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1 Introduction

Most empirical studies in finance use data on a daily basis which is obtained by retaining
the last observation of the day and ignoring all intraday records. However, as a result of
the increased automatization of financial markets and the evolution of computational trading
systems, intraday data bases that record every transaction along with their characteristics have
been stablished. These data sets prompted the development of a new area of research (finance
with high frequency data), and in 1980 a literature based on the mechanisms of trading began
(forms of trading, rules on securities trading, market structure, etc.), originating the Theory
of Market Microstructure for the valuation of financial assets, whose models advocate that
timing transmits information. Then the literature proposed an extension to risk management
by calculating the implied volatility, which is estimated by the realized volatility on an intraday
level, and its applications for a finer value at risk (VaR).

For this reason, Engle and Russell (1998) introduced the Autoregressive Conditional Duration
(ACD) model to estimate the expected duration and justify time intervals between trades.
The ACD model and all its extensions permits capturing the behavior of financial high fre-
quency (intraday) series, driving other theoretical framework, such as trading strategies or risk
measures. The importance of having finer measures of risk deals with the fact that the recent
international crisis showed that the daily return risk measures used so far were insufficient to
effectively reckon the risks of managed portfolios, especially when the market is very volatile,
generating losses that could be monitored within the day. The problem with measures based
on daily returns is that they neglect all intradays events', so even when the daily return might
not be too volatile, at an intraday level this is not necessarily fulfilled, as the time dependence
volatility is not suitable on a daily basis compared with an intraday frequency.

As the dynamics of intraday volatility of this type of data is complex, realized volatility
models are estimated to capture those returns taking into account the period of financial
transactions®. In the same way, the enormous growth of the trading activity of financial
assets has led regulators to implement control measures (using quantitative techniques) to
assess the potential loss that could be caused by these institutions. In that sense, the VaRs
methodology has become the most wellknown technique as it provides an approach to measure
market risk or expected financial losses at a time horizon with a given probability.

The objective of this research is to compute a better measure of intraday risk to infer policy
recommendations to assess the regulators and the Portfolio Risk Managers using data from the
portfolio of the General Index of the Lima Stock Exchange (GILSE). Regarding the revised
literature, our results support the use of intraday data to calculate a better measure of risk
as Fleming et. al. (2003), Giot and Laurent (2004), Louziset. et. al. (2011) and Khan (2011)
did, who conducted similar research but in other sorts of markets. In the case of specific
stocks, Dufour and Engle (2000) estimated that actively traded stocks at the New York Stock

!The intrinsic value of high frequency data is reflected in the events recorded. Moreover, these data are
irregularly spaced in time.

*Note that in this type of data, there are patterns (and clustering) of volatility (on a daily basis) reflecting
the daily cycle of activity in stock markets caused by the effects of macroeconomic announcements among
others.
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Exchange (NYSE), such as General Electric or Fannie Mae, are characterized by an average
duration that ranges from 21 seconds to 1 minute, while more illiquid shares average duration
ranges from about 2 minutes and 30 seconds (Potomac) to 4 minutes (Calfed). Similarly,
Engle and Russell (2005) estimated that IBM, considered a highly liquid stock at NYSE,
trades every 2 or 3 seconds, and a minor liquid stock such as Airgas trades every 3 minutes on
average. Tse & Dong (2014) calculated that large-cap stocks are more frequently traded than
small-cap stocks at the NYSE, for large-cap stocks the average duration per trade ranges from
2.27 seconds to 4.93 seconds, in contrast to small-cap stocks, that average duration per trade
ranges from 7.68 seconds to 19.97 seconds. Regarding research in developing markets, Wong,
Tan and Tian (2008) estimated that the average duration of liquid stocks at the Shanghai
Stock Exchange (SHSE) oscillates between 21.8 and 34 seconds, whereas illiquid stocks average
duration fluctuates between 85.4 and 160 seconds.

However, the literature of realized volatility estimation and VaR computing have not taken
into account a very important element in the calculation of realized volatility, which is the
justification of the duration, as this will depend on whether a high or low frequency exist
between the returns. Furthermore, the duration directly affects the detection of jumps in the
sample and influences the periodic effect (seasonal) in the series created to build the realized
volatility. For example, in terms of risk management, we show that the intraday basis VaRs
requires greater economic capital to offset any expected losses. Depending on the trading
position, the best periodicity to compute the VaR are 2 - minutes interval for short positions
and 5 - minutes intervals for long ones.

The rest of the paper is organized as follows. Section 2 reviews the theoretical framework
associated with market microstructure, which generates the need for the ACD models at a high
frequency framework, and the respective realized volatility and VaR applications. Section 3
provides a detailed description of the methodology to estimate the different models considered
in our empirical study. Section 4 describes the data, which are sampled over seven different
periods from 2008 to 2014. Also, major results obtained are described. Finally, Section 5
presents some conclusions and policy recommendations.

2 Theoretical Framework

The microstructure theoretical framework began with Demsetz (1968) developing a model
which incorporates the immediacy with which the trades are executed, with the aim of ana-
lyzing the price formation, where agents with liquidity needs (impatient) and agents without
monetary needs (patients) trade on the market at different stages of the negotiation. Given
the above, Garman (1976) modeled a negotiation process with temporary imbalances at the
trade flow (buy or sell), causing uncertainty in the estimated time of arrival of an order. These
imbalances justify the presence of market maker who manages inventory stocks and cash, and
solves the uncertainty problem in the arrival of an order. With respect to asymmetric infor-
mation, Glosten and Milgrom (1985) modeled the problem generated by adverse selection cost
of trading shares, in which agents with private information (insider traders) and operators
that require liquidity (liquidity traders) trade in a perfectly competitive market and market
maker revise their prices according to the information extracted from the order flow®.

3Using a Bayesian learning process.
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Glosten (1994) develops a theoretical model of the Limit Order Book (LOB)* with asymmetric
information problems where investor behavior is modeled from an equation of price revision.
This equation is defined as information to be conditional on public available information and
private information of the trader®. If the marginal price valuation is greater or equal to the
share price, the investor enters an order. Jong et. al. (1996) analyzed the effect on intra-day
trading price and the components of bid-ask spread on the Paris Bourse from the model of
Glosten (1994). They proposed that the spread is decomposed in two factors: order processing
and asymmetric information. Finally, they concluded that the processing cost is higher and
the adverse selection cost is lower in smaller operations.

Regarding the immediacy problem, Agudelo et. al. (2012) evaluated the probability of in-
formed transactions and the effects of these on the daily and intraday markets shares of Peru,
Argentina, Chile, Colombia, Brazil and Mexico yields, assuming a market with market mak-
ers, problems of asymmetric information and zero transaction costs. They used the model of
Probability Informed Trading (PIN) to calculate the information asymmetry®. The conclu-
sions are that persistent overnight was found in the arrival rate of uninformed agents and less
persistence in the agents informed. Finally, the dynamic PIN variable with sign demonstrates
the positive relationship between the level of asymmetry and expected asset returns.

From the LOB literature review, Chavez-Bedoya et. al. (2015) conducted an empirical test
for the Lima Stock Exchange (LSE) and found that the balance point between immediacy
and costs is higher on stocks with lower liquidity. In this sense, asymmetric information on
the LSE is better used by specialist investors, which make profits at the expense of unskilled
investors.

On the other hand, the use of high-frequency data within financial econometrics was intro-
duced by the seminal paper of Hasbrouck (1991). This kind of data has important features
such as irregular spacing between trades, discreteness of prices changes and intraday seasonal-
ities, which are valuable sources of information for a better understanding of the transactions
on the stock exchange. As a consequences modeling of high frequency data have captured
much interest in researchers. Given the work of Hasbrouck (1991), Engle and Russell (1998)
proposed the ACD model to estimate the expected duration and justify time intervals between
trades.

Also, in this context, new econometric approaches emerge trying to improve the modeling
of the high-frequency data in financial transactions. Thus, Zhang, Russell and Tsay (2001)
proposed a more sophisticated model, which is called threshold autoregressive conditional
duration (TACD) model, which permits calculating the nonlinear relation between the condi-
tional expected duration and past information variables. They found that active and passive
trading on the NYSE have a much differentiated dynamics and the durations have several
structural changes, in line with real economy events.

4Up to this point, the theory of microstructure has focused on mechanisms in which there is a market maker.
However, trading stock is not always promoted by this agent, although there is also the possibility that the
LOB can provide liquidity. These models focus on the characteristics of the market structure or design,state of
the LOB (full or empty) the problem of immediacy is analyzed with no asymmetric information or inventory
costs.

Tt is assumed that has no systematic behavior.

In which a high PIN is interpreted as an increased probability of informed transaction, independent of
management of such information.
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From the VaR empirical review, Andersen et. al (2003) estimated a long-memory Gaussian
VaR for the logarithmic realized volatilities of the Deutschemark/Dollar and Yen/Dollar spot
exchange rates, and the results were more suitable than the conventional GARCH approaches
and well-calibrated density forecast, but the realized volatility used in the paper do not
discriminate between continuous price movements or jumps variability, so the forecasting
model could be enhanced by taking into account the jump component. Also, Maheu, and
McCurdy (2002) suggested that Markov switching models and non-linear components may
improve the volatility forecasts.

On the other hand, Giot and Laurent (2004) calculated a daily VaR for two stock indexes
(S&P500 and CAC40) using the realized volatility as an input. Although the VaR forecasts
perform adequately, they also show that a daily return VaR delivers suitable results as well,
so the realized volatility VaR does not improve much the forecast performance. It should be
noted that their estimates do not consider jumps or seasonal periodicity effects, so the results
could be improve.

Based on Barndorff-Nielsen and Shephard (2004b), Chun and Maheu (2005) investigated the
benefits of volatility instruments, known as realized power variation and realized bipower
variation in modeling and forecasting volatility, and conclude that realized power variation
improves the volatility predictions for foreign exchange rates and equity markets because
these measures are robust to jumps.

The Literature presented above has focused on forecasting realized volatility, regardless of
the jumps in the sample, Clements and Liao (2013) took this into account examining how
best to use the jump component of volatility for modeling and forecasting total volatility,
considering the role of jump size and probability of jump occurrence. They concluded that
jumps self-excite or cluster and the estimated intensity were used to forecast the volatility,
founding that the jump intensity forecasting models were superior, and this improvement was
robust to critical periods (jumps and high and variable volatility).

Khan (2011) proposed to compare the performance of a realized volatility support vector
machines (SVM) ARCH type model versus a common daily ARCH model for the returns of
the Nikkei 225 index and found that the SVM-ARCH type models are more suitable when 15
- minutes intraday returns are computed.

Finally, Louzis et. al (2011) evaluated the VaR prediction efficiency of six ARCH-type models,
six realized volatility models and two GARCH models considering the realized volatility as
a regressor for two S&P500 cash indexes, taking into account the 2007-2009 financial crisis
period, and they found that the realized volatility and GARCH models with the Filtered
Historical Simulation or the Extreme Value Theory quantile estimation methods result in
superior VaR forecasts.

All the previosly research performs complex methodologies to analyze the intraday effects on
the market and the respective empirical use of it to enhance risk management measured by
the VaR, but obviates a very important element to calculate the realized volatility: does not
justify the duration (taking randomly 5, 15, 30 minutes) as input for subsequent estimates, as
this will depend on whether a high or low frequency exists between returns, so their results or
findings may be biased depending on how irregular or periodic time intervals are. Furthermore,
the duration affects directly the detection of jumps in the sample, and influences the periodic
effect in the series created to build the realized volatility. In the current investigation, the
calculation of the duration was justified to calculate the realized volatility adjusted by jumps

'\-\ .
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and periodicity effects, estimating intraday basis VaRs and comparing them against a daily
returns basis VaR.

3 Econometric Methodology

Realized volatility is the most common measure used, due to its easy calculation to generate
a daily variable which allows us to measure intraday volatility. Furthermore, the realized
volatility is very sensitive to the duration used as input, for this reason there are many
possibilities of calculation depending on the length used, and likewise the results vary, ACD
and TACD models are computed to estimate the duration to justify the time intervals between
trades, given the fact that trade arrivals carry information on the state of the market.

It is important to note that, to standardize notations of econometric models, the following
papers were taken into account: Tsay, R.S. (2002); Tsay, R.S. (2010); Zhang, Russell and
Tsay (2001); Weisang (2008); and as a reference, the notes about ACD model of Tsay, R. S.
(2007), situated in section 3.1. In section 3.2, we used as reference of the Realized Volatility
theory and the framework of jumps and bipower variation the papers of Andersen and Benzoni
(2008), Andersen and Terésvirta (2009); and Boffelli (2013) and Boudt et al. (2009) for the
section of jumps and intraday periodicity.

3.1 Autoregressive Conditional Duration (ACD) Models

Duration models in finance are involved with periods of time between trades, thus the behavior
of durations contains information about trades in market activities. In that sense, Engle and
Russell (1998) introduced the ACD model, which describes the evolution of time durations
for stocks.

Let ¢; be the ith transaction time, where 0 = tg < t1 < ... < ty and x; = t; — t;_1 be the
duration between trades. Define 1; as the conditional expectation of the adjusted duration
between the (i — 1)th and the ith trades, that is:

Vi = E(%; | 2i1,.,21) = E(z; | Fiz1) (1)
where F;_; represents the information set available at the (¢ — 1)th trade.
The ACD model in its simplest form is defined as:

T; = P;€i, (2)
where {¢;} represents a sequence of independent and identically distributed nonnegative ran-
dom variables with density f(.) and E(¢;) = 1. Also note that ¢; is independent of F;_;.
Thus, from equation (1) a set of ACD model specifications can be defined by different distrib-
utions of ¢; and specifications of ¢,. For example, ¢; follows a standard exponencial or weibull
distribution, and 1), takes the following form’

bi=wt > YT+ > wnh g (3)
=1 =1

"See, Engle and Russell (1998).
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where 7 and s are nonnegative integers and the unknown parameters are 0 = (w,~q, s Vo
T

w1, -, wy). The conditions w >0, v; >0 for j € {1,...,r},w; > 0forl € {1,...,s} and >, +
j=1
S

> w; < 1 are required to ensure the non-negativity and weak stationarity of durations x;.
I=1
Since the durations are nonnegative variables, we use the Exponential, Weibull and Gamma

distributions to model ACD structures ®. When the distribution of ¢; is exponential, the model
is called an EACD(r, s) model. Likewise, if ¢; follows a weibull and gamma distribution, the
models are WACD(r, s) and GACD(r,s), respectively.

Similar to GARCH models, the process 1, = z; — 1, is a martingale difference sequence
[i.e., E(n; | Fi—1) = 0], and the ACD model can be written as

max(r,s) s
mi=w+ > (vt w)Tiog— Y wimi+ M (4)
j=1 =i
which represents an ARMA process with non Gaussian innovations. Where v; = 0 for j > r
and w; = 0 for [ > s. This representation can be used to obtain the conditions for weak
stationarity of the ACD model. For example, taking expectation on both sides of equation
(4) and assuming weak stationarity, we have

W

B(a:) = (5)

max(r,s)

1= (v +w)
i=1

Therefore, we assume w > 0 and 1 > >_(7; +wi) because the expected duration is positive.

3.1.1 ACD Estimation

For an ACD(r, s) model, let ig = max(r,s) and z; = (21, ...,2¢)’. The likelihood function of
the durations z1, ..., x7 is

fr |0)= | T for, By 0] x £y 10) )

where 6 is the vector of model parameters and T is the sample size. The marginal probability
density function f(x;, | €) is rather complicated for a general ACD model. For this reason,
the marginal density is ignored and the conditional likelihood method is used. For a WACD
model, we use the probability density function and get the conditional log-likelihood function.

8See, Tsay, R.S. (2010).

. . . . X
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[0

¥;

Uz | 0,24) = XT: aln [F(l 1)]+1H<;>+aln(wi) i+ a]”

i=ip+1

where 1), = w—i—Z’y]xZ i+ Zwmﬁz L 0= (W, 71, Yy W1, ey ws, @) and x = (zig41, ..., x7)'

When a = 1, the condltlonal log likelihood function is reduced to an EACD model. For a
GACD model, the conditional log likelihood function is

Uz |0, 25) = | %1111( ) (ke — 1) In(a;) — e ln(M\p;) — <;;>a , (8)

where A = T'(k)/T'(k+ 1) and the parameter vector 6 now also includes . As expected, when
k=1, A=1/T'(1+ 1) and the log likelihood function in equation (8) is reduced to a WACD
model in equation (7).

In duration, the hazard function implied by a distribution function. For a random variable
X, the survival function is defined as S(z) = P(X >z) =1—-—P(X <z) =1-CDF(z)
, x > 0, which gives the probability that a subject, which follows the distribution of X,
survives at the time z. The hazard function of X is then defined by h(z) = %, where
f(.) and S(.) are the probability density function and survival function of X, respectively.
In specific, for the weibull distribution, the hazard is a monotone function. If o > 1 the
hazard function is monotonously increasing and if @ < 1 the hazard function is monotonously
decreasing”. For the generalized gamma distribution, the hazard function can show different
patterns, including U shape or inverted U shape. If ko < 1 the hazard rate is decreasing for
a < 1, and U-shaped for a« > 1. Contrariwise, if ka > 1,the hazard rate is increasing for «
> 1, and inverted U-shaped for o < 1. Lastly, if ka = 1 ,the hazard is decreasing for a < 1,
constant for o = 1, and increasing for a < 110,

3.1.2 Quasi maximum likelihood estimates

We know that the distribution of ¢; in an ACD model is unknown. Therefore, given the
literature of these models, we use the conditional likelihood function of an EACD, WACD
and GACD models to estimate the parameters. The results of the estimate are called the
quasi maximum likelihood estimates. Thus, Engle and Russell (1998) proposed that, under
regularity circumstances, quasi maximum likelihood estimates of an ACD model are consistent
and asymptotically normal. Nevertheless, they are not efficient when ¢; does not follow an
exponential distribution. Estimation procedures of the parameters have been done with the
RATS package, as well as the BFGS algorithm has been used. Finally, the standard errors of
the parameter estimates are the robust standard errors given by RATS.

9See, Tsay, R.S. (2010).
10See, Fernandes,M. and Gramming, J. (2005).

. . . . X
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3.1.3 Threshold ACD Model

As mentioned in Zhang, Russell and Tsay (2001), the threshold autoregressive conditional
duration (TACD) model is nearly associated to the TAR model and the more general threshold
autoregressive moving average (TARMA) model. The TACD model is a generalization of the
ACD model proposed by Engle and Russell (1998).

Based on notes about ACD model of Tsay, R. S. (2007), a simple TACD(r, s) model for x;
can be written as

Pie it g <p,
= . 9
i { Pieoi it x_g > p, ©)

where d is a positive integer, x;_4 is the threshold variable, p is a threshold, and

r e s h ; <
wi :{ w10+Z]:1 Y15%i ]+Zl:1 wllwz—l 7’f Ti—d =D, (10)

w20 + D iog VoiTi—j T 2jmy Wiy if Ti—a > P,

where wyo > 0 and ;; and wy; satisfy the conditions of the standard ACD model for jand [ =1
and 2. Here j and [ denote the regime. The innovations {e1; } and {ey; } are two independent
i.1.d. sequences. They can follow the exponential, weibull and gamma distribution and the
resulting models can be TEACD, TWACD, and TGACD, respectively. The TACD model is
a piecewise linear model in the space of z;_4, and it is nonlinear when some of the parameters
in the two regimes are different!!.

3.2 Realized Volatility

Based on Andersen and Benzoni (2008) notation, we assume a continuosly compounded return
driven by a simple time-invariant Brownian motion:

ds(t) = p(t)dt +o(t)dW(t),0 <t <T, (11)
where s(t) is a logarithmic asset price at time ¢ and the continuosly compounded returns
over [t — k,t] is given by r(t,k) = s(t) — s(t — k), where 0 < ¢t —k <t < T and k = j/n
for some positive integer j. W is a standard Brownian motion process, u(t) and o(t) are
functions with finite variation or strictly positive and square integrable, respectively, so that

E (ftt_k a?ds) < 00. Given the above, the processes u(t) and o(t) stand for the conditional

mean and volatility of the return. Therefore, the continuously compounded return over the
time interval from ¢t — ktot, 0 < k <t is:

r(t, k) =s(t) —s(t—k) = /t p(r)dr + / o(1)dW (1), (12)

—k t—k
and its quadratic variation QV (¢, k) is:

t

QV(t k) = / o2 (r)dW (7). (13)

t—k

' The model can be extended to have more than 2 regimes.
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Equation (13) points out that innovations to u(t) do not affect the sample path variation
of the return'?, and the diffusive sample path variation over [t — k,¢] is also known as the
integrated variance I'V (¢, k),

IV (t,k) = /t » o?(T)dW (1). (14)

Equations (13) and (14) illustrate that the quadratic and integrated variation coincide!®
hence removing microstructure noise and measurent error, the quadratic return variation can
be approximated by the cumulative squared return function.

Account a partion {t —k+ %, j=1,..nx k} of the [t — k, t] interval, in this sense the realized
volatility (RV') of the logarithmic price process is:
nxk ] 1
RV (t,k;n) = Skl el
(tksm) = S r(t—k+2,2) (15)
g=1
As mentioned in Andersen and Benzoni (2008), the semimartingale theory guarantees that

the realized volatility measure converges in probability to the return quadratic variation QV/,
previously defined in equation (13), when the sampling frequency n increases, so that:

RV (t,k;n) — QV (t, k) as n — oo. (16)

The distributional result of the variance also generalizes directly, as we approach, for n — oo,
to:

2 IQ(t, k)

where 1Q(t,k) ft ka 7)dT is the integrated quarticity, independent from the limiting

Vnxk (Rv(t’ ihrO= Sl k)) — N(0,1) (17)

Gaussian dlstrlbut10n14. As explained in Andersen and Terésvirta (2009), the equation (17)
allows the ex-post inference of the realized return variation for a given period. Nevertheless,
it should be noticed that the conclusion depends on the non appearance of jumps in the price
process, which is subject that will be discussed in the next subsection.

3.2.1 Jumps and Bipower Variation

Equation (11) is quite restrictive for asset prices since under unexpected news and events, that
hit the market, prices tend to evince irregular or abrupt discrete movements. Therefore, the
return process should take into consideration a model that may exhibit jumps. Continuing
with the notation of Andersen and Benzoni (2008), the presence of jumps in returns is defined
by:

2Intuitively, this is because the mean is of lower order.

!3This is no longer true for more general return process that will be discussed in the subsection 3.2.1
(stochastic volatility jump-diffussion model).

" This result was developed and brought into the realized volatility literature by Barndorff-Nielsen and
Shephard (2002).

N
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ds(t) = p(t)dt + o(t)dW (t) + £(£)da(t), (18)

where ¢(t) is a Poisson process uncorrelated with W and governed by the jump intensitity A,
i.e., Pr(dg; = 1) = \dt, with \; positive and finite!®. The adjustment factor £(t) denotes the
magnitude of the jump in the return process if a jump occurs at time ¢. In this respect, the
quadratic return vaiation process over the interval from ¢t — k to ¢, 0 < k <t < T, is the sum
of the diffusive integrated variance and the cumulative squared jumps:

t

QV (L, k) = / As)+ Y JAs)=IV(Lk)+ > Js), (19)

t—k t—k<s<t t—k<s<t

where J(t) = £(t)dq(t) is non-zero if there is a jump at time t. As mentioned in Andersen
and Benzoni (2008), the RV estimator persists as a consistent measure of the QV in the
existence of jumps, generating that the result (16) continues'®. However, since the volatility
components have distinct persistence properties, we must acquire separate estimates of these
factors in the decomposition of the equation (19).
With this objective the h-skip bipower variation, BV, introduced by Barndorff-Nielsen and
Shephard (2004b) contributed to estimate a consistent IV component,

nxk . ;
T ik 1 (t—hk 1
BV (t,k;h,n) = = t—k+—,— t—k+-—"—,—|. 20
R M e (20)

Given the notation of Andersen and Terisvirta (2009), setting A = 1 in definition (20) yields
the realized bipower variation BV (¢, k;n) = BV (t,k;1,n), so the bipower variation is robust
to the presence of jumps and therefore, in combination with RV, it yields a consistent estimate
of the cumulative squared jump component:

RV (t,k;n) = BV (t,k;n) — QV(t,k) —IV(t,k) = > T(s). (21)

t—k<s<t

The results in equations (19), (20) and (21) along with the asymptotic distributions allow us
to enhance the volatility forecast and design tests for jumps in the volatility.

3.2.2 Jumps and Intraday Periodicity

The intraday dynamics of financial time series volatility are complex due to the fact that exist
intraday volatility patterns that reflect daily activity cycles, negotiation stages or irregular
market events, for instance, regional holidays, weekend activity, unexpected political events,
macroeconomic releases and standard volatility clustering. Given the above, if the time serie
is affected by those events, it means that the variable exposes an intraday periodic structure.
Given the notation of Boudt et. al. (2009), we dispose of T' days of j equally-spaced and
continuosly compounded intraday returns and that r(t,k) is the k — th return of day ¢, it
is assumed that the log-price follows a Brownian semi martingale with finite activity jumps
(BSMFAJ) diffusion process, and for small values of n the returns in a range without jumps

15 This assumption implies that there can only be a finite number of jumps in the price path per time period.
163ee Protter (1990) and the discussion in Andersen et al. (2004).

'\-\ .
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are normally distributed with mean zero and variance a?}k = ftt_ & o2ds. Due to daily activity
cycles, negotiation stages or irregular market events, the high-frequency return variance U%,k
has a component ft%k which is the periodicity factor. Depending on the nature of the analysis,
there exists a natural window lenght for which almost all variation in af’k during the window
can be attributed to ftQ,kv such that 3?,1«: = aik / ffk is approximately constant over the local
window. Henceforth, for its estimation we follow the suggestion of Andersen and Bollerslev
(1997, 1998b), Andersen, Bollerslev, and Dobrev (2007) and Lee and Mykland (2008) to use
local windows of one day. Furthermore, given the theoretical and econometric research, the
estimated series and the periodicity factor must be stationary, so that the realized volatility
will not be explosive.

Andersen and Bollerslev (1997, 1998b) suggested estimating s; 1, by 5; = 4/ ﬁht Vk=1,...M,
where h; is the conditional variance of day ¢. Boudt et. al. (2009) concluded that under the

BSM model, 5; = \/ﬁ is a more efficient estimator for s;j, and under the BSMJAJ
model, s; . is better approached by the normalized version of Barndorff-Nielsen and Shephard

(2004b)’s realized bi-power variation s; = 1/ﬁBVg, where BV is the bi-power variation

computed on all the intraday returns of day ¢. Under this model, we have that when n — oo
and if (¢, k) is not affected by jumps, the standarized high-frecuency return 7 = 75 /s; j is
normally distributed with mean zero and variance equal to the squared periodicity factor.
On the issue of intraday jumps, Lee and Mykland (2008) established that a return jump must
be abnormally big and depends on the volatility condition prevailing at the time tested. In
this sense, they proposed an statistic J;j, test whether a jump ocurred between intradaily
time periods r — 1 and r of day t. It is defined as the absolute return divided by an estimate
of the local standards deviation &y, , i.e. Jip = |r¢ | /0¢ k. Assuming that the return process
follows a BSMJ model, a null hypothesis of no jump at the time, and a suitable choice of the
window size for local volatility, they concluded that r; /7 ;, asymptotically follows a standard
normal distribution.

Finally, given the works of Brownlees and Gallo (2006) and Andersen, Bollerslev, and Dobrev
(2007), Lee and Mykland (2008) proposed to overcome spurious jump detection by inferring
jumps from a conservative critical value, which they obtained from the distribution of the
statistic’s maximum over the sample size. In this sense, if the statistic exceeds a plausible
maximum, one rejects the null hypothesis of no jump.

3.3 Value at Risk (VaR)
3.3.1 VaR Measures

The VaR is defined as the maximum expected loss over a target time period for a given
confidence interval, or with a error probability a'”. Additionally, the VaR level « for a sample
of returns is the empirical quantile at a%. For example, with probability 1 — «, the losses will
be smaller than the money amount given by the VaR. Also, given a certain confidence level «
€ (0,1) the portfolio VaR confidence level « is given by the smallest number [ such that the

7 As proposed by the Basel Committee (1996), the perfect confidence interval is 99% (1% probability, —2.33
deviations).
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probability that the loss L exceeds the value [ is not greater than (1 — «). The mathematical
definition is:

VaRy =inf{l e R: P(L>1)<1—a}=inf{leR: Fr(l) > a}. (22)

This definition considered an underlying probability distribution, which makes it true only
for a parametric VaR. Risk managers often assume that a fraction of the losses will not be
defined, either because markets are closed, illiquid, or there is an atypical event. Therefore, it
is difficult to accept results based on the assumption of a probability distribution well defined,
which is fundamental to the entire family of GARCH models'® to model volatility.

The other two ways to calculate the VaR are based on simulations (Monte Carlo), and the
non parametric methodology. In the first case, it is also inherent to know the distributions to
originate the simulations, and is very sensitive to atypical market events. The non parametric
VaR is based on the time series of returns'?, this investigation the realized returns adjusted
with the realized volatility will be used as a finer input for calculating the VaR with this
methodology.

3.3.2 VaR adequacy

The failure rate is a good and simple statistic to measure the effectiveness of a VaR model, and
is defined as the number of times the returns exceed in absolute value the forecasted VaR.
For example, when the VaR measure is correctly specified, the failure rate could be equal
to the pre-specified VaR level. In the literature, the failure rate is also called the Kupiec
(1995) LR test when the hypothesis is tested using a likelihood ratio test. The LR test is

LR = —2log (%), where NV is the number of VaR violations, T is the total number
of observations and § is the theoretical failure rate. The LR test statistic is asymptotically
distributed as X%l).

However, the VaR has some difficulties. According to Artzner, Delbaen, Eber, and Heath
(1999), one of the diffiiculties is that it is not a coherent measure of risk. For this reason a
measure of risk is the so-called expected shortfall (see Scaillet, 2000). Expected shortfall is a
coherent measure of risk and it is defined as the expected value of the losses conditional on
the loss being larger than the VaR.

In addition to the failure rate, another VaR measure should show a sequence of indicator
functions that is not serially correlated. To analyze this, given the notation of Engle and
Manganelli (1999) the variables are as follows Hit,(a) = I [y: < VaRi(a)] — o and Hit,(1 —
a) =1y > VaRi(1 — )] — «, and suggests testing the following:

o Al : E[Hiti(a)] = 0 (respectively E [Hit;(1 — )] = 0) in the case of long trading
positions,

o A2: Hity(a)(or Hiti(1 — «)) is uncorrelated with the variables included in the informa-
tion set.

!8Bither Gaussian, Student, GED, Skewed-Student distributions.
'9To characterize the models, we consider a collection of daily returns (in %), y: = 100 [log p; — log pi—1],
where t = 1,...,T, and p; is the price at time ¢.

'\-\ .
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Besides, testing A1 and A2 can be done using the artificial regression Hit; = X\ + ¢,
where X is a T' x k matrix whose first column is a column of ones, the next p columns are
Hit;_y,... ,Hit;_p, and the k — p — 1 remaining columns are additional independent variables
(including the VaR itself). Engle and Manganelli (1999) also showed that under the null A1

and A2, the Dynamic Quantile test statistic ;\5()1(/—%5\ — x2(k) where X is the OLS estimate
of A. A small sample version of this test (F-test) is readily obtained but the difference is

negligible since the sample size is larger than 1,000 observations.

4 Empirical Results

4.1 Preliminaries

The study of high frequency series implies knowing the characteristics of the negotiation
mechanism of a stock market, for that reason the most important features of the LSE will be
explained below. The LSE has a mechanism that adds electronic trading orders or proposals
for buying and selling in a LOB, that shows automatically low/high prices at their best
time proposals in a process of continuous auction executed at different prices. There are no
specialists or market makers?’, so liquidity is provided solely by the order book. There is a
discriminatory pricing rule, which governs all phases of negotiation, which is the possibility
that an order could be executed in parts at different prices. In this sense, the priority of
the proposals, and their respective adjudications, are governed by: 1) the proposal which
improves the price in the LOB and 2) a longer exposure in the market. For a proposal to
improve the price in the LOB, it depends on whether you are buying or selling. Since the aim
is to reduce the spread, a purchase proposal improve if the price is greater than the largest
purchase proposal in the LOB. Conversely, a sell proposal improve if the price is less than the
smallest selling proposal in the LOB. A longer market exposure references the fact that who
initiates the proposal is being prioritized, in this regard who originates first is given priority.
The formation of the initial price is given in a first phase call pre-opening, in which the
auction system receives proposals without possibility of being canceled. At this stage, all
market expectations are stored without being canceled. From this information, the system
allocates a price in a variable period time?!, in order to pass the proposals to be implemented.
The next phase is the continuous trading, in which traders enter pending proposals that fit
automatically. These proposals are limit orders, which you can buy or sell specifying the
quantity, price and an exposure period of the proposal. The limit orders can not enter prices
that exceed the minimum limit of variation (tick) of 0.01, a maximum variation of 15% for
domestic securities and 30% for foreign securities, being these variations from the last price
adjudicated of the previous day. Thirty minutes before the next phase, the system performs
an average of prices, and the last change of the actual stage is from that average, and the
variation itself is not more/less than 2%.

The last phase is the closing, which works similarly to the pre-opening, determining a closing

20 Although there is a regulatory promoter agent having market maker functions, in reality this figure is not
done, see Loaiza (2013).

*'This means that the first adjudication is in a time interval of +/- 2 minutes, with reference of the start
time of the following stage.
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price of the shares at an arbitrary time range similar to the previous phases. Once this price
is determined, any proposal of purchase or sale is entered at that value. Thus, the formation
of the price of each share, responds to the net aggregate demand (purchases minus sales) of
each action that occurs in every moment of continuous trading. In this phase, dynamic prices
can have asymmetric information problems between investors, and lack of immediacy in the
execution of their transactions. These drawbacks create costs that are denominated in the
literature of microstructure as frictions, because they impact on price formation.

Regarding the data implications, the GILSE series with an intraday basis from 2008 to 2014
were used. The data were obtained from a Bloomberg Terminal and the database of the LSE.
The number of initial observations was 301,831, but only data from the continuous trading
phase was considered??, which were 264,874 observations. We divided the data into seven
groups, which represent each year. For 2008, the number of observations was 55,165, for 2009
was 53,596, for 2010 was 43,798, for 2011 was 49,537, for 2012 was 29,929, for 2013 was 27,249
and for 2014 was 5,587. As explained in Tsay (2010), the intraday data depends seasonally
on the negotiation phase. Therefore, the sample may not be representative and show bias.
For that reason we only analyzed data from the continuous trading phase. The time duration
between trades was obtained from each operation within the portfolio analyzed. Transactions
do not occur at equally spaced time intervals. As such, the actual trading prices of an asset
do not form equally spaced time series. For this reason, given the optimum durations of
the ACD models, the data was transformed so the time intervals were equally spaced and
thus realized volatility could be estimated. Finally, an intraday VaR was estimated with the
duration criteria of ACD models, and a finer volatility calculation by estimating the realized

volatility.
Table 1._Statistics of GILSE for the Duration characteristics from 2008 to 2014
Observations 264,874
Sample Mean 123.135 Variance 36,632
Standard Error 191.396 SE of Sample Mean 0.372
t-Statistic (Mean=0) 331.107 Signif Level (Mean=0)  0.000
Skewness 8.031 Signif Level (Sk=0) 0.000
Kurtosis (excess) 163.950 Signif Level (Ku=0) 0.000
Jarque-Bera 299,502,866 Signif Level (JB=0) 0.000

4.2 Estimation Results
4.2.1 Lineal Models

We estimated the ACD (1,1) model, rather than the other ACD models of greater than

one order, because the results obtained were favorable and consistent with the literature®3.

Therefore 3 different models were estimated: EACD(1,1), WACD(1,1) and GACD(1,1) to

22From 8:30 AM to 14:30 PM from the second Sunday of March to first Sunday of November, and 9:30 AM
to 15:30 PM from the first Sunday of November to the second Sunday of March. Therefore, the data analyzed
were 6 hours of the daily negotiation.

2 The estimated parameters and expected duration are positive. Besides of Ljung-Box test and nonlinearity
Tsay test (1989).
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intraday series and for all periods analyzed. In apendix A, we present the results of the three
models for each specific year, as well as a few statistics to analyze the models adequacy.

For instance, the estimated parameters of the three models in the period 2008 to 2014 are
given in Table 2, the results of the three models show that the parameters are significant
and similar. However the expected duration are differents, thus for EACD(1,1), WACD(1,1)
and GACD(1,1) models the expected duration are 145, 188 and 175 seconds respectively,
and the results of expected duration are above the sample mean (123 seconds). The average
expected duration to ACD model from 2008-2014 period is 169 seconds (3 minutes), which
is used as input to calculate the realized volatility. On the other hand, the three previous
models described before, failed to pass the Ljung -Box test statistics at a 5% significance level.
These results give us indications that there are some ACD effects in the estimated residuals.
Another remarkable feature is the fact that the sum of the coefficients (y; + w1) are always
extremely close to 1, which suggests a long memory effect. Furthermore, the proof of nonlin-
earity Tsay test (1989) advises rejecting the null hypothesis of linearity at a significance level
of 1%. Finally, in this particular example, for the WACD(1,1) model, the estimated shape pa-
rameter (o) is greater than one, indicating that the conditional hazard function of duration is
monotonously increasing, whereas for the generalized gamma distribution the hazard function
is inverted U-shaped??, these are consistent with the idea of volatility clustering generated
by increased trade intensity.

In appendix A, we can find the estimation results for each year. It is important to mention
that if the parameters in the model are not well-estimated, then the model is not adequate
for describing the behavior of the data. For example the parameters estimated are significant
for all the three models for each year. However we found mixed results in the Ljung-Box test
statistics and some lags of Tsay test (1989), therefore, to try to correct this problem TACD
models are taken into a count.

In appendix C.1, we show that when we use different initial values for the parameters of the
ACD models?®, the results are not consistent with the literature. For instance, one of the
expected duration is negative and some parameter estimates are negative. For that reason it
is important that the initial values of the model parameters are specified correctly.

24 The estimated shape parameters are o and k.
2We consider as an example, estimation results of EACD (1,1), WACD(1,1) and GACD(1,1) models for the
intraday range of the GILSE from 2008-2014.
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Table 2. Estimation results of EACD (1,1), WACD(1,1) and GACD(1,1) models for the
intraday range of the GILSE from 2008-2014.

Parameter EACD(1,1) WACD(1,1) GACD(1,1)
w 2.842 2.152 2.415
(0.000) (0.000) (0.000)
" 0.134 0.129 0.132
(0.000) (0.000) (0.000)
w1 0.846 0.860 0.854
(0.000) (0.000) (0.000)
a - 1.017 0.525
- (0.000) (0.000)
K - - 3.593
L - (0.000)

y 145 188 175

(0.000) (0.000) (0.000)
Ljung-Box Q(10) 167.656 64.163 48.159
on €; (0.000) (0.000) (0.000)
Q(20) 396.014 130.931 99.304
(0.000) (0.000) (0.000)
Ljung-Box Q(10) 0.101 0.000 0.000
on € (1.000) (1.000) (1.000)
Q(20) 0.274 0.000 0.000
(1.000) (1.000) (1.000)
Nonlinearity Tests ~ Tar-F(1) 28.346 28.672 25.252
(0.000) (0.000) (0.000)
Tar-F(2) 4.981 16.010 15.353
(0.000) (0.000) (0.000)
Tar-F(3) 4.093 8.947 9.076
(0.001) (0.000) (0.000)
Tar-F(4) 3.541 6.416 6.672
(0.003) (0.000) (0.000)

L-likelihood function -1507776.826  -1499551.012  -1491995.210

Notes: The sample size is 264874. The p-values of Ljung-Box statistic
and nonlinearity Tsay test (1989) are in parentheses. The Ljung-Box statistic
with Q(10) and Q(20) for standardized residual series and its squared

process are reported.

4.2.2 Threshold models

The linear ACD models are applied in many situations, but in financial applications with high
frequency series, the linearity assumption could be limited. To correct this problem, we have
used the TACD model, for example, Zhang, Russell and Tsay (2001) proposed these models
to improve the analysis of stock transaction durations. Therefore, we consider for each year
nonlinear duration models to fit better the intraday series and show that they can improve
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the linear ACD models.

Table 3. Estimation results of TACD model?®
TEACD(1,1) TEACD (1,2) TWACD(1,1) TWACD (2,2) TGACD (1,1)

Periods R1 R2 R1 R2 R1 R2 R1 R2 R1 R2
2008 167 153 - - 240 82 201 145 412 189
2009 194 116 681 114 - - 187 79 182 71
2010 138 117 - - - - - - 164 118
2011 - - 291 147 - - - - - -
2012 - - - - 156 185 - - - -
2013 106 235 - - 328 249 - - - -
2014 405 312 - - - - - - - -

Table 3, shows the expected durations for each year, we estimate 5 models with two regimes:
TEDAD (1,1), TEACD (1,2), TWACD (1,1), TWACD (2,2) and TGACD (1,1). The thresh-
olds were calibrated so the results enhance their fit. The threshold to TEACD and TWACD
models was 145 seconds while the threshold for GACD was 200 seconds. The estimate for
the period 2008-2014 was not considered, because the results obtained were not encouraging
and inconsistent with the literature of the TACD models. However, in order to obtain the
expected duration for the entire sample, we select the TACD models that best fit the series
in each year. After obtaining the expected duration per year, we perform the simple average
of the duration for the full period.

As shown in appendix B, the estimation results show that the TGACD models have a better
fit, for example in the years 2008, 2009 and 2010 the models correct the problem of nonlinearity
at a 1% significance level. But in the other years, there is still problems of nonlinearity in
some lags of Tsay test (1989).

In appendix C.2, we can find that when we use different value of the thresholds (in this case
100)27, the results are not consistent with the literature. For example, the expected duration
of the first regime for all TACD models are negative, as well as some estimated parameters
in the second regimen are negative too. For that reason it is important that thresholds are
calibrated.

Notably, the estimated durations are an important source of information for the calculation
of realized volatility, so the average expected duration are: 279 seconds (5 minutes) to the
first regime from the 2008-2014 period, while in the second regime for the same period is 145
seconds (2 minutes).

4.2.3 Realized Volatility

Given the durations of time intervals between trades the realized volatility is calculated, but
first the sample must be clean of jumps taking into account the effects of periodicity. To

20R1 means first regime, while R2 means second regime.
*TWe consider as an example, estimation results of TACD model for the intraday range of the GILSE from
2008.
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detect them, the procedure of Lee and Mykland (2008) is estimated?®. The results according
to the optimum durations are:

Table 4. Estimation results of the Lee and Mykland test for jumps for the whole sample
(2008-2014) depending on its duration

2 minutes 3 minutes 5 minutes

Number of detected jumps 648 555 397
Number of periods with at least one significant jump 589 523 385
Proportion of periods with at least one significant jump 0.34 0.30 0.22
Critical value 5.94 5.90 5.85

The test used and average Bipower variation for local robust variance, and a WSD robust

non parametric periodicity filter. The critical level of the test is 0.999.

As shown in Table 4, the number of jumps increases while time interval decreases, similarly
the number of periods with at least one significant jump and the proportion as well grow if
the time interval fell, being the jumps more sensitive while the duration is lower. In addition,
in Appendix C, it can be seen that the periodicity factor tends to resemble as time interval
reduces, and for the three cases, it tend to converge, on average, to 1.00. Also, the three
durations indicate that there is a strong pattern effect at the beginning of the negotiation,
which effect is rapidly diluted depending on the length selected. This fact is explained because
in the first minutes of trading the stocks of dual-listed markets or American Depositary Receipt
(ADR), in this case with the US stock market, arbitrate so the price is equated in both markets.
After cleaning the series of jumps, the next step is to calculate the realized return (RR),
realized variance (RV), and the bipower variation (BV). In Appendix D can be seen the
graphs of the RR, RV, BV, and the returns standardized by RV and BV, depending on the
durations. As can be seen, the RR are similar for all 3 durations but the volatility magnitude
of the RV and BV depends on the duration. At 2 minutes, the RV is greater than the BV,
but at 3 minutes is the other way round, and at 5 minutes both volatility measures tend to
be the same.

In terms of capturing volatility, both measures detected a high degree of volatility since the
fourth quarter of 2008 to first quarter of 2009 (initial period of the international financial
crisis), third quarter of 2009 to the end of that year (pre eurozone crisis and agricultural
prices decline), and the third quarter of 2011 to the secod quarter of 2012 (post electoral
restlessness and the beginning of copper and gold prices decline). In this sense, both measures
are successful in capturing and preceding high market volatility periods. Given the results,
the returns must be standardized by the RV, because it is a more empirical/practical measure
than the BV, and use this variable as input of the non parametric VaR.

4.2.4 Value-at-Risk

Given the durations of time intervals between trades, the realized return and realized variance,
the returns are standardized by the realized volatility to be inputs of the non parametric VaR.
To analyze the contrast between risk calculations, a daily return (DR) basis VaR (at 99%)

2In Appendix C it can be seen the graphs of the jumps, and the intraday periodicity depending on the
durations of time intervals between trades.
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is calculated®®. Also VaRs based on standardized returns by realized volatility, given the
durations of 2 minutes (2M), 3 minutes (3M) and 5 minutes (5M), are estimated to determine
the best measure of market portfolio risk.

Figure 1. Estimation results of the daily return, 2 minutes, 3 minutes, and 5 minutes basis
VaR (at 99%) for the GILSE from 2008 to 2014

DR —— VaR DR
—————— VaR 2M ------- VaR 3M

. 1 1 1 1 1 i ]
2008 2009 2010 2011 2012 2013 2014 2015

As shown in Figure 1, on a first instance, in terms of risk management the intraday basis VaRs
requires greater economic capital to offset any expected losses. In any period the daily VaR
reaches or exceeds the intraday basis VaRs. Apparently, these risk measures cover losses more
adequately, particularly during periods of moderate and high volatility, this is due to the fact
that the return adjusted with the realized volatility, which captures and even precede periods
of high volatility returns, provides a better meterage to measure volatility by the intrinsic
information inherent in the expected duration which depends on the market situation. For
example, at the start of the international financial crisis the intraday basis VaRs require
greater economic capital, given the volatility at that time, and the situation repeated again in
2011 by the political stress that lived Peru (presidential elections). In terms of VaR returns,
the VaR at the time of the global financial crisis reported that the maximum expected loss,
at 11/25/2008, was -12.1% for DR VaR, -34.0% for 2M VaR, - 33.6% for 3M VaR, and -15.5%
for 5M VaR. Another example is the VaR generated by political uncertainty at election time,
which reported that the maximum expected loss, at 12/09/2011, was -4.7% for DR VaR,
-28.4% for 2M VaR, - 28.0% for 3M VaR, and -6.6% for 5M VaR. As can be seen, in any case
the daily VaR exceed the intraday VaRs, also these show greater losses, mainly of 2 minutes
and 3 minutes. Also, periods of crisis generate a nonlinear response of market risk, evidence
found by comparing the values of nonlinear VaR. As can be seen, depending on the regimen,

?Based on the work by Rodriguez and Bedén (2015), a FIEGARCH (1,1) - Skewed Student model was
estimated to capture the daily return volatility.

.\_\
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it requires a higher/lower level of economic capital. In this regard, a lower duration demands
a higher capital requirement.

To test the adequacy of the VaR, the success/failure rate of the short/long trading positions
are calculated, as well as the Kupiec test (1995), and the expected shortfalls (ESF1) and
(ESF2).

Table 5. Estimation results of the VaR adequacy tests for Short positions
Quantile  Success rate Kupiec LRT p-value ESF1 ESF2
Short positions (DR)

0.9000 0.897 0.127 0.721 2.562  1.517
0.9500 0.946 0.615 0.433  3.078 1.371
0.9750 0.971 1.129 0.288  3.518 1.273
0.9900 0.988 0.645 0.422  4.087 1.170
0.9950 0.995 0.071 0.790 4.226  1.118
0.9975 0.998 0.495 0.482  5.638 1.076
Average 0.966 3.852 1.254
Short positions (2M)
0.9000 0.893 0.822 0.365  3.421 1.374
0.9500 0.946 0.458 0.498 3.980  1.257
0.9750 0.975 0.000 0.985  4.537 1.205
0.9900 0.991 0.143 0.706  4.886 1.176
0.9950 0.995 0.071 0.790  5.613 1.170
0.9975 0.998 0.035 0.851  6.098 1.170
Average 0.966 4.756  1.225
Short positions (3M)
0.9000 0.888 2.827 0.093  2.327 1.485
0.9500 0.945 0.994 0.319  2.920 1.349
0.9750 0.976 0.018 0.893  3.571 1.289
0.9900 0.992 0.779 0.377  4.290 1.285
0.9950 0.996 0.388 0.533 4.386  1.275
0.9975 0.998 0.035 0.851  4.111 1.231
Average 0.966 3.601 1.319
Short positions (5M)
0.9000 0.891 1.483 0.223  3.184 1.393
0.9500 0.944 1.460 0.227 3.183  1.264
0.9750 0.974 0.104 0.747 4.241  1.219
0.9900 0.993 1.309 0.252  5.086 1.276
0.9950 0.995 0.006 0.940  5.773 1.228
0.9975 0.997 0.532 0.466  6.289 1.198
Average 0.966 4.626  1.263

Table 5 shows the estimation results of the VaR adequacy test for Short positions depending
on the frequency used (daily, 2M, 3M and 5M). The first column represents the quantiles used
for each VaR estimated, in the second column the succes rate of each quantile is observed,
the third column shows the estimated Kupiec test with their respective p-value in the fourth
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column. Finally the expected shortfalls (ESF1) and (ESF2) are presented in the fifth and
sixth column. The selection of the best VaR adequacy depends on the criterion shown chosen,
because although exists some concordance between the measures, for example all p-values are
greater than 0.05, so the null hypothesis of the Kupiec test (1995) is not rejected at a 5%
significance level for any frequency, when quantiles increase the other measures begin to differ.
If the 0.9000 quantile is selected, the greater success rate (0.897) is for a daily return VaR,
but the ESF1 highest value (3.421) indicates that the 2M VaR is more appropriate, as ESF2
criterion lowest value (1.374) coincides with that frequency. If the 0.9900 quantile is selected,
the greater success rate (0.993) is for a 5M return VaR, as ESF1 criterion highest value (5.086)
matches that periodicity, but ESF2 lowest value (1.170) indicates daily return VaR is more
suitable. Given above, the VaR frequency will depend on how risk adverse is the portfolio risk
manager or regulator for choosing the desired quantile to select between the criteria (either
Success rate, ESF1 or ESF2) for calculate its appropriate VaR. Broadly speaking, the average
success rate is 0.966 for all periodicities, the largest ESF1 average (4.756) is the 2 minutes
frequency VaR, as the lowest ESF2 average (1.225). So, if a short position is maintained is
preferable, in average, to use a 2 minutes VaR.

. . . . X
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Table 6. Estimation results of the VaR adequacy tests for Long positions
Quantile  Failure rate  Kupiec LRT p-value ESF1 ESF2

Long positions (DR)

0.1000 0.100 0.002 0.968  -2.673 1.517
0.0500 0.048 0.092 0.762  -3.487 1.371
0.0250 0.025 0.000 0.985  -3.835 1.273
0.0100 0.013 1.557 0.212  -4.636 1.170
0.0050 0.006 0.525 0.469  -5.889 1.118
0.0025 0.002 0.035 0.851  -5.154 1.076
Average 0.032 -4.279  1.254
Long positions (2M)
0.1000 0.097 0.129 0.719  -3.680 1.375
0.0500 0.047 0.275 0.599 -4.287  1.253
0.0250 0.023 0.197 0.657  -4.909 1.182
0.0100 0.006 3.883 0.049  -6.358 1.212
0.0050 0.003 0.993 0.319  -7.621 1.199
0.0025 0.002 0.035 0.851  -7.601 1.166
Average 0.030 -5.743  1.342
Long positions (3M)
0.1000 0.091 1.774 0.183  -2.743 1.594
0.0500 0.053 0.325 0.569  -3.434 1.414
0.0250 0.027 0.223 0.637 -4.056  1.346
0.0100 0.014 2.148 0.143 -4.843  1.230
0.0050 0.005 0.006 0.940 -5.963 1.251
0.0025 0.003 0.082 0.775  -6.788 1.214
Average 0.032 -4.638 1.340
Long positions (5M)
0.1000 0.099 0.014 0.905  -3.422 1.357
0.0500 0.044 1.183 0.277  -4.135 1.246
0.0250 0.019 2.468 0.116 -5.109  1.225
0.0100 0.007 1.994 0.158  -5.904 1.206
0.0050 0.003 0.993 0.319  -6.325 1.211
0.0025 0.002 0.035 0.851 -6.005  1.182
Average 0.029 -5.150 1.238

Table 6 shows the estimation results of the VaR adequacy test for Long positions depending
on the frequency used (daily, 2M, 3M and 5M). The first column represents the quantiles used
for each VaR estimated, in the second column the succes rate of each quantile is observed,
the third column shows the estimated Kupiec test with their respective p-value in the fourth
column. Finally the expected shortfalls (ESF1) and (ESF2) are presented in the fifth and
sixth column. The selection of the best VaR adequacy depends on the criterion shown chosen,
because although exists some concordance between the measures, for example all p-values are
greater than 0.05, so the null hypothesis of the Kupiec test (1995) is not rejected at a 5%
significance level for any frequency, when quantiles increase the other measures begin to differ.
If the 0.1000 quantile is selected, the smaller failure rate (0.091) is for the 3M return VaR,
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but the ESF1 smallest value (-3.680) indicates that the 2M VaR is more appropriate, as
ESF2 criterion lowest value (1.357) select the 5M VaR. If the 0.0100 quantile is chosen, the
smaller failure rate (0.006) is for a 2M return VaR, as ESF1 criterion smallest value (-6.358)
matches that periodicity, but ESF2 lowest value (1.170) indicates daily return VaR is more
suitable. As in the short position case, the VaR frequency will depend on how risk adverse
is the portfolio risk manager or regulator for choosing the desired quantile to select between
the criteria (either Success rate, ESF1 or ESF2) for calculate its appropriate VaR. Broadly
speaking, the minimum average failure rate is 0.029 for the 5M periodicity, the smallest ESF1
average (-5.473) is the 2 minutes frequency VaR, but the lowest ESF2 average (1.238) is at
the 5 minutes periodicity. So, if a long position is maintained is preferable, in average, to use
a 2 o 5 minutes VaR.

Now to test the VaR violations, that is not serially correlated, the test of Engle and Manganelli
(1999) is performed. The results are detailed below:

. . . . X
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Table 7. Estimation results of Engle and Manganelli test.

Short positions Long positions
Quantile Stat. p-value | Quantile Stat. p-value
Daily Returns (DR)
0.9000 8.109 0.230 0.1000 8.501 0.204
0.9500 5.790 0.447 0.0500 13.564 0.305
0.9750 4.562 0.601 0.0250 9.974 0.126
0.9900 1.932 0.926 0.0100 6.917 0.329
0.9950 0.264 0.999 0.0050 13.776 0.032
0.9975 0.669 0.995 0.0025 0.084 0.999
2 Minutes (2M)
0.9000 3.265 0.775 0.1000 3.735 0.712
0.9500 6.119 0.410 0.0500 3.148 0.790
0.9750 2.031 0.917 0.0250 16.701 0.010
0.9900 5.827 0.443 0.0100 21.895 0.001
0.9950 0.225 0.999 0.0050 49.765 0.000
0.9975 0.066 0.999 0.0025 0.084 0.999
3 Minutes (3M)
0.9000 8.889 0.180 0.1000 11.447 0.076
0.9500 8.948 0.177 0.0500 16.311 0.012
0.9750 3.380 0.760 0.0250 47.220 0.000
0.9900 1.497 0.960 0.0100 28.052 0.000
0.9950 0.596 0.996 0.0050 0.245 0.999
0.9975 0.084 0.999 0.0025 0.148 0.999
5 Minutes (5M)
0.9000 11.848 0.065 0.1000 5.068 0.535
0.9500 7.420 0.284 0.0500 7.921 0.244
0.9750 10.317 0.112 0.0250 12.501 0.052
0.9900 2.031 0.917 0.0100 13.360 0.038
0.9950 0.205 0.999 0.0050 1.393 0.966
0.9975 0.521 0.998 0.0025 0.084 0.999

In the Dynamic Quantile Regression, p=5.

Table 7 shows the estimation results of the Engle and Manganelli (1999) test violations test
for Long and Short positions depending on the frequency used (daily, 2M, 3M and 5M). The
first column, of any of the two subsections, represents the quantiles used for each periodicity
estimated, in the second column the statistic is shown, and the third column shows the
estimated p-value. For all short positions the null hypothesis of Engle and Manganelli (1999)
test are not rejected at 5% significance level, so there are not VaR violations and the indicator
functions are not serially correlated. But at long positions there are some drawbacks by the
fact that not at all quantiles the null hypothesis is not rejected at 5% significance level. At a
10% significance level the efficiency improves, but there is still problems at 2 and 3 minutes
periodicity. At 2 minutes there are problems at the quantiles 0.010 and 0.005, and at 3
minutes the 0.025 and 0.010 quantiles fail to non reject the null hypothesis of the Engle and
Manganelli (1999) test.
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Given the results of the Engle and Manganelli (1999) test and the VaR adequacy test previ-
ously shown, we can conclude that if a short position is maintained is preferable to use a 2
minutes VaR because, at average, it fulfill better the VaR adequacy tests (either Success rate,
ESF1 or ESF2) and does not infringe any VaR violations. If a long position is maintained
is preferable to use a 5 minutes VaR because, at average, it fulfill better the VaR adequacy
tests (either Failure rate, ESF1 or ESF2) and does not infringe any VaR violations.

5 Conclusions and Policy Recommendations

Autoregressive conditional duration (ACD) models play an important role in financial mod-
eling since they provide a better understanding of the timeout of each transaction into the
stock market. The ACD models also show that multiple transactions can be grouped into
high intensity (informed trading) and low intensity (non-informed trading) expected dura-
tions, which facilitates proper risk management and asset allocation. Above all these models
are an important input to the calculation of realized volatility.

In this research, the expected duration is estimated through the ACD and TACD models to
intraday series of GILSE. The average expected duration of the ACD models from 2008-2014
period is 169 seconds (3 minutes), while the average expected duration of the TACD models
are 272 seconds (5 minutes) for the first regime, and 145 seconds (2 minutes) to the second one.
Furthermore, we found that the TACD models are best suited to intraday series, specifically
the TGACD models. However, even with these models we could not correct the problem of
nonlinearity.

The high frequency analysis indicates that the number of jumps increases while time interval
decreases, similarly the number of periods with at least one significant jump grow if the
time interval diminishes, being the jumps more sensitive while the duration is lower. The
periodicity factor tends to resemble as time interval reduces, and for the three duration cases,
it tends to converge, on average, to 1. Also, the three durations indicate that there is a strong
pattern effect at the beginning of the negotiation at the LSE, whose effect is rapidly diluted
depending on the length selected.

In terms of risk management, the intraday basis VaRs requires greater economic capital to
offset any expected losses. These risk measures cover losses more adequately, particularly
during periods of low and high volatility. Periods of crisis generate a nonlinear response of
market risk (evidence found by comparing the values of nonlinear VaR) this is due to the fact
that the return adjusted with the realized volatility, which captures and even precedes periods
of high volatility returns, provides a better meterage to measure volatility by the intrinsic
information inherent in the expected duration which depends on the market situation. As
can be seen, depending on the regimen, it requires a higher / lower level of economic capital.
In this regard, a lower duration demands a higher capital requirement. Depending on the
trading position, the best periodicity time interval to compute the VaR are, on average, 2
minutes for short positions, and 5 minutes for long positions.

According to the results obtained in this investigation and given the average expected du-
ration of the ACD models it is much more efficient to compute an intraday VaR basis than
a daily return VaR, since the first approach contains different types of measure depending
on the position (short/long) of the portfolio. Additionally, the study allows to optimize the

'\-\ .
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negotiation mechanism and improve the regulatory standards, while the calculation of the
realized volatility generates a daily indicator, it is also possible to generate time intervals to
measure the portfolio risks at a intraday level. Thus, given the duration, it is possible to
generate recursive VaRs at certain time spaces.
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APPENDIX A

Results of ACD model computed for each year.

Table A.1. Estimation results of EACD (1,1), WACD(1,1) and GACD(1,1) models for the
intraday range of the GILSE from 2008.

Parameters EACD(1,1) WACD(1,1) GACD(1,1)
w 5.202 3.686 3.135
(0.000) (0.000) (0.000)
Y1 0.198 0.180 0.179
(0.000) (0.000) (0.000)
w1 0.752 0.791 0.798
(0.000) (0.000) (0.000)
« - 1.034 0.539
’ (0.000) (0.000)
K - - 3.648
; - (0.000)
P, 104 127 136
(0.000) (0.000) (0.000)
Ljung-Box Q(10) 10.336 6.038 5.177
on € (0.412) (0.812) (0.879)
Q(20) 22.007 10.321 10.296
(0.340) (0.962) (0.962)
Ljung-Box Q(10) 0.000 0.000 0.000
on € (1.00) (1.00) (1.00)
Q(20) 0.101 0.000 0.000
(1.00) (1.00) (1.00)
Nonlinearity Tests Tar-F(1) 2.840 6.418 6.159
(0.014) (0.000) (0.000)
Tar-F(2) 2.651 2.656 2.602
(0.021) (0.021) (0.023)
Tar-F(3) 5.511 1.116 0.987
(0.000) (0.349) (0.424)
Tar-F(4) 3.535 0.636 0.582
(0.003) (0.672) (0.714)
L-likelihood function 209272143 -298097.885  -296176.165

Notes: The sample size is 55165. The p-values of Ljung-Box statistic
and nonlinearity test of Tsayare inparentheses. The Ljung-Box statistic
with Q(10) and Q(20) for standardized resudual series and its squared

process.
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Table A.2. Estimation results of EACD (1,1), WACD(1,1) and GACD(1,1) models for the
intraday range of the GILSE from 2009.

Parameters EACD(1,1) WACD(1,1) GACD(1,1)
w 5.127 3.533 3.597
(0.000) (0.000) (0.000)
o2 0.173 0.164 0.162
(0.000) (0.000) (0.000)
w1 0.776 0.808 0.808
(0.000) (0.000) (0.000)
! - 1.087 0.606
- (0.000) (0.000)
K . - 3.078
i - (0.000)
), 102 127 122
(0.000) (0.000) (0.000)
Ljung-Box Q(10) 28.206 32.327 33.867
on € (0.002) (0.000) (0.000)
Q(20) 41.475 42.460 44.231
(0.003) (0.002) (0.001)
Ljung-Box Q(10) 3.792 9.459 9.642
on & (0.956) (0.489) (0.472)
Q(20) 4.735 10.147 10.338
(0.999) (0.965) (0.962)
Nonlinearity Tests Tar-F(1) 10.172 6.431 6.627
(0.000) (0.000) (0.000)
Tar-F(2) 2.582 2.783 2.793
(0.024) (0.016) (0.016)
Tar-F(3) 2.032 4.169 4.006
(0.071) (0.000) (0.001)
Tar-F(4) 1.925 2.022 1.963
(0.087) (0.072) (0.081)
L-likelihood function -293029.602  -291321.323  -290011.971

Notes: The sample size is 53596. The p-values of Ljung-Box statistic
and nonlinearity test of Tsay are inparentheses. The Ljung-Box statistic
with Q(10) and Q(20) for standardized resudual series and its squared

process.
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Table A.3. Estimation results of EACD (1,1), WACD(1,1) and GACD(1,1) models for the
intraday range of the GILSE from 2010.

Parameters EACD(1,1) WACD(1,1) GACD(1,1)
w 10.352 8.037 6.669
(0.000) (0.000) (0.000)
o2 0.197 0.184 0.178
(0.000) (0.000) (0.000)
w1 0.718 0.756 0.774
(0.000) (0.000) (0.000)
a - 1.004 0.485
- (0.000) (0.000)
K g - 4.111
i - (0.000)
Y, 121 134 139
(0.000) (0.000) (0.000)
Ljung-Box Q(10) 13.210 45.276 39.609
on € (0.212) (0.000) (0.000)
Q(20) 26.655 56.022 52.143
(0.145) (0.000) (0.000)
Ljung-Box Q(10) 5.130 10.553 9.539
on € (0.882) (0.393) (0.482)
Q(20) 8.436 14.120 12.967
(0.989) (0.824) (0.879)
NonlinearityTests ~ Tar-F(1) 1.605 22.053 21.253
( 0.155) (0.000) (0.000)
Tar-F(2) 2.412 5.654 6.114
(0.034) (0.000) (0.000)
Tar-F(3) 2.758 3.936 4.046
(0.017) (0.001) (0.001)
Tar-F(4) 1.238 3.626 3.543
(0.288) (0.003) (0.003)
L-likelihood function -248002.396  -246735.454  -245283.198

Notes: The sample size is 43798. The p-values of Ljung-Box statistic
and nonlinearity test of Tsay are inparentheses. The Ljung-Box statistic
with Q(10) and Q(20) for standardized resudual series and its squared

process.
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Table A.4. Estimation results of EACD (1,1), WACD(1,1) and GACD(1,1) models for the
intraday range of the GILSE from 2011.

Parameter EACD(1,1) WACD(1,1) GACD(1,1)
w 0.633 0.600 0.968
(0.000) (0.000) (0.000)
o2 0.066 0.070 0.085
(0.000) (0.000) (0.000)
w1 0.929 0.925 0.908
(0.000) (0.000) (0.000)
a - 1.052 0.594
- (0.000) (0.000)
K 3 - 3.016
il - (0.000)
Y, 131 130 129
(0.000) (0.000) (0.000)
Ljung-Box Q(10) 20.830 3.471 3.118
on € (0.022) (0.969) (0.978)
Q(20) 42.368 7.468 6.748
(0.002) (0.995) (0.997)
Ljung-Box Q(10) 0.000 0.000 0.000
on € (1.000) (1.000) (1.000)
Q(20) 0.000 0.000 0.000
(1.000) (1.000) (1.000)
NonlinearityTests ~ Tar-F(1) 4.816 4.402 2.077
(0.000) (0.000) (0.065)
Tar-F(2) 4.566 5.840 5.737
(0.000) (0.000) (0.000)
Tar-F(3) 1.142 1.430 1.469
(0.336) (0.210) (0.196)
Tar-F(4) 2.946 2.797 3.924
(0.012) (0.016) ( 0.001)
L-likelihood function -275817.769  -274620.313  -273427.007

Notes: The sample size is 49537. The p-values of Ljung-Box statistic
and nonlinearity test of Tsay are inparentheses. The Ljung-Box statistic
with Q(10) and Q(20) for standardized resudual series and its squared

process.
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Table A.5. Estimation results of EACD (1,1), WACD(1,1) and GACD(1,1) models for the
intraday range of the GILSE from 2012.

Parameter EACD(1,1) WACD(1,1) GACD(1,1)
w 6.033 5.196 5.666
(0.000) (0.000) (0.000)
Y1 0.070 0.070 0.071
(0.000) (0.000) (0.000)
w1 0.896 0.900 0.897
(0.000) (0.000) (0.000)
o - 0.997 0.507
- (0.000) (0.000)
K - - 3.558
i 1 (0.000)
(P 179 174 176
(0.000) (0.000) (0.000)
Ljung-Box Q(10) 19.025 126.490 113.291
on € (0.040) (0.000) (0.000)
Q(20) 29.674 152.678 140.905
(0.075) (0.000) (0.000)
Ljung-Box Q(10) 57.843 1780.216 1516.878
on € (0.000) (0.000) (0.000)
Q(20) 70.025 1802.800 1539.038
(0.000) (0.000) (0.000)
NonlinearityTests Tar-F(1) 2.191 1.976 1.793
(0.052) (0.079) (0.110)
Tar-F(2) 4.155 3.304 3.353
(0.000) (0.006) (0.005)
Tar-F(3) 3.753 2.469 2.573
(0.002) (0.030) (0.025)
Tar-F(4) 6.969 5.649 5.697
(0.000) (0.000) (0.000)
L-likelihood function -183566.076  -182252.427 -181585.228

Notes: The sample size is 29929. The p-values of Ljung-Box statistic
and nonlinearity test of Tsay are inparentheses. The Ljung-Box statistic
with Q(10) and Q(20) for standardized resudual series and its squared

process.
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Table A.6. Estimation results of EACD (1,1), WACD(1,1) and GACD(1,1) models for the
intraday range of the GILSE from 2013.

Parameter EACD(1,1) WACD(1,1) GACD(1,1)
w 5.017 4.349 5.911
(0.000) (0.000) (0.000)
1 0.069 0.069 0.076
(0.000) (0.000) (0.000)
w1 0.906 0.907 0.893
(0.000) (0.000) (0.000)
a - 0.959 0.506
- (0.000) (0.000)
K 3 - 3.286
il - (0.000)
Y, 198 188 191
(0.000) (0.000) (0.000)
Ljung-Box Q(10) 19.014 12.270 7.253
on € (0.040) (0.267) (0.701)
Q(20) 55.863 36.234 25.160
(0.000) (0.014) (0.195)
Ljung-Box Q(10) 4.277 3.902 3.882
on € (0.934) (0.952) (0.953)
Q(20) 14.392 12.805 12.162
(0.810) (0.886) (0.910)
NonlinearityTests ~ Tar-F(1) 3.480 2.851 2.257
(0.003) (0.014) (0.046)
Tar-F(2) 6.322 5.051 4.789
(0.000) (0.000) (0.000)
Tar-F(3) 2.209 1.351 1.538
(0.051) (0.240) (0.174)
Tar-F(4) 2.895 1.653 1.743
(0.013) (0.142) (0.121)
L-likelihood function -169484.496  -168089.051  -167560.092

Notes: The sample size is 27249. The p-values of Ljung-Box statistic
and nonlinearity test of Tsay are inparentheses. The Ljung-Box statistic
with Q(10) and Q(20) for standardized resudual series and its squared

process.

Tesis publicada con autorizacion del autor

No olvide citar esta tesis




Table A.7. Estimation results of EACD (1,1), WACD(1,1) and GACD(1,1) models for the
intraday range of the GILSE from 2014.

Parameter EACD(1,1) WACD(1,1) GACD(1,1)
w 16.308 13.078 17.859
(0.000) (0.000) (0.000)
" 0.087 0.084 0.092
(0.000) (0.000) (0.000)
w1 0.852 0.868 0.843
(0.000) (0.000) (0.000)
a - 0.917 0.467
- (0.000) (0.000)
K . - 3.460
i 1 (0.000)
V; 265 271 274
(0.000) (0.000) (0.000)
Ljung-Box Q(10) 5.224 4.933 3.414
on ¢ (0.876 (0.896) (0.970)
Q(20) 13.775 11.010 9.546
(0.842) (0.946) (0.976)
Ljung-Box Q(10) 3.314 2.590 2.201
on € (0.969) (0.990) (0.995)
Q(20) 9.728 6.716 6.172
(0.973) (0.998) (0.999)
Nonlinearity Tests Tar-F(1) 1.107 1.480 1.289
(0.354) (0.192) (0.266)
Tar-F(2) 1.218 1.076 1.075
(0.298) (0.371) (0.372)
Tar-F(3) 1.310 1.489 1.384
(0.257) (0.190) (0.227)
Tar-F(4) 0.608 0.551 0.557
(0.694) (0.738) (0.733)
L-likelihood function -36481.424  -36058.818  -35955.310

Notes: The sample size is 5587. The p-values of Ljung-Box statistic
and nonlinearity test of Tsay are inparentheses. The Ljung-Box statistic
with Q(10) and Q(20) for standardized resudual series and its squared

process.

APPENDIX B

Results of threshold ACD model computed for each year.
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Table B.1. Estimation results of TACD model for the intraday range of the GILSE from 2008.
Parameter TEACD(1,1) TWACD (1,1) TWACD(2,2) TGACD (1,1)
Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2 Regime 1l Regime 2
w 3.592 15.610 3.283 3.514 6.689 11.429 3.440 19.569
(0.000) (0.000) (0.000) (0.057) (0.000) (0.000) (0.000) (0.000)
Y1 0.229 0.147 0.207 0.180 0.263 0.164 0.251 0.139
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Yo - - - - 0.098 0.099
- : - - (0.000)  (0.000)
w1 0.757 0.751 0.779 0.777 0.235 0.537 0.741 0.758
(0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)
w9 - - - - 0.371 0.121
- - - - (0.000) (0.182)
« - - 1.055 0.990 1.059 0.997 0.581 0.429
- - (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
% K - - - - - - 3.212 4.940
- - - - - - (0.000) (0.000)
1/%- 267 153 240 82 201 145 412 189
(0.000) (0.000) (0.000) (0.007) (0.000) (0.000) (0.013) (0.000)
Nonlinearity Tests Tar-F(1) 1.977 1.102 1.983 1.811
(0.079) (0.357) (0.078) (0.107)
Tar-F(2) 1.146 0.380 2.923 1.109
(0.333) (0.863) (0.012) (0.353)
Tar-F(3) 2.451 1.807 3.858 2.119
(0.031) (0.108) (0.002) (10.060)
Tar-F(4) 0.831 0.735 2.594 0.705
(0.527) (0.597) (0.024) (0.619)
L-likelihood function -299209.010 -297726.903 -297726.079 -296106.124

Notes: The sample size is 55165. The p-values and nonlinearity test of Tsay are inparentheses
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Table B.2. Estimation results of TACD model for the intraday range of the GILSE from 2009.
Parameter TEACD(1,1) TEACD (1,2) TWACD(2,2) TGACD (1,1)
Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2 Regime 1l Regime 2
w 3.411 13.552 2.085 15.860 4.172 6.549 3.708 6.753
(0.000)  (0.000)  (0.000)  (0.057)  (0.000)  (0.009)  (0.000)  (0.000)
Y1 0.195 0.149 0.197 0.145 0.205 0.193 0.206 0.180
(0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)
80 - - - - 0.042 0.128 - -
- : - - (0.000)  (0.000) - -
w1 0.787 0.734 0.609 0.607 0.351 0.147 0.774 0.726
(0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.215)  (0.000)  (0.000)
w9 - - 0.192 0.109 0.379 0.450 - -
. ; (0.000)  (0.000)  (0.000) 0.182 - -
o - - - - 1.111 1.017 0.644 0.392
: - 3 ; (0.000)  (0.000)  (0.000)  (0.000)
B K - = 3 - = - 2.784 6.017
. . : : ; - (0.000)  (0.000)
1/%- 194 116 681 114 187 79 182 71
(0.000)  (0.000)  (0.541)  (0.000)  (0.000)  (0.000)  (0.000)  (0.004)
Nonlinearity Tests Tar-F(1) 7.826 3.413 2.304 1.927
(0.000) (0.0047) (0.042) (0.086)
Tar-F(2) 1.935 3.533 1.959 0.470
(0.085) (0.003) (0.081) (0.799)
Tar-F(3) 1.345 0.677 3.145 2.281
(0.242) (0.641) (0.008) (0.044)
Tar-F(4) 1.011 0.337 0.722 1.602
(0.409) (0.891) (0.606) (0.156)
L-likelihood function -292989.464 -214596.872 -291116.381 -289950.497

Notes: The sample size is 53596. The p-values and nonlinearity test of Tsay are inparentheses
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Table B.3. Estimation results of TACD model for the intraday range of the GILSE from

2010.
Parameter TEACD(1,1) TGACD (1,1)
Regime 1 Regime 2 Regime 1 Regime 2
w 9.599 11.091 6.653 14.618
(0.000) (0.000) (0.000) (0.000)
71 0.212 0.195 0.210 0.194
(0.000) (0.000) (0.000) (0.000)
w1 0.719 0.710 0.750 0.681
(0.000) (0.000) (0.000) (0.000)
o - - 0.535 0.382
- - (0.000) (0.000)
K - - 3.495 5.849
- - (0.000) (0.000)
(R 138 117 164 118

(0.000) (0.000) (0.000) (0.004)

Nonlinearity Tests Tar-F(1) 1.970 1.656

(0.080) (0.142)

Tar-F(2) 2.602 3.012

(0.023) (0.010)

Tar-F(3) 2.538 2.834

(0.026) (0.015)

Tar-F(4) 1.025 1.805

(0.401) (0.109)

L-likelihood function -247999.973 -245147.159

Notes: The sample size is 43798. The p-values and nonlinearity test of Tsay are inparentheses
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Table B.4. Estimation results of TACD model for the intraday range of the GILSE from

2011.
Parameter TEACD (1,2)
Regime 1  Regime 2
w 1.567 19.215
(0.000) (0.057)
71 0.125 0.053
(0.000) (0.000)
2 -
w1 0.444 0.761
(0.000) (0.000)
w2 0.425 0.056
(0.000) (0.68)
o = I
K - -
Y, 291 147
(0.415) (0.000)
Nonlinearity Tests Tar-F(1) 0.600
(0.699)
Tar-F(2) 5.197
(0.000)
Tar-F(3) 1.894
(0.092)
Tar-F(4) 0.580
(0.715)
L-likelihood function -90737.794

Notes: The sample size is 49537. The p-values and nonlinearity test of Tsay are inparentheses
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Table B.5. Estimation results of TACD model for the intraday range of the GILSE from

2012.
Parameter TWACD(1,1)
Regime 1  Regime 2
w 3.242 17.434
(0.000) (0.000)
71 0.077 0.070
(0.000) (0.000)
w1 0.902 0.836
(0.000) (0.000)
e} 0.999 1.016
(0.000) (0.000)
K L -
Y, 156 185
(0.000) (0.000)
Nonlinearity Tests Tar-F(1) 6.694
(0.000)
Tar-F(2) 2.858
(0.014)
Tar-F(3) 2.007
(0.074)
Tar-F(4) 3.758
(0.002)
L-likelihood function -182146.205

Notes: The sample size is 29929. The p-values and nonlinearity test of Tsay are inparentheses
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Table B.6. Estimation results of TACD model for the intraday range of the GILSE from

2013.
Parameter TEACD(1,1) TWACD (1,1)
Regime 1 Regime 2 Regime 1 Regime 2
w 4.807 11.956 57.252 43.456
(0.000) (0.000) (0.000) (0.000)
71 0.042 0.065 0.396 0.125
(0.000) (0.000) (0.000) (0.000)
w1 0.912 0.884 0.429 0.701
(0.000) (0.000) (0.000) (0.000)
e} - - 0.932 0.956
- - (0.000) (0.000)
K L i - -
Y, 106 235 328 249
(0.000) (0.000) (0.000) (0.000)
Nonlinearity Tests Tar-F(1) 3.292 9.492
(0.006) (0.000)
Tar-F(2) 6.223 3.144
(0.023) (0.008)
Tar-F(3) 2.093 3.942
(0.063) (0.001)
Tar-F(4) 3.00 3.286
(0.010) (0.006)
L-likelihood function -169472.691 -168580.304

Notes: The sample size is 27249. The p-values and nonlinearity test of Tsay are inparentheses
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Table B.7. Estimation results of TACD model for the intraday range of the GILSE from

2014
Parameter TEACD(1,1)
Regime 1  Regime 2
w 10.900 35.518
(0.000) (0.000)
Y1 0.124 0.079
(0.000) (0.000)
w1 0.849 0.807
o - -
K L -
(B 405 312
(0.000) (0.000)
Nonlinearity Tests Tar-F(1) 0.723
(0.606)
Tar-F(2) 1.051
(0.386)
Tar-F(3) 1.129
(0.342)
Tar-F(4) 0.519
(0.762)
L-likelihood function -36475.711

Notes: The sample size is 5587. The p-values and nonlinearity test of T'say are inparentheses
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APPENDIX C

Results of ACD models that are not consistent with the literature (sensitivity to different
initial value for the parameters)

Table C.1. Estimation results of EACD (1,1), WACD(1,1) and GACD(1,1) models for the
intraday range of the GILSE from 2008-2014.

Parameters EACD(1,1) WACD(1,1) GACD(1,1)
w 0.538 6.153 123.135
(0.000) (0.000) (0.000)
Y1 0.122 0.177 -0.000
(0.000) (0.000) (0.000)
w1 0.880 0.781 -0.000
(0.000) (0.000) (0.000)
a 3 0.986 9.000
- (0.000) (0.000)
K s - -6.999
- - (0.000)
P, -237 145 123
(0.000) (0.000) (0.000)
Ljung-Box Q(10) 363.862 27.698 37554.211
on € (0.00) (0.002) (0.000)
Q(20) 986.549 58.229 49346.327
(0.00) (0.000) (0.000)
Ljung-Box Q(10) 0.000 0.000 0.106
on € (0.00) (1.00) (1.00)
Q(20) 0.228 0.000 0.123
(1.00) (1.00) (1.00)
NonlinearityTests ~ Tar-F(1) 70.983 140.732 1208.474
(0.000) (0.000) (0.000)
Tar-F(2) 18.516 87.183 770.415
(0.000) (0.000) (0.023)
Tar-F(3) 7.487 29.157 577.510
(0.000) ( 0.000) (0.424)
Tar-F(4) 4.129 14.089 531.757
(0.000) (0.000) (0.714)
L-likelihood function -1508647.698  -1504935.724  104806275.334

Notes: The sample size is 55165. The p-values of Ljung-Box statistic
and nonlinearity test of Tsayare inparentheses. The Ljung-Box statistic
with Q(10) and Q(20) for standardized resudual series and its squared

process.
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Table C.2. Estimation results of TACD model for the intraday range of the GILSE from 2008.
Parameter TEACD(1,1) TWACD (1,1) TWACD(2,2) TGACD (1,1)
Regime 1 Regime 2 Regime 1 Regime 2 Regime 1 Regime 2 Regime 1l Regime 2
w 3.153 8.900 2.863 2.523 5.004 6.572 1.912 9.924
(0.000)  (0.000)  (0.000)  (0.013)  (0.000)  (0.000)  (0.000)  (0.000)
Y1 0.265 0.157 0.237 0.178 0.295 0.168 0.283 0.147
(0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)
Yo - - - - 0.063 0.028
- : - - (0.000)  (0.386)
w1 0.748 0.777 0.772 0.797 0.354 0.845 0.756 0.784
(0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)
w9 - - - - 0.293 -0.081
. ; ; - (0.000)  (0.474)
o - - 1.047 1.039 1.052 1.044 0.586 3.144
: - (0.000)  (0.000)  (0.000)  (0.000)  (0.000)  (0.000)
h K - - - - - - 0.471 4.711
. . : : ; - (0.000)  (0.000)
1/%- -246 135 -314 101 -901 161 -49.159 144
(0.077)  (0.000)  (0.167)  (0.000)  (0.541)  (0.000)  (0.013)  (0.000)
Nonlinearity Tests Tar-F(1) 2.257 1.939 2.091 3.614
(0.046) (0.084) (0.063) (0.003)
Tar-F(2) 1.184 0.547 1.619 2.135
(0.314) (0.741) (0.151) (0.058)
Tar-F(3) 2.215 1.566 2.920 1.680
(0.050) (0.166) (0.012) (0.135)
Tar-F(4) 0.710 0.607 1.772 0.320
(0.616) (0.695) (0.115) (0.901)
L-likelihood function -299193.455 -297743.243 -297695.731 1142745966.490

Notes: The sample size is 55165. The p-values and nonlinearity test of Tsay are inparentheses
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APPENDIX D

Lee and Mykland (2008) estimation of intraday jumps, and Andersen and Bollerslev (1997,
1998b) periodicity factor.

Figure D.1. Estimation of intraday jumps, and periodicity factor for 2 minutes
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Figure D.3. Estimation of intraday jumps, and periodicity factor for 5 minutes
| | Number of jumps per intraday period of time (SM)‘
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APPENDIX E
Realized Return (RR), Realiced Varience (RV), Bipower Variation (BV), Returns Standard-
ized (RS) by Realized Variance and Bipower Variation.

Figure E.1. RR, RV, BV, RS by RV and BV for 2 minutes periodicity.
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Figure E.2. RR, RV, BV, RS by RV and BV for 3 minutes periodicity.
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Figure E.3. RR, RV, BV, RS by RV and BV for 5 minutes periodicity.
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