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Abstract

High-level noise can represent a serious risk for the health, industrial operations of-

ten represent continuous exposure to noise, thus an important trouble to handle.

An alternative of solution can be the use of passive mechanisms of noise reductions,

nonetheless its application cannot diminish low-frequency noise.

Active Noise Control (ANC) is the solution used for low-frequency noise, ANC sys-

tems work according to the superposition principle generating a secondary anti-noise

signal to reduce both.

Nevertheless, the generation of an anti-noise signal with same oppose characteris-

tics of the original noise signal presupposes the utilization of special techniques such

as adaptive algorithms. These algorithms involve computational costs.

The present research present the optimization of a speci�c ANC algorithm in the

step-size criteria. Delayed Filtered-x LMS (FxLMS) algorithm using an optimal

step-size is evaluated in a prototype of ANC system.
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Acronyms

WHO World Health Organization

ANC Active Noise Control

SPL Sound Pressure Level

dB Decibels

dBA A-weighted Decibels

OSHA Occupational Safety and Health Administration

DRC Damage-Risk Criteria

NIOSH National Institute of Occupational Safety and Health

REL Recommended Exposure Limit

PEL Permissible Exposure Limit

NIHL Noise-Induced Hearing Loss

IIR In�nite Impulse Response

FIR Finite Impulse Response

A/D Analog to Digital

D/A Digital to Analog

FxLMS Filtered-x LMS

LMS Least Mean Square

FuLMS Filtered-U LMS

MVDR Minimum Variance Distortionless Response

MIR Magnetic Resonance Imaging

MR Magnetic Resonance

AWGN Additive White Gaussian Noise

SNR Signal to Noise Ratio

ADC Analog to Digital Converter
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Introduction

Nowadays noise, which is regarded as an undesirable sound, that is generated by

industrial processes has been recognized as a serious health hazard. According to

the World Health Organization (WHO) guidelines, noise can cause adverse health

e�ects such as hearing loss, sleep disturbances, and even cardiovascular problems.

Noise levels can be reduced by absorbing materials, which usually are used in passive

strategies of noise control. These silencers are very e�ective in attenuating high fre-

quencies noise; nevertheless, they are usually complex, expensive and ine�ective at

low frequencies. The reason is because at low frequencies the acoustic wavelengths

become large compared to the thickness of a typical passive silences.

ANC proposes as a solution the use of an additional "anti-noise" signal that can

attenuate noise level of the primary signal. Nonetheless, there are many targets to

be achieved by ANC study. The key strategy is to identify the acoustic noise signal.

Nowadays there are many algorithms which proposes the identi�cation of it, unfor-

tunately the majority requires a lot of computational burden.

The present research proposes the design of an Optimal Control Algorithm which

minimizes the computational burden required in order to diminish e�ectively the

noise in a prototype of ANC system.

In this thesis document, Chapter 1 presents important Theoretical Considerations of

ANC. Consequently, State of the Art is developed in Chapter 2 to review the actual

information of Single Frequency ANC systems.

Chapter 3 details the calculus of the optimal step-size in order to be evaluated in the

Delayed FxLMS algorithm, for this purpose, previously it is analysed the stability
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conditions of the algorithm in relationship with the step-size. Chapter 4 describes

simulations and experimental tests developed in the prototype of ANC system built

by Alan Calderon [CC15].

This thesis work lets has the future aim of optimize noise control by active mechanism

through the successfully design, simulation, test and validation in real systems.
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Chapter 1

Theoretical Considerations

1.1 Human Perception of Sound
Beranek and Mellow in [BM12] de�ne sound as the following way: "A sound is said

to exist if a disturbance propagated through an elastic material causes an alteration

in pressure or a displacement of the particles of the material which can be detected

by a person or by an instrument"

According to the concept above, Weber-Fechner a�rm that perception of sound

is proportional to the logarithmic value of sound pressure, is for that reason that

it is generally represented as Sound Pressure Level (SPL) in the logarithmic way of

Decibels (dB) [Mös09]. Table 1.1 shows this representation with some examples.

Table 1.1: Relation between the Sound pressures and the Sound pressure levels.

Sound pressure SPL Situation / Description

p(N/m2, rms) L(dB)

2× 10−5 0 hearing threshold

2× 10−4 20 forests, light winds

2× 10−3 40 library

2× 10−2 60 o�ce

2× 10−1 80 tra�c

2× 100 100 hooter

2× 101 120 jet takeo�

2× 102 140 pain threshold
Source: [Mös09]
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Nevertheless, human perception of sound presents di�erent responses to sound pres-

sures at di�erent frequencies [Mös09]. Therefore, the A-weighting is used to ade-

quately represent the sound perception that our hearing system recognizes [Mös09].

This response in A-weighted Decibels (dBA) has been represented in Fig. 1.1 for a

spectrum of human audible frequencies.

Figure 1.1: Hearing levels.

Source: [Mös09]

In this part is important to deliminated that human hearing range is located ap-

proximately between 20 Hz to 20 kHz. Nonetheless, sensibility to high frequencies

decreases with the age and another factors, a lot of adult people cannot hear sounds

above of 8 kHz [Sny12].

1.2 Noise e�ects
Acoustic noise is considered as an undesired and even o�ensive sound [BH09] [Pir15].

Nowadays, transport systems, electronic devices, medical equipment and other hu-

man activities are important noise sources. Nonetheless, the main problem is pre-

sented in industrial activities where devices such as fans, engines, blowers, trans-

formers and others have converted the noise in a seriously risk to the health [BH09]

[Sny12] [KGK12]. According to the guidelines of the WHO, noise can cause health
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e�ects such as hearing loss, sleep disturbances and even cardiovascular problems

[Egg13].

National Institute of Occupational Safety and Health (NIOSH) recommends a maxi-

mum exposure level of 85 dBA for a period of 8 hours. According to the Damage-Risk

Criteria (DRC) by Occupational Safety and Health Administration (OSHA) (1981)

the exposure level during 8 hours should be 90 dBA, and an increase of 5 dBA would

imply a reduction of exposure time to 4 hours [Egg13].

OSHA Permissible Exposure Limit (PEL) allows 95 dBA during 4 hours and 100

dBA in 2 hours. In contrast, NIOSH Recommended Exposure Limit (REL) allows

only 15 minutes for 100 dBA. DRC of OSHA a�rms that 25% of exposed people

to noise, according to PEL, are going to su�er Noise-Induced Hearing Loss (NIHL)

with some years of regular exposure [Egg13].

1.3 Passive Techniques of Noise Reduction
Strategies considered as passive techniques of noise control or reduction are those

that are based in the utilization of materials that absorb or re�ect acoustic noise and

cannot generate energy themselves [Pir15].

These techniques include equipment enclosure, use of barriers, silencers, further are

considered the utilization of personal protection equipment such as ear-mu�ers and

ear-pluggers by the workers and other exposed people [BH09] [KGK12].

Passive techniques can reduce the noise in a wide range of frequencies. Nonethe-

less, have an important disadvantage in low-frequencies due their implementations

are normally complex, expensive, bulky and in some cases ine�ective [Sia12] [Fuc13].

1.4 ANC principle
In 1936, Lueg realized the �rst patent of ANC; it consisted in a system formed by a

microphone and an electronically controlled loudspeaker that generate an anti-noise

signal to diminish the acoustic noise. Nowadays, ANC systems involve a variety of

algorithms, designs and applications, thus, publication of hundreds of articles per

year, dozens of specialized companies, hundreds of patents and a wide study by uni-

versities and laboratories in the world [Pir15] [KGK12] [HSQ+12].

ANC systems are based in the superposition principle to sum a primary noise signal
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and a secondary anti-noise signal, which is the most possible similar to the inverse

of the primary signal, obtaining as a result the suppression of both signals due to

the destructive interference principle [Mös09] [Pir15] [KKG10].

1.5 ANC Advantages and Disadvantages

1.5.1 Advantages

• ANC systems are e�ective with low-frequencies signals (approximately < 600

Hz), the passive techniques of reduction are ine�ective with those frequencies.

• In addition, they can work with high-frequencies noise signals.

• Compact, modular and �exible systems.

• Potential bene�ts respect to volume, weight and cost.

• ANC systems do not imply physical modi�cations in the noise sources.

• ANC systems can attenuate 30 dB or more in narrowband noise signals and 15

to 20 dB in broadband noise signals.

1.5.2 Disadvantages

• ANC systems are least e�cient in complex environments.

• ANC focus speci�c regions, it can produce unwanted e�ects of noise ampli�ca-

tion in another regions.

• Frequency response of sensors and actuator can reduce the performance of the

ANC systems.

1.6 Adaptive Filters
Adaptive �lters are important elements in ANC systems; they are linear dynamic

systems that present adaptive or variable structure and parameters.

Adaptive �ltering have as fundamental process digital �ltering and adaptation, which

consists in the estimation of parameters or �lter coe�cients. General characteris-

tics of �lter will depend specially of �lter structure and cost function used in the

adaptation process [KBM13].

1.6.1 IIR Filters

Fig. 1.2 schemes the structure of an IIR recursive �lter, ŷ(k) represents the output

signal.
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Figure 1.2: Structure of an IIR recursive �lter.

Source: [KBM13]

In addition, equation (1.1) shows how calculate ŷ(k), the adaptive �lter should up-

dateM parameters aj andN parameters bi. Is important to mention that parameters

update represents a more complex operation in IIR �lters than in FIR �lters due to

the instability trend [KBM13].

ŷ(k) =
M∑
i=0

bi(k)x(k − i) +
N∑
j=1

aj(k)ŷ(k − j) (1.1)

Equation (1.1) can be represented as (1.2).

ŷ(k) = Bk(z
−1)x(k) + (1−Ak(z

−1))ŷ(k) (1.2)

Where Bk(z
−1) and Ak(z

−1) are determined by equation (1.3).

Bk(z
−1) =

M∑
i=0

bi(k)z−i;Ak(z
−1) = 1−

N∑
j=1

aj(k)z−j (1.3)

From equation (1.2) is obtained relationship (1.4).

Ak(z
−1)ŷ(k) = Bk(z

−1)x(k) (1.4)

If it is assumed that �lter parameters are time invariant, it is obtained �lter trans-

ference function (1.5).

G(z) =
Z[ŷ(k)]

Z[x(k)]
=
Ŷ (z)

X(z)
=
B(z−1)

A(z−1)
(1.5)
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1.6.2 FIR Filters

A proposed solution to overcome potential instability of IIR �lters is design a �lter

that present only zeros in order to achieve stability, recursive structure of the IIR

�lters should change to one that only has one direct tie or a non-recursive structure.

Memory of these �lters is limited, is for that reason denomination of FIR [KBM13],

Fig. 1.3 represents mentioned structure.

Figure 1.3: FIR �lter structure

Source: [KBM13]

Output signal of the �lter is de�ned by the linear equation of di�erences (1.6).

ŷ(k) =
M∑
i=0

bi(k)x(k − i) (1.6)

It can be represented as simpli�ed equation (1.7).

ŷ(k) = Bk(z
−1)x(k) (1.7)

Where M represents the �lter order in equation (1.8).

Bk(z
−1) =

M∑
i=0

bi(k)z−i (1.8)

If the system is stationary or time invariant, transfer function will be de�ned as

equation (1.9).
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G(z) =
Z[ŷ(k)]

Z[x(k)]
=
Ŷ (z)

X(z)
=
zMB(z−1)

zM
(1.9)

1.7 ANC systems
An ANC system is based in the generation of an identical inverse signal to the

noise signal, to get this it generally works with FIR adaptive �lters to generate the

mentioned "anti-noise" signal from the information of the noise and error signal.

ANC systems are detailed in the present section.

1.7.1 Feedforward ANC systems

Feedforward ANC systems can be divided in two semi-groups: Broadband and Nar-

rowband systems, where the most important di�erence is the Bandwidth of oper-

ation, for this reason Broadband systems work with more stochastic noise and use

acoustic sensors, as long as Narrowband systems work with periodic noise and em-

ploy non-acoustic sensors.

Generally Feedforward ANC systems use one reference sensor (commonly a micro-

phone for Broadband systems) to obtain the noise primary signal, one loudspeaker

to generate the anti-noise secondary signal and one error sensor to get the residual

noise that will be used for the updating of the adaptive �lter [KGK12]. Fig. 1.4

shows this concept in a Broadband Feedforward ANC system diagram.

NOISE
SOURCE Reference

Microphone Secondary
Loudspeaker

Error
Microphone

ANC

Figure 1.4: Feedforward ANC System Diagram.

Source: [AAK07]

In order to Broadband ANC systems work properly, signals from microphones should

pass through pre-ampli�cation, anti-aliasing �ltering and Analog to Digital (A/D)

conversion for their processing. As the same way, control signal to loudspeaker should

pass through Digital to Analog (D/A) conversion, reconstruction �ltering and am-

pli�cation.
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Fig. 1.5 detail the block diagram for an Broadband Feedforward ANC system where

the reference signal x(n) is detected by the reference microphone and the residual

noise e(n) is detected by the error microphone, consequently they pass to be pro-

cessed by the adaptive �lter W (z), generating an anti-noise signal y(n).

acoustic domain
electrical domain

digital filter

unknown
plant

acoustic
duct

Figure 1.5: Feedforward ANC System Block Diagram

Source: [Pir15]

FxLMS algorithm

An important detail of Broadband Feedforward ANC system is that the e�ect of

the circuits where are performed all the processing functions is represented by one

transfer function denominated "secondary path". Therefore, selection of adaptive

algorithm should consider this e�ect. In order to get a solution for the mentioned

drawback, FxLMS algorithm was developed [GRMP13].

Nevertheless, Fig. 1.5 does not consider secondary path S(z) that resume all the

stages where the signal y(n) pass until be emitted by the loudspeaker, loudspeaker re-

sponse, loudspeaker to error microphone path, microphone error response and stages

through which it passes this error signal e(n) till enter to the adaptive �lter.

In contrast, Fig. 1.6 considers secondary path S(z) and the algorithm Least Mean

Square (LMS) connected with the adaptive �lter W (z). Scheme is represented by

equation (1.10).

E(z) = [P (z)X(z)− S(z)Y (z)]E(z) = [P (z)− S(z)W (z)]X(z) (1.10)
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Figure 1.6: Feedforwad ANC System Block Diagram considering secondary path S(z).

Source: [Pir15]

For an ideal case error will be null (E(z) = 0), obtaining (1.11) as solution (Optimal

Transfer Function), dependence of the secondary path is evident.

W ◦(z) =
P (z)

S(z)
(1.11)

E�ect produced by the response of the secondary path S(z) tends to generate insta-

bility in the LMS algorithm, that can be deduced from the transfer function obtained

in the equation (1.11). The proposed solution implies the utilization of an �lter Ŝ(z),

identical to S(z) in reference signal path in order to update �lter coe�cients consid-

ering the secondary path e�ect, this method of solution is denominated as FxLMS

algorithm and Fig. 1.7 shows a block diagram that resumes it [Pir15] [KGK12].

Figure 1.7: FxLMS Broadband Feedforward ANC Block Diagram

Source: [Pir15]

Equation (1.12) can be deduced from Fig. 1.7.

e(n) = d(n)− y′(n) = d(n)− s(n) ∗ y(n) = d(n)− s(n) ∗ [w(n)Tx(n)] (1.12)
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Where s(n) represents impulse response of S(z), w(n) = [w0(n)w1(n)...wL−1(n)]T

impulse response of W (z) and x(n) = [x(n)x(n− 1)...x(n− L + 1)]T represents the

reference signals vector for a L order �lter.

LMS algorithm uses equation (1.13) to minimize the stochastic gradient.

w(n+ 1) = w(n)− µ

2
∇Ĵ(n) = w(n)− µ

2
∇(e2(n)) = w(n)− µ[∇e(n)]e(n) (1.13)

Approximation of the gradient is referred by equation (1.14).

∇e(n) = −s(n) ∗ x(n) = −x′(n) (1.14)

Coe�cients updating of the �lter W (z) is similar to LMS, with the di�erence that

in this part is considering the transfer function S(z) for weighting (1.15).

w(n+ 1) = w(n) + µx′(n)e(n) (1.15)

One important observation is that this algorithm will can compensate the estimation

errors of S(z) with the condition that µ is enough small and the phase error between

S(z) and Ŝ(z) does not exceed the 90◦ [Pir15] [KGK12].

1.7.2 Feedback ANC systems

On the other hand, Feedback ANC systems require only one sensor of the error signal

(microphone) compared to Feedforward ANC systems and one secondary source of

anti-noise (loudspeaker), it is not necessary a sensor for the primary noise signal

because the algorithm focuses the error [KGK12]. Fig. 1.8 presents this idea.

Figure 1.8: Feedback ANC System Block Diagram

Source: [Pir15]

Feedback ANC systems are generally applied where is not possible or is really hard

to sense and obtain the noise signal with an acoustic or non-acoustic sensor, the key
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element of Feedforward ANC systems [KGK12].

Furthermore, Feedback ANC systems are normally considered as non-adaptive due

these only works with the error negative feedback. Table 1.2 makes a comparison

between general adaptive Feedforward ANC and non-adaptive Feedback ANC sys-

tems.

Table 1.2: Comparative Table: Adaptive Feedforward and Non-adaptive Feedback ANC
systems.

System Advantages Disadvantages

Adaptive · Error signal controlled · Di�cult transient suppression
Feedforward · Wide margins of stability · Coherent reference signal required

ANC · Accurate modeling is not required

Non-adaptive · No reference microphone · Not guaranteed stability

Feedback · No acoustic feedback · non-selective attenuation
ANC · Transient suppression · Limitations Control Set

· Relatively simple control · It requires accurate modeling
Source: [Pir15]

Hence, ANC Feedback adaptive systems are proposed through the estimation of the

primary signal, thus these techniques are similar to Feedforward ANC systems, as is

showed in Fig. 1.9 [Pir15].

Figure 1.9: Adaptive Feedback ANC System Block Diagram.

Source: [Pir15]

For this reason, Feedback and Feedforwad ANC adaptive systems usually use FxLMS

algorithm to reduce the e�ect of the secondary path. Fig. 1.10 shows a Feedback

ANC system using FxLMS algorithm [Pir15].
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Figure 1.10: FxLMS Feedback ANC System Block Diagram.

Fuente: [Pir15]

1.7.3 Hybrid ANC systems

Hybrid ANC system is the combination of Feedforward and Feddback ANC systems,

Fig. 1.11 shows the main idea of this structure.

Figure 1.11: Hybrid ANC System Block Diagram using a FIR �lters

Source: [KGK12]
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Hybrid ANC systems perform a double cancellation based in the processing of the

Feedforward and Feedback ANC subsystems. Hence, Hybrid ANC systems have

more balanced performance that these, this idea can be resumed in the Table 1.3.

Despite the fact, that the hybrid algorithm had long settling time, the settling time

of the feedback algorithm is longer and the hybrid ANC systems were more stable

to disturbances [CC15].

Table 1.3: Algorithm Comparison.

Algorithm Settling time Disturbance reject

Feedforward short bad

Hybrid average average

Feedback long good
Source: [CC15]
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Chapter 2

State of the Art

The present research focuses the optimization of a Single Frequency ANC system,

which is categorized as a Narrowband Feedforward ANC system.

2.1 Narrowband Feedforward ANC systems
Narrowband ANC systems are generally used by applications where noise is limited

to a small group of frequencies. The main applications are focussed in motors,

compressors, fans and rotational machines [Pir15]. Fig. 2.1 shows the structure of

the system.

Noise
Source

Signal
Generator

Digital
Filter

Adaptive
Algorithm

Non-acoustic sensor

Loudspeaker

Error
Microphone

x(n)

e(n)

Primary Noise

Sync Signal

Narrowband ANC

y(n)

Figure 2.1: Narrowband ANC System Diagram.

Source: [Pir15]

The principle of operation of this structure is similar to Broadband Feedforward

ANC system. It uses one loudspeaker to cancel the noise and one microphone to

obtain the acoustic residual error, the main di�erence is that in order to get the

reference signal (primary signal) it uses a non-acoustic sensor such as accelerometers
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or tachometers. Consequently, it requires a signal generator to convert the lecture

of the sensor for its processing in the controller [Pir15].

The main advantages of use Narrowband ANC systems are [Pir15]:

• There is not acoustic feedback of the reference microphone.

• Narrowband ANC systems avoid non-linear response of the microphones.

• It can control independently individual harmonics.

Unfortunately, non-acoustic sensors can present errors due fatigue, error that can

generate misadjusts in the signal generator decreasing the system performance [KGK12].

2.2 Multi-frequency Feedforward ANC systems
In practice applications, periodic noise always present multiple harmonics and oper-

ation of multiple notches to reduce this drawback require high-order �lters. Multi-

frequency ANC systems diminish these signals by the use of multiple notches that can

be implemented at the Direct, Parallel, Direct/Parallel and Cascade forms [CC15].

These notches operate single frequency signals (sinusoidal), generally are known as

Adaptive Notch Filters or Cancellers.

2.3 Adaptive Notch Filters
When an ANC system is used in order to diminish a sinusoidal reference signal

(Single Frequecy ANC), this is called as Adaptive Notch Filter. "The advantages of

the Adaptive Notch �lter are that it o�ers easy control of Bandwith, an in�nity null,

and the capability to adaptively track the exact frequency of the interference in order

to get a good performance for ANC" [KM99]. Fig. 2.2 shows a single frequency

adaptive Notch �lter proposed by Kuo and Morgan in [KM99].

Figure 2.2: Single-frequency Adaptive Notch Filter.

Source: [KM99]
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2.3.1 Analysis of Adaptive Notch Filters

The present analysis was developed by Widrow et al in [WGM+75]. For this purpose,

x(n) is considered the reference sinusoidal signal and is represented by the expression

(2.1) where t = nts.

x(n) = A cos(ω0t) (2.1)

Therefore, n-th references are represented by expressions (2.2) and (2.3).

x0(n) = A cos(ω0nts + φ) (2.2)

x1(n) = A sin(ω0nts + φ) (2.3)

And the n-th �lter weightings are expressed by (2.4) and (2.5). Where µ is the

step-size of the adaptive algorithm.

w0(n+ 1) = w0(n) + µe(n)x0(n) (2.4)

w1(n+ 1) = w1(n) + µe(n)x1(n) (2.5)

In order to obtain the transfer function of the Adaptive Notch Canceller, impulse

response is analyzed for the system schemed by the �ow diagram in Fig. 2.3.

A

B

C

D

E

F

G

H I J

K
L

M

+
-

+

+

Figure 2.3: Flow diagram showing signal propagation in single-frequency adaptive notch
canceler [WGM+75]
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It is considered an impulse function described by equations (2.6) and (2.7) in point

C, where α represents the amplitude of the impulse function.

e(n) = αδ(n− k) (2.6)

δ(n− k) =

{
1 for n = k

0 for n 6= k
(2.7)

Equation (2.8) details the expression achieved in point D. Is similar for point H with

the di�erence of sin instead of cos .

e(n)x0(n) =

{
αA cos(ω0kts) for n = k

0 for n 6= k
(2.8)

Analysis of the branch between points D and F, it is found the expression (2.9) for

the �lter weighting w0(n) in point E.

w0(n) = µαA cos(ω0kts + φ) (2.9)

Where n > k + 1, due convolution operated in the branch between µ and x0(n) and

the step function u(n − 1) corresponding to the delay z−1. Therefore, expression

(2.10) is obtained in point F.

y0(n) = µαA2 cos(ω0nts + φ) cos(ω0kts + φ) (2.10)

At the same way, y1(n) is expressed in the point J by (2.11).

y1(n) = µαA2 sin(ω0jts + φ) sin(ω0kts + φ) (2.11)

Hence, y(n) is expressed by equation (2.12).

y(n) = y0(n) + y1(n) = µαA2cos(ω0ts(n− k)) (2.12)

Considering the step function, we obtain expression (2.13).

y(n) = µαA2u((n− k)− 1) cos(ω0ts(n− k)) (2.13)

Considering an impulse unitary function (α = 1) in k = 0, it is obtained the expres-

sion (2.14).
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y(n) = µA2u(n− 1) cos(ω0nts) (2.14)

Therefore, transfer function for this path is expressed by (2.15).

G(z) = µA2

[
z(z − cos(ω0ts))

z2 − 2z cos(ω0ts) + 1
− 1

]
(2.15)

Considering the angular sampling frequency Ω = 2π/ts, (2.16) is obtained.

G(z) =
µA2[z cos(2πω0Ω−1)− 1]

z2 − 2z cos(2πω0Ω−1) + 1
(2.16)

When feedback loop is closed from point G to point B, it is obtained transfer function

H(z) from the point A to point C in expression (2.17).

H(z) =
E(z)

D(z)
=

z2 − 2z cos(2πω0Ω−1) + 1

z2 − (2− µA2)z cos(2πω0Ω−1) + 1− µA2
(2.17)

Widrow et al in [WGM+75], analyses the properties of the notch canceler at the

reference frequency w0. The zeros are located at the Z plane in (2.18), and the poles

in (2.19). And both are into the unit circle that mark the stability of our system,

showed in Fig. 2.4.

UNIT
CIRCLE

Z-PLANE

HALF-POWER
POINTS

EACH
SEGMENT

Figure 2.4: Location of poles and zeros [WGM+75]

z = e±i2πω0Ω−1

(2.18)

p = (1− µA2

2
) cos(2πω0Ω−1)± i[(1− µA2)− (1− µA2

2
) cos2(2πω0)Ω−1]1/2 (2.19)
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Poles are inside of the circle with a radial distance of approximately 1− µA2

2
.

In a frequency response analysis, it is obtained the expression (2.20) and Fig. 2.5

for the Bandwidth formula and frequency response image.

B ≈ µA2Ω

2π
(2.20)

1

0

NOTE: NOTCH REPEATS
AT SAMPLING FREQUENCY

Figure 2.5: Magnitude of Transfer Function [WGM+75]

Kuo and Morgan in [KM99], shows a little di�erent expression for (2.17) in (3.1),

where is not considered the sampling variables.

H(z) =
E(z)

D(z)
=

z2 − 2z cos(ω0) + 1

z2 − (2− µA2)z cos(ω0) + 1− µA2
(2.21)

2.4 Delayed FxLMS ANC
Adaptive Notch Filters represent a special case of Narrowband ANC systems, and

how any ANC secondary path e�ect is an important drawback. Ziegler in [ZJ89]

develops a simpli�ed version of FxLMS algorithm in this speci�c case denominated

Delayed FxLMS algorithm.

Equation (2.22) presents Delayed FxLMS algorithm, the purpose of the delay (∆) is

to align the reference signal to the error signal in order to update the �lter weights

to minimize the residual error [Han02], additionally Kuo and Morgan in [KM99]

consider it as a compensation to the secondary path e�ect.

wl(n+ 1) = wl(n) + µe(n)xl(n−∆) (2.22)

Where l = 0 or l = 1.

According to [KM99], the delay unit can be replaced by the a secondary path esti-

mate of S(z) as is shown in the Fig. 3.6.
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Figure 2.6: Delayed FxLMS ANC.

Source: [KM99]

Now, the adaptive weights are update by equation (2.23).

wl(n+ 1) = wl(n) + µe(n)x′l(n) (2.23)

where l = 0 or l = 1.

Considering x′l(n) as a modi�ed version of xl(n − ∆) from equation (2.22). Their

relationship is showed by equation (2.24).

x′l(n) = Asxl(n−∆) (2.24)

where As is the amplitude of S(z) (estimate)

The transfer function proposed by [KM99] of the Narrowband ANC system is given

by expression (2.25), it considers the secondary path S(z) and its identi�cation Ŝ(z)

e�ects.

H(z) =
z2 − 2z cos(ω0) + 1

z2 − [2 cos(ω0)− β cos(ω0 − φ∆)]z + 1− β cos(φ∆)
(2.25)

Where β is represent by equation (2.26) and, φ∆ in expression (2.27) is the phase

di�erence between S(z) and Ŝ(z).

β = µA2As (2.26)

φ∆ = φS − φŜ (2.27)
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A review of both equations (3.1) and (2.25) evidence that Transfer function of Adap-

tive Notch Filter utilizing Delayed FxLMS algorithm mainly depends of the char-

acteristics of the system itself. Thus, in order to improve the performance of this

algorithm is necessary to select the optimum value of step-size µ or minimize the

di�erences between the secondary path transfer function S(z) and its estimate Ŝ(z).

Important constraints

According to [KM99] if β is small, the poles of H(z) are complex conjugate with

radius rp =
√

1− β cos(φ∆). As it is showed in (2.26) β is positive, thus, the

stability condition is (2.28).

cos(φ∆) > 0 or − 90◦ < φ∆ < 90◦ (2.28)

Additionally in [KM99] is given the time constant adaptation approximated in (2.29).

τmse 6
2ts
µA2

(2.29)
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Chapter 3

Optimization of Delayed FxLMS ANC

The present research has as objective the development of the optimization of the

Delayed FxLMS algorithm, the justi�cation of this selection is described in the fol-

lowing paragraphs.

As it is detailed in the last chapter, Delayed FxLMS algorithm focuses on Single

Frequency ANC systems, which have the lowest order of adaptive �lter of LMS al-

gorithms. Low order �lters imply low computational burden, thus less complex and

expensive devices can support this ANC algorithm.

Single Frequency ANC systems in less complex devices would be the �rst step to

less complex Multi-frequency ANC systems.

3.1 Analysis of Single Frequency ANC systems

3.1.1 Stability Conditions

The initial part of this sections is the analysis in Time Domain of the stability con-

ditions for an Adaptive Notch Canceller or Single Frequency ANC system.

In order to achieve the mentioned purpose, it is used transfer function (3.1) of Kuo

and Morgan.

H(z) =
E(z)

D(z)
=

z2 − 2z cos(ω0) + 1

z2 − (2− µA2)z cos(ω0) + 1− µA2
(3.1)

However, Kuo and Morgan in [KM99] do not consider sampling time, transfer func-

tion (3.2) considers mentioned element in order to develop the corresponding analysis,
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H(z) =
E(z)

D(z)
=

z2 − 2z cos(ω0ts) + 1

z2 − (2− µA2)z cos(ω0ts) + 1− µA2
(3.2)

From transfer function (3.2), it is obtained expression (3.3) to represent its poles.

p = (1− µA2

2
) cos(ω0ts)±

√
(1− µA2

2
)2 cos2(ω0ts)− (1− µA2) (3.3)

It is considered two cases, the �rst when the expression of the radical is imaginary

and the second when it is real.

Case I: Complex poles

If the expression of the radical results an imaginary, it is obtained expression (3.4).

(1− µA2

2
)2 cos2(ω0ts)− (1− µA2) < 0 (3.4)

Considering system stability, according to (3.3) and (3.4), the condition of radius of

the pole vector is expressed by equation (3.5).

rp =
√

1− µA2 6 1 (3.5)

Thus, (3.6) represent interval for µ in order to keep stability.

µ ∈ [0;
1

A2
] (3.6)

Additionally it is necessary analyzes the initial expression (3.4). It is expanded in

expression (3.7).

(1− µA2) cos2(ω0ts) +
µ2A2

4
cos2(ω0ts)− (1− µA2) < 0 (3.7)

Operating expression (3.7), it is obtained (3.8).

(
µA2

2
+ tan2(ω0ts)−

sin(ω0ts)

cos2(ω0ts)
)(
µA2

2
+ tan2(ω0ts) +

sin(ω0ts)

cos2(ω0ts)
) < 0 (3.8)

Analysing (3.8), it is obtained the operation interval for µ in (3.9)

µ ∈ 〈
2(−| sin(ω0ts)

cos2(ω0ts)
| − tan2(ω0ts))

A2
;
2(| sin(ω0ts)

cos2(ω0ts)
| − tan2(ω0ts))

A2
〉 (3.9)

Therefore, for an imaginary radical it is obtained the following operation interval

(3.10) for µ, from (3.6) and (3.9).
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µ ∈ [0;
1

A2
] ∩ 〈

2(−| sin(ω0ts)
cos2(ω0ts)

| − tan2(ω0ts))

A2
;
2(| sin(ω0ts)

cos2(ω0ts)
| − tan2(ω0ts))

A2
〉 (3.10)

Case II: Real poles

Another situation is obtained when radical expression is real, as is expressed by

(3.11).

(1− µA2

2
)2 cos2(ω0ts)− (1− µA2) > 0 (3.11)

How is expected, expression (3.11) can be represented as (3.12), similar to (3.8).

(
µA2

2
+ tan2(ω0ts)−

sin(ω0ts)

cos2(ω0ts)
)(
µA2

2
+ tan2(ω0ts) +

sin(ω0ts)

cos2(ω0ts)
) > 0 (3.12)

Hence, �rst operation interval for µ is represented by (3.13).

µ ∈ 〈−∞;
2(−| sin(ω0ts)

cos2(ω0ts)
| − tan2(ω0ts))

A2
] ∪ [

2(−| sin(ω0ts)
cos2(ω0ts)

| − tan2(ω0ts))

A2
; +∞〉 (3.13)

Then, it is necessary to analyse the radius of the pole vector expressed by (3.14).

0 6

√
[(1− µA2

2
) cos(ω0ts)±

√
(1− µA2

2
)2 cos2(ω0ts)− (1− µA2)]2 6 1 (3.14)

As part of the analysis, �rst considers positive result of the radical, thus, is analysed

the maximum value by (3.15).

(1− µA2

2
) cos(ω0ts) +

√
(1− µA2

2
)2 cos2(ω0ts)− (1− µA2) 6 1 (3.15)

√
(1− µA2

2
)2 cos2(ω0ts)− (1− µA2) 6 1− (1− µA2

2
) cos(ω0ts) (3.16)

The resulting expression is (3.16), where both parts are positives. Operating, it is

obtained the expression (3.17)

µ 6
2

A2
(3.17)
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As second part of analysis of (3.14), it is considered the minimum value for a negative

result of the radical in (3.18). As is showed, this expression is always positive.

0 6

√
[(1− µA2

2
) cos(ω0ts)−

√
(1− µA2

2
)2 cos2(ω0ts)− (1− µA2)]2 (3.18)

Therefore, the analysis of stability in this case for pole vector obtains the following

operation interval for µ.

µ ∈ [0;
2

A2
] (3.19)

Hence, Case II is resumed by (3.20) as operation interval for µ, considering expres-

sions (3.13) and (3.19).

µ ∈ [0;
2

A2
]∩{〈−∞;

2(−| sin(ω0ts)
cos2(ω0ts)

| − tan2(ω0ts))

A2
]∪ [

2(| sin(ω0ts)
cos2(ω0ts)

| − tan2(ω0ts))

A2
; +∞〉}
(3.20)

Analysis of Intervals values

As a conclusion of Cases I and II, µ has the operation interval expressed in (3.10)

or (3.20). Nonetheless, it is necessary analyzes the expressions composes by ω0ts, in

order to obtain de�ned operation intervals of µ.

Considering (3.10) as (3.21) and (3.20) as (3.22), values of λ1 and λ2 are expressed

in (3.23) and (3.24) respectively.

µ ∈ [0;
1

A2
] ∩ 〈2λ1

A2
;
2λ2

A2
〉 (3.21)

µ ∈ [0;
2

A2
] ∩ {〈−∞;

2λ1

A2
] ∪ [

2λ2

A2
; +∞〉} (3.22)

λ1 = −| sin(ω0ts)

cos2(ω0ts
)| − tan2(ω0ts) (3.23)

λ2 = | sin(ω0ts)

cos2(ω0ts)
| − tan2(ω0ts) (3.24)

Analysing (3.23) is determined (3.25).

λ1 < 0 (3.25)
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Thus, expression (3.26).

2λ1

A2
< 0 (3.26)

Expression (3.26) is su�ciently to be located because the other points in the intervals

are all positive.

Now, it is analysed λ2 in (3.27) since (3.24).

λ2 = | sin(ω0ts)

cos2(ω0ts)
|(1− | sin(ω0ts)|) (3.27)

Then, it is multiplied (1 + | sin(ω0ts)|) in numerator y denominator, it is obtained

(3.28).

λ2 =
| sin(ω0ts)|

(1 + | sin(ω0ts)|)
(3.28)

Hence, is determined interval (3.29).

0 < λ2 6
1

2
(3.29)

Thus,

0 <
2λ2

A2
6

1

A2
(3.30)

Expression (3.30) is su�ciently because it is located between points 0 and 1
A2 .

Finally, considering (3.26) and (3.30) in intervals (3.21) and (3.22), it is obtained

the new intervals for µ expressed by (3.31) for complex poles and (3.32) for real

poles.

µ ∈ [0;
2λ2

A2
〉 (3.31)

µ ∈ [
2λ2

A2
;

2

A2
] (3.32)

Joining both intervals, it is obtained the general interval of operation for µ in (3.33).

µ ∈ [0;
2

A2
] (3.33)
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3.1.2 Time Response

Considering the equations of Adaptive Notch Filters presented in the State of the

Art.

w0(n+ 1) = w0(n) + µe(n)x0(n) (3.34)

w1(n+ 1) = w1(n) + µe(n)x1(n) (3.35)

y(n) = w0(n)x0(n) + w1(n)x1(n) (3.36)

e(n) = d(n)− y(n) (3.37)

Apparently a better convergence time can be achieved with the highest µ, according

to (3.33) this would be 2
A2 .

At this part it is analysed time response of the Adaptive Notch Filters (Single Fre-

quency ANC systems) with di�erent µ, and also is veri�ed the stability interval

obtained in the last part.

In the analysis, it is used a noise signal frequency of 60 Hz and sampling frequency of

2 kHz. These values are selected because ANC systems are designed to reduce low-

frequency noise (< 600 Hz) and considering the Nyquist Shannon sampling theorem

the minimum sampling frequency for the maximum noise signal frequency should be

1.2 kHz.

Analysis of Time Response - Transfer Function

According to the reference signal expressed by (3.38), A = 5, f0 = 60 and ts =

1/2000.

x(n) = A sin(ω0nts) = A sin(2πf0nts) (3.38)

And the operation interval for µ is represented by (3.39)

µ ∈ [0;
2

A2
] = [0; 0.08] (3.39)

Hence, values out of the interval become unstable the system. Fig. 3.1 shows the

time response for µ = −0.001 and µ = 0.081.
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(a) Time Response for µ = −0.001

(b) Time Response for µ = 0.081

Figure 3.1: Time responses for µ values out of the operation interval, gray line represents
noise signal and blue line represents control signal

And values of the limits of the operation interval, become critically stable. Fig. 3.2

shows the time response for µ = 0 and µ = 0.08.

Considering that the operation interval of µ is the union of two operation inter-

vals, one for complex poles and the other for real poles as is referenced by (3.31) and

(3.32). The joining point is in µ = 2λ2
A2 , considering (3.23) and the initial values of

w0 and ts in the present subsection, it is obtained the value of the joining point in

the expression (3.40).
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(a) Time Response for µ = 0

(b) Time Response for µ = 0.08

Figure 3.2: Time responses for µ values in the limits of the operation interval, gray line
represents noise signal and blue line represents control signal

µλ2 =
2| sin(ω0ts)|

A2(1 + | sin(ω0ts)|)
= 0.0126 (3.40)

In Fig. 3.3 is showed the time response for µ in the joining point referenced by

(3.40). Additionally is showed the time response for µ = 1
A2 , another important

point in the operation intervals developed in this section and also the middle point

of the operation interval analysed.

µmid =
1

A2
= 0.04 (3.41)
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(a) Time Response for µ = µλ2 = 0.0126

(b) Time Response for µ = µmid = 0.04

Figure 3.3: Time responses for µ values in important points of the operation interval, gray
line represents noise signal and blue line represents control signal

As can be reviewed in Fig. 3.3, the time response for both points is good. Apparently

µλ2 presents better stationary error and µmid better convergence. It is necessary a

study of the convergence time in order to determine the best µ for the frequencies

that are tested in the prototype of ANC system.

3.2 Optimal Step-Size µo
As previously observed, step-size µ values should be limited in order to maintain

stability in Single-Frequency ANC systems. Additionally, this previous analysis evi-

dences the relationship between the value of µ and Single-Frequency response.
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In this subsection it is calculate de optimal step-size µo for the Single Frequecy

ANC system in order to obtain the best settling time.

According to the settling time concept, it is determined by two di�erent criteria.

With a criteria of 2% is expressed by equation (3.42).

tss =
4

σ
(3.42)

With a criteria of 5% is expressed by equation (3.43).

tss =
3

σ
(3.43)

Where σ is the real part of the dominant continuous pole showed in (3.44)

s = −σ ± jωd (3.44)

And this continuous pole has its correspondent discrete pole, which is obtained

through formula (3.45).

z = etss (3.45)

Where the discrete pole z is denoted by expression (3.46).

z = c± jd (3.46)

Considering equations (3.44) and (3.46), it is developed the expression (3.45).

c± jd = e−tsσ(cos(ωdts)± j sin(ωdts)) (3.47)

Equations (3.48) and (3.49) are obtained from (3.45) considering that discrete poles

are step-size µ functions.

c(µ) = e−tsσ cos(ωdts) (3.48)

d(µ) = e−tsσ sin(ωdts) (3.49)

Note that c(µ) and d(µ) have equal sign that cos(ω0ts) and sin(ω0ts) respectively.

And from (3.48) and (3.49) it is obtained the expression (3.50).
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ωdts = arctan(
d(µ)

c(µ)
) (3.50)

Consequently, can be obtained two possibles expressions (3.51) and (3.52) in order

to determine the value of σ in function of the step-size µ.

σ(µ) = − 1

ts
ln(

c(µ)

cos(arctan(d(µ)
c(µ)

))
) (3.51)

σ(µ) = − 1

ts
ln(

d(µ)

sin(arctan(d(µ)
c(µ)

))
) (3.52)

According to (3.48) and (3.49), the expression that are into de natural logarithm in

(3.51) and (3.52) always is a non-negative number, and the logarithm always have

solution.

Hence, it is necessary to �nd the optimal value for the step-size µo in order to

obtain the maximum value of σ thus the minimum settling time (according to (3.42)

and (3.43)).

In this case the dominant discrete pole is representing by the expression (3.3), thus

it is obtained the correspondence de�ned by (3.53).

c(µ)± jd(µ) = (1− µA2

2
) cos(ω0ts)±

√
(1− µA2

2
)2 cos2(ω0ts)− (1− µA2) (3.53)

Notwithstanding, there are two possibles cases. The following subsections detail this

analysis.

3.2.1 Case I: Complex poles

The present case considers an imaginary solution for radical expression of equation

(3.53), thus two complex poles with equal real part. Consequently, both poles are

dominant, and real part is analysed indistinctly of the poles.

Another important consideration is that step-size µ is constrained by interval [0, 2λ2
A2 >

according to Stability Conditions. Hence, (3.53) in this part is represent by (3.54)
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c(µ)± jd(µ) = (1− µA2

2
) cos(ω0ts)± j

√
(1− µA2)− (1− µA2

2
)2 cos2(ω0ts) (3.54)

Therefore, according to (3.51), σ(µ) is expressed by (3.55).

σ(µ) = − 1

ts
ln(

(1− µA2

2
) cos(ω0ts)

cos(arctan(
±
√

(1−µA2)−(1−µA2

2
)2 cos2(ω0ts)

(1−µA2

2
) cos(ω0ts)

))

) (3.55)

The maximum value of σ will be achieved by an optimal value of µ (µo), for this value

σ′(µo) should be zero. Therefore, it is derived the expression (3.55) to matching to

zero, unfortunately (3.56) is obtained.

σ′(µ) =
A2

2ts(1− µA2)
(3.56)

Expression (3.56) cannot be zero, thus function σ(µ) is an increasing or decreasing

function in the interval [0, 2λ2
A2 >. In order to understand the behaviour (increasing

or decreasing) of σ(µ), it is analysed its value for the critical values 0 and 2λ2
A2 .

For µ = 0:

c(0) = (1− (0)A2

2
) cos(ω0ts) = cos(ω0ts) (3.57)

d(0) =

√
(1− (0)A2)− (1− (0)A2

2
)2 cos2(ω0ts) = ± sin(ω0ts) (3.58)

Thus,

σ(0) = − 1

ts
ln(

cos(ω0ts)

cos(arctan(± sin(ω0ts)
cos(ω0ts)

))
) = 0 (3.59)

First Result: σ(0) = 0;

For µ = µλ2 = 2λ2
A2 :

According to expression (3.28) λ2 = | sin(ω0ts)|
1+| sin(ω0ts)| :

c(µλ2) =
cos(ω0ts)

1 + | sin(ω0ts)|
(3.60)

d(µλ2) = 0 (3.61)
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Considering that the expression into the natural logarithm is always positive (as it

is noted before).

0 6
c(µλ2)

cos(arctan( 0
c(µλ2 )

))
6 1 (3.62)

Thus,

σ(µλ2) = − 1

ts
ln(

c(µλ2)

cos(arctan( 0
c(µλ2 )

))
) > 0 (3.63)

Second Result: σ(µλ2) > 0

Considering that µλ2 > 0, σ(µλ2) > σ(0) and σ′(µ) 6= 0 for the interval [0, µλ2 >.

The conclusion is that σ(µ) is an increasing function for this interval.

3.2.2 Case II: Real Poles

In this case, there are 2 real poles, one of them is the dominant pole, according to

the Stability Conditions, the step-size µ is constrained by the interval [2λ2
A2 ,

2
A2 ]. And

the expression for the real part c(u) is represented by (3.64).

c(u) = (1− µA2

2
) cos(ω0ts)±

√
(1− µA2

2
)2 cos2(ω0ts)− (1− µA2) (3.64)

Expression (3.51) is reduced in (3.65). (according the observation of the value into

the natural logarithm)

σ(µ) = − 1

ts
ln(|c(u)|) (3.65)

Considering the two real poles as σ1(µ) and σ2(µ), where σ1(µ) 6 σ2(µ).

Obviously σ1(µ) should be the dominant pole and according to (3.65) it is obtained

that c1(µ) > c2(µ), where c1(µ) and c2(µ) are the corresponding discrete poles for

σ1(µ) and σ2(µ) respectively.

According to c1(µ) > c2(µ), it is obtained the expressions (3.66) and (3.67).

c1(µ) = (1− µA2

2
) cos(ω0ts) +

√
(1− µA2

2
)2 cos2(ω0ts)− (1− µA2) (3.66)

c2(µ) = (1− µA2

2
) cos(ω0ts)−

√
(1− µA2

2
)2 cos2(ω0ts)− (1− µA2) (3.67)
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As σ1(µ) is the dominant pole, thus c1(µ) would be the discrete dominant pole.

Finally it is determined the expression (3.68).

σ(µ) = − 1

ts
ln((1− µA2

2
) cos(ω0ts) +

√
(1− µA2

2
)2 cos2(ω0ts)− (1− µA2)) (3.68)

In order to �nd the optimal value of µ (µo) to obtain the maximum value of σ it is

analysed the value of σ′(µ) in (3.69), besides σ′(µo) should be zero.

σ′(µ) =
A2 sin2(ω0ts)

2ts∆(µ)(µA
2 cos(ω0ts)

2
− 1)

(3.69)

Where ∆(µ) is expressed by (3.70).

∆(µ) =

√
(1− µA2

2
)2 cos2(ω0ts)− (1− µA2) (3.70)

Expression (3.69) cannot be zero for any value of µ, thus σ′(µ) is an increasing or

decreasing function in the interval [2λ2
A2 ,

2
A2 ]. At the same way, σ(µ) is evaluated for

the critical values 2λ2
A2 and 2

A2 , in order to know if it is a increasing or decreasing

function for the mentioned interval.

For µ = µλ2 = 2λ2
A2 :

According to (3.28) λ2 = | sin(ω0ts)|
1+| sin(ω0ts)| :

c(µλ2) =
cos(ω0ts)

1 + | sin(ω0ts)|
(3.71)

Thus,

σ(µλ2) = − 1

ts
ln(|c(µλ2)|) > 0 (3.72)

First Result: σ(µλ2) > 0

For µ = 2
A2 :

c(
2

A2
) = (1− 1) cos(ω0ts) +

√
(1− 1)2 cos2(ω0ts)− (1− 2) = 1 (3.73)
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Thus,

σ(µ) = − 1

ts
ln(1) = 0 (3.74)

Second Result: σ( 2
A2 ) = 0

Considering for the two results that µλ2 > 2
A2 , σ(µλ2) < σ( 2

A2 ) and σ′(µ) 6= 0

for the interval [µλ2 ,
2
A2 ]. The conclusion is that σ(µ) is an decreasing function for

this interval.

Furthermore, It is found that the σ(µλ2) for the interval [0, µλ2 > and for the interval

[µλ2 ,
2
A2 ] are the same, as it can be veri�ed by the expressions (3.63) and (3.71).

3.2.3 Conclusion and Analysis

Finally, considering that the function σ(µ) is an increasing function in the interval

[0, µλ2 >, a decreasing function in the interval [µλ2 ,
2
A2 ] and exist a common point

in µ = µλ2 , the conclusion is that σ(µ) presents its maximum value when µ = µλ2 .

Therefore µλ2 is the optimum value of step-size µ for the Single Frequency ANC

system, as it is expressed by (3.75).

µo = µλ2 =
2λ2

A2
(3.75)

In order to analyse the optimal step-size µo expression obtained in (3.75), it is evalu-

ated the time response for the Single Frequency ANC system considering the optimal

step-size µo = µλ2 and with the following characteristics.

• Reference Signal Amplitude = 5 (no units).

• Reference Signal Frequency = 50 Hz.

• Sampling Frequency = 1 kHz.

This evaluation is resumed by Fig. 3.4, where time response obtained by the optimal

step-size µo is compared with another time responses for di�erent values of µ.
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Figure 3.4: Transfer Function Response for µ = 0.5µλ2 , 0.75µλ2 , µλ2 , 1.25µλ2 and 1.5µλ2

Analysing Fig. 3.4, µ = µo = µλ2 presents a good time response, the same case occur

with µ = 0.75µλ2 . The behaviour of all time responses implies that all the interval

between the two mentioned values of µ present a good response and also values close

to this range. Therefore, theoretical optimal step-size is really close to empirical,

considering the empirical optimal step-size represent by expression (3.76).

µo ∈ [0.75µλ2 ;µλ2 ] (3.76)

3.2.4 Frequency Response Analysis

Additionally it is veri�ed the behaviour of the system in the frequency domain, to

achieve this purpose the Single Frequency ANC system is analysed by the Bode Di-

agram in magnitude and phase for the same values of step-size µ evaluated in time

response.

Fig, 3.5 shows great similitude between the behaviour of the system for di�erent

values of µ, and the narrowness of the response in the frequency corresponding to
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the reference noise signal, according to angular frequency relationship ω0 = 2πf0.
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Figure 3.5: Bode Diagram considering µ = 0.5µλ2 , 0.75µλ2 , µλ2 , 1.25µλ2 and 1.5µλ2

This analysis re�ects the weak impact of the variation of the step-size µ in the

frequency response of a Single Frequency ANC system. Obviously, considering µ in

its stability interval of operation.

3.3 Delayed FxLMS ANC Algorithm using Optimal

Step-Size µ
Finally, the algorithm used in the Prototype of ANC system is the Delayed FxLMS

algorithm, obviously for a single frequency noise signal as reference. Fig. 3.6 shows

the structure of the algorithm.
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Figure 3.6: Delayed FxLMS ANC.

Source: [KM99]

As it is detailed in the last part of the state of the art, secondary path e�ect is bal-

anced with the secondary path estimation, the results x′0(n) and x′1(n) are operated

by the algorithm according to the equations (3.77) and (3.78).

x′0(n) = Asx0(n−∆) (3.77)

x′1(n) = Asx1(n−∆) (3.78)

Where As and ∆ represents the amplitude and delay obtained of the secondary path

obtained from secondary path estimation, step which should be realized before the

beginning of the algorithm.

The LMS block is detailed by the equations (3.79), (3.80), (3.81) and (3.82), which

have been mentioned before in the present document.

w0(n+ 1) = w0(n) + µe(n)x′0(n) (3.79)

w1(n+ 1) = w1(n) + µe(n)x′1(n) (3.80)

y(n) = w0(n)x′0(n) + w1(n)x′1(n) (3.81)

e(n) = d(n)− y(n) (3.82)
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Additionally in the present research is added the calculus of the theoretical opti-

mal step-size µo through the equations (3.83) and (3.84) obtaining (3.85) as �nal

expression.

µo = µλ2 =
2λ2

A2
(3.83)

λ2 =
| sin(ω0ts)|

1 + | sin(ω0ts)|
(3.84)

µo =
2| sin(ω0ts)|

A2(1 + | sin(ω0ts)|)
(3.85)

As can be observed, calculus of optimal step-size should be initial, considering the

frequency and amplitude of the single frequency noise signal obtained by the reference

sensor and sampling time used by the controller.
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Chapter 4

Simulations and Experimental Results

4.1 Simulations
In the present section is performed the simulation of the Delayed FxLMS ANC

algorithm for a speci�c reference noise signal in order to identify the behaviour of the

algorithm for di�erent values of step-size µ, specially the optimal that is calculated

before the operation of the algorithm. Bellow are described the characteristics used

by these simulations.

• Reference Signal Amplitude = 512 (no units).

• Reference Signal Frequency = 50 Hz.

• Sampling Frequency = 1 kHz.

The �gures obtained by simulation in the present section focus specially the evolution

of the control signal and the residual error at the time in comparison with the

reference noise signal. An important observation is that control signal is referenced

to y(n), thus it should be the most similar possible to the noise signal d(n) in order

to e(n) = d(n)− y(n) tends to zero.

4.1.1 Simulation for the Optimal step-size µ

Considering the characteristics mentioned at the �rst part of the present subsection.

It is obtained the value of the optimal step-size µo , detailed in the expression (4.1).

µo = 1.8× 10−6 (4.1)

Fig. 4.1a shows the behaviour of the control signal in order to track the noise signal.

Additionally Fig. 4.1b presents the residual error obtained of the di�erence between

the mentioned signals before.
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Figure 4.1: Algorithm simulation for µ = µo

4.1.2 Simulations for critical values of µ

According to the stability conditions evaluated in the present document, there are two

critical values for µ, the maximum and minimum of the operation interval referenced

in (4.2).

µ ∈ [0;
2

A2
] (4.2)

The minimum value of µ is represented by µL and the maximum by µH , its values

are denoted by the expressions (4.3) and (4.4) respectively.

µ = µL = 0 (4.3)

µ = µH =
2

A2
= 7.6× 10−6 (4.4)

Control signal and Residual Error signals for the minimum step-size µL are showed

in Figs. 4.2a and 4.2b respectively, where it is noted a non-existent reduction of

noise because the residual noise is the same that noise signal. However, the system

does not show unstable characteristics.

Another undesirable result is obtained for the maximum step-size µH , control sig-

nal of Fig. 4.2c tracks noise signal but with important error that is showed by the

residual error in Fig. 4.2d. It is not the same noise signal, but there is a constant

noise with di�erent amplitude and frequency of the reference.
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(b) Residual Error for the minimum value

µ = µL
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(d) Residual Error for the maximum value

µ = µH

Figure 4.2: Simulation for the critical values µ = µL and µ = µH

4.1.3 Simulations for higher µ values than the optimal

In order to verify the behaviour of the system for higher values of µ than the optimal

µo, it is analysed two cases for speci�c values of µ detailed by equations (4.5) and

(4.6).

µ+ = 2µo = 3.6× 10−6 (4.5)

µ++ = 4µo = 7.2× 10−6 (4.6)

Figs. 4.3a and 4.3c reveals a faster response of the system with some overshoots
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in comparison with the optimal step-size. However, Figs. 4.3b and 4.3d shows an

increase of the residual error in the stationary time.
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(d) Residual Error for µ = µ++

Figure 4.3: Simulation for higher µ values than the optimal

4.1.4 Simulations for lower µ values than the optimal

At the same way, this subsection veri�es the response of the system for step-size

values lower than the optimal µo, expressions (4.7) and (4.8) detail the chosen values

for these simulations.

µ− = 5× 10−1µo = 0.9× 10−6 (4.7)

µ−− = 2.5× 10−1µo = 4.5× 10−7 (4.8)
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According with the theory, the behaviour of the control signal detailed by Figs. 4.4a

and 4.4b shows that lower values than µ present slower response and Figs. 4.4c and

4.4d re�ects an increase in the settling time.
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(b) Residual Error for µ = µ−
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Figure 4.4: Simulation for lower µ values than the optimal
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4.2 Experimental Results
The present section aims to analyse the experimental results obtained from the eval-

uation of the Delayed FxLMS algorithm in a prototype of ANC system. All of this

considering the optimal step-size µ.

4.2.1 Prototype of ANC system

In order to experiment the behaviour of a Single Frequency ANC system it is pre-

pared a prototype of ANC system based in the module, which was designed and im-

plemented by Jesús Alan Calderón Chavarri. The outside of the protoype is showed

in Fig. 4.5, it consisted in a box isolated from external noise using insulation mate-

rials around itself.

Figure 4.5: Outside of the ANC system prototype

The �nal prototype, which was used in the experiments, is showed in Fig. 4.6 here

the Loudspeaker 1 delivers noisy signal inside the box, microphone 1 measures this

noisy signal, loudspeaker 2 delivers anti noise signal in order to attenuate it, and the

error noise cancellation signal is measured by microphone 2.

Figure 4.6: Interior of the ANC system prototype

Delayed FxLMS algorithm and Optimal step-size calculus were implemented in an
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ARDUINO UNO, which was used as controller for the experiments in the Single Fre-

quency ANC system prototype. The complete scheme employed by the experiments

considers three regions: acoustic, analogue and digital, Fig. 4.7 describes regions

with all the blocks which have been considered.

DACDAC
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Filter

Reconstruction
Filter
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Amplifier
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Amplifier
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Amplifier
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Digital
Port

Digital
Port

Acoustic Region

Analog Region
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Figure 4.7: Scheme used by the Experiments

Additionally, it is important to explain that considerations of experiments are the

same as simulations. As is detailed by the following list.

• Reference Signal Amplitude = 512 (no units).

• Reference Signal Frequency = 50 Hz.

• Sampling Frequency = 1 kHz.

Therefore, it is obtained the same value of optimal step-size described by (4.1).

However, in contrast of simulations, �gures of experiments consider as control signal

the exact signal that is transmitted to the loudspeaker (anti-noise signal).
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4.2.2 Experimental Results for the Optimal step-size µo and

another µ values

As it is previously a�rmed optimal step-size is where µo = 1.8× 10−6. Then, Figs.

4.8a and 4.8b shows the control signal and residual error response. An important

detail observed in Fig. 4.8b is the presence of peaks in the residual error signal, the

main reason of this type of irregularities is the presence of a little delay between

noise and control signal, which suggests that the secondary path estimate Ŝ(z) can

present a little error or sampling/control frequency is too big in order to approximate

the exact delay of S(z).
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Figure 4.8: Experimental results for µ = µo

Figures on the left side presents control signal in blue and also �gures on the right

side for the residual error. For all the �gures noise reference signal is in gray color.

Results for higher values than µo

At the same way of Simulations, Fig. 4.9 presents results for higher values than µo.

Values expressed by equations (4.9) and (4.10).

µ+ = 2µo = 3.6× 10−6 (4.9)

µ++ = 4µo = 7.2× 10−6 (4.10)
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(a) Control signal for µ = µ+
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(b) Residual Error for µ = µ+
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(c) Control signal for µ = µ++
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(d) Residual Error for µ = µ++

Figure 4.9: Results for higher values than µo

Results for lower values than µo

In this case Fig. 4.10 shows results for lower values than the optimal. This values

are detailed by expressions (4.11) and (4.12).

µ− = 5× 10−1µo = 9× 10−7 (4.11)

µ−− = 2.5× 10−1µo = 4.5× 10−7 (4.12)
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(a) Control signal for µ = µ−
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(c) Control signal for µ = µ−−
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(d) Residual Error for µ = µ−−

Figure 4.10: Results for lower values than µo

Results for additional values of µ

Figures that present results for µ values di�erent of the optimal µo do not show a

clear behaviour of the system. is for that reason that experiments continues with

lower values than previous, in order to increase the settling time and observe a slow

behaviour of the system (easy to analyse). Chosen values are detailed by expressions

(4.13), (4.14) and (4.15) and �gures are grouped in Fig. 4.11.

µa = 7.8125× 10−3µo = 1.406× 10−8 (4.13)

µb = 9.765× 10−4µo = 1.758× 10−9 (4.14)

µc = 6.1035× 10−5µo = 1.1× 10−10 (4.15)
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(a) Control signal for µ = µa
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(b) Residual Error for µ = µa
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(c) Control signal for µ = µb
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(d) Residual Error for µ = µb
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(e) Control signal for µ = µc
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(f) Residual Error for µ = µc

Figure 4.11: Results for additional values of µ
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Conclusions

1. The present research has optimized a Delayed FxLMS algorithm for a prototype

of ANC system, through the calculus of the optimal step-size.

2. Approximation developed by Widrow et al in ?? for a Single Frequency ANC

system, which is a non-linear system, in a transfer function shows a considerable

accuracy in order to analyse system response.

3. Single Frequency ANC system can be considered the most simple ANC system

because require the lowest order �lter (second order) in order to be controlled.

4. The main elements which can improve the performance of the Single Frequency

FxLMS algorithm, according the transfer function of Widrow et al, are the step-

size µ and di�erences between the secondary path e�ect and its estimation.

5. The present work has obtained the operation interval of the step-size µ for

a Single Frequency ANC system considering the stability conditions of the

approximate system. Additionally, it has been achieved the response variation

according to the µ displacement in the mentioned interval.

Recommendations
1. In this work, the experiment test have been developed in the ARDUINO UNO

device, which IC ATmega48A presents 10-bits Analog to Digital Converter

(ADC) resolution and low ADC speed. Despite of that this research pretends

to minimize computational costs, it is recommendable to use a little more

complex device in order to obtain better results.
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