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presenta:

Mauricio Bustamante Ramı́rez

Asesor:

Dr. Alberto M. Gago Medina

Jurado:

Dr. Francisco A. de Zela Mart́ınez

Dr. Hernán A. Castillo Egoavil

Lima, Mayo 2010



Energy-independent contribution to the flavour
ratios of high-energy astrophysical neutrinos

Mauricio Bustamante Ramı́rez

Propuesto para el Grado de Maǵıster en F́ısica
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Resumen

En esta tesis exploramos la posible ruptura de la simetŕıa CPT en el sector de neutrinos,

a una enerǵıa suficientemente alta, usando para esto el flujo de neutrinos de alta enerǵıa que

se espera que provenga de fuentes astrof́ısicas lejanas como galaxias activas y explosiones de

rayos gamma. La violación de CPT (CPTV) puede afectar las oscilaciones de neutrinos en

dos formas: modificando la longitud de oscilación o la amplitud de la misma. Demostramos

que cuando sólo la longitud de oscilación es afectada, tal y como sucede cuando la CPTV

es introducida a través de una relación de dispersión modificada, los efectos sobre los

flujos de neutrinos de distintos sabores no son visibles. Por lo tanto, con la intención de

modificar también la amplitud de oscilación, violamos CPT a través de la adición de una

contribución, no diagonal e independiente de la enerǵıa, al Hamiltoniano de oscilaciones

estándar, dentro del contexto de la Extensión del Modelo Estándar, y permitimos que esta

contribución se vuelva comparable en magnitud al término estándar, a una escala de 1

PeV. El término de CPTV introduce tres nuevos ángulos de mezcla, dos nuevos autovalores

y tres nuevas fases, todos los cuales tienen valores actualmente desconocidos. Hemos

variado estos parámetros, junto con los parámetros asociados a las oscilaciones estándar,

y explorado las consecuencias para los flujos de sabor. Hemos explorado también la posible

detección en IceCube, y en un detector ficcional más grande, asumiendo diferentes modelos

para el flujo de neutrinos. Nuestros resultados sugieren que, cuando las razones de sabor

en la producción son φ0
e : φ0

µ : φ0
τ = 1 : 2 : 0 ó 0 : 1 : 0, las modificaciones a los flujos

en Tierra son más pronunciadas y más claramente separables de las predicciones de las

oscilaciones estándar. Cuando las razones son 1 : 0 : 0, la separación es menos clara.

Concluimos que, para ciertos valores de los parámetros de CPTV, IceCube podŕıa ser

capaz de detectar desviaciones potencialmente grandes respecto de los valores estándar,

incluso para modelos de flujo tan bajos como el ĺımite Waxman-Bahcall. Una medición

precisa de los parámetros, sin embargo, será dif́ıcil a menos que se utilice un detector

C̆erenkov mucho más voluminoso, o uno de diferente tipo.
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Abstract

We explore the possibility that CPT symmetry is broken in the neutrino sector

at a high enough energy, using for this the high-energy neutrino flux that is expected

to come from distant astrophysical sources such as active galaxies and gamma-ray

bursts. CPT violation (CPTV) can affect neutrino oscillations either by modifying

the oscillation length or its amplitude. We show that when only the oscillation length

is affected, such as when CPTV is introduced through a modified dispersion relation,

the effects on the astrophysical neutrino flavour fluxes are not visible. Hence, in order

to modify also the oscillation amplitude, CPT is instead violated by adding a non-

diagonal energy-independent contribution to the standard, mass-driven, neutrino

oscillation Hamiltonian, within the context of the Standard Model Extension, and

allowing it to become comparable in magnitude to the latter at a scale of 1 PeV.

The CPTV term introduces three new mixing angles, two new eigenvalues and three

new phases, all of which have currently unknown values. We have allowed these new

parameters to vary, together with the ones associated to pure standard oscillations,

and explored the consequences on the flavour fluxes. Detection prospects at the

IceCube neutrino telescope, and in a fictional larger detector, have been studied,

assuming different models for the neutrino flux. Our results suggest that, when

the flavour fluxes at production are in the ratios φ0
e : φ0

µ : φ0
τ = 1 : 2 : 0 or

0 : 1 : 0, the modifications to the flavour fluxes at Earth are larger and more clearly

separable from the standard-oscillations predictions. When the ratios are 1 : 0 : 0,

the separation is less clear. We conclude that, for certain values of the CPTV

parameters, IceCube might be able to detect potentially large deviations from the

standard flavour fluxes, even for flux models as low as the Waxman-Bahcall bound.

Precision measurements of these parameters, however, are unlikely to be made unless

a much larger C̆erenkov detector or a one of a different kind are used.
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Note on units and conventions

Unless otherwise stated, throughout this thesis we use natural units in which

~ = c = 1 ,

and the spacetime metric is defined as

gµν =













+1

−1

−1

−1













.

We have chosen to represent neutrino mass eigenstates using latin indices, and

flavour states using greek indices, i.e.,

mass eigenstates: |νi〉 (i = 1, 2, 3, . . .)

flavour neutrinos: |να〉 (α = e, µ, τ, . . .) .

1



Chapter 1

Introduction

Experiments performed over the last thirty years have established that neutrinos can

change flavour: careful measurements of solar [1–3], atmospheric [4,5], reactor [6] and

accelerator [7,8] neutrinos have established that there is a nonzero probability that

a neutrino created with a certain flavour is detected with a different one after having

propagated for some distance, and that this probability is a periodic function of the

propagated distance, L, and the neutrino energy, E. The standard mechanism of

neutrino flavour change requires neutrinos to be massive and results in a probability

of flavour change that is oscillatory, with oscillation lengths that have a distinct 1/E

dependence (see Section 4.2).

So far, the experiments that have studied neutrino flavour transitions [9] have

been designed to detect neutrinos with energies that range from a few MeV (so-

lar neutrinos) to the TeV scale (atmospheric neutrinos). Notably, data from the

Super-Kamiokande atmospheric neutrino experiment [10] was used to find an en-

ergy dependence of the oscillation probability of En, with n = −0.9 ± 0.4 at 90%

confidence level, thus confirming the dominance of the mass-driven mechanism in

this energy range, and relegating any other potential mechanisms to subdominance.

It is possible, however, that one or more of such subdominant mechanisms become

important at higher energies.

In the present paper, we have explored a possible scenario where there is an

additional oscillation mechanism present which results in an energy-independent

contribution to neutrino oscillations. This mechanism, though subdominant in the

MeV–TeV range, might become dominant at higher energies, where the 1/E de-

pendence of the standard oscillation term might render it comparatively unimpor-

tant: the higher the energy, the stronger the suppression of the standard oscillation

term. The highest-energy flux of neutrinos available is the expected ultra-high-

energy (UHE, with energies at the PeV scale and higher) flux from astrophysical

2



sources (notably, active galaxies; see Section 5.1.1) which are located at distances

in the order of tens to hundreds of Mpc.

We will deferr the detailed treatment of how the energy-independent contribu-

tion is introduced to Chapters 6 and 7, and focus now on the possible mechanisms

that might motivate it. According to the CPT theorem, any Lorentz-invariant local

quantum field theory must be built out of a CPT-conserving Lagrangian. However,

the Standard Model (SM) is known to be valid at energies well below the Planck

scale, mPl ≃ 1019 GeV and, at higher energies, motivated by theories beyond the

SM [11, 12], CPT and Lorentz invariance might be broken. At accessible energies,

the breaking of these symmetries can be described by an effective field theory that

contains the SM. We have explored the possibility that CPT is not an exact symme-

try, but rather that it is broken by the addition of a CPT-odd term to an otherwise

CPT-even Lagrangian. The observation of the non-conservation of CPT would imply

a fundamental revision of the usefulness of local quantum field theories as accurate

descriptions of fundamental interactions. A possible realisation of a CPT-violating

(CPTV) effective field theory is the Standard Model Extension [13,14] (see Chapter

3) which contains the SM, conserves SU (3) ⊗ SU (2) ⊗ U (1), and also considers

potential Lorentz- and CPT-violating couplings in the gauge, lepton, quark and

Yukawa sectors. It is worth noting that an alternative mechanism that also re-

sults in an energy-independent contribution to the oscillations is the nonuniversal

coupling of the different neutrino flavours to an external torsion field [15].

The rest of this thesis is organised as follows. In Chapter 2, we review the Stan-

dard Model of particle physics, emphasising the mass-generating Higgs mechanism,

the contents of the neutrino sector, and the role of the discrete symmetries C, P ,

and T . Chapter 3 introduces the Standard Model Extension, which incorporates

potential Lorentz and CPT violation. In Chapter 4 we review the theory of neu-

trino oscillations, and the experimental evidence that supports it. We also introduce

different models of high-energy neutrino production at astrophysical sites like active

galactic nuclei. In Chapter 6 we introduce CPT violation through Lorentz violation

in the form of a modified dispersion relation, and find that, within this formalism,

any energy-independent modification that results from the breaking of these sym-

metries is undetectable in the high-energy astrophysical neutrino flux. In Chapter

7, we adopt a more general formalism and introduce the potential CPT violation

as a non-diagonal contribution to the neutrino oscillation Hamiltonian. We explore

the effects of the potential violation on the neutrino flavour fluxes and study the

detection prospects at the IceCube neutrino telescope, and in a similar, but larger,

C̆erenkov detector. Finally, in Section 8, we summarise and conclude.
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Chapter 2

The Standard Model

2.1 The Salam-Glashow-Weinberg electroweak

gauge theory

We start by reviewing the electroweak sector of the Standard Model (SM) (for more

detailed accounts, see, e.g., [16–18]), with particular emphasis on the nature of elec-

troweak symmetry breaking1. The theory grew out of experimental information on

charged-current weak interactions, and of the realisation that the four-point Fermi

description ceases to be valid above
√
s = 600 GeV [18]. Electroweak theory was

able to predict the existence of neutral-current interactions, as discovered by the

Gargamelle Collaboration in 1973 [20]. One of its greatest subsequent successes

was the detection in 1983 of the W± and Z0 bosons [21–24], whose existences it

had predicted. Over time, thanks to the accumulating experimental evidence, the

SU(2)L ⊗ U(1)Y electroweak theory and SU(3)C quantum chromodynamics, col-

lectively known as the Standard Model, have come to be regarded as the correct

description of electromagnetic, weak and strong interactions up to the energies that

have been probed so far.

The particle content of the SM is summarized in Table 2.1. Within the SM,

the electromagnetic and weak interactions are described by a Lagrangian that is

symmetric under local weak isospin and hypercharge gauge transformations, de-

scribed using the SU(2)L⊗U(1)Y group (the L subindex refers to the fact that the

weak SU(2) group acts only the left-handed projections of fermion states; Y is the

1Section 2.1 has been adapted from [19].
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Bosons Scalars
γ, W+, W−, Z0, g1...8 φ (Higgs)

Fermions
Quarks (each with 3 colour charges) Leptons

2/3 :
−1/3 :

(

u
d

)

,

(

c
s

)

,

(

t
b

)

neutral :
−1 :

(

νe

e−

)

,

(

νµ

µ−

)

,

(

ντ

τ−

)

Table 2.1: Particle content of the Standard Model with a minimal Higgs sector. Note
that counting antiparticles, the number of fermions is doubled, and that,
taking into account quark colour, the number of quarks plust antiquarks is
tripled. Only left-handed neutrinos interact

hypercharge). We can write the SU(2)L ⊗ U(1)Y part of the SM Lagrangian as

L = −1

4
Fa

µνF
aµν

+ iψ/∂ψ + h.c.

+ ψiyijψjφ+ h.c.

+ |Dµφ|2 − V (φ) . (2.1)

The first line is the kinetic term for the gauge sector of the electroweak theory,

with a running over the total number of gauge fields: three associated with SU(2)L,

which we shall call B1
µ, B

2
µ, B3

µ, and one with U(1)Y , which we shall call Aµ. Their

field-strength tensors are

F a
µν = ∂νB

a
µ − ∂µB

a
ν + gεbcaB

b
µB

c
ν for a = 1, 2, 3 (2.2)

fµν = ∂νAµ − ∂µAν , (2.3)

and, hence, Fa
µν ≡

(

F 1
µν , F

2
µν , F

3
µν , fµν

)

. In Eq. (2.2), g is the coupling constant of the

weak-isospin group SU(2)L, and the εbca are its structure constants. The last term

in this equation stems from the non-Abelian nature of SU(2). At this point, all of

the gauge fields are massless, but we will see later that specific linear combinations

of the four electroweak gauge fields acquire masses through the Higgs mechanism.

The second line in Eq. (2.1) describes the interactions between the matter fields

ψ, described by Dirac equations, and the gauge fields.

The third line is the Yukawa sector and incorporates the interactions between

the matter fields and the Higgs field, φ, which are responsible for giving fermions

their masses when electroweak symmetry breaking occurs.

The fourth and final line describes the scalar or Higgs sector. The first piece is

5



the kinetic term with the covariant derivative defined here to be

Dµ = ∂µ +
ig′

2
AµY +

ig

2
τ ·Bµ , (2.4)

where g′ is the U(1) coupling constant, and Y and τ ≡ (τ1, τ2, τ3) (the Pauli matrices)

are, respectively, the generators of U(1) and SU(2). The second piece of the final

line of (2.1) is the Higgs potential V (φ).

Whereas the first two lines of Eq. (2.1) have been confirmed in many different

experiments, there is no experimental evidence for the last two lines and one of

the main objectives of the Large Hadron Collider at CERN [25–27] is to discover

whether it is right, needs modification, or is simply wrong.

2.1.1 The Higgs mechanism in U(1)

To explain the Higgs mechanism of mass generation, we first apply it to the gauge

group U(1), and then extend it to the full electroweak group SU(2)L⊗U(1)Y . Thus,

we first consider the following Lagrangian for a single complex scalar field:

L = (∂µφ)∗ (∂µφ)− V (φ∗φ) , (2.5)

with the potential defined as

V (φ∗φ) = µ2 (φ∗φ) + λ (φ∗φ)2 , (2.6)

where µ2 and λ are real constants, with λ > 0. This Lagrangian is clearly invariant

under global U(1) phase transformations

φ→ eiαφ , (2.7)

for α some rotation angle. Equivalently, it is invariant under a SO(2) rotational

symmetry, which is made evident by writing L in terms of the decomposition of the

complex scalar field into two real fields φ1 and φ2: φ ≡ φ1 + iφ2.

If we choose µ2 > 0 in Eq. (2.6), the sole vacuum state has 〈φ〉 = 0. Perturbing

around this vacuum reveals that, in this case, the scalar-sector Lagrangian simply

factors into two Klein-Gordon Lagrangians, one for φ1 and the other for φ2, with a

common mass. The symmetry of the original Lagrangian is preserved in this case.

However, when µ2 < 0, the Lagrangian (2.5) exhibits spontaneous breaking of

the U(1) global symmetry, which introduces a massless scalar particle known as a

Goldstone boson, as we now show. In order to make manifest this breaking of the
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U(1) symmetry present in Eq. (2.5), we first minimize the potential (2.6) so as to

identify the vacuum expectation value, or v.e.v., of the scalar field. To do this, we

first write the Higgs potential as

V (φ∗φ) = µ2
(

φ2
1 + φ2

2

)

+ λ
(

φ2
1 + φ2

2

)2
, (2.8)

and note that minimisation with respect to φ∗φ yields the value

φ2
1 + φ2

2 = −µ2/ (2λ) , (2.9)

i.e., there is a set of equivalent minima lying around a circle of radius
√

−µ2/ (2λ),

when µ2 < 0 as assumed. The quanta of the Higgs field arise when a particular

ground state is chosen and perturbed. Reflecting the appearance of spontaneous

symmetry breaking we may, without loss of generality, choose for instance

φ1,vac =
√

−µ2/ (2λ) ≡ v/
√

2 , φ2,vac = 0 . (2.10)

Perturbations around this vacuum may be parametrized by

η/
√

2 ≡ φ1 − v/
√

2 , ξ/
√

2 ≡ φ2 , (2.11)

so that the perturbed complex scalar is φ = (v + η + iξ) /
√

2, where η and ξ are

real fields. In terms of these, the Lagrangian becomes

L =

[

1

2
(∂µη) (∂µη)−

µ2

2
η2

]

+
1

2
(∂µξ) (∂µξ)

− λ

2

[

(v + η)2 + ξ2
]2 − µ2vη − µ2

2
ξ2 − 1

2
µ2v2 . (2.12)

The first and second terms describe two scalar particles: the first, η, is massive with

m2
η = −µ2 > 0 (we recall that µ2 < 0), and the second, ξ, is massless, the Goldstone

boson.

We now discuss how this spontaneous symmetry breaking of symmetry manifests

itself in the presence of a U(1) gauge field. For this purpose, we make the Lagrangian

(2.5) invariant under local U(1) phase transformations, i.e.,

φ→ eiα(x)φ . (2.13)

This requires the introduction of a gauge field Aµ that transforms as follows under

U(1):

A′
µ → Aµ + (1/q) ∂µα (x) , (2.14)
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and replacing the space-time derivatives by covariant derivatives

Dµ = ∂µ + iqAµ , (2.15)

where q is the conserved charge. Replacing the derivatives in Eq. (2.5) and adding

a kinetic term for the Aµ field, the Lagrangian becomes

L = [(∂µ − iqAµ)φ∗] [(∂µ + iqAµ)φ]− V (φ∗φ)− 1

4
F µνFµν . (2.16)

The last term in this equation, (1/4)F µνFµν , with Fµν ≡ ∂νAµ − ∂µAν , is the

kinetic term, which is separately invariant under the transformation (2.14) of the

gauge field.

We now repeat the minimization of the potential V (φ) and write the Lagrangian

in terms of the perturbations around the ground state, Eqs. (2.11):

L =

{

1

2

[

(∂µη) (∂µη)− µ2η2
]

+
1

2
(∂µξ) (∂µξ)−

1

4
F µνFµν +

1

2
q2v2AµAµ

}

+ vq2AµAµη +
q2

2
AµAµη

2 + q (∂µξ)Aµ (v + η)− q (∂µη)Aµξ

− µ2vη − µ2

2
ξ2 − λ

2

[

(v + η) + ξ2
]2 − µ2v

2
. (2.17)

The first three terms again describe a (real) scalar particle, η, of mass
√

−µ2 and

a massless Goldstone boson, ξ. The fourth term describes the free gauge field.

However, whereas previously the Lagrangian described a massless boson field (see

Eq. (2.12)), now it contains a term proportional to AµAµ, which gives the gauge

field a mass of

mA = qv , (2.18)

from which we see that the boson field has acquired a mass that is proportional

to the vacuum expectation value of the Higgs field. Indeed, the last two terms in

the first line of Eq. (2.12) are identical with the Proca Lagrangian for a U(1) gauge

boson of mass m.

The rest of the terms in Eq. (2.17) define couplings between the fields Aµ, η

and ξ, among which is a bilinear interaction coupling Aµ and ∂µξ. In order to give

the correct propagating particle interpretation of (2.17), we must diagonalize the

bilinear terms and remove this term. This is easily done by exploiting the gauge

freedom of the Aµ field to replace

Aµ → A′
µ = Aµ +

1

qv
∂µξ , (2.19)
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which is accompanied by the local phase transformation

φ→ φ′ = e−iξ(x)/vφ = (v + η) /
√

2 . (2.20)

After making this transformation, the field ξ no longer appears, and the Lagrangian

(2.12) takes the simplified form

L =
1

2

[

(∂µ) (∂µ)− µ2η2
]

− 1

4
F µνFµν +

q2v2

2
Aµ ′A′

µ + . . . . (2.21)

where the ellipsis stand for trilinear and quadrilinear interactions.

The interpretation of Eq. (2.21) is that the Goldstone boson ξ that appeared

when the global U(1) symmetry was broken by the choice of an asymmetric ground

state when µ2 < 0 has been absorbed (or “eaten”) by the gauge field Aµ, with the

effect of generating a mass. Another way to understand this is to recall that, whereas

a massless gauge boson has only two degrees of freedom, or polarization states (which

are transverse), a massive gauge boson must have a third (longitudinal) polarization

state. In the Higgs mechanism, this is supplied by the Goldstone boson of the

spontaneously-broken U(1) global symmetry.

At first sight, the Higgs mechanism may seem somewhat artificial. From one

point of view, it is merely a description of the breaking of electroweak symmetry,

rather than an explanation how a massless gauge boson may become massive. As

Quigg says [28], the electroweak symmetry is broken because µ2 < 0, and we must

choose µ2 < 0, because otherwise electroweak symmetry is not broken. From an-

other point of view, the only consistent formulation of an interacting massive gauge

boson is via the Higgs mechanism, and the spontaneous breaking of symmetry is a

mathematical ruse for describing this phenomenon.

2.1.2 The Higgs mechanism in SU(2)L ⊗ U(1)Y

Following closely in both spirit and notation the book by Quigg [28], we now consider

the weak-isospin doublet

L =

(

ν

e

)

L

, (2.22)

with the left-handed neutrino and electron states defined by

νL =
1

2
(1− γ5) ν , eL =

1

2
(1− γ5) e . (2.23)

The operator (1− γ5) /2 is of course the left-handed helicity projector, and ν, e are

solutions of the free-field Dirac equation. Within the SM, we consider the neutrino
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to be massless, and it does not have a corresponding right-handed component, i.e.,

νR =
1

2
(1 + γ5) ν = 0 . (2.24)

Hence, the only right-handed lepton, eR, constitutes a weak-isospin singlet, i.e.,

R = eR =
1

2
(1 + γ5) e . (2.25)

We write initially the Lagrangian as

L = Lgauge + Lleptons (2.26)

Lgauge = −1

4
F a

µνF
aµν − 1

4
fµνf

µν (2.27)

Lleptons = R

(

∂µ + i
g′

2
AµY

)

R + Liγµ

(

∂µ + i
g′

2
AµY + i

g

2
τ ·Bµ

)

L ,(2.28)

where the field-strength tensors, Fµν and fµν , were defined in Eqs. (2.2) and (2.3),

respectively. Here, g′/2 is the coupling constant associated to the hypercharge group

U(1)Y , and g/2 is the coupling to the weak-isospin group SU(2)L. So far, we are

presented with four massless bosons (Aµ, B
1
µ, B2

µ, B3
µ); the Higgs mechanism will

select linear combinations of these to produce three massive bosons (W±, Z0) and

a massless one (γ).

The Higgs field is now a complex SU(2) doublet

φ =

(

φ+

φ0

)

, (2.29)

with φ+ and φ0 scalar fields. We need to add the Lagrangian

LHiggs = (Dµφ)† (Dµφ)− V
(

φ†φ
)

, (2.30)

with the Higgs potential given by analogy to Eq. (2.6) as

V
(

φ†φ
)

= µ2
(

φ†φ
)

+ λ
(

φ†φ
)2

, (2.31)

with λ > 0. We should also include the interaction Lagrangian between this scalar

field and the fermionic matter fields, which occurs through Yukawa couplings,

LYukawa = −Ge

[

Rφ†L + LφR
]

. (2.32)

We will see later that these terms give rise to masses for the matter fermions.
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Figure 2.1: Scalar potential V
(

φ†φ
)

with λ > 0 and µ2 < 0.

A plot of the Higgs potential is presented in Fig. 2.1, where we see that 〈φ〉 = 0 is

an unstable local minimum of the effective potential if µ2 < 0, and that the minimum

is at some 〈φ〉 6= 0 with an arbitrary phase, leading to spontaneous symmetry

breaking. Minimising the Higgs potential, we obtain

∂

∂ (φ†φ)
V
(

φ†φ
)

= µ2 + 2λ〈φ〉0 = µ2 + 2λ
[

(

φ+
vac

)2
+
(

φ0
vac

)2
]

= 0 . (2.33)

Choosing φ+
vac = 0 and φ0

vac =
√

−µ2/ (2λ), the v.e.v. of the scalar field becomes

〈φ〉0 =

(

0

v/
√

2

)

, (2.34)

with v ≡
√

−µ2/λ. Selecting a particular v.e.v. breaks, of course, both SU(2)L

and U(1)Y symmetries. Nevertheless, an invariance under the U(1)EM symmetry is

preserved, with the charge operator as the generator. In the preceding Section, we

saw one example of the general theorem that, for every broken generator (i.e., every

generator that does not leave the vacuum invariant), there would (in the absence of

the Higgs mechanism) be a Goldstone boson.

In general, a generator G leaves the vacuum invariant if

eiαG〈φ〉0 ≃ (1 + iαG) 〈φ〉0 = 〈φ〉0 , (2.35)

which is satisfied when G〈φ〉0 = 0. Let us test whether the generators of SU(2)L ⊗
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U(1)Y satisfy this condition:

τ1〈φ〉0 =

(

0 1

1 0

)(

0

v/
√

2

)

=

(

v/
√

2

0

)

(2.36)

τ2〈φ〉0 =

(

0 −i
i 0

)(

0

v/
√

2

)

=

(

−iv/
√

2

0

)

(2.37)

τ3〈φ〉0 =

(

1 0

0 −1

)(

0

v/
√

2

)

=

(

0

−v/
√

2

)

(2.38)

Y 〈φ〉0 = 〈φ〉0 . (2.39)

Thus, none of the generators leave the vacuum invariant. However, we note that

Q〈φ〉0 =
1

2
(τ3 + Y ) 〈φ〉0 = 0 , (2.40)

which is what we expected: the linear combination of generators corresponding to

electric charge remains unbroken. Correspondingly, as we shall now see, whilst the

photon remains massless, the other three gauge bosons acquire masses.

To see this, we now consider perturbations around the choice of vacuum. The

full perturbed scalar field is

φ = exp

(

iξ · τ
2v

)

(

0

(v + η) /
√

2

)

. (2.41)

However, in analogy to what we did for the U(1) Higgs in the previous section to

rotate the Goldstone boson ξ away, we are also able here to gauge-transform the

scalar φ and the gauge and matter fields, i.e.,

φ → φ′ = exp

(−iξ · τ
2v

)

φ =

(

0

(v + η) /
√

2

)

. (2.42)

τ ·Bµ → τ ·B′
µ (2.43)

L → L′ = exp

(−iξ · τ
2v

)

L , (2.44)

while the Aµ and R remain invariant. It is possible to show that τ ·B′
µ = τ ·Bµ −

ξ ×Bµ · τ − (1/g) ∂µ (ξ · τ).
In the unitary gauge, we can write the perturbed state as

〈φ〉0 → φ =

(

0

(v + η) /
√

2

)

, (2.45)
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and the Lagrangian in the Yukawa sector, Eq. (2.32), becomes

LYukawa = −Ge

[

eRφ
†

(

νL

eL

)

+ (νL eL)φeR

]

= −Ge
v + η√

2
(eReL + eLeR) . (2.46)

Defining e ≡ (eR, eL) and e ≡ (eL, eR)T yields

LYukawa = −Gev√
2
ee− Geη√

2
ee , (2.47)

so that the electron has acquired a mass

me = Gev/
√

2 . (2.48)

Clearly, this mechanism may be applied to all the SM fermions, with the general

feature that their masses are proportional to their Yukawa couplings to the Higgs

field 2. This implies that the preferred decays of a Higgs boson into generic fermions

f are into heavier species, as long as the Higgs mass > 2mf .

To see the effect of spontaneous symmetry breaking on the scalar-sector La-

grangian, LHiggs in Eq. (2.30), it is useful to calculate first

φ†φ =

(

v + η√
2

)2

, (2.49)

so that

V
(

φ†φ
)

= µ2

(

v + η√
2

)2

+ λ

(

v + η√
2

)4

, (2.50)

and we also need

Dµφ = ∂µφ+
ig′

2
AµY φ+

ig

2
τ ·Bµφ , (2.51)

whose first term is simply

∂µφ =

(

0

∂µη/
√

2

)

. (2.52)

2The Higgs couplings to quarks also induce their Cabibbo-Kobayashi-Maskawa mixing.
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Using Eqs. (2.36)–(2.39), we calculate the second and third terms, i.e.,

ig′

2
AµY φ =

ig′

2
Aµφ =

ig′

2
Aµ

(

0

(v + η) /
√

2

)

, (2.53)

(τ ·Bµ)φ = B1
µ

(

(v + η) /
√

2

0

)

+B2
µ

(

−i (v + η) /
√

2

0

)

+ B3
µ

(

0

− (v + η) /
√

2

)

. (2.54)

Hence,

Dµφ =





ig
2

(

v+η√
2

)

(

B1
µ − iB2

µ

)

1√
2
∂µη +

(

v+η√
2

)

i
2

(

ig′Aµ − igB3
µ

)



 (2.55)

and

(Dµφ)† (Dµφ) =
g2

8
(v + η)2 |B1

µ − iB2
µ|2 +

1

2
(∂µη) (∂µη)

+
1

8
(v + η)2 (g′Aµ − gB3

µ

)2
. (2.56)

With this, the scalar-sector Lagrangian becomes

LHiggs =

{

1

2
(∂µη) (∂µη)− µ2

2
η2 +

v2

8

[

g2|B1
µ − iB2

µ|2 +
(

g′Aµ − gB3
µ

)2
]

}

+

{

1

8

(

η2 + 2vη
)

[

g2|B1
µ − iB2

µ|2 +
(

g′Aµ − gB3
µ

)2
]

− 1

4
η4 − λvη3 − 3

2
λv2η2 −

(

λv3 + µ2v
)

η −
(

λv4

4
+
µ2v2

2

)}

. (2.57)

From the second term inside the first curly brackets, we see that the η field has

acquired a mass; indeed, it is the Higgs boson, with non-zero mass. The terms

inside the second curly brackets either describe interactions between the gauge and

Higgs fields, or are constants that do not affect the physics.

It is convenient to define the charged gauge fields W±
µ as linear combinations of

the massless fields B1
µ and B2

µ, i.e.,

W±
µ ≡

B1
µ ∓ iB2

µ√
2

, (2.58)
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and, analogously,

Zµ ≡
−g′Aµ + gB3

µ
√

g2 + g′ 2
, (2.59)

Aµ ≡
gAµ + g′B3

µ
√

g2 + g′ 2
. (2.60)

Writing the original fields Aµ, Bi
µ in terms of the new fields, we have

B1
µ =

√
2

2

(

W−
µ +W+

µ

)

, (2.61)

B2
µ =

√
2

2

(

W−
µ −W+

µ

)

, (2.62)

B3
µ =

g′
√

g2 + g′ 2

(

Aµ +
g

g′
Zµ

)

, (2.63)

Aµ =
g

√

g2 + g′ 2

(

Aµ −
g′

g
Zµ

)

. (2.64)

Making these replacements in the broken scalar-sector Lagrangian, Eq. (2.57), leads

to

LHiggs =

[

1

2
(∂µη) (∂µη)−

µ2

2
η2

]

+
v2g2

8
W+ µW+

µ +
v2g2

8
W− µW−

µ +
(g2 + g′ 2) v2

8
ZµZµ

+ ... , (2.65)

and it is evident now that while the photon field, Aµ, is massless due to the unbroken

U(1)EM symmetry (i.e., the symmetry under eiQα(x) rotations), the vector bosonsW±

and Z0 have masses

mW = gv/2 , mZ = (v/2)
√

g2 + g′ 2 . (2.66)

We see again that the Higgs couplings to other particles, in this case the W± and

Z0, are related to their masses.

We also see that the masses of the neutral and charged weak-interaction bosons

are related through

mZ = mW

√

1 + g′ 2/g2 . (2.67)

Experimentally, the weak gauge boson masses are known to high accuracy to be [29]

mW = 80.399± 0.023 GeV , mZ = 91.1875± 0.0021 GeV , (2.68)
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which can be compared in detail with Eq. (2.67) only after the inclusions of radiative

corrections. Meanwhile, the current experimental upper limit on the photon mass,

based on plasma physics, is very stringent: mγ < 10−18 eV [30]. For the Higgs mass,

we see from (2.57) that

mH = −2µ2 . (2.69)

A priori, however, there is no theoretical prediction within the Standard Model,

since µ is not determined by any of the known parameters of the Standard Model.

Later we will see various ways in which experiments constrain the Higgs mass.

We can introduce a weak mixing angle θW to parametrise the mixing of the

neutral gauge bosons, defined by

tan (θW ) = g′/g , (2.70)

so that

cos (θW ) =
g

√

g2 + g′ 2
, sin (θW ) =

g′
√

g2 + g′ 2
. (2.71)

With this, we can write, from Eqs. (2.59) and (2.60),

Zµ = − sin (θW )Aµ + cos (θW )B3
µ , (2.72)

Aµ = cos (θW )Aµ + sin (θW )B3
µ . (2.73)

The relation (2.67) between the masses of W± and Z0 becomes

mW = mZ cos (θW ) , (2.74)

and it is common practice to define the ratio

ρ =
m2

W

m2
Z cos2 (θW )

. (2.75)

According to the Standard Model, this is equal to unity at the tree level, a prediction

that has been well tested by experiment, including radiative corrections. The value of

sin2 (θW ) is obtained from measurements of the Z pole and neutral-current processes,

and depends on the renormalisation prescription. The 2008 Particle Data Group

review [29] states values of sin2 (θW ) = 0.2319(14) and ρ = 1.0004+0.0008
−0.0004.

Therefore, after the spontaneous breaking of the electroweak SU(2)L ⊗ U(1)Y

symmetry, we have ended up with what we desired: three massive gauge bosons

(W±, Z0) that mediate weak interactions, one massless gauge boson (A) corre-

sponding to the photon, and an extra, massive, Higgs boson (H).
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Figure 2.2: Left: LEP and SLD measurements of sin2 θW and the leptonic decay width
of the Z0, Γll, compared with the SM prediction for different values of mt

and mH . Right: The predictions for mt and mW made in the SM using
LEP1 and SLD data (dotted mango-shaped contour) for different values of
mH , compared with the LEP2 and Tevatron measurements (ellipse). The
arrows show the additional effects of the uncertainty in the value of αem at
the Z0 peak [31].

2.1.3 Parameters of the Standard Model

The transformation from being one of the possible explanations of electromagnetic,

weak and strong phenomena into a description in outstanding agreement with ex-

periments is reflected in the dozens of electroweak precision measurements available

today [29, 31, 32]. These are sensitive to quantum corrections at and beyond the

one-loop level, which are essential for obtaining agreement with the data. The cal-

culations of these corrections rely upon the renormalizability (i.e, the calculability

at all orders of perturbation) of the SM3, and depend on the masses of heavy virtual

particles, such as the top quark and the Higgs boson and possibly other particles

beyond the SM. The consistency with the data may be used to constrain the masses

of these particles.

Many of these observables have quadratic sensitivity to the mass of the top quark,

e.g.,

s2
W ≡ 1−m2

W/m
2
Z ∋ −

2α

16π sin2 (θW )

m2
t

m2
Z

. (2.76)

This effect was used before the discovery of the top quark to predict successfully

its mass [33], and the consistency of the prediction with experiment can be used to

3A crucial aspect of this is cancellation of anomalous triangle diagrams between quarks and
leptons, which may be a hint of an underlying Grand Unified Theory.
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Parameter Input value Fit value
MZ [GeV] 91.1875± 0.0021 91.1876± 0.0021
ΓZ [GeV] 2.4952± 0.0023 2.4956± 0.0015
σ0

had 41.540± 0.037 41.478± 0.014
R0

l 20.767± 0.025 20.741± 0.018

A0,l
FB 0.0171± 0.0010 0.01624± 0.0002

Al (LEP) 0.1465± 0.0033 0.1473± 0.0009
Al (SLD) 0.1513± 0.0021 0.1465+0.0007

−0.0010

sin2 φl
eff (QFB) 0.2324± 0.0012 0.23151+0.00010

−0.00012

A0,c
FB 0.0707± 0.0035 0.0737± 0.0005

A0,b
FB 0.0992± 0.0016 0.1032+0.0007

−0.0006

Ac 0.670± 0.027 0.6679+0.00042
−0.00036

Ab 0.923± 0.020 0.93463+0.00007
−0.00008

R0
c 0.1721± 0.0030 0.17225± 0.00006

R0
b 0.21629± 0.00066 0.21577± 0.00005

∆α
(5)
had (M2

Z) 2768± 22 2764+22
−21

MW [GeV] 80.399± 0.023 80.371+0.008
−0.011

ΓW [GeV] 2.098± 0.048 2.092± 0.001
mc [GeV] 1.25± 0.09 1.25± 0.09
mb [GeV] 4.20± 0.07 4.20± 0.07
mt [GeV] 173.1± 1.3 173.6± 1.2

Table 2.2: Fit and experimental values of some SM quantities, as obtained using
the Gfitter package [32]. For all the observables listed, except Al (LEP)
and Al (SLD), the fit values shown are the results of “complete fits”, i.e.,
the results of using all the inputs, including the input value of the parameter
that is being fit, to calculate the result. For the two exceptions, the fit values
shown were calculated using all inputs except their own. Consult [32] for a
description of each observable.

constrain possible new physics beyond the SM, particularly mass-squared differences

between isospin partner particles, that would contribute analogously to (2.76). Many

electroweak observables are also logarithmically sensitive to the mass of the Higgs

boson, e.g.,

s2
W ∋ 5α

24π
ln

(

m2
H

m2
W

)

(2.77)

when mH ≫ mW . If there were no Higgs boson, or nothing to do its job, radiative

corrections such as (2.77) would diverge, and the SM calculations would become

meaningless. Two examples of precision electroweak observables, namely the cou-

pling of the Z0 boson to leptons and the mass of the W boson, are shown in Fig. 2.2.

Table 2.2 and Fig. 2.3 [32] compare the predicted (fitted) and experimentally

measured values for several parameters of the Standard Model; the agreement is

usually better than 1σ. This is a remarkable success for a theory that, as we have
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Figure 2.3: Comparison between direct measurements and the results of a fit using the
Gfitter package [32].

seen, can be written down in only a few lines.

The agreement of the precision electroweak observables with the SM can be

used to predict mH , just as it was used previously to predict mt. Since the early

1990s [34], this method has been used to tighten the vise on the Higgs, providing

ever-stronger indications that it is probably relatively light, as hinted in Fig. 2.4.

The latest estimate of the Higgs mass is [31]

mH = 89+35
−26 GeV. (2.78)
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Although the central value is somewhat below the lower limit of 114.4 GeV set by

direct searches at LEP [35], there is consistency at the 1-σ level, and no significant

discrepancy. A priori, the relatively light mass range (2.78) suggests that the Higgs

boson interacts relatively weakly, with a small quartic coupling λ, though there is

no theoretical consensus on this.

This success is very impressive. However, our rejoicing is muted by the fact that

to specify the SM we need at least 19 input parameters in order to calculate physical

processes, namely:

• three coupling parameters, which we can choose to be the strong coupling

constant, αs, the fine structure constant, αem, and the weak mixing angle,

sin2 (θW );

• two parameters that specify the shape of the Higgs potential, µ2 and λ (or,

equivalently, mH and mW or mZ);

• six quark masses (or the six Yukawa couplings for the quarks);

• four parameters (three mixing angles and one weak CP-violating angle) for
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the Cabibbo-Kobayashi-Maskawa matrix [see Eq. (4.47) below];

• three charged-lepton masses (or the corresponding Yukawa couplings);

• one parameter to allow for non-perturbative CP violation in QCD, θQCD.

Moreover, because we now know that neutrinos have mass and that they mix (see,

e.g., [36,37]), the Standard Model must be extended to incorporate this fact. There-

fore, we also need to specify three neutrino masses and three mixing angles plus a

CP-violating phase for the neutrino mixing matrix, bringing the grand total to 26

parameters. Additionally, if neutrinos turn out to be Majorana particles, so that

they are their own antiparticles, two more CP-violating phases need to be specified.

Notice that at least 20 of the parameters relate to flavour physics.

Many of the ideas for physics beyond the SM, like supersymmetry and extra di-

mensions, have been motivated by attempts to reduce the number of its parameters,

or understand their origins, or at least to make them seem less unnatural.

2.2 Symmetries of the Standard Model

A symmetry is any transformation that leaves the object being transformed un-

changed. Along with the SU (3) ⊗ SU (2) ⊗ U (1) gauge symmetry, the SM has

other symmetries, both continuous and discrete.

2.2.1 Continuous Lorentz symmetries

A continuous Lorentz transformation is one that can be built up of infinitesimal

Lorentz transformations. Since every relativistic field theory must be invariant

under Lorentz transformations, and since the SM is a relativistic (quantum) field

theory, then Lorentz transformations must be a symmetry of the theory. Given

a four-component Dirac field ψ, i.e., an object that satisfies the Dirac equation,

(i~/∂ −m)ψ (x) = 0, the coordinate Lorentz transformation

x→ x′ = Λx (2.79)

induces the following transformation [38] of ψ:

ψ (x)→ ψ′ (x′) = U (Λ)ψ (x)U−1 (Λ) = Λ−1
1/2ψ (Λx) , (2.80)
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with U a unitary operator. The Lorentz transformation operator for a Dirac field,

Λ1/2, is given by

Λ1/2 = exp

(

− i
2
ωµνSµν

)

, (2.81)

where

Sµν =
i

4
[γµ, γν ] (2.82)

are the generators of field Lorentz transformations. The generators of boosts are

S0i = −1

2

(

σi 0

0 −σi

)

, i = 1, 2, 3 , (2.83)

with σi the Pauli matrices, and the generators of rotations are

Sij =
1

2
ǫijk

(

σk 0

0 σk

)

. (2.84)

A four-component field ψ that transforms under boosts and rotations according

to Eqs. (2.83) and (2.84), respectively, is a Dirac spinor. Since the S0i are not

Hermitian, the field Lorentz transformation Λ1/2 is not a unitary transformation.

With the knowledge of how a Dirac field transforms, we can see how some of

the bilinears made up of combinations of two Dirac fields and gamma matrices,

transform. Let us first explore the transformation of the object ψ†ψ:

ψ†ψ → ψ†Λ†
1/2Λ1/2ψ 6= ψ†ψ , (2.85)

since Λ†
1/2 6= Λ−1

1/2. However, if we define the adjoint field as

ψ ≡ ψ†γ0 , (2.86)

it can be proved [38] that it transforms as

ψ → ψΛ−1
1/2 . (2.87)

We can see then that the bilinear ψψ transforms as

ψψ → ψΛ−1
1/2Λ1/2ψ = ψψ . (2.88)

Therefore, ψψ is a Lorentz scalar.
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Figure 2.5: Feynmann diagram for photon-mediated e−e+ annihilation and l−l+ cre-
ation.

name number of bilinears of this type
uu scalar 1
uγµu vector 4

uσµνu = 1
2
u [γµ, γν] u tensor 6

uγµγ5u pseudo-vector 4
uγ5u pseudo-scalar 1

16

Table 2.3: Bilinears in the gamma-matrix algebra. Any amplitude written using these
bilinears, in any quantum field theory, must be Lorentz-invariant.

On the other hand, the bilinear ψγµψ is a Lorentz vector. Since [38]

Λ−1
1/2γ

µΛ1/2 = Λµ
νγ

ν , (2.89)

we find that

ψγµψ → ψΛ−1
1/2γ

µΛ1/2ψ = ψΛµ
νγ

νψ . (2.90)

In a simple example, we will see how a typical SM amplitude is Lorentz-invariant.

By writing ψ as

ψ (x) = u (p) e−ip·x/~ , (2.91)

we can express the amplitude for the pure-QED process in Figure 2.5 as

µ = ie2 [ulγ
αvl]

1

k2 + iε
[veγαue] . (2.92)

The terms in brackets transform as

ulγ
αvl → ulγ

βΛα
βvl (2.93)

veγαue → veγβΛ
β
αue . (2.94)

Hence,

[ulγ
αvl] [veγαue]→

[

ulγ
βvl

]

[veγβue] Λ
α
βΛβ

α , (2.95)
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and, since Λα
βΛβ

α = 1, we find that the amplitude µ is Lorentz-invariant.

Bilinears of the gamma-matrix algebra can be classified according to their Lorentz-

transformation properties. Table 2.3 shows a list of the sixteen different bilinears

that exist in the SM.

2.2.2 Discrete symmetries

The continuous Lorentz transformations are a symmetry of any relativistic field

theory. There are, however, in addition to Lorentz symmetry, two spacetime trans-

formations that are potential symmetries of the Lagrangian: parity, P , and time

reversal, T whose action on an arbitrary four-vector (t,x) is given by:

parity: (t,x)
P−→ (t,−x) (2.96)

time reversal: (t,x)
T−→ (−t,x) . (2.97)

Whereas P changes the handedness of space, T interchanges the past and future

light-cones. These transformations cannot be achieved by continuous Lorentz trans-

formations starting from the identity, but they both preserve the metric element

x2 = t2 − |x|2. Continuous Lorentz transformations, formally known as the proper,

orthochronous Lorentz transformations and denoted by L↑
+, are only a subset of the

full Lorentz group, which is broken down into four sub-groups under the action of

the P and T transformations, as seen in Figure 2.6. We will also explore a third,

non-spacetime, discrete transformation: charge conjugation, denoted by C, which

interchanges particles and anti-particles.

Any relativistic field theory must be invariant under L↑
+, but they must not

necessarily be invariant under P , T , or C. We know that the gravitational, electro-

magnetic, and strong interactions are symmetric with respect to P , T , and C, and

that weak interactions violate C and P separately, but preserve CP and T . However,
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Figure 2.7: Action of the parity operator P on a particle with momentum p and spin s.
While the momentum is flipped, the spin is not affected. Thus, the particle’s
helicity changes sign.

certain rare processes, so far, observed only in the decay of K and B mesons, violate

CP and T . So far, however, observations indicate that CPT is exactly conserved by

Nature and therefore the Standard Model has been designed to be invariant under

CPT .

Parity

The effect of applying the parity operator is to reverse the direction of the space

component, i.e.,

x→ −x , p→ −p . (2.98)

Since the parity transformation does not affect the particle spins, it effectively

changes a particle’s helicity, as seen in Figure 2.7.

For concreteness, and following the presentation in [38], let us write general

fermion, ψ (x), and anti-fermion operators, ψ (x) as the Fourier expansions

ψ (x) =

∫

d3p

(2π)3

1
√

2Ep

∑

s

(

as
p u

s (p) e−ip·x + bs†p vs (p) eip·x) , (2.99)

ψ (x) =

∫

d3p

(2π)3

1
√

2Ep

∑

s

(

bsp v
s (p) e−ip·x + as†

p us (p) eip·x) , (2.100)

where as
p, bsp are fermion and anti-fermion annihilation operators, respectively, and

as†
p , bs†p are fermion and anti-fermion creation operators, respectively. The sum is

over all spin states, s. The creation and operation operators satisfy the canonical

anti-conmutation relations

{

ar
p, a

s†
q

}

=
{

brp, b
s†
q

}

= (2π)3 δ(3) (p− q) δrs , (2.101)

and the vacuum |0〉 is defined by as
p|0〉 = bsp|0〉 = 0.
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The parity transformation is implemented through the unitary operator P such

that

Pas
pP = ηaa

s
p , P bspP = ηbb

s
−p , (2.102)

where ηa and ηb are possible phases. We demand that a double application of P

leaves the fermion operators unchanged, e.g.,

P
(

Pas
pP
)

P = as
p , (2.103)

which implies

η2
a = ±1 , η2

b = ±1 . (2.104)

It is possible (see, e.g., [38]) to prove that

Pψ (t,x)P = ηaγ
0ψ (t,−x) , Pψ (t,x)P = η∗aψ (t,−x) γ0 . (2.105)

With this, we can calculate the action of P on a few of the bilinears:

• scalar:

Pψ (t,x)ψ (t,x)P = |ηa|2ψ (t,−x) γ0γ0ψ (t,−x) = ψ (t,−x)ψ (t,−x)

(2.106)

• vector:

Pψ (t,x) γµψ (t,x)P =

{

+ψ (t,−x) γµψ (t,−x) , µ = 0

−ψ (t,−x) γµψ (t,−x) , µ = 1, 2, 3
(2.107)

• pseudo-scalar:

Piψ (t,x) γ5ψ (t,x)P = −iψ (t,−x) γ5ψ (t,−x) (2.108)

• pseudo-vector:

Pψ (t,x) γµγ5ψ (t,x)P =

{

−ψ (t,−x) γµγ5ψ (t,−x) , µ = 0

+ψ (t,−x) γµγ5ψ (t,−x) , µ = 1, 2, 3

(2.109)

We will examine the effects of parity on a pure electromagnetic interaction and

on a weak interaction. The basic QED vertex is given by the left Feynmann diagram

in Figure 2.8. The initial and final electrons have momenta p and p′, respetively, and

are represented by the the Dirac spinors u (p) and u (p′). The transferred momentum
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Figure 2.8: Left: Basic QED vertex representing electron scattering off an external elec-
tromagnetic field. Right: One of the vertices in charged-current νl − l scat-
tering, mediated by a W− weak boson.

q ≡ p−p′ and the conserved electromagnetic current is given by (see, e.g., [28,38,39])

jµ ≡ −ieu (p) γµu (p′) , (2.110)

and the external field in momentum space, Aµ (q) can be expressed as the Fourier

transform of the corresponding field in position space, Aµ (x), i.e.,

Aµ (q) =

∫

d3x e−iq·xAµ (x) . (2.111)

The amplitude for the process is therefore

jµAµ = −ieu (p) γµu (p′)Aµ (q) . (2.112)

Applying the parity operator to this amplitude results in

Pjµ (p,p′)Aµ (q)P = −ie
[

Pu (p) γ0u (p′)A0 (q)P − Pu (p) γiu (p′)Ai (q)P
]

= −ie
[

+u (−p) γ0u (−p′)
]

[+A0 (−q)]

+ie
[

−u (−p) γiu (−p′)
]

[−Ai (−q)]

= jµ (−p,−p′)Aµ (−q) . (2.113)

Since jµAµ and PjµAµP have the same functional form, but with p → −p, p′ →
−p′, and q→ −q, this amplitude is said to be P -symmetric.

The right Feynmann diagram in Fig. (2.8) represents one vertex of a νl − l

charged-current interaction. As in the QED case, the initial particle, the charged

lepton, has momentum p and the final one, the neutrino, has momentum p′. The

weab W− boson is represented by the Wµ field and the conserved charged weak
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current is given by [28, 38, 39]

jµ
W = −igWul (p) γµ

(

1− γ5
)

uν (p′) , (2.114)

where gW is the coupling constant in the intermediate boson theory of weak inter-

actions [39], and the spinors ul, uν represent the charged lepton and the neutrino,

respectively. The amplitude associated to this vertex is therefore given by

jµ
WWµ = −igWul (p) γµ

(

1− γ5
)

uν (p′)Wµ (2.115)

= −igWul (p) γµuν (p′)Wµ + igWul (p) γµγ5uν (p′)Wµ . (2.116)

Note that the amplitude for this process has a vector-coupling part, reminiscent of

the QED coupling, and a pseudo-vector coupling part, characteristic of the weak

interaction. The application of the parity transformation results in

Pjµ
W (p,p′)Wµ (q)P = −igWul (−p) γµuν (−p′)Wµ (−q)

+igW

[

−ul (−p) γ0γ5uν (−p′)
]

[W0 (−q)]

−igW

[

+ul (−p) γiγ5uν (−p′)
]

[−Wi (−q)]

= −igWul (p) γµ (1 + γ5)uν (p′)Wµ . (2.117)

Notice, in the last step, that the sign of γ5 has been flipped with respect to the

original amplitude, Eq. (2.115). To interpret this change, recall the form of the

helicity operators in the limit of zero mass, or equivalently in the limit where the

particle energy is much larger than its mass:

Π± ≡ 1

2
(1± γ5) . (2.118)

The result of applying the positive (negative) helicity operator on a general particle

state is a state with positive (negative) helicity, that is, one in which the spin

direction is (anti-)parallel to the momentum direction. Using these operators, we

can write Eqs. (2.115) and (2.117) as

jµ
W (p,p′)Wµ (q) = −2igwul (p) γµΠ−uν (p′)Wµ (q) , (2.119)

Pjµ
W (p,p′)Wµ (q)WµP = −2igwul (−p) γµΠ+uν (−p′)Wµ (−q) . (2.120)

In other words, the amplitude jµ
WWµ couples left-handed (negative helicity) particles

with the weak boson field, a fact that has been throughly confirmed experiment

and that is incorporated in the structure of the SM. On the other hand, after the
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Figure 2.9: Action of the time-reversal operator T on a particle with momentum p and
spin s. Both the momentum and the spin directions are flipped. Therefore,
the helicity is preserved.

application of the parity operator, we end up with a situation in which right-handed

(positive helicity) particles couple with the weak boson field, a situation which is

not observed in Nature. Therefore, weak interactions violate the P symmetry.

Time reversal

The effect of applying the time-reversal operator is to reverse the direction of the

tie component, i.e.,

t→ −t , x0 → −x0 , p0 → −p0 . (2.121)

The time-reversal operator, T , is required to reverse the direction of the momentum

of the particle and to flip its spin. In terms of the fermion annihilation operators,

this means

Tas
pT = a−s

−p , T bspT = b−s
−p , (2.122)

and similar expressions for the creation operators. Therefore, whereas the parity

transformation preserves the spin direction, but flips the helicity, the time-reversal

transformation flips the spin direction, but preserves the helicity, as shown in Figure

2.9.

Since, in quantum mechanics, the evolution of a system is performed by an

evolution operator of the form e−iHt, with H the Hamiltonian of the system, then

the T operator should conjugate all complex quantities, namely

Tz = z∗T , (2.123)

where z is any c-number. Hence the evolution operator becomes, under the action

of T ,

Te−iHt = eiHtT , (2.124)

effectively changing the sign of t. Note that there is no unitary operator able to

perform such an operation; therefore, T is not unitary. On the other hand, it can be

proved (see, e.g., [38]) that the action of T on the fermion fields can be accomplished
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by

Tψ (t,x)T =
(

γ1γ3
)

ψ (−t,x) , Tψ (t,x)T = ψ (−t,x)
(

−γ1γ3
)

. (2.125)

The action of T on some of the bilinears of the theory is as follows:

• scalar:

Tψ (t,x)ψ (t,x)T = +ψ (−t,x)ψ (−t,+x) (2.126)

• vector:

Tψ (t,x) γµψ (t,x)T =

{

+ψ (−t,x) γµψ (−t,x) , µ = 0

−ψ (−t,x) γµψ (−t,x) , µ = 1, 2, 3
(2.127)

• pseudo-scalar:

T iψ (t,x) γ5ψ (t,x)T = −iψ (−t,x) γ5ψ (−t,x) (2.128)

• pseudo-vector:

Tψ (t,x) γµγ5ψ (t,x)T =

{

+ψ (−t,x) γµγ5ψ (−t,x) , µ = 0

−ψ (−t,x) γµγ5ψ (−t,x) , µ = 1, 2, 3
(2.129)

The application of the T operator on the QED amplitude, Eq. (2.112), written

in the position space, results in

Tjµ (x, x′)Aµ (y)T = T
[

−iet,xγµψ (t′,x′)Aµ (y)
]

T

= −ieψ (−t,x) γ0ψ (−t′,x′)A0 (y)

+ie
[

−ψ (−t,x) γiψ (−t′,x′)
]

[−A0 (y)]

= −ieψ (−t,x) γµψ (−t′,x′)Aµ (y) , (2.130)

where, for the external electromagnetic field in position space, we have used

Aµ (y) =

∫

d3q eiq·yAµ (q) . (2.131)

Clearly, since the functional for of the QED amplitude is maintained under T (there

is only a change t→ −t), it is T -invariant.

Repeating the calculation for the weak interaction amplitude, Eq. (2.115), one
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obtains

Tjµ
W (x, x′)Wµ (y)T = T

[

−igWψ (t,x) γµ (1− γ5)ψ (t′,x′)Wµ (y)
]

T

= −igWψ (−t,x) γµ (1− γ5)ψ (−t′,x′)Wµ (y) .(2.132)

Therefore, weak interactions are also T -invariant.

Charge conjugation

Charge conjugation takes a fermion with a given spin orientation into an anti-fermion

with the same spin orientation, i.e.,

Cas
pC = bsp , CbspC = as

p . (2.133)

This operation can be implemented (see, e.g., [38]) by the unitary operator

Cψ (x)C = −iγ2
(

ψ†)T = −i
(

ψγ0γ2
)T

, Cψ (x)C = −i
(

γ0γ2ψ
)T

. (2.134)

Denoting by ψ1 and ψ2 two different fermions, the effect of charge conjugation

on some of the bilinears that can be built from them is:

• scalar:

Cψ1ψ2C = +ψ2ψ1 (2.135)

• vector:

Cψ1γ
µψ2C = −ψ2γ

µψ1 (2.136)

• pseudo-scalar:

Ciψ1γ
5ψ2C = +iψ2γ

5ψ1 (2.137)

• pseudo-vector:

Cψ1γ
µγ5ψ2C = +ψ2γ

µγ5ψ1 (2.138)

The application of charge conjugation on the QED amplitude, Eq. (2.112), yields

CjµAµC = C [−ieu1γ
µu2Aµ]C = −ie [−u2γ

µu1]CAµC . (2.139)

We require that CAµC = −Aµ in order for the amplitude to be C-symmetric. With

this,

CjµAµC = jµ
1↔2Aµ , (2.140)

and the amplitude is invariant under C.
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Figure 2.10: Applying charge conjugation on the ampltude for νe − e scattering (left
plot), where the neutrino is left-handed (νeL), yields the amplitude for νe-
− e scattering (right plot), with a left-handed anti-neutrino (nueL). Since
all anti-neutrinos in the Standard Model are right-handed, the C-symmetric
process of νe − e scattering does not exist and weak interactions are not
C-invariant.

In addition, charge conjugation applied on the weak amplitude, Eq. (2.115),

results in

Cjµ
WAµC = C [−igWu1γ

µ (1− γ5) u2Wµ]C

= −igWu2γ
µu1Wµ + igW [u2γ

µγ5u1] [−Wµ]

= −igWu2γ
µ (1 + γ5) u1Wµ . (2.141)

Because of the sign change of γ5, the weak amplitude is not C-invariant.

Let us consider, as an example, neutrino-electron scattering. As we mentioned

earlier, only left-handed (negative helicity) neutrinos couple with other particles in

the SM. The left Feynmann diagram in Figure 2.10 features said scattering process;

we have denoted the neutrinos by νeL. Applying the charge conjugation operator

to this process yields the diagram on the right, representing the scattering of left-

handed anti-neutrinos, νeL, and positrons. Within the SM, however, anti-neutrinos

are always right-handed; therefore, the process represented by the diagram on the

right does not occur in the SM. In other words, weak interactions are not C-invariant.

CP and CPT

Since QED is invariant under both C and P transformations, it follows that it is also

CP -invariant. On the other hand, weak processes are neither C- nor P -invariant,

but they are CP -invariant as well. We know, from Eq. (2.141), the result of charge

conjugation on jµ
WWµ; applying a parity transformation to this, we obtain

P (Cjµ
WWµC)P = −igWu2γ

µ (1− γ5) u1Wµ , (2.142)
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ψψ iψγ5ψ ψγµψ ψγµγ5ψ ψσµνψ ∂µ

P +1 −1 (−1)µ − (−1)µ (−1)µ (−1)ν (−1)µ

T +1 −1 (−1)µ (−1)µ − (−1)µ (−1)ν − (−1)µ

C +1 +1 −1 +1 −1 +1
CPT +1 +1 −1 −1 +1 −1

Table 2.4: Effect of the P , T , C, and CPT operators on the bilinears of the Standard
Model.

which, unlike Cjµ
WWµC, has the correct sign for γ5. Therefore, weak processes are

mostly CP -conserving.

The exception exists in the decays of certain neutral mesons, namely the K and

B mesons, in which CP is seen to be violated. A complete treatment of CP violation

lies outside the focus of the current work, but the interested reader is referred to the

introductory material in [40–42]. It should be mentioned, however, that T violation

is assumed to be violated as well in such processes, in such a way that CPT is so

far assumed to be an exact symmetry of Nature.

To conclude the section on discrete symmetries of the SM, we present in Table

2.4 a summary of the effect of the operators P , T , C, and CPT on the different

bilinears. Each term in the SM Lagrangian consists of one of the bilinears, coupled

to a field, or accompanied by a numerical coefficient (say, a mass). In constructing

each term, care must be taken that the CPT properties of the bilinear and of the

field are such that the resulting term is invariant under CPT transformations and,

therefore, that the whole Lagrangian is as well.

2.3 Massive neutrinos

2.3.1 Dirac masses

In the minimal SM, neutrinos are massless, i.e., their Yukawa coupling constants

are zero. However, by introducing a right-handed neutrinos in the lepton-Higgs

Yukawa sector, Eq. (2.32), we can make neutrinos massless. Denoting the left- and

right-handed lepton multiplets, respectively by

Ll =

(

νl

ll

)

L

, Rl = (l)R , Rνl
= (νl)R , (2.143)
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with l = e, µ, τ and νl = νe, νµ, ντ , we can write the new, modified, Yukawa La-

grangian as

L′
Yukawa = −Gl

[

LlRlΦ + Φ†RlLl

]

−Gνl

[

LlRνl
Φ̃ + Φ̃†Rνl

Ll

]

, (2.144)

with the Higgs field, in an arbitrary gauge, represented as

Φ (x) =

(

φa (x)

φb (x)

)

, Φ̃ (x) =

(

φ∗
b (x)

−φ∗
a (x)

)

. (2.145)

In the unitary gauge, Eq. (2.45), the Higgs field is

Φ (x) =
1√
2

(

0

v + σ (x)

)

, Φ̃ =
1√
2

(

v + σ (x)

0

)

. (2.146)

Recalling that

ψL ≡ PLψ ≡
1

2
(1− γ5)ψ , ψR ≡ PRψ ≡

1

2
(1 + γ5)ψ , (2.147)

the Yukawa Lagrangian becomes, in the unitary gauge,

L′
Yukawa = −mlll −mνl

ν lνl

−1

v
mlllσ −

1

v
mνl

ν lνlσ , (2.148)

where

ml = vGl/
√

2 , mνl
= vGνl

/
√

2 . (2.149)

The first line of Eq. (2.148) contains the mass terms for the charged lepton and the

neutrino, with respective masses ml and mνl
given by Eq. (2.149). The second line

contains interaction terms between the two fermions and the Higgs boson, σ.

The Lagrangian describing neutrino interactions can therefore written as

Lν = ν l (i/∂ −mνl
) νl + Lν

I , (2.150)

where Lν
I contains interactions terms between the neutrino and other particles of

the SM, e.g.,

Lν
I ⊃= − g

2
√

2
ν lγ

µ (1− γ5) lWµ−
g

4 cos (θW )
ν lγ

µ (1− γ5) νlZµ−
1

v
mνl

ν lνlσ . (2.151)

An interesting generalisation (see, e.g., [39]) is to replace the second bracketed
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term in Eq. (2.144) by

L′′
Yukawa,ν = −Gνlνl′

Ll′Rνl′
Φ̃−G∗

νlνl′
Φ̃†Rνl

Ll′Φ̃ , (2.152)

where G is now a Hermitian coupling matrix known as a “Yukawa matrix”. Let U

be the unitary matrix that diagonalises the Yukawa matrix, i.e.,

(

UGU †)
ij

= λiδij , (2.153)

and define a second basis of neutrino states through

νi =
∑

l

Ujlνl . (2.154)

On account of the unitarity of U , we can invert this relation to yield

νl =
∑

j

U∗
jlνj . (2.155)

Replacing Eq. (2.155) in Eq. (2.152), we obtain, in the unitary gauge,

L′′
Yukawa,ν = −(ν + σ)

2
√

2

[

Gνl′νl

(

∑

j

Ujl′νj

)

(1 + γ5)

(

∑

k

U∗
klνk

)

+G∗
νl′νl

(

∑

k

Uklνk

)

(1− γ5)

(

∑

j

U∗
jl′νj

)]

= −(ν + σ)

2
√

2

[

∑

j,k

(

Ujl′Gνl′νl
U∗

kl

)

νj (1 + γ5) νk

+
∑

j,k

(

Ujl′Gνl′νl
U∗

kl

)∗
νk (1− γ5) νj

]

= −(ν + σ)

2
√

2

[

∑

j,k

λjδjkνj (1 + γ5) νk +
∑

j,k

λkδjkνk (1− γ5) νj

]

= −
∑

j

−1√
2
λjνjνj (ν + σ) , (2.156)

where we have used the fact that the eigenvalues of any Hermitian matrix, like G,

are real. Defining the masses of the eigenstates νj as

mj = λjv/
√

2 , (2.157)
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we can finally write

L′′
Yukawa,ν =

∑

j

−mjνjνj −
1

v
mjνjνjσ . (2.158)

This generalisation of the neutrino sector naturally incorporates the idea that a

neutrino of a certain flavour is a linear combination of the different neutrino mass

eigenstates, and that they are connected by means of a unitary transformation U .

The Yukawa Lagrangian in its final form, Eq. (2.158), is written in the mass basis,

opposite to Eq. (2.150), where it is written in the flavour basis. In Chapter 4, we

will introduce neutrino oscillations, which is based precisely on a generalisation of

the type presented here.

2.3.2 Majorana neutrinos

The Dirac equation for an arbitrary fermion field ψ of mass m is

(iγµ∂µ −m)ψ = 0 . (2.159)

Expressing ψ as a combination of two chiral fields, one with negative helicity, or

“left-handed”, ψL, and the other with positive helicity, or “right-handed”, ψR, the

Dirac equation, Eq. (2.159), can be separated into the system of equations

i/∂ψL = mψR , (2.160)

i/∂ψR = mψL , (2.161)

which are coupled through the parameter m. For a massless fermion, this reduces

to

i/∂ψL = 0 , (2.162)

i/∂ψR = 0 . (2.163)

Eqs. (2.162) and (2.163) are called the Weyl equations, and the chiral fields ψL and

ψR are Weyl spinors, each of which has only two independent components.

In the SM, massless neutrinos are described the left-handed Weyl spinors. This

is an example of the fact that a two-component spinor is sufficient to describe a

massless fermion. In 1937, however, E. Majorana found that a four-component

spinor is not necessary to describe a massive particle, but rather that a Weyl spinor

can be used also in this case (provided, as we will see later, that the particle is
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electrically neutral). At the core of this lies the realisation that ψL and ψR need not

be independent. They still have, however, to conform to Eqs. (2.160) and (2.161).

Hence, these two equations must be two different ways of describing the same field,

say, ψL.

To show this, we will obtain Eq. (2.160) from Eq. (2.161). In order to do this,

we take the Hermitian conjugate of Eq. (2.161) and multiply by γ0 on the right, i.e.,

− i∂µψ
†
Rγ

µ†γ0 = mψL , (2.164)

where, as usual, ψ ≡ ψ†γ0. Using the identity γµτ = γ0γµγ0 (see, e.g., [39]), we find

i∂µψRγ
µ = mψL . (2.165)

Before continuing, note that, under charge conjugation [43], the fermion field

transforms as

ψ
C−→ ψC ≡ ξCψ

T
= −ξCγ0Cψ∗ , (2.166)

ψ
C−→ ψC ≡ −ξ∗ψTC† , (2.167)

where ξ is an arbitrary phase factor such that |ξ|2 = 1. Three properties of the C

operator which we will use are:

CγT
µC

−1 = −γµ , (2.168)

C† = C−1 , (2.169)

CT = −C . (2.170)

In order to make the structure of Eq. (2.165) similar to that of Eq. (2.160), we now

need to take the transpose of Eq. (2.165) and multiply the result on the left by the

charge conjugation operator C. Doing this and applying the property in Eq. (2.168)

yields

iγµ∂µCψ
T

R = mCψ
T

L , (2.171)

which is identical to the Weyl equation Eq. (2.160) if we set

ψR = ξCψ
T

L . (2.172)

Eq. (2.172) is the Majorana relation between the left-handed field ψL and the right-

handed4 field ψR.

4The proof of the right-handedness of ψR can be found in [43].
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From Eqs. (2.160) and (2.172), we obtain the Majorana equation for the chiral

field ψL:

i/∂ψL = mξCψ
T

L . (2.173)

By a suitable rephasing of the field, i.e.,

ψL → ξ1/2ψL , (2.174)

we can hide the arbitrary phase ξ, so that Eq. (2.173) becomes simply

i/∂ψL = mCψ
T

L . (2.175)

For the full fermion field ψ = ψL + ψR, this translates into

ψ = ψL + ψR = ψL + Cψ
T

L , (2.176)

and, therefore,

ψ = Cψ
T
. (2.177)

Choosing the charge parity of the chiral field ψL to be equal to unity, i.e., making

ξ = 1, we can write

ψC
L = Cψ

T

L . (2.178)

This implies that

ψ = ψL + ψC
L , (2.179)

and, so,

ψ = ψC . (2.180)

Eq. (2.180) implies the equality of particles and antiparticles. Therefore, only neutral

fermions can be described by a Majorana field. This is also evidenced in the fact that

the electromagnetic current, jµ ≡ qψγµψ, with q the electric charge, is identically

zero:

ψγµψ = ψCγµψC = −ψTC†γµCψ
T

= ψCγµTC†ψ = −ψγµψ = 0 . (2.181)

In the SM, the only elementary fermion that is neutral is the neutrino.

The Majorana theory is simpler and more economical than the Dirac theory; in

fact, neutrinos are Majorana particles in most theories beyond the SM. The Dirac

and Majorana descriptions differ in their phenomenological consequences only if the

neutrino is massive, a fact that we now know to be true from neutrino oscillation

experiments (see Chapter 4). In massless Dirac theory, the chiral fields νL ≡ ψL
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and νR ≡ ψR obey the coupled Weyl equations. The same is true in massless

Majorana theory, buy here νL and νR are not independent. In the massless limit,

since νL follows Eq. (2.162) in both the Dirac and Majorana descriptions, the right-

handed chiral field νR is irrelevant for neutrino interactions, i.e., the descriptions are

effectively equivalent.

Therefore, in order to distinguish between the two of them, we need to measure

effects related to the neutrino mass. The mass effect must not be of a kinematic

nature, since kinematic effects are the same for Dirac and Majorana neutrinos.

Indeed, neutrino oscillations are not affected by the Dirac or Majorana nature of

neutrinos. Currently, the most promising measurement where the nature of the

neutrino might be revealed is neutrinoless double beta decay [44, 45].

2.3.3 Majorana mass terms

A Majorana mass term is generated by a Lagrangian mass term with a chiral fermion

alone. Since neutrinos are left-handed, we will use νL. For simplicity, we will consider

only one neutrino flavour.

For a Dirac neutrino field ν = νL + νR, we can build the mass term

LD
mass = −mνν = −m (νRνL + νLνR) = −mνRνL + H.c. (2.182)

The terms proportional to νLνL and νRνR do not appear, since PRνL = 0 and

νLνL = ν†Lγ
0νL = ν†Lγ

0PLνL = ν†LPRγ
0νL = (PRνL)† γ0νL = 0 , (2.183)

and similarly for νRνR (for which PLνR = 0 is used).

The terms νRνL and νLνR are Lorentz scalars. If we wish to write a Majorana

mass term using only νL, we need to find a right-handed function of νL that trans-

forms as νL under Lorentz transformations and that can be substituted in place of

νR. Such a function is precisely the charge-conjugated field

νC
L = CνT

L , (2.184)

where, again, we have taken the arbitrary phase ξ = 1. The Majorana mass term is

therefore given by

LM
mass = −1

2
mνC

L νL + H.c. (2.185)

The full Majorana Lagrangian, containing the kinetic terms for νL and νC
L , and the
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mass terms in Eq. (2.185), is

LM =
1

2

[

νLi
↔
/∂ νL + νC

L i
↔
/∂ νC

L −m
(

νC
L νL + νLν

C
L

)

]

. (2.186)

The factor 1/2 is introduced to avoid double counting on account of the fact that

νL and νC
L are not independent.

Since

νC
L =

(

CνT
L

)†
γ0 = νT

L

(

γ0
)T
C†γ0 = −νT

LC , (2.187)

we can write the Majorana Lagrangian also as

LM =
1

2

[

νLi
↔
/∂ νL + νT

L i
↔
/∂T νT

L −m
(

−νT
LC

†νL + νLCν
T
L

)

]

. (2.188)

With the Lagrangian in this form, we can find the Euler-Lagrange equation,

∂µ
∂LM

∂ (∂µνL)
− ∂LM

∂νL
= 0 . (2.189)

Seeing that
∂LM

∂ (∂µνL)
= −1

2
iγµνL , (2.190)

∂LM

∂νL
=

1

2
iγµνL −mCνT

L , (2.191)

Eq. (2.189) becomes

i/∂νL = mCνT
L , (2.192)

which is just the Weyl equation, Eq. (2.175), that had to be satisfied.

By writing

ν = νL + νC
L , (2.193)

implying νC = ν, the Majorana Lagrangian in Eq. (2.188) can be simplified to

LM =
1

2
ν

(

i
↔
/∂ −m

)

ν . (2.194)

The factor 1/2 distinguishes the Majorana from the Dirac Lagrangian. A more

convenient form of the Majorana Lagrangian, however, is given by [43]

LM = νLi
↔
/∂ νL −

m

2

(

−νT
LC

†νL + νLCν
T
L

)

, (2.195)

in which the kinetic term has the same form as that of a massless neutrino in the
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SM. The remaining Majorana mass terms represent effects beyond the SM.

2.3.4 Dirac-Majorana mass terms

The chiral fields νL and νR are the building blocks of the neutrino Lagrangian. We

know that νL exists: it is present in the SM and enters in the charged-current weak

interaction Lagrangian. We dow not know if νR exists, but it is allowed by the

symmetries of the SM.

If only νL exists, the only mass term allowed is the Majorana mass term

LL
mass =

1

2
mLν

T
LC

†νL + H.c. , (2.196)

and the neutrino is a Majorana particle. If νR also exists, the Dirac mass term

LD
mass = −mDνRνL + H.c. (2.197)

is allowed, and implies that the neutrino is a Dirac particle. However, in addition

to the Dirac mass term, Eq. (2.197), the neutrino Lagrangian can also contain the

Majorana mass term for νL, Eq. (2.196), and the Majorana mass term

LR
mass =

1

2
mRν

T
RC

†νR + H.c. , (2.198)

for νR.

Hence, in general, it is possible to have Dirac-Majorana mass terms, i.e.,

LD+M
mass = LD

mass + LL
mass + LR

mass . (2.199)

Among all particles in the SM, only neutrinos can have the Majorana mass terms

LL
mass and LR

mass, which introduce physics beyond the SM. The Majorana mass term

in Eq. (2.196) for νL is not allowed by the SM, since it is not invariant under

SU (2)L ⊗ U (1)Y transformations. The corresponding Majorana mass term for νR,

Eq. (2.198), is, however, allowed by the symmetries of the SM, since νR is a singlet

of SU (3)C ⊗SU (2)L⊗U (1)Y . Thus, the Dirac-Majorana mass term in Eq. (2.199)

with mL = 0 is allowed within the SM, with the only addition of the right-handed

chiral field νR.

Let us define the column matrix of left-handed chiral fields

NL =

(

νL

νC
R

)

=

(

νL

CνT
R

)

. (2.200)
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Making use of Eq. (2.187), we can write the Dirac-Majorana mass terms in Eq. (2.199)

as

LD+M
mass =

1

2
NT

LC
†MNL + H.c. , (2.201)

where the antisymmetric mass matrix is defined as

M =

(

mL mD

mD mR

)

. (2.202)

From the fact that M has non-zero off-diagonal terms, it is clear that the chiral

fields νL and νR do not have a definite mass. Hence, in order to find the massive

neutrino fields, it is necessary to diagonalise the mass matrix. This can be done via

a unitary transformation of the chiral fields analogous to the one we introduced in

Subsection 2.3.1,

NL = UnL , (2.203)

where

nL =

(

ν1L

ν2L

)

(2.204)

is the column matrix of left-handed massive neutrino fields and the unitary matrix

U must be such that

UTMU =

(

m1 0

0 m2

)

, (2.205)

with real mk ≥ 0 the masses of the massive neutrinos.

Applying the transformation in Eq. (2.203), the Dirac-Majorana mass terms in

Eq. (2.201) become

LD+M
mass =

1

2

∑

k=1,2

mkν
T
kLC

†νkL + H.c. = −1

2

∑

k=1,2

mkνkνk , (2.206)

where the Majorana massive neutrino field has been defined as

νk = νkL + νC
kL = νkL + CνT

kL . (2.207)

Thus, we have shown that the existence of a Dirac-Majorana mass term implies that

massive neutrinos are Majorana particles, i.e., νk = νC
k .

We have seen that in the case of one generation with both left- and right-handed

chiral neutrino fields, νL and νR, the diagonalisation of the most general Dirac-

Majorana mass term implies the existence of two massive Majorana neutrino fields,

ν1 and ν2. Conventionally, νL and νC
R are referred to as the left-handed fields in the
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flavour basis, while ν1 and ν2 are known as the fields in the mass basis. The field

νL is active, because νL takes part in weak interactions, whereas νR is sterile, since

it is a singlet of the SM gauge symmetries.

The transformation in Eq. (2.203) implies the mixing relations

νL = U11ν1L + U12ν2L (2.208)

νC
R = U21ν1L + U22ν2L , (2.209)

so that the active and sterile neutrino fields, νL and νR, respectively, are linear

combinations of the same massive neutrino fields, ν1L and ν2L. Therefore, oscillations

between active and sterile states are, in principle, possible, though they have not

been observed. Since sterile neutrinos cannot be detected by their charged- or

neutral-current weak interactions, their existence could be inferred by measuring the

disappearance of active neutrinos, a fact that could be explained by their oscillation

into sterile ones.
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Chapter 3

The Standard Model Extension

3.1 A simple effective Lagrangian with sponta-

neous CPT breaking

In this section, we will present a simple model, introduced in [46], of an effective

field theory that extends the minimal Standard Model to include spontaneous CPT

violation. In doing so, the aim has been to introduce CPT-violating terms without

perturbing the usual gauge structure and important properties like renormalisabil-

ity. In the spirit of the Standard Model Extension which will be introduced in the

next section, we assume that the effective four-dimensional action is obtained from

a fundamental quantum field theory which satisfies CPT and Poincaré invariance

at a higher energy scale M . Motivated by string theory, where spontaneous CPT

breaking due to interactions in the Lagrangian may occur, a natural choice for M

would the Planck scale, mP l ≈ 1019 GeV. We further assume that this fundamen-

tal theory undergoes spontaneous CPT and Lorentz-symmetry breaking at a lower

energy scale, which yields the effective CPT-violating theory that we will introduce

presently.

In this first extension of the Standard Model, we will not include CPT-even

terms in the Lagrangian, that is, terms that, while preserving CPT, violate Lorentz

symmetry. These, however, are included in the full Standard Model Extension [13].

The present section will contain only CPT-odd terms, i.e., terms that violate both

Lorentz and CPT symmetry.

The simplified model considers a single massive Dirac field ψ (x) with Lagrangian

density

L = Lo − L′ , (3.1)
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where

Lo =
1

2
iψγµ

↔
∂µ ψ −mψψ (3.2)

is the free-particle Lagrangian for a fermion ψ of mass m, and L′ contains the CPT-

violating terms. Here and in the full Standard Model Extension, we ascribe the C,

P , T , and Lorentz properties to ψ as determined by the free-field theory Lagrangian

Lo, and these are used to establish the corresponding properties of L′. Seeing as the

CPT-violating effects must be small (no CPT violation has been observed so far), in

general L′ should be treated perturbatively. In [46], the possibility of re-defining C,

P , T , and Lorentz properties that encompass the full Lagrangian L is considered.

We will not conform to any particular fundamental theory that exhibits spon-

taneous CPT invariance, like, for instance, string theory. Rather, we will introduce

the effects in a general manner: it is only assumed that the spontaneous violation of

CPT originates from nonzero expectation values, 〈T 〉, of one or more Lorentz tensors

T . Hence, L′ is an effective four-dimensional Lagrangian arising from a fudamental

theory that allows for Poincaré-conserving interactions of ψ with T .

Every CPT-breaking contribution to L must have mass dimension four. There-

fore, in the effecive Lagrangian, each combination of fields and derivatives of di-

mension greater than four must be accompanied by a weighting factor of a negative

power −k of at least one mass scale M ≫ m, with m the natural scale of the effective

theory. We can add to L′ possible terms with different suppressions k = 0, 1, 2, . . ..

The leading terms with k ≤ 2 have the form

L′ ⊃ λ

Mk
〈T 〉 · ψΓ (i∂)k ψ + H.c. , (3.3)

where we have omitted Lorentz indices for simplicity. The parameter λ is a dimen-

sionless coupling constant, (i∂)k is a four-derivative acting on some combination of

the fermion fields, and Γ is some combination of gamma matrices. Evidently, terms

with k ≥ 3 and with more quadratic fermion factors are allowed, but these are

further suppressed.

The contributions to L′ are fermion bilinears involving 4 × 4 spinor matrices

that are combinations of the Dirac γ matrices. Out of the 16 basis elements of the

gamma-matrix algebra, only those producing CPT-violating bilinears are considered

in L′.

For the case k = 0, there are two CPT-violating terms, i.e.,

L′
a ≡ aµψγ

µψ , (3.4)

L′
b ≡ bµψγ5γ

νψ , (3.5)
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whereas for the case k = 1, there are three possibilities:

L′
c ≡

1

2
icαψ

↔
∂α ψ , (3.6)

L′
d ≡

1

2
dαψγ5

↔
∂α ψ , (3.7)

L′
e ≡

1

2
ieα

µνψσ
µν

↔
∂α ψ , (3.8)

where A
↔
∂µ B ≡ A∂µB − (∂µA)B. The coefficients aµ, bµ, cα, dα, and eα

µν must be

real on account of their origins in the spontaneous CPT symmetry breaking and of

the presumed hermiticity of the fundamental theory [46]. These quantities, which act

as effective coupling constants, are combinations of fundamental coupling constants,

mass parameters, and coefficients that originate in the decomposition of Γ. Due to

their interpretation as effective coupling constants, aµ, bµ, cα, dα, and eα
µν are CPT-

invariant so that, together with the standard CPT transformation properties of ψ

(see Chapter 2), the terms in Eqs. (3.4)–(3.8) break CPT.

Allowing k = 0 terms from Eqs. (3.4) and (3.5) into L′ results in

L =
1

2
iψγµ

↔
∂µ ψ − aµψγ

µψ − bµψγ5γ
µψ −mψψ . (3.9)

The associated Euler-Lagrange equation of motion is a generalised Dirac equation:

(iγµ∂µ − aµγ
µ − bµγ5γ

µ −m)ψ = 0 , (3.10)

and, multiplying this equation by itself with the opposite sign mass, we obtain the

generalised Klein-Gordon equation that each spinor component follows, i.e.,

[

(i∂ − a)2 − b2 −m2 + 2iγ5σ
µνbµ (i∂ν − aν)

]

ψ = 0 . (3.11)

The CPT-violating terms in Eq. (3.9) do not affect the global U (1)em gauge,

so the current jµ = ψγµψ and associated electric charge Q ≡
∫

d3xj0 are still

conserved. It is stated in [46] that L is invariant under translations, as long as

the tensor expectation values are taken as constants. Hence, the conserved energy-

momentum tensor Θµν has the standard form (see, e.g., [38])

Θµν =
1

2
ψγµ

↔
∂

ν

ψ , (3.12)

with

∂µΘµν = 0 , (3.13)
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and a corresponding conserved four-momentum P µ ≡
∫

d3xΘ0µ. The conservation

of energy and momentum, however, does not necessarily imply conventional be-

haviour under boosts or rotations; in particular, the behaviour under Lorentz trans-

formations, i.e., rotations and boosts, will be different due to the CPT-violating

contributions.

In special relativity, conventional Lorentz transformations relate observations

made in two inertial frames with different orientations and velocities. These are

known as “observer Lorentz transformations”. Another type of transformation re-

lates the properties of two particles with different spin direction or momentum within

a specific inertial frame with a certain orientation. We call these “particle Lorentz

transformations”. While observer Lorentz transformations amount to coordinate

changes, particle Lorentz transformations involve boosts on localised fields and par-

ticles (but not on background fields). For free particles under usual circumstances,

these two types of transformations are inversely related. Yet a third type of Lorentz

transformations boosts all particles and fields, including background ones, simulta-

neously. They are called (inverse) active Lorentz transformations. For free particles,

they coincide with particle Lorentz transformations.

It is relevant to distinguish between observer and particle transformations in the

context of the present model, since the CPT-violating terms in Eq. (3.9) can be

thought of as arising from constant background fields aµ and bµ. Under observer

Lorentz transformations, these eight parameters transform as two four-vectors, whereas,

under particle Lorentz transformations, they transform as eight scalars. Since they

are coupled to currents that transform as four-vectors under both types of trans-

formations, this means that L still preserves observer Lorentz symmetry, but the

particle Lorentz group is partly broken (the terms from Lo are still invariant under

particle Lorentz transformations).

3.2 The Standard Model Extension

Unlike the model in the previous section, where only CPT-odd terms were consid-

ered in the context of a single massive fermion field, the Standard Model Extension

(SME), introduced in the seminal paper by D. Colladay and V.A. Kostelecký [13],

considers Lorentz violating terms, both CPT-odd and CPT-even, in all of the sec-

tors of the minimal SU (3)⊗SU (2)⊗U (1) Standard Model: fermion (both leptons

and quarks, and three generations for each), gauge, and Higgs sectors. The goal of

the SME is to provide a single encompassing theoretical framework with which to

describe the numerous and diverse tests of Lorentz and CPT invariance that exist
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and that can be performed. Again, the SME, with its Lorentz-violating terms, is

assumed to be the low-energy effective limit of a fundamental Lorentz-conserving

theory with a higher energy scale, and Lorentz and CPT symmetries are assumed

to be spontaneously broken. As stated in [13], in addition to in addition to the

desirable features of energy-momentum conservation, observer Lorentz invariance,

conventional quantisation of the fields, hermiticity, and the exptected microcausal-

ity and positivity of the energy, the SME maintains gauge invariance and power-

counting renormalisability.

The SME is built by adding to the SM all possible Lorentz-violating terms that

could arise from spontaneous symmetry-breaking, but that preserve the SU (3) ⊗
SU (2)⊗ U (1) gauge invariance and power-counting renormalisability. We will de-

note the left- and right-handed lepton and quark multiplets by

LA =

(

νA

lA

)

L

, RA = (lA)R , (3.14)

QA =

(

uA

dA

)

L

, UA = (uA)R , DA = (dA)R , (3.15)

where

ψL ≡
1

2
(1− γ5)ψ , ψR ≡

1

2
(1 + γ5)ψ , (3.16)

as usually defined. The index A = 1, 2, 3 labels the flavour, such that lA ≡ (e, µ, τ),

νA ≡ (νe, νµ, ντ ), uA ≡ (u, c, t), and dA ≡ (d, s, b). The Higgs doublet, φ, will be

represented in the unitary gauge as

φ =
1√
2

(

0

rφ

)

, (3.17)

with φc the conjugate doublet. The gauge fields associated to the SU (3), SU (2),

and U (1) symmetries are denoted by Gµ, Wµ, and Bµ, respectively, with corre-

sponding field strengths Gµν , Wµν , and Bµν (see, e.g., [28]), the first two of which

are Hermitian adjoint matrices, and the latter, a Hermitian singlet. The correspond-

ing coupling constants are g3, g, and g′. The electromagnetic U (1) charge q and

the Weinberg angle θW are still defined through q = g sin (θW ) = g′ cos (θW ). The

covariant derivative is denoted by Dµ and, as before, A
↔
∂µ B ≡ A∂µB − (∂µA)B.

Yukawa couplings for leptons, up-type quakrs and down-type quarks are denoted,

respectively, by GL, GU , and GD.

Following the presentation in [13], we will first provide the SM terms for the

48



different particles sectors:

Llepton =
1

2
iLAγ

µ
↔
Dµ LA +

1

2
iRAγ

µ
↔
Dµ RA , (3.18)

Lquark =
1

2
iQAγ

µ
↔
Dµ QA +

1

2
iUAγ

µ
↔
Dµ UA +

1

2
iDAγ

µ
↔
Dµ DA , (3.19)

LYukawa = −
[

(GL)AB LAφRB + (GU)AB QAφ
cUB + (GD)AB QAφDB

]

+H.c. , (3.20)

LHiggs = (Dµφ)†Dµφ+ µ2φ†φ− λ

3!

(

φ†φ
)2

, (3.21)

Lgauge = −1

2
Tr (GµνG

µν)− 1

2
Tr (WµνW

µν)− 1

4
BµνB

µν . (3.22)

The fermion sector of the SME can be divided into CPT-even and CPT-odd

Lagrangians:

LCPT-even
lepton =

1

2
i (cL)µνAB LAγ

µ
↔
D

ν

LB +
1

2
i (cR)µνAB RAγ

µ
↔
D

ν

RB , (3.23)

LCPT-odd
lepton = − (aL)µAB LAγ

µLB − (aR)µAB RAγ
µRB , (3.24)

LCPT-even
quark =

1

2
i (cQ)µνAB QAγ

µ
↔
D

ν

QB +
1

2
i (cU)µνAB UAγ

µ
↔
D

ν

UB

+
1

2
i (cD)µνAB DAγ

µ
↔
D

ν

DB , (3.25)

LCPT-odd
quark = − (aQ)µAB QAγ

µQB − (aU)µAB UAγ
µUB − (aD)µAB DAγ

µDB . (3.26)

The coupling coefficients cµν and aµ are assumed to be Hermitian in generation

space, with cµν dimensionless and aµ having dimensions of mass. The coefficients

cµν can have both symmetric and antisymmetric parts, but can be assumed to be

traceless.

The SME also considers Lorentz-violating terms in the Yukawa sector; the usual

gauge structure is maintained, but gamma matrices are introduced. All of the

contributions are CPT-even:

LCPT-even
Yukawa = −1

2

[

(HL)µνAB LAφσ
µνRB + + (HU)µνAB QAφ

cσµνUB

+ (HD)µνAB QAφσ
µνDB

]

+ H.c. (3.27)

The coefficients Hµν are dimensionless and antisymmetric, and, like the Yukawa

couplings, they are not necessarily Hermitian in generation space.
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The Higgs sector receives both a CPT-even and a CPT-odd contribution:

LCPT-even
Higgs =

1

2
(kφφ)

µν (Dµφ)†Dνφ+ H.c.

−1

2
(kφB)µν φ†φBµν −

1

2
(kφW )µν φ†Wµνφ , (3.28)

LCPT-odd
Higgs = i (kφ)

µ φ†Dµφ+ H.c. (3.29)

The dimensionless coefficient kφφ in Eq. (3.28) can have symmetric real and anti-

symmetric imaginary parts. The rest of the coefficients have dimensions of mass and

must be real antisymmetric. The coefficient kφ in Eq. (3.29) also has dimensions of

mass and can be an arbitrary complex number.

The gauge sector of the SME also has CPT-even and CPT-odd contributions:

LCPT-even
gauge = −1

2
(kG)κλµν Tr

(

GκλGµν
)

− 1

2
(kW )κλµν Tr

(

W κλW µν
)

−1

4
(kB)κλµν B

κλBµν , (3.30)

LCPT-odd
gauge = (k3)κ ǫ

κλµν Tr

(

GλGµν +
2

3
ig3GλGµGν

)

+ (k2)κ ǫ
κλµν Tr

(

WλWµν +
2

3
igWλWµWν

)

+ (k1)κ ǫ
κλµνBλBµν + (k0)κB

κ . (3.31)

In Eq. (3.30), the dimensionless coefficients kG,W,B are real. In Eq. (3.31), the coeffi-

cients k1,2,3 are real and have dimensions of mass, while k0 is real and has dimensions

of mass cubed. According to [13], if any of these CPT-odd terms do indeed appear,

they would generate instabilities in the minimal SM. They are associated with neg-

ative contributions to the energy and, in addition, the k0 term would generate a

linear instability in the potential. Hence, it would seem desirable that k0,1,2,3 are

all identically zero. However, radiative corrections (e.g., from the fermion sector)

might generate nonzero values. However, it turns out that the structure of the SME

is such that no corrections arise, at least to one loop.

Note that field redefinitions are able to eliminate Lorentz-breaking terms [13,46].

Alternatively, some Lorentz-violating terms may be absorbed into others, provided

the terms that are being grouped have the same discrete-symmetry properties. The

issue of electroweak SU (3)⊗ SU (2)⊗U (1) symmetry breaking within the SME is

briefly examined in [13], but this analysis lies beyond the scope of the current work.

No Lorentz violation has been observed so far, but there are indications of
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nonzero values of the SME parameters with weak confidence levels. Ref. [47] contains

the latest experimental bounds on the SME Lorentz-violating parameters.

3.2.1 Extended QED

A generalised quantum electrodynamics (QED) including Lorentz-violating terms

can be extracted from the SME. Since QED has been tested to high precision in

various kinds of experiments, it might be possible to tightly constraing the Lorentz-

violating coefficients. A direct way to obtain QED from the full SME is the fol-

lowing [13]. After SU (2) ⊗ U (1) symmetry breaking, set to zero the fields Gµ for

gluons, W±
µ and Z0

µ for weak bosons, and the Higgs field (but not the Higgs expecta-

tion value, since this generates the fermion masses). With this, the only remaining

boson is the photon and the only remaining interaction is the electromagnetic one.

Since neutrinos are neutral, they decouple and can be discarded. The resulting

theory describes the electromagnetic interaction of quarks and charged leptons, in-

cluding CPT-violating terms inherited from the full SME. Features from the SME

are also inherited by the extended QED: U (1) gauge invariance, energy-momentum

conservation, observer Lorentz invariance, hermiticity, microcausality, positivity of

the energy, and power-counting renormalisability.

Denoting the conventional four-component lepton fields by lA and their masses

by mA, with A = 1, 2, 3 corresponding, respectively, to the electron, muon, and tau,

then the standard QED Lagrangian can be written as

LQED
lepton-photon =

1

2
ilAγ

µ
↔
Dµ lA −mAlAlA −

1

4
FµνF

µν , (3.32)

where Dµ ≡ ∂µ + iqAµ and the field strength is defined as usual by Fµν ≡ ∂µAν −
∂νAµ.

Extended QED inherits both CPT-even and CPT-odd terms from the full SME:

LCPT-even
lepton = −1

2
(Hl)µνAB lAσ

µν lB +
1

2
i (cl)µνAB lAγ

µ
↔
D

ν

lB

+
1

2
i (dl)µνAB lAγ5γ

µ
↔
D

ν

lB , (3.33)

LCPT-odd
lepton = − (al)µAB lAγ

µlB − (bl)µAB lAγ5γ
µlB . (3.34)

In Eq. (3.33), the coupling coefficients (Hl)µνAB are antisymmetric in the spacetime

indices, Hermitian in generation space, and have dimensions of mass. Their origin is

in the coefficients of Eq. (3.27) after electroweak symmetry breaking. The Hermitian

dimensionless couplings (cl)µνAB and (dl)µνAB can be taken traceless; they originate
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from Eq. (3.23). The coefficients (al)µAB and (bl)µAB are Hermitian have dimensions

of mass; they originate from Eq. (3.24). As stated in [13], imposing individual

lepto-number conservation in LCPT-even
lepton and LCPT-odd

lepton would render all the coupling

coefficients diagonal in flavour space.

The pure-photon sector comprises one CPT-even term and one CPT-odd term:

LCPT-even
photon = −1

4
(kF )κλµν F

κλF µν , (3.35)

LCPT-odd
photon = +

1

2
(kAF )κ ǫκλµνA

λF µν . (3.36)

The dimensionless couplings (kF )κλµν and (kAF )κλµν are real and arise, respectively,

from Eqs. (3.30) and (3.31).

Certainly, the extended QED also has a quark sector, which has the same form

as Eqs. (3.32), (3.33), and (3.34), but with six quarks replacing the three leptons.

Hence, twice the number of Lorentz-violating parameters appear in the quark sector.

The extended QED of leptons and photons, however, suffices for certain applications

where the initial and final asymptotic states are only leptons and photons, and

where weak and atrong interactions are negligible. Examples include the precise

measurement of g − 2 and the decay µ→ eγ.

3.2.2 Extended QED with only electrons, positrons, and

photons

Another limiting case of SME is extended QED with only electrons, positrones, and

photons, which can be directly obtained from the extended QED of leptons and

photons by setting the muon and tau fields to zero. Denoting the electron field by

ψ and its mass by me, the usual QED Lagrangian for electrons and photons is

LQED
electron =

1

2
iψγµ

↔
Dµ ψ −meψψ −

1

4
FµνF

µν . (3.37)

The pure-photon, Lorentz-violating, terms are still given by Eqs. (3.35) and (3.36),

but the corresponding electron terms become

LCPT-even
electron = −1

2
Hµνψσ

µνψ +
1

2
icµνψγ

µ
↔
D

ν

ψ

+
1

2
idµνψγ5γ

µ
↔
D

ν

ψ , (3.38)

LCPT-odd
electron = −aµψγ

µψ − bµψγ5γ
µψ . (3.39)
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The real coupling coefficients a, b, c, d, and H are the (1, 1)-flavour components

of the corresponding coefficients in the extended QED of leptons and photons, and

so inherit their dimensions and Lorentz-transformation properties. The extended

QED model for electrons and photons could also be used to study free composite

fermions, such as nucleons, atoms, or ions, after making the necessary replacement

of the mass value.

There are other Lorentz-violating terms, not contained in Eqs. (3.35)–(3.39),

but that also preserve U (1) symmetry, renormalisability, and that have an origin in

spontaneous Lorentz breaking. These terms, all of which are CPT-odd, cannot be

obtained by a reduction of the SME:

Lextra
electron =

1

2
ieµψ

↔
D

µ

ψ − 1

2
fµψγ5

↔
D

µ

ψ +
1

4
igλµνψσ

λµ
↔
D

ν

ψ , (3.40)

with the couplings eµ, fµ, and gλµν real and dimensionless. These terms are absent

from the previous expressions because they are incompatible with the electroweak

structure. However, it is possible that nonrenormalisable higher-dimensional opera-

tors that are invariant under the SU (2)⊗ U (1) symmetry and involving the Higgs

field generate the terms in Eq. (3.40) after the Higgs acquires a v.e.v.
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Chapter 4

Neutrino oscillations

The standard mechanism that explains neutrino flavour transitions makes use of

two different bases: the basis of neutrino mass eigenstates, which have well-defined

masses, and the basis of neutrino interaction states –the flavour basis– which are

the ones that take part in weak processes such as W decay. The two bases are

connected through a unitary transformation, so that we can write each one of the

flavour states |να〉 as a linear combination of the mass eigenstates |νi〉, i.e.,

|να〉 =
∑

i

[U0]
∗
αi |νi〉 , (4.1)

where the coefficients [U0]αi are components of the unitary mixing matrix that repre-

sents the transformation. The mass eigenstates |νi〉 are eigenstates of the oscillation

Hamiltonian H , i.e.,

H|νi〉 = Ei|νi〉 , (4.2)

and satisfy Schrödinger’s equation,

i
∂

∂t
|νi〉 = H|νi〉 . (4.3)

Taking H as time-independent, then, the mass eigenstates propagate as

|νi (L)〉 = e−iHL|νi〉 = e−iEiL|νi〉 , (4.4)

where we have replaced L ≈ t given that neutrinos travel at virtually c.

If the neutrinos propagate in the vacuum, we can write the energy of the i-th

mass eigenstates that makes up |να〉 as

Ei =
√

|p|2 +m2
i ≃ |p|+

m2
i

2|p| , (4.5)
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where we have assumed that all of the mass eigenstates share the same momentum,

|p|, and, on account of the relativistic nature of neutrinos, we have obtained the last

expression in the limit mi ≪ |p|. Furthermore, because neutrino masses are small,

we can approximate E ≈ |p|. We can write the Hamiltonian, in the mass basis, as

Hm = diag (E1, E2, . . .)

≃







|p|
|p|

. . .






+







m2
1

2E
m2

2

2E

. . .






→







m2
1

2E
m2

2

2E

. . .






, (4.6)

where we have discarded the part proportional to the identity because it results in

a global phase.

The evolved neutrino eigenstate, Eq. (4.4), can thus be written as

|νi (L)〉 = e−i|p|Le−i
m2

i
2E

L|νi〉 , (4.7)

and we can discard the global phase e−i|p|L because it is common to all the mass

eigenstates that make up |να〉.
From Eq. (4.1), the evolved state of a neutrino that is created with flavour α is

|να (L)〉 =
∑

i

[U0]
∗
αi |νi (L)〉 =

∑

i

[U0]
∗
αi e

−i
m2

i
2E

L|νi〉 . (4.8)

Now we invert Eq. (4.1) to yield

|νi〉 =
∑

β

[U0]βi |νβ〉 , (4.9)

where the sum is over all neutrino flavours. Replacing this in Eq. (4.8) results in

|να (L)〉 =
∑

i

∑

β

[U0]
∗
αi e

−i
m2

i
2E

L [U0]βi |νβ〉 . (4.10)

The probability amplitude for the να → νβ transition is therefore

〈νβ|να (L)〉 =
∑

i

[U0]
∗
αi [U0]βi e

−i
m2

i
2E

L , (4.11)

and hence the probability is

Pαβ ≡ Pνα→νβ
= |〈νβ|να (L)〉|2 =

∣

∣

∣

∣

∣

∑

i

[U0]
∗
αi [U0]βi e

−i
m2

i
2E

L

∣

∣

∣

∣

∣

2

. (4.12)
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We have seen that, because of the mixing between mass and flavour eigenstates,

Eq. (4.1), a neutrino created with a definite flavour α will, in general, become a

superposition of states of different flavour as it propagates, so that a detector placed

in its way can, with a certain probability, register it as having a different flavour from

the one that it was created with. Since the probability turns out to be oscillatory, the

phenomenon of neutrino flavour transitions is also known as “neutrino oscillations”.

4.1 Two–neutrino oscillations

Let us consider first two-generation mixing, such as occurs in oscillations of neutrinos

from the Sun, where the two intervening flavours are solely electron- and muon-

neutrinos.

4.1.1 Standard derivation of vacuum oscillations

In a two–neutrino system, the transformation matrix between mass and flavour

eigenstates is a real 2× 2 rotation matrix, parametrised by the rotation, or mixing,

angle, θ:

U =

(

cos (θ) sin (θ)

− sin (θ) cos (θ)

)

. (4.13)

Considering the system of, say, the flavour neutrinos (|νe〉, |νµ〉), we need the two

mass eigenstates (|ν1〉, |ν2〉), to define them as the linear combinations

(

|νe〉
|νµ〉

)

= U

(

|ν1〉
|ν2〉

)

⇒
{

|νe〉 = cos (θ) |ν1〉+ sin (θ) |ν2〉
|νµ〉 = − sin (θ) |ν1〉+ cos (θ) |ν2〉

. (4.14)

In this case, the Hamiltonian, in the mass basis, is

Hm
2 =

(

m2
1

2E
0

0
m2

2

2E

)

. (4.15)

The probability amplitude, Eq. (4.11), associated to the transition νe → νµ is

hence

〈νµ|νe (L)〉 = Ue1Uµ1e
−i

m2
1

2E
L + Ue2Uµ2e

−i
m2

2
2E

L

= cos (θ) sin (θ)

(

e−i
m2

2
2E

L − e−i
m2

1
2E

L

)

. (4.16)
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Figure 4.1: Oscillation probabilities in the vacuum within the two-neutrino formalism,
Eq. (4.20), as functions of the quotient L/E, with the propagated distance,
L, in km, and the neutrino energy, E, in GeV. The dashed black lines are cal-
culated using the central values (Eq. (4.52)) of the mixing angle and squared-
mass difference that corresponds to each case:

(

θ12,∆m
2
21

)

,
(

θ13,∆m
2
31

)

, and
(

θ23,∆m
2
32

)

for the left, central, and right plots, respectively. We have as-
sumed a normal mass hierarchy, so that ∆m2

32 ≡ ∆m2
31−∆m2

21. The orange
regions are generated by allowing the mixing angle correspondng to each plot
to vary within its current 3σ experimental bounds, as given by Eq. (4.52).

Therefore, the associated probability, Eq. (4.12) is

Peµ (E,L) =
1

4
sin2 (2θ)

(

2 + e−i∆m2

2E
L − ei∆m2

2E
L
)

=
1

2
sin2 (2θ)

[

1− cos

(

∆m2

2E
L

)]

= sin2 (2θ) sin2

(

∆m2

4E
L

)

, (4.17)

with ∆m2 ≡ m2
2 −m2

1, which is the final expression we were seeking.

In general, for any system of two neutrino flavours, (|να〉, |νβ〉), we can write the

transition (να → νβ) and survival (να → νβ) probabilities as

Pαβ (E,L) = sin2 (2θ) sin2

(

∆m2

4E
L

)

, α 6= β , (4.18)

Pαα (E,L) = 1− Pαβ (E,L) , (4.19)

which is the standard expression for standard two-neutrino mixing. Inserting the

necessary factors of ~ and c, we can write

Pαβ (E,L) = sin2 (2θ) sin2

(

1.27
∆m2

[

eV2
]

E [GeV]
L [km]

)

, α 6= β . (4.20)

57



Figure 4.1 shows plots of the vacuum oscillation probabilities Peµ, Peτ , and Pµτ

as functions of L/E, calculated within the two–neutrino formalism, as given by

Eq. (4.20). The dashed black lines are calculated using the central values (Eq. (4.52))

of the mixing angle and squared-mass difference that corresponds to each case:

(θ12,∆m
2
21), (θ13,∆m

2
31), and (θ23,∆m

2
32) for the left, central, and right plots, respec-

tively. We have assumed a normal mass hierarchy, so that ∆m2
32 ≡ ∆m2

31 −∆m2
21.

The orange regions are generated by allowing the mixing angle correspondng to each

plot to vary within its current 3σ experimental bounds, as given by Eq. (4.52).

4.1.2 Derivation in the flavour basis

An alternative, but completely equivalent, derivation of the oscillation probabilty

starts out by writing the evolved state of a neutrino created with flavour α directly

as

|να (L)〉 = e−iHf
2 L|να〉 , (4.21)

with Hf
2 the oscillation Hamiltonian in the flavour basis. This can be obtained from

the Hamiltonian in the mass basis, Hm
2 , by a similarity transformation with the

mixing matrix U . If the Hamiltonian in the flavour basis is non-diagonal, there will

be flavour transitions.

First, however, it will be useful to write Hm
2 in a more familiar form, by subtract-

ing and adding multiples of the identity. We have the freedom to do this without

affecting the final result because multiples of the identity will only contribute as

global phases in the evolved neutrino state, which disappear when the absolute

value of the probability amplitude is calculated. By subtracting first −m2
1/2E and

then ∆m2/4E, and multiplying the result by −1 (this last step just for conventional

purposes), we end up with

Hm
2 =

(

∆m2

4E
0

0 −∆m2

4E

)

. (4.22)

Hence, the Hamiltonian in the flavour basis is

Hf
2 = UHm

2 U
†

=

(

cos (θ) sin (θ)

− sin (θ) cos (θ)

)

∆m2

4E

(

1 0

0 −1

)(

cos (θ) − sin (θ)

sin (θ) cos (θ)

)

=
∆m2

4E

(

− cos (2θ) sin (2θ)

sin (2θ) cos (2θ)

)

, (4.23)
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where, in the last step, we have multiplied the result by −1, to follow convention.

Considering a νe − νµ system, the neutrino state is described by the column

vector

|ν (L)〉 =

(

fe (L)

fµ (L)

)

, (4.24)

and it satisfies the Schrödinger equation

i
∂

∂t
|ν (t)〉 = Hf

2 |ν (t)〉 , (4.25)

with (fe (0) , fµ (0)) = (1, 0) if the neutrino was created as a νe and (fe (0) , fµ (0)) =

(0, 1) if it was created as a νµ.

Now, in order to calculate the oscillation probability given the Hamiltonian in

the flavour basis, Hm
2 , it is necessary to change it into the mass basis by using an

inverse similarity transformation,

Hm
2 = U †Hf

2U . (4.26)

With this, we just need to repeat the derivation in Section 4.1.1 to recover the

probability, Eq. (4.17).

So far, it may seem pointless to write the Hamiltonian in the flavour basis only to

change it back into the mass basis in order to obtain the probability. However, notice

that in weak processes, the neutrino states that interact are flavour states, not mass

eigenstates. Therefore, when in the flavour basis, additional neutrino interactions

can be introduced by directly adding extra terms to the vacuum Hamiltonian. When

this augmented Hamiltonian is diagonalised, the energy eigenvalues Ei will be mod-

ified with respect to the vacuum eigenvalues, and so will the oscillation probability.

In the next section, we will illustrate this for neutrino interactions with matter.

An alternative, more general derivation of the two-neutrino oscillation probabil-

ity, for an arbitrary time-independent Hamiltonian (in the flavour basis) is presented

in Appendix A.

4.1.3 Oscillations in matter

When a neutrino beam traverses matter, the oscillation probability will be affected

by the forward scattering of neutrinos off the particles they encounter on their

way. Within the Standard Model, the scattering can be mediated either by W

exchange with an electron, if and only if the neutrinos are νe, or by Z exchange

with an electron, proton or neutron, which occurs for all flavours. Both interactions
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contribute an extra energy which, in lowest perturbation order, will be proportional

to GF .

In νe − e scattering, the extra interaction potential VW will be proportional to

Ne, the number of electrons per unit volume. It is straightforward to find that (see,

e.g., [43]),

VW = +
√

2GFNe (4.27)

for a neutrino beam. For an anti-neutrino beam, the expression for VW has the

opposite sign.

Assuming that the medium is electrically neutral, i.e., that the electron and

proton densities are equal, then the contributions to coherent forward scattering off

electrons and protons will cancel out. Thus, the flavour-independent Z-exchange

contribution VZ depends only on Nn, the number of neutrons per unit volume, and

is given by

VZ = −
√

2

2
GFNn . (4.28)

Again, the sign of VZ is flipped for anti-neutrino interactions.

As in the vacuum case, neutrino oscillations in matter can be described by a

Schrödinger equation in the flavour basis, Eq. (4.25). Considering a νe− νµ system,

the neutrino state is described by the column vector

|ν (t)〉 =

(

fe (t)

fµ (t)

)

, (4.29)

and the Schrödinger equation is

i
∂

∂t
|ν (t)〉 = HM

2 (t) |ν (t)〉 . (4.30)

The total Hamiltonian is given by

HM
2 = Hvac

2 + VW

(

1 0

0 0

)

+ VZ

(

1 0

0 1

)

, (4.31)

with Hvac
2 the vacuum Hamiltonian given by Eq. (4.23). Note that VW has its

only non-zero component in the upper left corner, signifying that only in νe − e

interactions are W exchanged, whereas the contribution from VZ affects both νe and

νµ interactions. The time dependence of the matter Hamiltonian comes from the

time dependence of the potentials VW and VZ , in view of the possibility that the

electron and neutron densities are not homogeneous within the medium traversed

by the neutrino.
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Since the third term on the right in Eq. (4.31) is proportional to the identity, it

will result in a global phase in the oscillation amplitude and hence we can discard

it already at this point. Therefore,

HM
2 = Hvac

2 +
VW

2

(

1 0

0 1

)

+
VW

2

(

1 0

0 −1

)

, (4.32)

where we have split the VW contribution into a part that is proportional to the

identity and a part that is not. Again, we can drop the part former and obtain,

finally,

HM
2 = Hvac

2 +
VW

2

(

1 0

0 −1

)

(4.33)

=
∆m2

4E

(

− (cos (2θ)− x) sin (2θ)

sin (2θ) (cos (2θ)− x)

)

, (4.34)

with

x ≡ VW/2

∆m2/4E
=

2
√

2GFNeE

∆m2
(4.35)

measuring the relative importance of the matter effects with respect to the vacuum

contribution.

If we define

∆m2
M ≡ ∆m2

√

sin2 (2θ) + (cos (2θ)− x)2 (4.36)

and

sin2 (2θM) ≡ sin2 (2θ)

sin2 (2θ) + (cos (2θ)− x)2 , (4.37)

then we can write the matter Hamiltonian as

HM
2 =

∆m2
M

4E

(

− cos (2θM) sin (2θM)

sin (2θM) cos (2θM )

)

. (4.38)

Thus, HM
2 has the same form as Hvac

2 , with the replacementes ∆m2 → ∆m2
M and

θ → θM . Hence, we can interpret ∆m2
M and θM as the effective mass-splitting and

mixing angle in matter, respectively.

In a homogeneous medium, where Ne is constant, the νe → νµ oscillation prob-

ability has the same functional form as the vacuum case, with the replacements

∆m2 → ∆m2
M and θ → θM , i.e.,

PM,eµ (E,L) = sin2 (2θM) sin2

(

∆m2
M

4E
L

)

. (4.39)

61



0 20 40 60 80 100

N
e
 / N

Av
 [cm

-3
]

0
10
20
30
40
50
60

70
80

90

θ M

0 20 40 60 80 100

N
e
 / N

Av
 [cm

-3
]

0

2

4

6

8

∆m
M

2  [×
 1

0-6
 e

V
2 ]

N
e

R
 / N

Av
N

e

R
 / N

Av

∆m
M

2

Figure 4.2: Effective mixing angle (left) and mass splitting (right) in the presence of
matter effects, as functions the electron number density, Ne. For illustration
purposes, we have set ∆m2 = 7× 10−6 eV2, sin (θ) = 10−3 and E = 1 MeV.
NAv is Avogadro’s number.

This may be the case, for instance, in a long-baseline neutrino experiment, where a

neutrino beam originated at an accelerator traverses the crust of the Earth for 1000

km before reaching the detector.

It is interesting to note that, for certain values of Ne, there is a resonance that

enforces maximal mixing between the neutrinos, i.e., θM = π/4, regardless of the

value of the vaccum value of the angle, θ. We can see this by writing

tan (2θM) =
tan (2θ)

1− x/ cos (2θ)
, (4.40)

and noting that the resonance occurs when

1− x/ cos (2θ) = 0 , (4.41)

or, equivalently, when, for a fixed energy E, the electron number density is

NR
e =

∆m2 cos (2θ)

2
√

2GFE
. (4.42)

When this resonance condition is fulfilled, the effective mass splitting and mixing

angle are, from Eqs. (4.36) and (4.37), respectively,

∆m2
M,R = ∆m2 sin (2θ) , θM,R = π/4 . (4.43)

This effect is known as the MSW effect, after Mikheev, Smirnov, and Wolfenstein.

In ordinary matter, x is positive, so a resonance can only occur if θ < π/4, in order
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for cos (2θ) > 0. Hence, oscillations in matter are different for neutrinos and anti-

neutrinos, for which the sign of the potential is flipped: for the former, there can

only be a resonance if θ < π/4 while, for the latter, there can only be one if θ > π/4.

Figure 4.2 shows the variation of θM (left plot) and ∆m2
M (right plot) with

Ne/NAv, with NAv Avogadro’s number. To produce these plots, we have set the

vacuum mixing parameters at ∆m2 = 10−6 eV2 and sin (θ) = 10−3, and the neutrino

energy at 1 MeV. The vertical, dashed, lines indicate where the MSW resonance

occurs, at Ne = NR
e . At this value, θM = π/4 and ∆m2

M reaches its minimum value.

Scenarios with an inhomogeneous medium can be treated in the adiabatic approx-

imation, if the density gradient is low enough, and, more generally, by considering

the VW contribution perturbatively. We will not explore these cases in details, but

the interested reader can consult, e.g., [43]. Hereafter, we will not consider matter

effects in the oscillations; however, the introduction of the VW contribution due to

matter effects will serve to illustrate how new physics effects can be considered, by

adding extra terms to the Hamiltonian in the flavour basis (see Chapter 7).

4.2 Three–neutrino oscillations

While the two-generation case can be successfully used to analyse solar, accelerator,

atmospheric and reactor neutrino data, a three-generation analysis is needed when

performing combined fits to data from all of the aforementioned diverse source.

Also, the formalism of three-generation mixing is typically required when studying

neutrinos originated at distant astrophysical sources, such as active galactic nu-

clei, supernovae and gamma-ray bursts. Due to travelled distances of the order of

hundreds of Mpc or more, the transitions between all three flavour states must be

considered when calculating the expected flavour ratios at neutrino detectors on

Earth.

Assuming the existence of three active neutrino families (α = e, µ, τ), as indi-

cated by LEP [48], three mass eigenstates are required (i = 1, 2, 3 in the sum) and

so U0 is a 3×3 matrix. The mass eigenstates |νi〉 satisfy Schrödinger’s equation and

so propagate, sans a flavour-independent common phase e−iEL, as

|νi (L)〉 = e−iHL|νi〉 = e−i
m2

i
2E

L|νi〉 , (4.44)

where we have assumed that mi ≪ E, so that p =
√

E2 −m2
i ≃ E −m2

i /(2E), and

that, because neutrinos are highly relativistic particles, t ≃ L (in natural units).

That a neutrino created with a definite flavour α becomes, in general, a super-

position of states of different flavour as it propagates is made evident by writing the

63



Hamiltonian in the basis of flavour eigenstates, a choice which will also allow us to

introduce contributions from new physics later in a more straightforward manner.

In this basis, if a neutrino is produced with flavour α, then, after having propagated

for a distance L, its evolved state will be

|να (L)〉 = e−iHmL|να〉 , (4.45)

where the oscillation Hamiltonian Hm is the one corresponding to the standard,

mass-driven, mechanism, and is written in the flavour basis. Hm is related to the

Hamiltonian in the mass basis -the “mass matrix”- through a similarity transforma-

tion that makes use of the unitary mixing matrix U0:

Hm = U0HU
†
0 = U0

diag (0,∆m2
21,∆m

2
31)

2E
U †

0 . (4.46)

U0 is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix, which in the

PDG parametrisation [29] can be written in terms of three mixing angles, θ12, θ13

and θ23, and one CP-violation phase, δCP, as

U0 ({θij} , δCP) =







c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

s12s23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP c23c13






,(4.47)

with cij ≡ cos (θij), sij ≡ sin (θij).

The standard flavour-oscillation probability Pαβ = |〈νβ|να (L)〉|2 can hence be

calculated, using Eq. (4.45) for the evolved neutrino state and Eq. (4.46) for the

standard Hamiltonian, to be

Pαβ = δαβ − 4
∑

i>j

Re
(

J ij
αβ

)

sin2

(

∆m2
ij

4E
L

)

+ 2
∑

i>j

Im
(

J ij
αβ

)

sin

(

∆m2
ij

2E
L

)

, (4.48)

where ∆m2
ij ≡ m2

i −m2
j , with mi the mass of the i-th eigenstate, and

J ij
αβ ≡ [U0]

∗
αi [U0]βi [U0]αj [U0]

∗
βj . (4.49)

(For a detailed deduction, see Appendix B and, e.g., [49].) The unitarity of the

PMNS matrix, i.e., U0U
†
0 = U †

0U0 = 1, implies the conservation of probability, in

the form
∑

β=e,µ,τ

Pαβ = 1 , α = e, µ, τ , (4.50)

which should be compared to Eq. (4.19) from the two–neutrino formalism.

64



It is straightforward to conclude from Eq. (4.48) that flavour transitions occur

because neutrinos are massive, particularly, because different mass eigenstates have

different masses (clearly, if ∆m2
ij = 0, no transitions occur), and because flavour

states are not mass eigenstates. Note the 1/E dependence on the energy associated

with this standard, mass-driven, oscillation mechanism. Note also that the full form

of the PMNS matrix includes two extra Majorana CP-violation phases, α1 and α2,

which are identically zero if neutrinos are Dirac, so that the complete matrix is given

by

U0 × diag
(

eiα1/2, eiα2/2, 1
)

. (4.51)

However, these phases do not affect the oscillations, so we have not included them

in the definition of the standard mixing matrix U0.

Using the latest data from solar, atmospheric, reactor (KamLAND and CHOOZ)

and accelerator (K2K and MINOS) experiments, the authors of [50] performed a

global three-generations fit and found the best-fit values of the standard oscillation

parameters and their 3σ intervals to be

∆m2
21 = 7.65+0.69

−0.60 × 10−5 eV2 , |∆m2
31| = 2.40+0.35

−0.33 × 10−3 eV2 (4.52)

sin2 (θ12) = 0.304+0.066
−0.054 , sin2 (θ13) = 0.01+0.046

−0.01 ,

sin2 (θ23) = 0.50+0.17
−0.14 . (4.53)

Throughout this work, we have assumed a normal mass hierarchy, so that ∆m2
32 =

∆m2
31 −∆m2

21.

A value of the CP-violation phase δCP different from zero implies a violation

of the CP symmetry which, so far, has only been observed in the quark sector.

Currently, there are no experimental values of or bounds on the value of δCP. The

main difficulty in measuring it lies in the fact that, in the PMNS matrix, Eq. (4.47),

it always appears multiplied by sin (θ13), which is a very small number, given that

θ13 is close to zero [51]. Numerous proposals for measuring or restricting the value of

δCP, however, circulate in the literature [51–55]. Also, note that in the two–neutrino

treatment of oscillations, no CP-violation phase appears. This is because, in the

two–flavour formalism, the CP phase can be rotated away by a redefinition of the

neutrino states (see, e.g., [43]).

Figure 4.3 shows plots of Peµ, Peτ , and Pµτ as functions of L/E, within the
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Figure 4.3: Oscillation probabilities within the full three-neutrino formalism, Eq. (4.54),
as functions of the quotient L/E, with the propagated distance, L, in km,
and the neutrino energy, E, in GeV. The dashed black lines are calculated
using the central values (Eq. (4.52)) of the mixing angles and squared-mass
differences. We have assumed a normal mass hierarchy, so that ∆m2

32 ≡
∆m2

31 − ∆m2
21. The orange regions are generated by allowing the mixing

angles to vary within their respective 3σ experimental bounds, as given by
Eq. (4.52). The CP violating phase was set to δCP = 0.

three–neutrino formalism, as given by

Pαβ = δαβ − 4
∑

i>j

Re
(

J ij
αβ

)

sin2

(

1.27
∆m2

ij

[

eV2
]

E [GeV]
L [km]

)

+ 2
∑

i>j

Im
(

J ij
αβ

)

sin

(

2.54
∆m2

ij

[

eV2
]

E [GeV]
L [km]

)

, (4.54)

which is just Eq. (4.48) after the necessary factors of ~ and c have been inserted.

These plots should be compared to the ones in Fig. 4.1. The dashed black lines are

calculated using the central values (Eq. (4.52)) of the mixing angles and squared-

mass differences. We have assumed a normal mass hierarchy, so that ∆m2
32 ≡

∆m2
31 − ∆m2

21. The orange regions are generated by allowing the mixing angles

to vary within their respective 3σ experimental bounds, as given by Eq. (4.52).

Note that, in the three–neutrino formalism, three different oscillatory signals are

superposed: this is particularly clear for Peµ. Note also that Peµ is suppressed

when using three– instead of two–neutrino oscillations. While, in the two–neutrino

case, Pµτ was maximised when using the central value of θ23 = π/4, in the three–

neutrino case the curve corresponding to this value of the mixing angle is nearly, but

not quite, a maximum, due to the suppression introduced by the extra oscillatory

terms. Finally, Peτ is not greatly affected when replacing two– for three–neutrino

oscillations: this is because the dominating mixing angle in this transition, θ13 is
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Figure 4.4: Left: Three–neutrino oscillation probability Peτ as a function of L/E, when
δCP is allowed to vary between 0 and 2π, while keeping the other mixing
parameters, θij and ∆m2

ij , at their best-fit values. This variation generates
the orange region, while the dashed black curve corresponds to the particular
case of δCP = 0. Right: Peτ as a function of δCP, for different choices of L/E.
Again, the rest of the mixing parameters have been set to their best-fit values.

close to zero, so that the mixing between νe and ντ is very small.

As there are no experimental values for δCP presently, we have shown, for illus-

tration purposes, in Figure 4.4 the variation of the three–neutrino probability Peτ

with δCP. The left plot shows Peτ as a function of L/E when δCP is allowed to vary

between 0 and 2π, while keeping the other mixing parameters (mixing angles and

squared-mass differences) fixed at their best-fit values. The variation of δCP gener-

ates the orange region, while the black dashed curve corresponds to the particular

case when this phase is zero. The right plot shows Peτ as a function of δCP, for

different choices of L/E.

Because, as was mentioned in Chapter 1, we will be considering UHE neutrinos

of extragalactic origin, the flavour-transition probability in Eq. (4.48) oscillates very

rapidly, and we use instead the average probability, which is obtained by averaging

the oscillatory terms in the expression, thus yielding

〈Pαβ〉 =
∑

i

|[U0]αi|2|[U0]βi|2 . (4.55)

When using the average probability, the information in the oscillation phase, includ-

ing any potential CPTV energy-independent contribution, is lost, as we will see in

Chapter 6. The modifications to the mixing angles due to CPTV, however, will still

be present in the averaged version of the probability, and this will be the subject of

Chapter 7.
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Figure 4.5: Schematic representation of the action of the symmetry operators T , CP ,
and CPT . Adapted from [43].

4.3 Discrete symmetries in neutrino oscillations

In Section 2.2.2 we explored how the C, P , and T operators (and their combina-

tions) associated to the charge conjugation, parity, and time reversal symmetries,

respectively, affect the bilinears that make up the terms of the Standard Model. In

the present section, we will see how these operators affect neutrino oscillations.

Neutrinos and anti-neutrino flavour states can be transformed into one another

by a CP transformation which changes the quantum numbers from those of a particle

to those an anti-particle and reverses helicity, i.e.,

να CP←→ να . (4.56)

On the other, applying the T operator interchanges the initial and final states.

Hence, a CP transformation interchanges the να → νβ and να → νβ channels,

i.e.,

να → νβ CP←→ να → νβ , (4.57)

while a T transformation interchanges the
( )

να → ( )

νβ and
( )

νβ → ( )

να channels, namely,

( )

να → ( )

νβ T←→
( )

νβ → ( )

να . (4.58)

Therefore, a CPT transformation interchanges the να → νβ and νβ → να channels:

να → νβ CPT←→ νβ → να (4.59)

Figure 4.5 is a schematic representation of the action of the T , CP and CPT oper-

ators in the different channels.
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4.3.1 CPT

CPT is a symmetry of the Standard Model (see Chapter 2). In fact, it is a symme-

try of any local quantum field theory. Since conventional neutrino oscillations are

derived within the Standard Model, the oscillation probabilities are expected to be

CPT -symmetric. In other words,

Pνα→νβ
= Pνβ→να

, (4.60)

where we have used the more explicit notation Pνα→νβ
to avoid confusion. From

Eq. (4.48), we find that

Pνβ→να
(U) = Pνα→νβ

(U∗) . (4.61)

Thus, if CPT invariance holds, then

P ( )

ν α→ ( )

ν β

= δαβ − 4
∑

i>j

Re
(

J ij
αβ

)

sin2

(

∆m2
ij

4E
L

)

± 2
∑

i>j

Im
(

J ij
αβ

)

sin

(

∆m2
ij

2E
L

)

,

(4.62)

where the plus sign in the third term applies to neutrinos, and the minus sign, to

anti-neutrinos. A possible measure of CPT invariance in neutrino oscillations would

therefore be

ACPT
αβ ≡ Pνα→νβ

− Pνβ→να
. (4.63)

4.3.2 CP

As shown in Fig. (4.5) and the accompanying text, the CP transformation inter-

changes neutrinos of negative helicity with anti-neutrinos of positive helicity, i.e., it

interchanges the να → νβ channel and the να → νβ one. CP asymmetry is possible

in three-neutrino mixing because, in general, the mixing matrix U is complex.

As we did in the case of CPT symmetry, a possible CP asymmetry can be

measured in neutrino oscillation experiments through the parameter

ACP
αβ ≡ Pνα→νβ

− Pνα→νβ
. (4.64)

Since, due to CPT symmetry, Pνα→νβ
= Pνβ→να

, then, clearly, CP asymmetry can

only be measured in transitions between different flavours.

Using Eq. (4.62), we see that the terms that contribute to the CP asymmetry

are the imaginary parts of the quartic products of the PMNS matrix components,
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i.e.,

ACP
αβ = 4

∑

i>j

Im
(

J ij
αβ

)

sin

(

∆m2
ij

2E
L

)

. (4.65)

Note that if α = β, the imaginary parts are identically zero, thus confirming that

the CP asymmetry can only be measured in transitions between different flavours.

Also, since the imaginary part the PMNS matrix is associated with the phase δ, if

this phase is zero, then the asymmetry vanishes.

4.3.3 T

If CPT is a true symmetry, then the violation of CP symmetry implies the violation

of T symmetry necessarily. A T asymmetry can be measured in neutrino and anti-

neutrino oscillation experiments through the quantities

AT
αβ ≡ Pνα→νβ

− Pνβ→να
, (4.66)

A
T

αβ ≡ Pνα→νβ
− Pνβ→να

. (4.67)

From the action of the CPT operator, Eq. (4.60), and from Eq. (4.64) we find that

AT
αβ = −AT

αβ = ACP
αβ . (4.68)

Hence, measuring a CP asymmetry is equivalent to measuring a T asymmetry.

Therefore, T violation occurs only if δ = 0.
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Chapter 5

Astrophysical neutrinos

High-energy gamma ray experiments such as H.E.S.S. [56–58], MAGIC [59–62],

VERITAS [63–65] and Milagro [66, 67] have observed during the last decade events

with energies ranging from ∼ 100 GeV to several TeV coming from identified ex-

tragalactic sources, notably Active Galactic Nuclei (AGN) and Gamma Ray Bursts.

While the correlation between observed gamma rays and catalogue sources is strong

(signals at separation of 5σ or more from the background are not unusual), the gen-

erating mechanism of these emissions remains unknown [68]: high-energy gamma

rays may be created at the sources as synchrotron radiation, in inverse Compton

processes or in the decay of neutral pions resulting from pp and pγ collisions. Cur-

rent data is not sufficient to distinguish between these scenarios. The observation

of neutrino emission correlated with the gamma-ray emission from these sources,

however, would be enough to establish the decay of pions generated in the interac-

tions of high-energy protons (and nuclei) as the generating mechanism: the same

processes that create the neutral pions are also expected to create charged pions

which would decay into neutrinos, yielding both a gamma-ray and a neutrino signal

from the source, with the neutrino energy about a factor of two or three below the

gamma-ray energy. Neutrino telescopes such as AMANDA [69], IceCube [70] and

ANTARES [71] have been designed to detect this high-energy neutrino emission

and, if possible, to correlate it with the known positions of gamma-ray sources.

5.1 Astrophysical neutrino flavour fluxes

We have seen that, in order for a potential energy-independent contribution to the

flavour transitions to be visible, we would need to use the expected UHE astro-

physical neutrino flux. The sources of this flux, e.g., active galaxies, are located at

distances of tens to hundreds of Mpc, so that the average flavour transition proba-

71



bility, Eq. (7.47), can be used.

If, at the sources, neutrinos of different flavours are produced in the ratios

φ0
e : φ0

µ : φ0
τ , then, because of flavour transitions during propagation, the ratios

at detection will be

φα =
∑

β=e,µ,τ

〈Pβα〉φ0
β , (5.1)

for α = e, µ, τ . Note that the ratio in Eq. (5.1) is the proportion of να to the sum

of all flavours detected at Earth. We will later denote the actual neutrino fluxes, in

units of GeV−1 cm−2 s−1 sr−1, by Φα. Evidently, the initial flavour ratios depend

on the astrophysics at the source, which is currently not known with high certainty,

while the detected ratios depend also on the oscillation mechanism and could be

affected by the presence of an energy-independent contribution at high energies.

Thus, the reconstruction of the initial neutrino fluxes from the detected ones is a

difficult task [72–78].

AGN have long been presumed to be sites of high-energy neutrino production.

In the scenario of neutrino production by meson decay [75], it is assumed that

within the AGN protons are accelerated by strong magnetic fields and that pions

are produced in high-energy proton-proton and proton-photon collisions, i.e.,

p+ γ → ∆+ →
{

p + π0

n + π+
, n + γ → p+ π− , (5.2)

with branching ratios Br (∆+ → pπ0) = 2/3 and Br (∆+ → nπ+) = 1/3. The neutral

pions decay into gamma rays through π0 → γγ, while the charged pions decay into

electron and muon neutrinos through

π+ → νµ + µ+ → e+ + νe + νµ , π− → νµ + µ− → e− + νe + νµ . (5.3)

The gamma rays thus created may be obscured and dispersed by the medium, and

the protons will in addition be deviated by magnetic fields on their journey to Earth.

Neutrinos, on the other hand, escape from the production site virtually unaffected

by interactions with the medium, so that, if their direction can be reconstructed at

detection, they could point back to their sources. Such process yields approximately

φ0
e : φ0

µ : φ0
τ = 1 : 2 : 0 (see [76] for a more detailed treatment), where we have

not discriminated between neutrinos and antineutrinos, as is the case with current

C̆erenkov-based neutrino telescopes. In the standard oscillation scenario, i.e., in

the absence of an energy-independent contribution, plugging this initial flux into

Eq. (5.1), and using the best-fit values of the mixing angles, Eq. (4.52), results in
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Production Initial flux Std. detected flux Rstd Sstd

mechanism φ0
e : φ0

µ : φ0
τ φstd

e : φstd
µ : φstd

τ

Pion decay 1 : 2 : 0 1 : 1 : 1 1 1
Muon cooling 0 : 1 : 0 0.22 : 0.39 : 0.39 1.77 1
Beta decay 1 : 0 : 0 0.57 : 0.215 : 0.215 0.38 1

Table 5.1: Standard values (without energy-independent new physics contributions) of
the detected flavour ratios φα (α = e, µ, τ) and of the ratios R, S, for the
three different scenarios of initial flavour ratios considered in the text. The
detected ratios were calculated using the average flavour-transition probability
in Eq. (4.55) with the central values of the mixing angles: sin2 (θ12) = 0.304,
sin2 (θ13) = 0.01, sin2 (θ23) = 0.50. We have defined Rstd = φstd

µ /φstd
e and

Sstd = φstd
τ /φstd

µ .

equal detected fluxes of each flavour, i.e., φstd
e : φstd

µ : φstd
τ ≈ 1 : 1 : 1.

In a related production process [76, 79, 80], the muons produced by pion decay

lose most of their energy before decaying, so that a pure-νµ flux is generated at the

source, i.e., φ0
e : φ0

µ : φ0
τ = 0 : 1 : 0. In the standard oscillation scenario, these initial

ratios result in the detected ratios φstd
e : φstd

µ : φstd
τ ≈ 0.22 : 0.39 : 0.39. Alternatively,

a pure-νe initial flux, corresponding to φ0
e : φ0

µ : φ0
τ = 1 : 0 : 0, produced through beta

decay has been considered, e.g., in [76]. In this scenario, high-energy nuclei emmitted

by the source have sufficient energy for photodisintegration to occur, but not enough

to reach the threshold for pion photoproduction. The neutrons created in the process

generate νe through beta decay. For these initial ratios, the resulting detected ratios,

in the standard oscillation scenario, are φstd
e : φstd

µ : φstd
τ ≈ 0.57 : 0.215 : 0.215. The

results are summarised in Table 5.1. In the following sections, we will consider

the possibility of observing the hypothetical energy-independent contribution of Hb

assuming that the initial ratios correspond to one of these three production scenarios.

Using the detected flavour ratios, we have defined the ratios of ratios

R =
φµ

φe

, S =
φτ

φµ

. (5.4)

Their standard values, Rstd and Sstd, i.e., those calculated in the absence of Hb, are

shown in Table 5.1 for the three choices of initial flavour ratios. Note that Sstd = 1

for any choice of initial ratios because the value of θ23 used was its best-fit value π/4,

which yields equal detected fluxes of νµ and ντ due to maximal mixing. Deviations

from this value result in S 6= 1 [81]. In the following sections, when we allow Hb to

contribute, we will calculate the extent to which the values of R and S deviate from

their standard values.
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5.1.1 Cosmic ray flux normalisation using results from Auger

Recently [82], the Pierre Auger Observatory (PAO) claimed to have detected 27

events with energies above 57 EeV, providing evidence of the anisotropy in the ar-

rival directions of utrahigh-energy cosmic rays (UHECRs). Based on the observation

of 20 of these events having an angular separation equal to or less than 3.2◦ from

the positions of AGN from the 12th edition Véron-Cetty & Véron catalogue [83],

a possible correlation was found with sources lying relatively close, at distances

of 75 Mpc or less. Even though the claim on the correlation has since lost some

ground [84, 85], it still constitutes a possible hint towards identifying AGN as the

sources of the highest-energy cosmic rays. Under the assumption that cosmic ray

emission is accompanied by neutrino emission, Auger’s claim can be used to nor-

malise the neutrino flux predicted by astrophysical models of AGN. In the present

work, we have focused on two such models of neutrino production that take into ac-

count Auger’s results: one by H.B.J. Koers & P. Tinyakov [86] and another one by

J. Becker & P.L. Biermann [87], which we will call hereafter the KT and BB models,

respectively. They differ greatly in their assumptions and, within some regions of

their parameters spaces, on their predictions of the neutrino fluxes.

The preferred mechanism for cosmic ray acceleration at AGN is second-order

Fermi acceleration [88], which results in a power-law differential cosmic ray proton

spectrum,

Φp (E) ≡ dNp

dE
= ApE

−αp , (5.5)

with E the cosmic ray energy at detection on Earth. Here, Ap is the energy-

independent normalisation constant. The integral of this expression,

N (Eth) =

∫

Eth

dNp

dE
dE ≃ Ap (αp − 1)−1E

αp−1
th , (5.6)

is the integrated cosmic ray flux above a certain threshold energy Eth. For the

ultrahigh-energy cosmic rays detected at the PAO, Eth = 57 EeV.

On the other hand, the integrated flux can be calculated from experimental data

as

N (Eth) = Nevts (Eth) /Ξ . (5.7)

where Nevts (Eth) is the number of observed cosmic rays above Eth and Ξ = 9000 km2

yr sr is the reported [82] total detector exposure of Auger. The KT and BB models

use different values for Nevts (Eth), according to their assumptions: KT assumes

Nevts = 2 originated at Cen A and uses this to calculate the diffuse neutrino flux

assuming that all AGN behave like Cen A, while BB assumes that the Nevts = 20
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events truly originated at the AGN with which the correlation was found. Comparing

this expression to Eq. (5.6) yields for the normalisation constant,

Ap =
Nevts (αp − 1)

Ξ
E

αp−1
th . (5.8)

The spectral index αp is expected to lie between 2 and 3 and is treated in the present

work as a free parameter with values in this range. The relation between the cosmic

ray normalisation constant and the neutrino normalisation constant (see the next

two Sections) is model-dependent.

When calculating the proton spectrum from a single point source, we will need to

weigh the normalisation constant using the detector effective area A that is accessible

to the observation, which depends on the declination δs of the source, i.e.,

Apt
p =

Nevts (αp − 1)

Ξ
E

αp−1
th

∫

A (δs) dΩ

A (δs)
. (5.9)

5.1.2 Model by Waxman & Bahcall

In [89], Waxman and Bahcall set a model-independent upper bound of E2
νΦν <

2× 10−8 GeV cm−2 s−1 sr−1 to the flux of high-energy neutrinos from the decay of

pions produced in pγ interactions that occur at sources that are optically thin to

pγ interactions. Their calculation estimates the bound on the neutrino flux from

observations of the high-energy (greater than 109 GeV) cosmic ray flux. We will

reproduce here the outline of the calculation presented in [89].

Above 108 GeV, cosmic rays are thought to be created at extra-galactic sources.

An homogenenous distribution of cosmic ray sources (e.g., AGN or GRBs) is as-

sumed, with injection spectrum

ΦWB
p (Ep) ≡

dNp

dEp
∝ E−2

p , (5.10)

as expected from Fermi acceleration. From [90], the energy production rate of

protons in the range 1010 − 1012 GeV is ε
[1010,1012]
CR ∼ 5 × 1044 erg Mpc−3 yr−1,

assuming, again, a homogenenous distribution of cosmic ray sources. The generation

rate of cosmic rays is hence

E2
p

dṄp

dEp
=

ε
[1010,1012]
CR

ln (1012/1010)
≈ 1044 erg Mpc−3 yr−1 . (5.11)

Let ǫ < 1 be the fraction of the energy that extra-galactic high-energy neutrinos

lose through photo-meson production of pions before leaving the source. Thus, the
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Figure 5.1: AGN νµ fluxes according to models WB, KT (with no source evolution and
strong evolution) and BB, multiplied by E2

ν . In this and the other plots, the
best-fit values of the model parameters were used: α = 2.7, Γν/ΓCR = 3 and
zmax
CR = 0.03. Upper limits for the integrated astrophysical νµ flux EνΦν from

past, present and future neutrino experiments are included for comparison.
For the Pierre Auger Observatory (PAO) [91], the limit is 1.3 × 10−7 GeV
cm−2 s−1 sr−1, in the range 2×108 < Eν/GeV < 2×1010. (Note that, strictly
speaking, the PAO set a limit on the astrophysical ντ flux; the limit on the νµ

flux is obtained by assuming that these two flavours arrive at Earth in equal
proportions, due to flavour oscillations.) For IceCube [92], after three years
of exposure of the full detector, the limit is 4× 10−9 GeV cm−2 s−1 sr−1, for
neutrinos with energy Eν < 108 GeV. Finally, for AMANDA-II [93], using
data collected in the period 2000-2003, the limit is 7.4× 10−8 GeV, between
16 TeV and 2.5 PeV. Note that these limits have been calculated assuming
a E−2

ν flux, whereas we are showing the KT and BB fluxes for α = 2.7 in
this plot.

energy density of muon neutrinos at the present epoch (z = 0) is

E2
ν

dṄν

dEν

≃ 1

4
ǫtHE

2
p

˙dNp

dEp

, (5.12)

where tH ≈ 1010 yr is the Hubble time. The factor of 1/4 comes from the fact that

neutral pions, which do not decay into neutrinos, are produced with approximately

the same probability as charged pions, and because in the decay of charged pions

into muon-neutrinos, these carry about half of the pion energy.
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Setting ǫ = 1, the muon-neutrino intensity (for νµ and νµ combined) obtained is

Imax ≃ 0.25ξZtH
c

4π
E2

p

dṄp

dEp

≈ 1.5× 10−8ξZ GeV cm−2 s−1 sr−1 , (5.13)

with the parameter ξZ , of order unity, introduced to describe the possible contri-

bution of so far unobserved high-redshift sources of high-energy cosmic rays, and

the effect of the cosmological expansion on the neutrino energy. For a distribution

of cosmic ray sources that follows the star formation rate, Eq. (5.18), it was esti-

mated that ξZ ≈ 3, with a weak dependence on the cosmology, while for no source

evolution, it is found that ξZ ≈ 0.6.

Therefore, the expected muon-neutrino intensity is

E2
νΦνµ

=
c

4π
E2

ν

dNνµ

dEν
=

1

2
ǫImax , (5.14)

with the fluxes of all other flavours of neutrinos and anti-neutrinos approximately

the same as for νµ. Taking ξZ = 3 and ǫ = 0.8, one finds the Waxman-Bahcall upper

bound of E2
νΦν < 2× 10−8 GeV cm−2 s−1 sr−1. Note that when this upper bound

was first derived, neutrino oscillations of the νµ and νe produced at the sources were

not taken into account and so the upper bound was higher than it should have been.

In this work, we have been more restrictive and set the sum of the fluxes of all

neutrino flavours at

ΦWB
νall

(Eν) = 10−8 (Eν/GeV)−2 GeV cm−2 s−1 sr−1 . (5.15)

Figure 5.1 features plots of the different flux models, multiplied by E2
ν . The WB

νµ flux, defined as one third of the all-flavour WB flux, is ploted as a dash-dotted

(green) line.

5.1.3 Model by Koers & Tinyakov

The PAO has reported [82] observing two events correlated with the position of

Centaurus A (Cen A), the nearest active galaxy, lying at about 3.5 Mpc. The

observed differential flux from a point source lying at proper (luminosity) distance

dL (z) is

Φ (E) =
j0 (E0)

4πd2
L (1 + z)

dE0

dE
, (5.16)

77



where E is the observed energy and the energy at the source, E0 = E0 (E, z), is

calculated taking into account energy losses. j0 is the differential injected spectrum

at the source, which for protons and neutrinos behaves like a power-law, i.e., j0
ν ∝

E−αν , j0
p ∝ E−αp. The KT model [86] assumes that Cen A is a typical source of

UHECRs and neutrinos, and computes the diffuse flux by assuming that all sources

are identical to Cen A by integrating over a cosmological distribution of sources,

also taking into account energy losses during the propagation of the particles. Thus,

the diffuse neutrino flux is

Φdiff
ν (Eν) =

cn0

4π

∫ ∞

0

dz

∣

∣

∣

∣

dt

dz

∣

∣

∣

∣

dE0

dEν

ǫ (z) j0 (E0) , (5.17)

where c is the speed of light, n0 is the local source density and ǫ (z) parametrises the

source distribution. Two limiting cases have been considered: one in which there is

no source evolution with redshift (ǫ (z) = 1) and another one, adopted from [94], in

which there is a strong source evolution which follows the star formation rate,

ǫ (z) ∝











(1 + z)3.4 , if z ≤ 1.9

(1 + 1.9)3.4 , if 1.9 < z < 3

(z − 3)−0.33 , if z ≥ 3

, (5.18)

The KT model adopts the ΛCDM cosmology to calculate

|dt/dz|−1 = H0 (1 + z)

√

Ωm (1 + z)3 + ΩΛ , (5.19)

with H0 = 73 km s−1 Mpc−1 the Hubble constant and Ωm = 0.24, ΩΛ = 0.76 the

present matter density and vacuum energy density parameters, respectively.

The diffuse neutrino flux is normalised using the integrated UHECR flux ϕdiff
p (Eth)

above the threshold Eth,

Φdiff
ν (Eν)

j0
ν (Eν)

= H (Eth)
ϕdiff

p (Eth)

J0
p (Eth)

, (5.20)

with J0
p (Eth) the integrated UHECR proton spectrum at the source. The propor-

tionality constant, H (Eth), is called the “neutrino boost factor” and contains the

information on neutrino mean-free path lengths and source evolution. It can be cal-

culated numerically, provided an expression is given for dE0/dEν , from Eqs. (5.17)

and (5.20). Proton energy losses are taken into account in the continuous-loss ap-

proximation, considering both loss by the adiabatic expansion of the Universe and

loss from interactions with the CMB photons resulting in pion photoproduction and
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electron-positron pair production; see Appendix A in ref. [86] for details. To obtain

the diffuse flux, the source distribution is integrated up to z = 5.

The PAO energy threshold is Eth = 57 EeV. However there is a ∼ 20% systematic

uncertainty in the energy determination that affects the neutrino boost factor. Koers

& Tinyakov [86] found that this uncertainty is well approximated by

H ′ (Eth) = 10(Eth/E0)−1H (E0) , (5.21)

where Eth is the actual threshold and E0 = 57 EeV. This introduces a variation in

H of a factor of ∼ 1.6 when the energy is mis-reconstructed with 20% accuracy.

The integrated diffuse UHECR neutrino spectrum and the integrated flux from

Cen A above 57 EeV can be written, respectively, as

ϕdiff
p (Eth) =

Ntot −NCen A

Ξ
= 9× 10−21 cm−2s−1sr−1 (5.22)

ϕCen A
p (Eth) =

NCen A

Ξ

∫

A (δs) dΩ

A (δs)
= 5× 10−21 cm−2s−1sr−1 , (5.23)

where δs = −43◦ is the declination of Cen A and A (δs) is the detector’s effective

area for this declination. The PAO reported A (δs) /
∫

A (δs) dΩ = 0.15 sr−1 and

Ntot = 27 events above 57 EeV, with NCen A = 2 of these coming from the direction

of Cen A. From Eq. (5.20), we find

Φdiff
ν (Eν)

ΦCen A
ν (Eν)

= H ′ (Eth)
ϕdiff

ν (Eth)

ϕCen A
ν (Eth)

= H ′ (Eth)
Ntot −NCen A

NCen A

A (δs)
∫

A (δs) dΩ

≃ 1.9H ′ (Eth) . (5.24)

This relation between the diffuse neutrino flux and the flux from Cen A is the main

result of the KT model.

In their paper [86], Koers & Tinyakov used a model by Cuoco & Hannestad [95]

to describe the neutrino emission from Cen A, ΦCen A
ν , itself based on a model by

Mannheim, Protheroe & Raschen [96]. In this model, it is assumed that high-

energy protons, accelerated by some mechanism (e.g., shock acceleration) are con-

fined within a region close to the source. Because of energy losses in their photopion

interactions with the ambient photon field, which is assumed to have an energy spec-

trum n (ǫγ) ∝ ǫ−2
γ , their lifetime is much shorter than their diffusive escape time and

they decay into neutrons and neutrinos, both of which escape the source. Thereafter,

the neutrons decay into UHECR protons; however, because of their interaction with
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the photon field before decaying, the neutrons produce a softer proton spectrum

than the seed proton spectrum.

Furthermore, the model predicts two spectral breaks in the CR spectrum, at

energies at which the optical depths for proton and neutrino photopion production

become unity. These two breaks are close in energy, though, so that to simplify the

model, only one spectral break is considered, at energy Ebr. Below Ebr, the UHECR

proton and neutrino spectra are harder than the seed proton spectra by one power

of the energy, while above Ebr, the UHECR proton spectrum is softer than the seed

proton by one power of the energy and the neutrino spectrum is harder by one power

of the energy. Hence, at high energies, the model predicts a neutrino spectrum that

is harder by one power of the energy than the UHECR proton spectrum.

Following [86,95,96], the all-flavour neutrino spectrum from Cen A can be written

as

ΦCen A
ν (Eν) =

ξν
ξnη2

νn

min

(

Eν

ηνnEbr
,

E2
ν

η2
νnE

2
br

)

ΦCen A
p

(

Eν

ηνn

)

, (5.25)

where ξi (i = ν, n) is the fraction of the proton’s energy that is transferred to

the species i in photopion interactions and ηνn is the ratio of the average neutrino

energy to the average neutron energy. The KT model uses for these parameters the

values featured in [96], obtained from Monte Carlo simulations: ξν ≈ 0.1, ξn ≈ 0.5,

〈Eν〉/Ep ≈ 0.033 and 〈En〉/Ep ≈ 0.83, with which

ξν/ξn = 0.2 , ηνn = 0.04 . (5.26)

The neutrino break energy, Ebr, is estimated from the gamma-ray break energy as

Ebr ≃ 3× 108Eγ,br. Ref. [96] uses Eγ,br = 200 MeV, so that

Ebr = 108 GeV . (5.27)

Under the assumption of equitative flavour ratios at Earth (see Section 5.1), the

νµ + νµ flux is 1/3 the flux in Eq. (5.25). Plugging the power-law proton spectrum,

Eq. (5.5), with the normalisation constant for a point source, Eq. (5.9), yields

ΦCen A
νµ

(Eν) =
ϕCen A

p (Eth)

3

ξνη
αp−2
νn

ξn

αp − 1

Eth

(

Eν

Eth

)−αp
(

Eν

Eν,br

)

min

(

1,
Eν

Eν,br

)

(5.28)

for the muon-neutrino flux from Cen A, with Eν,br ≡ ηνnEbr = 4× 106 GeV. Koers

& Tinyakov [86] considered mainly a proton spectral index αp = 2.7, which is the

value that we have also adopted to calculate the detection prospects in Section 7.3.

Giving values to the rest of the parameters, the muon-neutrino flux from Cen A
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results in

ΦCen A
νµ

(Eν) ≃ 9.14×10−37×
(

2.28× 109
)αp

(αp − 1)E1−αp

ν min

(

1,
Eν

Eν,br

)

. (5.29)

Using the scaling relation, Eq. (5.24), the muon-neutrino diffuse flux in the KT

model is therefore

Φdiff,KT
νµ

(Eν) ≃ 1.9H ′ (Eth) ΦCen A
νµ

(Eν) . (5.30)

The KT muon-neutrino fluxes, multiplied by E2
ν , are plotted in Fig. (5.1), for a

spectral index α = 2.7: the case without source evolution, as a dashed (red) line,

and the case with strong source evolution, as a solid (black) line.

We have taken the all-flavour diffuse flux to be three times the νµ flux. The factor

of three comes from the fact that, in the presence of standard neutrino oscillations,

the flux at Earth is evenly divided between the three neutrino flavours. Thus,

ΦKT
νall

(Eν) ≡ Φdiff,KT
νall

(Eν) ≃ 5.7H ′ (Eth)ΦCen A
νµ

(Eν) . (5.31)

5.1.4 Model by Becker & Biermann

The BB model [87] describes the production of high-energy neutrinos in the rela-

tivistic jets of radio galaxies. According to the model, the UHECRs observed by

the PAO originated at FR-I galaxies (relatively low-luminosity radio galaxies with

extended radio jets, and radio knots distributed along them), which can in principle

accelerate protons up to ∼ 1020 eV. Like in the KT model, here the protons are

also shock-accelerated. Unlike the KT model, though, where the neutrino emission

occurred in a region close to the AGN core, in the BB model the neutrino emission

from pγ interactions is expected to peak at the first strong shock along the jet, lying

at a distance zj ∼ 3000 gravitational radii from the center.

The optical depth corresponding to proton interactions with the disc photon

field, τpγdisc
≡ 1/λpγdisc

= zjθnγdisc
σpγ , for a source with disc luminosity Ldisc ∼ 1044

erg s−1 is [87]

τpγdisc
= 0.2ǫEdd

(

θ

0.1

)(

zj

3000rg

)−1(
Ldisc

1044 erg s−1

)

, (5.32)

where σpγ ≈ 900 µbarn is the total pγ cross-section for the production of the ∆+

resonance, ǫEdd ≤ 1 is the accretion rate relative to the maximum, θ is the beam

aperture angle, and the gravitational radius rg = 1.5× 1012MBH/ (107M⊙) cm, with
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MBH and M⊙ the mass of the central supermassive black hole and of the Sun,

respectively. The photon density is calculated as

nγdisc
=

Ldisc

4πz2
j chν

, (5.33)

where h is Planck’s constant and the average photon energy in the disc hν = 20

eV. For ǫEdd = 0.1, the optical depth is τpγdisc
≈ 0.02, and so pγ interactions in

the disc are not the dominant source of neutrinos. The proton-proton interactions

that occur when the jet encounters the AGN’s torus, at zj ∼ 1 − 10 pc, are also

subdominant: given the torus column density X ∼ 4× 1023 cm−2 and the pp cross

section σpp ≈ 50 mb, the optical depth results

τpptorus
= Xσpp ≈ 2× 10−3 . (5.34)

Thus, pp interactions are neglected in the BB model.

The dominant mechanism of neutrino production is the interaction between the

accelerated protons and the synchrotron photons in the relativistic jet, at one of

the jet’s knots, which is assumed to contribute a fraction ǫknot ≈ 0.1 of the total

synchrotron luminosity, Lsynch ∼ 1040 erg s−1. In this case, the optical depth is given

by [87]

τpγsynch
≈ 0.9

(

10

Γ

)(

θ

0.1

)

(ǫknot

0.1

)

(

Lsynch

1040 erg s−1

)(

zj

3000rg

)−1
( ν

1 GHz

)−1

,

(5.35)

where ν ≈ 1 GHz is the frequency of the synchrotron photons. For boost factors

of Γ ∼ 10, the optical depth τpγsynch
∼ 1. Hence, it is expected that neutrino

emission occurs predomninantly at the foot of the jet, where the beam is still highly

collimated. Therefore, the BB model predicts a highly beamed neutrino emission,

produced in the first shock (zj ∼ 3000rg), and consequently observable only from

sources whose jets are directed towards Earth. Flat-spectrum radio sources, such as

FR-I galaxies whose jets are pointing towards Earth, will have correlated neutrino

and proton spectra, while steep-spectrum sources, which are AGN seen from the

side, are expected to be weak neutrino sources, but to contribute to the cosmic-ray

proton flux.

The BB model assumes that theNevts = 20 events that were observed by the PAO

to have a positional correlation to sources in the Véron-Cetty & Véron catalogue

were indeed originated at AGN lying in the supergalactic plane. The normalisation

constant of the proton spectrum, Ap, is given by Eq. (5.8) with this value for Nevts.

We now need a connection between Ap and the corresponding normalisation constant
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for neutrinos, Aν . To this end, consider the total neutrino and total proton energy

fluxes radiated in the solid angles Ων and Ωp, respectively, in the shock rest frame

(i.e., denoted by primed variables):

Ωνj
′
ν =

∫

E ′
ν

dNν

dE ′
ν

dE ′
ν , Ωpj

′
p =

∫

E ′
p

dNp

dE ′
p

dE ′
p . (5.36)

These are connected by

Ωνj
′
ν =

τpγ

12
Ωpj

′
p , (5.37)

where the factor 1/12 is due to the branching ratio of ∆+ to charged pions (see

Eq. (5.2)) and to the fact that half of the energy of the pion is transferred to the

muon neutrinos (νµ + νµ). The energy fluxes at Earth are given by

j =
Γ

4π
j′n , (5.38)

where

j′ ≡
∫

E′

dE ′ E ′ dN

dE ′ (5.39)

is the energy flux in the shock rest frame and

n ≡
∫ zmax

zmin

∫ Lmax

Lmin

dz dL
1

4πd2
L (z)

d2n

dV dL

dV

dz
(5.40)

is the total number of sources. In this last expression, dL is the luminosity distance

of the source, d2n/dV dL is the luminosity function of the sources (the distribution

of sources as a function of redshift and luminosity) and dV/dL is the differential

comoving volume. Because strong neutrino sources are weak CR proton sources,

the luminosity function will be different for neutrinos and protons: for the former,

the model assumes the FR-I radio luminosity function by Willot [97], while for the

latter, the luminosity function by Dunlop & Peacock is employed [98]. The lower

redshift integration limit for CR proton sources, zCR
min = 0.0008, corresponds to the

closest FR-I sources, while the one for neutrinos, zν
min = 0.018, corresponds to the

closest FRS sources. The absolute upper integration limit, zCR
max = 0.03, marks the

outskirts of the supergalactic plane and is thus common for both neutrinos and

protons; we will, however, maintain zCR
max as a free parameter in our analysis, with

0.03 as its maximum value. The luminosity integration limits, Lmin = 1040 erg

s−1 and Lmax = 1044 erg s−1, are obtained from the distribution of FR-I galaxies

(FRS galaxies are believed to be a subclass of FR-I, so the limits apply to them as
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well [87]). Replacing the expressions for the energy fluxes in Eq. (5.37) yields

jν =
τpγ

12

Γν

Γp

Ωp

Ων

nν

np
jp . (5.41)

On the other hand, assuming a power-law behaviour for the diffuse differential

flux of protons, i.e., Φdiff
p ≡ dNp/dEp = ApE

−αp
p , the integrated energy flux results

jp = Ap

∫ Ep,max

Ep,min

Ep
dNp

dEp

dEp =

{

Ap (αp − 2)−1E
−αp+2
p,min , if αp 6= 2

Ap ln (Ep,max/Ep,min) , if αp = 2
, (5.42)

where the term proportional to E
−αp+2
p,max has been neglected, in the case when αp 6= 2.

The normalisation constant Ap is given by Eq. (5.8). Assuming that the neutrino

spectrum follows the proton spectrum, i.e., Φdiff,BB
νµ

= AνE
−αν
ν with αν ≈ αp, the

energy flux for neutrinos is

jν ≃
{

Aν (αp − 2)−1E
−αp+2
ν,min , if αp 6= 2

Aν ln (Eν,max/Eν,min) , if αp = 2
. (5.43)

The lower integration limits for protons and neutrinos are, respectively, Ep,min =

Γpmp ≈ Γp · (1 GeV) and Eν,min = Γν · (mπ/4) = Γν · (0.035 GeV). Finally, we see

that when αp 6= 2, the neutrino normalisation constant is given by

Aν ≃
τpγ

12

(

Γν

Γp

)αp+1
nν

np

(mπ

4

)αp−2 Nevts (αp − 1)

Ξ
E

αp−1
th . (5.44)

To arrive at this expression1, it must be noted that because of the relativistic beam-

ing in the jets, the emission solid angles are Ων ∼ 1/Γ2
ν and Ωp ∼ 1/Γ2

p. When

αp = 2, the logarithms in the two spectra are similar and cancel out, making the

previous expression for Aν valid also for αp = 2. The BB muon-neutrino flux, mul-

tiplied by E2
ν , is plotted in Fig. (5.1), for a spectral index αp = 2.7, Γν/ΓCR = 3,

and zmax
CR = 0.03.

As for the WB and KT fluxes, we have set the all-flavour BB flux of three times

the corresponding νµ flux, i.e.,

ΦBB
νall

(Eν) = 3Φdiff,BB
νµ

(Eν) . (5.45)

1The reader should be wary that in their paper [87], Becker & Biermann incorrectly reported a

dependence of the form ∼ (Γν/Γp)
5−αp .
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5.2 Neutrino decay

Since we are considering neutrinos that travel distances of tens or hundreds of Mpc,

neutrino decay is a possibility. Flavour mixing and decays in astrophysical neutrinos

have been explored before, e.g., in [73,99,100] The current strongest direct limit on

neutrino lifetime, τ/m & 10−4 s eV−1, was obtained using solar neutrino data [101].

More stringent, though indirect, limits can be obtained by considering neutrino

radiative decays and using cosmological data [102]: τ > few× 1019 s or τ & 5× 1020

s, depending on the mass hierarchy and the absolute mass scale. Assuming that the

heaviest mass eigenstates decay into the lightest one plus an undetectable light or

massless particle (e.g., a sterile neutrino), then, following [74], the flux of flavour α

at Earth will be

φα =
∑

β=e,µ,τ

∑

i

φ0
β|[U0]βi|2|[U0]αi|2e−L/τi L≫ τi−−−−→

∑

β=e,µ,τ

∑

i(stable)

φ0
β|[U0]βi|2|[U0]αi|2 ,

(5.46)

where τi is the lifetime of the i-th mass eigenstate in the laboratory frame. As

explained in [74], this expression corresponds to the case where the decay has been

completed when the neutrinos arrive at Earth. In a normal hierarchy, ν1 is the only

stable state and so

φdec,norm
α = |[U0]α1|2

∑

β=e,µ,τ

φ0
β|[U0]β1|2 , (5.47)

while in an inverted hierarchy ν3 is the stable state and

φdec,inv
α = |[U0]α3|2

∑

β=e,µ,τ

φ0
β|[U0]β3|2 . (5.48)

Ref. [74] provides expressions for the flavour fluxes when the decay product ac-

companying the lightest eigenstate can also be detected, but since the focus of our

analysis is the modification of the oscillations through terms of the form Eq. (7.2),

we have chosen to include only the simplest case of neutrino decay, described by the

two preceding expressions.
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Chapter 6

CPT violation through modified

dispersion relations

Note: the results in this chapter have been adapted from refs. [103,104].

Experimental evidence has confirmed that flavour transitions are the solution

to the former so-called solar and atmospheric neutrino deficit problems [2, 6, 105].

Further evidence was provided by experiments performed with neutrinos generated

in particle accelerators and nuclear reactors, such as KamLAND [106] and K2K [7].

The mechanism responsible for these transitions requires neutrinos to be massive:

the probability of a flavour transition is oscillatory, with oscillation length λstd ≡
4πE/∆m2, where E is the neutrino energy and ∆m2 is the difference of the squared

masses of the different neutrino mass eigenstates. However, even though this mass-

driven mechanism is the dominant one in the energy regimes that have been explored

experimentally (MeV–TeV), there is still the possibility that alternative mechanisms

contribute to the flavour transitions in a subdominant manner, which perhaps can

manifest at higher energies.

Although these alternative mechanisms involving new physics (NP) are able to

produce flavour transitions, it is known that none of them can explain the com-

bined data from atmospheric, solar, accelerator, and reactor neutrino experiments

performed in the MeV–TeV range, unlike the pure ∆m2 oscillation mechanism

[10, 107–109]. Some of these alternatives [110] are the violation of the equivalence

principle (VEP), of Lorentz invariance [111,112] (VLI), of CPT invariance (CPTV),

the non-universal coupling of neutrinos to a space-time torsion field (NUCQ), deco-

herence during the neutrino’s trip, and non-standard interactions (NSI).

Typically, these mechanisms result in oscillation lengths λNP that have a different
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dependence on E, usually expressed as a power-law, λNP ∼ En, with the value of

n depending on which mechanism is being considered: for instance, n = 0 for

CPTV and NUCQ and n = 1 for VEP and VLI, while with n = −1 the standard

∆m2 oscillations are recovered. Atmospheric events from Super-Kamiokande (SK)

[10] were used to find the value n = −0.9 ± 0.4 at 90% C.L., thus confirming the

dominance of the ∆m2 oscillation mechanism and forcing any other mechanisms to

be subdominant, at least within the energy range and pathlength considered in said

analysis.

So far, searches for NP effects in neutrino oscillations have been limited to en-

ergies ranging from a few MeV to a few GeV [10, 107–109] and have turned out

negative. However, proposals for analyses of atmospheric neutrinos with energies of

up to 104 TeV in second-generation neutrino detectors such as IceCube [113] and

ANTARES [114] are being considered. Due to the energy dependence of the oscil-

lation lengths, the oscillation phases scale as
(

2πL/λNP
)

/
(

2π/λstd
)

∼ E1−n, that

is, the relative dominance of the NP contribution grows with the neutrino energy

provided that n ≤ 0, so that the observation of very energetic neutrinos -such as the

ones expected from presumed cosmic accelerators like active galaxies and gamma

ray bursts- would offer a means to establish whether the ∆m2 oscillation mechanism

is still the dominant one at high energies or to otherwise set stronger bounds on the

NP parameters.

In this chapter, we have introduced the aforementioned new physics through

the use of a modified dispersion relation, and focused our analysis on the case of

n = 0, corresponding, as we will see, to an energy-independent NP contribution to

the neutrino flavour oscillation phase. We have calculated the proportion of each

flavour arriving at Earth from distant cosmic accelerators and explored how it is

affected by the parameters that control the new physics, and whether these effects

are observable at all.

6.1 Flavour-transition probability in the presence

of a modified dispersion relation

The NP effects can modify flavour transitions in two ways [114]: by transforming

both the oscillation length and the neutrino mixing angles or by altering only the

first. The former case occurs, for instance, when considering the low energy phe-

nomenological model of string theory, known as the Standard Model Extension [110]

(see Chapter 3) and has been examined using SK and K2K data [107,113]. The sec-

ond case can be achieved by considering a modified dispersion relation which departs
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from the well-known formula E2 = p2 + m2. Because we wish to explore whether

solely effects on the phase are observable at high energies, we follow this second al-

ternative and consider the following modified dispersion relation [115], which allows

us to study the contributions of NP effects in a model-independent way:

E2 = p2 +m2 + η′p2

(

E

mP

)α

= p2 +m2 + ηp2Eα , (6.1)

where mP l ≃ 1019 GeV is the Planck mass, η′ = ηmα
P l is an adimensional parameter

that controls the strength of the NP effects and, following the literature, α has been

chosen to be of integer value. Such a dispersion relation assumes that the scale

of NP effects is the Planck scale where, according to theories of quantum gravity,

space-time might become “foamy”. Eq. (6.1) was recently [114] used to predict

the sensitivity of the ANTARES neutrino telescope to NP effects in the high-energy

atmospheric neutrino flux.

We now derive the flavour-transition probability in the presence of NP effects,

for neutrinos that propagate over a cosmological distance. As we saw in Chapter

4, flavour transitions arise as a consequence of the fact that flavour eigenstates

|να〉 (α = e, µ, τ) are not also mass eigenstates |νi〉 (i = 1, 2, 3), but rather a linear

combination of them, i.e., |να〉 =
∑3

i=1 [U0]
∗
αi |νi〉, with [U0]

∗
αi elements of the neutrino

mixing matrix.

Using the standard dispersion relation, it is a common procedure to derive an

approximate expression for the momentum of the i-th neutrino mass eigenstate,

pi =
√

E2 −m2
i ≃ E − m2

i

2E
, (6.2)

where mi is the mass of the neutrino and E is its energy, and are such that, at the

energies that we have considered, mi ≪ E. From this equation we obtain the usual

expression for the momenta difference:

∆pij ≡ pj − pi =
∆m2

ij

2E
. (6.3)

In accordance with the latest bounds obtained from global fits [50], we have set

the three mixing angles that parametrise U to sin2 (θ12) =
√

0.304, θ13 = 0 and

θ23 = π/4. The mass-squared differences have been set to ∆m2
21 = 8.0 × 10−5 eV2

and ∆m2
32 = 2.5 × 10−3 eV2, and we have assumed a normal mass hierarchy (i.e.,

m3 > m1), so that ∆m31 = ∆m32 + ∆m21. The probability that a neutrino created

with flavour α is detected as having flavour β after having propagated a distance L
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in vacuum is given by (compare this with Eq. (4.48))

Pαβ (E,L) = δαβ − 4
∑

i>j

Re
(

Jαβ
ij

)

sin2

(

∆pij

2
L

)

, (6.4)

with the Jαβ
ij defined in Eq. (4.49). Since we have in this chapter set θ13 = 0, U0 is

a real matrix, independent of the CP-violation phase, δCP .

In the case of the modified dispersion relation of Eq. (6.1) we can also find an

expression for the momenta difference. To first order in ηi, and discarding terms

higher than second power in mi or involving ηim
2
i , we obtain

pi ≃ E − m2
i

2E
− ηiE

n

2
, (6.5)

with n ≡ α + 1, and hence

∆p̃ij =
∆m2

ij

2E
+

∆η
(n)
ij E

n

2
, (6.6)

where ∆η
(n)
ij ≡ η

(n)
i − η(n)

j , for the NP mechanism with an En energy dependence.

Note that it is necessary that the ηi have different values for different mass eigen-

states in order to have a nonzero NP contribution to the momenta difference. The

corresponding oscillation probability is Eq. (6.4) with ∆pij → ∆p̃ij ; hence, the NP

affects solely the oscillation phase, but not its amplitude.

Since L≫ 1 for high-energy astrophysical neutrinos, sin2 (∆pijL/2) is a rapidly

oscillating function and so, due to the limited energy resolution of neutrino tele-

scopes, the average flavour-transition probability, Eq. (4.55), is sometimes used in-

stead, i.e.,

〈Pαβ〉 =
∑

i

|Uαi|2|Uβi|2 . (6.7)

Let 〈Pαβ〉std be the standard average probability, that is, when there are no NP

effects present. If the extra term in ∆p̃ij has n > 0, its effect will be that, at high

energies, Pαβ will oscillate even more rapidly with energy, but still around the same

mean value 〈Pαβ〉std. If n < 0, the oscillations will continue up to high energies, also

around the same mean, and at a high enough value, when ∆pij = ∆m2
ij/2E → 0,

the probability will tend to zero. However, if n = 0, then the extra term in ∆p̃ij

is energy-independent and so when ∆pij → 0, Pαβ becomes constant, but different

from zero due to the existence of the extra term. Furthermore, when this happens,

and depending on the values of the ∆η
(0)
ij , it is in principle possible for the constant

probability to be different from 〈Pαβ〉std. Such a nonzero, constant probability at
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high energies could therefore be interpreted as being due to the contribution from

energy-independent new physics. We will focus on this possibility.

Although our analysis of NP effects using Eq. (6.1) is model-independent, ∆η(0)

takes a different form depending on the particular mechanism being considered [107,

113]. In the energy-independent oscillation mechanism that we are focusing on, the

extra contribution could be due to CPTV through Lorentz invariance violation, in

which case

∆η
(0)
ij = bi − bj ≡ bij , (6.8)

with bi the eigenvalues of the Lorentz-violating CPT-odd operator [107] νLb
αβ
µ γµν

β
L.

Alternatively, the contribution could be due to NUCQ, and in this case [15] we would

consider different couplings, ki 6= kj (for mass eigenstates i and j), to a torsion field

Q, so that

∆η
(0)
ij = Q (ki − kj) ≡ Qkij . (6.9)

Strict bounds [107] have been set on the parameters that control the energy-indepen-

dent NP mechanism using data from atmospheric and solar neutrinos, as well as SK

and K2K, with energies up to about 1 TeV:

b21 ≤ 1.6× 10−21 GeV , b32 ≤ 5.0× 10−23 GeV . (6.10)

Because the relative dominance of the NP energy-independent phase over the

standard oscillation phase increases with neutrino energy, i.e., (∆p̃ij −∆pij) /∆pij ∼
E, we would like to look at the most energetic neutrinos available. Hence, we will

consider neutrinos originating at cosmic accelerators, such as active galactic nuclei

(see Chapter 4), where it is presumed that they are created with energies of up

to 1012 GeV. Because the typical distance to these accelerators is in the order of

hundreds of Mpc, we will include in the flavour-transition probability the effect of

cosmological expansion. Hence, instead of the argument that appears in the sine of

Eq. (6.4), we define an accumulated phase [116] φij as follows:

φij (tf , ti) =

∫ tf

ti

∆pij (τ) dτ =

∫ tf

ti

∆m2
ij

2Eo

(

τ

to

)2/3

dτ (6.11)

=
3

10

∆m2
ijto

Eo

[

(

tf
to

)5/3

−
(

ti
to

)5/3
]

, (6.12)

where ti and tf are the times at which the neutrino was produced and detected,

respectively; to = 13.7 Gyr is the age of the Universe [29]; and we have used the

relation between the energy at detection (Eo) and production epochs (E), in an
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adiabatically expanding universe:

E (τ) = Eo (to/τ)
2/3 = Eo (1 + z) . (6.13)

Considering the detection time tf in the present epoch, tf = to, we obtain the

accumulated phase

φij (Eo, z) = 1.97× 1023
∆m2

ij

[

eV2
]

Eo [GeV]

[

1− (1 + z)−5/2
]

, (6.14)

where we have made use of the relation ti/to = (1 + z)−3/2.

By replacing the momenta difference ∆pij with ∆p̃ij , we obtain, correspondingly,

φ̃ij (Eo, z) = φij (Eo, z) +
∆η

(n)
ij E

n
o to

2

[

1− (1 + z)n−3/2
]

(6.15)

≡ φij (Eo, z) + ξ
(n)
ij (Eo, z) , (6.16)

with ξ
(n)
ij the contribution to the phase due to the NP effects. For n = 0,

ξ
(0)
ij (Eo, z) = 3.28× 1041bij [GeV]

[

1− (1 + z)−3/2
]

. (6.17)

Hence, instead of the traditional expression in Eq. (6.4) for Pαβ, we will employ

P cosm
αβ (Eo, z) = δαβ − 4

∑

i

Re
(

Jαβ
ij

)

sin2

(

φij

2

)

, (6.18)

where the explicit expression for φij ≡ φij (Eo, z) is either of Eqs. (6.14) or (6.15),

depending on which dispersion relation is being considered1.

6.2 Observability of the NP effects in the high-

energy neutrino flavour ratios

Using the flavour-transition probability obtained in the previous section, Eq. (6.18),

we can calculate the ratio of neutrinos of each flavour to the total number of neutrinos

that arrive at the detector from a source with redshift z. For α-flavoured neutrinos

1In the limit of very small z, Eq. (6.18) reduces to Eq. (6.4), the expression for the transition
probability for neutrinos that travel much less than cosmological distances, i.e., solar, atmospheric
and reactor neutrinos. This can be seen by making ti = to −∆t in Eq. (6.11), with ∆t ≪ 1, and

discarding terms of order (∆t)
2

and higher.
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(α = e, µ, τ) with energy Eo, this is

ΥD
να

(Eo, z) =
∑

β=e,µ,τ

P cosm
βα (Eo, z) ΥS

νβ
, (6.19)

where ΥD
να

is the ratio at the detector and ΥS
νβ

is the ratio at the source. The

latter is estimated assuming that neutrinos are secondaries of high-energy proton-

proton or proton-photon collisions (see Chapter 4), which produce pions that decay

into neutrinos and muons which decay into neutrinos too [75, 117, 118]: π+ −→
µ+ νµ −→ e+ νe νµ νµ , π− −→ µ− νµ −→ e− νe νµ νµ. It is easy to see that

ΥS
νe

: ΥS
νµ

: ΥS
ντ

= 1/3 : 2/3 : 0. (Actually, ντ are expected to be produced through

the decay of D±
s charmed mesons generated also in pp and pγ collisions. However,

D±
s production is strongly suppressed [75] and ΥS

ντ
< 10−5.)

The ΥD
να

are very rapidly oscillating functions of energy. Taking into account the

limited energy sensitivity of current and envisioned neutrino telescopes (AMANDA-

II, for instance, had an energy resolution of 0.4 in the logarithm of the energy of

the νµ-spawned muon [119]), we see that they are sensitive not to the instantaneous

value of the ratios, ΥD
να

(Eo, z), but rather to the energy-averaged flavour ratios

〈ΥD
να

(Eo, z)〉 =
1

∆Eo

∫ Emax
o

Emin
o

ΥD
να

(E ′
o, z) dE

′
o , (6.20)

where Emin
o = Eo−δEo, E

max
o = Eo +δEo and ∆Eo ≡ Emax

o −Emin
o = 2δEo, with δEo

a small energy displacement. Without the NP effects, the high-energy neutrino flux

from a distant astrophysical source is equally distributed among the three flavours,

i.e., 〈ΥD
νe
〉 : 〈ΥD

νµ
〉 : 〈ΥD

ντ
〉 = 1/3 : 1/3 : 1/3.

In the presence of NP effects, however, the detected flavour ratios might be mod-

ified. Given that the relative dominance of the energy-independent NP phase ξ
(0)
ij

over the standard phase φij grows with energy, i.e., ξ
(0)
ij /φij ∼ Eo, we would expect

that any modifications became more pronounced in the UHE range, PeV–EeV, or

higher. As explained in Section 6.1, while the NP phase remains constant in energy,

the standard phase decreases and, as a consequence, beyond a certain threshold (de-

termined by the values of the bij), the detected ratios ΥD
να

would acquire a constant

nonzero value, which might differ from the standard ratios 1/3 : 1/3 : 1/3, thus

providing a distinct phenomenological signature of a possible energy-independent

contribution to the oscillation phase.

As a means of estimating the values of the bij for which the NP phase starts to

be of importance, we can demand that ξ
(0)
ij ∼ φij. From this requirement, we can

calculate, for given values of the bij , the energy ENP above which the NP effects are
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Figure 6.1: Left: Eigenvalues b21 and b32 as functions of ENP, the energy at which the
standard and NP energy-independent oscillation phases become comparable,

i.e., φij ∼ ξ
(0)
ij , according to Eq. (6.21). The redshift z = 1. The current

upper bounds are plotted as horizontal lines. Notice that, due to these
bounds, ENP cannot be lower than about 1 GeV. Right: Standard oscillation
phase φ21 and phase including the energy-independent contribution, φ̃21, as
functions of neutrino energy. The redshift z = 1. Note that the phases start
to differ at ENP = 106 GeV, which corresponds to b21 = 6.1 × 10−29 GeV
and b32 = 1.9 × 10−27 GeV. Below this energy, they are indistinguishable.

expected to become increasingly more dominant in the oscillation. Doing this, we

obtain

ENP [GeV] = 6× 10−19
∆m2

ij

[

eV2
]

bij [GeV]

1− (1 + z)−5/2

1− (1 + z)−3/2
. (6.21)

The left panel of Fig. 6.1 shows a plot of b21 and b32 as functions of ENP. The current

upper bounds are shown as horizontal lines. The lower the value of ENP, the earlier

the NP effects would manifest. Notice that, due to the current bounds, ENP cannot

be lower than about 1 GeV. The plots have been generated for a fixed z = 1; for

lower values of z we will have a higher value of bij (30% if we take z = 0.03), while we

will obtain a decrease in the values of bij for large z (a 20% decrease for z = 6). The

right panel of Fig. 6.1 shows the standard and the energy-independent NP phases,

φ21 and φ̃21, respectively, as functions of neutrino energy, assuming that ENP = 106

GeV. Notice that the phases start to differ precisely at this energy.

For concreteness, we will study the detected ratio of νµ defined in Eq. (6.20),

since our conclusions are independent of the chosen flavour. Fig. 6.2 shows the

predicted ratio calculated for different values of b21 and b32 (we have assumed that

b31 = b32 + b21) as a function of Eo.

Fig. 6.2 shows that ΥD
νµ

indeed becomes constant and different from 1/3 after a

certain energy threshold. This occurs when the standard phase φij → 0, so that,

effectively, the oscillation phase is reduced to the energy-independent NP contri-
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Figure 6.2: Energy-averaged detected νµ ratio ΥD
νµ

, Eq. (6.20), as a function of neutrino
energy Eo, for different values of the bij . Note that the ratio becomes con-
stant only for unrealistically high energies: ∼ 1016.5 GeV in the best case,
when the bij are set to their upper bounds. For lower values of the bij , the
energy at which the ratio becomes constant is higher. The neutrino flux
from cosmic accelerators is predicted to span up to about 1011 GeV; hence,
the regime of constant ΥD

νµ
due to an energy-independent contribution to

the oscillation phase would not be observable.

bution, i.e., φ̃ij → ξ
(0)
ij , and the transition probabilities become constant. Note,

however, that ΥD
νµ

is constant only for Eo & 1016.5 GeV in the most promising case,

that is, when the bij equal their current upper bounds. This is about five orders

of magnitude higher than the energy of the most energetic neutrinos expected from

cosmic accelerators. For smaller values of these parameters, the energy at which

the ratio becomes constant is even higher. Using closer or more distant sources,

effectively decreasing or increasing z, does not affect the energy threshold, but only

modifies the constant value reached by ΥD
νµ

. Therefore, we conclude that, given the

current upper bounds on the bij , an energy-independent NP contribution to neutrino

oscillations would be visible in the high-energy astrophysical neutrino flux only if it

modifies the oscillation amplitude (i.e., the mixing angles), as well as the phase.

In light of this conclusion, within the formalism used in the present work, a

comparative calculation, with and without NP effects, of high-energy astrophysi-

cal neutrinos detected at a second-generation neutrino telescope such as IceCube

becomes unnecessary.
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6.3 Summary and conclusions

We have considered the effect of a modified dispersion relation on the detected

flavour ratios of high-energy neutrinos from cosmic accelerators. In the scenario of

new physics that we have explored, the flavour oscillation phases are modified by

the addition of energy-independent terms which depend on the parameters bij . This

contribution could correspond to a violation of CPT symmetry or to a nonuniversal

neutrino coupling to a torsion field. The current upper bounds on the bij are strict:

b21 ≤ 5.0× 10−23 GeV and b32 ≤ 1.6× 10−21 GeV.

At sufficiently high energies, the oscillation phases are dominated by the energy-

independent terms and the flavour ratios become constant and, possibly (depending

on the values of the bij) different from the average value of the ratios in the standard

oscillation case, when new physics effects are absent. We have found, however, that

even in the best case, when the bij are set to their upper bounds, the ratios are

constant only for energies above 1016.5 GeV, about five orders of magnitude higher

than the most energetic neutrinos that are expected from cosmic accelerators. Lower

values of the bij will only result in higher energy thresholds for the ratios to become

constant.

Therefore, we conclude that, even though there could be, in principle, a clear

signature of the presence of energy-independent contributions to the neutrino flavour

oscillations, these are not detectable in the flavour ratios of high-energy neutrinos

from cosmic accelerators if they affect solely the oscillation phases. This will be the

subject of the next chapter.
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Chapter 7

CPT violation in astrophysical

neutrinos in the Standard Model

Extension

Note: the results in Section 7.2 have been adapted from [120,121].

In Chapter 3, we saw that the lepton sector of the Standard Model Extension

contains the Lorentz-violating contributions [13]

LLIV ⊃ − (aL)µαβ Lαγ
µLβ +

1

2
i (cL)µναβ Lαγ

µ
↔
D

ν

Lβ , (7.1)

with α, β flavour indices. The first term is CPT-odd, with the coefficients aL having

dimensions of mass, while the second term is CPT-even, with the cL dimensionless.

Because we are interested in an energy-independent CPTV contribution, we have

kept only the first term in the Lagrangian. In the neutrino sector, then, CPT

violation can be introduced through an effective, model-independent, vector coupling

of the form [122]

Lν
CPTV = bµαβναγ

µνβ . (7.2)

The vector ναγ
µνβ is CPT-odd and the bµαβ are real coefficients, so Lν

CPTV is CPT-

odd, i.e., CPT (Lν
CPTV) = −Lν

CPTV. When the effective energy-independent Hamil-

tonian associated to Lν
CPTV is added to the standard mass-driven neutrino oscillation

Hamiltonian, it modifies the energy eigenvalues and, as a result, the mixing matrix

is modified as well.
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7.1 Two–neutrino case

The simpler, two-neutrino formalism of CPTV in neutrino oscillations was the sub-

ject of ref. [123]. Here we present their results, with more detailed derivations, before

examining the more realistic case of three-neutrino CPTV.

Consider the following Hamiltonian in the flavour basis:

Hf,2ν =
∆m2

2E
U0,2ν

(

−1 0

0 1

)

U †
0,2ν + ∆b Ub,2ν

(

−1 0

0 1

)

U †
b,2ν , (7.3)

where the first term accounts for oscillations in the vacuum and the second one, for

CPTV-induced flavour transitions. The mixing

The coefficient ∆b ≡ b2−b1 is energy-independent, and its origin is made evident

by writing the Hamiltonian in the mass basis, i.e.,

Hm
f,2 =

1

2
MM † + b , (7.4)

where M = diag (m1, m2), and b a Hermitian matrix. For anti-neutrinos, the sign

of b is flipped. Thus, there are three different bases at play:

flavour basis: (νe, νµ) (7.5)

mass basis: (ν1, ν2) (7.6)

basis in which b is diagonal:
(

νb
1, ν

b
2

)

(7.7)

and they are connected through the vacuum mixing matrix, U0,2ν , and the CPTV

mixing matrix, Ub,2ν . Explicitly,

|να〉 =
∑

i

[U0,2ν ]
∗
αi |νi〉 (7.8)

|να〉 =
∑

i

[Ub,2ν ]
∗
αi |νb

i 〉 . (7.9)

The vacuum and CPTV mixing matrices are given, respectively, by

U0,2ν =

(

cos (θ) sin (θ)

− sin (θ) cos (θ)

)

(7.10)

and

Ub,2ν =

(

cos (θb) sin (θb) e
iη

− sin (θb) e
−iη cos (θb)

)

. (7.11)

Here, θ and θb are the rotation angles that diagonalise the vacuum and CPTV
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contributions, respectively. The phase η in Eq. (7.11) is the difference between the

phases that diagonalise the first and second terms in Eq. (7.3); only one of these

two phases can be rotated away by the redefinition of the neutrino states.

Operating, we obtain

Hf,2ν =

(

−∆m2

2E
cos (2θ)−∆b cos (2θb)

∆m2

2E
sin (2θ) + ∆b sin (2θb) e

iη

∆m2

2E
sin (2θ) + ∆b sin (2θb) e

−iη ∆m2

2E
cos (2θ) + ∆b cos (2θb)

)

.

(7.12)

We will calculate the eigenvalues of Hf,2ν in some details, since in the three-neutrino

case, due to the existence of several more splittings and phases, it would be too

involved. The characteristic equation reads

det (Hf,2ν − λ) = 0 , (7.13)

with λ the eigenvalue. Solving this leads to

λ2 = [∆ cos (2Θ) /2]2 + [∆ sin (2Θ) /2]2 = ∆2/4 , (7.14)

with ∆ and Θ defined implicitly by

∆ cos (2Θ) =
∆m2

E
cos (2θ) + 2∆b cos (2θb) (7.15)

∆ sin (2Θ) =

∣

∣

∣

∣

∆m2

E
sin (2θ) + 2∆b sin (2θb) e

iη

∣

∣

∣

∣

. (7.16)

The rotation angle Θ diagonalises Hf,2ν through

Uf,2ν =

(

cos (Θ) sin (Θ)

− sin (Θ) cos (Θ)

)

. (7.17)

We will denote by
{

|νT
i 〉
}

the orthonormal basis in which Hf,2ν is diagonal, i.e.,

HT
f,2ν = U †

f,2νHf,2νUf,2ν =

(

∆/2 0

0 −∆/2

)

, (7.18)

with ±∆/2 the eigenvalues. From Eqs. (7.15) and (7.16), we can find explicit ex-
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pressions for ∆ and Θ, namely

∆ =

{

(

∆m2

2E

)2

+ 4 (∆b)2

+ 4
∆m2

E
∆b [cos (2θ) cos (2θb) + sin (2θ) sin (2θb) cos (η)]

}1/2

(7.19)

tan (2Θ) =
|(∆m2/E) sin (2θ) + 2∆b sin (2θb) e

iη|
(∆m2/E) cos (2θ) + 2∆b cos (2θb)

. (7.20)

The evolved state of a neutrino created with flavour α is

|να (L)〉 =
∑

i

[Uf,2ν ]
∗
αi |νT

i (L)〉

=
∑

i

[Uf,2ν ]
∗
αi e

−i
∆i
2

L|νT
i 〉

= cos (Θ) ei∆
2

L|νT
1 〉+ sin (Θ) e−i∆

2
L|νT

2 〉 , (7.21)

and, on account of the definition of the other neutrino in the system as

|νβ〉 = − sin (Θ) |νT
1 〉+ cos (Θ) |νT

2 〉 , (7.22)

the probability Pαβ = |〈νβ |να (L)〉|2 for the transition να → νβ to occur is therefore

Pαβ = Pβα = sin2 (2Θ) sin2

(

∆

2
L

)

(7.23)

Pαα = Pββ = 1− Pαβ . (7.24)

Thus, observable CPT violation is a consequence of the interference between

the standard ∆m2 term (which is CPT-even) and the ∆b term (which is CPT-odd).

From Eq. (7.12), it is evident that if ∆m2 = 0 or ∆b = 0, there will be no observable

CPTV in neutrino oscillations. Were ∆m2/E ≫ ∆b, then Θ ≃ θ and ∆ ≃ ∆m2/e,

whereas, if ∆m2/E ≪ ∆b, then Θ ≃ θb and ∆ ≃ ∆b. Therefore, the strength of the

CPTV can vary dramatically with E.

Note from Eq. (7.20) that there is a CPT-odd resonance for neutrinos, reminis-

cent of the resonance due to matter effects (see Section 4.1.3), when cos (2Θ) = 0

or, equivalently,
(

∆m2/E
)

cos (2θ) + 2∆b cos (2θb) = 0 . (7.25)

For anti-neutrinos, the same condition holds, but with ∆b → −∆b. Hence, for

neutrinos, in order for the resonance to occur, it is necessary that ∆m2 and ∆b

have opposite signs, while, for anti-neutrinos, they must have the same sign. The
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resonance condition is independent of η, and so a resonance can occur regardless of

the value of this phase. However, if θ = θb, a resonance can only occur if η 6= 0.

Following [123], we will explore three different examples of CPTV and CPT-odd

resonances. To simplify the analysis, we assume herafter that the ∆m2 and ∆b

contributions are diagonalised by the same angle, i.e., θb = θ. With this, Eqs. (7.19)

and (7.20) become

∆ =

{

(

∆m2

2E

)2

+ 4 (∆b)2

+ 4
∆m2

E
∆b
[

cos2 (2θ) + sin2 (2θ) cos (η)
]

}1/2

(7.26)

tan (2Θ) =
|(∆m2/E) + 2∆beiη|

(∆m2/E) + 2∆b
tan (2Θ) . (7.27)

7.1.1 η = 0

In this case,

∆ =
∆m2

E
+ 2∆b (7.28)

Θ = θ , (7.29)

and no CPT-odd resonance is possible. The transition and survival probabilities,

Eq. (7.23), are

Pαβ = sin2 (2θ) sin2

[(

∆m2

4E
± ∆b

2

)

L

]

(7.30)

Pα α = 1− sin2 (2θ) sin2

[(

∆m2

4E
± ∆b

2

)

L

]

. (7.31)

The effect of the CPTV term is to introduce an energy-independent phase shift

∆bL/2. In this respect, the case of η = 0 is equivalent to introducing CPTV through

a modified dispersion relation, as we did in Chapter 6. As within that formalism,

only the oscillation phase, and not the amplitude (i.e., the mixing angle), is modified.

One possible CPT observable can be the difference between the probabilities for

neutrinos and anti-neutrinos, i.e.,

Pαα (L)− Pα α (L) = −2 sin2 2θ sin

(

∆m2

2E
L

)

sin (∆bL) . (7.32)

If ∆b = 0, evidently, this quantity is identically zero. In [123], estimates are made

using the ratio of νµ → νµ to νµ → νµ eventos in a neutrino factory.
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Figure 7.1: Variation of the oscillation amplitude sin2 (2Θ) (left) and argument ∆ (right)
with the CPT-odd parameter ∆b, for neutrinos and anti-neutrinos. We have
set sin2 (θ) = 0.01 and ∆m2 = 2.4 × 10−3 eV2, corresponding to the central
values of θ13 and ∆m2

31, respectively. The phase η = π/2.

7.1.2 η = π/2

In this case,

∆2 =

[

∆m2

E
+ 2∆b

]2

− 4
∆m2

E
∆b sin2 (2θ) (7.33)

tan (2Θ) =

√

(∆m2/E)2 + (2∆b)2

(∆m2/E) + 2∆b
tan (2θ) . (7.34)

If either ∆m2/E ≫ 1 or ∆b ≫ 1, then tan (2Θ) ≃ tan (2θ). Hence, in order

for the effect of the ∆b contribution to be observable we require |∆m2/E| ∼ |2∆b|.
Whenever ∆m2/E ≃ −2∆b, a resonance occurs for neutrinos and Θ = π/4, whatever

the value of tan (2θ) is. For anti-neutrinos, the resonance occurs whenever ∆m2/E ≃
−2∆b. Figure 7.1 shows plots of sin2Θ and ∆ versus the CPT-odd parameter ∆b,

for fixed sin2 (θ) 0.01, ∆m2 = 2.4 × 10−3 eV2, and η = π/2, for neutrinos and

anti-neutrinos.

7.1.3 CPTV with matter effects

If either να or νβ is a νe, then matter effects may be present (see Section 4.1.3). In

such a case, the full Hamiltonian is built from Eq. (7.3) by adding to it the matter

interaction term in Eq. (4.33), i.e.,

VW

2

(

1 0

0 −1

)

. (7.35)
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Diagonalising the full Hamiltonian, we find

∆ sin (2Θ) =
∣

∣

(

∆m2/E
)

sin (2θ) + 2∆beiη sin (2θb)
∣

∣ (7.36)

∆ cos (2Θ) =
(

∆m2/E
)

cos (2θ) + 2∆b cos (2θb)− 2
√

2GFNe , (7.37)

for neutrinos, and the same expressions with ∆b → −∆b and Ne → −Ne for anti-

neutrinos.

Assuming again θ = θb and η = 0, we find, for neutrinos,

tan (2Θ) =
[(∆m2/E) + 2∆b] sin (2θ)

[(∆m2/E) + 2∆b] cos (2θ)− 2
√

2GFNe

, (7.38)

∆2 =
{

[(

∆m2/E
)

+ 2∆b
]

cos (2θ)− 2
√

2GFNe
}2

+
[(

∆m2/E
)

+ 2∆b
]2

sin2 (2θ) , (7.39)

with ∆b → −∆b and Ne → −Ne for anti-neutrinos. The resonance occurs for

(anti-)neutrinos whenever

[(

∆m2/E
)

+ 2∆b
]

cos (2θ) = ±2
√

2GFNe . (7.40)

For a resonance to occur both for neutrinos and anti-neutrinos, we require that the

CPTV term dominates over the vacuum term, i.e., ∆m2/E ≪ ∆b.

7.2 Three–neutrino case

7.2.1 CPT violation in the neutrino sector

Motivated by the vector coupling in Eq. (7.2), and in analogy to the standard

oscillation scenario, we can introduce an energy-independent contribution in the

form of the Hamiltonian (also in the flavour basis)

Hb = Ub diag (0, b21, b31)U
†
b , (7.41)

where bij ≡ bi − bj . Following [122], we write the mixing matrix in this case as

Ub = diag
(

1, eiφ2, eiφ3
)

U0 ({θbij} , δb) . (7.42)

The mixing angles associated with this Hamiltonian are θb12, θb13, θb23, and δb fills the

role of δCP in the standard Hamiltonian. The two extra phases, φ2 and φ3, appear

because, once the flavour states and the mass eigenstates have been related through
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Eq. (4.1), the former are completely defined, and the two extra phases cannot be

rotated away.

Hb is dependent on eight parameters –two eigenvalues (b21, b31), three mixing

angles (θb12, θb13, θb23) and three phases (δb, φ2, φ3)– whose values are currently

unknown. There are, however, experimental upper limits [122] on b21, obtained

using solar and Super-Kamiokande data, and on b32, obtained using atmospheric

and K2K data:

b21 ≤ 1.6× 10−21 GeV , b32 ≤ 5.0× 10−23 GeV . (7.43)

The full Hamiltonian, including standard oscillations and the energy-independent

contribution, is then

Hf = Hm +Hb . (7.44)

In Chapter 6, we saw that Hm has been experimentally demonstrated to be the

dominant contribution to the oscillations in the low to medium energy (MeV–TeV)

regime: there are no indications of new energy-independent physics at these energies

and accordingly the limits on bij shown in Eq. (7.43) were placed. Because of the

1/E dependence of Hm, however, it remains possible that, at higher energies, where

the contribution ofHm is suppressed, the effect of a hypothetical energy-independent

term Hb becomes comparable to it or even dominant. Such energy requirement is

expected to be fulfilled by the UHE astrophysical neutrino flux (see Chapter 5).

The effect of CPTV on the flavour ratios of high-energy astrophysical neutrinos

has been explored elsewhere literature: in [123], for instance, a two-neutrino approx-

imation was employed and it was assumed that Hm and Hb are diagonalised by the

same mixing matrix, i.e., that θbij = θij , while, in [73], neutrinos and antineutrinos

were treated differently due to CPTV. Ref. [122] used a formalism similar to the

one we have used, but applied it to long-baseline terrestrial experiments and, due

to the lower energies involved, introduced the CPTV effects as perturbations. The

main difference between the existing literature on the effects of CPTV on the flavour

fluxes of high-energy astrophysical neutrinos and the present work is that we have

not treated the CPTV contribution as a perturbation, but, rather, we have allowed

for the possibility that it becomes dominant at a high enough energy scale.

We would like to write the flavour transition probability corresponding to this

Hamiltonian in a form analogous to Eq. (4.55). In order to do this, we need to

know what is the mixing matrix Uf that connects the flavour basis and the basis

in which Hf is diagonal. Using basic linear algebra, this is achieved simply by di-

agonalising Hf , finding its normalised eigenvectors, and building Uf by arranging
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them in column form. The components of the resulting matrix are in general com-

plicated functions of the standard mixing parameters ({θij},
{

∆m2
ij

}

, δCP) and of

the parameters of Hb ({θbij}, {bij}, δb, φ2, φ3). By comparing the mixing matrix

obtained by diagonalisation of Hf with a general PMNS matrix, given explicitly by

Eq. (4.47) with mixing angles Θij and phase δf , we are then able to calculate how

the effective mixing angles Θij vary with the parameters of Hb and δCP. Succintly

put, we have

Uf = Uf

(

{θij} , {θbij} ,
{

∆m2
ij

}

, {bij} , δCP, δb, φb2, φb3

)

= U0 ({Θij} , δf) . (7.45)

Note that we have not used a perturbative expansion in the bij , as in [122], to

calculate Uf . This was done in order to allow for the possibility that the new physics

effects become dominant at high energies, a possibility that would be negated if we

had assumed that the effects are small from the start. As a result, the functional

forms of the Θij and δf , while calculated in a straightforward manner, result in

lengthy expressions and, due to their unilluminating character, we have chosen not

to present them here.

Thus defined, Uf is 14-parameter function. However, the standard mixing pa-

rameters ∆m2
21, ∆m2

31, θ12, θ13 and θ23 have been fixed by neutrino oscillation ex-

periments (see Eq. (4.52)). Additionally, in order to simplify the analysis, we have

set the phases δb = φ2 = φ3 = 0. The standard CP-violating phase δCP has been

allowed to vary in the range [0, 2π] in some of our plots, but otherwise we have set

it to zero as well. As a further simplification, we have made the eigenvalues of Hm

proportional to those of Hb, at a fixed energy of E⋆ = 1 PeV, that is,

bij = λ
∆m2

ij

2E⋆
, (7.46)

with λ the proportionality constant. The upper bounds on the bij , Eq. (7.43), are

satisfied for λ . 104. Standard, purely mass-driven oscillations are recovered when

λ = 0. Thus we are left with only four free parameters to vary: λ, θb12, θb13 and θb23

(and δCP, where noted).

In analogy to Eq. (4.55), the average flavour transition probability associated to

the full Hamiltonian Hf is then

〈Pαβ〉 =
∑

i

|[Uf ]αi|2|[Uf ]βi|2 . (7.47)

We will use this expression for the flavour-transition probability hereafter. It is

worth noting that, if the CPTV contribution were introduced instead through a
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Figure 7.2: Allowed regions of values of the detected muon-neutrino flavour ratio, φµ, as
a function of λ for different neutrino production models. The three standard
mixing angles (θ12, θ13, θ23) were varied within 3σ bounds and the three
CPTV angles (θb12, θb13, θb23) were varied within [0, π], while δCP = 0. The
hatched regions are the allowed regions of φµ when only standard oscillations
are allowed, and allowing the θij to vary within their 3σ bounds.

modified energy-momentum relation, only the oscillation phase would be affected,

and this information would be lost when the average probability was used in place

of the oscillatory one [103].

7.2.2 Detection of only muon-neutrinos

In Figure 7.2 we present a plot of the muon-neutrino flavour ratio, φµ, as a function

of λ. The coloured bands correspond to different neutrino production scenarios,

namely: φ0
e : φ0

µ : φ0
τ = 1 : 2 : 0 (blue), 0 : 1 : 0 (purple) and 1 : 0 : 0 (brown), which

have been generated by varying the three CPTV angles (θb12, θb13, θb23) within [0, π],

and the three standard mixing angles (θ12, θ13, θ23) within their 3σ bounds, with

δCP = 0. For comparison, we have included the hatched bands which represent the

pure standard oscillation case, that is, without CPTV. These have been generated by

setting λ = 0 and varying the three standard mixing angles within their 3σ bounds,

again with δCP = 0. As expected, the standard-oscillation bands are contained

within the corresponding CPTV region.

When CPTV is allowed, we observe large deviations of φµ with respect to the pure

standard-oscillation bands, especially for the scenarios φ0
e : φ0

µ : φ0
τ = 1 : 2 : 0 and

0 : 1 : 0, and less so for the scenario 1 : 0 : 0. Starting from λ ∼ 0.1 (b32 ≃ 1.2×10−28

GeV), the CPTV bands start growing with λ, as was expected, since λ measures the
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strength of the CPT violation. Thus, the influence of the CPTV contribution to the

oscillations grows and, as a consequence, the accessible region also grows. This is due

to the wide range of values that the CPTV mixing angles can take, in comparison

with the standard ones. Past λ = 1, the CPTV regions reach a plateau, owing to

the fact that the CPTV term becomes dominant over the standard-oscillation term

in the Hamiltonian.

An interesting feature is the overlap between the standard-oscillation band for

the scenario 1 : 2 : 0 and the CPTV region for scenario 0 : 1 : 0. A similar

overlap occurs between the scenarios 0 : 1 : 0 (without CPTV) and 1 : 0 : 0 (with

CPTV). As a consequence of these overlaps, if CPTV exists for certain values of

the parameters, a measurement of φµ will be insufficient to distinguish what the

neutrino production model is. For instance, if a value of φµ ≃ 0.4 were measured,

and λ & 0.2, we would not be able to assert whether the initial fluxes were 0 : 1 : 0 or

1 : 0 : 0. Analogously, since the standard-oscillation bands are contained within the

CPTV regions, for these cases we will be unable to conclude, from the measurement

of φµ, whether or not CPTV effects are present.

Although we have not presented it here, we have tested that when varying δCP

within [0, 2π], the regions change only in a few percent. Therefore, the features

observed in Fig. 7.2 are largely independent of the value of δCP.

7.2.3 Detection of muon- and electron-neutrinos

In this section, we consider an scenario where only muon- and electron-neutrinos are

detected in an available neutrino telescope. Assuming that flavour identification is

possible, we can define the ratio of observed flavour ratios

R ≡ φµ/φe , (7.48)

which, in the presence of CPTV, depends on λ and on the three CPTV mixing

angles through the definition of the φα in terms of the flavour-transition probabilities.

Figure 7.3 shows the regions of values of R as a function of λ by varying the three

CPTV angles within [0, π].

The coloured regions in Fig. 7.3 grow with λ, for the same reason as they did in

Fig. 7.2. Under the assumption of a 0 : 1 : 0 production model, R can attain very

large values, between 106 and 107, as a result of very low electron-neutrino fluxes.

On the other hand, the CPTV region associated to the 1 : 2 : 0 production model

reaches a maximum of R = 2 after λ ≃ 5, while the one associated to 1 : 0 : 0 reaches

a maximum of R = 1 after λ ≃ 1. Therefore, a measurement of R≫ 4 could imply

106



AR120
std E

AR010
std E

AR100
std E

0.01 0.1 1 10 100
0

1

2

3

4

5
0.001 0.012 0.116 1.162 11.617

Λ

R

b32 @´ 1026 GeVD

Figure 7.3: Allowed regions of values of R ≡ φµ/φe as a function of λ, for three scenarios
of initial flavour ratios: φ0

e : φ0
µ : φ0

τ = 1 : 2 : 0 (blue), 0 : 1 : 0 (purple) and
1 : 0 : 0 (brown). For each one of them, at each value of λ, the three CPTV
mixing angles, θb12, θb13 and θb23, were independently varied within [0, π], and
the three standard mixing angles, θ12, θ13 and θ23, were varied within their
3σ bounds (Eq. (4.52)): the lowest and highest value of R obtained in this
way define, respectively, the lower and upper bounds of the corresponding
region, for this particular value of λ. The CP-violating phase δCP = 0. The
upper horizontal axis is b32 = λ ∆m2

32/ (2E∗), with E∗ = 1 PeV; to find
the corresponding values of b21, notice that b21/b32 = ∆m2

21/∆m
2
32 ≃ 1/30.

The hatched horizontal bands are the allowed regions of R assuming only
standard oscillations and allowing the standard mixing angles θij to vary
within their 3σ bounds.

that the production model is 0 : 1 : 0, and that CPTV effects are present, but will

not be enough to set strong bounds on λ. The minimum value in both the 0 : 1 : 0

and 1 : 2 : 0 regions is located around R = 0.8 ∼ 1, while for the 1 : 0 : 0 flux, it is

zero for most of the range of λ.

If a value of R . 4 is found, the ability to single out a production model de-

pends on the exact value of R that is measured. A single production model can

be distinguished univocally for some measured values of R (e.g., for R < 0.84, the

model is 1 : 0 : 0), while for others, two (when 1 . R . 4, depending on λ) or three

models (when R ≃ 1) can account for the same measured value. In the same way,

for some values of R, CPTV and standard oscillations cannot be distinguished. The

conclusions, from Fig. 7.3, that can be obtained from the measurement of different

values of R are shown in Table 7.1.
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Measured R Conclusion
R > 4 Initial ratios 0 : 1 : 0 and CPTV

[

Rstd
010

]

< R < 4 Initial ratios 0 : 1 : 0 or 1 : 2 : 0, and CPTV
R ∈

[

Rstd
010

]

(Initial ratios 0 : 1 : 0 and std. osc.) or (1 : 2 : 0 and CPTV)
[

Rstd
120

]

< R <
[

Rstd
010

]

Initial ratios 0 : 1 : 0 or 1 : 2 : 0, and CPTV
R ∈

[

Rstd
120

]

(Initial ratios 1 : 2 : 0 and std. osc.) or
(initial ratios 0 : 1 : 0 or 1 : 0 : 0, and CPTV)

0.84 < R <
[

Rstd
120

]

Initial ratios 1 : 2 : 0 or 1 : 0 : 0, and CPTV
[

Rstd
100

]

< R < 0.84 Initial ratios 1 : 0 : 0 and CPTV
R ∈

[

Rstd
100

]

Initial ratios 1 : 0 : 0 and std. osc.
R <

[

Rstd
100

]

Initial ratios 1 : 0 : 0 and CPTV

Table 7.1: Conclusions that can be obtained depending on the measured value of R,
according to Fig. 7.3.

[

Rstd
120

]

,
[

Rstd
010

]

and
[

Rstd
100

]

represent, respectively, the
standard-oscillation bands corresponding to the φ0

e : φ0
µ : φ0

τ = 1 : 2 : 0,
0 : 1 : 0 and 1 : 0 : 0 production models. When we refer to standard
oscillations, we mean either the inexistence of CPTV (λ = 0) or the existence
of too small a CPTV (λ≪ 1).

7.2.4 Detection of three flavours

Given the approach of this work, we have considered as a natural step to extend our

analysis by taking into account the possibility of tau-neutrino detection. For this

purpose, we have defined the ratio

S = φτ/φµ , (7.49)

and studied the effects of the new physics in the R vs. S plane.

Before we describe the results of this section, it will be useful to turn our attention

to the values of R and S associated to the different production models when only

standard oscillations are allowed, along with the correspondong standard values of

the detected fluxes φα. These values are shown in Table 5.1. The CPTV regions

in Figures 7.4–7.6 have been generated by setting λ = 100 (Figs. 7.4 and 7.5) and

λ = 1, 10, 100 (Fig. 7.6), fixing the standard mixing parameters at their best-fit

values (see Eq. (4.52)), and varying the CPTV mixing angles θbij within the range

[0, π], while the standard-oscillation regions have been generated by setting λ = 0

and varying the standard mixing angles within their 3σ bounds. With the exception

of Figure 7.7, where δCP has been allowed to vary, we have set all phases equal to

zero.

In Fig. 7.4 we display in three R vs. S panels the allowed regions of values that

correspond to pure standard oscillations at 3σ, in dark tones, and the correspond-
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Figure 7.4: Regions of R and S accessible with CPTV by assuming different neutrino
production scenarios. Different colours correspond to different initial ratios:
φ0

e : φ0
µ : φ0

τ = 1 : 2 : 0 (blue), 0 : 1 : 0 (purple), 1 : 0 : 0 (brown). Darker
regions are generated with standard (CPT-conserving) neutrino flavour os-
cillations, by allowing the standard mixing angles to vary within their 3σ
experimental bounds. Lighter regions correspond to the case when we in-
clude a dominant CPTV contribution with λ = 100, and allow the CPTV
angles θbij to vary within [0, π]. All phases are set to zero.

ing regions allowed by the mixed solution composed of the standard oscillation plus

CPTV effects, with λ = 100, in lighter tones. At this value of λ, the CPTV con-

tributions are the dominant ones in the Hamiltonian, i.e., Hf ≃ Hb. Each plot

corresponds to a different neutrino production scenario: (a) to 1 : 2 : 0, (b) to

0 : 1 : 0, and (c) to 1 : 0 : 0.

From these plots we can extract two observations: one is the potentially dramatic

deviation of the allowed values of the pair (R, S) when CPTV is turned on, and the

other is the presence of points that are common to all scenarios. The latter implies

that, if there is CPTV, there could exist pairs (R, S), such as (1, 0), that can be

generated by any of the three production models, each with a different set of values

for the CPTV mixing angles. There are also (R, S) pairs which could be generated

by one production model with standard oscillations or with a different model with

CPTV, e.g., those lying around (1, 0.95). It is convenient to remark that this figure

and Fig. 7.3 are consistent with each other, which can be shown by projecting the

CPTV regions of Fig. 7.4 onto the horizontal axis and checking that the limits on R

agree with those on Fig. 7.3. We have marked a few notable points in each plot: for

the three production models, the points labelled with A correspond to the best-fit

values of the standard-oscillation mixing parameters in Eq. (4.52).

In Fig. 7.5, the allowed R−S regions corresponding to the three neutrino produc-

tion models are shown together: 1 : 2 : 0 in blue, 0 : 1 : 0 in purple, and 1 : 0 : 0 in

brown, where, as before, the darker tones correspond to pure standard oscillations,

and the lighter tones, to a dominant CPTV with λ = 100. Following the argument

in Section 5.2, we have also included the regions of (R, S) pairs allowed by neutrino
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Figure 7.5: Regions of R and S accessible by assuming different neutrino production
scenarios: φ0

e : φ0
µ : φ0

τ = 1 : 2 : 0 (blue), 0 : 1 : 0 (purple) and 1 :
0 : 0 (brown). Darker shades of blue, purple and brown correspond to
standard, CPT-conserving (i.e., λ = 0), flavour transitions, while lighter
shades correspond to flavour transitions dominated by CPT violation (λ =
100). The former were generated by varying the standard mixing angles θij

within their current 3σ experimental bounds; the latter, by fixing the θij to
their best-fit values and varying the new mixing angles θbij within 0 and π.
All of the phases were set to zero: δCP = δb = φb2 = φb3 = 0. Also shown are
the regions accessible through decay of the neutrinos into invisible products,
when ν1 is the lightest mass eigenstate (red) and when ν3 is the lightest one.

decay into invisible products, considering both the cases of a normal mass hierarchy

(decay into the ν1 eigenstate), in red, and of an inverted hierarchy (decay into ν3),

in green. The decay regions were also generated by varying the standard-oscillation

mixing angles within their 3σ bounds.

While the regions corresponding to 1 : 2 : 0 do not overlap those corresponding

to neutrino decay, this is not the case for the 0 : 1 : 0 scenario, for which there

is a clear overlap between the CPTV region and the one from neutrino decay into

ν3. The region corresponding to decay into ν1 is completely contained within the

1 : 0 : 0 CPTV region. Projecting onto the horizontal axis, we see that, apart

from the same overlaps between the allowed R intervals that existed in the two-

neutrino case, as observed in Fig. 7.3, new overlaps appear due to the inclusion of

the neutrino-decay regions. Particularly, whereas prior to the inclusion of decays, a

value of R ≫ 4 was a clear indication of the existence of CPTV and of a 0 : 1 : 0

production model, now Fig. 7.5 shows that, after R = 7, the decay into ν3, assuming

an inverted mass hierarchy, can also be accountable for a high value of R. On the

other hand, values of 0.25 . R . 0.75 can be reached by the 1 : 0 : 0 production

model, with or without CPTV, as well as with neutrino decay into ν1, assuming
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Figure 7.6: Regions of values of R and S accessible when varying the parameter λ be-
tween 0 (no CPT breaking) and 100 (dominant CPTV term), for different
neutrino production models. In blue: φ0

e : φ0
µ : φ0

τ = 1 : 2 : 0; in purple,
0 : 1 : 0; in brown, 1 : 0 : 0. The region corresponding to pure standard
oscillations (λ = 0) was generated by varying the standard mixing angles
within their 3σ experimental bounds, Eq. (4.52). To generate the regions
corresponding to λ = 1, 10, 100, the standard mixing angles were fixed to
their best-fit values, and the three CPTV mixing angles θbij were varied
independently within [0, π]. The CP-violating phase δCP = 0 for all of the
regions.

a normal hierarchy. A normal mass hierarchy is able to yield values of S as low

as ∼ 0.075, leaving only the small window between zero and this value as unique

feature of CPTV. Taking into account experimental uncertainty, it is likely that this

window is actually non-existent. Only if the measured S & 1.1, and in the absence

of decays, would it be possible to identify a single production model, 1 : 0 : 0, as the

one responsible. If decays are allowed, however, they can also account, irrespectively

of the mass hierarchy, for S > 1.1, and the ability to single out a production model

is lost. Thus, the signatures of CPTV become less unique in the presence of decays.

A more complete analysis of neutrino decays [73], exploring also the possibility of

incomplete decays and decay into visible products, further reduces our ability to

uniquely identify the presence of CPTV.

In the absence of neutrino decays, a measurement of R & 4.1 and S . 1.1 could

indicate the presence of dominant CPTV and a 0 : 1 : 0 production model. Also,

for R . 0.9, the production model is 1 : 0 : 0; if S . 0.45, there is dominant CPTV

and, for other values of S, the existence of CPTV will depend on the value of R

measured. Close to R = 1, and for S . 0.9, any of the three production models

with dominant CPTV can explain the measured (R, S) pair, while for 0.9 . S < 1,
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Figure 7.7: Variation of R and S with θ13, when the CP-violation phase δCP is allowed to
vary between 0 and 2π. The upper limit for θ13 is given by the current bound
sin2 (θ13) ≤ 0.056 (3σ) and the mixing parameters θ12, θ23, ∆m2
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32

have been set to their current best-fit values; standard flavour oscillations
have been assumed throughout (i.e., λ = 0). Three different scenarios of
initial flavour ratios have been considered: φ0

e : φ0
µ : φ0

τ = 1 : 2 : 0 (in blue),
0 : 1 : 0 (in purple) and 1 : 0 : 0 (in brown). To allow for comparison, the
arrows point to the curves on which δCP = 0.

the pair could be generated either by the 0 : 1 : 0 or 1 : 0 : 0 models with CPTV,

or by the 1 : 2 : 0 model with standard oscillations. For 1.1 . R < 4 and S . 0.6,

there is a large region of overlap between the 1 : 2 : 0 and 0 : 1 : 0 models with

dominant CPTV.

Fig. 7.6 shows the effect of the variation of the parameter λ between 0 (no CPTV,

i.e., Hf = Hm) and 100 (dominant CPTV term, i.e., Hf ≃ Hb) on the allowed R−S
regions, for the different neutrino production scenarios. For the three of them, we

can observe significant deviations from the predictions of the standard-oscillation

case, even for low values of λ. In this sense, it is interesting to point out that in

the case of an experimental non-detection of CPTV in the neutrino flavour ratios, R

and S can be used to set limits on the related parameters. In fact, when λ = 1, and

for a neutrino energy of 1 PeV, we can attain limits for the CPTV eigenvalues bij in

the order of 10−29 and 10−27 GeV, for b21 and b23, respectively. It is also important

to mention that these results can be easily rescaled to any energy, just by doing

bij×(PeV/E). This would mean a very significant improvement over the current

bounds of 10−23 − 10−21 GeV for b21 and b32, respectively [122].

Finally, it is worth exploring the effect of the choice of value of δCP on R and S.

From Fig. 7.7, we see that the effect on R of a non-zero value of δCP in the standard-

oscillation regions is more prominent for a choice of initial ratios of 0 : 1 : 0, and

less so for 1 : 2 : 0 and 1 : 0 : 0. For S, the effect of a non-zero phase is greater for

1 : 0 : 0, and less for 0 : 1 : 0 and 1 : 2 : 0. Note that using a non-zero value of δCP
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Figure 7.8: High-energy astrophysical neutrino flux models as function of neutrino en-
ergy. The spectral index α = 2.7 for the Becker-Biermann (BB) and 2.3,
2.6 for the Koers-Tinyakov (KT) fluxes with and without source evolution,
respectively. For the BB flux, we have set Γν/ΓCR = 3 and zmax

CR = 0.03
(see [87]). The atmospheric muon-neutrino flux, modelled according to [86],
which is considered as a background to the astrophysical neutrino signal, lies
below the predictions of these models in the plotted energy range.

can lead to a variation in R of up to 42% (in the 0 : 1 : 0 case) and in S of up to

40% (in the 1 : 0 : 0 case) with respect to the standard case of θ13 = δCP = 0, when

the largest 3σ allowed value of sin2 (θ13) = 0.056 is assumed.

7.3 Experimental prospects

7.3.1 Neutrino flux models

We will present our estimations of NNC
νall

, NCC
νall

, and NNC
νall
/NCC

νall
, in the context of

four models of astrophysical neutrino fluxes. The Waxman-Bahcall [124] model

makes use of the observation of ultra-high-energy (> 1019 eV) cosmic rays to set an

upper limit on the neutrino flux. The limit depends on the redshift evolution of the

neutrino sources, which could be active galactic nuclei (AGN) or gamma-ray bursts.

We have adopted, conservatively,

ΦWB
νall

(Eν) = 10−8 (Eν/GeV)−2 GeV−1 cm−2 s−1 sr−1 . (7.50)

The second model, by Becker-Biermann [87], describes the production of neutrinos in

the relativistic jets of FR-I galaxies (low-luminosity radio galaxies with extended ra-
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dio jets) through the decay of pions produced in the interaction of shock-accelerated

protons with the surrounding photon field. The sources are assumed to evolve with

redshift according to certain luminosity functions. The flux is given by

ΦBB
νall

(Eν) ≃ 5.4× 10−3 (Eν/GeV)−2.7 GeV−1 cm−2 s−1 sr−1 . (7.51)

The third and fourth models, by Koers-Tinyakov [86], predict an astrophysical neu-

trino flux based on the assumption that the neutrinos originate predominantly at

AGN and that these behave like Centaurus A, the nearest active galaxy. The dif-

ference between these last two models lies in the assumption about the redshift

evolution of the source: in one of them, sources are assumed not to evolve with

redshift, while in the other one, they are assumed to have a strong redshift evolu-

tion, following the star-formation rate of ∼ (1 + z)3. These two fluxes are given,

respectively, by

ΦKT, no evol.
νall

(Eν) ≃ 3.5× 10−10 (Eν/GeV)−1.6 ×
×min (1, Eν/Eν,br) GeV−1 cm−2 s−1 sr−1 (7.52)

ΦKT, evol.
νall

(Eν) ≃ 4.6× 10−12 (Eν/GeV)−1.3 ×
×min (1, Eν/Eν,br) GeV−1 cm−2 s−1 sr−1 , (7.53)

with Eν,br = 4× 106 GeV the break energy. Both the Becker-Biermann and Koers-

Tinyakov models account for the change in cosmic-ray energy due to the adiabatic

cosmological expansion, but only the latter take into account also energy losses due

to pion photoproduction and electron-positron pair production in the interaction

with the CMB photons. See Chapter 4 for details on the WB, BB, and KT fluxes.

Currently, the most stringent upper bound on the astrophysical muon-neutrino

flux is the one obtained by the AMANDA-II experiment [93], which restricts the

integrated muon-neutrino flux to be lower than 7.4 × 10−8 GeV cm−2 s−1 sr−1,

within the interval 16 TeV – 2.5 PeV. We have checked that the four fluxes used in

our analysis satisfy this upper bound in the standard-oscillation case, i.e., when the

detected flavour ratios are φe : φµ : φτ = 1 : 1 : 1. The spectral indices of the power

laws for the Koers-Tinyakov fluxes, −1.6 and −1.3, have been chosen so that the

integrated fluxes between 16 TeV and 2.5 PeV yield exactly the upper bound value

set by AMANDA. A plot of the four different fluxes is presented in Fig. 7.8.
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7.3.2 Experimental setup

The IceCube neutrino telescope [125, 126], located at the South Pole, can detect

both muons and showers initiated by incoming high-energy astrophysical neutrinos.

Muon-neutrinos are detected through the high-energy muon produced in charged-

current (CC) deep inelastic neutrino-nucleon scattering: the C̆erenkov light emitted

by the fast-moving muon in ice is detected by the photomultipliers buried in ice

and used to reconstruct the muon track. Electron-neutrinos can generate electro-

magnetic and hadronic showers in CC interactions. Tau-neutrino CC events have a

distinct topology: they either show two hadronic showers joined by a tau track (a

double bang) or a tau track ending with the decay of the tau in a hadronic shower

(lollipop). Additionally, every flavour of neutrino is able to generate hadronic show-

ers in neutral-current (NC) interactions. Flavour identification is expected to be

difficult at IceCube [74] and the number of lollipops expected is about one every

two years (for a neutrino flux of 10−7 GeV−1 s−1 cm−2 sr−1 [74]), so the useful ob-

servables turn out to be the total number of NC plus CC showers, Nsh = NNC
sh +NCC

sh

and the number of muon tracks, Nνµ
. From this, we can construct the closest ex-

perimental analogue of the variable R ≡ φµ/φe as Rexp ≡ Nνµ
/Nsh. Due to the very

low number of tau-neutrinos expected at IceCube, there is no practical experimental

analogue of S ≡ φτ/φµ.

Following our analysis of CPTV in the previous sections, where we set the scale of

CPTV at E∗ = 1 PeV, we have adopted the energy range Emin
ν = 106 ≤ Eν/GeV ≤

Emax
ν = 1012 for our predictions. Within this energy range, the Earth is opaque

to neutrinos due to the increased number of NC interactions which degrade their

energy [127], so we have calculated only the number of downgoing events. Bear in

mind, however, that due to the tighter background filtering that is required for the

observation of downgoing neutrinos, which we have not taken into account in the

following calculations, our estimates may be optimistic. Conveniently, for most of

this range the atmospheric νµ background flux will be well below the fluxes from

the neutrino production models that we have probed (see Figure 7.8). Using the

expressions of [128], we can estimate the number of CC and NC events at IceCube,

for a given astrophysical all-flavour diffuse neutrino flux, denoted here by Φνall :

NCC
νall

= TnTVeffΩ

∫ Emax
ν

Emin
sh

Φνall (Eν)
1

2

[

σνN
CC (Eν) + σνN

CC (Eν)
]

dEν (7.54)

NNC
νall

= TnTVeffΩ

∫ Emax
ν

Emin
sh

dEν

∫ Emax
ν

Eν−Emin
sh

dE ′
νΦ

νall (Eν)×

×1

2

[

dσνN
NC

dE ′
ν

(Eν , E
′
ν) +

dσνN
NC

dE ′
ν

(Eν , E
′
ν)

]

, (7.55)
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where E ′
ν is the energy of the secondary neutrino in the NC interaction, T is the

exposure time, nT = 5.1557× 1023 cm−3 is the number density of targets (nucleons)

in ice, Veff is the effective detector volume (1 km3 for IceCube) and Ω = 5.736 sr is

the detector’s opening angle (up to 85◦). The total cross sections for neutrino and

anti-neutrino deep inelastic scattering, σνN
CC, σνN

CC, σνN
NC and σνN

NC, have been extracted

from [129]. The differential cross sections used are written as a function of both the

primary and the secondary neutrino energies, which in NC interactions are related

through E ′
ν = (1− 〈yNC〉)Eν , with 〈yNC〉 the NC inelasticity parameter, extracted

from [127]. If the interval of interest (106 − 1012 GeV) is partitioned into small

enough subintervals, then within each, the NC cross section can be approximated

by σNC = AEB
ν with A, B constants for each subinterval. We can then write

σνN
NC = AEB

ν = A
[

(1− 〈yNC (Eν)〉)−1E ′
ν

]B
, (7.56)

so that
dσNC

dE ′
ν

(Eν , E
′
ν) = AB [1− 〈yNC (Eν)〉]−B (E ′

ν)
B−1

. (7.57)

Using this expression in Eq. (7.55) and performing the E ′
ν integral, we obtain the

simplified form

NNC
νall
≃ 1

2
TnTVeffΩ

∫ Emax
ν

Emin
sh

dEνΦ
νall (Eν)×

×
[

σνN
NC (Emax

ν )− σνN
NC

(

Eν −Emin
sh

)

[1− 〈yνN
NC (Eν)〉]B

+
σνN

NC (Emax
ν )− σνN

NC

(

Eν − Emin
sh

)

[1− 〈yνN
NC (Eν)〉]B

]

,(7.58)

with B and B taking the appropriate values in each subinterval.

The number of CC showers generated by electron- and tau-neutrinos are, respec-

tively, NCC
sh,e = φ̃eN

CC
νall

and NCC
sh,τ = φ̃τN

CC
νall

, where

φ̃α ≡
φα

φe + φµ + φτ

∈ [0, 1] (7.59)

are the normalised flavour ratios. The number of CC showers is given by

NCC
sh = NCC

sh,e +NCC
sh,τ =

(

φ̃e + φ̃τ

)

NCC
νall

(7.60)

and the total number of CC plus NC showers is therefore

Nsh = NCC
sh +NNC

sh =
(

1− φ̃µ

)

NCC
νall

+NNC
νall

, (7.61)
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Flux NNC
νall

NCC
νall

NNC
νall

/NCC
νall

Waxman-Bahcall [124] 1781.64 33.12 53.79
Becker-Biermann α = 2.7 [87] 9248.58 130.68 70.77
Koers-Tinyakov no source evolution α = 2.6 [86] 9013.86 354.96 25.39
Koers-Tinyakov strong source evolution α = 2.3 [86] 16495.92 1866.42 8.84

Table 7.2: Expected number of neutral-current and charged-current events (summed over
all flavours) at IceCube, NNC

νall
and NCC

νall
, respectively, in the energy range

106 ≤ Eν/GeV ≤ 1012, for different choices of the incoming astrophysical neu-
trino flux. The exposure time used was T = 15 yr, and the effective detector
volume, Veff = 1 km3. Only downgoing events are considered. The Waxman-
Bahcall flux assumes an E−2 spectrum, while for the Becker-Biermann and
the Koers-Tinyakov fluxes we have used a power law of the form E−α, with
α specified for each model. The different values of α have been selected so
that the upper bound on the diffuse astrophysical muon-neutrino flux set by
AMANDA-II [93] is satisfied. Details of the neutrino production models can
be found in the indicated references.

where we have used the fact that
∑

β=e,µ,τ φ̃β = 1. In a similar way, the number of

downgoing muon-neutrinos is given by

Nνµ
= φ̃µN

CC
νall

. (7.62)

Using Eqs. (7.54), (7.58), (7.61) and (7.62), we find

Rexp =
Nνµ

Nsh

=
φ̃µ

(

1− φ̃µ

)

+NNC
νall
/NCC

νall

, (7.63)

and we see that Rexp depends on only one of the normalised flavour ratios, φ̃µ,

and that it is independent of the exposure time and the effective detector size.

Increasing T and Veff, however, results in a larger event yield and consequently in

lower statistical uncertainty. Considering NNC
νall

and NCC
νall

as independent variables

with Poissonian errors, i.e.,
√

NNC
νall

and
√

NCC
νall

respectively, we find the error on

Rexp to be

σRexp
=

Rexp
(

1− φ̃µ

)

+NNC
νall
/NCC

νall

NNC
νall

NCC
νall

√

1

NNC
νall

+
1

NCC
νall

. (7.64)

As expected, σRexp
∝ (TVeff)

−1/2, so that, for a given neutrino flux, the statistical

error on Rexp decreases with the time of exposure and the size of the detector.

We have evaluated Eqs. (7.54) and (7.58) numerically in the range 106 ≤ Eν/GeV ≤
1012 for the four different fluxes, assuming T = 15 yr and Veff = 1 km3 (the IceCube
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Figure 7.9: Rexp ≡ Nνµ/Nsh vs. λ for two neutrino flux models: the Waxman-Bahcall
flux (in blue) and the Koers-Tinyakov flux with spectral index α = 2.3 and
strong source evolution (in green). Three initial flavour ratios have been
considered: φ0

e : φ0
µ : φ0

τ = 1 : 2 : 0 (plots (a) and (d)), 0 : 1 : 0 (plots (b)
and (e)) and 1 : 0 : 0 (plots (c) and (f)). The coloured areas, bounded by
dashed coloured lines, have been calculated plugging the values of φ̃µ from
Fig. 7.2 into Eq. (7.63) and using the event count data in Table 7.2. The dot-
dashed coloured lines mark the 1σ uncertainty on Rexp for each assumption
of initial ratios, calculated with Eq. (7.64). For comparison, the standard
value of Rexp for the different initial ratios are shown in hatched bands of
the corresponding colours; these values are calculated assuming no CPTV
effects and using the current 3σ bounds on the standard mixing angles. In
the upper row, an effective detector area Veff = 1 km3 (IceCube size) was
assumed; for the bottom one, Veff = 5 km3 (IceCube × 5).

effective volume). The results are presented in Table 7.2. The Waxman-Bahcall

model yields the lowest number of CC and NC events, while the Koers-Tinyakov

model with strong source evolution yields the highest number, more than two orders

of magnitude over Waxman-Bahcall.
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7.3.3 Results

In this section, we will display the regions of Rexp vs. λ, allowing for CPTV, for the

Waxman-Bahcall model and the Koers-Tinyakov model with strong source evolution,

which correspond, respectively, to the cases with the lowest and highest event yields.

In order to generate these regions we have used the values in Table 7.2 to calculate

Rexp in the presence of CPTV, Eq. (7.63), using for φ̃µ the range of values allowed by

the variation of the standard mixing angles θij within their current 3σ experimental

bounds and of the new mixing angles θbij in the range [0, π]. This range of values

of φ̃µ vs. λ can be obtained from the plot of φµ vs. λ shown in Fig. 7.2, after

applying the transformation in Eq. (7.59). The resulting regions as functions of

λ are shown colour-filled in Figure 7.9, for the Waxman-Bahcall (blue) and Koers-

Tinyakov (green) models. We have explored two different detector effective volumes,

1 km3 (IceCube-sized) and 5 km3, and the three different choices for the initial fluxes

φ0
e : φ0

µ : φ0
τ = 1 : 2 : 0, 0 : 1 : 0 and 1 : 0 : 0, that we introduced in the previous

sections. Furthermore, this figure includes boundaries of 1σ statistical uncertainty

on Rexp that were obtained by adding (subtracting) 1σ to (from) the upper (lower)

boundaries of the coloured regions. The values of σ were calculated by plugging

into Eq. (7.64) the corresponding values of φ̃µ that occur on the borderlines of the

coloured regions.

We note that the shapes of the coloured regions in Fig. 7.9 are similar to those

in Fig. 7.2. This can be understood if we note that Rexp, Eq. (7.63), is proportional

to φ̃µ. In Fig. 7.2 we saw that there exists overlap among the regions related to the

different hypotheses of the initial flux. In fact, in Fig. 7.9, there is overlap between

the three production models, with the region corresponding to φ0
e : φ0

µ : φ0
τ = 1 : 2 : 0

almost entirely enclosed within the region for 0 : 1 : 0. This last fact can be

explained on account of the reduction in size of the region for 1 : 2 : 0, caused by

the normalisation of φ̃µ applied for this case, i.e., φ̃µ = φµ/3. As we can anticipate,

due to the higher event yield, the statistical uncertainty on Rexp associated to the

Koers-Tinyakov flux is lower than the one associated to the Waxman-Bahcall flux,

and is reduced when the larger detector volume is used. The size of this uncertainty

is also proportional to the value of φ̃µ (see Eq. (7.64)). As a consequence, the size

of the 1σ regions is larger for an initial flux of 1 : 2 : 0, intermediate for 0 : 1 : 0,

and smallest for 1 : 0 : 0.

When a detector volume of 1 km3 is considered, there is a clear overlap among

regions corresponding to different assumptions of the neutrino flux model when the

production scenario is 1 : 0 : 0. This observation is reinforced when we consider also

the regions spanned by the statistical uncertainty. In comparison, for the 1 : 2 : 0
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and 0 : 1 : 0 scenarios, the regions corresponding to the two flux models do not

overlap. When the 5 km3 detector is assumed, the regions associated to 1 : 2 : 0

and 0 : 1 : 0 are further separated at the 1σ level. However, there is still an

overlap between the two flux models in the 1 : 0 : 0 scenario. Here we do not show

the results for the Becker-Biermann model and the Koers-Tinyakov model with no

source evolution, since their results are embodied in what we have already presented.

For instance, the mean value of Rexp and σRexp
for Becker-Biermann is similar to the

one for Waxman-Bahcall. Similar estimates can be easily obtained by plugging the

values of Table 7.2 into Eqs. (7.63) and (7.64).

7.4 Summary and conclusions

Motivated by the CPT-violating (CPTV) neutrino coupling considered in the Stan-

dard Model Extension, we have added a CPTV, energy-independent, contribution

to the neutrino oscillation Hamiltonian and explored its effects on the flavour ra-

tios of the high-energy (1 PeV and higher) astrophysical neutrino flux predicted to

come from active galactic nuclei. We have parametrised the strength of the CPTV

contribution by the parameter λ, defined as the quotient between the eigenvalues

of the CPTV Hamiltonian, b21 and b32, and those of the standard-oscillation one,

∆m2
21/ (2E⋆) and ∆m2

32/ (2E⋆), with E⋆ = 1 PeV, and allowed λ to vary between

10−2 and 100, corresponding to standard-oscillation dominance and CPTV domi-

nance, respectively. We have used three different neutrino production scenarios for

the flavour ratios at the astrophysical sources: production by pion decay, which re-

sults in φ0
e : φ0

µ : φ0
τ = 1 : 2 : 0; muon cooling, which results in 0 : 1 : 0; and neutron

decay, resulting in 1 : 0 : 0, and explored the effect of a potential CPTV on the

neutrino flavour ratios at Earth, φα (α = e, µ, τ), and on the ratios between them.

With this objetive, we have studied the behaviour of φµ, R = φµ/φe, and S = φτ/φµ,

by letting the standard-oscillation mixing parameters vary within their current 3σ

experimental bounds, and varying the unknown CPTV parameters as broadly as

possible, while keeping b21 and b32 below their current upper limits (obtained from

atmospheric and solar experiment data).

From the observation of φµ, if CPTV is dominant, we found that there could be

large deviations with respect to the pure standard-oscillation case, depending on the

values of the CPTV parameters. These deviations start at λ = 0.1 (b32 ∼ 10−28 GeV,

b21 ∼ 10−26 GeV) and reach a plateau at λ = 1. There are overlaps between the

different neutrino production models, in such a way that a measurement of certain

values of φµ could be satisfied by two different production models, either including
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CPTV or not.

When we consider the possibility of detecting φµ and φe, from which R ≡ φµ/φe

can be built, we find that the regions corresponding to 1 : 2 : 0 and 0 : 1 : 0 exhibit a

similar behaviour than when φµ alone is measured, though the former is now nearly

contained by the latter. This is not the case for 1 : 0 : 0, where the value of R could

blow up owing to a potentially very low value of φe, in comparison to φµ.

If tau-neutrinos can also be detected, then we can use the ratio S ≡ φτ/φµ. When

we combine R and S, i.e., when we assume the ability to measure φτ with enough

statistics, we improve the chances of discovering CPTV effects. In fact, large CPTV

regions of (R, S) values that are well distinguished from the standard-oscillation

case are obtained for the three neutrino production models that we have considered

here. As a consequence of the wideness of these regions, there are many overlapping

areas where a given pair (R, S) can be generated by any of the production models

that we have explored, assuming a dominant CPTV.

On the other hand, in the case of the non-observation of deviations in the flavour

ratios, it will be possible to impose very stringent limits on the parameters related

to CPTV in the neutrino sector, such as b21 . 10−29 GeV and b32 . 10−27 GeV, to

be compared with the current limits of 10−23 GeV and 10−21 GeV, respectively.

In order to compare CPTV with other competitive new physics scenarios, we have

included the possibility of neutrino decay to invisible products, both in the normal

and inverted mass hierarchies. As a result, there are additional overlaps between

the CPTV regions and the regions accessible by neutrino decays, for certain values

of the CPTV parameters.

With the purpose of presenting a more realistic perspective, we have performed

an analysis of the potential CPTV signals at a large ice C̆erenkov detector such as

IceCube. On top of the three neutrino production models, 1 : 2 : 0, 0 : 1 : 0 and

1 : 0 : 0, we have used two different models for the neutrino astrophysical flux, one

by Waxman and Bahcall and the other by Koers and Tinyakov, and compared their

respective signals at the detector. For this analysis, we have found that there are

still overlaps among the three production models, even more pronounced than the

ones that were obtained in the theoretical plots. In 15 years of exposure time, a

1 km3 detector (or, equivalently, tVeff = 15 yr km3) would be able to distinguish

between the two fluxes, in the 1 : 2 : 0 and 0 : 1 : 0 scenarios, while a 5 km3 detector

with the same exposure (or tVeff = 75 yr km3), would provide clearer separation

between the flux models at the 1σ level.

When λ ≥ 1, a separation of a few standard deviations between the CPT-

conserving and the CPTV scenarios is possible, depending on the values of the
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CPTV mixing parameters, both for the Waxman-Bahcall and the Koers-Tinyakov

fluxes. This separation is more clearly visible in the 1 : 2 : 0 and 0 : 1 : 0 cases. Our

main result is that, while it is in principle possible to detect the presence of CPTV

with IceCube, it will not be possible, for many values of (R, S), to find which one

of the production models is the actual one. The detection of CPTV can be aided

by a more precise knowledge of the standard-oscillation mixing parameters and by

a considerably higher event yield, brought by a larger effective volume or probably

from a non-C̆erenkov detector, but these two improvements do not eliminate the

overlaps that exist between (R, S) regions associated to different production models.

In the event of measuring values of R, S, or both, that fall inside an overlap region,

then, in the absence of knowledge of the values of the CPTV mixing parameters,

one is able to trade one production model, with a certain set of values of the CPTV

parameters, by one of the other overlapping models, with another set of values of

the parameters. These degeneracies could be lifted by an independent measurement

of the CPTV parameters in the neutrino sector, in a different kind of experiment.

Nevertheless, as a tool for detecting the presence of CPT breaking in the neutrino

sector, if not for measuring it in detail, IceCube might be a useful one. If CPT is

broken, and if the parameters introduced by the breaking have certain values, then

IceCube could be able to detect the deviation from the standard-oscillation scenario

after 15 years of data taking.
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Chapter 8

Summary and conclusions

Lorentz and CPT invariance are a fundamental property of any local quantum field

theory, such as the Standard Model (SM), which is briefly summarised in Chapter

2. Every term in the SM Lagrangian is Lorentz-invariant and CPT-even, i.e., they

are invariant under a combined C, P , and T transformation (Section 2.2). However,

in Chapter 3 we saw that it is possible to add extra terms to the SM Lagrangian

that break Lorentz invariance and which can be classified into CPT-even and CPT-

odd terms, the latter of which change sign under a CPT transformation. A general

theoretical framework, called the Standard Model Extension (SME), was introduced

by Kostelecky et al. [13, 14, 46], as a generalisation of the SM which adds Lorentz-

violating couplings in all of the particle sectors, parametrised by coefficients, some of

which are bounded by experimental data [47]. The SME is an effective field theory:

it assumes that a fundamental Lorentz-invariant theory exists at a high energy scale

(in string theory, this may be the Planck scale, mP l ≈ 1019 GeV) and that Lorentz

symmetry is spontaneously broken at a lower energy scale, the Lorentz-violating

terms arising as a consequence of this breaking. However, the SME does not assume

a particular form of the fundamental theory; in this sense, the Lorentz violation in

the SME is model-independent.

Neutrino flavour transitions, or “oscillations”, were introduced in Chapter 4.

There we saw that a neutrino of a certain flavour does not have a definite mass,

but rather that it is a linear combination of several neutrino mass eigenstates of

a propagation Hamiltonian, each of which does have a definite mass value. For

the case of three active neutrino flavours, νe, νµ, and ντ , three accompanying mass

eigenstates, ν1, ν2, and ν3, are necessary. The two neutrino bases are connected by

means of a unitary transformation, represented by the Pontecorvo-Maki-Nakagawa-

Sakata (PMNS) mixing matrix U : a neutrino of flavour α is defined as |να〉 =
∑3

i=1 U
∗
αi|νi〉. The PMNS matrix can be parametrised in terms of three mixing

123



angles, which are bounded by experiment [50], and one CP-violation phase, whose

value remains unknown.

As a result of the interference between the different mass eigenstates, each of mass

mi, that make up a flavour state, there is a probability that a neutrino of energy

E created with flavour α is detected, after having propagated for a distance L, as

having flavour β 6= α. This probability contains sinusoidal terms (hence the name

neutrino oscillations) with a typical dependence of the form ∼ sin2
(

∆m2
ijL/ (4E)

)

,

with the mass-squared differences ∆m2
ij = m2

i − m2
j ((i, j) = (2, 1) , (3, 1) , (3, 2))

bounded by experiment. The L/E oscillation phase is typical of standard, mass-

driven, neutrino oscillations. Furthermore, the amplitude of the oscillations depends

on the values of the mixing angles in the PMNS matrix.

When neutrinos travel through matter, e.g., when neutrinos created in the Sun

or the atmosphere travel through the Earth, neutral- and charged-current forward

scattering off the nucleons results in modifications to the energy eigenvalues and,

therefore, to the oscillation probability. We saw in Section 4.1.3 that the effect

of matter interactions can be introduced in a straightforward manner by writing

the vacuum-oscillation Hamiltonian, H , in the flavour basis (that is, by calculating

Hf = UHU †) and adding to it extra terms that account for the interaction with

matter. Re-deriving the oscillation probability with this modified Hamiltonian (see

Section 4.1.2) we find the same functional form of the oscillation formula, but with

the vacuum mixing angles and mass-squared differences replaced by their respecitve

effective values in matter.

Effects different from matter interactions could be added to the vacuum oscil-

lation Hamiltonan following the same procedure. In general, the result would be

similar: the mixing angles and mass differences would be modified with respect to

their vacuum values. In the present work, we have explored CPT violation by adding

a CPT-odd term to the neutrino sector of the SM. As a result, energy-independent,

CPT-violating, contributions will apear, together with the vacuum terms, in both

the mixing angles and the mass differences. Since the vacuum oscillation terms have

a 1/E dependence, they will be more suppressed the higher the energy, while the

CPT-violating contribution remains constant. Therefore, the effect of the constant

terms should be more easily detected in the flux of very high-energy neutrinos.

The most energetic neutrinos are the ones that are expected to originate at

distant astrophysical or cosmological sources, such as supernovae, gamma ray bursts

(GRBs), and active galactic nuclei (AGN). In the latter two, it is presumed that

shock-accelerated protons interact with background photons and create pions: the

neutral ones decay into X-ray and gamma-ray photons, whereas the charged ones
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decay into neutrinos. Additionally, observations performed during the last decade

have identified AGN and GRBs as the production sites of the highest-energy X-

rays detected. If the origin of these lies in the decay of neutral pions, then an

accompanying high-energy neutrino flux is to be expected also from these sources.

In Chapter 5 we saw that recent results from the Pierre Auger Observatory (PAO)

indicate that the reconstructed directions of the highest-energy cosmic rays, with

energies greater than 57 EeV, are correlated with the known positions of some

AGN [82]. The neutrinos from AGN are expected to reach energies of up to 1012

GeV, and would provide, if detected, an ideal probe of CPT violation in neutrinos.

In the same chapter we introduced three different high-energy neutrino produc-

tion models at AGN: by Waxman & Bahcall (WB) [89], by Koers & Tinyakov

(KT) [86], and by Becker & Biermann (BB) [87]. The models differ in their assump-

tions: for instance, while in the KT model the protons, and the pγ interactions, are

confined in a region close to the center (where a supermassive black hole possibly

exists), in the BB model the pγ interactions are assumed to occur in the jets of

the AGN. Furthermore, the KT model considers two possibilities regarding the dis-

tribution of the sources: either they are distributed homogeneously in redshift and

luminosity, or they follow the star formation rate (see Section 5.1.3).

At the sources, different neutrino flavours are produced in different proportions

(see Secion 5.1). Assuming the unobstructed decay of the pions generated in pγ in-

teractions, twice the number of muon-neutrinos are created with respect to electron-

neutrinos, and no tau-neutrinos are produced. Succintly put, φ0
e : φ0

µ : φ0
τ = 1 : 2 : 0.

However, if the muons produced in the decay of pions lose most of their energy

through interactions before decaying into neutrinos, then the high-energy flavour

fluxes will be 0 : 1 : 0. In a third scenario, the nuclei emitted from, say, AGN,

are broken up by photodisintegration due to their interaction with the cosmic-

microwave-background photons, and the freed nucleons produce νe through beta

decay, thus yielding fluxes of 1 : 0 : 0. Note that, since neutrino detectors are not

able to distinguish between neutrinos and anti-neutrinos, we make no such distinc-

tion also in the flavour fluxes.

The neutrinos thus generated undergo flavour oscillations on their way to Earth.

As a result, the flavour fluxes at Earth, φα, are different from those at production,

namely, φα =
∑

β=e,µ,τ Pβαφ
0
β, for α = e, µ, τ . Hence, new physics effects that affect

the oscillation probability Pβα, such as CPT violation, might yield flavour fluxes at

Earth which greatly deviate from the values of the fluxes under standard oscillations.

In our exploration of CPT violation in astrophysical neutrinos, we have used these

detected flavour ratios as our key observables.
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Before attempting to study CPT violation with high-energy astrophysical neutri-

nos in the context of the SME, we have done so in the context of modified dispersion

relations, in Chapter 6. Motivated by candidate theories of quantum gravity, the

special-relativistic dispersion relation, E2 = p2 +m2, is augmented by an extra term

that introduces Lorentz- and CPT-violation and that is suppressed by some power

of the Planck energy. The suppression is parametrised by three real coefficients bij ,

which have experimental upper bounds of 10−21 GeV or lower. This extra term in-

duces an energy-independent oscillation phase, but does not affect the mixing angles.

In other words, the oscillation wavelength is modified, but not the amplitude.

Naively, one could expect that, for neutrinos of very high energy, the standard

L/E oscillation phase would vanish, leaving only the constant CPT-violating term.

Were this to occur, the oscillation probability would become constant after such

an energy value. However, we found that, in order to satisfy the current upper

bounds on bij , the minimum energy at which the probability could become constant

is ∼ 1016.5 GeV, about five orders of magnitude higher than the most energetic as-

trophysical neutrinos expected [103]. Therefore, while modified dispersion relations

are useful in constraining the values of the suppression parameters bij in terrestrial

neutrino experiments, where, due to the high statistics, the deviations of the ex-

pected shape of the energy spectrum can be used to set bounds on the bij using

neutrinos of lower enregy, the dispersion relation formalism fails at higher energies,

where the low statistics precludes the reconstruction of the energy spectrum and

only the event count above a certain energy (say, 1 PeV) is available as a potential

means to bound the bij .

In Chapter 7 we explored the modification of neutrino flavour fluxes at Earth

due to CPT violation, in the context of the Standard Model Extension. By adding a

CPT-odd Lorentz-violating contribution to the neutrino sector, bµαβναγ
µνβ, the os-

cillation Hamiltonian, written in the flavour basis, is modified by the CPT-violating,

energy-independent, terms b0αβ . When diagonalising this augmented Hamiltonian,

as part of the procedure to calculate the oscillation probability (see Section 7.2.1), it

is found that both the mass-squared differences and the mixing angles are affected,

or, equivalently, both the oscillation phase and amplitude are affected, whereas when

using the modified dispersion relation formalism only the phase is. Furthermore, we

have assumed that the eigenvalues associated to the CPT-violating contribution, bij ,

are λ times the standard oscillation eigenvalues, i.e., the squared-mass differences

∆m2
ij/2E

⋆, at a neutrino energy of E⋆ = 1 PeV. For λ ≪ 1, the standard oscil-

lation contribution to the Hamiltonian is the dominant one, while for λ ≫ 1, the

CPT-violating contribution is dominant; for λ ∼ 1, both parts contribute equally.
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In this context, we have explored the magnitude of the deviation of the flavour

fluxes, and of the ratios between them, with respect to their values expected from

standard oscillations. By varying the standard mixing parameters within their cur-

rent 3σ experimental bounds [50] and the parameters (three mixing angles and two

eigenvalues) associated with the CPT violation in the broadest possible way, we

have generated regions of values corresponding to the two scenarios: the standard-

oscillations one, and the CPT-violating one. In each one, we separately the three

different production flavour fluxes, 1 : 2 : 0, 0 : 1 : 0, and 1 : 0 : 0.

First, in Section 7.2.2, we assumed that only muon-neutrinos are detected. We

found that even for relatively low values of λ, around 10−2, there is already a devia-

tion from the standard region of values of φµ. As expected, the deviation grows with

λ, as the CPT-violating term grows in importance. At λ ≈ 1, φµ reaches a plateau

and remains essentially unchanged as λ grows further. An interesting observation is

that the regions of φµ corresponding to the three different production flavour fluxes

have certain zones where they superimpose. As a result, if the measured value of φµ

were to lie inside one of these regions, we might be able to assert that CPT-violation

is indeed present (depending on whether or not the point lies far enough from the

standard-oscillations region), but we would not be able to attribute the observation

to a single scenario of production flavour fluxes.

In Section 7.2.3 we considered that muon- and electron-neutrinos are detected,

and defined the ratio R ≡ φµ/φe. The regions of values of R also grow with λ.

Under the assumption of a 0 : 1 : 0 production model, R can attain very large

values, between 106 and 107, as a result of very low electron-neutrino fluxes. On the

other hand, the CPT-violating region associated to the 1 : 2 : 0 production model

reaches a maximum of R = 2 after λ ≃ 5, while the one associated to 1 : 0 : 0

reaches a maximum of R = 1 after λ ≈ 1. Therefore, a measurement of R ≫ 4

could imply that the production model is 0 : 1 : 0, and that CPT-violation effects

are present, but will not be enough to set strong bounds on λ. The minimum value

in both the 0 : 1 : 0 and 1 : 2 : 0 regions is located around R = 0.8 ∼ 1, while for the

1 : 0 : 0 flux, it is zero for most of the range of λ. If a value of R . 4 is found, the

ability to distinguish between production models depends on the magnitude of the

experimental errors with which φe and φµ are measured. A single production model

can be distinguished univocally for some measured values of R, while for others, two

(when 1 . R . 4, depending on λ) or three models (when R ≃ 1) can account for

the same measured value.

Detection of the three neutrino flavours is the subject of Section 7.2.4. Given

the tau-neutrino flux we have defined also the ratio S ≡ φτ/φµ and studied the
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deviations from the standard-oscillations regions in the R− S plane. Since we have

considered the propagation of neutrinos over distances of hundreds or thousands

of Mpc, neutrino decays are a possibility. For comparison, we have included the

predictions of neutrino decay into invisible productions in two scenarios: one in

which the lightest mass eigenstated is ν1 (normal mass hierarchy) and one in which

it is ν3 (inverted mass hierarchy). The R − S plane exhibits is rich in its features:

there are zones where the CPT-violating predictions of all the three production

models superimpose, zones that can be attributed either to one production model

under standard oscillations or to a different one under CPT violation, and zones

where the predictions from CPT violation intersect with those of neutrino decay.

As expected, the CPT-violating regions in the R − S plane grow with λ; beyond

λ = 100, corresponding to dominant CPT violation, they do not change shape or

size. We have also explored the variation of R and S with δCP, and found that a

variation of the ratios of up to ∼ 40% is possible as a result of varying the mixing

angle θ13 within its 3σ allowed region.

It is also interesting to point out that in the case of an experimental non-detection

of CPT violation in the neutrino flavour ratios, R and S can be used to set limits

on the related parameters. In fact, when λ = 1, and for a neutrino energy of 1 PeV,

we can attain limits for the CPTV eigenvalues bij in the order of 10−29 and 10−27

GeV, for b21 and b23, respectively. It is also important to mention that these results

can be easily rescaled to any energy, just by doing bij×(PeV/E). This would mean

a very significant improvement over the current bounds of 10−23−10−21 GeV for b21

and b32, respectively [122].

Finally, in Section 7.3, we have estimated the high-energy neutrino signals at the

IceCube C̆erenkov neutrino detector, located in the ice near the South Pole, and at a

detector with five times IceCube’s effective volume, in the presence of CPT violation.

In order to do this, we have used the AGN neutrino fluxes introduced in Chapter

5 and calculated the number of charged- and neutral-current events initiated by

the neutrinos of different flavours at IceCube. We have defined the experimental

analogue of R, denoted by Rexp, as the ratio of the number of muon tracks to the

total number of showers detected, within the energy range 106−1012 GeV. Since the

astrophysical tau-neutrino flux is expected to be very low, we have not considered

an experimental analogue of S.

We selected the two fluxes which yield the lowest and highest event counts: the

Waxman-Bahcall flux and the Koers-Tinyakov flux with strong source evolution,

respectively. Due to the higher event yield, the statistical uncertainty on Rexp as-

sociated to the Koers-Tinyakov flux is appreciably lower than the one associated
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to the Waxman-Bahcall flux, and is reduced when the larger (5×) detector volume

is used. The size of this uncertainty is also proportional to the value of φµ. As

a consequence, the size of the 1σ regions is larger for an initial flux of 1 : 2 : 0,

intermediate for 0 : 1 : 0, and smallest for 1 : 0 : 0.

When a detector volume of 1 km3 is considered, there is a clear overlap among

regions corresponding to different assumptions of the neutrino flux model when the

production scenario is 1 : 0 : 0. This observation is reinforced when we consider also

the regions spanned by the statistical uncertainty. In comparison, for the 1 : 2 : 0

and 0 : 1 : 0 scenarios, the regions corresponding to the two flux models do not

overlap. When the 5 km3 detector is assumed, the regions associated to 1 : 2 : 0

and 0 : 1 : 0 are further separated at the 1σ level. However, there is still an overlap

between the two flux models in the 1 : 0 : 0 scenario.

In conclusion, we have found that IceCube might be able to detect the presence of

a CPT-odd term in the high-energy astrophysical neutrino flavour fluxes. However,

IceCube’s capacity to confidently claim discovery of CPT violation is limited due

to our current lack of knowledge of the standard and of the CPT-violating mixing

parameters. The coming years will undoubtedly bring an improved determination of

the standard mixing parameters, so that the potential distinction between standard-

oscillation and CPT-violating regions will be clearer.
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Appendix A

Derivation of the two–neutrino

oscillation probability with an

arbitrary time-independent

Hamiltonian

A.1 With a general Hamiltonian

Consider a general, time-independent, two-neutrino Hamiltonian H2 –effectively a

2× 2 matrix– and write it as

H2 = h0I + hkσ
k , k = 1, 2, 3 , (A.1.1)

where σk, k = 1, 2, 3, are the traceless Pauli matrices which, together with the

identity I constitute a basis for the space of 2×2 matrices (sum over k is assumed).

h0 and the hk are functions of the components of the Hamiltonian, (H2)ij , i, j = 1, 2.

In the two-neutrino case,

|να〉 = fe|νe〉+ fµ|νµ〉 (A.1.2)

is a two-component column vector, with fe and fµ the amplitudes associated to

detecting an electron- and muon-neutrino, respectively. The former is represented

by |νe〉 = (1 0)T , while the latter is represented by |νµ〉 = (0 1)T .

The time-evolution operator associated to H2 is thus U2 (L) = e−i(h0I+hkσk)L.

Given that the conmutator C2 ≡
[

h0I, hkσ
k
]

= 0 and so [h0I, C2] =
[

hkσ
k, C2

]

= 0,

we are able to separate the exponential into e−ih0ILe−ihkσkL. Furthermore, making
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use of the well-known Euler identity

e±i|r|r̂kσk

= cos (|r|)± ir̂kσ
k sin (|r|) , (A.1.3)

with r̂ a unitary vector in the direction of r, and noting that e−ih0IL|να〉 = e−ih0L|να〉,
we can finally write

U2 (L) = e−ih0L
[

cos (|h|L)− iĥkσ
k sin (|h|L)

]

(A.1.4)

→ cos (|h|L)− iĥkσ
k sin (|h|L) , (A.1.5)

with |h| ≡
√
hkhk the module of the vector hk and where to obtain the last expression

we have discarded the global phase e−ih0L. Note that

h · σ =

(

h3 h1 − ih2

h1 + ih2 −h3

)

. (A.1.6)

The evolved state of a neutrino that was produced with flavour α (i.e., fα = 1,

fβ = 0) is

|να〉 = U2 (L) (fα|να〉+ fβ|νβ〉) = U2 (L) |να〉. (A.1.7)

The probability of the transition να → νβ is then calculated as

Pαβ ≡ Pνα→νβ
(L) = |〈νβ |να (L)〉|2 = |〈να|U (L) |να〉|2

=

∣

∣

∣

∣

cos (|h|L) 〈νβ|να〉 − i
sin (|h|L)

|h| 〈νβ |h · σ |να〉
∣

∣

∣

∣

2

=

∣

∣

∣

∣

−isin (|h|L)

|h| 〈νβ|h · σ|να〉
∣

∣

∣

∣

2

=
sin2 (|h|L)

|h|2 |〈νβ|h · σ|να〉|2

=
h2

1 + h2
2

|h|2
sin2 (|h|L) . (A.1.8)

Because of the conservation of probability, Pαα (L) = 1 − Pαβ (L). In a single

expression, we can write

Pαβ (L) = δαβ + (−1)δαβ
h2

1 + h2
2

|h|2
sin2 (|h|L) . (A.1.9)

Thus, by making use of Eq. (A.1.9), we are able to calculate the transition prob-

abilities corresponding to any time-independent Hamiltonian, in the two-neutrino

scenario.
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A.2 Oscillations in the vacuum

Consider, for instance, flavour oscillations in the vacuum. These are driven by the

mass-squared difference between two mass eigenstates |ν1〉 and |ν2〉, with respective

masses m1 and m2, out of which the flavour states |νe〉 and |νµ〉 are constructed (or

|νµ〉 and |ντ 〉 if we are studying atmospheric neutrinos). In this case, the Hamiltonian

is

Hvac
2 =

1

2E

(

cos (θ) sin (θ)

− sin (θ) cos (θ)

)(

∆m2 0

0 −∆m2

)(

cos (θ) − sin (θ)

sin (θ) cos (θ)

)

,

(A.2.10)

with E the neutrino energy, ∆m2 ≡ m2
2 −m2

1, and θ the mixing angle between |ν1〉
and |ν2〉. Using this Hamiltonian,

|h1|2 =
∆m2

2E
sin2 (2θ) , |h2|2 = 0 , |h3|2 =

∆m2

2E
cos2 (2θ) , |h|2 =

∆m2

2E
,

(A.2.11)

so that
|h1|2 + |h1|2
|h|2 = sin2 (2θ) (A.2.12)

and, from Eq. (A.1.9), the probability in this scenario is

Pαβ (E,L) = sin2 (2θ) sin2

(

∆m2

4E
L

)

, α 6= β , (A.2.13)

Pαα (E,L) = 1− Pαβ (E,L) , (A.2.14)

which is the standard expression for standard two-neutrino mixing. Inserting the

necessary factors of ~ and c, we can write

Pαβ (E,L) = sin2 (2θ) sin2

(

1.27
∆m2

[

eV2
]

E [GeV]
L [km]

)

, α 6= β . (A.2.15)

Instead of the vacuum-oscillation Hamiltonian, we could have used one that in-

corporates interaction with matter (see the next section), non-standard interactions

(NSI) such as flavour-changing neutral currents or one that allows for violation of

Lorentz or CPT invariance. Thus, by writing the Hamiltonian as the sum of a part

proportional to the identity and a part which is a linear combination of the Pauli

matrices, and making use of the identity in Eq. (A.1.3), we have a general method

for calculating flavour-transition probabilities in a closed form.
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Appendix B

Derivation of the three–neutrino

vacuum oscillation probability

Neutrinos of a definite flavour are linear combinations of neutrino mass eigenstates,

i.e., of neutrinos with definite mass:

|να〉 =
∑

i

[U0]
∗
αi |νi〉 , (B.0.1)

with U0 the complex unitary matrix that represents the transformation between the

flavour and mass bases.

Since the mass eigenstates |νi〉 are eigenstates of the Hamiltonian (in the mass

basis) H = diag (E1, E2, E3), the eigenvalue equation reads

H|νi〉 = Ei|νi〉 =
√

m2
i + p2

i |νi〉 , (B.0.2)

with Ei, mi and pi the energy, mass and momentum, respectively, of the i-th eigen-

state. Using the fact that neutrinos are highly relativistic, i.e., that mi ≪ Ei, and

assuming that all of the mass eigenstates share the same energy, i.e., that Ei = E

for all i, we can write the momentum of the i-th eigenstate as

p =
√

E2 −m2
i ≃ m2

i / (2E) . (B.0.3)

Hence, the mass eigenstate propagates as

|νi (L)〉 = e−iHL|νi〉 = e−i
m2

i
2E

L|νi〉 , (B.0.4)

After having propagated a distance L since its production, the neutrino created with
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flavour α is

|να (L)〉 =
∑

i

[U0]
∗
αi |νi (L)〉 =

∑

i

[U0]
∗
αi e

−i
m2

i
2E

L|νi〉 . (B.0.5)

Inverting Eq. (B.0.1) yields

|νi〉 =
∑

β

[U0]βi |νβ〉 , (B.0.6)

where the sum is over all neutrino flavours. Inserting this in Eq. (B.0.5) makes

it evident that the neutrino created with flavour α is now a linear combination of

neutrinos of all flavours, i.e.,

|να (L)〉 =
∑

β

[U0]
∗
αi e

−i
m2

i
2E

L [U0]βi |νβ〉 . (B.0.7)

Hence, the probability amplitude of detecting the neutrino with flavour β is

〈νβ| να (L)〉 =
∑

i

[U0]
∗
αi [U0]βi e

−i
m2

i
2E

L , (B.0.8)

where we have made use of the orthonormality of the flavour basis, i.e., 〈νβ|να〉 = δβα.

The transition probability for να → νβ can then be written as

Pαβ = |〈νβ| να (L)〉|2 =
∑

i,j

[U0]
∗
αi [U0]βi [U0]αj [U0]

∗
βj e

−i
∆m2

ij
2E

L , (B.0.9)

with ∆m2
ij ≡ m2

i −m2
j .

Now, let

J ij
αβ ≡ [U0]

∗
αi [U0]βi [U0]αj [U0]

∗
βj (B.0.10)

and

∆ij ≡
∆m2

ij

2E
L , (B.0.11)

so that Eq. (B.0.9) can be written succintly as Pαβ =
∑3

i,j=1 J
ij
αβe

−i∆ij . After ex-

panding the sum, we obtain

Pαβ =
∑

i

J ii
αβ

+
(

J12
αβe

−i∆12 + J21
αβe

−i∆21
)

+
(

J13
αβe

−i∆13 + J31
αβe

−i∆31
)

+
(

J23
αβe

−i∆23 + J32
αβe

−i∆32
)

. (B.0.12)
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Note that J ji
αβ =

(

J ij
αβ

)∗
. With this, and with the trivial identity ∆ij = −∆ji, we

can write

J ij
αβe

−i∆ij + J ji
αβe

−i∆ji = J ij
αβe

−i∆ij +
(

J ij
αβe

−i∆ij
)∗

= 2 Re
(

J ij
αβe

−i∆ij
)

(B.0.13)

and so the oscillation probability becomes

Pαβ =
∑

i

J ii
αβ + 2

∑

i>j

Re
(

J ij
αβe

−i∆ij
)

. (B.0.14)

Next, we develop

Re
(

J ij
αβe

−i∆ij
)

= Re
(

J ij
αβ cos (∆ij)− iJ ij

αβ sin (∆ij)
)

= Re
(

J ij
αβ

)

cos (∆ij)−Re
(

iJ ij
αβ

)

sin (∆ij) . (B.0.15)

But

Re
(

iJ ij
αβ

)

= Re
(

i
[

Re
(

J ij
αβ

)

+ iIm
(

J ij
αβ

)])

= −Im
(

J ij
αβ

)

(B.0.16)

and with this, we can write the previous expression as

Re
(

J ij
αβe

−i∆ij
)

= Re
(

J ij
αβ

)

cos (∆ij) + Im
(

J ij
αβ

)

sin (∆ij) . (B.0.17)

Plugging this into Eq. (B.0.14) results in

Pαβ =
∑

i

J ii
αβ + 2

∑

i>j

Re
(

J ij
αβ

)

cos (∆ij) + 2
∑

i>j

Im
(

J ij
αβ

)

sin (∆ij) . (B.0.18)

Finally, putting cos (∆ij) = 1− 2 sin2 (∆ij/2), the oscillation probability becomes

Pαβ =
∑

i

J ii
αβ + 2

∑

i>j

Re
(

J ij
αβ

)

− 4
∑

i>j

Re
(

J ij
αβ

)

sin2

(

∆ij

2

)

+ 2
∑

i>j

Im
(

J ij
αβ

)

sin (∆ij) (B.0.19)

=
∑

i,j

J ij
αβ − 4

∑

i>j

Re
(

J ij
αβ

)

sin2

(

∆ij

2

)

+ 2
∑

i>j

Im
(

J ij
αβ

)

sin (∆ij) . (B.0.20)

From the unitarity of U0, it follows that

∑

i

[U0]αi [U0]iβ =
∑

i

[U0]αi [U0]
∗
βi = δαβ , (B.0.21)
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and hence
∑

i,j

J ij
αβ = [U0]

∗
αi [U0]βi [U0]αj [U0]

∗
βj = δαβ . (B.0.22)

With this, the oscillation probability, Eq. (B.0.20), reduces to the well-known ex-

pression

Pαβ = δαβ − 4
∑

i>j

Re
(

J ij
αβ

)

sin2

(

∆ij

2

)

+ 2
∑

i>j

Im
(

J ij
αβ

)

sin (∆ij) , (B.0.23)

as expected.
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