

ANEXO 1

Indicadores hospitalarios de la utilización de equipos protésicos para extremidades superiores e inferiores en rehabilitación física.

		IISNI	IUTO NAC	SIONAL D	E REHAB	ILITACIO	z						
		AP	OYO A LA	REHABI	LITACION	I FISICA							
				INR - 20	14								
TEDADIA OCUDACIONAL EGDECIALIZADA	TOTAL						MES						
	IONE	Ene	Feb	Mar	Abr	May	Jun	Inf	Ago	Sep	Oct	Nov	Dic
TERAPIA OCUPACIONAL INDIVIDUAL	81,268	6,644	5,831	6,497	6,714	7,352	7,810	7,280	6,037	6,715	7,144	6,481	6,763
Funcional	24,569	2,044	1,779	2,022	2,050	2,267	2,260	2,126	1,807	2,108	2,035	2,062	2,009
Actividades de la Vida Diaria	17,692	1,407	1,289	1,294	1,422	1,587	1,680	1,459	1,330	1,484	1,704	1,485	1,551
Cognitivas	14,093	1,193	961	1,189	1,223	1,299	1,375	1,401	1,153	1,075	1,059	866	1,167
Sensoperceptual	11,849	1,040	879	226	1,006	1,029	1,133	1,073	915	911	902	996	1,018
Ergonomia e Higiene postural	2,654	153	169	186	98	299	315	285	75	273	391	221	192
Economía (protección) articular	239	15	16	14	19	27	32	80	20	24	21	18	25
Toma de medidas y Adecuación de Silla de Ruedas	107	9	16	80	5	9	10	2	7	80	14	12	13
Integración sensorial	6,934	571	501	546	909	555	653	626	533	629	642	512	560
Control Orofacial	65		80	6	9	-	2	11	9	-	3	9	12
Entrenamiento en habilidades escolares	2,060	181	138	161	175	163	223	180	155	139	261	126	158
Entrenamiento protésicos con ayudas biomecánicas, extremidades superiores e inferiores	317	ŧ	17	21	20	50	50	50	5	20	30	28	15
Entrenamiento para el manejo y propulsión de silla de ruedas	35	ŝ	4	4	3		9		-	-	7		4
Rehabilitación Profesional - Entrenamiento para la reintegración al trabajo (Adiestramiento en Pretalleres)	30		÷	×	3	2	2	5	2	×		10	-
Habitos Laborales	7				2			•				9	
Análisis de puesto de trabajo y adlestramiento	7			·	2	•						10	·
Actividadies prelaborales	23			·	-	2	2	80	2		·	9	-
Diseño y confección de ortéticos simples	624	18	54	99	81	67	2	54	28	42	75	37	38
FUENTE: INR • OEI • EE • SISTEMA INR-OIS II													

Especificaciones de prótesis de DARPA

General Specifications

Parameter	Value	Units
Degrees of Freedom	26	DOF
Motors (Degree of Control)	17	DOC
Onboard Motor Controllers	Custom Embedded	
Onboard Sensor Conditioning and Digitization	Custom Embedded	
Mass of Hand and Wrist	2.9	lbs
Mass of Upper Arm with Battery	7.6	lbs
Payload Capacity (Wrist Active)	15	lbs
Payload Capacity (Wrist Static and Upper Arm Active)	35	lbs
Cylindrical Grasp Force	70	lbf
Two-Jaw Pinch Force	15	lbf
Three-Jaw Chuck Pinch Force	25	lbf
Lateral Key-Pinch Force	25	lbf
Upper Arm Joint Speed	120*	degs/s
Wrist Joint Speed	120*	degs/s
Hand Open or Close Time	300	ms
Voltage	24	volts
Communications	CAN	

*through range of motion

TESIS PUCP

ANEXO 3

Datos antropométricos

		Segment Weight/Total	Center of Segmen	of Mass/ t Length	Radi Se	us of Gy gment Le	ration/ ngth	
Segment	Definition	Body Weight	Proximal	Distal	C of G	Proximal	Distal	Density
Hand	Wrist axis/knuckle II middle finger	0.006 M	0.506	0.494 P	0.297	0.587	0.577 M	1.16
Forearm	Elbow axis/ulnar styloid	0.016 M	0.430	0.570 P	0.303	0.526	0.647 M	1.13
Upper arm	Glenohumeral axis/elbow axis	0.028 M	0.436	0.564 P	0.322	0.542	0.645 M	1.07
Forearm and hand	Elbow axis/ulnar styloid	0.022 M	0.682	0.318 P	0.468	0.827	0.565 P	1.14
Total arm	Glenohumeral joint/ulnar styloid	M 050.0	0.530	0.470 P	0.368	0.645	0.596 P	1.11
Foot	Lateral malleolus/head metatarsal II	0.0145 M	0.50	0.50 P	0.475	0.690	0.690 P	1.10
Leg	Femoral condyles/medial malleolus	0.0465 M	0.433	0.567 P	0.302	0.528	0.643 M	1.09
Thigh	Greater trochanter/femoral condyles	0.100 M	0.433	0.567 P	0.323	0.540	0.653 M	1.05
Foot and leg	Femoral condyles/medial malleolus	0.061 M	0.606	0.394 P	0.416	0.735	0.572 P	1.09
Total leg	Greater trochanter/medial malleolus	0.161 M	0.447	0.553 P	0.326	0.560	0.650 P	1.06
Head and neck	C7-T1 and 1st rib/ear canal	M 180.0	1.000	- PC	0.495	0.116	- PC	1.11
Shoulder mass	Stemoclavicular joint/glenohumeral axis	1	0.712	0.288	1	1	1	1.04
Thorax	C7-T1/T12-L1 and diaphragm*	0.216 PC	0.82	0.18	I	1	I	0.92
Abdomen	T12-L1/L4-L5*	0.139 LC	0.44	0.56	I	Ĩ	I	1
Pelvis	L4-L5/greater trochanter*	0.142 LC	0.105	0.895	I	1	I	1
Thorax and abdomen	C7-T1/L4-L5*	0.355 LC	0.63	0.37	I	Ĩ	l	I
Abdomen and pelvis	T12-L1/greater trochanter*	0.281 PC	0.27	0.73	I	I	I	1.01
Trunk	Greater trochanter/glenohumeral joint*	0.497 M	0.50	0.50	I	I	I	1.03
Trunk head neck	Greater trochanter/glenohumeral joint*	0.578 MC	0.66	0.34 P	0.503	0.830	0.607 M	ſ
Head, arms, and trunk (HAT)	Greater trochanter/glenohumeral joint*	0.678 MC	0.626	0.374 PC	0.496	0.798	0.621 PC	L
HAT	Greater trochanter/mid rib	0.678	1.142	I	0.903	1.456	I	I
*NOTE: These segments. Source Codes: M, Demps Human Motion, Prentice-I	are presented relative to the length between the ter via Miller and Nelson; <i>Biomechanics of Spoi</i> Hall, Inc. Englewood Cliffs, NJ, 1971. L, Demps	greater trochante ort, Lea and Febi ster via Plagenho	r and the g ger, Philad	glenohumerz el phia, 1973 ng subjects.	I joint. J. P, Dem Patterns	pster via P of Human	lagenhoef; F Motion, Prei	atterns of tice-Hall,

TABLE 4.1 Anthropometric Data

ANEXO 4:

Matrices de transformación homogénea del mecanismo.

$$\begin{split} H_{01} &= \begin{bmatrix} C_1 & -S_1 & 0 & 0 \\ S_1 & C_1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ H_{01} &= \begin{bmatrix} C_1 & 0 & S_1 & 0 \\ S_1 & 0 & -C_1 & 0 \\ 0 & 1 & 0 & L_1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ H_{12} &= \begin{bmatrix} C_2 & -S_2 & 0 & L_2 \\ S_2 & C_2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ H_{12} &= \begin{bmatrix} C_2 & 0 & S_2 & L_2 C_2 \\ S_2 & 0 & -C_2 & L_2 S_2 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix} \\ H_{12} &= \begin{bmatrix} C_3 & -S_3 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ H_{23} &= \begin{bmatrix} C_3 & 0 & S_3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ H_{23} &= \begin{bmatrix} C_3 & 0 & S_3 & 0 \\ S_3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ H_{34} &= \begin{bmatrix} C_4 & -S_4 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ H_{34} &= \begin{bmatrix} C_4 & -S_4 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ H_{34} &= \begin{bmatrix} C_4 & 0 & S_4 & L_4 C_4 \\ S_4 & 0 & -C_4 & L_4 S_4 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix} \\ \end{split}$$

Desplazamientos angulares de los 4 GDL tomados de las gráficas de Murray para la aproximación de las funciones de movimiento.

				ÁNGUL	OS (rad)				
Tiempo (s)	q1	q2	q3	q4	Tiempo (s)	q1	q2	q3	q4
0.00	0.30	0.14	0.51	1.35	0.52	1.91	0.54	1.37	0.26
0.02	0.29	0.14	0.49	1.34	0.54	1.91	0.54	1.37	0.26
0.04	0.31	0.15	0.46	1.36	0.56	1.94	0.54	1.34	0.29
0.06	0.31	0.17	0.46	1.40	0.58	1.91	0.55	1.30	0.36
0.08	0.32	0.18	0.44	1.44	0.60	1.88	0.56	1.28	0.43
0.10	0.34	0.21	0.42	1.54	0.62	1.84	0.60	1.24	0.50
0.12	0.40	0.26	0.42	1.60	0.64	1.78	0.63	1.15	0.66
0.14	0.50	0.33	0.42	1.65	0.66	1.69	0.64	1.10	0.80
0.16	0.64	0.39	0.44	1.69	0.68	1.54	0.68	1.01	0.97
0.18	0.83	0.47	0.49	1.69	0.70	1.43	0.67	0.88	1.20
0.20	1.01	0.53	0.60	1.64	0.72	1.28	0.66	0.76	1.36
0.22	1.19	0.57	0.68	1.51	0.74	1.12	0.62	0.63	1.53
0.24	1.42	0.60	0.80	1.38	0.76	0.96	0.59	0.54	1.66
0.26	1.56	0.60	0.92	1.22	0.78	0.77	0.53	0.44	1.71
0.28	1.68	0.58	1.04	1.07	0.80	0.65	0.47	0.39	1.73
0.30	1.76	0.58	1.13	0.90	0.82	0.52	0.40	0.35	1.71
0.32	1.81	0.55	1.19	0.71	0.84	0.45	0.33	0.35	1.66
0.34	1.85	0.54	1.24	0.57	0.86	0.39	0.29	0.37	1.63
0.36	1.90	0.55	1.28	0.47	0.88	0.33	0.24	0.39	1.57
0.38	1.90	0.54	1.30	0.39	0.90	0.30	0.20	0.42	1.54
0.40	1.90	0.54	1.34	0.35	0.92	0.30	0.18	0.44	1.48
0.42	1.91	0.54	1.34	0.35	0.94	0.28	0.17	0.46	1.42
0.44	1.91	0.54	1.36	0.32	0.96	0.26	0.16	0.48	1.42
0.46	1.91	0.54	1.36	0.32	0.98	0.28	0.15	0.48	1.38
0.48	1.91	0.54	1.36	0.30	1.00	0.26	0.15	0.46	1.35
0.50	1.91	0.54	1.38	0.30					

Datos para el modelo. Gráficas comparativas de las velocidades calculadas dividiendo 2 valores angulares entre el lapso, empleando la derivada numérica de Lagrange y optimizando la función con el método de los mínimos cuadrados en Excel.

TESIS PUCP

Datos para el modelo. Gráficas comparativas de las aceleraciones calculadas dividiendo 2 valores angulares entre el lapso, empleando la segunda derivada numérica de Lagrange. Empleando la primera derivada de Lagrange sobre la función derivada por el mismo método. Optimización la función con el método de los mínimos cuadrados en Excel.

TESIS PUCP

Rutina en Matlab para el modelo cinemático directo mediante matrices de transformación según la convención Denavit-Hartenberg.

```
%% CINEMÁTICADH
% PARAMETRIZACIÓN DENAVIT-HARTENBERG. CÁLCULO DE LA MATRIZ JACOBIANA.
```

syms q1 q2 q3 q4 syms L1 L2 L3 L4 syms L1cm L2cm L3cm L4cm syms Me1 Me2 Me3 Me4 syms Mm1 Mm2 Mm3 Mm4 Mc syms w1 w2 w3 w4 syms a1 a2 a3 a4

%Se definen las matrices de rotación y traslación para cada eslabón

Rz01=[cos(q1) -sin(q1) 0 0;sin(q1) cos(q1) 0 0;0 0 1 0;0 0 0 1]; Tz01=[1 0 0 0;0 1 0 0;0 0 1 L1;0 0 0 1]; Tx01=[1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]; Rx01=[1 0 0 0;0 0 -1 0;0 1 0 0;0 0 0 1];

Rz12=[cos(q2) -sin(q2) 0 0;sin(q2) cos(q2) 0 0;0 0 1 0;0 0 0 1]; Tz12=[1 0 0 L2;0 1 0 0;0 0 1 0;0 0 0 1]; Tx12=[1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]; Rx12=[1 0 0 0;0 0 -1 0;0 1 0 0;0 0 0 1];

Rz23=[cos(q3) -sin(q3) 0 0;sin(q3) cos(q3) 0 0;0 0 1 0;0 0 0 1]; Tz23=[1 0 0 0;0 1 0 0;0 0 1 L3;0 0 0 1]; Tx23=[1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]; Rx23=[1 0 0 0;0 0 -1 0;0 1 0 0;0 0 0 1];

Rz34=[cos(q4) -sin(q4) 0 0;sin(q4) cos(q4) 0 0;0 0 1 0;0 0 0 1]; Tz34=[1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]; Tx34=[1 0 0 L4;0 1 0 0;0 0 1 0;0 0 0 1]; Rx34=[1 0 0 0;0 0 -1 0;0 1 0 0;0 0 0 1];

H01=Rz01*Tz01*Tx01*Rx01; H12=Rz12*Tz12*Tx12*Rx12; H23=Rz23*Tz23*Tx23*Rx23; H34=Rz34*Tz34*Tx34*Rx34;

%De la multiplicación de las matrices se obtiene la matriz de %transformación de todo el mecanismo.

```
H02=H01*H12;
H03=H01*H12*H23;
H04=H01*H12*H23*H34;
```

%Se obtiene la matriz jacobiana.

J= jacobian([H04(1,4), H04(2,4), H04(3,4), 0],[q1 q2 q3 q4]);

Rutina en Matlab para el modelo cinético inverso mediante el algoritmo de Uicker.

%% MODELO DINÁMICO INVERSO: FORMULACIÓN DE LAGRANGE %Inicio del algoritmo de Uicker para la obtención del modelo dinámico de %Lagrange. Se hallan las matrices Uij a partir de las derivadas de las %matrices respecto de cada una del ángulo de las junturas q1, q2, q3, q4.

CinematicaDH;

Ull=diff(H01,q1); Ul2=diff(H01,q2); Ul3=diff(H01,q3); Ul4=diff(H01,q4);

U21=diff(H02,q1); U22=diff(H02,q2); U23=diff(H02,q3); U24=diff(H02,q4);

U31=diff(H03,q1); U32=diff(H03,q2); U33=diff(H03,q3); U34=diff(H03,q4);

U41=diff(H04,q1); U42=diff(H04,q2); U43=diff(H04,q3); U44=diff(H04,q4);

%Obtención de las matrices Uijk a partir de Uli

Ull1=diff(Ull,q1); Ull2=diff(Ull,q2); Ull3=diff(Ull,q3); Ull4=diff(Ull,q4); Ul21=diff(Ul2,q1); Ul22=diff(Ul2,q2); Ul23=diff(Ul2,q3); Ul24=diff(Ul2,q4); Ul31=diff(Ul3,q1);

U132=diff(U13,q2); U133=diff(U13,q3); U134=diff(U13,q4);

Ul41=diff(Ul4,q1); Ul42=diff(Ul4,q2); Ul43=diff(Ul4,q3); Ul44=diff(Ul4,q4);

%Obtención de las matrices Uijk a partir de U2i

U211=diff(U21,q1); U212=diff(U21,q2); U213=diff(U21,q3); U214=diff(U21,q4);

U221=diff(U22,q1); U222=diff(U22,q2); U223=diff(U22,q3); U224=diff(U22,q4);

U231=diff(U23,q1); U232=diff(U23,q2); U233=diff(U23,q3); U234=diff(U23,q4);

U241=diff(U24,q1); U242=diff(U24,q2); U243=diff(U24,q3); U244=diff(U24,q4);

%Obtención de las matrices Uijk a partir de U3i

U311=diff(U31,q1); U312=diff(U31,q2); U313=diff(U31,q3); U314=diff(U31,q4);

U321=diff(U32,q1); U322=diff(U32,q2); U323=diff(U32,q3); U324=diff(U32,q4);

U331=diff(U33,q1); U332=diff(U33,q2); U333=diff(U33,q3); U334=diff(U33,q4);

U341=diff(U34,q1); U342=diff(U34,q2); U343=diff(U34,q3); U344=diff(U34,q4);

%Obtención de las matrices Uijk a partir de U4i

U411=diff(U41,q1); U412=diff(U41,q2); U413=diff(U41,q3); U414=diff(U41,q4);

U421=diff(U42,q1); U422=diff(U42,q2); U423=diff(U42,q3); U424=diff(U42,q4); U431=diff(U43,q1);

U432=diff(U43,q2); U433=diff(U43,q3); U434=diff(U43,q4);


```
U441=diff(U44,q1);
U442=diff(U44,q2);
U443=diff(U44,q3);
U444=diff(U44,q4);
%se definen las matrices de pseudoinercia.
L1cm=0; %Me1*L1/(2*(Me1+Mm2));
L2cm=0; %Me2*L2/(2*(Me2+Mm3));
L3cm=Me3*L3/(2*(Me3+Mm4));
L4cm=Me4*L4/(2*(Me4+Mc));
J1=[0 0 0 0; 0 Me1*(L1/2)^2 0 -Me1*L1/2; 0 0 0 0; 0 -Me1*L1/2 0
Me1+Mm2];
J2=[0 0 0 0; 0 0 0; 0 0 Me2*(L2/2)^2 -Me2*L2/2; 0 0 -Me2*L2/2
Me2+Mm31;
J3=[0 0 0 0; 0 Me3*(L3/2)<sup>2</sup> 0 -Me3*L3/2; 0 0 0 0; 0 -Me3*L3/2 0
Me3+Mm41;
J4=[Me4*(L4/2)^2 0 0 -Me4*L4/2; 0 0 0 0; 0 0 0;-Me4*L4/2 0 0
Me4+Mc1;
%Se definen los términos de la matriz de inercias
D(1,1)=trace(U11*J1*(U11'))+trace(U21*J2*(U21'))+trace(U31*J3*(U31'))+
trace(U41*J4*(U41'));
D(1,2) = trace(U22*J2*(U21')) + trace(U32*J3*(U31')) + trace(U42*J4*(U41'));
D(1,3) = trace(U33*J3*(U31')) + trace(U43*J4*(U41'));
D(1,4) = trace(U44*J4*(U41'));
D(2,1)=trace(U21*J2*(U22'))+trace(U31*J3*(U32'))+trace(U41*J4*(U42'));
D(2,2) = trace(U22*J2*(U22')) + trace(U32*J3*(U32')) + trace(U42*J4*(U42'));
D(2,3) = trace(U33*J3*(U32')) + trace(U43*J4*(U42'));
D(2,4) = trace(U44*J4*(U42'));
D(3,1) = trace(U31*J3*(U33')) + trace(U41*J4*(U43'));
D(3,2) = trace(U32*J3*(U33')) + trace(U42*J4*(U43'));
D(3,3) = trace(U33*J3*(U33')) + trace(U43*J4*(U43'));
D(3,4) = trace(U44*J4*(U43'));
D(4,1) = trace(U41*J4*(U44'));
D(4,2) = trace(U42*J4*(U44'));
D(4,3) = trace(U43*J4*(U44'));
D(4,4) = trace(U44*J4*(U44'));
% Términos hikm (representan el efecto del movimiento del movimiento
% relativo entre el eslabón k y m sobre el actuador i
h111=trace(U111*J1*(U11'))+ trace(U211*J2*(U21'))+
trace(U311*J3*(U31'))+trace(U411*J4*(U41'));
h112=trace(U212*J2*(U21'))+trace(U312*J3*(U31'))+trace(U412*J4*(U41'))
h113=trace(U313*J3*(U31'))+trace(U413*J4*(U41'));
h114=trace(U414*J4*(U41'));
h121=trace(U221*J2*(U21'))+trace(U321*J3*(U31'))+trace(U421*J4*(U41'))
;
h122=trace(U222*J2*(U21'))+trace(U322*J3*(U31'))+trace(U422*J4*(U41'))
;
```



```
h123=trace(U323*J3*(U31'))+trace(U423*J4*(U41'));
h124=trace(U424*J4*(U41'));
h131=trace(U331*J3*(U31'))+trace(U431*J4*(U41'));
h132=trace(U332*J3*(U31'))+trace(U432*J4*(U41'));
h133=trace(U333*J3*(U31'))+trace(U433*J4*(U41'));
h134=trace(U434*J4*(U41'));
h141=trace(U441*J4*(U41'));
h142=trace(U442*J4*(U41'));
h143=trace(U443*J4*(U41'));
h144=trace(U444*J4*(U41'));
h211=trace(U211*J2*(U22'))+trace(U311*J3*(U32'))+trace(U411*J4*(U42'))
:
h212=trace(U212*J2*(U22'))+trace(U412*J3*(U32'))+trace(U412*J4*(U42'))
h213=trace(U313*J3*(U22'))+trace(U413*J4*(U42'));
h214=trace(U414*J4*(U42'));
h221=trace(U221*J2*(U22'))+trace(U321*J3*(U32'))+trace(U421*J4*(U42'))
;
h222=trace(U222*J2*(U22'))+trace(U322*J3*(U32'))+trace(U422*J4*(U42'))
;
h223=trace(U323*J3*(U32'))+trace(U423*J4*(U42'));
h224=trace(U424*J4*(U42'));
h231=trace(U331*J3*(U32'))+trace(U431*J4*(U42'));
h232=trace(U332*J3*(U32'))+trace(U432*J4*(U42'));
h233=trace(U333*J3*(U32'))+trace(U433*J4*(U42'));
h234=trace(U434*J4*(U42'));
h241=trace(U441*J4*(U42'));
h242=trace(U442*J4*(U42'));
h243=trace(U443*J4*(U42'));
h244=trace(U444*J4*(U42'));
h311=trace(U311*J3*(U33'))+trace(U411*J4*(U43'));
h312=trace(U312*J3*(U33'))+trace(U412*J4*(U43'));
h313=trace(U313*J3*(U33'))+trace(U413*J4*(U43'));
h314=trace(U414*J4*(U43'));
h321=trace(U321*J3*(U33'))+trace(U421*J4*(U43'));
h322=trace(U322*J3*(U33'))+trace(U422*J4*(U43'));
h323=trace(U323*J3*(U33'))+trace(U423*J4*(U43'));
h324=trace(U424*J4*(U43'));
h331=trace(U331*J3*(U33'))+trace(U431*J4*(U43'));
h332=trace(U332*J3*(U33'))+trace(U432*J4*(U43'));
h333=trace(U333*J3*(U33'))+trace(U433*J4*(U43'));
h334=trace(U434*J4*(U43'));
h341=trace(U341*J3*(U33'))+trace(U441*J4*(U43'));
h342=trace(U342*J3*(U33'))+trace(U442*J4*(U43'));
h343=trace(U343*J3*(U33'))+trace(U443*J4*(U43'));
h344=trace(U444*J4*(U43'));
```


h411=trace(U411*J4*(U44'));


```
h412=trace(U412*J4*(U44'));
h413=trace(U413*J4*(U44'));
h414=trace(U414*J4*(U44'));
h421=trace(U421*J4*(U44'));
h422=trace(U422*J4*(U44'));
h423=trace(U423*J4*(U44'));
h424=trace(U424*J4*(U44'));
h431=trace(U431*J4*(U44'));
h432=trace(U432*J4*(U44'));
h433=trace(U433*J4*(U44'));
h434=trace(U434*J4*(U44'));
h441=trace(U441*J4*(U44'));
h442=trace(U442*J4*(U44'));
h443=trace(U443*J4*(U44'));
h444=trace(U444*J4*(U44'));
%Se calcula la matriz de fuerzas centrípetas y de coriolis
H(1,1) =
h111*w1*w1+h112*w1*w2+h113*w1*w3+h114*w1*w4+h121*w2*w1+h122*w2*w2+h123
*w2*w3+h124*w2*w4+h131*w3*w1+h132*w3*w2+h133*w3*w3+h134*w3*w4+h141*w4*
w1+h142*w4*w2+h143*w4*w3+h144*w4*w4;
H(2,1) =
h211*w1*w1+h212*w1*w2+h213*w1*w3+h214*w1*w4+h221*w2*w1+h222*w2*w2+h223
*w2*w3+h224*w2*w4+h231*w3*w1+h232*w3*w2+h233*w3*w3+h234*w3*w4+h241*w4*
w1+h242*w4*w2+h243*w4*w3+h244*w4*w4;
H(3,1) =
h311*w1*w1+h312*w1*w2+h313*w1*w3+h314*w1*w4+h321*w2*w1+h322*w2*w2+h323
*w2*w3+h324*w2*w4+h331*w3*w1+h332*w3*w2+h333*w3*w3+h334*w3*w4+h341*w4*
w1+h342*w4*w2+h343*w4*w3+h344*w4*w4;
H(4,1) =
h411*w1*w1+h412*w1*w2+h413*w1*w3+h414*w1*w4+h421*w2*w1+h422*w2*w2+h423
*w2*w3+h424*w2*w4+h431*w3*w1+h432*w3*w2+h433*w3*w3+h434*w3*w4+h441*w4*
w1+h442*w4*w2+h443*w4*w3+h444*w4*w4;
%Se obtiene la matriz de fuerzas de gravedad definiendo las distancias
a los centros de masa y el vector gravedad en SO
G=[0 9.81 0 0];
%cálculo del centro de masa de cada eslabón en función del peso de los
%actuadores y la carga externa que se sostiene en la muñeca.
r11=[0; -L1cm; 0; 1];
r22=[0; 0; -L2cm; 1];
r33=[0; -L3cm; 0; 1];
```

r44=[-L4cm; 0; 0; 1];


```
C(1,1)=-(Me1+Mm2)*G*U11*r11-(Me2+Mm3)*G*U21*r22-(Me3+Mm4)*G*U31*r33-
(Me4+Mc)*G*U41*r44;
C(2,1)=-(Me1+Mm2)*G*U12*r11-(Me2+Mm3)*G*U22*r22-(Me3+Mm4)*G*U32*r33-
(Me4+Mc)*G*U42*r44;
C(3,1)=-(Me1+Mm2)*G*U13*r11-(Me2+Mm3)*G*U23*r22-(Me3+Mm4)*G*U33*r33-
(Me4+Mc)*G*U43*r44;
C(4,1)=-(Me1+Mm2)*G*U14*r11-(Me2+Mm3)*G*U24*r22-(Me3+Mm4)*G*U34*r33-
(Me4+Mc)*G*U44*r44;
```

Q=[a1 a2 a3 a4]';

 $\$ Se halla el torque motor en cada junta mediante la multiplicación: T=D*Q+H+C;

%Los valores de los ángulos, velocidades y aceleraciones obtenidos por la %cinemática inversa a través de software de video por Murray (1996) se %ingresan con el archivo "angulos" al programa.

angulos;

```
%Los parámetros del modelo son los siguientes: Se deben reemplazar
según el diseño que se desee simumlar.
ql=thl-pi/2;
q2=-th2-pi/2;
q3=-th3-pi/2;
q4=th4-pi/2;
L1=0;
L2=0;
L3=0.305;
L4=0.239;
Mel=0;
Me2=0;
Me3=1.686;
Me4=0.963;
% %parámetros alternativos de prueba
% L1=0;
% L2=0;
% L3=0.33;
% L4=0.25;
%
% Me1=0;
% Me2=0;
% Me3=2.1;
% Me4=1.2;
Mm1=0;
Mm2=0;
Mm3=0;
Mm4=0;
M_{C}=0;
```



```
L1cm=0; %Me1*L1/(2*(Me1+Mm2));
L2cm=0; %Me2*L2/(2*(Me2+Mm3));
L3cm=Me3*L3/(2*(Me3+Mm4));
L4cm=Me4*L4/(2*(Me4+Mc));
% T11=eval(T(1,1))';
% T21=eval(T(2,1))';
% T31=eval(T(3,1))';
% T41=eval(T(4,1))';
%
% Mc=0.5;
% T12=eval(T(1,1))';
% T22=eval(T(2,1))';
% T32=eval(T(3,1))';
% T42=eval(T(4,1))';
% Mc=1;
% T13=eval(T(1,1))';
% T23=eval(T(2,1))';
% T33=eval(T(3,1))';
% T43=eval(T(4,1))';
% Mc=1.5;
% T14=eval(T(1,1))';
% T24=eval(T(2,1))';
% T34=eval(T(3,1))';
% T44=eval(T(4,1))';
%% Gráficas
%Gráficas de Tl
% plot(t,T11,'k')
% hold on
% plot(t,T12,'b')
% hold on
% plot(t,T13,'g')
% hold on
% plot(t,T14,'r')
```


Rutina de cálculo de verificación en Matlab.

```
%Los valores de los ángulos es calculado por interpoladores
polinómicos, del cual se obtienen las derivadas.
t = 0:0.01:1;
tf = 1;
thf = pi/2;
%Coeficientes del polinomio interpolador de la trayectoria.
a00 = 0;
a01 = 0;
a02 = (3/tf^2)*(thf)
a03 = -(2/tf^3)*(thf)
%Variables angulares, thi wi ai son el ángulo, la velocidad y la
aceleración de la articulación i.
th1 = a00 + a01*t + a02*t.^2 + a03*t.^3;
th2 = 0;
th3 = 0;
th4 = 0;
w1 = a01 + 2*a02*t + 3*a03*t.^2;
w2 = 0;
w3 = 0;
w4 = 0;
a1 = 2*a02 + 6*a03*t;
a2 = 0;
a3 = 0;
a4 = 0;
%Luego debe reemplazarse la ecuación de trayectoria para th4, y asignar
valores nulos para las variables referidas a q1 (th1, w1, a1)
%Definición de las variables angulares:
t = 0.5;
tf = 1;
thf = pi/2;
a00 = 0;
a01 = 0;
a02 = (3/tf^2)*(thf);
a03 = -(2/tf^3)*(thf);
th = a00 + a01*t + a02*t^2 + a03*t^3;
w = a01 + 2*a02*t + 3*a03*t^2;
a = 2*a02 + 6*a03*t;
%Definición de los parámetros físicos:
L1 = 0.305;
L4 = 0.239;
m1 = 1.686;
m4 = 0.963;
g = 9.81;
%Ecuaciones cinéticas (Flexión pura del hombro):
R4y = m4*((L1+L4/2)*a*sin(th)+w^2*(L1+L4/2)*cos(th))+m4*q;
R4x = m4*((L1+L4/2)*a*cos(th)-w^2*(L1+L4/2)*sin(th));
T4 = m4*(L4^2/4)*a+m4*g*(L4/2)*sin(th)
T1 = ml*(L1^2/4)*a+ml*g*(L1/2)*sin(th) +T4+R4x*L1*cos(th)+R4y*L1*sin(th)
%Ecuaciones cinéticas (Flexión pura del codo):
Rc4y = m4*((L4/2)*a*sin(th)+w^{2*}(L4/2)*cos(th))+m4*g;
Rc4x = m4*((L4/2)*a*cos(th)-w^2*(L4/2)*sin(th));
Tc4 = m4*(L4^{2}/4)*a+m4*g*(L4/2)*sin(th)
Tc1 = Tc4 + Rc4x * L1
```


Funciones aproximadas de las variables angulares obtenidas con "Curve fitting" de

Matlab

```
%% SERIES DE FOURIER
 % Desarrollo de las series de Fourier para aproximar una función a la curva
 % de puntos tomada de las gráficas de Murray.
 syms x %Se declara esta variable para obtener las derivadas.
 %Flexión del hombro
 a10 = 1.025;
 a11 = -0.797;
                                                                                              b11 = 0.5284;
 a12 = 0.03627;
                                                                                              b12 = -0.1073;
 a13 = -0.02566;
                                                                                               b13 = -0.1643;
 a14 = 0.04682;
                                                                                          b14 = 0.01619;
a15 = 0.02514;
                                                                                               b15 = 0.007741;
                                                                                                b16 = 0.01017;
a16 = -0.003489;
 a17 = -0.008758;
                                                                                              b17 = 0.004628;
w11 = 2.684;
 th1 = a10 + all*cos(x*w11) + bl1*sin(x*w11) + a12*cos(2*x*w11) +
b12*sin(2*x*w11) + a13*cos(3*x*w11) + b13*sin(3*x*w11) + a14*cos(4*x*w11) +
bl4*sin(4*x*wl1) + al5*cos(5*x*wl1) + bl5*sin(5*x*wl1) + al6*cos(6*x*wl1) +
bl6*sin(6*x*wll) + al7*cos(7*x*wll) + bl7*sin(7*x*wll);
 w1=diff(th1,x);
 al=diff(w1,x);
 %Abducción del hombro
 a20 = 0.4443;
 a21 = -0.2058;
                                                                                           b21 = -0.007504;
                                                                                              b22 = 0.02915;
 a22 = -0.1295;
 a23 = 0.008333;
                                                                                           b23 = -0.0007099;
 a24 = 0.02751;
                                                                                              b24 = -0.02259;
 a25 = 0.005542;
                                                                                              b25 = 0.002176;
                                                                                     b26 = 0.004184;
 a26 = 3.372e-06;
                                                                                               b27 = -0.0008603;
 a27 = -0.002493;
a28 = -0.001174;
                                                                                              b28 = 0.0007904;
 w22 = 3.131;
 th2 = a20 + a21*cos(x*w22) + b21*sin(x*w22) + a22*cos(2*x*w22) + a2*
b22*sin(2*x*w22) + a23*cos(3*x*w22) + b23*sin(3*x*w22) + a24*cos(4*x*w22) + a24*cos(4*x*w22) + b23*sin(3*x*w22) + a24*cos(4*x*w22) + b23*sin(3*x*w22) + b23*sin(3*x
b24*sin(4*x*w22) + a25*cos(5*x*w22) + b25*sin(5*x*w22) + a26*cos(6*x*w22) +
b26*sin(6*x*w22) + a27*cos(7*x*w22) + b27*sin(7*x*w22) + a28*cos(8*x*w22) + a28*cos(8*x
b28*sin(8*x*w22);
w2=diff(th2,x);
 a2=diff(w2,x);
 %Rotación interna del hombro
 a30 = -28.9;
 a31 = -3.772;
                                                                                  b31 = 55.04;
                                                                                  b32 = 5.981;
 a32 = 42.84;
 a33 = 6.133;
                                                                                 b33 = -28.79;
 a34 = -15.67;
                                                                                 b34 = -4.57;
 a35 = -2.563;
                                                                                b35 = 6.743;
a36 = 2.193;
                                                                                 b36 = 1.044;
 a37 = 0.2335;
                                                                                  b37 = -0.3901;
 w33 = 1.703;
```



```
th3 = a30 + a31*cos(x*w33) + b31*sin(x*w33) + a32*cos(2*x*w33) +
b32*sin(2*x*w33) + a33*cos(3*x*w33) + b33*sin(3*x*w33) + a34*cos(4*x*w33) +
b34*sin(4*x*w33) + a35*cos(5*x*w33) + b35*sin(5*x*w33) + a36*cos(6*x*w33) +
b36*sin(6*x*w33) + a37*cos(7*x*w33) + b37*sin(7*x*w33);
 w3=diff(th3,x);
a3=diff(w3,x);
 %Flexión de codo
 a40 = 1.09;
 a41 = 0.6519;
                                                                                             b41 = -0.1051;
a42 = -0.3209;
                                                                                            b42 = 0.0562;
a43 = -0.129;
                                                                                           b43 = 0.05011;
a44 = 0.04826;
                                                                                            b44 = -0.04455;
a45 = 0.007206;
                                                                                             b45 = -0.01254;
 a46 = -0.006293;
                                                                                             b46 = -0.006867;
                                                                                             b47 = 0.007691;
a47 = 0.007019;
a48 = -9.983e - 05;
                                                                                             b48 = -0.0004323;
w44 = 3.11;
 th4 = a40 + a41*\cos(x*w44) + b41*\sin(x*w44) + a42*\cos(2*x*w44) +
b42*sin(2*x*w44) + a43*cos(3*x*w44) + b43*sin(3*x*w44) + a44*cos(4*x*w44) +
 b44*sin(4*x*w44) + a45*cos(5*x*w44) + b45*sin(5*x*w44) + a46*cos(6*x*w44) + a46*cos(6*x
b46*sin(6*x*w44) + a47*cos(7*x*w44) + b47*sin(7*x*w44) + a48*cos(8*x*w44) + a48*cos(8*x
b48*sin(8*x*w44);
w4=diff(th4,x);
 a4=diff(w4,x);
 %Se evaluan todos los ángulos para la obtención de las matrices.
 t=0:0.01:2;
 x=t;
thl=eval(th1); wl=eval(wl); al=eval(al);
th2=eval(th2); w2=eval(w2); a2=eval(a2);
 th3=eval(th3); w3=eval(w3); a3=eval(a3);
 th4=eval(th4); w4=eval(w4); a4=eval(a4);
```