-zeros and sparsity structure of the ∇g(xk) and H(xk, λk).

Chance constrained
MPC problem

Chance constrained
nonlinear optimization

E[Ψ] ≤ 1 − α
E[Ψ] ≥ α

Deterministic problem

Ipopt

on each
moving horizon

time discretization

Approximation
of chance constraint

Quasi Monte
Carlo samples

The problem is
solved by

Figure 4.1 – Diagram of the solution procedure of chance constrained MPC prob-
lem
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4.1 IpOpt Solver

From the formulation obtained in the previous chapter (3.26) and (3.28), it is possible
to represent the NLP problem as follow.

min
w

F(x(w),w) (4.2a)

subject to wmin ≤ w ≤ wmax, (4.2b)

G(x(w),w) ≤ 0, (4.2c)

Where w = [u0, u1, . . . , uN−1]T is the set of optimization variable, while the set of state
variables is defined as.

x =



x(1,1)

x(1,2)
...

x(1,Ns)

x(2,1)
...

x(2,Ns)
...
...

x(N,1)
...

x(N,Ns)


Where N is the prediction horizon and Ns is the number of samples generated by QSM
method. As as result, there are N×Ns states variables. On the other hand, F represents
the objective function and the set of constraint is defined as.

F(x(w),w) = 1
Ns

Ns∑
j=1

f(xj(w),w) (4.3)

G(x(w),w) =



1
Ns

∑Ns
j=1 Ψ(±τ, g(x(1,j),w))

1
Ns

∑Ns
j=1 Ψ(±τ, g(x(2,j),w))

1
Ns

∑Ns
j=1 Ψ(±τ, g(x(3,j),w))

...
1
Ns

∑Ns
j=1 Ψ(±τ, g(x(N,j),w))


(4.4)
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4 Implementation Framework

Where Ψ is the parametric smooth function presented in the previous chapter. As
can be seen, N constraints are formulated that represents the probability constraint
transformed as deterministic inequalities constraint.

4.1.1 Computation of the first derivatives

As have mentioned, only the control variables are considered as the optimization
variables. Therefore, the gradient ∇F of the objective function and the Jacobian ∇G
in the problem (4.2) can be formulated as follow.

∇F = ∂F
∂w + ∂F

∂x
∂x
∂w (4.5a)

∇G = ∂G
∂w + ∂G

∂x
∂x
∂w (4.5b)

Where the sensitivities ∂F
∂w , ∂F

∂x ,
∂G
∂w , ∂G

∂x are computed using CASADI [6] that is
an Automatic Differentiation software with interface C++, while ∂x

∂w is obtained by
discretized dynamic equation. The model equations of the studies cases are discretized
by using Runge Kutta 4th order.

H(x(k+1,j), uk) = 0

H(x(k+1,j), uk) = x(k+1,j) − fk,j(x(k,j), uk, ξ(k,j)) k = 0, 1, . . . , N − 1

j = 1, 2, . . . , Ns

. (4.6)

∇H = ∂H
∂w + ∂H

∂x
∂x
∂w = 0 . (4.7)

In a similar way as the Gradient and Jacobian ∂H
∂w , ∂H

∂x are computed by CASADI.
Therefore, the equation (4.7) is solved by using a algebra lineal method to obtain ∂x

∂w .

Algorithm 6: Computation of gradient ∇F and Jacobian ∇G
Input : Starting point w0, initial states x(0), sensitivities ∂F

∂w , ∂F
∂x ,

∂G
∂w , ∂G

∂x and
random variables ξ

Output : F, ∇F, G and ∇G
1 Compute x by solving (4.6)
2 Set F (4.3)
3 Set G (4.4)
4 Compute ∂x

∂w by solving (4.7)
5 Set ∇F (4.5a)
6 Set ∇G (4.5b)
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4.1 IpOpt Solver

Nevertheless, the code generation of the sensitivities can be computationally expensive
due to the state variables x depend mainly on the number of random variables and
the prediction horizon. Therefore, to reduce the problem of the code generation, the
following method is used to obtain the sensitivities required. The objective function
and the inequality constraint are expressed as follow.

F(x(w),w) = 1
Ns

[
F1︷ ︸︸ ︷

f(x1(w),w) +
F2︷ ︸︸ ︷

f(x2(w),w) + . . .+
FNs︷ ︸︸ ︷

f(xNs(w),w)] (4.8)

G1 =


Ψ(±τ, g(x(1,1),w))
Ψ(±τ, g(x(2,1),w))

...
Ψ(±τ, g(x(N,1),w))



G2 =


Ψ(±τ, g(x(1,2),w))
Ψ(±τ, g(x(2,2),w))

...
Ψ(±τ, g(x(N,2),w))


...

GNs =


Ψ(±τ, g(x(1,Ns),w))
Ψ(±τ, g(x(2,Ns),w))

...
Ψ(±τ, g(x(N,Ns),w))


G(x(w),w) = 1

Ns
(G1 + G2 + . . .+ GNs) (4.9)

Moreover, the gradient ∇F of the objective function and the Jacobian ∇G can be
computed as follow.

∇F = 1
Ns

(∇F1 +∇F2 + . . .+∇FNs) (4.10)

∇G = 1
Ns

(∇G1 +∇G2 + . . .+∇GNs) (4.11)

The elements Fi and Fi+1 of the objective function have the same symbolic representation,
so that ∇Fi and ∇Fi+1 keep the same structure. In a similar way, the elements of
the set constraints Gi+1 and Gi accomplish the same properties. Therefore, the sparse
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structure ∇Gi is equal to ∇Gi+1. The function generated by CASADI is summarized
in Algorithm 8.

Algorithm 7: Computation of gradient ∇Fk and Jacobian ∇Gk
Input : Initial states x(0), random variables ξi and control variables w
Output : Fk, ∇Fk, Gk and ∇Gk

1 Compute x by solving (4.6)
2 Set Fk
3 Set Gk
4 Compute ∇Fk by using functions CASADI
5 Compute ∇Gk by using functions CASADI

Algorithm 8: Computation of gradient ∇F and Jacobian ∇G
Input : Starting point w0 and initial states x(0)
Output : F, ∇F, G and ∇G

1 Set k = 1
2 Set F = 0
3 Set ∇F = 0
4 Set G = 0
5 Set ∇G = 0
6 repeat
7 Compute Fk, ∇Fk, Gk and ∇Gk using the algorithm 7.
8 Set F = F + Fk.
9 Set ∇F = ∇F +∇Fk.

10 Set G = G + Gk.
11 Set ∇G = ∇G +∇Gk.
12 Set k = k + 1
13 until k > Ns;
14 Set F = F

Ns

15 Set G = G
Ns

16 Set ∇F = ∇F
Ns

17 Set ∇G = ∇G
Ns

4.1.2 Computation of the second derivatives

To compute the Hessian matrix at each iteration, it is possible to use the option IpOpt’s
approximation by BFGS. However, if the Hessian can be computed, the algorithm is
usually more robust and converges faster. In this work from the 3 cases studied are
proposed, where the L-BFGS Hessian approximation is used for the case studies 2 and
3, while the Hessian matrix is computed for the case studio 1 due to the fact that the
computational time is considerably smaller than using the approximation.
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4.1 IpOpt Solver

Initialization
Generation of random variables ξ

number of variables n
number of constraints m
upper and lower bounds

starting point w0

i = 0

Evaluation of Functions

objective function F (wi)
gradient of objective ∇F (wi)

constraints G(wi)
Jacobian of constraints ∇G(wi)

Hessian matrix of the Lagrangian H(wi)

IPOPT Algorithm

solution KKT system
line-search filter method
second order corrections
feasibility restoration

i = i+ 1

convergence criterion
wi = w∗?

optimal solution w∗

yes

no

Figure 4.2 – Diagram of the solution procedure of IpOpt [74].

The Hessian of the Lagrangian function depends on the function of second order
∇2F (Objective Function) and ∇2G(k) (N constraints).

∇2L =
A︷ ︸︸ ︷

σf ∇2F +

B︷ ︸︸ ︷
N∑
i=1

λi∇2G(i)
. (4.12)

Where σf is the factor that IpOpt use to identify the Hessian of the objective A or the
constraints B independently, λi are the multipliers for the constraints.
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In a similar way as the functions computed of the first order, the Hessian matrix are
formulated as follow.

∇2L = 1
Ns

(∇2L1 +∇2L2 + . . .+∇2LNs) (4.13)

Algorithm 9: Computation of the Hessian matrix ∇2L
Input : Starting point w0, initial states x(0) and random variables ξi
Output :∇2L

1 Set k = 1
2 Set ∇2L = 0
3 repeat
4 Compute ∇2Lk by using functions CASADI
5 Set ∇2L = ∇2L +∇2Lk.
6 Set k = k + 1
7 until k > Ns;
8 Set ∇2L = ∇2L

Ns

The sparse structure of the functions of the first and second order and the number of
non zeros are obtained by the CASADI functions. Finally, the option of the derivative
checker in IpOpt is activated for the verification of the computation for the first and
second derivative. When this option is activated the IpOpt solver calculate internally
only for the starting point w0 to compare with the one provided by the user through a
error tolerance. In this work , the tolerance of the check derivative is set to 10−6. The
diagram of the solution procedure is shown in Figure 4.2.

4.1.3 Generation of random variables

To implement the quasi-random variables, the library gsl− qrng is used that is based on
the algorithms described in [16]. The random variables ξ are generated using QSM with
Sobol sequence (with low discrepancy proporties). This library allows the generation of
10 000 samples until a maximum of 40 sequences [36].

Sampling Model

u

ξ x

Many iterations

Distrubution of
uncertain inputs

Figure 4.3 – Framework of Monte-Carlo simulation
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Chapter 5

Case-Studies and Computational Results

In this section, three case studies are presented related with the obstacle avoidance
problem and trajectory tracking for autonomous vehicle considering uncertainties. The
kinematic and bicycle model are employed for the our case studies.

5.1 Case 1: Car-like Vehicle Model

The car-like model is based only on kinematic relationships. The vehicle sketch is
represented in the Figure 5.1.The states of the model are X = [x y θ v]T , where x
and y are the center point coordinate of the rear axle, θ is the heading angle of the car
body with respect to the x-axis and v is the line velocity. The distance between the front
and the rear axles is represented by l. The control variable U = [δ a]T , where ψ and v
are the steering angle and linear acceleration , respectively. The stochastic variables are
ξ = [ξ1 ξ2] where both represent the error of the motion model.The numerical value
of the parameters are obtained from [50] and are shown in Table 5.1. The following
differential equations describes the kinematic relationship.

Table 5.1 – Parameters of the random variables in the Car-like vehicle model
obtained from [50]

Parameter Value Description∑
ξ1,ξ2 diag(0.5, 0.02) Covariance between ξ1 and ξ2
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ẋ = v cos(θ) ,

ẏ = v sin(θ) ,

θ̇ = v

(tan(δ)
l

)
+ ξ1 , (5.1)

v̇ = a+ ξ2 ,

The aim of the optimization problem is to arrive at a desired final position by following
(xd, yd) while avoiding the obstacle that exists in the trajectory. To test the avoidance
strategy, Figure 5.2 is considered for the first case. The desired position is set to
(xd, yd) = (108m, 0m) and the obstacle is located at (xobs, yobs) = (60m, 0m).

x

y

vδ

l

(x,y)

θ

Figure 5.1 – Kinematic vehicle model [66]

x[m]

y[m]

Car
(0, 0)

Obstacle
(60, 0)

Goal
(108, 0)

Figure 5.2 – Mobile working area and obstacle to be avoided for the Car-like
vehicle model
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5.1 Case 1: Car-like Vehicle Model

Thus, the objective function is defined as follow:

Jtrack(x, u, ξ) = E[
N−1∑
k=1

qx(xk,ξ − xref,k)2 + qy(yk,ξ − xref,k)2] + raa
2
k + rδδ

2
k . (5.2)

Where E[ ] is the expected value operator. The state vector of initial conditions is
given by

x(0) = [0, 0, 0, 0]T . (5.3)

The final time is fixed to tf = 12 s and the sampling time is set to ∆T = 0.1s. Apply
Runge Kutta Methods to equation 5.1 to obtain the discrete-time model. The control
variables are constrained as follows,

−8◦ ≤ δ ≤ 8◦ ,

−0.5◦ ≤ ∆δ ≤ 0.5◦ ,

−10m/s2 ≤ a ≤ 10m/s2 , (5.4)

The chance constraint is formulated for obstacle avoidance using the path constraint
approach.

Pr[1− (xk,ξ − xobs)2

r2
a

− (yk,ξ − yobs)2

r2
b

≤ 0] ≥ α, k = 1, 2, . . . , N (5.5)

the resulting Stochastic NMPC problem is given by:

min
u

Jtrack(x, u, ξ)

subject to: x0 = x(0) ,

Model equation(5.1) ,

Path constraint (5.4) ,

Chance constraint (5.5) .

5.1.1 Deterministic MPC for Car-like vehicle model

In deterministic optimization, the stochastic variables are set constant with their expected
values. The prediction horizon considered is of N = 8, the gain factors in the objective
function are set qx = 1, qy = 1 , ra = 0.01 , rδ = 0.1 and the parameter of the ellipse are
set ra = 4m and rb = 0.4m. The results of the obstacle avoidance problem are shown

Master thesis 49



5 Case-Studies and Computational Results

in Figure 5.3, the optimal controls in Figure 5.4 and the optimal states 5.5. As can
be seen, the path constraint approach accomplish the task of the obstacles avoidance.
In deterministic optimization, the trajectory of the vehicle moves slightly close to the
border of the ellipse.

0 10 20 30 40 50 60 70 80 90 100 110

−0.4

−0.2

0

0.2

0.4

0.6
y
[m

]
Position

Reference

Figure 5.3 – Simulation results for the case 1: Trajectory in the X-Y plane for
obstacle avoidance using deterministic MPC.
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Figure 5.4 – Simulation results for the case 1: Optimal control inputs for obstacle
avoidance using deterministic MPC.
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The convergence of the objective function is shown in Figure 5.6 and CPU time is
reported in Table 5.2 in deterministic optimization.
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time [s]

v
(t

)
[m

/s
]

Figure 5.5 – Simulation results for the case 1: Optimal states for obstacle avoid-
ance using deterministic MPC.

However, the results from the deterministic optimization cannot be applied due to
fact that the constraint of the obstacle avoidance are not satisfied when the stochastic
variables are taken into account as can be seen in Figure 5.7. Considering 10 000 samples
generated by the Monte Carlo method, the deterministic optimization lead to about
41.8% of violations of the constraint.

0 10 20 30 40 50 60 70 80 90 100 110

0
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6
8

10
12

J

Figure 5.6 – Simulation results for the case 1: Convergence of the objective
function using deterministic MPC
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Figure 5.7 – Simulation result for the case 1: Trajectory in the X-Y plane for
obstacle avoidance under uncertainties using deterministic MPC.

Table 5.2 – Average computation time per iteration (ms) required for the solution
of case 1 using deterministic MPC.

Case 1
CPU time in IpOpt 1.233
CPU time in NLP function evaluations 9.066
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5.1.2 Stochastic MPC for car-like vehicle model

In this section, IA and OA approach was tested with a prediction horizon N = 8. For the
case 1, the values of m1 = 1 and m2 = 0.333 of the parametric function were considered.
In the case of IA, the results were obtained for 1 ≤ τ ≤ 0.1 and OA for 1 ≤ τ ≤ 0.001.
Moreover, different levels of probability were considered for α = 0.80, 0.9, 0.95.
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Figure 5.8 – Simulation results for the case 1: Trajectory in the X-Y plane for
obstacle avoidance (up: IA τ = 0.1)and (down:OA τ = 0.001) with
α = 0.95.(left:Ns Trajectories of the simulation QSM) and (right:
Expected Value of the trajectories)

The results of the stochastic optimization are shown in Figure 5.8, 5.9 and 5.10 that
correspond the feasible trajectory for the obstacle avoidance for different values of
probability. As can be seen, the feasibility of the OA is bigger that the IA. As a result,
the trajectory of the vehicle in OA is closer to obstacle avoidance than IA. Moreover, if
the probability level is increased, the feasible trajectory of the vehicle decreases.
On the other, to shown the effects of the uncertainties Figure 5.12 and 5.13 depict
the state variables and Figure 5.11 show the deterministic control variables. All the
solutions only correspond considering a level probability α = 0.95 for IA and OA with
the value of τ = 0.1 and τ = 0.001, respectively. As can be seen in Figure 5.12 and 5.13,
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Figure 5.9 – Simulation results for the case 1: Trajectory in the X-Y plane for
obstacle avoidance (up: IA τ = 0.1)and (down:OA τ = 0.001) with
α = 0.90.(left:Ns Trajectories of the simulation QSM) and (right:
Expected Value of the trajectories)

The influence of the stochastic variables at the heading angle θ are greater than the
velocity v.

Table 5.3 – Average computation time in IpOpt per iteration (seconds) required
for the solution of case 1.
α IA CPU time OA CPU time

0.8
τ = 1 0.121 τ = 0.1 0.119
τ = 0.5 0.118 τ = 0.01 0.123
τ = 0.1 0.117 τ = 0.001 0.127

0.9
τ = 1 0.132 τ = 0.1 0.117
τ = 0.5 0.128 τ = 0.01 0.123
τ = 0.1 0.120 τ = 0.001 0.128

0.95
τ = 1 0.135 τ = 0.1 0.117
τ = 0.5 0.129 τ = 0.01 0.124
τ = 0.1 0.125 τ = 0.001 0.128
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Figure 5.10 – Simulation results for the case 1: Trajectory in the X-Y plane for
obstacle avoidance (up: IA τ = 0.1)and (down:OA τ = 0.001) with
α = 0.80.(left:Ns Trajectories of the simulation QSM) and (right:
Expected Value of the trajectories)

Table 5.4 – Average computation time in NLP function evaluations per iteration
(seconds) required for the solution of case 1.
α IA CPU time OA CPU time

0.8
τ = 1 4.264 τ = 0.1 3.242
τ = 0.5 3.856 τ = 0.01 4.318
τ = 0.1 4.264 τ = 0.001 5.059

0.9
τ = 1 4.623 τ = 0.1 3.153
τ = 0.5 4.352 τ = 0.01 4.819
τ = 0.1 3.870 τ = 0.001 6.017

0.95
τ = 1 5.206 τ = 0.1 3.247
τ = 0.5 4.670 τ = 0.01 5.061
τ = 0.1 3.999 τ = 0.001 6.245
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Figure 5.11 – Simulation results for the case 1: Optimal control inputs for the
obstacle avoidance (left: Inner Approximation τ = 0.1)and (right:
Outer Approximation τ = 0.001) with α = 0.95

Moreover, as can be seen (Figure 5.14) , as τ decreases, the optimal value of the objective
function tends to be the same for both approaches. Table 5.3 and 5.4 ilustrate the CPU
times in both approach where the average time reported in IA and OA are significant
respect to the CPU time obtained in deterministic optimization Table 5.2.
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Figure 5.12 – Simulation results for the case 1: Optimal states for the obstacle
avoidance using IA (τ = 0.1) with α = 0.95. (left: Ns trajectories of
the simulation QSM) and (right: expected value of the trajectories)
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Figure 5.13 – Simulation results for the case 1: Optimal states for the obstacle
avoidance using OA (τ = 0.001) with α = 0.95. (left: Ns trajec-
tories of the simulation QSM) and (right: expected value of the
trajectories)
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Figure 5.14 – Simulation results for the case 1: Optimal value of the objective
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α = 0.9, α = 0.95
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5.2 Case 2: Vehicle single track model

5.2 Case 2: Vehicle single track model

The single-track model, also called bicycle model, is a more general representation of a
four-wheel vehicle. This model lumps the two front wheels into one wheel and makes
the same with the rear wheels. Apart from the Cartesian position (X Y ) and the
yaw angle ψ, the description of the vehicles motion considers the yaw rate ψ̇. The
state vector is represented as X = [ẏ ψ ψ̇ X Y ], while the control variable is
represented by U = [δ vx], where δ is the front steering angle vx is the line velocity. In
addition, the stochastic variables are introduced in the model equations and represented
by ξ = [ξ1 ξ2 ξ3 ξ4 ξ5] where ξ1 and ξ2 are additive error caused by unknown
forces on the vehicle produced by crosswind, lane grooves or a sloping , meanwhile ξ3,
ξ4 and ξ5 represent the error estimation and measurement. The numerical value of the
parameters are obtained from [41] and are shown in Table 5.6.The bicycle model is
represented as follow.

ÿ = −(Cf + Cr
m vx

) ẏ + (Crlr − Cf lf
m vx

− vx) ψ̇ + Cf
m

δ + ξ1 ,

ψ̈ = (Crlr − Cf lf
Iz vx

) ẏ − (
Cr l

2
r + Cf l

2
f

Iz vx
)ψ̇ + Cf lf

Iz
δ + ξ2 ,

ψ̇ = Ψ̇ + ξ3 ,

Ẋ = vx cos(Ψ)− ẏ sin(Ψ) + ξ4 , (5.7)

Ẏ = vx sin(Ψ) + ẏ cos(Ψ) + ξ5 ,

The trajectory tracking problem is a well-known application for autonomous vehicles.
Due to the problem consist of obtaining the optimal control inputs that make the
AV follow a given desired trajectory. As a result, for second case the desired path is

Table 5.5 – Physical parameters of the single-track model [41]

Parameter Value Description
m 1550 kg Mass of the vehicle
Iz 2800 kg.m2 Inertia moment
lf 1.344 m Distance from COG to front axle
lr 1.456 m Distance from COG to rear axle
Cf 75000 N/rad Front cornering stiffness
Cr 150000 N/rad Rear cornering stiffness

Master thesis 59



5 Case-Studies and Computational Results

described in terms of the lateral position Yref and the yaw angle ψref as function of the
longitudinal position Xref . The equations 5.8 describe a double lane change that have
been employed in different tests for different scenarios i.e.[24, 25, 48] as follow :

yref (xref ) = dy1
2 (1 + tanh(z1))− dy2

2 (1 + tanh(z2)) ,

ψref (xref ) = atan

( 1.2
dx1

(dy1)( 1
cosh(z1))2 − 1.2

dx2
(dy2)( 1

cosh(z2))2
)
. (5.8)

Where the numeric parameter of double lane change are the following:

Table 5.6 – Parameters of the random variables in the Single-track Model based
on [41]

Parameter Value Description
σξ1 0.5 Standard deviation of perturbation
σξ2 0.17 Standard deviation of perturbation
σξ3 0.1 Standard deviation of noise
σξ4 0.05 Standard deviation of noise
σξ5 0.05 Standard deviation of noise

rξ3,ξ4,ξ5 0.6 Correlation between ξ3, ξ4 and ξ5

x[m]

y[m]

Obstacle
(38, 1.8)

Car
(0, 0)

Goal
(93,−1.6)

Figure 5.15 – Mobile working area and obstacle to be avoided for the Single-track
model. The dashed red line is the double lane change reference
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5.2 Case 2: Vehicle single track model

z1 = 24
2.5(Xref − 27.19)− 1.2 ,

z2 = 24
21.95(Xref − 56.46)− 1.2 ,

dx1 = 25 ,

dx2 = 21.95 ,

dy1 = 4.05 ,

dy2 = 5.7 , (5.9)

The aim of the optimization problem is to arrive at a desired final position while avoiding
the obstacle that exists in the double lane change trajectory. The scenario for the second
case is shown in Figure 5.15 where the desired position is (xd, yd) = (93m,−1.6m) and
the obstacle is located at (xobs, yobs) = (38m, 1.8m).
Thus, the objective function is defined as follow:

Jtrack(x, u, ξ) =E[
N−1∑
k=1

qX(Xk,ξ − xref,k)2 + qY (Yk,ξ − yref,k)2 + qψ(ψk,ξ − ψref,k)2]

+ rvxv
2
x,k + rδδ

2
k

(5.10)

The state vector of initial conditions is given by.

x(0) = [0, 0, 0, 0, 0]T . (5.11)

the final time is fixed to tf = 10 s and the sampling time is set to ∆T = 0.1s. Apply
Runge Kutta Methods to equation 5.7 to obtain the discrete-time model. The control
variables are constrained as follows:

−8◦ ≤ δ ≤ 8◦ ,

−0.5◦ ≤ ∆δ ≤ 0.5◦ ,

3.2m/s ≤ vx ≤ 6m/s , (5.12)

Master thesis 61



5 Case-Studies and Computational Results

The chance constraint is formulated for obstacle avoidance.

Pr[1− (xk,ξ − xobs)2

r2
a

− (yk,ξ − yobs)2

r2
b

≤ 0] ≥ α, k = 1, 2, . . . , N (5.13)

the resulting Stochastic NMPC problem is given by:

min
u

Jtrack(x, u, ξ)

subject to: x0 = x(0) ,

Model equation (5.7) ,

Path constraint (5.12) ,

Chance constraint (5.13) .

5.2.1 Deterministic MPC for vehicle single track model

The prediction horizon considered is of N = 8, the gain factors in the objective function
are set qx = 1, qy = 1, qψ = 1 , rvx = 0.1, rδ = 0.1 and the parameter of the ellipse
are set to ra = 4m and rb = 0.2m. The results of double lane change with the obstacle
avoidance are shown in Figure 5.16, the optimal controls in Figure 5.17 and the optimal
states 5.18.
The CPU-time is shown in Figure 5.7 in deterministic optimization.
Similar to previous case, the results from the deterministic optimization cannot be
applied since the constraint of the obstacle avoidance are not satisfied when the stochastic
variables are taken into account ( Figure 5.20). Considering 10 000 samples generated by
the Monte Carlo method, the deterministic optimization lead to about 41% of violations
of the constraint.

Table 5.7 – Average computation time per iteration (ms) required for the solution
of case 2 using deterministic MPC.

Case 2
CPU time in IpOpt 2.28
CPU time in NLP function evaluations 5.72
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Figure 5.16 – Simulation result for the case 2: Trajectory in the X-Y plane and
yaw angle for obstacle avoidance using deterministic MPC.
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Figure 5.17 – Simulation results for the case 2: Optimal control inputs for the
tracking problem considering the kinematic model using determin-
istic MPC.
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5.2 Case 2: Vehicle single track model
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Figure 5.18 – Simulation results for the case 2: Optimal states for the tracking
problem considering the kinematic model using Deterministic MPC
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Figure 5.19 – Simulation results for the case 2: Convergence of the objective
function and computation time using Deterministic MPC
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Figure 5.20 – Simulation result for the Case 2: Trajectory in the X-Y plane for
obstacle avoidance under uncertainties using Deterministic MPC.
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5.2 Case 2: Vehicle single track model

5.2.2 Stochastic MPC for vehicle single track model

IA and OA approach was tested with a prediction horizon N = 8. For the case 2, the
values of m1 = 1 and m2 = 0.333 of the parametric function were considered. In the
case of IA, the results were obtained for 1 ≤ τ ≤ 0.1 and OA for 0.1 ≤ τ ≤ 0.0002.
Moreover, different levels of probability were considered for α = 0.80, 0.9, 0.95.
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Figure 5.21 – Simulation results for the case 2: Trajectory in the X-Y plane
for obstacle avoidance (up: Inner Approximation τ = 0.1)and
(down: Outer Approximation τ = 0.0002) with α = 0.95.(left:Ns
Trajectories of the simulation QSM) and (right: Expected Value of
the trajectories)

The results of the stochastic optimization are shown in Figure 5.21, 5.22 and 5.23 that
correspond the feasible trajectory for the obstacle avoidance. On the other, to shown the
effects of the uncertainties Figure 5.24 depicts the deterministic control variables and
5.25 and 5.26 represent the state variables. All the solutions only correspond considering
a level probability α = 0.95 for IA and OA with the value of τ = 0.1 and τ = 0.0002,
respectively. As can be seen, the influence of the stochastic variables is greater in the
velocity ẏ , yaw angle ψ and yaw rate ψ̇.
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Figure 5.22 – Simulation results for the case 2: Trajectory in the X-Y plane
for obstacle avoidance (up: Inner Approximation τ = 0.1)and
(down: Outer Approximation τ = 0.0002) with α = 0.90.(left:Ns
Trajectories of the simulation QSM) and (right: Expected Value of
the trajectories)

Table 5.8 – Average computation time in IpOpt per iteration (seconds) required
for the solution of case 2.
α Inner CPU time Outer CPU time

0.80

τ = 1 0.277 τ = 0.1 0.276
τ = 0.5 0.284 τ = 0.01 0.271

τ = 0.1 0.276
τ = 0.001 0.289
τ = 0.0002 0.284

0.9

τ = 1 0.281 τ = 0.1 0.277
τ = 0.5 0.294 τ = 0.01 0.283

τ = 0.1 0.310
τ = 0.001 0.286
τ = 0.0002 0.294

0.95

τ = 1 0.282 τ = 0.1 0.273
τ = 0.5 0.281 τ = 0.01 0.278

τ = 0.1 0.270
τ = 0.001 0.284
τ = 0.0002 0.275

68
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Figure 5.23 – Simulation results for the case 2: Trajectory in the X-Y plane
for obstacle avoidance (up: Inner Approximation τ = 0.1)and
(down: Outer Approximation τ = 0.0002) with α = 0.80.(left:Ns
Trajectories of the simulation QSM) and (right: Expected Value of
the trajectories)

Table 5.9 – Average computation time in NLP function evaluations per iteration
(seconds) required for the solution of case 2.
α Inner CPU time Outer CPU time

0.80

τ = 1 5.524 τ = 0.1 5.859
τ = 0.5 5.540 τ = 0.01 5.800

τ = 0.1 5.615
τ = 0.001 6.069
τ = 0.0002 6.017

0.9

τ = 1 5.552 τ = 0.1 6.048
τ = 0.5 5.637 τ = 0.01 5.810

τ = 0.1 6.078
τ = 0.001 5.898
τ = 0.0002 6.016

0.95

τ = 1 5.652 τ = 0.1 5.916
τ = 0.5 5.638 τ = 0.01 5.958

τ = 0.1 5.868
τ = 0.001 6.245
τ = 0.0002 5.870
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Figure 5.24 – Simulation results for the Case 2: Optimal control inputs for the
obstacle avoidance (left: Inner Approximation τ = 0.1)and (right:
Outer Approximation τ = 0.0002) with α = 0.95

As can be seen in Figure 5.21, 5.22 and 5.23 the feasibility of the OA is bigger that the
IA. As a result, the trajectory of the vehicle in OA is closer to obstacle avoidance than
IA. Moreover, if the probability level is increased, the feasible trajectory of the vehicle
decreases.
Moreover, as can be seen in Figure 5.27 , as τ decreases, the optimal value of the
objective function tends to be the same for both approaches. Table 5.8 and 5.9 ilustrate
the CPU times in both approach where the average time reported in IA and OA are
significant respect to the deterministic optimization 5.7.
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Figure 5.25 – Simulation results for the case 2: Optimal states for the obstacle
avoidance using IA (τ = 0.1) with α = 0.95. (left: Ns trajectories of
the simulation QSM) and (right: expected value of the trajectories)
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Figure 5.26 – Simulation results for the case 2: Optimal states for the obstacle
avoidance using OA (τ = 0.0002) with α = 0.95. (left: Ns trajec-
tories of the simulation QSM) and (right: expected value of the
trajectories)
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Figure 5.27 – Simulation results for the case 2: Optimal value of the objective
function for different values of α (left: Inner Approximation) and
(right: Outer Approximation). From top to bottom: α = 0.8,
α = 0.9, α = 0.95
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5 Case-Studies and Computational Results

5.3 Case 3: Bicycle vehicle model with nonlinear tire lat-
eral model

This model equation is based on Bicycle Model with non-linear equation Tire forces.Where
Fyf and Fyr are front and rear tires force acting on the vehicle lateral axis, Fxf and Fxr
tire forces acting on the vehicle longitudinal axis. The vehicle sketch is represented in
Figure 5.29. The state vector is represented by X = [ẋ ẏ ψ̇ ψ X Y ]. Likewise to
previous model, the yaw rate is considered ψ̇, while the control variable is represented by
U = [δ β], where δ is the front steering angle and β is referred as braking ratio, where
β = −1 corresponds to full braking and β = 1 to full throttle. In addition, the stochastic
variables are considered in the model ξ = [ξ1 ξ2 ξ3 ξ4 ξ5 ξ6] that represents the
error of the model motion. The following set of differential equations to describe the
vehicle motion.

ẍ = ẏ ψ̇ + 2 Fxf
m

+ 2 Fxr
m

+ ξ1 ,

ÿ = −ẋ ψ̇ + 2Fyf
m

+ 2 Fyr
m

+ ξ2 ,

ψ̈ = 2 ( lf Fyf − lr Fyr
Iz

) + ξ3 ,

ψ̇ = Ψ̇ + ξ4 ,

Ẋ = ẋ cos( Ψ)− ẏ sin( Ψ) + ξ5 , (5.15)

Ẏ = ẋ sin( Ψ) + ẏ cos( Ψ) + ξ6 ,

The front and rear tires are expressed as follow:

Fxf = Flf cos( δ)− Fcf sin( δ)

Fyf = Flf sin( δ) + Fcf cos( δ)

Fxr = Flr

Fyr = Fcr

Where Flf , Flr are the longitudinal tire forces and Fcf , Fcr are the lateral tire forces for
front and rear wheel. In this model, the longitudinal tire forces are considered linear
due to the assumption that the slip ratio is small, as a result the input control β is
constrained to [−0.5 0.5] meanwhile the lateral tire forces is represented using Fiala
model [43]. The tire forces are formulated as:
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5.3 Case 3: Bicycle vehicle model with nonlinear tire lateral model

Flr = β µ Fzr

Flf = β µ Fzf

Fc,f/r =

−Cα tan(αf/r) + C2
α |tan(αf/r)|tan(αf/r)

2 n µ Fz,f/r
− C3

α tan(αf/r)3

27 n2 µ2 Fz,f/r
| αf/r |< αs,f/r

−nµFz,f/r sgn(αf/r) | αf/r |≥ αs,f/r

Where αf/r and αs,f/r = 3 n µ Fz,f/r
Cα

represent the tire slip angle and the saturation
point of the slip angle, respectively. Moreover, u is the friction coefficient that is
assumed constant on each wheel, Cα is the cornering stiffness and n =

√
1− β2 can

be represented in terms of β. The vertical forces Fz,f/r are assumed constant and are
calculated by steady weight distribution of the vehicle at the center of the gravity.

Fzf = lr m g
2(lr+lf )

Fzr = lf m g
2(lr+lf )

The slip angle is formulated based on the longitudinal and lateral velocity.

αf = atan

(
(ẏ + lf ψ̇) cos(δ)− ẋ sin(δ)
ẋ cos(δ) + (ẏ + lf ψ̇) sin(δ)

)

αr = atan

(
ẏ − lf ψ̇

ẋ

)

The aim of the optimization problem is to arrive at a desired final position while avoiding
the obstacle that exists in the trajectory. The scenario for the third case is shown in
Figure 5.28 where the desired position is (xd, yd) = (108m, 0m) and the obstacle is
located at (xobs, yobs) = (60m, 0).
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5 Case-Studies and Computational Results

Thus, the objective function is formulated as follow.

Jtrack(x, u, ξ) =E[
N−1∑
k=1

qX(Xk,ξ − xref,k)2 + qY (Yk,ξ − yref,k)2 + qψ(ψk,ξ − ψref,k)2]

+ rββ
2
k + rδδ

2
k

(5.16)

Table 5.10 – Physical parameters of the Non-Linear Bicycle model [32]

Parameter Value Description
m 2050 kg Mass of the vehicle
Iz 3344 kg.m2 Inertia moment
lf 1.4 m Distance from COG to front axle
lr 1.0 m Distance from COG to rear axle
Cα 65000 N/rad Cornering stiffness
µ 0.5 Friction coefficient

Table 5.11 – Parameters for the uncertain inputs obtained from [32]

Parameter Value Description
σξ1 0.2 Standard deviation
σξ2 0.2 Standard deviation
σξ3 0.2 Standard deviation
σξ4 0.005 Standard deviation
σξ5 0.05 Standard deviation
σξ6 0.05 Standard deviation

x[m]

y[m]

Car
(0, 0)

Obstacle
(60, 0)

Goal
(108, 0)

Figure 5.28 – Mobile working area and obstacle to be avoided for the Non-linear
Bicycle Model
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Figure 5.29 – Bicycle vehicle model of the vehicle [66]

The state vector of initial conditions is given by.

x(0) = [3, 0, 0, 0, 0, 0]T . (5.17)

the final time is fixed to tf = 12 s and the sampling time is set to ∆T = 0.1s. Apply
Runge Kutta Methods to equation 5.15 to obtain the discrete-time model. The control
variables are constrained as follows:

−5◦ ≤ δ ≤ 5◦ ,

−0.5◦ ≤ ∆δ ≤ 0.5◦ ,

−0.5 ≤ β ≤ 0.5 ,

−0.01 ≤ ∆β ≤ 0.01 , (5.18)

The chance constraint is formulated for obstacle avoidance.

Pr[1− (xk,ξ − xobs)2

r2
a

− (yk,ξ − yobs)2

r2
b

≤ 0] ≥ α, k = 1, 2, . . . , N (5.19)
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the resulting Stochastic NMPC problem is given by:

min
u

Jtrack(x, u, ξ)

subject to: x0 = x(0) ,

Model equation (5.15) ,

Path constraint (5.18) ,

Chance constraint (5.19) .

5.3.1 Deterministic MPC for bicycle vehicle model with nonlinear tire
lateral model

The prediction horizon considered is of N = 8, the gain factors in the objective function
are set qx = 1, qy = 1, qψ = 1 , rβ = 0.01 and rδ = 0.01 and the parameter of the ellipse
are set to ra = 4m and rb = 0.4m. The results of the obstacle avoidance problem are
shown in Figure 5.30, the optimal controls in Figure 5.31 and the optimal states 5.32.
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Figure 5.30 – Simulation result for the case 3: Trajectory in the X-Y plane for
obstacle avoidance using Deterministic MPC

The CPU Time in deterministic optimization is reported in 5.12.
Similar to previous case, the results from the deterministic optimization cannot be
applied since the constraint of the obstacle avoidance are not satisfied when the stochastic

Table 5.12 – Average computation time per iteration (ms) required for the solution
of case 3 using deterministic MPC.

Case 3
CPU time in IpOpt 1.433
CPU time in NLP function evaluations 20.466
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Figure 5.31 – Simulation results for the case 3: Optimal control inputs for obstacle
avoidance using Deterministic MPC

variables are taken into account ( Figure 5.34). Considering 10 000 samples generated by
the Monte Carlo method, the deterministic optimization lead to about 71% of violations
of the constraint.
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ẋ
[m

/s
]

0 1 2 3 4 5 6 7 8 9 10 11 12

−0.25
−0.2

−0.15
−0.1

−5 · 10−2
0

5 · 10−2
0.1

ẏ
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Figure 5.32 – Simulation results for the case 3: Optimal states for obstacle avoid-
ance using Deterministic MPC
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Figure 5.33 – Simulation results for the case 3: Convergence of the objective
function using Deterministic MPC
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Figure 5.34 – Simulation result for the case 3: Trajectory in the X-Y plane for
obstacle avoidance under uncertainties using Deterministic MPC.
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5.3.2 Stochastic MPC for bicycle vehicle model with nonlinear tire
lateral model

IA and OA approach was tested with a prediction horizon N = 8. For the case 3, the
values of m1 = 2 and m2 = 1 of the parametric function were considered. In the case
the inner, the results were obtained for 1 ≤ τ ≤ 0.1, and outer for 0.1 ≤ τ ≤ 0.001.
Moreover, different level of probability were considered for α = 0.80, 0.9, 0.95.
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Figure 5.35 – Simulation results for the case 3: Trajectory in the X-Y plane for
obstacle avoidance (up: IA τ = 0.1)and (down:OA τ = 0.001) with
α = 0.95.(left:Ns Trajectories of the simulation QSM) and (right:
Expected Value of the trajectories)

The results of the stochastic optimization are shown in Figure 5.35, 5.36 and 5.37 that
corresponds the feasible trajectory for the obstacle avoidance. As can be seen, the
trajectory of the vehicle in OA is closer to obstacle avoidance than IA. Moreover, if the
probability level is increased, the feasible trajectory of the vehicle decreases.
On the other, to shown the effects of the uncertainties Figure 5.38 depicts the deter-
ministic control variables and Figure 5.39, 5.40 represent the state variables. All the
solutions only correspond considering a level probability α = 0.95 for IA and OA with
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Figure 5.36 – Simulation results for the case 3: Trajectory in the X-Y plane for
obstacle avoidance (up: IA τ = 0.1)and (down:OA τ = 0.001) with
α = 0.90.(left:Ns Trajectories of the simulation QSM) and (right:
Expected Value of the trajectories)

the value of τ = 0.1 and τ = 0.001, respectively. As can be seen, the influence of the
stochastic variables is greater in the velocity ẏ and yaw angle ψ.

Table 5.13 – Average computation time in IpOpt per iteration (seconds) required
for the solution of case 3.

α IA CPU time OA CPU time

0.8
τ = 1 0.489 τ = 0.1 0.506
τ = 0.5 0.499 τ = 0.01 0.514
τ = 0.1 0.480 τ = 0.001 0.511

0.9
τ = 1 0.492 τ = 0.1 0.469
τ = 0.5 0.497 τ = 0.01 0.496
τ = 0.1 0.494 τ = 0.001 0.492

0.95
τ = 1 0.473 τ = 0.1 0.493
τ = 0.5 0.499 τ = 0.01 0.503
τ = 0.1 0.520 τ = 0.001 0.508
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Figure 5.37 – Simulation results for the case 3: Trajectory in the X-Y plane for
obstacle avoidance (up: IA τ = 0.1)and (down:OA τ = 0.001) with
α = 0.80.(left:Ns Trajectories of the simulation QSM) and (right:
Expected Value of the trajectories)

Table 5.14 – Average computation time in NLP function evaluations per iteration
(seconds) required for the solution of case 3.

α IA CPU time OA CPU time

0.8
τ = 1 6.967 τ = 0.1 7.156
τ = 0.5 6.869 τ = 0.01 7.053
τ = 0.1 6.489 τ = 0.001 7.129

0.9
τ = 1 7.142 τ = 0.1 6.909
τ = 0.5 7.149 τ = 0.01 7.063
τ = 0.1 6.874 τ = 0.001 7.215

0.95
τ = 1 7.103 τ = 0.1 7.154
τ = 0.5 7.104 τ = 0.01 7.460
τ = 0.1 7.020 τ = 0.001 7.813
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Figure 5.38 – Simulation results for the case 3: Optimal control inputs for the
obstacle avoidance (left: Inner Approximation τ = 0.1)and (right:
Outer Approximation τ = 0.001) with α = 0.95

Moreover, as can be seen (Figure 5.41) , as τ decreases, the optimal value of the objective
function tends to be the same for both approaches. Table 5.13 and 5.14 ilustrate the CPU
times in both approach where the average time reported in IA and OA are significant
respect to the deterministic optimization 5.12.
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Figure 5.39 – Simulation results for the case 3: Optimal states for the obstacle
avoidance using IA (τ = 0.1) with α = 0.95. (left: Ns trajectories of
the simulation QSM) and (right: expected value of the trajectories)
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Figure 5.40 – Simulation results for the case 3: Optimal states for the obstacle
avoidance using OA (τ = 0.001) with α = 0.95. (left: Ns trajec-
tories of the simulation QSM) and (right: expected value of the
trajectories)
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Figure 5.41 – Simulation results for the case 3: Optimal value of the objective
function for different values of α (left: Inner Approximation) and
(right: Outer Approximation). From top to bottom: α = 0.8,
α = 0.9, α = 0.95
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Chapter 6

Conclusions and Future Work

6.1 Conclusions and Future Work

The work presented in this thesis is focused on the implementations of algorithms for
AV considering uncertainties. The uncertainties arise due to the error model equation,
measurement error or external disturbance. To solve a CCOPT two approaches (IA and
OA) proposed in [33] were studied and formulated. This approximation method uses a
parametric function that allows relaxing the CCOPT into NLP. As a result, it can be
solved by available solver based on IPM or ASM.
The implementations are based on IpOpt with interface C++ and the computation of
the Gradient and Jacobian are achieved by using CASADI. Three case studies with
stochastic vehicle model are presented to test the performance of the algorithm proposed
with 10 000 samples generated by QSM. Using DMPC the deterministic optimization
lead to about 41.8%, 41% and 71% of violations of the constraint for the case 1, 2 and
3, respectively. Therefore, the deterministic optimization cannot be used due to high
level of failure.
The simulation using SMPC are tested for IA and OA, in which the set of feasibility for
OA is greater than IA. As a result, the objective function (IA) is bigger that OA.As
τ decreases, the optimal value of the objective function tends to be the same for both
approaches. Moreover, different levels of probability are considered. As can be seen in
the results, when the probability is increased the objective function and computation
time required also increase.
For the cases of OA,it has been possible to simulate with a τ closer to zero. Therefore,
it is closer to the feasibility of the real problem. However, for the case of IA it has
been possible to simulate up to a value of τ = 0.1. As a result, the feasibility of the
real problem is not very close and this is reflected in the feasible trajectories obtained.
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6 Conclusions and Future Work

Finally, the obtained computational time in stochastic optimization is significant in
comparison to the time obtained in deterministic optimization.

6.2 Future Work

As mentioned above, the results in IA can be improved if it is simulated with a tau
closer to zero, so a solver with more precision than IpOpt is required. Respect to the
computation time obtained, parallel solver for real time application should be considered
to reduce the burden computation. On other hand, longitudinal control should be
considered with nonlinear tire longitudinal models for a better yaw stabilization, this
requires the power train model.
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