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Introduction

Rotating machines are capable of transmitting radial movement through a shaft,

but as the shaft is longer emits transmission own small axial oscillations of the force

generated by the axle and the load. Faced with this problem, that mean the need

to set a bearing to serve as support axial forces and allow to adjust the motion

transmission.

Thus, the complexity of movement transmission (high frequency and high loads)

and the search for greater e�ciency, the development of the bearings are to be fully

mechanical but this produces much loses for heat by friction, then it becoming mag-

netic bearing but passive and produces a fail control when it try to move loads

with highest frequency to rotate. Finally, active magnetic bearing system (AMBs)

approach, where a feedback control is needed to provide an optimal response and

minimize the error caused by the o�set in a transverse plane at the point of load

application. This latter is not applied yet and its needed development.

Active Magnetic bearings, however, also have some disadvantages such as its in-

herent instability, its non-linear nature and it being less damped than conventional

bearings. This means that whenever must include a controller to stabilize the shaft,

that obtaining a system following a given speci�cation can be complicated, depend-

ing on the deemed speci�c application and the design itself mechanic should be

taken into account to achieve accurate systems and they are so di�cult to have a

real modelling, that is necessary try to modelling and identifying the system at the

same time.

On the other hand, there are several patents of complete sets of active magnetic

bearings which are partially shared by maintaining a lot of �rms own policies where

they developed. Also in the domestic industry would be develop the same high en-

ergy, environmental impact on a variety of machines that transmit power from the

transmission shaft.

This would impact on di�erent processes or systems where equipment such as com-

pressors, pumps, belts, gears, and all requiring a radial transmission power required.

The better features of active magnetic bearing are appropriate for high-speed ma-
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Introduction

chine tool that is a growing industry in the country.

Also, places to hard reach such as space shuttles, where they used in energy storage

systems, and other applications where it is important also the absence of lubrication,

allowing its use in environments where conventional bearings not they could be used

as biomedical applications and new reactor technologies nuclear.

In this thesis the algorithms and strategies for active magnetic bearing should be

analysed, implemented and simulated in Matlab as well as experimentally tested in

the real-time computation system for a prototype of active magnetic bearing.

Develop a general method and algorithm identi�cation for active magnetic bearings

prototype and get real system parameters that allow generate the equation of state

of the system to control its further development.

The speci�c objectives in this Thesis are:

Develop a data acquisition system for the AMBs.

Analyse the mathematical model of the system from the real system.

Conduct experiments of a physical model for data collection.

Develop an identi�cation algorithm for the parameters of the real AMBs.

Validate system developed by testing the prototype.

2



Chapter 1

State of the art

Will be explain everything concerning what there are in industry also by mathe-

matical equations as general explanations concerning identi�cations methodologies

to get parameters of AMBs.

1.1 Development and description

The rotary machine is a machine capable of transmitting radial movement through

a shaft, but while the shaft is longer emits more transmission axial oscillations of

the torque generated by the axle and the load. Faced with this problem you need to

set a bearing to serve as support to axial forces and allow to adjust the transmission

of motion. Also the mechanical bearings allow transmitting motion, but produce

losses due to friction generated.[Bar]

Also called sliding bearings are formed in two parts, which is shown in Figure 1.1,

one of the major cases of sliding bearings use, wear on the contact surfaces limited

lifespan. The generation of the lubricant �lm, that separating a complete lubri-

cation, requires an additional e�ort to raise the pressure, and is used only in large

machines for large plain bearings. Slip resistance causes the conversion of kinetic en-

ergy into heat, which �ows into the parts support bearing shell. We must distinguish

between simple bearings (lubricated or grease lubricated), hydrodynamic bearings

and hydrostatic bearings. Slip resistance which are dry friction, mixed friction or

liquid friction.[Bar]

Faced with this problem arose the idea of producing zero friction with conventional

bearings with passive magnetic bearings, that is only produced constant repulsion

forces to cushion and stabilize the axial oscillations which are replaced. These pas-

sive magnetic bearings have great potential and its development is still recent, solve

many problems of friction but it turning point came in use, because they can not

control stability when the motor rotates at high speed and contrary to its use gen-

erates greater oscillations generated due repulsion.[Jin]

3



CHAPTER 1. State of the art

Figure 1.1: Sliding Bearing

By author:[Bar]

Therefore arose a new current for bearing system, Active magnetic bearing (AMB)

systems, those have recently attracted much attention in the rotating machinery

industry due to their advantages over traditional bearings such as �uid �lm and

rolling element bearings.

The AMB control system must provide robust performance over a wide range of

machine operating conditions and over the machine lifetime in order to make this

technology commercially viable. An accurate plant model for AMB systems is es-

sential for the aggressive design of control systems.[Young]

AMB uses electromagnetic force to suspend the rotor engine and have several ad-

vantages over conventional hydrostatic bearing mechanisms.[Noshad]

This system has several advantages such as: zero friction, e�cient operation at ex-

treme high speeds, so it is ideal for protecting the environment as it requires no

lubrication, can operate at high temperatures, heavy loads and high humidity in the

middle.[Noshad]

In this thesis, we propose three approaches to obtain accurate AMB plant models

for the purpose of control design: physical modelling and system identi�cation. The

former derives a model based upon the underlying physical principles. The other

uses input - output data without explicitly resorting to physical principles. The

latter uses each of one combined for a better answer.

For each problem, a brief summary of the theoretical derivation and assumptions is

given. Experimental results based on data collected from an AMB test facility at

one prototype.

4



CHAPTER 1. State of the art

1.2 Modelling and System Identi�cation

The most developed research goes to a conception of identi�cation based on a pre

modelling system and a subsequent identi�cation to compare the ideal values of the

model with the actual response of the system. This concept has basically 2 types of

methods of identi�cation systems called open loop and closed loop.[Noshad]

Most literature is developed in open systems Identi�cation systems, among which

are methods of prediction error (PEM), variable instrumentation methods (IVM),

and methods of the output error (OE) loop. These methods can be used to identify

unstable open loop systems AMBS.[Shilei]

However, these techniques can fail to �nd the global optimum if the search space is

di�erentiable or not linear in its parameters.[Noshad]

Recently, other methods have attracted the attention of many researchers who are

canonical variables analysis (CVA), multivariate outputs error state space (MoESP)

sub space and state space system identi�cation (N4SID). All these methods have

satisfactory answers in MIMO systems, but their e�ectiveness in identifying open-

loop unstable AMBS needs to be further investigated.[Noshad]

In recent years, techniques of arti�cial intelligence (AI) is a suitable development

for the identi�cation of non-linear open-loop unstable plant, one of the most robust

techniques are genetic algorithms (GA).[Noshad]

One option is to identify the system to perform a pre-modelling system to meet

the physical parameters, so that all models are governed under the same physical

principles and have a similar resolution.

Continuously it explain the most studied physical models and their respective math-

ematical modelling based on its analysis.

1.3 The attractive-type magnetic bearings used in the United Technolo-

gies Research Centre (UTRC).

State-space system identi�cation

A state-space model for discrete-time lumped systems is considered by the author

[Young], the steady state-space function is given by the equation 1.1 and equation

1.2

where xk is the state of the linear system at time k, uk is the known input to the lin-

ear system (current in the coils of the inductor), yk is the observed output response

measured o�set from the central axis in the engine, wk is the unknown disturbance

and vk is the additive measurement noise by the sensor. wk and vk are assumed

to be stationary, ergodic white random processes, with zero mean and covariance

matrix.

5



CHAPTER 1. State of the art

Xk+1 = Axk +Buk +Wk (1.1)

Yk = Cxk +Duk + Vk (1.2)

E

{[
wi

vi

][
wj

vj

]T}
=

[
Q S

ST R

]
δi,j (1.3)

The objective of the equation 1.3 is to estimate the system matrices A, B, C, and

D from input/output data sequences uk and yk, where δi, j denotes the Kronecker

delta. Respectively; however, since the states are not directly observed, the system

matrices are identi�able only to within an arbitrary non-singular state transforma-

tion. The input is assumed to be persistently exciting. [Young]

Physical modelling

The physics-based model of the AMB system at the UTRC. Fig. 1.2 shows the

UTRC test facility with two radial magnetic bearings and one axial magnetic bear-

ing. Each radial bearing has two active axes of control, the x and y axes, while the

axial bearing has only one active axis, the z axis, which is also the spin axis of the

facility. The axial dynamics are assumed to be decoupled from the radial dynamics

which was proposed by authors[Young]. The radial dynamics therefore constitute a

four input � four output multi-input multi-output plant with motion in the x�z and

the y�z planes.

Figure 1.2: The UTRC AMB test facility

By author:[Young]

Rotor Modelling

A UTRC-proprietary rotor dynamics code was used to model the rotor dynamics

6
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that shows in the �gure 1.3. This code uses a hybrid formulation of the Finite Ele-

ment Method and the Transfer Matrix method such as author says he developed by

[Young] [Childs]. It can be seen that the operating speed of the facility of around

15000 rpm is above the rst bending critical of the facility.

Using the modal information generated by the above code, a linear, state-space

model of the free�free rotor was developed. Details of this technique can be found in

[Young] [Lee-Yoon]. The rigid body modes and the rst three bending modes are used

to construct the state-space model. Modal damping is used to model the structural

damping and a value of 1 % was chosen arbitrarily.

The linear state-space model obtained is gyroscopically coupled at a given running

speed and is therefore parametrically dependent upon the running speed of the ro-

tor. However, as mentioned before, a non-rotating model is used. As a result, the

dynamics in the x�z and y�z.

Figure 1.3: Rotor model

By author:[Young]

Magnetic Bearing Modelling

The radial magnetic bearing was designed and built at the UTRC by author [Young].

The physical equations governing the system of active magnetic bearings are de-

scribed below in equation 1.4:

F = kxx+ ki
a

s+ a
ic (1.4)

where F is the force, x is the displacement of the rotor collocated with the actuator,

ic is the control current, and a is determined by the eddy current roll-o� character-

istics of the actuator. The coe�cient kx is called the open-loop gain of the actuator

and is negative. The coe�cient ki is called the current gain and is positive. These

coe�cients are assumed to be constant, although they are functions of x and ic for

7
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large values of x and ic. The coe�cients and the eddy current pole a were deter-

mined experimentally by author [Young][Colby].

Power ampli�er modelling

This model was designed and built at the UTRC by author [Young].The power

ampli�er is a transconductance type (voltage to current). Although this is a non

linear device, it can be well approximated by a linear transfer function, given by the

equation 1.5 [Young]: In which L is the inductance and R is the resistance of the

magnetic bearing coil. The unknown constant K is estimated by determining the

pole of the transfer function using Sine Sweep tests. This model was validated by a

comparison with simulation results using non linear model.

Iact
Vsp

=
(K/L)

(s+ [(R +KH)/L])
(1.5)

Sensor modelling

The displacement sensors are eddy-current-type proximity probes of KAMAN In-

strument cooperation, two sensors per axis are used in a di�erential mode to com-

pensate for temperature variations. These sensors are modelled using low-pass �lters

based on data supplied by the vendor.[Young] Using two or three sensors and ap-

plying Kalman �lters can better estimate the position in the axes x and y.

Plant model

The open-loop plant model is obtained as a cascade of the sub-blocks shown in Fig-

ure 1.3. All the sub-blocks are stable except for the cascade of the actuator and the

rotor model. This is shown in Figure 1.4. The open-loop gain kx of the actuator

model appears as a feedback loop around the rotor structural model and causes it

to be unstable. This is analogous to a mass suspended on a negative spring.

The unstable eigenvalues correspond to the rigid body modes of the rotor. The

one-plane (x or y) model will have two unstable rigid body modes.

System identi�cation applications to AMB systems

In this section, a subspace-based state-space system identi�cation technique is ap-

plied to the UTRC test facility to identify a black-box model based on experimental

data. Issues such as input design, model order selection, and cross-validation are

discussed,since the �nal success of a system identi�cation technique depends heavily

upon them. Various aspects of the identi�ed model are compared with those of the

8
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Figure 1.4: The AMBs plant model

By author:[Young]

physics-based model obtained in the previous section.

1.4 AMBs using frequency response data by RMITU.

Magnetic bearing system modelling

This model has presented an identi�cation approach based on subspace methods

with an adopted Laguerre �lter network that produced a continuous time transfer

function model directly from the frequency response data [Mohd]. This work is ac-

tually the �rst attempt to implement a subspace method in the novel application of

a magnetic bearing systems. Previews based on the early simulation results show

that the state-space model could identify the system successfully. The �gure 1.5

shows the magnetic bearing model produced by the RMIT University.

The shaft displacements are measured at four locations. The air-gap clearance in the

MB actuators is 350 um, leading to a range of [-350,350] um for these displacements.

These displacements are measured by using four proximity sensors from KAMAN

Instrument Cooperation, whose gains are adjusted to be 4000 V/m.

In addition, there are four pairs of coils in the two bearing actuators along the four

radial directions xL, yL, xR, and yR, which are driven by four power ampli�ers

whose static gains are adjusted to be -0.2 A/V.

9
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Figure 1.5: Active Magnetic Bearing model

By author:[Mohd]

The equation 1.6 by the author [Mohd] represents the force in axe x, after an approx-

imate linearised, where the force displacement factor kx, and force current factor ki

around the equilibrium point (x = 0; i = 0) are then calculated to be kx = 150000

N/m and ki = 61 N/A, respectively.

Fx = kxx+ kiix (1.6)

Another important issue in this work needing to be addressed in identi�cation of the

MB system are the rotor modes (rigid or �exible). Understanding the modes is use-

ful in judging if an identi�ed model is physically reasonable. A detailed discussion

of the rigid and �exible modes together with other system dynamics can be found

by authors [Mohd][Melbourne].

Continuous Time Subspace Identi�cation Method Using frequency Re-

sponse Data

This work examines the subspace continuous time system identi�cation method us-

ing a network by Laguerre [Haver], in particularly with respect to the choice of the

scaling factor and the number of terms.

This algorithm is applied to the magnetic bearing systems and for completeness, the

subspace identi�cation algorithm is also introduced here.

Consider the state-space models of the continuous-time system in the Laplace do-

main such as the equation 1.7

10
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sX(s) = AX(s) +BU(s)

Y(s) = CX(s) +DU(s)

(1.7)

If the model is identi�ed directly using s = jw, the identi�cation problem becomes

ill-conditioned because the condition numbers of the data matrices employed in the

identi�cation algorithm increase drastically as the system order increases. To over-

come this problem, the w operator corresponds to the all-pass Laguerre �lter is

introduced as follows that shows in equation 1.8 by the author [Mohd].

Where parameter p>0 and it was estimated with used a mean square error (MSE)

function as a guide for selection the optimal value.

w(jw) =
jw − p
jw + p

(1.8)

1.5 Novel Conical AMB with claw structure

A novel claw active magnetic bearing (CAMB) is proposed in this work by the au-

thor Shilei Xu [Shilei]. Compared with traditional magnetic bearings, this bearing

substantially has the same radial size as the rotor diameter since its stator core and

coils are both distributed in the axial space. This magnetic bearing has relatively

small radial construction size, so it is suitable for use in the case when radial space

is limited, such as in small machine tool spindles, submersible motors, and so on.

First, this paper introduces the CAMB structure and principle, and then deduces the

analytical formulas for calculating the magnetic force of this bearing using magnetic

circuit method and virtual displacement principle. Finally, basic magnetic force

characteristics of the designed bearing are analysed by 3D �nite element method

(3D FEM).

Structure and working principle

The CAMB consists of two stator components and a rotor component as show in

�gure 1.6, and the rotor is suspended in the air by two claw conical stators. The

stator core has a structure of claw, which is composed of ring-shaped stator yoke

and eight outstretched stator teeth. Each stator tooth is wound with a coil. All the

eight stator teeth have conical surface on their ends. The stator core is made by

ferromagnetic material DT4.

The adjacent magnetic poles have opposite polarity and their coils are connected in

series, which constitute a magnetic pole pair.

Therefore, each stator is composed of four pairs of magnetic poles, which form four

11
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Figure 1.6: Con�guration and structure of the CAMB

By author:[Shilei]

�ux loops as show by the author in Fig. 1.7.

Figure 1.7: Con�guration of magnetic poles

By author:[Shilei]

Analysis of magnetic force

In order to conduct the magnetic force analysis in general condition, the force of one

magnetic pole pair acting on the rotor is analysed �rst and also takes the magnetic

pole pair as show in Figure 1.8

It having a special con�guration must analyse the electromotive force by equation

12
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Figure 1.8: Radial magnetic force

By author:[Shilei]

1.9, where fm is the magnetic force, u0 is the air permeability, n the number of turns

of the winding, current i, A is the area of work of each coil, and d air gap.

fm =
1B2A

2u0
=

1µ0η
2i2A

2δ2
=

1

2
k(
i

δ
)2 (1.9)

Likewise, coil current of the CAMB can be controlled by di�erential driving mode

[Jeong], the general principle is as follows: when controlling the rotor displacement

in X or Y directions, two pairs of poles in opposite position of a stator are controlled

by di�erential driving mode, two pairs of poles L1 and L3 are controlled by di�er-

ential driving mode. Similarly, L2 and L4, R1 and R3, R2 and R4 are all based on

this driving mode, Figure 1.9 shows the schematic illustration of this driving mode.

1.6 Model of system Identi�cation

The �eld of system identi�cation uses statistical methods to build mathematical

models of dynamical systems from measured data according to the author [Rodriguez].

System identi�cation also includes the optimal design of experiments for e�ciently

generating informative data for �tting such models as well as model reduction.

All systems identi�cation process are a sequence of steps for optimum choice. Like-

wise, there are various models of processes which are listed below. [Rodriguez]

Most of the systems include noise in their modelling and that describing what the

di�erence among them is.

13
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Figure 1.9: Schematic diagram of the di�erential driving mode

By author:[Shilei]

Box-Jenkins model identi�cation

In time series analysis, the Box�Jenkins method applies autoregressive moving av-

erage ARMA or ARIMA models to �nd the best �t of a time-series model to past

values of a time series as shown in �gure 1.10 by the author [Rodriguez].

The notation ARMA (p, q) refers to the model with p autoregressive terms and q

moving-average terms. This model contains the AR (p) and MA (q) models, this

development shown in the equation 1.10.

Where ϑ and θ are the parameters of the model, ε is white noise, c a constant and

Xt a series of data.

Xt = c+ εt +

p∑
i=1

ϑiXt−i +

q∑
i=1

θiεt−i (1.10)

ARMAX model

Autoregressive moving average model with exogenous inputs model (ARMAX) (p,

q, b) refers to the model with p autoregressive terms, q moving average terms and

b exogenous inputs terms. This model contains the AR (p) and MA (q) models and

a linear combination of the last b terms of a known and external time series dt, this

is more completely than Box-Jenkins as shown in equation 1.11.

14
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Figure 1.10: Box-Jenkins model

By author:[Rodriguez]

Where in comparison with the ARMA model, this includes n1, ..., nb are the param-

eters of the exogenous input dt as shown by the author [Arafet].

Xt = εt +

p∑
i=1

ϑiXt−i +

q∑
i=1

θiεt−i +
b∑
i=0

niδt−i (1.11)

All these models are particular cases of the general structure shown in equation 1.12

evaluated by author [Arafet].

Where e(t) is the �ltered with noise of system, y(t) output signal, u(t−nk) input signal,

A(q) = 1+a1q
−1+ . . . +anaq

−na and B(q) = b1+b2q
−1+ ...+bnbq

−nb+1 polynomial af-

fecting the input u, and C(q) = 1+c1q
−1+...+cncq

−nc, D(q) = 1+d1q
−1+...+dndq

−nd

polynomial a�ecting the white noise.

y(t) =
B(q)

A(q)
u(t− nk) +

C(q)

D(q)
e(t) (1.12)

Arti�cial neural network identi�cation

Arti�cial neural networks (ANNs) provide one method for accurate, set point-dependent

system identi�cation of the system model ad error model.

The radial basis function network (RBFN) is well-suited to system identi�cation

because the network weights are applied linearly on the output side of the network,

reducing the computational requirements for real-time implementation. RBFNs use

localized activation functions, thereby reducing the e�ects of parameter estimation

in one region of the operating space (range of rotor set points) on more distant

regions of that operating space. To demonstrate the bene�ts of intelligent system

identi�cation on robust control, two linear parameter varying (LPV) models were

15



CHAPTER 1. State of the art

identi�ed a 2nd order system model and a 5th order error model. The RBFNs were

trained using a Levenberg-Marquardt variation of back propagation of error, which

try to minimize a quadratic error cost function [Gibson]. J is the error cost function

and it shown in equation 1.13 by author [Gibson].

J =
1

2

∑
t

(y(t)− ŷ(t/w))2 (1.13)

Where y(t) is the approximate response data and haty(t/w) is the acquisition re-

sponse of real data.

The network weights w to minimize a quadratic error cost function and it analysed

by equation 1.14 by author [Gibson].

w(t) = w(t− 1) + utR
−1
t φ(t, w(t− 1))ε(t, w(t− 1))

ε(t, w) = y(t)− ŷ(t/w)

Rt = Rt−1 + ut[φ(t, w(t− 1))φT (t, w(t− 1))−Rt−1]

(1.14)

1.7 System identi�cation process

There are several types of models according to the knowledge of physic model, while

more is know, the system improve own identi�cation, so that in such cases the model

gray box, which does not know all the system parameters but used estimated pa-

rameters. Also it could be classi�ed the types of models according to parameter

assignment mode and within these the most complex is optimal non parametric

since you need a frequency response or in�nite impulse, in the case of AMBs is rec-

ommended frequency response by type of system response.[Rajiv]

To develop a model should have the following structure that shown in Figure 1.11

according by the author [Rodriguez].

Data acquisition

Input signals should be simple to handle, amplitude has linear restricted area, try to

maintain range of frequencies (the wider better), continuous exciting period, election

of the sampling period, identi�cation time (the amount of data required).

The experiments should reveal all the dynamics of the system and identi�cation

should be �rst developed in open loop then in closed loop.

Shaping data

Continuous component removal, then �ltering of high frequency disturbances, elim-

inate low frequency disturbances, eliminate erroneous data, scale the variables and

16
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Identi�cation of delays according with the author [Rodriguez].

Choose model structure

Types of models according to their knowledge about physics such as white box

(Based on laws of physics), black box (Only relevant external dynamic function),

and gray box (There are constants and parameters to be estimated).

Model types according to parameter assignment mode such as parametric models,

which are speci�ed using a limited set of parameters. Or non parametric models,

that can not be represented by a �nite number of parameters (Frequency response,

In�nite Impulse) [Rodriguez].

Set model

Non parametric identi�cation techniques: Analysis of transient response (impulse,

step), techniques of frequency (Fourier spectral analysis), analysis of correlation

(Periodic signals, stochastic), techniques for processes with unknown structure, and

analysis complicated.

On the other hand, parametric identi�cation techniques: Estimation Parameters

(Continuous or discrete, prediction error), algorithms Least Squares and maximum

likelihood estimator, requires know the structure of the model, and uses a function

of the error.Better if there is a linear relationship between the error and parameters.

Validate structure

Lately, therefore it is necessary validate a new model of replies qualitative, follow-

ing a sequence: Checking data with experimental testing, statistical test, sensitivity

analysis, capacity prediction model, distortion parameter and accuracy.

Finally to validate the model redesign a controller periodically based on model and

must be based on rules and heuristics that is needed.[Rodriguez]
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Figure 1.11: System identi�cation process structure

By author:[Rodriguez]
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Chapter 2

Active Magnetic Bearing system

Figure 2.1: Prototype of AMB

Inside of prototypes for analyse a system of Active Magnetic Bearing (AMB), it

must be consider quality of sensors, quality of mechanical and electrical equipment,

therefore, in the world much institutes, universities and companies had developed

di�erent models of AMB, most importance were mentioned in chapter 1.

Likewise to develop this thesis, the thinking of prototype was developed by Alan

Calderón and conditioned by own author of this thesis, the Figure 2.1 shows the

prototype that will serve as a test prototype.

According to this prototype will take modelling assumptions to prove the system

identifying algorithm.
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CHAPTER 2. Active Magnetic Bearing system

2.1 Physical parameters identi�cation

Physical parameters identi�cation is important to combine a model of real system

identi�cation as gray box, which is able to develop a transfer function using a pre-

modelling and a complex equation obtained with an algorithm of system identi�ca-

tion.

2.1.1 Mechanical parameters

Active magnetic bearing has two most important mechanical properties which are

sti�ness and damping. The Figure 2.2 shown a one-axis mechanical system and its

block chart of response system.

Figure 2.2: Single degree of freedom bearing model

By author:[Ki-Chang]

The motion dynamic equation of a simple mass is governed by the equation 2.1 by

author [Ki-Chang]. A mass m is suspended by a spring and damper as shown in

Figure 2.2. In steady-state condition, the length of the spring is xs+ x. The spring

generates a force Kbx, which is proportional to the spring displacement x. Also

the damper generates a damping force Cbẋ which is proportional to the speed of

displacement of x. An external force Fext is also applied to the mass.

Where Cb and Kb representing the sti�ness and damping coe�cients of the bearing

and m representing the mass of the rotor.

fext = mẍ+ Cbẋ+Kbx (2.1)

Subsequently the transfer function that has a relation between the displacement x

and external force F is shown by the equation 2.2. It is just mechanical because it
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does not have in�uence by electrical current yet.

Where X(s) is the displacement occur by unbalanced load of a center reference point.

XS

Fext
=

1

ms2 + Cbs+Kb

(2.2)

2.1.2 Electrical parameters

The system of active magnetic bearing is controlled by an external force produced

for an electrical sub-system, it has a simple con�guration with a resistor and an

inductance load that shown in Figure 2.3

Figure 2.3: RL circuit to represent electromagnetic coil

Using laws of Kirchho� is obtained the equation 2.3 and using Laplace transform it

obtained equation 2.4 that related an electrical current with a voltage signal.

V = iR + L
di

dt
(2.3)

I(S)
V(S)

=
1

(R + Ls)
(2.4)

First step to relate electromagnetic force with electrical current is create a magnetic

force using a magnetic �eld, law of Ampere describes a magnetic �eld caused by a

�ow current in closed circuit. This law is shown by equation 2.5.∮
H.dl = I (2.5)

Where H is the magnetic �eld, is di�erential length and I is �ow electrical cur-

rent, then is possible relate with magnetic �ux density with an equation 2.6. An

important connection with magnetic force is using the law of Lorentz that shown in
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equation 2.7.

B = µ0H (2.6)

fm =
1B2A

2u0
=

1µ0η
2i2A

2δ2
=

1K

2
(
i

δ
)2 (2.7)

Where 0 = 4.10−7H/m is permeability, H is air gap magnetic �eld strength, B is the

magnetic �ux density, n is the number of turns, A is work area and δ is the distance

of air gap.

With equation 2.2, 2.4 and 2.7 is possible to obtain the electrical and mechanical

parameters of the system. For electrical parameters is necessary to use an open loop

control with equation 2.4 and compare the parameters with the transfer function.

While it necessary to use a close loop and a preview study of behaviour the relation

between electrical current and unbalance position. So the �gure 2.4 shown the block

diagram. Where TF (1)a is related with equation 2.4, TF (1)b is related the current

produced by an unbalanced position of the rotor, and TF (1)c is related position the

shaft of the rotor produced by the add between current force of unbalanced displace-

ment and the current force of the control by electromagnetic coil.

Figure 2.4: Block chart to identify parameters

By author:[Calderón]

The parameters of each transfer function is developed below with equations 2.8, 2.9,

and 2.10.

TF (1)a =
Ia(s)

V (s)
=

1

R + Ls
(2.8)

TF (1)b =
Ib(s)

X(s)
=

Kb

s+ b
(2.9)
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TF (1)c =
X(s)

Ic(s)
=

Kc

s+ c
(2.10)

Analysing the block chart it is doable to obtain the transfer function without con-

trol, thus, it is like a simple close loop control system and transfer function is shown

by equation 2.11.

TFeq =
TF (1)cTF (1)b

1− TF (1)cTF (1)b
=

KcKb

(s+c)(s+b)

1− KcKb

(s+c)(s+b)

=
KbKc

s2 + (b+ c)s+ (bc−KbKc)
(2.11)

Where the negative sign is because the feedback is positive and the equation solution

is shown in equation 2.12

0 = s2 + (b+ c)s+ (bc−KbKc) (2.12)

By mass, spring, damping model is shown in equation 2.13.

Then by electromechanical equation is shown in equation 2.14. Using equation 2.13

and 2.14 it is possible to obtain the equation 2.15.

Where fw is an Imbalance consideration shown in Figure 2.5, and m̂ is the imbalance

mass, e is the eccentricity of imbalance mass, θ is the angular position of imbalance

mass. In equation 2.15 is not consider the force fw cause is represented as an exter-

nal perturbation of a system.

F = mX(s)s2 = −CX(s)s−KX(s) (2.13)

F = kiI(s)− kxX(s) + fw

fw = m̂eΩ2cos(Ωt+ θ)
(2.14)

X(s)

I(s)
=

1
C
−Ki

s+ Kx+K
−Ki

(2.15)

Then, compare with transfer function of equation 2.10, it obtain the physical pa-

rameters of system, after to stimulate the system.

The prototype designed is a little model in which is tested control algorithms in

order to achieve the control position of the rotor, by Active Magnetic Bearing. This

prototype is integrated by a DC motor, a rod is �xed to its rotor, and then the

rotational movement is not transmitted uniformly. Hence it is necessary to measure

the changes of the rotor position that was achieved by Infra-red sensors.
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Figure 2.5: Imbalance consideration of AMBs

By author:[Guwahati]
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Chapter 3

Algorithm to identify physical

parameters

3.1 General system identi�cation of AMB

AMB System
prototypeVo Ik

Yk Algorithm
identification by

Neural 
Networking by

off-line

Mechanical and 
Electrical parameters

Physical
equations

of AMB

Controller
PID

Modeling system
of AMB

AMB System
prototype

Vi

H

y(t)

Algorithm
identification

by LMS by
on-line

e(t)+

-

+
-

Error > value

Actualize Mechanical and 
Electrical parameters

NO

YES

State space
system or

TF systems

-+

Activate flag

First run 
or

flag=1?

YES

NO

Figure 3.1: Diagram identi�cation of AMB

After to develop di�erent models structures to identify a system model and ob-

tain the parameters, it choose the best performance option, a conjugation between

neural networking, Narmax and LMS.

The structure shown in �gure 3.1 allow obtain a good and nearly real parameters

from the real system by o�-line, and actualize fastly parameters when the system

is run by on-line. In chapter 5 this blocks are develop inside one by one and shown

the experimental results.
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As a summary the AMB system run �rst by o�-line and an algorithm based neural

networking allows obtain all parameters of prototype, then when prototype is work-

ing, it could change a little these parameters because the environment and work

conditions produce disturbances and electrical-mechanical parameters also change

due physic conditions such as temperature, pressure, humidity, heating, etc.

In the �gure 3.1 Vo represent the rich input signal to identifying the most exactly

parameters, output signal Yk position unbalance sensor and Ik current signal. Then

Vi is the input signal when the prototype works and haty(t) the unbalance position

response of modelling system and y(t) the real unbalance position, these last signal

are for calculating the error system, if the error is higher than an acceptable value,

actualize the system parameters. Finally the block chart H represent a proportion

to communicate a signal response with a input voltage signal.

3.2 System methodologies

The model of non linear systems of di�erential equations is a natural representation

of sampling of continuous non linear systems; provides a valid representation for a

wide class of linear systems and has advantages over the series of functions.[Sedano].

From a practical standpoint, there is the need to approximate the behaviour of the

inputs and outputs to simple models, a�ne and polynomial models are suitable out-

put.

ARMAX

The general model is shown in equation 3.1, where F is a non linear function. The

model of equation 3.2 it is known as ARMAX, for its resemblance to the linear

model.

An invariant system time and non linear discrete, can be represented by the model

of equation 3.1 in a region close to equilibrium point, under two su�cient conditions:

That the response function of the system is �nitely realizable and that a linearised

model exists, if the system works chosen near the point of balance.

y(k) = F (y(k − 1), ..., y(k − ny), u(k − 1), ..., u(k − nu)) (3.1)

y(k) = a0 +

ny∑
i=1

aiy(k − i) +
nu∑
i=1

biu(k − i) (3.2)

NARMAX

Several nonlinear known models can be identi�ed with the model NARMAX. A�ne

models and rational output arise in meeting the conditions of the response function

of the system with respect to the polynomial function and its limit. Thus the gen-

eral equations must for these models are: rational equation di�erences 3.3, where r
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is the order of the system. And a�ne models, equation 3.4 with a and b are poly-

nomials of �nite degree, where ai, with i = 0, 1, ..., r+1 are �nite degree polynomials.

y(k) =
b(y(k − 1), ..., y(k − r), u(k − 1), ..., u(k − r))
a(y(k − 1), ..., y(k − r), u(k − 1), ..., u(k − r))

(3.3)

y(k) = a0 +

ny∑
i=1

aiy(k − i) +
nu∑
i=1

biu(k − i) +

nY∑
i=1

nu∑
j=1

cijy(k − i)u(k − j) (3.4)

Di�erential equations

The general equation for non linear systems can be represented as the equation 3.5.

Where G(q, θ) shown in equation 3.6, u(t) is input, and H(q, θ) is the polynomial of

equation 3.7 varying the error e(t), with e(t) as a sequence of independent random

variables with zero mean values. Then deriving and integrating the general equation

3.8 is obtained.

We introduce the forward shift operator q by qu(t) = u(t + 1) and the back ward

shift operator q−1u(t) = u(t− 1).

y(t) = G(q, θ)u(t) +H(q, θ)e(t) (3.5)

G(q, θ) =
Bq

Fq
=
b1q
−nk + b2q

−nk−1 + ...+ bnbq
−nk−nb+1

1 + f1q−1 + ...+ fnfq−nf
(3.6)

H(q, θ) =
Cq
Dq

=
1 + c1q

−1 + ...+ cncq
−nc

1 + d1q−1 + ...+ dndq−nd
(3.7)

∫ T

o

φi
∂2

∂t2
udt = φi(T )u(T )− φi(0)u(0)−

∫ T

0

u
∂2

∂t2
φidt (3.8)

General models

All di�erent models begin of a general family of model structures that shown in

equation 3.9.

A(q)y(t) =
B(q)

F (q)
u(t) +

C(q)

D(q)
e(t) (3.9)

Sometimes the dynamics from u to y contains a delay of nk samples, so some leading

coe�cients of B are zero, B describes in equation 3.10, with bnk
6= 0.

B(q) = bnk
q−nk + bnk

+ q−nk−1 + ...+ bnk
+ nb−1q

−nk−nb+1 = q−nkB̄(q) (3.10)
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It may then be a good idea to explicit display this delay by the equation 3.11.

A(q)y(t) = q−nk
B̄(q)

F (q)
u(t) +

C(q)

D(q)
e(t) (3.11)

Here mostly use nk = 1 and replacing U(t) by u(t− nk + 1) so the predictor for 3.9.

ŷ(t|θ) =
D(q)B(q)

C(q)F (q)
u(t) +

[
1− D(q)A(q)

C(q))

]
y(t)) (3.12)

The table 3.1 shown the di�erent structures according the polynomials used in equa-

tion 3.12.

Polynomials Used Name of Model Structure

B FIR (�nite impulse response)
AB ARX
ABC ARMAX
AC ARMA
ABD ARARX
ABCD ARARMAX
BF OE(Output error)
BFCD BJ(Box-Jenkins)

Table 3.1: Polynomial of a model structures

By author:[Ljung]

From which we �nd the derivation for the coe�cients show in equations 3.13, 3.14,

3.15, 3.16, 3.17.

∂ŷ(t|θ)
∂ak

=
−D(q)

C(q)
y(t− k) (3.13)

∂ŷ(t|θ)
∂bk

=
D(q)

C(q)F (q)
u(t− k) (3.14)

∂ŷ(t|θ)
∂ck

=
−D(q)B(q)

C(q)C(q)F (q)
u(t− k) +

D(q)A(q)

C(q)C(q)
y(t− k) =

1

C(q)
ε(t− k, θ) (3.15)

∂ŷ(t|θ)
∂dk

=
B(q)

C(q)F (q)
u(t− k)− A(q)

C(q)
y(t− k) (3.16)

∂ŷ(t|θ)
∂fk

=
−D(q)B(q)

C(q)F (q)F (q)
u(t− k) (3.17)

Arti�cial Neural

Supervised learning then must �nd the vector of parameters , by approximating

the prediction error; based on the proximity measurement, in terms of the error
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criterion mean square, equation 3.18, where the vector of weights will be minimized

θVN(θ, Y ), equation 3.19. Iterative minimization scheme is de�ned in equation 3.20,

where f(t) is the search direction and u(t) is the step size.

VN(θ, Y ) =
1

2N

N∑
i=1

[y(t)− ŷ(t|θ)]T [y(t)− ŷ(t|θ)] (3.18)

θ̂ = argθminVN(θ, Y ) (3.19)

θ(t+ 1) = θ(t) + u(t)f(t) (3.20)

The error in identifying as seen in Figure 3.2 is de�ned as in equation 3.21. The

fuzzy neural modelling discussed in this model is a type of on line Identi�cation,

then we will use the modelling error e(k) to train neural networks.

Where W are unknown weights which can not minimize dynamic modelling u(k).

Controller
(PID)

AMB
System prototype

System
Identification

Error
Identification

 𝑦(𝑡)

 𝑦(𝑡)

𝑦(𝑡)
𝑢(𝑡)𝑦𝑑(𝑡) +

-

+

-

Figure 3.2: Error Identi�cation Diagram

By author:[Heeju]

e(k) = (y(k)− ŷ(k))

y(k)=x(k+1)=WΦ[x(k)]u(k)
(3.21)

Modelling of the non linear plant equation 3.22, the following steepest descent algo-

rithm with a back propagation as shown in �gure 3.3 with ratio of variant learning

time can bounded identi�cation error e(k). Where η is the ratio learning, and Φ is

the activation function.
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AMB
System prototype

System Identification  𝑦(𝑡)

𝑦(𝑡)
𝑢(𝑡)

+

-

Backpropagation of 
Error Training

e(𝑡)

Figure 3.3: Intelligent model error identi�cation using a non-recurrent Radial Basis

Function Network (RBFN)

By author:[Heeju]

W (k + 1) = W (k)ηke(k)ΦT [x(k)] (3.22)

Hybrid system (Neural Networks and NARMAX)

After making the observation x(k + 1), the group of regression and the network

structure must be chosen; for the selection of regression, as a natural extension of

the linear or non linear identi�cation, we relied on linear models. The structures of

the models will be de�ned by three parameters: Φ(t) vector regression, W weight

vector, and n = f(m) function of the neuron. Where W detailed in equation 3.22,

the function of the neuron n can be Sigmoid, Gaussian, Exponential, Linear, etc.;

The regression vector of Φ(k) de�ned below a Narmax model as shown in equation

3.23, and predictor is shown in equation 3.24.

Φ(k) = [y(k − 1)...y(k − na)u(k − nk)...u(k − nb − nk + 1)ε(k − 1)...ε(t− nc)]T

Using recursive algorithms

Φ(k) = [ΦT
1 ε(k − 1)...ε(k − nc)]T (3.23)

ŷ(k|θ) = g(Φ1(k), θ) + (C(q−1)− 1)ε(k) (3.24)
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Chapter 4

Simulation of Identifying parameters

of Active Magnetic Bearing

4.1 Select an approximate model

To derive a basic AMB model, at �rst, any dynamics of the sensor and power am-

pli�er electronics are neglected. In practice, this simpli�cation leads to fairly good

results if the resulting eigenvalue frequencies of the closed-loop system are not too

high, i.e. if the realized bearing sti�ness is in a physically reasonable range. A second

simpli�cation is that the bearing force characteristic, i.e. its dependency on coil cur-

rent, rotor position and other physical quantities, is not derived in detail.[Gerhard]

The mechanical sti�ness of the suspension is equal to the negative derivative of the

suspension force with respect to displacement: k = df/dx. Mathematically, the sign

of the mechanical sti�ness at the operating point (x0, i0,mg) determines the stabil-

ity of this equilibrium position. For an open-loop magnetic bearing, this mechanical

sti�ness is negative.

The most approximate model of current of coil at o�-line is determined with a simple

second degree system, and its possible to obtain the resistance and inductance of

the electrical part. This equation relate voltage and current as shown in equation

2.3

Solving the equation 4.1 provides a fast solution to obtain electrical parameters.

Where H = [yk uk], E(f) is the RMS error, now it minimize the error with iterative

loop to obtain the least value, this is apply LMS.

E(f) =
n∑
k=1

(yk − fu(k))2 = 0

Φ = inv(H ′H)H ′y(t− k)

(4.1)
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For simulated this function its assumption transfer function is shown in equation 4.2

that is close to real parameters but random values and the result after application

LMS is shown in equation 4.3.

A(s)

V (s)
=

550

s+ 860
(4.2)

The �gure 4.1 represent the response of the transfer function of equation 4.2, and

the �gure 4.2 compare between real response and system response identi�ed.

Figure 4.1: Current response of system by equation 4.2

A(s)

V (s)
=

519.8

s+ 812.5
(4.3)

After identifying the electrical parameters o�-line, its possible add a parameter in

the equation 2.3, when it works on-line in closed loop, because as shown in �gure

4.3 and 4.4, and its schematic representation shown in �gure 4.5. The shaft induces

a variation of current by proportional variation of position between shaft and coil.

The variation of distance S0, induces a variation of current and the equation 2.3

becomes in equation 4.4.
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Figure 4.2: Identify current vs. Real current

V = iR + L
d

dt
i+ ki

d

dt
x (4.4)

Using the equation 4.4, it obtained the variation of current represented in equation

4.5.

i̇ =
−ki
L
ẋ− R

L
i+

1

L
V (4.5)

The same way, it solve the equation 2.14, knowing the second law of Newton says

F = mẍ it's possible to obtain the equation 4.6. Where m is the mass.

ẍ =
−kx
m

x+
ki
m
i (4.6)

The real behaviour of the prototype is represented as a space state system, using

the equations 4.5 and 4.6, where the states are x, ẋ and i. The state space system

is represented in equation 4.7. And developed in equation 4.8.

ẋ = Ax+Bu

y=Cx+Du
(4.7)
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Figure 4.3: Test prototype of AMBs, isometric view

shaft

Distance S0

coil

Figure 4.4: Test prototype of AMBs, front view
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Figure 4.5: Schematic representation of AMB.

x =

xẋ
i

 ;A =

 0 1 0
−kx
m

0 ki
m

0 −ki
L

−R
L

 ;B =

0

0
1
L

 ;u = [V ];C =

1

0

1

 ;D = 0; (4.8)

4.2 Identifying parameters

The real system is approximate a no-lineal system as shown in equation 4.9, but the

neural network is a robust system to identify the non-linear models, it helps with a

ideal model with the equation 4.7 using the parameters of the table 4.1.

ẋ = Ax+Bu+G(x, u) (4.9)

Using the parameters of table 4.1 the matrix A and B of the system become as

Parameters Value

mass (m) 0.1 kg
Electrical current sti�ness coe�cient ki -310.08 (N/A)
Displacement coe�cient kx 587.22 (N/m)
Resistance of coil R 1.8 ohm
Inductance L 5.96 e−2 mH

Table 4.1: Parameters of simulation system identi�cation

By author:[Calderón]
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values of equation 4.10.

A =

 0 1 0

−5872.2 0 −3100.8

0 5202.7 −20.97

 ;B =

 0

0

16.78

 ; (4.10)

Then after to learning by neural network it obtained the parameters of the equation

4.11. The parameters have some di�erences, but the total system have a good re-

sponse.

A =

 0 1 0

−6231.1 0 −3279.2

0 5315.7 −18.9

 ;B =

 0

0

16.61

 ; (4.11)

The �gures 4.6 and 4.7 shown the identify position and current using the ideal model

by equation 4.7 to generate a state response, then add a white noise and training

the system to identify the original matrix to continue with the validation.

The input signal must have a large range of frequencies and amplitudes.

Figure 4.6: Identifying unbalance position
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Figure 4.7: Identifying current of system

4.3 Validate model

The validation of the system is using a di�erent kind of input signal to observe the

response system.

The �gure 4.8 shown the minimization error in training system, the current error

descend slower than position because depends more values to identify. Figures 4.9

and 4.10 shown the validation model with a normal voltage input signal.
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Figure 4.8: Error minimization of Ident. system by Neural network

Figure 4.9: Validation model of variation position
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Figure 4.10: Validation model of variation current
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Chapter 5

Experiments of Identifying

parameters of AMBs

5.1 Mechanic prototype

Mechanic prototype of AMBs shown in �gure 5.2 and 5.3 is obtained from the con-

struction plane shown in �gure 5.1. The prototype was designed by Alan Calderón,

also it was improved by Carlos Perea and Danilo Aragón in order to optimize its

data system identi�cation. The �rst prototype shown in the �gure 4.3 works with

Figure 5.1: Construction plane of prototype of AMBs

horizontal shaft and it was di�cult to identify imbalance position because the mass

of the shaft adds a force, so the improved prototype shown in the �gure 5.2 works

vertical position shaft and despise the gravity force of shaft weight. In the bottom

of prototype includes rubber base to damp vibrations.

The rotor shaft was not totally centered that shown in �gure 5.3, but in this thesis
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MAGNETIC 
BEARING

ROTOR

MOUNTING

MOTOR

INFRARED 
SENSOR

Figure 5.2: Prototype of experiment of AMBs, front view

just it identify parameters of a coil and its imbalance allow obtain better response

when the coil is active.

ROTOR

MAGNETICS 
BEARING

Figure 5.3: Prototype of experiment of AMBs, section view

5.2 Electronic circuits

Electronic circuit shown in �gure 5.4 was designed to apply the mechanical prototype

that moves a D.C. motor of 12V, so all circuits was appointed to resist more than

8A, 0.1KW and separated by potential electronic with a photodiode transistor.

The algorithm to identify physical parameters was developed in Matlab and the
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micro controller is as a port between sensor, actuators with the software.

Figure 5.4: Diagram of electronic circuit

The electronic circuits include resistences, transistors and ports to a source that

shown in �gure 5.5. The electronic components include a source (battery of 12V),

microcontroller (arduino Uno), current sensor, infrared sensor that measures the

rotor shaft imbalance, shown in the �gure 5.6.
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Figure 5.5: Electronic circuit

a)Arduino b)Battery

c)Current sensor d)Infrared sensor

Figure 5.6: Electronic components

5.3 Control diagram

The control algorithm to identify parameters was designed in two parts, one to o�-

line by neural networking because is more exact shown in the �gure 5.7 and one

to on-line by LMS recursive algorithm that seems three blocks chart of �rst degree

because is faster to run the algorithm shown in �gure 5.8 and this latest is apply to
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actualize the parameters.

Figure 5.7: Algorithm Identi�cation Diagram by o�-line

In �gure 5.7, o� line controller do not need to work in few time, data acquisition

is possible with a current sensor, infrared sensor to measure imbalance. Then save

data such as a desired position that in this case is 20 mm, input voltage that is 12V

and the values of the sensors.

After, send this parameters to a loop that allow �nd the matrix A and B of the

state space system, using neural networking. The algorithm with neural networking

is robust, so is must not include a �lter after the signal of sensors.

After the parameters from Signal Noise Ratio (SNR) are calculated to evaluate if it

has been satis�ed user requirements, the SNR are calculated as proportion of vari-

ances σ2
signal/σ

2
noise and the noise is represented as AWGN.

Applying �lter allows to get a good signal recognition, but with neural networking

it enough with a good training process, so it is possible delete this requirements.

In �gure 5.8, it is possible to obtain an on line controller as a result of this control

strategies only if response time of the system is bigger enough than computing time.
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START 

Get flag to actualize
parameters

Flag = 1 

Save measured position, voltaje 
and current (k-1, k-2, …, k-10)  

Identify by LMS and actualize
parameters

END 

Filter position by KALMAN

NO

YES

Flag = 0

activate interrupt to 
actualize parameters

Figure 5.8: Algorithm Identi�cation Diagram by on-line

It implies that it is possible to actualize physical parameters while control algorithm

is running, also it necessary run a fast algorithm, the LMS is faster than neural

networking but with a wrong response because needed a clean signal to identify, for

that is applying a Kalman �lter.

5.3.1 Neural Networking

The matrix of state space system is possible to obtain a correct shape, whether

connections have same behaviour with the system, its shown in �gure 5.9.

The equation 5.1 shown the relation between state space system and values of v.

According to the neural networking the equation relates the values of v with the

matrix A and B with equation 4.8, and equation 5.2 shown evolution of weight v,

where J =
∑N

k=1(yk − ȳk)2, η is step size.
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X(1)k+1

X(2)k+1

X(3)k+1

 =

a11 a21 a31

a12 a22 a32

a13 a23 a33


X(1)k

X(2)k

X(3)k

+

b11b12
b13

Uk (5.1)

v = v − η∂J
∂v

(5.2)

Figure 5.9: Neural Networking modi�ed

5.3.2 Kalman Filter

Kalman �lter is an observer recursive algorithm in which the state xk is consid-

ered using actual values. The equation 5.3 shown the state output �ltered ob-

served, where L = SCTR−1 and is possible obtain S with a Riccatti equation

where AS + SAT − SCTR−1CS + WQCT = 0, R = [σn2
1] (covariance of sensor),

Q = [σw2
1](covariance of noise), A = [0], W = [1], and C = [1]. For a good response

R = [1] and Q = [60], this parameters was obtained trying with di�erent values.

The �gure 5.10 shown the noise obtained by the infrared sensor and how it minimize

with a Kalman �lter.

˙̂x = Ax̂+ L(y − Cx̂) (5.3)

Applying this �lter in the signal measures of position it obtained the response as

shown in �gure 5.11.

The �gure 5.12 shows the response of position �ltering with a passive �lter, the

response is like a response with kalman �lter, but in this case the kalman �lter is
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Figure 5.10: Noise �ltered with Kalman �lter

Figure 5.11: Imbalance position of shaft by kalman �lter

more exact and do not consume consider computing time.
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Figure 5.12: Imbalance position of shaft by pasiv �lter

5.4 Identifying real system parameters

5.4.1 Identifying system with LMS

Applying the block chart that shown in �gure 2.3 it is possible to �nd all transfer

functions, all transfer functions are related with the current, after �lter the position

and compare with the input signal, it can observe in the �gure 5.13 the action of

input in the response.

The �gure 5.14 shown the response electrical current with a input voltage, is not

necessary apply a �lter cause it measure a good response

It is possible obtain the block chart TF1a with compare with a �rst degree system

response and the equation 5.4 shown the result after identify.

TF1a =
1

R + Ls
=

653.5

s+ 1204
(5.4)

Then the �gure 5.15 shown the response of a input voltage and comparison between

real current and identify current, it possible observe a delay of 0.02s, it would be

consider for a good response system identi�ed.

Then with a output position signal is possible to obtain the transfers functions TF1b,
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Figure 5.13: Imbalance position with a input voltage

and TF1c, equations 5.5 and 5.6 shown this parameters.

TF1b =
kb
s+ b

=
0.003496

s+ 1.752
(5.5)

TF1c =
kc
s+ c

=
1.049

s+ 0.07209
(5.6)

Relating the equations s2 + (b + c)s + (bc − kbkc) = 0 and ms2 + Cc + K = 0 is

possible obtain the parameters of the table 5.1.

Parameters Value

mass (m) 1 kg
Electrical current sti�ness coe�cient ki -1.913 (N/A)
Displacement coe�cient kx 0.933 (N/m)
Resistance of coil R 1.84 ohm
Inductance L 1.5302 H

Table 5.1: Parameters of simulation system identi�cation by LMS
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Figure 5.14: Electrical current with input voltage

5.4.2 Identifying system with neural networking

The robustness of neural networks to identify the system with added noise data. Fig-

ure 5.16 shows the values of current and voltage scaled, and the �gure 5.17 shows

the current identi�ed.

The �gure 5.18 shows the position estimation by neural networking.

Figure 5.19 shows minimization error response, in 10 iterations the error must sta-

bilize and the total error minimization shown in �gure 5.20 compare the time spend

to identify system (0.25s approx.)

Identifying system allow obtain the matrix A and B that shown in equation 5.7, and

comparison with equation 4.8 is possible obtain the parameters of table 5.2.

A =

 0 1 0

0.562 0 −0.603

0 0.0708 −0.0371

 ;B =

 0

0

0.631

 ; (5.7)

5.5 Validate real system

Validation system is necessary to test the system identi�cation with a rich values of

input data, di�erent frequencies.

The �gure 5.21 shows the validation current estimated.
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Figure 5.15: Electrical current estimation by LMS

Parameters Value

mass (m) 1.85 kg
Electrical current sti�ness coe�cient ki -1.116 (N/A)
Displacement coe�cient kx 1.04 (N/m)
Resistance of coil R 1.89 ohm
Inductance L 1.584 H

Table 5.2: Parameters of simulation system identi�cation by neural networking

The �gure 5.22 shows the validation position with the system identifying of 3 block

charts. This was simulated by Simulink of Matlab, the system works while the

prototype is running, because with a step input signal, the position increases and

when the input signal is 0, the position decreases. The �gure 5.23 shows a good

estimation of position according to a input signal, it has a variation minimum but

is not stabilizing because not exist a controller that stabilize system, just shown the

response with a input voltage signal.

Bode response of the system is shown in �gure 5.24, the system work inside a large

range of frequencies [0-100]Hz.
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Figure 5.16: Scale values of current and voltage

Figure 5.17: Estimate current o�-line by Neural Network
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Figure 5.18: Estimate position o�-line by Neural Network

Figure 5.19: Minimization error of identifying current by Neural Network
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Figure 5.20: Minimization total error of identifying current by Neural Network

Figure 5.21: Validate of current estimation
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Figure 5.22: Validate of position estimation by block charts

Figure 5.23: Validate of position estimation by neural networking
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Figure 5.24: Bode response system
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Chapter 6

Future work

Future works include an industrial prototype, top sensors, and better controller to

verify this assumptions, because the prototype was developed with a limitation,

money and access a market with the best tecnologicall components.

Also it's knowing important how works a motor to design an correct AMB prototype,

the motor just transmit torque forces and radial impulse, for that, a correct mounting

include two bearings and a central mass between of them.

So this bearings support are acting with transversal forces such as weight, inertia,

disturbances in di�erent axial directions. This design must considerate one of these

bearings near rotor of the motor and the own motor must have a robust support.

The �gure 6.1 include an idea of design a good system of AMB, but it must be

developed in a completely electro-mechanical work, it would comprise a better work

thesis in pre-grade program, including electro-magnetic and mechanical �elds and a

good understanding of physic principles.
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Figure 6.1: Future proposal equipment
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Conclusions

Conclusions

This thesis introduced a simple structure of active magnetic bearing, in a verti-

cal position with out gravity forces.

This model allow identify mechanical and electrical parameters to give an idea to

identify industrial equipments.

The time to identify �rst parameters is around 5 seconds including shaping data and

error minimization using neural networking.

Then time to identify and just update parameters is around 1.6 seconds and its pos-

sible include this identi�cation inside the control system, activating with interrupter

�ags, working in parallel.

This prototype works as a experimental model, mechanical construction is simple

and lacks with a central mass.

The error of identifying parameters with neural networking and transfer functions

is around 3%, is a good estimation of response.
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