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Abstract

In recent years, the number of applications of model predictive control (MPC) is rapidly
increasing due to the better control performance that it provides in comparison to
traditional control methods. However, the main limitation of MPC is the computational
effort required for the online solution of an optimization problem. This shortcoming
restricts the use of MPC for real-time control of dynamic systems with high sampling
rates. This thesis aims to overcome this limitation by implementing high-performance
MPC solvers for real-time control of fast systems. Hence, one of the objectives of this
work is to take the advantage of the particular mathematical structures that MPC
schemes exhibit and use parallel computing to improve the computational efficiency.

Firstly, this thesis focuses on implementing efficient parallel solvers for linear MPC
(LMPC) problems, which are described by block-structured quadratic programming
(QP) problems. Specifically, three parallel solvers are implemented: a primal-dual
interior-point method with Schur-complement decomposition, a quasi-Newton method
for solving the dual problem, and the operator splitting method based on the alternating
direction method of multipliers (ADMM). The implementation of all these solvers is
based on C++. The software package Eigen is used to implement the linear algebra
operations. The Open Message Passing Interface (Open MPI) library is used for the
communication between processors. Four case-studies are presented to demonstrate the
potential of the implementation. Hence, the implemented solvers have shown high
performance for tackling large-scale LMPC problems by providing the solutions in
computation times below milliseconds.

Secondly, the thesis addresses the solution of nonlinear MPC (NMPC) problems, which
are described by general optimal control problems (OCPs). More precisely,
implementations are done for the combined multiple-shooting and collocation (CMSC)
method using a parallelization scheme. The CMSC method transforms the OCP into a
nonlinear optimization problem (NLP) and defines a set of underlying sub-problems for
computing the sensitivities and discretized state values within the NLP solver. These
underlying sub-problems are decoupled on the variables and thus, are solved in parallel.
For the implementation, the software package IPOPT is used to solve the resulting NLP
problems. The parallel solution of the sub-problems is performed based on MPI and
Figen. The computational performance of the parallel CMSC solver is tested using case
studies for both OCPs and NMPC showing very promising results.

Finally, applications to autonomous navigation for the SUMMIT robot are presented.
Specially, reference tracking and obstacle avoidance problems are addressed using an
NMPC approach. Both simulation and experimental results are presented and compared
to a previous work on the SUMMIT, showing a much better computational efficiency
and control performance.
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Zusammenfassung

In den vergangenen Jahren ist die Zahl der Anwendungen modellpradiktiver Regelungen
(engl.: model predictive control (MPC)) rasant gestiegen. Grund dafiir ist die bessere
Kontrolle eines Systems im Vergleich zu herkémmlichen Regelungsmethoden. Diese
besitzt jedoch eine starke Einschrankung, ndmlich im numerischen Rechenaufwand bei
Online-Losungen eines Optimierungsproblems. Dieser Nachteil der MPC erschwert die
Echtzeitsteuerung von dynamischen Systemen mit hoher Taktrate. Diese Arbeit bildet
eine neue Grundlage fiir die Implementierung hochleistungsfahiger MPC-Loser fiir die
Echtzeitsteuerung von dynamischen Systemen, um diese Einschrinkung zu iiberwinden.
Um dieses Ziel zu erreichen, wird die besondere Struktur der MPC in Verbindung mit
der parallelen Programmierung gebracht, um die Recheneffizienz zu verbessern.

Diese Arbeit konzentriert sich in erster Linie auf die Implementierung effizienter
paralleler Loser fiir lineare MPC-Probleme, die durch blockstrukturierte quadratische
Probleme beschrieben werden. Drei spezielle Loser werden dabei vorgestellt: die
,Primal-Dual Interieur-Punkt Methode“ mit Schur-Komplement Zerlegung, die
,Quasi-Newton-Methode“ fiir die Losung des dualen Problems, und die ,Operator
Splitting  Methode“ auf der Grundlage der Wechselrichtungsmethode von
Multiplikatoren. Die Implementierung wurde in der Programmiersprache C++
vorgenommen und das Softwarepaket , Eigen* wird eingesetzt, um die Operationen der
linearen Algebra auszufiihren. Des weiteren wird das ,,Open Message Passing Interface*
(OpenMP) fiir die Kommunikation zwischen den Prozessoren verwendet. Mit diesem
implementierten Loser werden grofle LMPC Probleme mit hoher Performance bewéltigt
und die Rechenzeiten der Losungen liegen im Millisekundenbereich.

Zweites Merkmal dieser Arbeit sind die nichtlinearen MPC Probleme, die durch ein
allgemeines optimales Steuerungsproblem (engl.: optimal control problem (OCP))
beschrieben werden. Diese Aufgabe erfordert die Implementierung des MehrfachschieB3-
und Kollokationsverfahren (engl.: combined multiple-shooting and collocation (CMSC))
nach einem parallelisierten Schema. Das CMSC-Verfahren transformiert das OCP in ein
nichtlineares Optimierungsproblem und definiert eine Menge von zugrunde liegenden
Teilproblemen fiir die Berechnung der Sensitivitdten und diskretisierten Zustandswerte
innerhalb des NLP-Loésers. Diese Teilprobleme sind entkoppelt und somit parallel 16sbar.
Fir die Implementierung wird das Softwarepaket IPOPT verwendet, um das
resultierende NLP Problem zu l6sen. Die parallele Losung der Teilprobleme wird mit
MPI und Eigen durchgefithrt. Die Recheneffizienz des parallelen CMSC Losers fiir OCP
und NMPC Anwendungen wurde getestet und hat vielversprechende Ergebnisse geliefert.

Zum Schluss werden Anwendungen in der autonomen Navigation des ,, SUMMIT Roboter “
vorgestellt. Es folgt eine Diskussion iiber Verfolgungs- und Hindernisvermeidungprobleme
und wie sie mit Hilfe von NMPC gel6st werden haben. Simulationen und experimentelle
Ergebnisse werden aufgezeigt und haben im Vergleich zu fritheren Arbeiten eine viel bessere
Recheneflizienz und Regelleistung gezeigt.
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Chapter 1

Introduction

1.1 Motivation

In the last decades, it has appeared a growing interest in the development of systems
capable of performing tasks with a high level of autonomy, i.e., without a constant
requirement of human supervision. These kind of systems are known as autonomous
systems and have become indispensable in many industrial applications such as
automotive, aerospace and military industries. For instance, an important field that has
been developed over the last few years is the autonomous navigation of land and
maritime vehicles (known as autonomous vehicles), which sense the environment in
which they are navigating and decide the way how to move without human control. This
kind of practical applications requires a control system capable of performing the
sensing, processing and decision-making tasks in real-time, considering the
characteristics of the system, the available physical and processing resources, and the
possibly existing constraints.

Generally, the efficiency of the control system is defined by the control strategy used in
the implementation. It is well known that classical control techniques are not suitable for
dealing with autonomous systems due to the nonlinear features they exhibit. Even more,
in cases where the constraints on the system are not trivial and must be considered for
the control design, the classical control techniques become unusable. In this way, the
notion of Model Predictive Control (MPC) appears as a robust and reliable advanced
control strategy. MPC is an online-optimization strategy that shown to be more effective
than traditional control methods. The main feature of MPC is that both, the desired
behaviour as well as the constraints on the system can be directly specified in the
formulation of the problem, avoiding in this way the use of heuristics for the control
design. Likewise, MPC can handle dynamic systems with multiple input and outputs
and, when possible, the formulation of the problem can include predictive information in
order to obtain a proactive control reaction.

However, the main limitation of MPC is the computational burden related to the
real-time solution of the optimization problem. Indeed, MPC involves the solution of
non-trivial optimization problems to find the optimal control inputs. Generally, the
system dynamics is represented by a nonlinear model, yielding to a nonlinear
optimization problem that may be non-convex and thus, very computationally expensive
to solve. Even if the dynamics is represented by a linear model, in which case the
optimization problem is convex, obtaining a reliable solution within a small computation
time is nowadays very challenging and, for some systems, is even not possible. These
shortcomings restrict the use of MPC to applications with slow dynamic systems, which
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have sampling times in the order of seconds or minutes.

For these reasons, the central goal of this thesis is to allow the use of MPC for
controlling dynamic systems with high sampling rates (fast dynamic systems), which is
the class to which autonomous systems belong. Due to the development of modern
multicore architectures with high computing power and the characteristic structures that
MPC problems exhibit, it is possible to develop efficient computational methods to solve
the associated optimization problem in real-time, i.e., to obtain the solution of the
problem within computation times in the order of milliseconds or even microseconds.
Through tailored algorithms and the use of parallel computing, which has become the
trend in the last years, we will implement parallel solvers for MPC that exploit the
available computational resources and represent powerful tools for real-time control of
fast dynamic systems, where the computation time is a critical factor. Even more, the
parallel solvers are designing in such way that they can be implemented in general
parallel architectures such as low power-consumption multicore embedded systems,
which are expected to be the modern processing units used for gaining computational
power.

1.2 Problem Statement

As has been mentioned, the main drawback of MPC is the required computational effort for
the online solution of the problem. To allow the use of MPC for controlling fast dynamic
systems, such as autonomous vehicles, this thesis aims to improve the computational
performance when solving both linear and nonlinear MPC problems by implementing
efficient solvers using parallel computing. To accomplish this objective, the following
topics will be thoroughly examined in the present work:

e Study of the mathematical background theory for optimization methods,

e Review of the state-of-the-art solution approaches for linear and nonlinear MPC,
e Analysis of parallelization schemes for solving MPC problems,

e Implementation of parallel solvers for linear and nonlinear MPC problems,

e Evaluation of the computational performance of the solvers applied to fast dynamic
Systems,

Application of the solver for real-time control of autonomous vehicles.

1.3 Overview

The content presented in this thesis is organized as follows:

e Chapter[gddescribes the concept of the MPC strategy. The principle, theoretical basis
and characteristics that make MPC nowadays the most popular control strategy in
many application fields are explained. Likewise, the main drawbacks when using
MPC in fast sampled dynamic systems are detailed as well as the solution approaches
proposed in the literature.

e Chapter [J presents a survey of the different solution methods for convex
optimization problems as a theoretical basis for the different solvers that will be
described throughout the thesis. Most of these solvers are based on Newton
methods, whose main computational complexity is the solution of a sparse
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large-scale linear system at each iteration. For this reason, this chapter also
presents a brief description of linear algebra methods for solving sparse linear
systems, giving a special emphasis to the direct factorization methods, which will
be used throughout the development of this thesis.

Linear Model Predictive Control

e Chapter [{] starts with the description of dynamic models and linear systems. The
general formulation of the linear MPC (LMPC) problem is presented as well as
the two ways how to formulate the LMPC problem as a standard QP problem:
the reduced and sparse formulations. A special emphasis is given to the sparse
formulation, which shows the special structure of LMPC, which will be exploited in
the implementation of the parallel solvers.

e Chapter[5 presents three different parallel solvers for LMPC problems: the primal-
dual interior point method with Schur-complement decomposition, the dual quasi-
Newton method, and the ADMMM-based operator splitting method. The main
theoretical aspects of these methods are explained and the parallel procedures are
detailed considering a multi-processor scenario.

e Chapter [f implements the parallel solvers presented in Chapter [f] and test the
computational performance using different benchmark problems. In order to obtain
high efficiency and make the algorithms suitable to run in general hardware
architectures  (shared-memory and distributed-memory computers and/or
embedded systems), all the implementations are based on C++ and employ the
Message Passing Interface (MPI) to communicate the different processors. The
linear algebra package FEigen C++ is presented as an efficient tool for solving
sparse linear systems. The main details of the functions employed for each solver
are explained, and the computation performance is tested and compared to that
obtained using a serial solver for the reduced QP solver.

Nonlinear Model Predictive Control

e Chapter [7 introduces the concept of optimal control problem as the general
formulation of a nonlinear MPC (NMPC) problem. The main methods for solving
optimal control problems are briefly explained, giving special emphasis on the
collocation and direct multiple-shooting methods, which are methods that
transform the optimal control problem into a nonlinear optimization problem.
Likewise, an overview of the sequential quadratic programming and interior-point
methods for solving nonlinear optimization problems is presented. Finally, the
state-of-the-art solver IPOPT is introduced for its later use in the implementation.

e Chapter [§ presents an efficient parallelization approach of the combined multiple-
shooting and collocation (CMSC) method, a novel method that has been recently
proposed for solving general optimal control problems. The chapter starts with the
explanation of the CMSC method and proposes a parallelization scheme for the
solution of ODEs and computation of sensitivities, which are tasks required in each
iteration of the IPOPT solver and that represent the most computationally expensive
part when evaluating the numerical values of functions and gradients. Furthermore,
a local Newton’s method is also proposed for solving the nonlinear system that
appears in each local subproblem.

e Chapter [ implements the parallel CMSC method and tests the performance of
the solver using different benchmark problems for optimal control and NMPC. The
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parallel solver has been implemented in C++ using the Eigen and MPI libraries.
Likewise, the implementation of the local Newton’s method is based on C++ and
Eigen. To obtain the analytical expressions of the gradient vectors and Jacobian
matrices, the computer algebra system Maple is employed. The performance of
the solver is tested using two optimal control problems and is compared with that
reported in other work that uses a similar parallel implementation. Additionally, a
NMPC problem is employed to test the performance achieved in real-time control
applications.

o Chapter presents the application of NMPC in autonomous navigation
considering the trajectory tracking and obstacle avoidance problems. The chapter
starts with a review of MPC applied to autonomous vehicles and presents two
strategies for obstacle avoidance: the path constraint and potential function
approaches. The SUMMIT mobile robot is the system which is considered for the
different applications. Its dynamic model and particular constraints are detailed.
Simulation and experimental tests are performed in order to test the
computational efficiency of the CMSC solver in different scenarios.

Chapter [11] concludes this thesis with a summary of the main results and discusses the
outlook for possible future topics of research.
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Chapter 2

Model Predictive Control

Nowadays, a variety of control strategies are available for different applications. Standard
design methods for regulation and tracking employ linear controllers (e.g. PID), spending
most of the computational effort offline for identifying an appropriate controller that has
minimal computing requirements when implemented online. This approach seems to be
suitable for certain systems, but when state and control constraints are taken into account,
most of these methods become unusable. These and other limitations can be overcome
through the use of Model Predictive Control (MPC), which is a modern control strategy
that can handle the hard constraints presented on the system in a non-conservative way.
In this chapter, a background of the theory and principles of MPC as well as the current
state-of-the-art for its application in the control of fast dynamic systems are presented.

2.1 Control System

In practice, a control system is a set of devices that are integrated with real systems in
order to monitor the system and enforce a desired behaviour. The principal component
of a control system is called the controller, which is implemented on a processor unit
(computer or embedded system) and that provides suitable commands to some actuators
to control the behaviour of a physical system, which is called the plant. The controller
computes at regular time intervals the suitable control inputs based on the current
information obtained from the plant. Generally, this information is obtained through
sensor measurements and through the use of estimation techniques when it is not
possible to obtain it directly. This control strategy is known as feedback and allows the
controller to give a proactive response to uncertainties that exist in the unknown
environment where the plant operates. These uncertainties are, generally, product of the
external disturbances and of the mismatch between the real plant and the model
representation. A block diagram describing the general structure of a control system is
shown Figure where the dashed box indicates the physical parts of the system.

The design of the control strategy is a field known as control engineering and is the most
important task in the implementation of real control systems. There exist many control
strategies and the decision of which strategy is the best for a particular application depends
on many factors. The most classical control strategy is the linear PID controller, which
employs a control law based on the error and can be empirically implemented by a simple
tuning of the parameters. Due to the simplicity of PID, this method has been used for
many years as a cheap implementation in different control applications, in particular that
based on linear systems. However, there exist many real-world problems that cannot be
addressed using the PID controller. For instance, under the presence of disturbances acting
on the system, the simple PID controller does not guarantee the stability of the system.
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Figure 2.1: Block diagram describing the general structure of a
control system.

Thus, more advanced techniques have been developed for implementing robust controllers,
being most of them based on optimal control. In particular, the LQR, Hs and H,, are
the most popular variants of linear robust control and have been brought to maturity for
their use in practice. These both methods provide a robust feedback control law that
optimizes a performance criteria. Furthermore, LQR and H,, can be extended to deal
with constrained dynamic systems [1]. However, for systems with high nonlinearities and
critical hard constraints, these methods are not suitable to use and may exhibit stability
issues . In this way, the concept of Model Predictive Control arises to overcome all
these limitations, as will be explained in the following sections.

2.2 Model Predictive Control

Model Predictive Control (MPC) is a modern control technique used for controlling
constrained dynamic systems. This control strategy was introduced by in 1963 but
has gained more interest in the 1980’s with its application in the process industry , |§|,
7]. Since then, MPC has become the most used control method in this industry, where
the dynamic and sampling rates are relatively slow. In the last two decades, a growing
interest in the application of MPC for controlling dynamic systems with high sampling
rates has emerged, leading to an intensive researching work for developing new efficient
methods that allow the use of MPC to this kind of systems.

In the MPC control approach, a model of the system is used to formulate an
optimization problem which is solved to find the optimal control input for a certain
performance criterion. The main features of MPC are the predictive property, its
capability to deal with MIMO dynamic systems and to implement a controller that
considers general constraints on the state and input variables. The dynamic model is
used to predict the possible future behaviour of the system and decide the most suitable
control signals for leading the system to a desirable behaviour. The constraints in the
optimization problem are formulated considering physical limitations in the actuators
and the states and control ranges of operation or, in some cases, constraints presented in
the environment (e.g. in autonomous navigation). Furthermore, MPC can be divided
into linear MPC (LMPC), if the dynamic model and constraints are linear, and nonlinear
MPC (NMPC), if the dynamic model and constraints are nonlinear. Both, LMPC and
NMPC are nowadays the most promising control strategies to handle constrained MIMO
dynamic systems.
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Principle of MPC

In general, MPC works by solving repeatedly (every sampling time AT') a finite horizon
optimal control problem considering the current state as the initial state value x(0) of
the problem. This method is based on the receding horizon approach since the
prediction horizon is always relative to the current state and recedes away from the
initial point as the dynamic moves forward. Using this approach, the predictions and
control decision are continually updated to take account of the most recent target and
measured data. Since data measurement and decision-making based on measured data
are the core parts of any feedback loop, MPC has the advantage of introducing a
feedback controller, achieving stability and a good control performance.

PAST FUTURE

A >

F §

—— Reference Trajectory
—s— Predicted Output
Measured Output
Predicted Control Input
—— Past Control Input

|-—-— Prediction Horizon
< >

e a1 — -t -

«—»
Sample Time

Figure 2.2: Scheme of the model predictive control strategy ﬂgl]

A scheme of the MPC technique is shown in Figure For each prediction, the solution
of the MPC problem is a sequence of optimal control inputs u*(tx) (k € [0,...,N —1],
tr = kAT), which minimizes an objective function J and leads the dynamic towards the
desired behaviour. At time ¢t = tg, the MPC problem is solved and the actuator applies
only the first element of the optimal control input sequence (uf) until time ¢ = ¢;. After
that, the prediction horizon N is receded, the current state is measured (or estimated)
using sensors (or observers), and the MPC problem is solved again using the measured
(or estimated) state as initial state. This process is repeated iteratively while the system
is in operation. The MPC strategy is summarized in Algorithm [I]

The main idea is very simple, but it is important to analyse the key components of MPC
which are crucial for obtaining an efficient and reliable control strategy. First, The
objective function J is a a real-valued performance criteria for the best control signal
which leads to the desired behaviour. Since the optimization is performed online, the
complexity of J should be set according to the application and, preferably, defined as
simple as possible. Typically, a quadratic objective function is used because it provides a
well-conditioned optimization problem with smooth behaviours. Second, there is no a
standard rule for selecting the prediction horizon N, but it is advisable to use an N
which allows a prediction beyond the key dynamic of the system (transient part) or, at
least, big enough to consider the possible critical constraints that could exist in such way
that the controller can manage them. Therefore, it should be as large as necessary for
obtaining a good performance but should consider the corresponding complexity in
solving the MPC problem. Third, the core part of the predictive controller is the
prediction and, thus, a model is required. Defining an appropriate model is a key point
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Algorithm 1: Model Predictive Control strategy

Input: prediction horizon N, sampling time AT, sequence of sampling instances t;
1=0,1,...

set 1 =10

repeat

Measure or observe the process state x at time ¢;.

Formulate the MPC problem for the optimization time ¢ € [t;, ;4 n].

Compute the optimal control sequence u*(t), t € [t;, t;+n] by solving the MPC

problem.

Apply optimal control u(t) = u*(t), t € [ti, ti}1] to the system until ¢t = ¢;41.

Set i =14+ 1 and return to

until stopped by user;

[ VR

© o N o

in the controller design. The prediction model should be descriptive enough to capture
the most significant dynamics of the system and simple enough for solving the
optimization problem. In practice, it is not beneficial to spend excessive effort improving
accuracy, which can result in high order models but may have little impact on the
systems behaviour. Moreover, the feedback property generally corrects small modelling
errors. Thus, the dynamic model should be as simple as possible to reduce complexity in
the solution of the MPC problem, but must consider the inherent characteristics of the
real system to achieve a good performance.

But, why solve the MPC problem repeatedly and not use only a simple optimal control
approach? There exist some methods used to obtain an off-line open-loop optimal
controller considering constrained optimization problems . However, in the presence
of unknown disturbances or unmodelled dynamics, it is necessary the use of a
feedback-like controller which solves the optimization control problem repeatedly in
real-time. Similarly, suppose the optimal control problem with prediction horizon N has
been solved. Then, it would be sufficient to apply the whole optimal control sequence
obtained and not only the first element ug. This approach takes place only if the process
model is exact, there are no external disturbances, and if the control input is applied
instantaneously to the process [11]. In the real world, these conditions are never satisfied
because there exist model-plant mismatch due to the complexity of the system. Likewise,
unknown disturbances are likely to occur, as well as noise in the measurements, which
turn the initial state not completely determined. Moreover, the actuators need a little
time to react (the so-called dead time) and thus, there exist deviations between the
optimal and the applied control.

MPC Advantages and Disadvantages

MPC has shown to be very efficient for controlling very complex systems and has
outperformed typical control strategies that have been used for many years in the
industry. Compared to traditional control techniques such as PID controllers, MPC
offers the following advantages:

e It is possible to specify the desired limitations in the process (considering control and
state constraints), as well as the desired behaviour through the objective function
employed in the formulation of the problem. This feature avoids the use of heuristics
in the controller design and facilitates tuning .
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e MPC can handle large-scale control problems of dynamic systems with multiple
inputs and outputs (MIMO systems).

e For reference tracking control, MPC minimizes the tracking error by changing the
control input ahead of a setpoint change due to its predictive feature.

e The propagation of measurement noise through the control signal is reduced.
Disturbance compensation is also achieved due to the feedback feature given by the
receding horizon technique.

Besides all these characteristics, MPC is based on a well-established theoretical foundation.
Different studies about stability and robustness support the use of this control technique.
Also, the extensive studies on mathematical optimization tools used to solve optimal
control problems have increased in the last decades, giving, as a result, different robust
solvers that can be used in general MPC applications . However, all these advantages
come at the expense of the complexity in solving the resulting optimal control problem,
making the use of MPC very challenging in areas where time is a critical factor, such
as autonomous navigation. In particular, MPC becomes challenging due to the following
reasons:

e When the dynamic is nonlinear (NMPC), the optimization problem is generally non-
convex. Thus, in some cases, it might not be possible to obtain a global optimal
solution, instead many sub-optimal local solutions. This turns the problem very
difficult to solve, which implies more computational effort and so, more time for
obtaining the optimal solution.

e Systems with fast dynamics (linear or nonlinear) require the solution of the
optimization problem in real-time, i.e., within time intervals in the range of
milliseconds or even microseconds. Thus, it is necessary to compute the solution of
the problem at time ¢; as fast as possible (within the sampling time AT') in order
to obtain the optimal control input u* at time t5;.

As can be seen, the main bottleneck when using MPC for controlling dynamic systems with
high sampling rates is the computational complexity for obtaining the optimal solution
at each sampling time. Dealing with this problem is the main focus of many researching
works and is the core issue of the work presented in this thesis.

2.3 MPC Solution Approaches

To allow the use of MPC for controlling fast sampled dynamic systems, two different
approaches have been proposed in the literature: the offline and online solutions. These
two approaches differ in how and when is the problem solved. In the following, a brief
explanation of this two approaches is given.

Offline MPC

The offline MPC (also known as explicit MPC) performs the optimization before operation.
In this solution approach, the state-space is divided into polyhedra sets and the optimal
control action is computed as an explicit function for each set . The explicit control
law is stored as a look-up table, which reduces the online computational effort to only
locating the current initial state in the respective set and evaluating an explicit function
of this state. The state location (also called point location) represents the main effort and
its complexity depends on how the state-space has been divided. This location must be
implemented efficiently in order to obtain a very low computational time . The look-up
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table offers a cheap and easy implementation, and, since the optimization is performed
offline, it is possible to employ high sampling rates. However, the complexity and memory
requirements for computing and storing the polyhedra sets and control laws can be very
high, which limits the application of explicit MPC to small-dimension problems.

Online MPC

In the online approach, the system is in operation and the MPC problem is solved in
real-time at each sampling time, which involves that the overall computational time for
obtaining the solution must be less than the sampling time of the system AT. Because
of the complexity of the problem and the involved computational effort, it is necessary
the use of efficient solvers, which can provide a fast solution and which allow the
application of MPC to fast dynamic systems. Traditional solution algorithms for online
MPC are the interior-point and active-set methods. However, these methods are general
and do not exploit the inherent characteristics of MPC for obtaining a more efficient
solution. Thus, online MPC represents nowadays a current research topic and there have
been proposed a variety of solution methods, specially for LMPC.

This thesis focuses on the implementation of efficient solvers that can be used for the
online solution of MPC problems in real-time applications. The methods employed in this
thesis are based on the thorough work that has been carried out in the last decade focused
on developing new algorithms that provide an efficient and fast solution. Besides the
theoretical aspects, an efficient implementation must also take into account the available
computational resources and the way how to exploit all the potential to obtain the best
performance. Due to the recent advances in computer technology in the recent years, many
works have focused on employing parallel computation to solve MPC problems (e.g. ,
21]). The inherent characteristics that MPC exhibits make it possible to
divide the whole problem into subproblems that can be solved in parallel by using multiple
processing units (multiprocessor systems), obtaining in this way a higher performance.
Likewise, other works have proposed the use of high capacity field-programmable devices,
such as FPGAs , , that can implement efficiently numerical algorithms for embedded
real-time applications.

2.4 Summary

This chapter has presented the main idea behind the concept of model predictive control
(MPC) and the features that make this control technique one of the most employed for
controlling complex systems. MPC employs the current state to solve a finite horizon
optimal control problem at each sampling time and applies only the first optimal control
input. This procedure is repeated iteratively, which makes MPC a kind of feedback
controller. This control strategy has been widely employed in industrial applications due
to the advantages that it offers in comparison to classical control techniques such as PID.
However, the use of MPC in fast sampled dynamic systems is nowadays very challenging
because of the computational complexity in solving the problem. Many researching
works have focused on developing new efficient solvers that employ parallel computation
by exploiting the inherent characteristics of MPC, specially for the linear case (LMPC).
Although the study of parallel solvers is more mature for LMPC, some parallel methods
have been proposed for NLMPC, as will be seen throughout the development of this
thesis. The next chapter presents a background theory of the traditional methods for
convex optimization, which are the basis of the solvers implemented in this thesis.
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Chapter 3

Numerical Methods for Convex
Optimization

In this chapter, an overview of convex optimization and the most relevant solution methods
for the work presented in this thesis is presented. In fact, the MPC problem describes
an optimization problem, which is convex for the linear case (LMPC). Since there exist a
variety of different solvers, the correct selection of the solution method is one of the most
important tasks in the implementation of real-time applications. Therefore, a key point
is the analysis of the different solution approaches and the features they exhibit.

3.1 Convex Optimization

An optimization problem consists in finding an optimal value z* that minimizes (or that
maximizes) an objective function, while, possibly, satisfying a set of constraints
(constrained optimization problem). The standard formulation of an optimization
problem is given by
min /(@)
subject to: g;(x) =0 i=1,...,p, (3.1)
T e 0> 9. M8

where x € R" is the vector of optimization variables, f : " — R is the objective function
to be minimized, g(z) = [g1(),...,9p(z)]T is the set of equality constraints, and
h(z) = [hi(x),..., hm(x)]T is the set of inequality constraints. Convex optimization is a
special class of optimization problems where f(z) is a convex (in case of minimization)
function of z, the equality constraint functions g;(z) are affine (i.e. g;(z) = al z + b;) and
the inequality constraint functions hj(z) are also convex functions of z. With this
considerations, problem can be expressed for convex optimization as:

min  f(x) (3.2a)
subject to: Az =0, (3.2b)
hj(x) =0 j=1,...,m, (3.2¢)

where A € RP*™ and b € RP. The most important property in convex problems is that if
there exists a local minimum, it is also a global minimum. Many applications in different
fields can be described as convex problems, making convex optimization a widely used
tool.

The most basic class of a convex optimization problem belongs to the unconstrained
minimization, where the equality and inequality constraints are not considered and the
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objective function (3.2a) is minimized over R"™. When the minimization problem
considers only equality constraints, the problem is known as an equality constrained
minimization problem. The most general case is the problem described by , which
considers both equality and inequality constraints and represents a practical problem in
engineering. There exist reliable and efficient optimization methods applicable to every
specific convex optimization problem, and which are supported by a well-established
theoretical foundation. In the following sections, a brief review of the most relevant
solution methods for the work in this thesis will be presented.

3.2 Unconstrained Minimization Problems

In unconstrained minimization, the aim is to find an optimal point z* which solves the
following problem

min f(z), (3.3)

where f : R” — R is a convex and continuously differentiable function. Here, the
optimization is performed over the whole space R"™. The point x* is called a minimum
point if the following condition is fulfilled

f(z) > f(z*) VeeR".

When the condition above holds for a unique point in the whole space, this point is called
global minimum point and when it only holds for a point in a vicinity, the point x* is called
a local minimum point. The above condition is directly related to the following optimality
condition for unconstrained optimization:

Vit =0, (3.4)

where V indicates the gradient operator. This condition sets that at the optimal point
x*, the gradient must be equal to zero. In practical implementations, the gradient value
does not converge exactly to zero, but to a small tolerance number (in the order of 10~%
or less). In the following, it is presented a brief review of the most used solution methods
for unconstrained optimization problems: the descent methods. These methods solve the
problem iteratively by moving the current iterate z* along a search direction d* and using
a step length o > 0:
2l = 2F L oFdk.

The search direction d is called a descent direction because the value of f(z) is minimized
when moving along it and fulfil the following condition

Vfh)d* <o. (3.5)

Particular descent methods differ in the way how d* and o are chosen. In the following,
the two most important types of descent methods are presented: the gradient method and
the Newton method.

Gradient Methods

One important property of Vf(x) evaluated at x = z* is that it points into a steepest
local ascent direction. The gradient methods take advantage of this property and employ
the gradient information for obtaining the descent direction.
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Simple Gradient Method
This method employs an ’anti-gradient’ direction as descent direction, i.e.,
d* = V(")

which fulfil condition (3.5). The simple gradient method is summarized in Algorithm
Usually, the stopping criterion is that the Euclidean norm of the gradient must be less
than a given small tolerance ¢, i.e., |V f(z¥)|| < e.

Algorithm 2: Simple Gradient Method
0

Input : Initial guess x
Output: Solution point close to z*

1 k=0
2 repeat
3 d¥ = -V f(2)

4 find step length o
5 | ot =2k 4 okdk
6 k=k+1;

7 until stopping criterion;

The main advantage of this method is its simplicity and easy implementation. It has been
shown that the simple gradient method exhibits an approximately linear convergence, i.e.,
the algorithm converges to the solution approximately as a geometric series. However, the
convergence rate depends critically on the condition number of the Hessian matrix V2 f(z)
and for large condition numbers, this method is useless in practice .

Conjugate Gradient Method

The conjugate gradient method is properly not a gradient method but is considered here
because it also employs the gradient information for computing the descent direction.
The conjugate name of this method is because it works with conjugate vectors, obtaining
the solution of by minimizing f(z) along the individual directions in a conjugate
set. The conjugate gradient method is summarized in Algorithm

Algorithm 3: Conjugate Gradient Method
0

Input : Initial guess x
Output: Solution point close to z*

1 k=0
2 dF = —Vf(zF)
3 repeat
4 find step length o
5 | ol =ak 4 okdk
6 ﬁk+1 _ ||vf($k+1)”%
IV (k)3
dk+1 — —Vf($k) 4 6k+1dk
k=k+1;
9 until stopping criterion;
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Here, the descent direction is computed by employing the gradient information of the
current iterate V f(z¥) and that of the new iterate V f(x**1), which gives the conjugacy
property. As in the simple gradient method, the convergence depends on the properties
of the Hessian matrix V2f(x). For strict convex problems (positive definite Hessian
matrix), the conjugate gradient method exhibits a fast convergence rate. For other
problems, the Hessian matrix changes at each iteration and may turn ill-conditioned.
When this is the case, it is necessary to use a preconditioning technique, which is known
as the preconditioned conjugate gradient method . The conjugate gradient method is
most frequently employed for minimizing large-scale problems with strongly convex
quadratic functions. For instance, the solution of large-scale linear systems using
least-squares can be obtained using this method, as will be seen afterwards in this
chapter.

The simple gradient and conjugate gradient methods are useful in the strongly convex
case, where they converge linearly showing the conjugate gradient a faster convergence.
The simple gradient method is well-suited for real fixed-point arithmetic
implementations on FPGAs because of its numerical robustness against inaccurate
computations. Preconditioning technique can also be applied for obtaining a faster
convergence. Likewise, it is also possible to employ warm-starting techniques to improve
the convergence rate, i.e., start the algorithm with a point 2 close to the optimum
solution z*.

Newton Method

The gradient methods use only the first-order derivative information of f(x) for computing
the descent direction d. A faster convergence can be obtained through the use of second-
order derivative information, i.e., the Hessian V2 f(z). Newton method takes advantage of
this characteristic by approximating f(x) by a local quadratic model using a second-order
Taylor expansion around the current iterate z*

F@* +d) ~ F(@) + V) Td + %dTVQ F@h)d. (3.6)

The descent direction is computed by minimizing the right-hand side of (3.6)) with respect
to d. By deriving and making the result equal to zero, the descent direction is obtained
by solving the following linear system

V2 f(ah)d" = -V f(a") (3.7)

where the solution d* of the system of linear equations is known as the Newton direction.
The Newton method is summarized in Algorithm [4

The algorithm finishes when the norm of the gradient Vf evaluated at the current
iterate is less than a given small tolerance ¢, i.e., |V f(z¥)|| < e. When the initial iterate
20 is chosen arbitrarily, it is necessary to compute a step length o for the first iterates
in order to guarantee the convergence of the algorithm. When the iterates are sufficiently
close to the optimal point z*, a full Newton step is taken (ak = 1) and the algorithm
converges quadratically (local Newton method). This property makes Newton method
one of the most powerful methods for solving unconstrained optimization problems of
twice differentiable functions. It has been shown that this method scales well with the
problem size and is affine invariant . Because of these characteristics, it is widely
used for the solution of large-scale optimization problems.
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Algorithm 4: Newton Method
0

Input : Initial guess x
Output: Solution point close to z*

1 k=0

2 repeat

3 compute d* by solving

4 find step length o

5 xk-l—l — .CUk + akdk

6 k=Fk+1;

7 until stopping criterion;

The main complexity of the Newton method is the solution of the linear system at
each iteration, which requires the gradient and Hessian values at the current iterate. In
some cases, the Hessian matrix can be ill-conditioned or difficult to obtain and therefore,
preconditioning and approximation techniques are necessary (inexact and quasi-Newton
methods). Because of these reasons, each iteration of the Newton method is more
computationally expensive than one iteration of any of the gradient method.

This method is widely employed for solving a system of nonlinear equations of the form
F(z)=0, (3.8)

where F' : R" — R" describes the nonlinear system. Here, the vector F(z) can be
interpreted as the gradient V f(z) in and the Jacobian VF(x) can be interpreted
as the Hessian matrix. As a result, the Newton method can be employed for solving
the resulting nonlinear system of equations in interior-point methods, as will be seen in

Section [3.4]

Step Length Selection

The choose of the step length value o is crucial for the convergence of the algorithms
and must be chosen in such way that a sufficiently large decrease in f(z* + o*d¥) is
guaranteed. In the gradient methods, d* needs to be scaled to achieve convergence. On
the other hand, in the Newton method, d* may not be an actual descent direction and
therefore, using a full Newton step may lead to an iterate that is far from the optimal
solution . Therefore, a* is chosen in such way that

f(zF + oFd¥) < f(zb),

for 0 < a® < 1. This requirement can be interpreted as a merit function described by the
following scalar optimization problem

g1>1101 f@F + ad®). (3.9)

There exist different methods for determining the step length o, which are known as
line search methods. Obtaining o by solving is known as ezact line search and,
generally, is too expensive. Therefore, the inexact line search methods are employed in
practice because they are cheap to implement and provide a good decrement in the function
value. The inexact line search methods provide a step length o which approximates well
the solution of . Popular conditions for inexact line search are the so-called Wolfe
conditions,

f(zF + oFd®) < f(2*) + 1oV (P Td* (3.10)
Vf(* + oFd)Tdr > oV f(a)TdF (3.11)
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where 0 < ¢; < ¢a < 1. Condition (3.10) is known as the Armijo’s condition and ensures
a sufficient decrease in the objective function. Condition (3.11]) is known as the curvature
condition and ensures that the step length is not too small.

One of the most popular inexact line search methods is the backtracking method, which is
detailed in Algorithm [5} This method makes a continuous reduction of the step length «

Algorithm 5: Backtracking Line Search Method
Input : 2%, d*, parameters p € [0,0.1] and ¢ € [0, 1]
Output: step length

a=1

Tnew = ¥ + adF

while f(2ew) > f(a*) + paV f(z*)Td" do
a=ta
Tnew = F + adk

end

= B U VN

until the Armijo’s condition is satisfied. The backtracking line search method can also be
applied in constrained optimization problems, where an upper bound a4, € [0,1] must
be found and set as the initial value of « instead of 1 in order to guarantee feasibility.
There exist other inexact methods (e.g. bisection method) which also consider the Wolf
conditions, but the backtracking method is one of the most used due to its simplicity and
good convergence rate.

3.3 Equality Constrained Minimization Problems

In an equality constrained optimization problem, the objective function (3.2a)) is subject to
the equality constraint (3.2b)). This problem is represented by the following formulation:

min f@)

. (3.12)
subject to: Ax =b.

For unconstrained optimization problems, the optimality condition is given by . For
equality constrained minimization, this condition is not sufficient to guarantee the
optimality of the solution and therefore, a new optimality criteria is necessary. The
optimality conditions for problem can be specified through the use of the
Lagrangian function

L(z,\) = f(z) + \T(Az — b), (3.13)

where A = [Aq,..., /\p]T is the vector of Lagrangian multipliers for the equality
constraint. In the following, the vector of optimization variables x will be referred as the
primal variables and the Lagrangian multipliers \; as the dual variables. Similar to the
unconstrained case, a new optimality condition can be obtained by applying the gradient
condition to the Lagrangian function ,

v:rf(x*) + AT = 0,

where the gradient is taken with respect to the primal variables. This condition sets
that at the optimal points (z*, \*), the gradient of the objective function and that of the
equality constraint will have opposite directions and, generally, different magnitude. In
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the same way, the gradient with respect to the dual variable can be obtained, giving the
following optimality conditions:

Vef(z*)+ ATX =0, (3.14a)
Az* —b=0, (3.14b)

which are known as the Karush—Kuhn—Tucker (KKT) optimality conditions for equality
constrained problems and define a global minimum point when the function f(x) is strict
convex. Actually, the equality constrained problem (3.12) is analogous to the
unconstrained problem with the Lagrangian as objective function, because the
KKT conditions represent the gradient condition with respect to both primal and
dual variables. The KKT conditions define a nonlinear system of n + p equations with
n + p variables. Therefore, it is possible to employ the Newton method described in the
previous section for solving system . Using the Newton method, the following
linear system must be solved at each iteration

[Vﬁ f(zF) AT] [Amk] »

h L)y —[”}. (3.15)

Tp

Here, r4 and 7, are called the dual and primal residuals and are given by the left-hand
side of equations and , respectively. The residuals are a measure of ’how
far’ is the current iterate from the optimal points x* and A*, and thus, are used to
formulate the stopping criterion. The Newton method used for solving equality
constrained minimization problems of the form is summarized in Algorithm @

Algorithm 6: Newton Method for Equality Constrained Problems

Input : Initial guess 20 and \°
Output: Solution point close to z*

1 k=0

2 while ||r,|| > €, & ||74]| > €4 do

3 compute Az* and AN by solving the KKT system (3.15)
4 find oF

5 Update: zFt! = 2% 4+ o# Az and Mt = \F 4 oFANF

6 k=Fk+1;

7 end

As in the unconstrained case, the main computational effort in the method is the solution
of the KKT system because, in general, the coefficient matrix varies from iteration
to iteration. The method presented in Algorithm [6] exhibits the same properties as the
Newton method for unconstrained optimization. In case the objective function is quadratic
and the Hessian positive definite, i.e., f(z) = 7 Qz + ¢’z with Q > 0, the complexity of
the problem is reduced to only solve the following linear system defined by the KKT

optimality conditions:
Q Al lz*] g
A 0] |N]  |b]”’
which can be solve efficiently by using a proper linear algebra solver.
The method presented in this section is only one of the existing methods for solving

problem (3.12)). In fact, handling the equality constraints does not represent any challenge
because the problem can be transformed into an unconstrained optimization problem. A
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challenging case is given when the problem is subject to inequality constraints, in which
case other optimality criteria is needed. In the next section, we present the solution
methods for the most general convex optimization problem, which considers both equality
and inequality constrains.

3.4 General Constrained Minimization Problems

Interior Point Methods

Interior Point Methods (IPM) are among the most widely used numerical methods for
solving convex optimization problems. It was proposed by Karmarkar’s in 1984 and,
since then, many researches have been focused on IPM and its applications.

IPM generate iterates that are located inside the region described by the inequality
constraints (known as feasible points). There exist a variety of different IPM, some of
them focused on a specific problem type and others simple derivatives of general
approaches. The most popular are the path following methods, in particular the
primal-barrier, primal-dual and its derivative predictor-corrector, which will be presented
in the following.

Primal-Barrier Methods

The main idea in a primal-barrier IPM is to use a barrier function to remove the inequality
constraints :3.20|). This barrier function is added as a penalty term in the objective
function @, obtaining in this way the following equality constrained minimization
problem

min f(z) + ppp(x)
subject to: Ax =b, (3.16)

where ¢y, () is the barrier function and p is the barrier parameter. A common approach
is to use a logarithmic barrier function, which has the property of being continuous,
differentiable and convex [24].

Yn(x) = =Y log(—hi(z)) (3.17)
=1

Under this consideration, the continuity of the Hessian is guaranteed and the problem
turns into a tailored equality constrained problem, which makes it possible to use the
Newton method explained in section However, obtaining the solution of
problem as that of , generally, does not work . Therefore, the algorithm is
based on solving the equality constrained minimization problem decreasing the barrier
parameter u at each iteration, i.e., u = puF. As p approaches zero, the solution of
converges to the solution of . The primal-barrier IPM is summarized in Algorithm E

Primal-Dual Methods

Primal-Dual methods have shown to be more effective than primal-barrier methods with
only little additional computational effort, specially when high accuracy is required .
The main idea in primal-dual IPM is the solution of the KKT optimality conditions by
introducing a slack variable in the inequality constraints to transform them into
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Algorithm 7: (Primal-Barrier Method)

Input : Strictly feasible initial guess 2° w.r.t. g(x) <0, u® > 0, k > 1, tolerance
e>0
Output: Solution point close to z*
1 k=0
2 repeat
3 Obtain z**! by solving using Algorithm@
4 if mu® < € then
5 | STOP
6 end
- R = kg
8 k=k+1
9 until stopping criterion;

equality constraints and use the Newton method for solving the problem. For the general
case, the KKT optimality conditions are given by

Vi) + ATA+ VT (z)p =0, (3.18a)
Az —b=0, (3.18b)

h(z)+s=0, (3.18¢)

wis; =0, = 1l o Xl (3.18d)

(n,8) >0, (3.18¢)

where s € ®™, s > 0 is the slack variable for the inequality constraints, A € R? is the vector
of dual variables for the equality constraints and u € R the vector of dual variables for
the inequality constraints. In order to use the Newton method for solving the nonlinear
system above, it is necessary to make the following modifications,

e the complementary condition (3.18d)) is relaxed by making the equation equal to 7,
e the variables p and s are restricted to be strictly positive.

The vector 7 allows a modification of the right hand side at each iteration. The points
(z,\, i, 8) for which the relaxed KKT conditions hold are known as the central path. A
search direction is obtained by linearizing the modified system and solving the following
linear system

H(z,\) AT Vh(x)T 0] [Ax Td
A0 0 of |ax] _ |n
Vi) 0 0 I |au] T |l (3.19)
0 0 S A As Tsz
where S = diag(s1,...,8m), Z = diag(p1, ..., ) and H(z,u) is the Hessian of the

Lagrangian function, defined as

m
H(x,p) =V2f(@)+ Y piVhi(z). (3.20)
i=1
The vector in the right-hand side of (3.19)) is known as the residual vector and is defined
as follows
Td Vf(z)+ATA+ VLT (z)p
| Ax —b
re | h(z)+ s ’ (3.21)
Tsy SZ—711
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where 1 =[11...1]". It is important to remark that the solution of
Newton step due to the presence of 7, which typically is defined as:

) is not a pure

T=o0nl, (3.22)

where o € [0,1] is called the centrality parameter, and modifies the last row equation
in to push the iterates towards the centre of the feasible region and prevents small
steps when the iterates are close to the boundaries of the feasible region. More details
about the centrality parameter can be found in . The essence of the primal-dual
method is summarized in Algorithm

Algorithm 8: (Primal-Dual Method)

Input : feasible initial guess 2°, initial iterates \°,1%,5° > 0, centrality parameter
o€ (0,1)

Output: Solution point close to z*

1 k=0

2 repeat

3 | of e SIT sfuk/m

4 Compute (AzF, AN® Ap¥, AsF) by solving

5 | Find o such that s**' > 0 and p**' > 0

6

7

8

k=k+1;
until stopping criterion;

The algorithm stops when the norm of the residual vector is less than a given small
tolerance e, i.e.,
Irall <€ llrpll <€ lrell <€ [lrazll <€ (3.23)

The linear system is called the unreduced system and is sparse. Many approaches,
on how to reduce this system, have been investigated in order to improve the
computational performance. Some of this approaches will be employed for the algorithms
implemented in this thesis, as will be explained in the following chapters.

There exist many different variants of the primal-dual method. More details about primal-
dual IPM algorithms can be found in [30]. One of the most popular variants is the
Mehrotra’s predictor-corrector method , which will be explained in the following.

Predictor-Corrector Methods

This variant of the primal-dual method ’predicts’ the error produced by using a full Newton
and proposes the use of an adaptive update of the centrality parameter o, i.e.,

nedf 3
a:( )
U]

This update employs the values of the duality measure n in the previous step and compares
the values that this variable would have after the prediction phase (n®f ). If good progress
can be achieved, then the value assigned to o is very small (0 << 1) and the variable
update employs almost the full Newton step. The second phase is the corrector step, and
is obtained by a new Newton search direction, but considering the right hand side of the

last row equation in (3.19)) as

onl — ASY ANV
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The predictor-corrector method is summarized in Algorithm [9] The parameter v keeps
the iterates away from the boundaries. Two linear systems of the form must be
solved at each iteration, but the coefficient matrix is the same and thus, it is factorized
only once and the factor matrices are used again to solve the second problem.

Algorithm 9: (Mehrotra Predictor-Corrector Method)
Input : feasible initial guess 2°, initial iterates A°,u% > 0,s° > 0, v € [0.95,0.99]
Output: Solution point close to z*

1 k=0

2 repeat

3 | b X sfuf/m

4 Compute — (Azbaff ANeal T Apkall Askaf]) by solving %@I)

5 Find ok = max {a € [o, 1]|sk + aAsP T >0, 14+ aApFell >0
6 nkaff (s" + a“ffAsk’aff)T (1* + aaffAuk’“ff) /m

7 Compute (AzF, AN*, ApF, AsF) by solving

8 Find step length o = max {« € [0,1]|s* + aAs® > 0, u + aAp* > 0}
9 (2L ML bl bty o (g ARk Ry (A, ANE, Apk, As)
10 k=k+1

11 until stopping criterion;

Active Set Methods

Active set methods (ASM) are, in general, very effective when dealing with small-to
medium-scale problems . The most popular applications of these methods are for
linear and quadratic programming. In essence, ASM focuses on identifying the
constraints that are active at the optimum value (active set), because this set defines the
optimal solution z*. The optimal active set is defined as:

Alz) = EU{i € T | hi(z*) = 0} . (3.24)

where £ is the index set of the equality constraints. The constraints that are active at the
solution are considered as equalities, and the inactive are discarded. If the optimal active
set is known, the solution can be obtained by using Algorithm [l Therefore, the main
difficulty lays in determining this active set. The procedure is to guess an initial active set
and improve this guess iteratively by solving several equality constrained problems. The
equality constraints at each iteration consist in the set of the equality constraints £ in the
problem formulation and a subset of the inequality constraints Z, called working
set W € A(x). The principal considerations in selecting a new W are:

e if it is not possible to make a full newton step because some constraints would be
violated (blocking constraints), then the first constraint to be violated is added to
w,

e if the current iterate minimizes the cost function over the working set, but some
values of the Lagrangian multipliers are negative, then the related constraints are
removed from the working set.

The algorithm progresses in this manner until the current iterate minimizes the objective
function over the current W and all the Lagrangian multipliers associated with the
constraints h;(xz) € W are positive. The ASM procedure is summarized in Algorithm

(T0).
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Algorithm 10: Active-Set Method

Input : feasible initial guess 2°, initial set W according to z°
Output: Solution point close to z*

1 k=0
2 while k < k4, do
3 Compute descent direction (Az, AX) using Newton method
4 if (Az, AX\) ==0 then
5 Compute Lagrangian multipliers \;
6 if (A >0Vie WFNT) then
7 | STOP
8 else
9 Set j = argmin;cyyrnz Aj
10 Remove j from WF
11 h gk
12 end
13 else
14 Compute step length «
15 zF 1l 2F + oAz
16 AL AR L aAN
17 if blocking constraints then
18 ‘ Wk+L = WEL blocking constraints
19 else
20 ‘ Wk—H = Wk
21 end
22 end
23 k=k+1
24 end

Similar to the interior-point methods, there exist different variants of the ASM: primal,
dual and primal-dual methods, which are not explained here because they are out of the
scope of this work. More detail about ASM can be found in [33]

As in every Newton method, the main computational effort in each IPM or ASM is the
computation of the decent direction, which requires the solution of a linear system of the
form in the case of primal-barrier and active-set methods, or in the case of
primal-dual methods. = When solving MPC problems, it is necessary to solve a
constrained optimization problem, being the performance of the solver defined by the
efficiency in solving such linear systems. In section , different approaches how to
solve general linear systems are presented.

There exist other methods that, different from IPM or ASM, only use first-order gradient
information for solving the constrained optimization problem. These methods are known
as first-order methods and, typically, require more iterations than IPM or ASM, but
usually these iterations consist only of simple operations. More information about First-
order methods can be found in and .

Decompositions Methods

Decompositions methods (DM) focus on solving a problem by breaking it into smaller
ones, and solving them separately, either in parallel or sequentially. In fact, if the
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solution of these sub-problems is performed sequentially, the computational effort is less
than solving the whole problem because the complexity does not grow linearly with the
number of optimization variables.

Although these methods does not belong to the most popular ones (IPM or ASM), their
formulation and characteristics allow their use in distributed and network optimization
, , and can be exploited to solve optimization problems such as MPC, as will be
seen in the Chapter

Decomposition is not a new idea, it was proposed in the earlies 60s , but has not
been developed until the last decades. The main idea is to use efficient methods to solve
sub-problems and then combine the results in such form that it would be equivalent to solve
a very large problem. The main advantage of the decomposition approach is the possibility
of using parallelism and decentralized solution methods. To simplify the explanation,
here we only consider the equality constrained problem but the explanation can be
extended to the general constrained case. In the following, we present an overview of two
decomposition approaches: the dual decomposition method (DDM) and the method of
multipliers (MM).

Dual Decomposition Method

The DDM works with the Lagrangian formulation but considers that the objective
function is separable on the variables, i.e., f is a sum of functions with different local
variables

f@) = fi(z) +-+ fn(en),  z=(21,..,2n) -

Therefore, the Lagrangian function is also separable in its components, i.e.,
L(JZ, )\) = Ll(xl, )\) + .-+ LN(.’L’N, )\) .

where
Li(zi,y) = fi(m:) + AN Az

Thus, the minimization of the Lagrangian over z can be done in parallel because the
function is decoupled on the variables (the global minimization is equal to the sum of
each local minimization). This feature allows the simultaneous solution of independent
sub-problems, which is the core of the method. Algorithm [I1] summarizes the DDM.

Algorithm 11: (Dual Decomposition Method)

Input : Initial guess 2%, \°, a >0
Output: Solution point close to z*

1 k=0

2 repeat

3 $§+1 := argmin, L;(z;, AF)

a | A= 2k o (Zfil Az'fﬂ‘?“b)
5 k=k+1

=]

until stopping criterion;

The update of z* in line 3 can be done in parallel, while the dual variable update (line 4)
should collect the individual residual contribution (gathering) and then send the result to
each local sub-problem (broadcasting). This method is used to solve large scale problems,
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but takes many assumptions and, generally, is slow. A faster convergence can be obtained
using tailored line search methods, as will be explained in Chapter

The Method of Multipliers

The MM incorporates robustness to the decomposition method. Its approach is to augment
the Lagrangian function (3.13)) with a penalized quadratic cost of the primal residual, i.e.,

Ly(w,X) = f(@) + AT (Az — b) + £ | Az — b3

The method proceeds as the method explained in Section but with the difference
that the dual ipdate has a very specific step length value p. The reason for using an
augmented Lagrangian function is related to the primal and dual feasibilities. As the
algorithm progresses, the dual update A**! makes the pair (z**1, \¥*1) dual feasible and
hence, primal feasibility is achieved in the limit, i.e., the primal residual converges to
zero. With the addition of regularization in the Lagrangian function, the MM makes the
decomposition method go from a relative fragile algorithm to a robust algorithm that
works fine and converges under much more relaxed conditions. Unfortunately, the
quadratic penalty destroys the splitting of the x update and therefore, it is not possible
to make a decomposition on the variables x;.

In Chapter[5] a modern approach known as the alternating direction method of multipliers
(ADMM) will be presented. This method exploits the features of the DDM and MM to
provide a tailored algorithm that allows the use of parallel computing when solving LMPC
problems.

3.5 Sparse Linear Algebra

When working with fast dynamic systems in real-time implementations, the
computational complexity for obtaining the solution is a key factor and hence, an
efficient solver is indispensable. As has been explained in the sections before, the main
computational effort in any Newton-based method is the iterative solution of a linear
system to find the Newton step. Therefore, the efficiency of the solver in either a IPM or
ASM implementation is measured by how fast it solves this linear system. This
establishes the necessity of an efficient linear algebra, which takes advantage of the
characteristics of the linear system and exploits the available computational resources.

The term linear algebra involves many theoretical definitions, but in this thesis it is referred
to the methods for solving linear systems (e.g. , , ) A general linear system
is given by the following form:

Ax =0, (3.25)

where A € RP*"™ is the coefficient matrix, z € R" is the vector of variables and b € RP is
the vector of equalities. The complexity in solving this equation is defined by the
structure of the coefficient matrix A. Cheap solutions can be achieved when A is a
square matrix (p = n) and has a convenient structure. For instance, when A is diagonal
(i.e. a;j = 0if i # j), the solution is obtained by simply dividing each element of b by the
corresponding element of the diagonal, i.e., ; = b;/a;;. Another convenient structure is
when A is lower or upper triangular. The matrix A is lower triangular when all the
elements above the diagonal are zero (i.e. a;; = 0 if j > ) and is upper triangular when
all the elements below the diagonal are zero (i.e. a;; = 0 if j < 7). In these cases, the
solution can be obtained by simple forward and backward substitutions.
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The challenge appears when the matrix A does not have any of the previously mentioned
structures. In this case, it is not possible to solve the linear system using only
simple operations and hence, the use of general methods is necessary. In general, the
solution methods can be classified into two types: the direct factorization and the
iterative methods. The first one works by factorizing the coefficient matrix A into a
product of other convenient-structured matrices. Then, the solution can be obtained by
continuously making simple substitutions. The second one works by finding the roots of
Az — b in a iterative form. The method uses an initial guess xy to generate iterates that
approximates the solution of .

A more special case is given when the coefficient matrix A is a sparse large-scale matrix,
i.e., a matrix of high dimension in which most of the elements are zero. This is the
case to which the KKT matrix of the Newton-based methods belongs. For this kind of
problems, several considerations are taken in order to exploit the sparsity characteristic.
In the following sections, the most important direct and iterative methods for sparse linear
systems will be explained.

Direct Factorization Methods

When the matrix A is square and positive definite, like the KKT matrix, many standard
factorization methods can be applied. For the sparse case, the factorization method should
avoid the operations that involve the zero elements of the matrix and must keep the factor
matrices as sparse as possible. To satisfy these requirements, a pre-processing step must
be performed in order to predict and reduce the memory and computational requirements
in the factorization step. The most used sparse factorization methods are:

Cholesky Factorization

In the sparse Cholesky factorization, first, an ordering method is performed to obtain a
permutation matrix P, which describes the permutation operations in rows and columns.
Then, the matrix A is factorized as

A=PLLTPT,

where L is a sparse lower triangular matrix. The solution is obtained by a successive
forward and backward substitution, as in the dense case. Here, the sparsity of the factor
matrices depends on the selection of the permutation matrix P. There exist many
heuristic method for selecting good permutation matrices. Some of these methods
include determining the pattern of the Cholesky factor using the elimination tree and
obtaining the main characteristics of this pattern (e.g. number of non-zero elements per
row and column) [40].

LU Factorization

The sparse LU factorization is similar to the Cholesky decomposition, but, in some cases,
it may be necessary to perform pivoting operations to obtain numerical stability. A very
known approach to guarantee the solution is to transform the matrix A into a matrix C
with large diagonal entries, i.e.,

O =14Q| +1Q" A",

where @) is the permutation matrix that puts large entries into the diagonal, as is shown
in . Using this permutation matrix, the sparse LU decomposition of the pivoted matrix
is given by

QA= LU,
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where L and U are lower and upper triangular matrices, respectively. The solution, as
in the Cholesky decomposition, is obtained by making succesive forward and backward
substitutions.

LDLT factorization

The LDLT factorization avoids some operations of the Cholesky decomposition and

factorizes A as
A=LDL",

where D is a positive diagonal or block-diagonal (for symmetric indefinite A) matrix and
L is a lower triangular matrix with all its diagonal entries equal to one. The
pre-processing step determines the suitable 1 x 1 and 2 x 2 pivots, which will be
numerically favourable in the factorization step.  The ordering method is then
constrained to keep the 2 x 2 pivots together. Recent methods use weighted bipartite
matching based algorithms to determine these pivots. Once the sparse factors are
computed, the solution is obtained through successive substitutions.

Iterative Methods

The most popular iterative method for solving a real positive definite matrix is the
conjugate gradient method, which is a special application of the method presented in
Section For solving , the conjugate gradient method minimizes the norm of
Ax — b. As was shown in Algorithm [3] the method computes iteratively the gradient,
descent direction and step length, which for the linear system can be obtained
analytically using the exact line-search.

For sparse problem, the steps in Algorithm [3] involve several sparse matrix-matrix and
matrix-vector multiplications. The use of sparse solvers which employ the triplet storage
(store the column and row index and the respective coefficient of the non-zero elements)
is a must when an efficient implementation is desired. Other operations which are
involved in the algorithm are dot products and vector-vector sums. In recent works, the
use of multicore architectures to parallelize these operations has been intensively studied,
focusing in special applications. In Chapter we will show that the use of parallel
computation to obtain high performance in the solution of optimal control problems is
not only restricted to algebraic operations in vector and matrices, but can be also
employed to exploit the structure of some problems, such as the MPC problem.

The solution methods explained above can be applied for solving the KKT system,
which, in general, has a symmetric and positive-definite coefficient matrix. The sparse
direct factorization methods have a finite and fixed number of steps, but they need to be
permuted for obtaining a suitable structure. As has been mentioned, the choice of the
permutation matrix has influence on the sparsity patterns and therefore, must be chosen
in such way that high performance can be achieved. On the other hand, the conjugate
gradient method is one of the most suitable solution methods for large-scale linear
systems. The main advantage of this method is that good performance can be achieved
by parallelizing the operations involved in the algorithm using parallel architectures.

3.6 Summary

This chapter has presented an overview of the existing methods for solving convex
optimization problems, which are a special case of optimization problems. Depending on
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the class of problem (unconstrained, equality constrained or general constrained),
different solution methods can be applied. The Newton-based methods, such as
interior-point or active set, have shown to be very efficient for solving general
constrained problems, being the interior-point method the most used in the last years.
As will be seen in the following chapters, the linear MPC problem represents a
constrained convex optimization problem with a suitable structure that makes it possible
to employ different techniques for improving the efficiency when solving the problem.
The methods exposed in this chapter will be used as the basis for the implementation of
new solvers that exploit such problem structure. Moreover, even for nonlinear MPC
problems, which can be transformed into general optimization problems, the convex
optimization methods provide a clear framework for the solution of such problems.
Likewise, the Newton method presented in this chapter will implemented as a nonlinear
solver used in the procedure for solving nonlinear MPC problems, as will be detailed in
Chapter [8] This chapter has also provided a general overview of linear algebra methods
used for solving sparse large-scale linear systems. The solution of such systems
represents the main computational effort in the optimization methods described in
Section (3.4l By using an efficient linear algebra, the overall computational time required
for solving an optimization problem can be significantly reduced.
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Chapter 4

Linear Model Predictive Control

Linear model predictive control (LMPC) is a special case of MPC that has been widely
studied in many research works and is the basis of the work presented in this thesis.
The main feature of the LMPC problem is the use of a discrete-time linear dynamic,
linear constraints and a quadratic convex objective function. Although the dynamic is
represented using a linear model, this does not imply that the real system is governed
by linear relationships. In the following, the general setup of the LMPC problem, the
formulation, and standard solution methods will be presented.

4.1 Dynamic Control System

A dynamic control system is a continuous or discrete-time system whose dynamic
depends on a control variable u € R™. This control variable can depend on the state
variables z(t) and/or the time ¢. The control strategy is known as open-loop control
when the control variable depends only on the time, i.e., u = u(t), and closed-loop control
when the control variable depends on the current states of the system, i.e., u = u(z(t)).

Generally, control engineering employs dynamic control systems defined in continuous
time. This kind of systems can be described by ordinary differential equations (ODEs) of
the following form

&(t) = f(=(t),u(t),t), (4.1)
where f € RP=Xmux1l 4 R i5 a continuous vector function, t € R is the time parameter,
xz(t) € R™ is the vector of state variables and u(t) € R is the vector of control
variables. A special case is given when f describes a linear function of the state and
control variables, in which case the control system is called linear and is represented by
the following differential equation

#(t) = A(t)z(t) + B(H)u(t), (4.2)

which is known as the state-space representation. The matrix A(t) € R™*™ is called
the dynamic matrix and B(t) € R"**" is called the control matrix. When the matrices
A(t) and B(t) are constant, the control system is called linear-time invariant. In real-life
applications, the system is sampled at a constant frequency, which defines the sampling
time AT. In some cases, it is preferable to work with a discrete version of the real
dynamic system. The discrete representation of the continuous linear system can be
obtained by using simple discretization techniques, such as Euler discretization, zero-order
hold (ZOH) or first-order hold (FOH). When there does not exist a dynamic model, it
is possible to construct a discrete-time model through identification techniques, such as
ARMAX, Box-Jenkins, etc. The discrete-time version of a linear system is given by

o(k + 1) = A(k)z(k) + B(k)u(k) (4.3)

Tesis publicada con autorizacién del autor

No olvide citar esta tesis




PONTIFICIA

TESIS PUCP : gx_}\gﬁgﬁmn

D€L PERU

where k € Z. is the time index representing the sampling-point time ¢, = kAT, and
x(k) € R" is the state variables at ¢t = t;. The control variable u(k) € R™ is considered
constant in the time interval [tx,tx + 1]. LMPC employs a discrete-time linear model to
represent the dynamics of the system, and computes the optimal control input through
the use of optimization methods, as will be explained in the following section.

4.2 LMPC Problem Formulation

A typical control problem is the regulation of the states variables from an initial value x
to a desired value z,. while minimizing the control effort u; and taking into consideration
the constraints presented on the system. With this specifications, the objective of the
LMPC controller is to minimize the deviation between x; and z, as well as the control
variable u; within a given finite number of future sampling intervals (prediction horizon
N). For this purpose, an objective function J is constructed and is used to formulate
an optimization problem considering the dynamic of the system and the constraints on
the variables. This problem is then solved applying optimization methods. The nominal
formulation of the LMPC problem, considering x,, = 0, is defined as follows

N-1
min J = I%PNI‘N + Z x%Qkxk + u;‘nguk (4.4a)

R k=0
subject to:  x9 = x(0), (4.4b)
:rkH:Akxk—i—Bkuk k=0,...,N—1, (4.4C)
Dkxkgdk, ]{7:1,...,N, (4.4d)
Fkukgfk, ]CZO,...,N—I, (4.46)

where Qi € R"=*"= Py € R"=*"= and Ry € R™*™ are positive definite matrices which
are known as the penalization matrices, Dy, € RP*"= d € RP, F}, € R™*™ and f, € R™
are the matrices and vectors of inequality constraints on the state and control variables.
The above formulation of the LMPC problem assumes that the pair (Ag, Bg) is
stabilizable and that the pair (Q2'5,Ak) is detectable. The positive definiteness of the
matrices Qk, R and Py is necessary to guarantee the convexity of the objective function
over the states and control variables. For linear time invariant systems, Py is
chosen as the LQR matrix obtained from the solution of the discrete-time algebraic
Riccatti equation.

The objective function can also be defined to minimize the error between the state
variable z and a reference value x,.y. This kind of objective function is generally used in
tracking control and defines a quadratic and linear terms in J, which does not represent
any additional complexity for solving the problem. In this thesis, the nominal
formulation is employed for introducing the LMPC problem and the solution
methods presented in the next chapter.

It is important to remark that generally, the inequality constraints presented in the LMPC
formulation represent upper and lower limits on the state and control variables, which can
be expressed by the following box constraints

Tmin < Tk < Tmax

Umin < UL < Umax -
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The aim of the LMPC controller is the minimization of the objective function (4.4al
considering the linear dynamic constraint and linear inequality constraints @
and . This class of minimization problem can be expressed as a general convex
optimization problem and solved with the methods explained in Chapter [3| for convex
optimization. The minimization of a multivariable quadratic function which is subject
to linear constraints is referred as a quadratic programming problem (QP) and is the
class of problem to which the LMPC problem belongs. The general convex optimization
problem [3.2] can be formulated as a QP problem as follows:

min 2'Qx+q'z
xX
subject to: Axr =b,
Cx<d,

where ) € R"*™ is a positive definite matrix. The formulation above will be referred as
the standard QP problem formulation and will be used to describe the LMPC problem.
Notice that here, x € R" represents the vector of optimization variables in the QP
problem, while x; € R™* represents the state variable at time ¢; in the LMPC problem.

In the following sections, we present two different ways how to formulate the LMPC as
a general QP problem in order to apply optimization methods for obtaining the optimal
control inputs.

Reduced LMPC formulation

In this formulation, the state variables x; are expressed as dependant variables and the
QP problem is minimized over the control variables ug. At time k = 0, the value of
the current state xg is given by sensor readings or observer estimations and is used as
initial state value in the MPC problem. Since the dynamic of the system is expressed
as a recursive state-space equation, the future trajectory of the state variables xj, for
k=1,...,N, can be defined as a function of the initial state xy and the optimal control
variables uy, i.e., z = f(ug,zo). Therefore, since z( is a given value, it is reasonable
to consider only the control variables u in the optimization problem and to reformulate
the MPC problem as a QP problem of this variables. Considering the dynamic equality
constraint , the future states xy, for k = 1,..., N, can be computed by making a
recursive substitution using the dynamic state-space equation , giving as a result the
following prediction equations:

r1 = Aoro + Bouo,
re = Az + Bug,

= AyAgxo + A1 Boug + Biug,
x3 = Ao+ Boug,

= AgA1Agxy + Ay A1 Boug + AsBiuq + Bous

Ny = An_1...Apxo+An_1...A1Boug+ -+ Any_1Bny_sun_o2+ By_jun_1,
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The above equations show that the N predicted state variables x; depend linearly on the
current state xg and control values uy. Defining the sequence of state and control variables

as follows,
e ] o ]
X9 Ul
X = 5 u =
TN-1 UN—-2
| TN | | UN—1 |
the prediction equations can be rearranged an expressed as the following matrix equation
x = Azg + Bu, (4.6)
where the matrices A and B are
AO BO
A1Ap A1 By By
A _ AQAlA() B _ A2A1B0 AgBl BQ
k=0 k=1 k=2
H Ay H ArBo H ApBy ... An-1By-2 By
| k=N—-1 | | k=N—1 k=N-1 i

Now, the aim is to determine which is the optimal control sequence u necessary to
minimize the objective function. Problem can be expressed in terms of x and u by
defining the matrices Q = diag(Q1,...,Qn-1,Py) and R = diag(Ry,...,Ry_1). By
formulating as a function of u and x, and replacing the latter with , the
objective function is expressed as follows

] gl _ - A 1
3 (A:no + Bu)T Q (Amo + Bu) + éuTRu.
By expanding, rearranging and factorizing, the following expression is obtained
1 _ = _ 2 1 - -
3 u’ (BTQB +R)u+ 22 ATQBu | + 5chTATQAgco ,

v —_———
Q q c(zo)

which is a quadratic function in terms of u;. The Hessian matrix Q is positive-definite since
the matrices Q and R are positive-definite. The constant term c(xg) is only a function of
the initial state x¢ and, as a constant value, has no influence on the optimal solution. By
using the same procedure as for the objective function, the inequality constraints
and can also be expressed in terms of u. As a result, problem is formulated
as the following QP problem

1
min §uTQu +q'u (4.7a)
subject to:  Cu<d, (4.7b)

where the matrix C and vector d contain the constraints in control and state variables
and are given by

[ B ] [ Xmax — A ]

C _ _B 7 a _ —Xmin + A
I Umax
L _I_ i Umin
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The QP formulation (4.7)) is one of the most employed for linear MPC problems, because
it considers only the control variables in the optimization. For a linear time-invariant
system, the matrices A and B have to be constructed only once while for a linear
time-variant system, these matrices have to be constructed online, which increases the
pre-processing computation at each prediction.

This formulation provides, in general, a low-scale QP problem, which is advantageous
when working with problems with few control inputs and without constraints on the state
variables. However, the resulting QP problem is completely dense because the objective
and constraint matrices are dense matrices due to the global coupling of the variables.
Moreover, when general constraints are presented on the state and control variables, the
resulting QP problem may have more constraints than optimization variables, making the
problem more complex to solve.

4.3 Sparse LMPC formulation

In this formulation, the MPC problem is expressed as a QP problem considering both
control and state variables as optimization variables in the problem. To define the vector
of optimization variables, the sequence of control and state variables are arranged
contiguously according to their time index, defining the following vector

Uo
1
u1

ITN-1
UN-1
TN

where x € RV(e+7u) - Different from the reduced formulation, the sparse formulation
introduces the dynamic equality constraint in the QP problem as a linear equality
constraint expressed in terms of the optimization variable x. The prediction of the future
N states using the dynamic state-space equation can be described as follows

—Boup+z1 = Apxo,
—Alxl — B1u1 + Tro = 0,
—An_9xN—2 — By_sun—2+azny_1 = 0,
—An_1xN—1 — By_iun—1 +2y = 0,

where all the equations have been equalled to zero, except for the first one, where the linear
term containing xo has been put in the right-side of the equality. The above equations
can be rearranged and expressed as the following linear matrix equation:

Ax =D, (4.9)
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—By I 0 0] [ Aoo]
0 -4 -B I 0 0 0
0 0 0 -A B I 0 0
A= | , , b=1 .
—Ay_y —By_y I 0 0 0
0 —Ay_1 —By_, 1] L0
(4.10)

Equation represents the dynamic constraint in terms of the variable x and has
a well-defined structure. By using the same procedure, the objective function and
the inequality constraints and can be expressed in terms of x, giving as a
result the following standard QP formulation for the LMPC problem

min ~ x’ Qx (4.11a)
subject to:  Ax=Db, (4.11b)
Cx <d, (4.11c¢)
where ) )
Ry O 0
0 Q1 0 0
0 0 R O 0
Q= 0> (4.12)
0 Qn-1 O 0
0 0 Rny_1 O
0 0 Pyl
[y 0 0] [ fo ]
0 D O 0 dy
0 0 FA 0 0 h
C= 0| d= :
0 Dpy_1 0 0 dn_1
0 - P Fyoa
| 0 e 0 Dy | | dv |

This QP formulation considers both state and control variables in the optimization and
the resulting Hessian and constraint matrices (Q, A and C) are sparse large-scale
matrices, which allows the use of sparse linear solvers to reduce the computation and
memory requirements. KEven more, the sparse matrices have a well-defined structure
because the state and control variables are decoupled in the objective function and
inequality constraints (matrices Q and C are block diagonal), and only the states are
partially coupled in the equality constraint (matrix A is banded). This feature allows
the use of decomposition techniques and the implementation of solvers which exploit
parallel computing using multicore processors.

The sparse formulation is the basis of the solvers implemented for solving the LMPC
problem, which will be described in the next chapter. Although some of the proposed
methods do not use directly this formulation, they exploit the decoupling characteristic
of problem to use different decomposition approaches considering the convexity
property of the problem.
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Since the LMPC problem , formulated with either the reduced or sparse formulation,
represents a general QP problem, which is a kind of convex optimization problem, any
of the methods presented in Section [3.4] can be used for obtaining the solution. The
main challenge appears when LMPC is used for controlling dynamic systems with high
sampling rates, in which case the computational time becomes a crucial factor. Therefore,
the method employed for solving the problem should be as efficient as possible such that
the optimal control input can be obtained and applied to the system for each sampling
time. In the last years, different methods that try to reduce the computational effort have
been proposed. Most of these methods are based in the fact that a significant reduction
in the computational effort can be achieved by exploiting the sparse properties (sparse
formulation) and using the so-called warm-starting techniques. In this section, we present
a brief review of some optimization methods proposed in the literature and applied to the
solution of LMPC problems.

Interior-Point Method

The interior-point methods presented in Section [3.4] exhibit a polynomial complexity,
i.e., the complexity of finding a solution to the optimization problem grows polynomially
with the problem dimension [42]. In general, the IPM requires a small number of
iterations for obtaining the solution, but each iteration is computationally expensive
because the KKT system must be solved iteratively, which requires the use of either a
factorization or iterative method in each interior-point iteration. To improve the
performance of the IPM, it is possible to use warm-starting techniques by shifting the
solution obtained in the previous prediction and using it as an initial feasible starting
point for the new prediction, reducing in this way the number of iterations required to
find the optimal solution because the initial iterate is close to the central path .

The IPM applied to the solution of LMPC problems has been widely studied. In [44], an
efficient computation of the Newton step using factorization methods has shown that the
computational complexity is reduced when using tailored methods which exploit the
sparsity feature of problem . When using this approach, the complexity of the IPM
grows linearly with the prediction horizon N and good speed-up factors can be achieved.
In , this approach is extended for the application in robust tracking control problems.

In [46], an implementation of the primal-dual predictor-corrector IPM for solving
large-scale quadratic optimization problems is presented. To obtain computational
efficiency, the implementation in this work employs a sparse linear algebra solver.
In [47], an infeasible primal-barrier method is proposed considering a fixed value for the
barrier parameter. This variant of the IPM employs also the warm-starting technique
and uses block-elimination for obtaining the Schur-complement decomposition. Actually,
the Schur-complement decomposition is one of the most used techniques for solving the
KKT system in LMPC problems and will be detailed in the next chapter, where a
parallel implementation of this method is proposed.

Active-Set Method

As has been explained in Section [3.4] the active-set methods work by defining a set of
active constraints and solve an equality constrained problem iteratively. Typically, the
ASM require more iterations than the IPM, but these iterations are, computationally,
less expensive. Since the KKT system is constructed by adding and removing the active
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constraints, it is possible to factorize the KKT matrix only once and make little updates
to the factorization at each iteration. The ASM are preferable when working with
small-scale problems and, therefore, is more suitable for solving the reduced QP
formulation (]@ The warm-starting technique allows a fast convergence of the solution
assuming that the active constraints do not change much from one prediction to other.
Similar to the IPM, the main computational effort in the ASM is the solution of the
KKT system.

In [48], a Riccati-recursion method is employed for solving the sparse QP
problem . The Riccati solver used in this work employs the Cholesky factorization
and regularization techniques. They apply the method for solving large-scale linear
quadratic control problems and show that the computational complexity grows linearly
with the prediction horizon N. In [50|, a dual ASM is proposed for the solution of
large-scale structured QP problems. This work employs the Schur-complement
decomposition method for solving the KKT system. As a result, the solver QPSchur has
been implemented as an open-source software package.

In [51], an ASM for solving the reduced QP problem is proposed. They employ the
warm-starting technique and exploit the piece-wise affine structure of the parametric
optimal solution. The method proposed in this work exploits the characteristics of
parametric QP and solves the KKT system using a null-space approach. As a result, the
online ASM solver ¢qpOASES is developed as an open-source software package. In , a
non-feasible ASM is implemented for solving the reduced QP problem. The
implementation in this work reduces the number of iterations by making a block update
of the active constraints instead of making only single updates.

Apart from the IPM and ASM, there have been proposed other solution methods for the
LMPC problem. In [53], fast gradients methods are used for the solution of LMPC
problems with bound constraints in the the control variables. The results show that,
with some considerations, it is possible to use high sampling rates using this approach.
In , the LMPC problem is reduced to an unconstrained optimization problem and
solved using Newton’s method without exploiting the problem structure.

For the work presented in this thesis, This section has described the ASM to bring a
clear overview of the different solution approaches and existing solvers which employ this
method. However, the work presented in this thesis does not consider the ASM because
it is focused on the implementation of the IPM and other novel tailored algorithms. In
order to exploit the inherit block-structure characteristic of the LMPC problem, the
sparse formulation of the LMPC problem will be considered. Based on the work
reviewed from the literature, in the mnext chapter we will present different
high-performance parallel methods for solving LMPC problems, which will be afterwards
implemented in multicore architectures.

4.5 Summary

In this chapter, the LMPC problem has been presented, defining the main features of
this particular problem. Since the LMPC problem is described in discrete time, it can be
formulated as a general QP problem by using suitable operations. The reduced
formulation [4.7] defines a QP problem that considers only the control variables in the
optimization, defining, in this way, a reduced but completely dense QP problem, which
does not have any suitable structure to exploit. On the other hand, the sparse
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formulation defines a large-scale QP problem which considers both, state and
control variables in the optimization. However, the resulting problem, different to the
reduced formulation, is very sparse and has a well-defined structure which can be
exploited in order to improve the efficiency when solving LMPC problems. Even more,
for some LMPC problems, obtaining the solution of the reduced QP problem [4.7] has
shown to be more expensive than solving the sparse QP problem [£.11] The most
classical methods for solving the resulting QP problem are the interior-point and active
set methods, which have been intensively studied in the last decade for their application
in LMPC. However, the requirement of more efficient methods for real-time control
makes it necessary the use of novel strategies, as will be shown in the next chapter.
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Chapter 5

Parallel Solvers for LMPC

Solving a LMPC problem implies the solution of a QP problem, which can be carried out
using different optimization methods. The most general approach is to use the active-set
and interior-point methods, which have shown good convergence and stability properties.
In particular, the interior-point methods provide an excellent framework for the solution
of very large-scale optimization problems, which is the class of problem to which the
MPC problem belongs. However, the main challenge that arises for applications in
fast-sampled dynamic systems is the requirement of solving the optimal control problem
in real-time. To accomplish this requirement, it is necessary to implement an efficient
solver that exploits the characteristics of the problem and the available hardware
resources in order to reduce the computational time, memory requirements and power
consumption.

For the interior-point method, the main computational effort at each iteration usually
lies in the solution of the KKT system, which is a linear system obtained through the
application of the Newton method to the KKT optimality conditions. By using the QP
sparse formulation of the LMPC problem, the resulting KKT system is sparse and
block-structured, which are properties that can be exploited efficiently. In the last years,
the use of parallel architectures for improving the computational speed has been
intensively studied in order to develop efficient methods in general applications. These
methods divide the required computational calculations among multiple processors for
improving the overall performance. Some of these parallel approaches have been focused
on solving the large-scale linear systems that appear in different engineering applications,
such as MPC.

In [55], a parallel solver for sparse symmetric and non-symmetric linear systems is
implemented in distributed memory architectures. The code is written using the Fortran
version of message-passing interface (MPI) [56]. They employ mapping multifrontal
methods based on the LU and LDLT decompositions and include an asynchronous
parallel algorithm for obtaining an efficient numerical pivoting. The parallel factorization
is carried out using a master processor and one or more worker processors, which number
is determined dynamically. The algorithm showed good speed-up factors using a small
number of processors. However, the scalability was not tested when using large number
of processors for very large-scale linear systems.

In [57], sparse direct factorization methods for solving sparse linear systems are
implemented on shared memory architectures. The proposed factorization methods are
applied to the solution of symmetric and non-symmetric problems. They employ block
supernode diagonal pivoting and the multiple frontal method to perform the LU
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decomposition of sub-matrices in parallel using multithreading. Although this approach
is not always efficient, for some benchmark problems it has shown very promising results.
However, since the method is designed for shared memory architectures, the application
of this solver and the scalability are restricted to the employed hardware.

In , the NVIDIA CUDA architecture is used to implement the conjugate gradient
and multigrid methods. The numerical results reported in this work show that, by
exploiting the GPU multithreading, high efficiency can be achieved and very large-scale
linear systems can be solved in order of milliseconds. In , a similar implementation is
presented and applied to linear systems with dimensions on the order of 10°. Although
the GPU offers a high performance by exploiting the hardware, the cost and required
power resources restrict its application in some fields, such as autonomous navigation.

Recent approaches focus on solving large scale linear systems by using hybrid parallel
architectures. In [60], a parallel Gauss-Jordan elimination for computing the inverse of a
matrix is implemented using different architectures. They test the algorithm on
multicore processors, hybrid CPU-GPU and hybrid multi-GPU systems. The
implementations use high performance linear algebra kernels such as the Intel’s MKL
(for multiprocessors) and NVIDIA’s CUBLAS (for GPU). The solvers are tested for the
solution of Lyapunov and Riccati equations, showing the implementation in hybrid
multi-GPU architectures the best performance.

As can be seen, there has been a wide and intensive research in exploiting parallel
architectures for implementing efficient linear algebra solvers. As a result, open-source
professionally developed software packages are currently available and represent powerful
tools for many applications in science and engineering. Therefore, since it will be trivial
to explore new implementations for solving the sparse KKT system in the LMPC
problem, the aim of this chapter is to develop new parallel tailored solvers for this
problem. By exploiting the well-defined structure of the LMPC problem, it is possible to
employ different decomposition techniques that allow the division of the problem in less
complex tasks that can be solved in parallel. In the following sections, we will present
some tailored parallelization methods for solving LMPC problems.

5.1 Parallel Schur-Complement Decomposition

In the sparse formulation of the MPC problem, the objective function and constraints
induce a block-structured KKT matrix, defining a sparse linear system that can be
decomposed using a suitable rearrangement. This decomposition approach is known as
the Schur-complement decomposition method and is widely used for solving structured
linear systems that arise in different applications. In especial, the use of this approach for
solving the KKT system of LMPC problems has been deeply studied in the last years.

In [16], a decomposition approach for the solution of general linear systems using the
Schur-complement approach is presented. They investigate which is the most suitable
problem structure for using this decomposition method and remark that when this
structure exists and is adequately exploited, a significant improvement in the
computational performance can be achieved. For general problems, the structure
analysis and decomposition can be computationally expensive and therefore, they
conclude that this approach is most suitable for problems with well-defined coupling
equations. When the linear system does not have this feature, they propose to develop
specific solvers for those particular systems in order to avoid the structural analysis.
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In [61], a theoretical relationship between bilevel decomposition and Schur-complement
interior-point methods is presented. Additionally, this work shows how the problem can
be modified when the Schur-complement is not generally invertible. In and , a
serial implementation of a primal-dual interior-point method with Schur-complement
decomposition is used for solving discrete linear optimization problems. Although the
algorithm is not parallelized, the numerical studies have shown promising results. In [15],
a parallel implementation of the Schur-complement decomposition using Ipopt is
presented and used for solving parameter estimation problems. Likewise, in and
different case studies are presented for solving non-linear optimization problems using
this decomposition scheme.

In this section, we present a parallel solver for LMPC problems based on the primal-
dual interior-point method with the Schur-complement decomposition. Different to the
implementations in and , where the parallelization focuses only on the computation
of the Newton step, we propose the parallelization of the whole algorithm, taking advantage
of the block-structured feature that the sparse QP problem exhibits.

Parallel Newton-step computation

Here, the primal-dual interior point method, explained in Section and detailed in
Algorithm [§] is considered for the solution of the LMPC problem. The aim is to solve
the KKT linear system using the Schur-complement decomposition method and
taking advantage of parallel computation using multicore architectures. To accomplish
this, we first need to express the KKT matrix in as a suitable block-structured
matrix, which will be then decomposed using the Schur-complement approach.

In the KKT linear system (3.19)), the fourth block row can be eliminated by replacing the
slack step As in terms of the dual step Az using the following relationship

As=—Z(rs, + SA2),

and replacing then this expression in the third block-row equation, giving as result the
following block-row equation:

Vh(z)Ax — Z7SAu = —roy+ Z7 g, .

In the sparse formulation of the LMPC problem, the matrices H(z, ), A and Vh(z)
are given by Q, A and C, respectively, and the vector of optimization variables x is given
by x. Using the above equation and the corresponding matrices, the following modified
KKT system is obtained

Q AT cT Ax rq
A 0 0 AN = — Tp . (5.1)
C 0 -z7'S| |Au re =27 s,

As has been shown in Section the matrices Q and C have block-diagonal structure,
and the matrix A is banded, which are characteristics that can be exploited to obtain a
suitable banded structure in the KKT matrix. From the third block row equation of ,
the variable Ap can be expressed as

Ap=8"17z (rc — Z g, + C’AX) ,
which can be replaced in the first block row equation to obtain the following equation,

(Q+CT(ST12)C)Ax+ AAN = —1rqg — CT (S 2)(ro. — Z7'7s), (5.2)

Tesis publicada con autorizacién del autor

No olvide citar esta tesis




PONTIFICIA

TESIS PUCP : 324‘3{'}3‘,{"‘"

DEL PERU

which is dependent only on the variables Ax and A). Using this last equation and
the remaining second block row equation of (5.1f), the following reduced KKT system is

obtained
Q+CT(s'z)Cc AT] [Ax __|ra+ CT(S7'Z)(re — Z71ryy) (5.3)
A 0 | [AXN] Tp ’ ’
where Z = diag(z1,...,2n) and S = diag(si, ..., sy). Because the objective function and

the inequality constraints for each time prediction stage k are not coupled with that of the
other stages, the matrix Q4 C”(S~!Z)C has a block-diagonal structure. It can be shown
that the reduced KKT system has a banded structure which allows the use of the
Schur-complement decomposition approach. To show this banded structure, the vector of
primal variables x € RV*(=+m4) ig divided into N sub-vectors v, € R ™" which consist
of control and state variables for each stage, i.e.,

v = {“’“] : (5.4)

Similarly, the dual and slack variables for each stage are defined as

ra |:Zu,k—1:| 7 o = |:Su,k~1:| ’
Zx,k S,k
where (2, k—1,Suk—1) are the dual and slack variables corresponding to the inequality
constraints on uy_1 and (24 k, Sz k) are the dual and slack variables corresponding to the

inequality constraints on x. Using this decomposition of the variables, the reduced KKT
system can be written as

M, Gi || [ Av ] [ ry1 ]
My Go Avg Tv,2
M1 Gr-1 Avg_q Tok—1
M;, G, Avg | =~ | 7ok |,
Mpy_4 Gn-1 Avn_q Tu,N—1
MN GN AUN T'U,N
_JG1|G2‘...’Gk_1|GkT...(GN_1 GN 0 1 L A\ | | T'p |
(5.5)
where )
Ry 1+ FL (Z7}  Sup_1)F_ 0
My, = k-1t k—l( u,k—1°wk 1) Fr1 o (5.6)
0 Qk + Dk (Zx,ksw,k)Dk

and Ry, Qg, Fr and Dy the local objective and constraint matrices in the LMPC problem.
The matrices Gy, are block matrices of the matrix A in such that

A=[G1 Gy ... Gny_1 Gy]. (5.7)

Likewise, the stage residual vectors r, j are block vectors of the residual vector, such that
T _ _

[r;{’l 7"2{2 . raN_l r;{’N] =rg+CT(S72)(ro — Z7'ry2) . (5.8)

The step in the dual variables corresponding to the equality coupling constraints, A\, can
be decoupled from the other variables by eliminating the matrices Gy in the last block
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row equation of the banded KKT system (/5.5])
decomposition

, leading to the following Schur-complement

N
AXN=—rp+ > GpM 1y (5.9)

N
[— > GM G
k=1

k=1

This decomposition allows the use of parallel computing for solving the KKT system.
The matrix-matrix multiplications in the right and left-hand side of consider only
the local block matrices My, Gj and block residual r,; of each prediction stage, i.e.,
these operations depend only on the kth local matrices and vectors and, therefore, can
be performed in parallel by using N different processors, which are typically referred as
the worker processors. Likewise, it is necessary to define another processor, which is
typically referred as the master processor and carries out the main computation of the
interior-point algorithm and makes the coordination between the worker processors. For
the parallel computation of the Newton step, the master processor sends My, G, and 1, %
to each worker processor, which perform simultaneously the multiplications. Then, the
local results are sent to the master processor, which computes the step A\ by solving
and sends this value to all the worker processors for the computation of the local steps
Awvyg, which are obtained by solving the following linear system

MpAvg = —1y 1 — GEAN. (5.10)

The N local vectors Avy are then gathered by the master processor to obtain the primal
descent direction Ax, ie, Ax = [Avy,...,Avy]?.  Algorithm summarizes the
procedure for the parallel solution of the KKT system using the Schur-complement
decomposition approach.

At each iteration of the algorithm, the main computational effort lies on the solution of
local linear systems, which is carried out by each worker processor, and the solution of
the Schur-complement for obtaining A\, which is carried out by the master
processor once all the worker processors have send their local results. Since each worker
processor solves different linear systems which have the same coefficient matrix My, it is
possible to factorize this matrix only once using a direct factorization method (e.g. LU

Algorithm 12: Schur-complement solution of the KKT
Input : matrices My, Gy, vectors 5 and 7,
Output: descent direction Ax, A\

1 Workers:

2 Solve Mypqr = G{ for q

3 Uk = Grar

4 Solve Mjypy = 1y 1 for py

5 wi = Gy

6 Send y; and wy to Master processor
7 Master

8 Compute A by solving

9 Send A\ to all processors

10 Workers
11 Compute Avg by solving 1D

12 Send Awvj to master processor

13 Master

14 Gather Av and form Ax

15 Continue with the interior-point algorithm
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Figure 5.1: Local primal, dual and slack variables for each processor.

or LDLT) and employ this factorization for obtaining the solution using only simple
substitutions. Even more, when the penalization matrices Ry and ()i are diagonal and
the matrices Fy and Dy describe upper and lower bounds on the variables, the matrices
M, are diagonal and do not need to be factorized. This solution approach is suitable for
systems with many states and control variables and for problems with very large
prediction horizons. However, a weak point of the method presented in Algorithm is
that the worker processors are only used for solving the KKT system, while the other
steps of the interior-point algorithm are carried out only by the master processor.

When the problem is large-scale, the computation of the residual (right hand-side of )
involves matrix-matrix, matrix-vector and vector-vector multiplications. Since most of the
matrices and vectors have block structures, a more efficient computation can be achieved
through the parallelization of these operations. The objective function and inequality
constraints are decoupled in the N prediction stages and the coupling in the equality
constraints involves only the variables xj and zp,1 of two contiguous stages. Therefore,
the primal, dual and centering residual vectors can be computed in parallel by dividing
them into N local block-vectors. Likewise, the step-length computation and the variables
update can be performed in parallel. In the rest of this section, we present a global
parallelization approach of the primal-dual interior-point method with Schur-complement
decomposition, which is focused on solving general LMPC problems.

Parallelization of the Interior-point Method

Here, we consider that the parallelization will be carried out using N worker processors
and that the kth processor works with: a local primal variable vy, defined in (5.4)), local
dual variables Ay and ug, and a local slack variable si, as shown in Figure |5.1

The residuals 7. and ry; can be divided into N sub-vectors r.; and 7, respectively,
and each of this sub-vectors can be computed using only the local variables g and sy.
The dual and primal residuals (rq and r,) can also be divided into N sub-vectors 74
and 7, . However, it is not possible to compute these sub-vectors using only the local
variables because the values A\;_1, from processor k — 1, and z41, from processor k + 1,
are both necessary for the computation of rqj and 7, respectively. Thus, processor k
must communicate with its neighbouring processors k — 1 and k + 1 in order to exchange
local information. Once the residual vectors have been computed, the Schur-complement
method detailed in Algorithm[I2]is used for computing A\ and Avy. Processor k computes
locally M}, and performs lines [ [f] and [6] of the algorithm to obtain the values yy
and wy. These values are then sent to the master processor (which can also be a worker
processor) to construct the Schur-complement. Equation is solved by the master

Tesis publicada con autorizacién del autor

No olvide citar esta tesis




‘\WNE&%

PONTIFICIA

TESIS PUCP g A UNVERsIDAD

and the result is broadcasted to all the processors for computing Avy, locally. The descent
directions Ay and Asy can be computed locally according to the following relationships

Ap = 5 2 (res + Crlvg) — 3 Tsa ks (5.11)
As, = —Zk_l(T'sz’k + gkA,U,k) R (5.12)

where 2z = diag(ug), Sk = diag(sg) and Cy = diag(Fy_1, Dy). The computation of the
step length can be also performed in parallel. Based on the line search method presented
in [65], a local step-length aj can be obtained such that the following conditions are
satisfied:

e + arApg >0, sk + apAs, >0 . (5.13)

The local step-length that is obtained by each processor is then compared with those
obtained by the other worker processors and the minimum of them is chosen as as the
actual step length. Finally, the update of the primal, dual and slack variables is
performed in parallel. This procedure is repeated until the stopping criterion for the
primal-dual interior-point method is satisfied.

Although the solution of the Schur-complement is carried out only by one
processor, the other steps of the primal-dual interior-point method are divided among all
the processors, which can increase the performance when solving LMPC problems with
many state variables and large prediction horizons. In the next chapter, we present the
details about the implementation of this method and test the performance using some
benchmark problems.

5.2 Parallel Dual quasi-Newton Method

In this section, we present a parallel LMPC solver which is based on the duality theory.
In recent years, different studies have proposed tailored methods for solving LMPC
problems through the solution of the dual problem. This approach was first proposed
by in the early 80’s for solving optimal control problems with delayed discrete-time
linear systems employing the conjugate-gradient method. In and , the solution of
the dual problem was obtained using a parametric QP solver and a parallelization
scheme. In the following, we present a tailored method for solving the LMPC problem
using the dual approach. This method employs a quasi-Newton approach to address the
solution of the dual problem and takes advantage of the structure of the Lagrangian
function to decouple the problem into QP sub-problems, which are solved using parallel
computation in order to enhance the performance.

Lagrange Duality Theory

Considering that the solution of problem ({3.2]) exists, the dual problem with respect to
the equality constraints (3.2b) is defined as

max U(N) (5.14)

where A € R is the vector of dual variables and ¥ : " — R is called the dual function,
defined by
VU(A) =min{L(z,\) : h(z) <0}, (5.15)

where L : R — R is the Lagrangian function defined in (3.13)). The above formulation
considers the value of = as a parametric value of A, i.e. = z(\), which is the basis of
the method presented in this section. A important property of the dual problem is that
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the dual function ¥(\) is concave and is a lower bound of f(x). Moreover, if there exist
a primal feasible point z® and dual feasible point A® such that

UA7) = f(a®), (5.16)

then, z* and \* are the optimal solutions of problems (5.17)) and ([5.14)), respectively [67].
Condition (b.16) is satisfied when f(z) and h(z) are strictly convex and g(x) is linear

(sufficient, but not necessary condition), which is the case of strictly convex optimization
problems. The LMPC problem belongs to this class of convex problems and thus, it is
possible to solve the dual problem for obtaining the solution of the primal problem.

Lagrange-Dual-Newton Method
Employing a dualization of the equality constraints, the Lagrangian function of

problem (4.11]) is given by

1
L(x,u,\) = §(U0TR0U0 + 2T Quzy + - +uk_ Ry _1un_1 + 2N Pyay)+

M (Aozo + Boug — x1) + -+ + AN (AN_128-1 + BN_1un—1 — ZN)

(5.17)

where A\, € R, k=1..., N, are the dual variable for the equality constraints in (4.11]).
Using this notation, the global vector of dual variables is defined as

A=A v AT,

where A € RV*"= The Lagrangian function is separable on the stage variables and,
therefore, can be decoupled with respect to the local control and state variables at each
stage k. Similar to the division made for the previous method, we divide the optimization
variables into N stage variables (uyx_1,2x). Using these local variables, the Lagrangian

function ([5.17)) can be written as

N
L(z,u,\) = > Li(zp, up-1, 1) , (5.18)
k=1
where
14 (:L'l, UugQ, )\) = %(ugRouo + xlTlel) + )\1(A0:E0 + Boug — 1‘1) + )\g(Alajl) ,
Li(zg,up—1,2) = 2(ul | Rp—rup—1 + 2 Qray) + Me(Br—1up—1 — k) + Mpr1 (i)
Ly(zn,un—1,A) = Lk _Ryun—1+ 25QnaN) + AN(By_1un—1 — 2N) .

By the Lagrange duality theory, the solution of the sparse LMPC problem can be obtained
by solving the dual problem given by

N
max min E Li(zk, up—1,\)
A Uk—1,Tk 1

(5.19)
s.t. Dypxp < dp,

Gr—1ugp—1 < gr—1-

Since the Lagrangian function is decoupled on the variables, the summation and
minimization operators can be interchanged in such form that the solution of ([5.19) can
be obtained by solving

N
max  f*() = mkaz_l fEN) (5.20)
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Figure 5.2: Parallel solution of the dual problem.

where .
l::()‘) = min Lk(xkauk—b)‘) s
Uk —1,Tk
s.t. Dpxp < dg, (5.21)

Gr—1uk—1 < gk—1 -
Each f}()) is a local QP sub-problem and depends on at most two block stage vectors of
the dual variable A. The feasibility and existence of f}(\) are independent of the choice of
the dual variable A\, because it only enters in the objective function of each sub-problem

and in the linear part. The local solution of each sub-problem f;()) is a parametric
solution in terms of the dual variable A, i.e.,

up—1 = up_1(N), xp = x5 (N).

Dual Problem Solution

The dual problem (5.19) is a piecewise-quadratic unconstrained maximization
problem . As has been mentioned before, a maximization problem can be solved with
the methods explained in Section [3.2] by transforming it into a minimization problem.
The optimal A* which solves is the same as that which solves the following
problem:

m}%n g\ = m/\in —f*(\) (5.22)

which can be solved by any of the descent methods. As mentioned before, the gradient
methods need a large number of iterations to obtain the solution because they employ
only first-order derivative information. A more suitable solution approach is to use the
Newton method, which employs second-order derivative information and has shown good
convergence properties. To employ the Newton method for solving the unconstrained dual
problem , it is necessary to obtain the gradient and Hessian values of g()\) at each
iteration. The function f*(A) is the sum of the optimal solutions of the N constrained QP
sub-problems f}(A) in (5.21]). Then, the dual objective function g(\) is given by

N N
g == ) == Li(ai(V), up_1 (V) ). (5.23)
k=1 k=1
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For the sake of simplicity, the local Lagrangian solutions will be written as Ly(x) in the
following. The gradient of g(\) is given by the sum of the partial derivatives of — f;(\)
with respect to A. For every function f;()\), the partial derivative is given by

01 (\)
O

OLy(%) Oup_y(N) = OLy(x) 0z (N) | OLg(x)
Oup_;(A)  OA dzi(A)  OA o\
o Ou (N 0 (N)  OLk(x)
COON o\ ox
OLk(x) | OLg(x)
FYVER ) VI

)

(5.24)

where the first and second terms vanish due to stationary of the optimal stage solution.
The last equation represents the derivative with respect to the stage dual variables A\ and
Ak+1 because Ly (x) depends only on these stage dual variables. Thus, the gradient of g(\)
is given by

Vg(\)

Ofi(A
_Z k

2N

O\
OLq (%) +
2 O

OLN_2(%)

)

OL1(x)

OL2(*)

OLN_1(%)

OAN—1

t oan

1

8LN 1(*)

) yra
z7(N)

T Ao.To — Boua(A)

z3(A)

— Az

— Biui(})

— : . (5.25)

TN 1 (A) — A2y _5(A) — Bn—2uy_5(})
| 2y(A) — Av—1zy_1(A) — Bn—1uy_4(A)

Likewise, the Hessian of g(\) is given by the sum of the second-order derivatives of — £ ()
and can be obtained by differentiating once more with respect to A. By following
this procedure, the resulting Hessian matrix is a banded block-tridiagonal matrix whose
elements are given by:

2f () 0 OLia(x) 9 OLy(x)

3N YR} VRS VIR W W (5.26)
82]0*()\) _ 0 aLk(*) 0 8Lk+1(*) (5 27)
Y YR VI VRR. ) Vi Ve :

The computation of this partial derivatives is more complicated because it implies the
computation of the sensitivities 0z} (\)/0A and duj,(X)/OX. Therefore, the Hessian matrix
V2g(\) is, in general, very expensive to compute analytically. In and , the Hessian
information is obtained through the open-source QP solver qpOASES , which computes
the Hessian by using an online parametric null-space active set solver based on the work
of and . In this work, instead of using the analytical Hessian, we propose to use
a quasi-Newton method for obtaining the solution of problem . As indicated in
Chapte the quasi-Newton methods employ an approximation B? of the Hessian matrix,
which is updated every iteration i of the algorithm using only gradient information. One
of the most popular quasi-Newton methods is the BFGS method , , which instead
of approximating the Hessian matrix, makes an approximation H® of the inverse of this

Tesis publicada con autorizacién del autor

No olvide citar esta tesis




‘\WNE&%

- ol (% PONTIFICIA
TESIS PUCP G | UNIVERSIDAD

| DEL PERU

matrix to avoid the use of linear algebra methods to obtain the descent direction. In this
way, d can be computed through simple matrix and vector multiplications. The update of
the approximation of the Hessian inverse matrix is

H™* = (I = psy")H'(I — pys" ) + pss”, (5.28)

where I is the identity matrix and p = (y”'s)~!. For problem (5.22), the values of s and
y are given by A ‘ ‘ A
s =\ -1 y = Vg(\' —Vg(\ ). (5.29)

By using this approach, at each iteration i, the descent direction d is simply computed as
d=—H'Vg(\"), (5.30)

which is equivalent to The procedure for solving the dual problem using the
BFGS quasi-Newton method does not follow exactly the procedure in Algorithm [4]
because it is first necessary to solve a set of QP sub-problems for obtaining the gradient
Vg(\') and because an Hessian inverse matrix update is performed at each iteration.
The dual quasi-Newton method proposed in this thesis is summarized in Algorithm

Algorithm 13: Dual quasi-Newton Method

Input: Initial guess A°, Initial Hessian inverse approximation H°

1:=0

2 repeat

3 compute Lg(*) by solving in parallel the N sub-problems in
4 compute gradient Vg(\?) using

5 compute d’ according to

6 compute appropriate step length o*

7 update iterate: Xitt =\ + o'd?

8 update Hessian inverse approximation using

9 1 =1+ 1;
10 until |[Vg(\)| < e

As in the Newton method described in Chapter [5| the convergence criterion is defined by
the norm of the gradient of g(\). Since the optimization variable A is defined explicitly
in the objective function g(\) and also implicitly in the variables x}(\) and uj(\), the
step length o' turns more complicated to compute. By using the backtracking inexact
line-search method, the values g(\" + ad’) and Vg(\* + ad’) must be computed at each
inner iteration of the backtracking algorithm. This requires the computation of the
parametric solutions z} (A + ad’) and u} (A" + ad’) for obtaining such values, which
implies an iterative solution of the local QP sub-problems in within the line-search
method. Algorithm [I4] details the backtracking line-search method for computing the
step length a at each iteration of the dual quasi-Newton method.

The main advantage of the dual quasi-Newton approach is the parallel solution of the
local QP sub-problems in , which are of small-scale dimension. Even more, when
the constraints in the state and control variables are only upper and lower bounds, the
solution of the sub-problems are simply obtained using the following analytical solutions

(A) = min(Zmaz, max(Tmin, A\ — A{Ak+1)) )

()\) = min(“mam max(umina _BgAk+1)) )
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Algorithm 14: Backtracking Line-Search Method for the Dual Problem

Input : vector \’, function value g(\?), gradient Vg(\), descent direction d
Output: step length «

1a=1

2 Aew = N + ad’

3 compute Li(*) by solving in parallel the N sub-problems in

4 compute g(Apew) = — Zivzo Ly (*)

5 while g(\new) > g(\) +0aVg(A)Td do

6 o = fa

7 Anew = N+ ad’

8 compute Lg(*) by solving in parallel the N sub-problems in
9 compute g(Apew) = — Zszo Ly (%)
10 end

where A\ and Ap4; are stage sub-vectors of A. Other step that can be parallelized is the
computation of the descent direction . Although the approximation of the Hessian
inverse matrix H* is updated at each iteration, when the algorithm progresses, the value
of H' approximates the real value of the Hessian inverse, which is sparse and has block
structure. Therefore, when using the approximation of this matrix in a previous prediction
for solving a new LMPC problem, it is possible to employ parallel methods for sparse
matrices to improve the efficiency in the computation of d. Similar to other Newton-based
methods, the warm-starting technique can also be applied for improving the convergence
rate and hence, the computational performance of the solver.

5.3 ADMM-Based Operator Splitting Method

The method exposed in this section is based on the work of , which employs the
alternating direction method of multipliers (ADMM) [72], a special case of the
Douglas-Rachford splitting method. The essence of ADMM is based on two distributed
optimization techniques: the dual decomposition and the method of multipliers, which
have been previously discussed and have shown application in different areas.

The operator splitting method of was introduced for solving general linear convex
optimal control problems. This method works by breaking the problem into two parts: a
QP problem, which can be solved efficiently by using a suitable linear algebra solver, and
a set of single-stage optimization problems, that can be solved in parallel. In the
following, the main steps of this method applied to the solution of LMPC problems will
be detailed.

Consensus Formulation

Due to the features displayed by the sparse formulation of the LMPC problem, it is
possible to obtain a tailored representation suitable to work with the ADMM-based
solution approach. To achieve this, the control and state variables are divided into stages
as in the dual quasi-Newton method and the objective and inequality constraints are
defined for each stage pair (g, ur—1). According to , the problem can be formulated
in the consensus form , given by

min (I'D(J"v ’LL) + gb(x, u)) + ’()ZJ(i‘, zNL)

s.t. (x,u) = (Z,a), (5:31)
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where (x,u) € Retnu is the pair of state and control variables known as the primal
variables and (Z, %) € R(=+7)(N) is the pair known as the global primal variables. In
the formulation above, the objective function has been split into two separable parts,
each one with different variables. The first term is a quadratic convex function encoding
the quadratic objective function and the linear dynamic constraints. Ip(z,u) is the
indicator function of the set defined by the equality constraints (4.4c¢) and
o(x,u) = Zszl ¢ represents the quadratic objective function . The second term
Y(Z,u) is a separable closed proper convex non-quadratic function, i.e.,
(&, 1) = Soa, (&g, tg_1). For LMPC, t(Z, @) can be interpreted as the indicator
function of the set defined by the inequality constraints and at each stage.
A scheme describing the separation of the variables and functions is shown in Figure [5.3]
where ¢ = uffle_luk_l + $£Qk$k represents the local objective function and
Y = (T, Ux—1) represents the indicator function for the local constraints on the states
and control variables. The separability of v allows its division into N sub-problems and

the solution of them in parallel, as will be described.
(zN,un-1)

(x1,u0) — -+ — (Thwh—1) — (1, uk) — -+

-
&8

@
@

Figure 5.3: Structure of the division of variables and functions.

The augmented Lagrangian function of (5.31)) is given by

Ly, u, &1, 2,y) = Ip(e,u) +8(e, u) + (&, @)~ (p2, py) (0~ u=1)+ £ (e~ &, u—0) 3,

(5.32)
where z and u embed the states and control variables of all the stages, p is the ADMM
parameter and (pz, py) are the scaled dual variables. Completing squares, the augmented
Lagrangian function can be expressed as

Ly(z,u,Z,0,zy) = Ip(x,u) + ¢(x,u) + (T, u) +

N

(@ =& u—a) = (=)l = Sl )3

(5.33)
The solution of problem is obtained by minimizing with respect to the primal
variables and maximizing it with respect to the scaled dual variables. With given initial
values (20, u%), (£°, %) and (2°,°), the ADMM-based operator splitting method is solved
iteratively as detailed in Algorithm where 7 is the iteration number and the values of
~1 and o are given by:

® V1= (:CZ - uz) - (fz7ﬂz) - (Ziayi) y
o Yy = (QN:Z,’&Z) o (xi—i-l . ui+1) 4 (Zi,yi) .

In the following, the three main steps of the operator splitting algorithm are explained
encompassing the procedure how to carry out each one of these steps.
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Algorithm 15: ADMM based Operator Splitting Method

Input : initial values (2°,4°) and (2°,°)

Output: optimal values (z*, u*)

1 repeat

2 ('t ™)« argming, ) (Ip(z', u’) + ¢(a’, u’) + §l|7[l3);
3 (53&1 at) argmin ;. ),(1/}( u) + pHWH%)’

4 (ZH'I, yH—l) ( ) (~ +1 ~z—|—1) ( l+17u1+1)3

5 until convergence criteria;

Quadratic minimization and proximal operator

The first step, line [2 in Algorithm consists of an equality constrained quadratic
minimization over the primal variables (x,u), and can be formulated as

min ix TQx + q''x
v, &
s.t. Ax =Db, (5.34)

where x, A and b are the same as that in the sparse LMPC problem (4.11)). The matrix
Q and vector q depend on the scaled dual variables (pz, py) and global primal variables
(Z,u) as follows

[Ro+pI 0 ... 0 0 —p (i + yo)
0 Q1 +pl ... 0 0 —p(Z1+ 21)
Q=| SRS : : , a= :
0 0 .. Ry_1+pI 0 —p(an—1+Yyn-1)
0 0 0 0 Qn + pl ] L —pl@n+an) |
(5.35)

The above problem is a convex equality-constrained minimization problem with quadratic
objective and linear constraint and, as has been indicated in Chapter [3| the solution can
be obtained by solving directly the following KKT system:

Q AT [x]| _[-a

IR 0
where A is the local dual variable for the equality constraint. Thus, it is only necessary
to solve a sparse linear system for solving problem . Moreover, only the right-hand
side of equation vary from iteration to iteration, being the coefficient matrix
of the same for all the iterations. Therefore, a suitable approach is to employ a
direct decomposition methods to factorize the coefficient matrix offline and use this
factorization for all the iterations to obtain the solution by simple backward and forward
substitution. In some cases, it might be necessary to use regularization and
preconditioning of the KK'T matrix to guarantee the accuracy of the solution.

The second step, line [3] in Algorithm [I5] is separable across the time, and involves the
solution of N sub-problems of the form

U= min (T, Gp—1) + 5k, Gr1) — (50, t)[|3 (5.37)
(Ik,’dk,l
where (sg,tr) = (w}jl — zk,uﬁjll y,i_l), k=1,...,N, are constant values in the local

problems. The pair (Z},@;_,) that minimizes this function is called prozimal operator
with penalty p. This step can be completely parallelized using N worker processors.
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Furthermore, when the LMPC problem presents only box constraints on the variables,
the solution of these N sub-problems is reduced to a standard saturation. If the problem
presents general constraints, typical numerical methods can be used (N constrained
sub-problems solved in parallel). A graphical explanation of this procedure is shown in

, —

fUl,UO ] JTk,lLk 1 | J"k-i-lvuk R INauN 1
| [ | |
| | | |
(21, Y0) (Zks Yi—1) (Zkt1, Yk) (2N, YN—1)
e e oy ¥ by s e
(@1, 7o) (Zg, Up—1) li (ZTt1, Ug) (ZN,UN-1)

Figure 5.4: Division of the LMPC problem using the operator
splitting method of .

The third step, line [4f in Algorithm consists of an error sum. The variables (z,y)
accumulate the deviation between (z,u) and (Z,@). Since this step involves only algebraic
operations between the local stage variables, it an be also performed in parallel. The
stopping criterion evaluates the primal and dual residual defined as

T}iyrimal = (xlvul) -y (il’az) ) Tfiual = p((ii’ai) - (‘%iilaﬂiil)) : (538)
The algorithm stops when the norms of both residuals reach a suitable small value €. Thus,
the convergence criterion is defined by the following conditions

”T;m’malHQ < epr’57 HrzlualHZ < 6dual . (539)

The parallelization of this algorithm can be carried out using one master processor and
N worker processors. The master processor receives the initial guess of the primal
variables and the matrices of the problem. Before the algorithm starts, the master
processor factorizes the coefficient matrix of the linear system [5.36] stores the factors
and then initializes the algorithm. The quadratic problem is solved by the master
processor, which sends the optimal values (m}:,u}:) to the worker processors, which
compute the proximal operator by solving and update the scaled dual variables.
Then, the local values are sent to the master processor. The algorithm converges when

the stopping criterion ([5.39)) is satisfied.

This method can also gain speed-up by warm-starting the primal and dual variables at
each prediction. Although the main procedure for this method is very simple, it has
proven to be very efficient when solving general constrained LMPC problems, as was
shown in . Even more, apart from this method, the use of ADMM has shown to be a
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powerful technique for solving large-scale optimization problems using big data such as in
compressed sensing, image processing and wireless networks . However, this method
is very sensitive to the selection of the ADMM parameter p. Although the algorithm
converges for any positive value of p, the choice of this value makes a huge difference on
the convergence speed of the algorithm. There is no a fixed rule about how to choose
the value of p, but in some guidelines have been proposed and will be used for the
implementation in this thesis. In the next chapter, the parallel implementation of this
method will be presented and tested with different benchmark problems.

5.4 Summary

This chapter has presented three different parallel methods for solving the LMPC problem.
These methods exploit the inherent structure of the LMPC problem by decomposing the
problem into sub-problems (or tasks) that can be solved in parallel. The first solver consists
in a parallel implementation of the primal-dual interior-point method that employs the
Schur-decomposition scheme for solving the KKT system in parallel. Moreover, due to the
decoupling of the variables in the objective function and inequality constraints, the whole
algorithm has been parallelized using all the worker processors. The second solver is a
method that addresses the solution of the LMPC problem by solving the dual problem.
The dual quasi-Newton method introduces the equality dynamic constraint, which is the
part that contains the coupling between stage variables, into the objective function to
formulate the dual problem and employs the BEFGS quasi-Newton method for solving the
resulting inequality constrained problem. Since the primal variables (zy,uy) are separable
on the objective function and inequality constraints, the parametric values (z3(\), uj()))
are obtained by solving in parallel N QP sub-problems. The third solver is a parallel
method based on the ADMM and that has been proposed by [18]. The operator splitting
method formulates the LMPC problem using the consensus form and introduces new
variables to employ the ADMM for solving the problem. The algorithm is divided into
three main steps: an equality constrained QP problem, N decoupled sub-problems that
are solved in parallel, and a variable update that is also performed in parallel. In the next
chapter, the details of the implementation of these three solvers will be described and their
performance will be tested using different benchmark problems.
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Chapter 6

Implementation and Case Studies
for LMPC

In this chapter, the implementation of the parallel solvers for LMPC explained in the
previous chapter is presented and some benchmark problems are used as case studies for
the evaluation of their computational performance. Since the main objective of this thesis
is to implement efficient algorithms which can be run in low-cost architectures, such as
embedded systems, the implementations are based on the programming language C++,
employing open-source software packages for linear algebra operations and the open MPI
standard for the parallel communication between processors. Furthermore, the different
case studies used to test the performance of the solvers represent control problems that
arise in the context of mobile robot applications.

6.1 Implementation

The implementation of the algorithms presented in the previous chapter is based on the
C++ programming language, which has shown to be a high-performance language for
real-time implementations. Indeed, C++ is very fast because it can be written to run
about as fast as the processor can go. The performance achieved using implementations
based on C++ is very high and can be only compared with that based on Assembler
programming, which is not a friendly programming language. When written correctly,
C++ can almost directly drive the hardware. This language can generate machine code,
which most of the other programming languages do not. These features make C++ a
suitable tool for writing operating systems, virtualization systems, embedded systems,
device drivers and even, other programming languages.

An important point in the implementation was the selection of a linear algebra package,
which is not only used for solving the linear systems but also to perform matrix and
vector operations. Although the methods for sparse systems presented in Section (3.5
have been well understood, in this thesis they are not implemented. Instead, we focus on
the use of a linear algebra software package. Whenever possible, it is advisable to rely on
existing and mature libraries, which are the product of professional developments and
can provide a more portable, less buggy and much faster algorithm than using naive
implementations. There exist many open-source professionally-developed linear algebra
packages. The most traditionally used are BLAS , for low-level matrix and vector
operations, LAPACK , for higher-level operations such as solving linear systems, and
ATLAS , which mixes BLAS and some functions of LAPACK. However, in recent
years, new optimized linear algebra packages have appeared and some of them have
proven better performance than the free BLAS-based ones, such as the commercial Intel
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MKL and GOTOBLAS libraries. An open-source package comparable to the
commercial ones is the Eigen C++ linear algebra library , which is fast, versatile,
reliable and elegant. Eigen can handle general operations using dense and sparse
matrices and supports various direct decomposition methods, such as high optimized
sparse LDLT and LU factorizations. For these reasons, Eigen C++ is the linear algebra
that will be used in this thesis for the implementation of the parallel algorithms.

The Massage Passing Interface (MPI) standard, which is a specification for the design of
message passing programming models in multiprocessor architectures, is employed to
transmit the information between the processors. Within the MPI environment, the data
is moved from the address of one processor to that of another processor employing
cooperative operations. Nowadays, MPI is defined for C, C+4, and FORTRAN
language bindings and is considered a practical, portable, efficient and flexible way to
implement parallel programming. In order to avoid the point-to-point communication
routines between the master processor and the workers (and vice versa), which increase
the computational time, collective communication routines are employed whenever
possible. In the algorithms presented in the previous chapter, the master processor
divides the data among all the worker processors and receives data from all of them
simultaneously.  Thus, sending the data to each processor individually makes the
parallelization inefficient due to the time required for the communication with each
single processor, and can also originate asynchronous operations. Therefore, the use of
collective communication routines, which are optimized functions that involve all the
processors in synchronous operations, is the most efficient way to perform this kind of
tasks. In the following, a brief description of the implementation of the algorithms and
the required MPI parallelization routines will be presented.

Parallel Schur-Complement Method

A flow diagram showing the parallelization of the algorithm and the respective MPI
commands is shown in Figure The dashed blue box shows the iterative process of
the primal-dual interior-point algorithm and the dashed red box shows the steps for the
computation of the Schur-complement within each iteration. The green and white boxes
show the tasks carried out by the master and worker processors, respectively. The gray
boxes show the tasks performed by all the worker processors simultaneously, involving
simple algebraic operations. The parallelization of the algorithm involves the following
steps:

e At the initialization of the algorithm, the master processor receives the initial values
of the primal and dual variables (x°, \°, x° and s°) and invokes the MPI_Scatter
function to divide these vectors among all the worker processors, sending to the kth
processor the values 02, 0 ,ug and 52.

e The worker processors compute, in a collective way, the centering parameter n
through the dot product of the local vectors s}; and ui‘, and using then the function
MPI_AlIReduce-SUM in such way that all the processors receive the result.

e Processor k sends the local value :L‘}c to its neighbouring processor k£ + 1 and
receives xj_,; from processor k — 1 by using the MPI_Send and MPI_Receive
functions, respectively. Then, it computes the local residual r;k.

e Using the local primal and dual variables, and the respective matrices, each processor

computes the local residuals rfl o ri , and ri sk
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Figure 6.1: Scheme for the parallel implementation of the
Schur-complement decomposition method.

e The local sparse matrix G M, 1G;€ and vector G M, 17'1,,11c are locally computed to
form the Schur-complement and are then sent to the master processor by invoking
twice the MPI_Reduce-SUM function, one for the sum of the local matrices and the
other for the sum of the local vectors. Likewise, the local residuals r;k are sent to

the master processor using the MPI_Gather function to form the primal residual r;.

e The master forms the Schur-complement and solves the linear system ((5.9) to
compute A)X. Then, it broadcasts this value to all the worker processors by using
the MPI_Bcast function.

e Once the value of AN is received, the worker processors solve ((5.10) to compute the
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local Avj.

e Using AX: (block-vector of AXY) and Ao, the local values of Aui and Asi are
computed using ([5.11]).

e A local step-length ay is computed through ([5.13) and then, the MPI_AllReduce-
MIN function is applied to obtain the actual step length a.

e All the local variables are updated using the values Avli, A/\};, Az,i, Asf€ and a.

e If the convergence criterion is not satisfied, the procedure is repeated using the
current local variables for the next iteration. Otherwise, the master processor gathers
the current values vi = [u}_,,z%] using the MPI_Gather function and returns the
optimal value x*.

For the implementation, the error tolerance used to evaluate the convergence
criterion (3.23) was set to € = 1-107% in order to obtain a high accuracy in the solution.

Dual quasi-Newton Method

Figure shows the flow diagram detailing the main steps in the parallel implementation
of the dual quasi-Newton method. The dashed blue box contains the iterative process
of the main algorithm (outer iterations) and the dashed red box contains the iterative
process for the step-length computation (inner iterations). The main procedure of the
parallel dual quasi-Newton method is explained in the following:

e At the initialization of the algorithm, the master processor receives the initial value
of the dual variable A° and scatters this vector among the worker processors using a
MPI_Scatter function. Then, the iterative procedure starts (outer iterations).

e Using the MPI_Send and MPI_Receive functions, processor k£ sends the value )\2 to
the neighbouring processor k — 1, and receives the value A} 41 from processor k + 1
to calculate the local Lagrangian function.

e Each processor solves the local QP sub-problem f7 (A in 1} to obtain the
parametric solutions z}(A’) and uj_;(\Y). Using these values, the local objective
function of ff(A\') = L(z}(A\"),uf_1(A"), \Y) is calculated.

e Processor k sends z}(\") to processor k + 1 and receives z ()\’) from processor
k — 1 to compute a sub-vector of the Vg(\?) according to 1|5.25

e All the processors send the previously computed subvectors of Vg(\?) to the master
processor by using the MPI_Gather function. Then, the master processor updates the
Hessian inverse approximation H® and computes the descent direction d according
to (5.30). This value is then distributed among all the worker processors by using
the MPI_Scatter function.

e The current value of the dual function ([5.22)) is computed by the sum of all the local
functions f;(A?), which is performed using the MPI_Reduce-SUM function. Then,
the internal iterative algorithm proceeds.

e Within the inner iterations, the backtracking line-search algorithm is performed
using all the worker processors, where the steps for the computation of the dual
function at each inner iteration are the same as that for the main algorithm. The
line-search algorithm stops when the Armijo’s condition is satisfied.
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Figure 6.2: Scheme for the parallel implementation of the dual
quasi-Newton method.

e Once the step-length o has been computed, each worker processor updates the
current value of the local dual variable )\};.

e In case the stopping criterion is not fulfilled, the procedure is repeated using the
current values A, for the next iteration. Otherwise, the values z}(\") and u}_;(\)
are sent to the master processor by using the MPI_Gather function, and the optimal
value x* is returned.

To evaluate the convergence criterion defined in Algorithm the error tolerance is set
to € = 107%. For the backtracking line-search method described in Algorithm the
parameters o and § are set to o = 0.01 and § = 0.5, as is recommended in [27].
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ADMM-based Operator Splitting Method

The flow diagram indicating the steps and MPI functions used for the parallel
implementation of the ADMM-based operator splitting method is shown in Figure [6.3
The dashed blue box shows the iterative steps of Algorithm [I5] The parallelization of
this algorithm involves the following steps:

e At the beginning, the master processor receives the initial values (2°,a°), (2°,4°).
Before the algorithm starts, the master constructs the coefficient matrix of the linear
system and employs the sparse LDLT factorization to decompose the matrix.
The factorization matrices are stored in cache to use them for solving the linear
system at each iteration of the algorithm. Then, the iterative procedure starts.

e The fist step of Algorithm is carried out by the master processor, which
computes the primal variables (z*!,u*!) by solving the linear system
through backward and forward substitutions employing the factorization matrices
stored in cache.

e The master processor divides the primal variable (z‘*! u'*!) among the worker
processors through the MPI_Scatter function. Then, each worker processor
computes locally the variables (:Tc?jl, ﬂfgtll) by solving problem V¥ in (step 2
of Algorithm .

e The update of the scaled dual variables (z, y) is also performed in parallel by all the
worker processors using (J§Z+1,u§ct11) and (fc}jl, &};[11). Then, the worker processors
send the values of (ZIZCH, yztll) and (:Z‘ZH, 71};:11), previously computed, to the master
processor using the MPI_Gather function.

e The master processor receives the information sent by the worker processors and
constructs (#t!, a*l) and (2! y**1). Then, it computes the primal and dual
residuals defined in ([5.38)) to evaluate the convergence criterion (5.39)).

e If the convergence criterion is satisfied, the algorithm stops and the master processor
returns the optimal value x*. Otherwise, the procedure is repeated again starting
from the step 1 of Algorithm

For the implementation, the error tolerances for the primal and dual residuals are set to
107 and 10~%, which are parameters that have shown to provide an accurate solution
for the LMPC problem.

In the next section, the performance of the algorithms will be tested using different case
studies and will be compared to the performance obtained using a serial implementation
of the interior-point method for solving the reduced QP problem [£7 ~ All the
computational results were obtained on a standard personal computer Intel Core
i7-5500U with four physical cores running at 2.4 GHz under Ubuntu 15.10. To emulate
the use of a distributed memory architecture (cluster of single processors), the
parallelization is performed considering only four processors, which corresponds to the
number of physical cores in the computer. Since for all the parallel methods presented in
this thesis, the worker and master processors do not execute simultaneous tasks, one of
the four physical processors is defined as both, master and worker processor, while the
other three are defined only as worker processors. In this way, the whole prediction
horizon N is divided into four equal number of time intervals and each worker processor
carries out the computation for % time intervals. For instance, if the whole prediction
horizon is N = 20, each worker processor makes the computation for 5 time intervals. In
the compilation, we employ the mpic++ command for the parallel programs and the
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Figure 6.3: Scheme for the parallel implementation of the
ADMM-based operator splitting method.

g++ command for the serial QP program. Likewise, the compilation flags -O3 and
-DNDEBUG are employed to enable hardware optimization at run-time. All the
computation times are reported in milliseconds and are obtained from an average of 50
runs measured using the MPI_Wtime() function for the MPI programs and the
gettimeofday() function for the serial program.

6.2 Case Studies

Double Integrator

This case study is a classical benchmark problem used to show the usability of MPC
and is related to the problem of energy minimization and reference tracking of a single
cart. The system consists of a simple mass that can move in one-dimensional space under
the application of a time varying force F'(¢). Based on the first principles, the following
differential equation describes the dynamic of the system

mip(t) =F(t),
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where x, is the horizontal position of the cart and m is the mass. The state space

representation of the above model is given by:

where = [r, 4,7 and u = F(t). An Euler discretization method with sampling time
AT = 0.05s is applied to discretize the continuous dynamic equation. The objective of
the problem is to minimize the error between the position of the cart x;, and a reference
position x,.y while minimizing the control input u. Thus, the objective function for this
LMPC problem is defined by

=2

1

J = i(ﬂ?N — Zyef N) PN (TN — ZpepN) +

—_

(2 — Trep k) Qu(xr — Trepr) + uf Ryuy, .
0

2

>
I

For this problem, the gain matrices are set to:

1 0
kaQz{O 0.1}’ R, =R =0.01

and the final-state penalization matrix Py is chosen as the solution of the discrete-time
algebraic Riccati equation, which is obtained by the function dare() of MATLAB. The
value of the mass is considered m = 1 kg and the following bound constraints are imposed
on the state and control variables

—1m<z <1lm, —1m/s <z <1m/s, —I1N<u<1N.

The state trajectory and optimal control input for a prediction horizon of N = 20 and an
initial position of xp = [0.6 0]7 are shown in Figure The dashed red line indicated
the reference trajectory z,.; and the solid blue line indicates the actual trajectory of the
cart x. As can be seen, the constraints in the control input become active when the
jumps in the reference occur. Even more, between ¢t = 10s and ¢t = 25s, the reference
trajectory drives along the upper limit of z; and thus, the state constraints are active in
this interval. This benchmark is also suitable to appreciate the predictive behaviour of
LMPC. We can see that the controller predicts the future references and drives the
system in such way that the overall deviation is minimized according to the dynamic of
the system. This is one of the main features that MPC exhibits.

The average computation times for the solution of the double integrator problem
considering prediction horizons of N = 4, 12, 20, 28, 36, 44, 52, 60 are shown in
Figure [6.5] The blue line indicates the computation times for solving the reduced QP
problem using a serial implementation of the primal-dual interior-point method
(Serial IP), the red line that using the parallel implementation of the primal-dual
interior-point with the Schur-complement decomposition (Schur IP), the brown line that
using the parallel dual quasi-Newton method (DugN), and the black line that using the
ADMM-based operator splitting method (OpSpl). For a very small prediction horizon
(N = 4), the performance obtained using the serial QP solver is better than that
obtained using the parallel solvers because the time required for the communication
between processors has influence in the overall computation time and because the
reduced QP problem is of very small dimension. Instead, for larger prediction horizons,
the parallel solvers overcome the serial solver. In general, the best performance for this
benchmark is obtained by the dual quasi-Newton method, which required computation
time for solving the LMPC problem with a large prediction horizon (N = 60) is about
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Figure 6.4: Optimal trajectory and control input for the double
integrator problem.

0.5 ms. This performance is achieved because, when warm-starting the iterates, the dual
quasi-Newton method requires only 2 or 3 iterations to solve the problem. Compared to
the serial interior-point solver, the dual quasi-Newton method achieves a speed-up factor
of 5 for N = 60. Likewise, the operator splitting method achieves a speed-up factor of
3.3 and the Schur-complement method a speed-up factor of 1.75. All the parallel solvers
outperform the serial solver for the reduced QP formulation because, although the
reduced problem has fewer optimization variables, the problem considers not only the
bound constraints on the control variable but also that on the state variables, which
increases the complexity of the problem.
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Figure 6.5: Computation times for the double integrator problem.
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Inverted Pendulum

The inverted pendulum problem is also a frequent benchmark used in the literature. The
system consists of an inverted pendulum mounted on a motorized cart, as shown in
Figure [6.6] This example is directly related to the control of real physical systems such
as the bridge crane and segway. The aim of the controller is to balance the inverted
pendulum to achieve the angular position # = 0 while moving the cart to a desired
position x,.¢ by applying a horizontal force F'(t). The system is described in terms of z),

Figure 6.6: Inverted Pendulum on a motorized cart .

and 6 by the following nonlinear dynamic equations:
+m)iy, + bi, +mlcosd —mlf?sind = :
(M + m)i, + bip, + mlf cos 0 — mlf? sin 6 F
(I + mi®)8 + mglsin @ + mli,cosd = 0,

where F' is the control input force applied to the cart and M, m, b, I, I and g are
constant parameters whose values are indicated in Table

Table 6.1: Parameters for the inverted pendulum problem

Parameter Value Description
M 0.5 kg mass of the cart
m 0.2 kg mass of the pendulum
b 0.1 N/m  coefficient of friction for the cart
l 0.3 m length to the pendulum center of mass
1 0.006 kg.m? moment of inertia of the pendulum
g 9.81 m/s acceleration of gravity

To apply LMPC, the system is linearized around the equilibrium point x, = 0 and 6 = 0.
After some calculations and many considerations, the dynamic can be written by the
following continuous linear time-invariant system:

& = Ax + Bu,
where the state variable x and control variable v are defined as:
1 (1)
N E ip(t) _
r=1 = o) | - u=F(t),
T4 6’(t)
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and the dynamic and control matrices are given by:

0 1 0 0 0

0 —(I +ml?)b m2gl? 0 I+ mi?
A= K K B = K

0 0 0 1 ’ 0 ’

0 —mlb mgl(M +m) 0 ml

L K K J L K

where K = I(M +m)+Mmi?. To transform the continuous-time dynamic into a discrete-
time system, we employ the Euler method considering a sampling time of AT = 0.01s.
The control variable is constrained by the following bound limits:

—1NSU1§1N

The weight matrices for the objective function are set to:

0.01

o = O O

0
0
0 , R, =R=0.01,
.0

0
.0
0
0 1

)
ol
|
O
|
coor

0

and the final state penalization matrix Py is again the matrix corresponding to the solution
of the discrete-time algebraic Riccati equation for the LQR. For this example, the initial
state is z9 = [0.1,0,0.08, 0] and the aim of the controller is to regulate all the variables to

7ero, i.e.,
N-1

J = x%PNxN TN Z T Qry + ugRuk .
k=0
Figure [6.7] shows the optimal state and control input trajectories for a prediction horizon
of N = 20. It can be seen that, at the beginning, the actuator is saturated to the
minimum value to achieve a fast convergence on the position. Due to the inherent
characteristics of the dynamic, the trajectories cannot converge smoothly to zero and
thus, the cart makes a small oscillation around the desired position to regulate the angle
f to zero in a setting time of 1.8 seconds.

The average computation times for different prediction horizons are shown in Figure
Compared to the previous example, the computation time obtained for the serial QP
solver is comparable to that obtained for the parallel Schur-complement method. Since
the LMPC problem considers only constraints on the control variables, the reduced QP
problem is easier to solve and thus, no good speed-up can be achieved with the
parallelization of the interior-point method. Instead, the other parallel solver can achieve
a better performance for large prediction horizons. It is observed that, for large
prediction horizons, the operator splitting method outperforms the other parallel
methods. The number of iterations required for this method is greater than that
required for the others, but the computational time per iteration is by far much less.
The number of iterations required by the operator splitting method for small and large
prediction horizons does not vary so much and thus, the average computation time
scales-up almost linearly with N. For N = 60, the speed-up achieved by the operator
splitting method is of 2.23 compared to the serial QP time, while for the dual
quasi-Newton method is of 1.78.
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Figure 6.7: Optimal state and control inputs trajectories for the
inverted pendulum problem.
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Figure 6.8: Computation times for the inverted pendulum problem.

6.3 MPC Tracking Linearization

As has been described in the introduction, the navigation of autonomous vehicles is a field
where MPC applications are still limited. Generally, the dynamic model of an autonomous
vehicle is represented by nonlinear equations describing a nonholonomic motion constraint,
which makes the control of such systems an interesting research field. One approach to
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using LMPC on autonomous vehicles is the successive linearisation method presented
in [82] and used in [83, for reference tracking control. This method linearizes the
nonlinear system around a given reference trajectory and works with a linear time-variant
dynamic of the error between the real and reference trajectories. To explain a general
formulation of this approach, we consider the following nonlinear dynamic describing the
model of the system

t = f(z,u). (6.1)

A reference control u,.s is considered to generate the reference trajectory x,.s based on
the above equation, i.e., Zyef = f(Zref, Urer). The Taylor approximation of (6.1)) around
a reference point is given by

&= f(@ref, Uref) + fo( — Zres) + fu(tt — Urep) + h.o.t.

where

fw:vxf(xau) fu:vuf(x7u) ’

)
(x:x'ref 7u:u'ref) T=Tref,U=Uref

Making A,.y = fr and B,.y = fu, the above equation can be expressed in terms of the
state error T = x — .y and the control error @ = u — u,.f as

z= Aref.i‘ + Brefﬁ,

which represents a linear time-variant system in which the dynamic and control matrices
depend on the reference values x,.; and u,.r. To formulate the LMPC problem, the
continuous-time error dynamic is discretized using the Euler approximation, yielding the
following discrete-time dynamics

Tpp1 = Aref Tk + Brey, Ui -

The matrices A, ¢ and B,. ¢ depend on the reference values at ¢ = t;, and, in general, their
values are different at each t; because they are computed through a successive linearization
along the reference trajectory at each point of the prediction horizon N. A block diagram
of this approach is shown in Figure where the aim of the LMPC is to regulate the
errors I and g to zero. For the case studies presented in this section, the trajectory
tracking control of autonomous vehicles and the computational performance will be tested
employing two different dynamic models: the car-like and single-track models.

Reference Tref

u
rel Trayectory Model

~t

+

xz

u¥ Real
System

Figure 6.9: Block diagram for the LMPC tracking linearization
approach.
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Car-like Kinematic Model

The car-like model is based only on kinematic relationships, describing the following
differential equations

p = wvcos(f),
jp = vsin(0),
i - vtanl(sﬂ),

where x,,s and y,.s indicate the Cartesian position, ¢ is the orientation of the car with
respect to the z-axis, v is the linear velocity and ¢ is the steering angle. To reduce the
degree of nonlinearity in the dynamics of 6, the following substitution is considered

t
" anl(so) 7

where w represents the angular velocity of the vehicle. Thus, the car-like kinematic model
can be written as the following nonlinear dynamic

2 T uy cos(z3)
T = yp = |z2| = | w1 Sin(l‘g) ,
0 T3 U2
where u = [u1,us] = [v,w]. The car-like model is a non-holonomic system. Depending on

the initial and desired final states, these systems can not always be controlled by a
continuous control law such as PID. Thus, the MPC tracking linearization approach
described above appears as a suitable method for solving the trajectory tracking problem
when there exists a reference trajectory (z,cf,urcs) for all the variables.

By following the procedure described above, the discrete dynamic of the tracking error &
is given by the following linear time-variant system

z1(k+1) 1 0 —ATsin(z3)uy z1(k) AT cos(zz) O a

To(k+1)| = [0 1 AT cos(z3)u; Zo(k)| + [ATsin(z3) O al} ,

is(k+1) 0 0 1 e m g | E3(K) 0 AT | o-any L2
U= Upef o U= Upef o

where z,.; and u,.; are the state and control reference trajectories computed offline. For
this problem, the sampling time is set to AT = 0.01 s and the actual state and control
variables are constrained to

—mrad < z3 < 7 rad, —1m/s<wu; <1m/s, —0.8 rad/s < ug < 0.8 rad/s,

which will be then transformed to the variables Z and % in the formulation of the problem.

As a case study, the LMPC problem is solved considering a prediction horizon of N = 20

and setting the weight matrices in the objective function to
.01

) Ry =R= {0 0 0 ] .

1 0 O
Py=Qr=Q=101 0
0 0 0.01 0 0.01

Figure shows the reference trajectory (dotted blue line) and the actual trajectory of
the vehicle (solid red line) considering the initial state xo = [~0.1, —0.1, 0], and
Figure shows the optimal control inputs v(t) and w(t). As can be seen, both control
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Figure 6.10: Trajectory in the X-Y plane for the tracking problem
considering the car-like kinematic model.

variables reach the limits at the beginning in order to minimize the deviation between
the actual and reference trajectories as fast as possible. After approximately 0.25 meters,
the vehicle tracks the reference, which implies that the tracking error converges to zero
and remains at this value.
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Figure 6.11: Optimal control inputs for the tracking problem
considering the car-like kinematic model.

The computation times for different prediction horizons are shown in Figure [6.12] It
is observed that the serial and parallel versions of the interior-point method have worst
performance than the dual quasi-Newton and operator splitting methods. The serial QP
solver for the reduced LMPC formulation employs more computation time for solving the
problem because the system has two control inputs and presents constraints on both state
and control variables, yielding to a more complex QP problem than that for a single input
system. Compared to the serial time, the operator splitting method achieves a speed-up
of 8.6, while the dual quasi-Newton method achieves a speed-up of 6.2. These speed-up
factors are greater than that achieved in the previous examples, which shows that these
parallel solvers perform better when working with MIMO systems.
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Figure 6.12: Computation times for the tracking-control problem
using the car-like geometric model.

Single-track Model

The single-track model, also called bicycle model, is a more general representation of a
four-wheel vehicle. This model lumps the two front wheels into one wheel and makes the
same with the rear wheels. Apart from the Cartesian position (z,,y,) and the yaw angle
1, the description of the vehicles motion considers also the slip angle 8 and the yaw rate
¢. The single track dynamic model is described by the following differential equations:

N Ly L) .
o = M<Cf(5—ﬁ—7)+0r(—ﬁ+ ” >>—w,
Y = 9,

. 2 1y Y
Y= Z(lfcf((s_ﬁ_%/))_lrcr(_ﬁ‘i‘ U¢)>,

&, = wvcos(¢)— vtan(f)sin(y),
Yp = wsin(¢) + vtan(B) cos(v),

In this thesis, the numerical value of the parameters are obtained from and are shown
in Table To formulate the dynamic in a standard form, we define the vectors of state

Table 6.2: Parameters for the single-track model

Parameter Value Description
m 1723 kg mass of the vehicle
I, 4175 kg.m?  inertia moment
ly 1.232 m distance from COG to front axle
- 1.468 m distance from COG to rear axle
Cy 66900 N/rad front cornering stiffness
Cyr 62700 N/rad rear cornering stiffness
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and control variables

71 B

T2 w v U1
r=|z3| =¥ |, u:[é}:[uz].

T4 Tp

zs5 Yp

Thus, the linearized dynamic of the tracking error Z is given by
Z(k+1) = Apz(k) + Bru(k),

where the matrices A, and By are obtained following the same procedure as that used in
the previous case. The sampling time is also set to AT = 0.01 s and the constraints on
the states and control variables are defined by the following upper and lower bounds

—0.3rad <z <0.3 rad, —7mrad < xo < mrad,
—-32m/s<u; <32m/s, —0.3 rad/s < ug < 0.3 rad/s,

For this case study, the gain matrices of the objective function are set to:

0.1 0 0 00
0 01 0O 0O
Pv=Qr=Q=]10 0 001 0 0, Rk:Rz[O'gl 0%1].
0 O 0 10 )
0 O 0 01

- — - reference

position

Figure 6.13: Trajectory in the X-Y plane for the tracking problem
considering the single-track model.

A prediction horizon of N = 20 is again used and the initial state is considered to be
xo = 1[0, 0, 0, —0.1, —O.l]T. Figure shows the reference and vehicle trajectories, and
Figure shows the optimal control inputs. As can be seen, although the reference
trajectory is not smooth, the controller is able to track it. The constraints on both
control inputs are active when the jumps in the reference trajectory occur. Since the
controller is based on a time-variant linear dynamic for the tracking error and the jumps
in the reference trajectory are relatively large, the vehicle cannot arrive smoothly to the
new reference setpoints but performs a small oscillation. Furthermore, the predictive
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feature is not clearly seen as it was shown for the integrator problem. However, the
vehicle tracks very good the reference, which shows that the linearization method works
well within the framework of MPC.
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Figure 6.14: Optimal control inputs for the tracking problem
considering the single-track model.
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Figure 6.15: Computation times for the tracking-control problem
using the single-track model.

Figure shows the computation times for different prediction horizons. As can be
seen, in general, the parallel solvers outperform the serial QP solver. In this example,
the operator splitting method is again the solver with better performance for large
horizons. Furthermore, the trend is similar to that exposed for the problem with the
car-like kinematic model, i.e, the scale-up of the problem increases considerably the
computation performance of the operator splitting method and the dual quasi-Newton
method while the parallel interior-point with Schur-complement decomposition only
achieves moderate improvement compared to the serial QP solver for the reduced
problem. For N = 60, the scale-up factors are: 6.9 for the parallel operator-splitting
method, 5 for the parallel dual quasi-Newton method and 1.8 for the parallel
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interior-point method with Schur-complement. As in the other benchmarks presented in
this chapter, the operator splitting method achieves better performance because the
operations involved in the algorithm are simple. Although the algorithm takes more
iterations than the others to converge to the solution, the overall time is much less.

As has been shown through the different case studies presented in this chapter, the
computational complexity of solving the problem is directly related to the prediction
horizon N. Thus, it is also important to verify if the use of a larger N contributes to
obtaining a better control performance or if it is sufficient to use a conservative value of
N. Figure shows the trajectories of the vehicle for increasing values of N. As can be
seen, for a small N, the amplitude of the oscillation to track the new reference is greater
than using large values of N. Similarly, the proactive action of the controller is better for
larger prediction horizons. However, for values of NV larger than 44, the improvement in
the performance is not significant and thus, it will be trivial to use a high prediction
horizon. For this reason, most applications in MPC employ a sufficient IV such that the
problem can be solved online and the performance obtained is satisfactory.

Figure 6.16: Effect of the prediction horizon N in the performance of
MPC for the tracking problem. Single-track model.

6.4 Summary

This chapter has presented the implementation of the parallel solvers presented in the
previous chapter. The solvers are based on C++ and use the MPI standard to
communicate the processors. To achieve an efficient parallel implementation, collective
communication routines are employed for simultaneous tasks. The parallel solvers have
been tested using different benchmark problems and their performance have been
compared with that of the serial solution for the reduced LMPC formulation. It was
observed that the parallel approach is suitable for medium and large-scale problems,
where considerable speed-up factors were obtained compared to the serial solution.
Likewise, the operator splitting and dual quasi-Newton methods have shown better
performance when solving LMPC problems with MIMO systems, which are common in
robotic and mechatronic applications. The operator splitting method has shown, in most
of the cases, to be the most efficient solver because the computation for each iteration of
this algorithm is much less than any of the other methods. Besides the solution of LMPC
problems, the performance achieved by these solver makes them suitable for their use as
QP solvers in a sequential quadratic programming (SQP) algorithm for solving nonlinear
model predictive control problems, which are more complex than LMPC problems.
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Chapter 7

Non-Linear MPC

As has been described in the previous chapters, LMPC employs linear or linearized
models to predict the future behaviour of the system and formulate a QP problem,
which is solved to obtain the optimal control input. This approach seems to work fine
when the system can be represented using a linear dynamic model and has only linear
constraints. However, in many real engineering problems the actual dynamic is
inherently non-linear and it is not possible to design a control strategy using simplified
linear (or linearized) models, since that deteriorates the performance. Therefore, the
control design for this kind of systems requires the use of a suitable dynamic model that
represents the salient nonlinearities. The class of MPC problem that uses nonlinear
dynamic models is known as nonlinear MPC (NMPC).

In general, NMPC is not only related to a nonlinear dynamic but also to the presence of
general nonlinear constraints or a non-quadratic objective function. NMPC is a state-of-
the-art research topic whose applications have been intensively studied in the last years.
In contrast to the linear case, NLMPC may involve a complex non-convex optimization
problem, which makes the online optimization task considerably difficult. Likewise, NMPC
arises many questions related to stability and robustness which are properties that are not
as well-studied as LMPC. For these reasons, solving efficiently NMPC problems for online
applications is an actual challenge and requires the use of efficient optimization techniques.
In this chapter, we present a brief overview of the formulation of NMPC problems, solution
approaches and related solvers as basis for the implementation of the solver presented in
this thesis.

7.1 NMPC Formulation

Generally, an NMPC problem is described by an optimal control problem (OCP), which
is formulated as follows

ty
min W) ty) + /t L(x(t), u(t), t)dt (7.1a)
subject to: % = f(x(t),u(t),?), t € [to,ty] , (7.1b)
g9(x(t),u(t),t) <0, (7.1c)
X(to) = X0, (71d)

where z(t) and u(t) are the state and control variables, respectively, x is the value of
the initial state, ¢o is the initial time and ¢y is the final time. The value of ¢; which can
be considered as an optimization variable (final time optimization) or can be a fixed
value. In this formulation, the objective function consists of an integral term
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L(x(t),u(t),t), called the Lagrange term, and a terminal term W(x(tf),t¢), called the
Mayer term. The dynamics constraint ((7.1b)) is given by an ODE system defined in the
time horizon [ty,t¢]. The path constraints are introduced as inequality constraints,
which commonly define bound limits on the state and control variables. It is important
to remark that the above formulation is not the most general, but defines the kind of
OCP which will be considered in this thesis. More general formulations can consider
differential algebraic equations (DAEs), multi-phase motions or coupled multipoint

constraints .

Problem is the continuous non-linear version of the LMPC problem in , where
the prediction horizon is represented by the optimization time horizon [to,tf] and the
objective function is a general function, not necessarily quadratic. Since the problem is
formulated in continuous time, the complexity in obtaining the solution increases
considerably. Generally, the solution methods for OCPs are divided into three categories:
dynamic programming, indirect methods and direct methods, as shown in Figure

e Dynamic Programming, that uses the Hamilton-Jacobi-Bellman equation, which
is a partial differential equation in the state-space obtained through the principle of
optimality. This method is restricted to small-scale dimension problems because the
approach suffers from the Bellman’s curse of dimensionality [85).

e Indirect Methods, also known as the first optimize, then discretize approaches.
These methods solve the OCP indirectly by considering the necessary optimality
conditions to transform the OCP into a nonlinear boundary value problem (BVP)
by using initial conditions for the states and terminal conditions for the co-states.
Then, the BVP is solved numerically using shooting or collocation methods .
In some cases, the BVP has several local optimal solutions. Thus, to ensure that
the solution is a global optimum, the HJB conditions are analysed. The Pontryagin
Mazimum Principle, the calculus of variations and the Euler-Lagrange differential
equations are encompassed within indirect methods. The main drawbacks of this
method are the complexity in solving the derived differential equations, the difficulty
on handling path constraints on the states and the necessity to have an initial guess
for the co-state variables .

e Direct Methods, also known as the first discretize, then optimize approaches. They
solve the OCP by transforming it into a nonlinear optimization problem (NLP)
which is then solved using state-of-the-art numerical optimization methods. To
transform the infinite dimensional OCP into a finite NLP, the problem must be
first discretized, i.e., transform the continuous dynamics of the system into a series
of discrete equations. There exist different discretization techniques, but the most
used in practice are those that can provide high accuracy on the approximation
and an efficient solution of the resulting NLP. Compared to the indirect methods,
these methods can easily address linear and nonlinear inequality constraints, making
them powerful tools for real applications. All the direct methods employ a finite
parametrization of the control variable (e.g. piecewise constant in each subinterval)
but they differ in how the state trajectory is handled .

The indirect methods cannot solve large-scale problems within an acceptable time, which
is a crucial factor in online optimization. Instead, the direct methods can solve very
large-scale, nonlinear and heavily constrained problems, and represent the
state-of-the-art methods for solving OCPs. There exist a wide range of professional
solvers for NLP (e.g. IPOPT, SNOPT, etc). However, it is still necessary to improve the
efficiency when solving particular problems, such as NMPC, which is the aim of this
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Figure 7.1: Solution methods for Optimal Control Problems

thesis.

In the next section, the main direct methods for OCPs are briefly explained, giving a
special emphasis on their discretization approach and implementation features.

7.2 Direct Methods for Optimal Control Problems

As has been explained previously, the direct methods work by transforming the OCP
into a static NLP. To accomplish this, they need to discretize the continuous system:;
specially, the dynamic constraint and the integral term of the objective
function ([7.1a)). To manage the Lagrange integral term, it is possible to introduce it into
the Mayer term by defining the expression inside the integral as the dynamic equation of
an artificial state variable. Thus, the objective function is redefined as the sum of
the original Mayer term and the final value of the new state variable. Thus, the
discretization problem now focuses on the dynamic constraint.

The dynamic constraint and the initial condition represent an initial value problem
(IVP), which are problems that can be solved by different methods. The classical
methods for IVPs are Runge-Kutta and backward-differentiation formulas (BDF).
However, the main drawback of these methods is that they require a small integration
step size to obtain an acceptable level of accuracy, which turns the problem large-scale
and computationally expensive. Since the accuracy of the discretization plays an
important role in the performance of the controller, direct methods employ more efficient
techniques. In general, the direct methods can be divided into two categories: the
sequential and the simultaneous methods. In the sequential approach, the resulting NLP
is formulated in terms of the discretized optimization variables u; by defining the state
variables as explicit functions of the control variables u(¢) and initial state x (), similar
to the reduced LMPC formulation. On the other hand, the simultaneous approach
formulates the NLP in terms of the discretized control and state variables, similar to the
sparse LMPC formulation. The most popular variant of the sequential approach is the
direct single-shooting method, while for the simultaneous approach are the collocation on
finite elements and the direct multiple-shooting methods, which are briefly described in
the following.
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Direct Single-Shooting

The direct single shooting method woks by dividing the time interval into N subintervals,
defining discrete time points tg, for £ = 0,..., N, and discretizing the control variable
u at these time points considering, generally, piecewise constant values within each time
interval [tx, tx+1]. Then, for a given control input @ = [ug, u1, ..., un—1], which is provided
by the nonlinear solver, the following IVP can be solved,

x(to) =xq, T = f(ac,ﬂ) R t e [to,tf] .

The solution defines a trajectory & = x(t;u) for each control sequence 4. This method
receives the name of shooting because the solver shoots with an angle, defined by #, to
find the optimal state trajectory z* which minimizes the objective function. Thus, the
NLP is defined in terms of the shooting vector «, which represents, generally, a
small-scale problem. This method is easy to implement, considers a few number of
optimization variables and has shown to be very effective for problems with small time
horizon. However, this method requires a good initial guess of the control variables and
cannot take advantage of warm-starting techniques. Even more, for some problems this
method can turn unstable .

Collocation on Finite Elements

The collocation on finite elements method is derived from the classical collocation
method for the solution of ODEs, which is a generalization of the implicit Runge-Kutta
method. This method transforms the OCP by discretizing both, state and control
variables. First, the time horizon [to, %] is divided using a grid of N 4 1 discrete time
points tx (k = 0,...,N), defining N intervals denoted as [tg,txt1] (not necessarily
equispaced) and which will be referred as the collocation intervals. Then, the state
trajectory x(t) and the control input u(¢) are discretized on this time grid. Typically, the
control variables are considered as piecewise constant values on each collocation interval,
e, u(t) = ug for t € [tg,trxr1]. Each collocation interval [tx,txy1] is divided by using m
internal points tj;, for ¢ = 1,...,m, which are known as the collocation points and are
suitably chosen. Based on the Weiertrass theorem, the state trajectory z(t) is
approximated at each collocation interval by a time-dependent polynomial of order m
with coefficient vector vg, i.e., z(t) = pr(t,v;) for t € [tg, tx+1]. Since the polynomial
pr(t, vg) is considered a good approximation of the state variable x(¢) and depends on
the time variable, its derivative px (¢, vg) can be evaluated at the m internal collocation
points t; and equalled to the dynamic function f(x(t),u(t)) at the same time points to
obtain the following equations:

p(tro,vk) = %
P(tea,ve) = f(p(tr,vr), uk)
Pltem,vk) = fF(O(tkms Vk), ur) (7.2)

where xj is the approximation of z(t) at ¢ = ¢, and the control variable is considered
constant on the collocation interval [tg,tr+1]. The equations in can be arranged
and expressed as a vector equation gg(zk, vk, ur) = 0, which defines a static nonlinear
constraint for each collocation interval. To ensure continuity of the state trajectory, the
initial state of each collocation interval is constrained to be equal to the final state of the
previous collocation interval, i.e, xp = pr—1(tk—1,m,vk—1). Thus, the dynamic
constraint ([7.1b)) is discretized for the whole time horizon. The path constraint is
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straightforward discretized by evaluating it at the time points ¢; and collocation points
tr; using the polynomial approximation. In this way, the OCP is transformed into a
NLP, which is usually very large-scale but sparse and thus, needs an efficient solver
which can exploit its inherent characteristics.

To employ the collocation method, two main questions must be taken into account: how
to choose the internal collocation points ¢ ; and how to construct a suitable polynomial
approximation pg(t,vi). The accuracy of the polynomial approximation is determined by
this two factors and there have been proposed different approaches. One of the most used
methods is the orthogonal collocation, where the internal collocation points are chosen
as the roots of orthogonal polynomials and a quadrature is employed to construct the
polynomial approximation p. More detail about the orthogonal collocation method will
be given in the next chapter.

Direct Multiple-Shooting

The direct multiple shooting, similar to the direct single shooting, only parametrized the
control variables u(t) at each time grid interval [to,ty], e.g. u(t) = uy for ¢t € [ty, tp11]).
However, unlike the single shooting, the ODE is solved independently for each time interval
considering an artificial initial value &y, i.e.,

:L‘k(t) = f(a:k(t), uk) R t e [tk7tk+1] ; (7.3)

Z’k(tk) = .f?k, 7.4
where z(t) indicates the state trajectory on the interval [tg,tx+1]. By solving all the
ODEs, a set of trajectory pieces xy(t; &y, ur) are obtained. The arguments after the
semicolon indicate the dependence of these trajectories on the artificial values & and
parametrized controls ux. Then, to ensure the continuity of the state trajectory, the
following additional condition is imposed at the final point of each interval

Tpy1 = T (tht1, Th, ug) (7.5)

which indicates that the initial state value j of each interval must be equal to the final
value of the trajectory computed for the previous interval. In this way, the dynamic
constraint (7.1b]) is represented by the following equations:

o = xz(0), (7.6)
1 = zo(t1, o, uo), (7.7)

: (7.8)
Iy = zy-1(tN—1,EN—1,UN—-1). (7.9)

Figure shows the trajectory pieces obtained through the solution of the ODEs (left)
and the state and control trajectories obtained through the continuity conditions when
the direct multiple shooting method converges. The path constraint , as in the other
methods, is discretized straightforward by expressing it using the values zj, which are
approximations of the state x(¢) at the discrete time points t5. The resulting NLP is
generally medium-scale and sparse, and is formulated considering the following vector of
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optimization variables:

w=| (7.10)

UN_1
L IN ]

which considers not only the parametrized control variables but also the approximation
of the states at each discrete time point. For this reason, the direct multiple-shooting
method lies between the simultaneous and sequential approaches in dynamic
optimization. It is sequential because the ODEs are part of the NLP and is simultaneous
because the problem is minimized over both, state and control variables. The main
advantages of this method is that it combines the benefits of both single-shooting and
collocation methods, because it can use adaptive and robust state-of-the-art ODE
solvers, whose solution is generally the most costly part of the optimization process, and,
since the state trajectory is piece-wise continuous, it makes the optimization of unstable
systems more reliable. Additionally, the problem size lies between that of the collocation
and single shooting methods.

k() itk
x/o/o/o/o\io/o/o&/o( fﬁé\l 1 P TN-1
TN_

To T1 o 1 Zo TN
- — o NN o f— - —_— —
i e — _ UN-—-1
u u
TS P e e i el
to 11 t2 tn_1ty  to t1 t2 IN-1TN

Figure 7.2: (left) Single trajectories obtained through the solution of
the ODEs. (right) Convergence of state and control profiles for the
direct multiple shooting method.

The direct multiple-shooting method is nowadays the most widely used direct method
for solving OCPs. A key point to remark here is that the multiple-shooting method
solves a set of ODE problems, which are independent to each other and thus, can be
solved in parallel. In fact, the solution of the ODE systems is not computationally trivial
and, even using well-developed ODE solvers, can turns the solution of the resulting NLP
very expensive. Based on this challenging situation, this thesis focuses on exploiting the
uncoupled feature of this step to make an efficient parallel implementation employing the
state-of-the-art combined multiple-shooting and collocation method, as will be explained
in the next chapter.

7.3 Numerical Methods for Nonlinear Optimization
Problems

As result of employing the direct methods, the optimization task is reduced to solving a
NLP for obtaining the optimal control inputs. For the direct multiple-shooting approach,
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the resulting NLP can be described by the following standard formulation

min  F(w)
subject to  G(w) =0, (7.11)
H(w) <0,

where w is the vector of optimization variables defined in (7.10)), and F(w), G(w) and
H(w) encompass the objective function, dynamic and path constraints, respectively.
Problem is, generally, a non-convex problem and requires more advanced solution
methods than that presented for convex problems. There exist two main solution
approaches for this kind of problems: the sequential-quadratic-programming and the
interior-point methods. Deciding which solution method is the most suitable involves a
good analysis of the properties of each one and the characteristics of the problem.
NLMPC, similar to LMPC, involves the solution of large-scale problems that,
additionally to the nonlinearity feature, makes the solution of this kind of problems an
actual challenge. Thus, it is necessary to use an efficient NLP solver which must be able
to manage large-scale problems and exploit the possible inherent structure to improve
the computational performance. In the following, we will present a brief overview of
both, sequential-quadratic-programming and interior-point methods, giving an
explanation of the core of each one of these methods and the related works reviewed in
the literature.

Sequential Quadratic Programming

Sequential-quadratic-programming (SQP) has been one of the most used solution
methods for NLPs because of its robustness and effectiveness . SQP generate iterates
w' by solving a sequence of QP problems. At each iteration, the SQP algorithm solves a
QP problem that is obtained through the linearization of the NLP around the current
iterate. The solution of this QP problem provides a descent direction d towards the next
iterate w't!'. Then, a merit function is minimized, along the search direction, to
determine a step length and to ensure convergence. This process is repeated iteratively
to create a sequence of approximations that will converge to the optimal w*. In the
following, a brief overview of this method applied to the solution of will be given.

Considering an initial value w®, the SQP iterates:
wt =w+ald  i=0,1,..., (7.12)
where o is the step length determined by the merit function and d is the solution of the
following QP which results from the linearization around w’ + d,
‘ 1 .
min VF(w)"d + 5dTP%z
subject to:  G(w') + VG(w')d =0,
H(w') + VH(w")d <0,

In practice, P! is an approximation of the Hessian matrix V2 L(w, \, i) of the Lagrangian
function,

L(w,\, 1) = F(w) + \TG(w) + p" H(w) , (7.14)

which is a non-linear version of that presented for convex optimization. The Hessian
approximation can be cheaply obtained using the quasi-Newton method explained in
Chapter or by the Gauss-Newton method , which has also proven good
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performance. The QP problem can be solved using any of the convex optimization
methods explained in Chapter However, the interior-point methods are not usually
employed because the overall computational complexity would increase considerably.
Instead, the active-set methods are preferred and, indeed, there exist many professional
implementations of the SQP method using this approach. One of the earliest SQP
implementations based on FORTRAN is NPSOL [91], which has been employed for
solving smooth problems. A more efficient and general implementation based on SQP is
the commercial solver SNOPT , which uses a reduced Hessian active-set method and
is applied for large-scale optimization. Other efficient implementations are that provided
by the commercial package GAMS and the open-source FORTRAN-based solver

NLPQL [94).

The SQP methods have shown to be more robust when the gradient and Jacobian
matrices are calculated analytically, and when the objective and constraints of the NLP
are described by smooth nonlinear functions [95]. Generally, the iterates of the SQP
method satisfy the linear constraints but, in some cases, they do not satisfy the
nonlinear constraints. For these reasons, this method is mostly applied for solving
problems with a small degree of nonlinearity.

Interior-Point Method

The interior-point method is one of the most efficient algorithms for solving very
large-scale NLPs. In the last years, the growing interest in using interior-point methods
for solving large-scale nonlinear problems has led to the professional development of
robust solvers (e.g. ) In general, the interior-point method applied
to the solution of NLPs is not as simple as that applied to convex problems. Many
important considerations and strategies have to be taken into account, such as the linear
algebra solver, the gradient and Hessian computation, regularization methods, the
flexibility regarding algorithmic requirements, avoiding the combinatorial bottleneck of
identifying active constraints, an efficient use of the line-search strategy, etc. In ,
exact penalty merit functions have been used to enforce progress to the solution.
In , the filter methods are proposed as an alternative to merit functions to
guarantee global convergence in non-linear optimization. In , an extension of the
filter method which uses heuristic is proposed for the use in barrier methods. However,
the convergence analysis of this approach was not given. Instead, in the global
convergence of line-search interior-point methods has been analyzed, providing an
algorithm that makes less restrictive assumptions.

In this thesis, the IPOPT solver is employed for the solution of the resulting
NLP (7.11). This solver is an efficient implementation of the interior-point method for
large-scale very non-linear problems and its use in control optimization has proven that
it is a powerful tool for high performance online implementations.

IPOPT

IPOPT (Interior Point Optimizer) is a state-of-the-art open-source software package for
solving very large-scale NLP. This solver is based on a primal-dual interior-point
line-search filter method . IPOPT was initially developed in FORTRAN language as
result of the dissertation research of Andreas Waichter [103] and since then, the
algorithm has been improved along the years. Nowadays, the solver is available in
different platforms (e.g. C, C++, Python, Matlab) being a powerful tool for different
applications optimization. It is important to remark that this solver tries to find a local
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solution of ([7.11]), which implies that in case the problem is non-convex, there exist many
local solutions and the result will depend on the given initial point . More detail about
the mathematical background of the algorithm can be found in [63].

In this thesis, we employ the IPOPT C++ interface for the implementation of a NMPC
solver. In order to obtain the solution of the NLP, the problem is first set in the IPOPT
environment, which implies the definition of the number of optimization variables (n),
number of equalities and inequalities constraints (m), the definition of the cost function
(obj-fun), constraints (¢g) and bounds on the variables (Ib and ub). As every
interior-point solver, it is also necessary the information of first and second order
derivatives, i.e., the gradient of F(x), Jacobian of G(z) and H(x), and the Hessians of
L(w, A\, pt). To compute the Hessian matrix at each iteration, it is possible to employ the
Ipopt’s approximation or interface the problem with a C++ Automatic Differentiation
solver such as CASADI or ADOL-C . In this thesis, we employ only the
IPOPT’s L-BFGS Hessian approximation, while the gradient and Jacobian information
are given to IPOPT through the solution of local subproblems, as will be explained in
the following sections. A scheme of the solution procedure within the IPOPT
environment is shown in Figure [7.3]

Initialization
number of variables n
number of constraints m
upper and lower bounds
initial value w®
i1=0

Evaluation of Functions

objective function F(w?)
gradient of objective VF(w?)
constraints  G(w?) , H(w*)
Jacobian of constraints VG(w'), VH(w?)

IPOPT Algorithm

|

solution KKT system
line-search filter method
second order corrections
feasibility restoration
t=1+1

|

convergence criterion no
w' = w*?

yes

optimal solution w*

Figure 7.3: Diagram of the solution procedure of IPOPT.
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As mentioned before, IPOPT can deal with problems concerning millions of variables an
constraints, which, generally, implies working with large-scale sparse matrices. Therefore,
the solver stores only the non-zero elements of the Jacobian and Hessian matrices. Since
the matrices are sparse, the solution of the resulting KKT system requires the use of
an efficient sparse linear algebra solver. IPOPT can use the following sparse solvers for
symmetric linear systems:

e HSL-MA27 [107] which is the default IPOPT linear-algebra solver and employs a
serial algorithm. It solves the large-scale linear system Ax = b by a direct method
based on a sparse Gaussian elimination approach.

e HSL-MAS57 [108], which is the successor of MA27 and employs the same algorithm
but considering aggregation of sparse elements to improve the efficiency.

e HSLL-MARSG, which solves a symmetric linear system using LDLT factorization. This
solver uses the multithread standard OpenMP and is designed for multicore
architectures. Because of finite precision arithmetic and random order of operations,
the whole optimization may take variable number of iterations.

e MUMPS , which implements the LU factorization for general square matrices
and the LDLT factorization for symmetric matrices. The IPOPT support version of
the algorithm is serial.

e PARDISO [110] which is a parallel multithread algorithm using OpenMP. It
implements the Cholesky and LDLT factorizations for symmetric matrices and the
QR factorization for non-symmetric matrices.

For the implementation in this thesis, the sparse HSL-MA57 linear algebra solver interfaced
with IPOPT is employed. The reason for this choice is based on the fact that the approach
proposed in this work will use the MPI standard within the Ipopt’s main algorithm.
Therefore, there may be conflicts in memory assignation if MPI is used for both, the
implementation proposed in this thesis and the use of an MPI-based parallel linear algebra
package. In fact, the MA57 solver has proven to be a very efficient sparse solver when
running in shared memory architectures employing threaded BLAS operations.

7.4 Summary

This chapter has presented an overview of OCPs, which is the basis of nonlinear MPC
(NMPC). The general formulation of a OCP describes a dynamic problem formulated in
continuous time that can be solved using different methods depending on the
characteristics of the problem. For real-life problems, which present general constraints
and are very complex, the direct methods are the most practical to use. This methods
work by discretizing the continuous-time problem to formulate a static NLP and employ
state-of-the-art solvers to obtain the solution of this latter problem. The interior-point
method, again, has shown to be very efficient for solving this kind of optimization
problems. Specially, the IPOPT solver is nowadays the most efficient and reliable solver
for large-scale NLP and is therefore used in this thesis for the implementations. In the
next chapter, a parallel approach for the solution of general optimal control problems
will be presented based on a novel strategy that combines the direct multiple shooting
and collocation methods.
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Chapter 8

Parallel Combined Direct
Multiple-Shooting and Collocation
Method

As has been described in the previous chapter, the NMPC problem describes a general
OCP. The most suitable methods for the solution of this kind of problem are the direct
methods that transform the OCP into an NLP, which can be solved with state-of-the art
numerical solvers such as IPOPT. Among direct methods, the most used is the direct
multiple-shooting because it combines features of the simultaneous and sequential
approaches.  To discretize the OCP, this method divides the time horizon into
appropriate shooting intervals and defines terminal conditions in each shooting interval
to ensure the continuity of the state trajectory. To solve the resulting NLP, it is
necessary to compute the values of the state variables at the end of each shooting
interval and the associated sensitivity matrices, which are values employed by the NLP
solver. Therefore, depending on the number of shooting intervals, the complexity of
solving OCPs using multiple-shooting can increase considerably, making the problem
very computationally expensive to solve in real-time. To overcome this limitation, a
novel discretization method has been recently proposed by Tamimi and Li [111]. This
method is known as the combined multiple-shooting and collocation (CMSC) method
because it is a hybrid approach that discretizes the OCP using the multiple shooting
scheme and employs collocation on finite elements to carry out the main computation
within each shooting interval. Due to high numerical accuracy of collocation and the
decoupling feature of multiple-shooting, the CMSC method has been used to efficiently
solve general OCPs , and some studies have focused on exploiting these features
to improve the performance of this method .

In [114], a parallel implementation of the CMSC method based on Optimica and
Modelica has been presented. This work used parallel computing to carry out the
underlying computation of state values and sensitivities at the end of each shooting
interval. In , a similar parallelization scheme based on Modellica and CasADi [118]
has been implemented. This work also proposes the use of an analytic Hessian for
improving the computational performance of the NLP solver (IPOPT). However, since
both parallel implementations are based on high-level programming languages and use
general commercial solvers for specific tasks, the average computational times that they
reported do not satisfies the requirements for real-time control of fast dynamic systems.
For this reason, in this thesis we focus on implementing a high performance parallel
solver based on the CMSC method of which is based on open-source tools and can
efficiently used in real-time control applications. Moreover, in the implementation we put
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special emphasis on using specific tailored algorithms to carry out the most complex
tasks involved in this method. In the following, the basis of the CMSC method and of
the proposed parallelization scheme will be detailed.

8.1 Constraints and Derivatives

As every interior-point method, the IPOPT solver formulates the Lagrangian function
of to analyze the optimality conditions and applies the Newton method to solve
them. To construct the KKT system at each iteration of the algorithm, the IPOPT solver
needs to evaluate numerically the following information:

e objective function F(w),

e constraints G(w) and H(w),

e Hessian of the Lagrangian function,
e gradient of the objective function,

e Jacobian matrices of the constraints,

which are typically provided by the user. However, for the NLP obtained using
multiple-shooting, providing all this information to the solver as simple functions to be
evaluated is not a trivial task. After the discretization, the objective function F(w) is
an algebraic function and thus, it and its gradient can be given to the IPOPT solver as
simple functions that will be evaluated numerically at each iteration. For the Hessian
computation, the IPOPT solver provides an efficient and robust implementation of the
L-BFGS quasi-Newton method, a sparse version of the BFGS method. Therefore, we
will employ this Hessian approximation in the implementation. The inequality constraint
H(w) consist of a set of algebraic equations that depend only on the local stage variables
i’k and U, i.e.,

h(a::'o,U()) 0
H(w) = h(xlz’ul) < ? , (8.1)
e L0

and hence, the Jacobian matrix VH(w) can be obtained by direct differentiation with
respect to the optimization variable w and be provided to the solver as an analytical
expression to be evaluated as

"ohy Oho ; _
8:2‘0 6u0
o o I I 0
VuH(w) = o0&y Ouy . (8.2)
0 Ohy  Ohn
L 8§:N 3uN_

The major complexity comes from the numerical evaluation of the equality constraint
G(w) and its Jacobian matrix VG(w), which is considered the most computationally
expensive task when using the direct multiple-shooting method. Considering the vector
of optimization variables w in and the set of equations in , that describe
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the coupling between the shooting intervals, the vector of equality constraints for the

NLP ([7.11)) is given by

Zo — x(0) 0
21 — ¢o(Zo, uo) 0

G(w) = T2 — g1 (1, u1) =10}, (8.3)
| ZNn — ¢N71(§N71,UN71)_ 10

where ¢y (2, uy) represents the right-hand side of , ie., op(Tk, ux) = Tk (thr1, T, k).
The optimization variables Zj and uy are implicitly defined in the functions ¢y (Zx, uk),
which represent the value of the state variable at the end of each shooting interval obtained
through the solution of the ODE . For this reason, the numerical evaluation of G(w)
at each iteration ¢ implies the solution of the set of N ODEs in using the values of
the current iterate w’ for &3, and uy, k =0,...,N — 1. To carry out this task, numerical
integration ODE solvers are usually employed, which implies an increment in the overall
computational effort. Furthermore, the Jacobian matrix VG(w) is given by

1 0 0
o) okl 0
W O o) ot
1% 1%
0 _9dNn-a(¥) _99n-1(x)
L 0Tn_1 Oun-—1 i
and its numerical evaluation implies the computation of a(ng‘E:) and %UL(*), which are

known as the sensitivities, because they describe how the function ¢ (2, ug) is
influenced by the values Z; and wyg, respectively. The computation of the sensitivities
also increases the overall computational complexity, making the real-time solution of
NLMPC problems very challenging.

To sum up the above explanation, when using the direct-multiple shooting method, the
IPOPT solver requires at each iteration the numerical values of:

1. the functions ¢y (&, uy) evaluated at the current iterate.

Ir(&k, uk) and Oy (T, ug)
0T Oouy,

2. the sensitivities for the current iterate.

The functions ¢y (Zg,ur) are obtained from the local solutions of the ODEs and the
sensitivities are computed from these local solutions. There exist many numerical
methods for solving ODE systems, in specific, initial value problems (IVPs). The most
frequently employed are the implicit and adaptive Runge-Kutta methods, the backward
differentiation formulas (BDF) and the non-standard finite difference methods. In all
these methods, the size of the integration step plays a critical role due to the trade-off
between numerical accuracy and computational efficiency. In addition, the computation
of sensitivities implies the introduction in the field of numerical computation of
derivatives, which is also an intensive researched field. For computing derivatives, the
most simple approach is to use finite difference approximations, which also depend on
the step-size and, for some problems, can be ill-conditioned . New approaches
involve the use of step-complex differentiation (SCD) and automatic-differentiation
(AD). SCD works by making a Taylor approximation using complex values. Thus, it is
necessary the employ of a numerical software able to work with complex numbers, which
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restricts the use of this method in real-time applications. On the other hand, the AD
employs the chain rule and forward or reverse accumulation to obtain an accurate
approximation of the derivatives. Indeed, IPOPT can use different AD software packages
to approximate the Jacobian matrices, such as the ADOL-C and CppAD
libraries. However, in addition to the lack of an explicit formulation of G(w) and the
complexity in the solution of the ODE equations, the use of AD leads to an increase in
the computational complexity, which deteriorates the performance.

8.2 Computation of Functions and Sensitivities

Using multiple-shooting, the time horizon has been divided into N shooting intervals
Aty = [tg,tgs+1], £ = 0,...,N — 1. In the CMSC method, instead of using an ODE
solver for computing the numerical values of the functions ¢y (Zx, ur) and the associated
sensitivities, collocation on finite elements is used in each shooting interval to carry out
this task. Similar to the collocation method explained in the previous chapter, the CMSC
method divides each shooting interval Aty into m intervals using a grid of collocation
points ¢4, © = 0,...,m. The state trajectory is discretized at these collocation points
and represented by the values xy ;, as shown in Figure At the initial point of the kth
shooting interval, the state value x(t o) is given by the optimization variable . Similarly,
at the final point of the shooting interval Aty, the state variable x (¢ ,) represents the
value of ¢y (Zx,ur). The state trajectory in each interval Aty is approximated by linear
combination of Lagrange polynomials, i.e.,

m

Pt ve) = > Li(®)zhs,  tE [te,trral, (8.5)
i=0

where py (¢, vr) represents the approximation polynomial for the interval [ty,txy1]. This
polynomial has the characteristic that the values of z1; and py(ty;, vi) are equal at the
collocation points t, i.e.,

pk(tk,i,vk):xk’i, kZO,...,N—l, i:O,...,m. (86)

The time derivative of (8.5) is given by

. O dli(t
pr(t,vp) = Z d(t )%,i (8.7)
i=0

Thyi

I

I
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Figure 8.1: Scheme of the collocation approach in the CMSC method.
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which, inserted into the dynamic function (7.1b|) and evaluated at the collocation points
tq, result in the following set of discretized model equations for each interval

dlo(t dly (t iy (t
()S.umfk + l(df’l)m +ot flt’“)ka = floenu),  (88)
dly(t R dlq(t dl,, (t
(8.10)
dlo(t mj dly(t m dlm t m
O(d]l:, )a:k + l(d:’ );I;k71 Lt Eltlﬁ)xk’m _ f(ffk,m, w) s (8.11)

To ensure numerical accuracy, Gaussian quadratures are commonly employed to select the
internal collocation points. The most frequently used are the Legendre, Radau and Lobato
quadratures, which scale the time variable t € [tg, tx+1] to the normalized time 7 € [0, 1],
as explained in [121]. In this thesis, we employ the Gauss-Legendre quadrature, which
places the collocation points 7; at the roots of the shifted Legendre polynomial of mth
order. Using this approach and defining the states at the internal and final collocation
points as
Tk
T2
X = . ; (8.12)
i'k,m
the dynamic model equations in (8.8)) can be written in the following compact form:
M(7)x; + L(7) 2% — Aty f(xk, ux) =0, (8.13)

~~

=X, T g k)

where 7 = [11, ..., Ty] is the constant vector of collocation points and M (7) and L(7) are
constant matrices defined as follows

dl1 (’7’1) dlm (’7’1) le (7'1)
dr - dr dr
M(r)=| : . : |, L= . (8.14)
dli(tm) Al (Tim) dlo(Tm)
dr 000 dr dr

System represents a set of m - n, nonlinear equations with the vector x; € R™"=
as unique variable because the values of Z; and wuy are provided by the IPOPT solver at
each iteration and thus, are considered constant parameters. By warm-starting the
initial iterate of the solver, the determined nonlinear system can be solved by

an(xi 2k ,'U,k)
OxXp

using the local Newton method described in Algorithm where

the Jacobian matrix evaluated at the internal iterate x{c. Since the matrices M (7) and

L(7) only depend on the collocation points 7;, they are computed offline and used as
constant coefficients. For improving the computational performance, the vector function
II(xg, Tk, ur) and Jacobian matrix OMXk:Zhuk) can e computed offline symbolically
using any state-of-the-art computer algebra system and defined as simple functions to be
evaluated. The tolerance error € is set to a very small value, typically in the order of
1078 or less. Indeed, the local Newton method in Algorithm provides a cheaper,
faster, and more accurate solution of compared to that in and , where
general solvers were employed to carry out this task. Moreover, when warm-starting the
initial iterate

represents

mathbfxg, the local Newton method converges to the solution in very few
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Algorithm 16: Local Newton Method for nonlinear system (8.13)
Input : Initial guess xg, current values Zj and wug
Output: Solution point close to xj,

15=0

2 while |[II(x], &5, up| > € do

3 Compute: II(x7, Ty, uk)
ONl(x, 2 , U
4 Compute: M
8xk )
GH(X?gajkvuk)

5 | Find d by solving: d = —TI(x], &1, up)

) ) axk
Update: xfjl =x) +d
J=J+1L

end

0]

iterations [122].

Using this procedure in all the shooting intervals, the values ¢ (Zy,ur) = i, are
computed and the numerical value of G(w) for the current iterate can be obtained.
However, it is still necessary to compute the sensitivities, which will be used to construct
the Jacobian matrix VG (w) in (8.4). As was explained in [112], it is possible to compute
an accurate approximation of the sensitivities by extending the collocation approach
presented before. Applying a first-order Taylor expansion to II(xg, Zx, ux), the following
equation is obtained:

aH(Xk, .@k, uk) Aﬁ?k + GH(xk, i‘k, uk) AXk + aH(Xk, @k, uk)

Aug =0 8.15
s 8%, Bus ug =0, (8.15)

where A stands for the deviation of the variables. Based on the above equation, the
sensitivities of x; with respect to Z; and up can be approximated by

8Xk - AXk 8xk h ¢ AXk

02, Az’ Oup  Auy’ (8.16)

where the right-hand side of the above expressions are obtained by solving the following
linear systems

O (xy, T, up) \ Axg  OH(xy, T, ug)
( 8Xk A:Ek a 8:i’k ’ (8.17&)
8H(xk,§:k,uk) AXk 8H(xk,§7k,uk)
= — 1
( Bxk Auk 8uk ’ (8 7b)

which are derived by dividing (8.15) by Az, or by Aug, and based on the fact that the
relationship Auy/AZy, and its inverse are negligible. The approximation of the sensitivities
can be written as

[ Oxpq ] [ Orp1 7
a%?fg 3(201:,62
8Xk O an Oug
8‘%k 8xk;m,1 8Uk; 8zk,.m71 ’
oork ook
| Oz L Oup
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where the last block-row components of both expressions are the desired sensitivities of

¢k<i'k; uk), i.e,
Pk (L, ug) _ a$k,m 0ok (Tk, uk) B (933‘]€7m

. = —2 = . (8.18)
In this way, the numerical value of the sensitivities can be computed to construct the
Jacobian matrix %&l}) for each iteration of the IPOPT solver. To construct the linear
systems in (8.17)), it is necessary to compute aH(xgéi’“’uk) and 8H(x§q’i’“’u’“). It is possible
to obtain an analytical expression of these matrices using a computer algebra system and
provide this information to the solver as simple functions to be evaluated. Even more,
both linear systems in have the same coefficient matrix, which generally is given
by a non-symmetric matrix. Thus, it is not necessary to solve them sequentially but
instead a direct decomposition method (e.g. LU decomposition) can be used to factorize

the coefficient matrix and solve all the linear systems by simple substitutions.

The CMSC method has shown good progress in improving the performance and numerical
accuracy when solving OCPs. The main computational effort of this method, besides that
required for the NLP solver, lies in the numerical procedures required for computing
the values ¢ (2, ux) and the associated sensitivities in each shooting interval. However,
the computation of each shooting interval is decoupled from that of the other intervals
and thus, this task represents a set of N independent sub-problems that can be solved
in parallel to obtain a high performance implementation. In the following section, we
present a parallel approach to improve the computational efficiency when solving NLMPC
problems using the CMSC method.

8.3 Parallel Computation

As has been explained above, it is still necessary to exploit all the features that the
CMSC method exhibits to enhance the computational performance and obtain an
efficient implementation that can be employed in controlling fast dynamic systems. To
achieve this, we exploit the fact that the shooting intervals define N local sub-problems
that are decoupled and, therefore, can be solved independently using parallel computing.
To explain this parallel approach, we consider that a master processor is defined to carry
out the main computation of the IPOPT solver, and that there exist N worker
processors that will carry out the solution of each underlying local sub-problem
(computation of ¢y (T, ur) and sensitivities).

The parallelization of the CMSC proceeds as follows. At each iteration of the IPOPT
solver, the master processor scatters the current iterate w® among the worker processors,
sending the values :%}g and u}C to the kth worker processor, which solve independently the
local sub-problems using collocation on finite elements. The results of each local
sub-problem are ¢y (Z, ug), 8¢’“£i’u’“), and 8¢kéi’“’“’“). These values are then sent to the
master processor, which continues with the main algorithm of IPOPT to find the next
iterate w'*!. This procedure is repeated until the IPOPT solver converges to the optimal

solution. A scheme describing this parallelization approach is shown in Figure [8.2].

The tasks performed by each worker processor imply the solution of the nonlinear
system , for computing the value ¢y (Zg,ur) that represents the state variable at
the end of each shooting interval, and the solution of the set of linear systems , for
the computation of the respective sensitivities. To obtain an efficient implementation,
both tasks should be carried out exploiting state-of-the-art numerical solvers. At each
iteration of the IPOPT algorithm, each processor receives the local stages variables
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IPOPT Solver
(Nonlinear Optimization)

Proccesor Proccesor Proccesor Proccesor
1 2 N-1 N

Figure 8.2: Scheme of the parallel solution of the sub-problems in the
CMSC method.

(Zx,ur) and constructs the nonlinear system , which is solved using the local
Newton method described in Algorithm The main computational effort in this
algorithm is located in line [5] where a linear system is solved to find the descent
direction. In general, the coefficient matrix is non-symmetric and can be sparse
depending on the number of collocation points and the properties of the dynamic model.
Thus, efficient linear algebra solvers for indefinite square matrices can be used in this
step. Moreover, once the solution of the nonlinear system has been obtained, the
sensitivities are computed by solving the set of linear systems in , where the
coefficient matrix is the same as that of the linear system in line [5| evaluated at the last
iteration of Algorithm [I6] For this reason, if a direct factorization method is employed,
the factors of the coefficient matrix at the last iteration of the local Newton method can
be stored and wused for solving through simple backward and forward
substitutions. This procedure is summarized in Algorithm

Algorithm 17: Task performed by each worker processor
Input : Current iterates zj and wj received from the master processor

0Pk (T, O9r (T,
Output: Function ¢y (2, ux) and sensitivities gbk(ﬂik Uk) and Ok (T, )
8$k 8uk

1 Computation of ¢y (T, up):
8H(X.]]g7 :i/m uk:)
8xk

M

Compute x;, using Algorithm |16 and store factorization of

w

Set ¢ (ZTk, uk) = Tim
4 Computation of Sensitivities:

8[“Xé,@k,uk)
0x

according to (8.18

5  Solve (8.17)) using the previous factorization of

0w (T, ug) and 0d (T, ug)
8ik 8uk

6 Obtain

8.4 Summary

This chapter has presented the CMSC method of [111] and has presented a parallel
approach for improving the computational performance when solving OCPs, specially
NMPC problems. The CMSC method uses multiple-shooting to decompose the OCP
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into a set of single shoot sub-intervals and uses collocation on finite elements in each one
of these sub-intervals. Since the computation required for each sub-interval is
independent of that for the other sub-intervals, the single shoots represent a set of
uncoupled sub-problems that can be solved in parallel. Each one of these sub-problems
consists in computing the state value at the end of the corresponding shooting interval
(¢r (2, ur)) and the associated sensitivity matrices, which are values required by the
IPOPT solver at each iteration. The computation of (¢ (Zx,ux)) implies the solution of
a nonlinear system, which is performed using the local Newton method to obtain an
accurate, fast and cheap solution. Likewise, the computation of the sensitivities implies
the solution of a set of linear systems that have the same coefficient matrix. However,
the same coefficient matrix has been already used in the last iteration of the local
Newton algorithm. Therefore, by using an efficient direct decomposition method such as
the Eigen’s LU factorization, the computation of sensitivities is reduced to simple
backward and forward substitutions. In the next chapter, we present the details of the
parallel implementation of the CMSC method and test the performance of this solver
using different benchmark problems.
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Chapter 9

Implementation and Case Studies
for the Parallel CMSC Method

9.1 Implementation

The parallel implementation of the CMSC method explained in the previous chapter is
based on the C+4++ programming language to obtain high performance in run-time.The
C++ interface of the IPOPT solver version 3.12 is employed for the solution of the NLP,
which is a task carried out by the master processor. The solution of the local sub-problems
is performed in parallel using the MPI’s collective routines to reduce the communication
time between the master and worker processors. Figure shows a diagram detailing the
parallelization of the algorithm and the respective MPI commands. The dashed blue box
represents the iterative process of the IPOPT solver, the green and white boxes indicate
the tasks carried out by the master and worker processors, respectively. The parallelization
of the algorithm involves the following steps:

e At the beginning of the algorithm, the master processor receives the information of
the problem and the initial values for the primal and dual variables, which are set
within the IPOPT’s environment. Then, the IPOPT solver starts the main iterative
optimization algorithm.

o At each iteration of IPOPT, the master processor computes the numerical values
of the objective f(w), gradient V f(w), inequality constraints H(w) and Jacobian
V H(w), which have been provided to the solver as simple functions to be evaluated.

e To parallelize the numerical computation of the equality constraints G(w) and
Jacobian VG(w), the master processor scatters the current iterate
w' = [wé, . ,w}'\,fl, a%ﬁv] among all the worker processors by using the MPI_Scatter
function, sending to each one the stage values wi = [z}, ui].

e The worker processors receive the information and proceed with the computation
0Pk (T 00k (T,
¢k(ﬂik ug) and bk 2k, uk) by
0Ty Ouy,
following the procedure described in Algorithm [I7 The computed values are then

send to the master processor employing two MPI_Gather functions: one for the
local function and the other for the local sensitivities.

of the function ¢ (&, ur) and the sensitivities

e With the values received from the worker processors, the master constructs G(w?)
and VG(w') according to (8.3) and (8.3, respectively. Then, it computes the
approximation of the Hessian inverse using the L-BFGS method of IPOPT.
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Figure 9.1: Parallelization scheme for the parallel CMSC method.

1

e The main algorithm proceeds with the computation of the next iterate w**! carried

out by the IPOPT solver (master processor).

e If the stopping criteria is satisfied, the master processor returns the optimal value
w*, otherwise the procedure is repeated.

The local Newton method used for the solution of nonlinear system has been
implemented using the linear algebra library Eigen version 3.2.5. The sparse LU
factorization has been used for the solution of the linear system in line [5| of the
respective algorithm. As has been explained in the previous chapter, the factorization of

the coefficient matrix is stored and is employed again for the solution of the set of linear
OlL(xk, 2k uk)

systems in (8.17). The analytical expressions of the Jacobian matrices i ,
% and % have been obtained using the Maple computer algebra
k U

system, which exports these symbolic expressions as C++ functions.

In the following, some case studies are used to evaluate the performance of the parallel
CMSC solver. The stirred tank reactor and satellite control problems are two classical
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benchmarks for nonlinear optimal control and are chosen to compare the achieved
performance with that reported in [115], where a similar parallel implementation was
presented based on Python and JModellica. As a NMPC application, the classical
inverted pendulum problem is again tested employing the actual nonlinear dynamic. All
these applications use three internal collocation points based on the shifted
Gauss-Legendre-Radau quadrature.

All the computations are performed on a standard personal computer Intel Core i7-5500U
with Ubuntu 15.10 and four physical cores running at 2.4 GHz. Since the number of
processors is limited to four, one of them is defined to be the master processor and also
to play the role of a worker processor while the other three processors are defined only
as workers. Each of the worker processors is in charge of the computation of functions
and sensitivities for an equal number of time intervals. The IPOPT tolerance is set to the
default value of 1078 and the tolerance for the local Newton method is also set to 107%.
To start the IPOPT solver, the initial values of the state variables Z; are all set to the
value of the initial condition xy and the initial values of the control variables uy are all
set to zero. The warm starting options of IPOPT are enabled to gain convergence speed
in the solution. The program is compiled in the Ubuntu’s terminal through the mpic++
command and using the compilation flags -O3 and -DNDEBUG. The computational times
are reported in milliseconds and are obtained from an average of 50 runs measured using
the statistic results of IPOPT.

9.2 C(Case Studies

Stirred Tank Reactor

The isothermal continuous stirred tank reactor is a problem introduced by , revised
by and used as a benchmark in [125] 126, 112, 115]. Here, four simultaneous chemical
reactions take place and the problem consists of determining the optimal control input
to maximize the economic benefit. The control variables are the flowrates of three feed
streams and an electrical energy input used for the photochemical reaction. The dynamics
of the system is described by the following equations

1 = ug—q(t)x; — 17.6x129 — 232126U3 ,
o = wup — q(t)xy — 17.6z129 — 1462923 ,
T3 = wuz —q(t)rz — T3w273,
24 = —q(t)zg + 3522129 — 5132425, (9-1)
5 = —q(t)zs + 2192923 — 51.3z425
t¢ = —q(t)ze + 102.6x475 — 23x126U3,
&7 = —q(t)z7 + 46x176U3 ,
(q

ig = 5.8(q(t)xy —ug) — 3.Tuy — 4.1us + q(t)(23z4 + 1125 + 2826 + 3527) — 5ul — 0.09,

where ¢(t) = (u1 + ua + uyq). The state vector of initial conditions is given by
2(0) = [0.1883, 0.2507, 0.0467, 0.0899, 0.1804, 0.1394, 0.1046, 0.0000]7.  (9.2)
The control variables are constrained as follows,

0<u <20,
0<u <6,
0<uz <4,
0<uy<20, (9.3)
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and the final time is fixed to ¢ty = 0.2 seconds. The objective is to maximize the state xg
at the final time ¢;. Thus, the optimal control problem is given by

t
max zs(ty)

SUbjeCt to: " " ‘ )
t €0, tf] .

To apply the CSCM, the time horizon [0,0.2] is divided into N = 60 equidistant time
intervals. The optimal trajectory of the state xg, whose final value is maximized in the
objective function, is shown in Figure [9.2] and the optimal control inputs are shown in
Figure 9.3l The evolution of the objective function within the optimization process is
shown in Figure [9.4] and the statistic results are summarized in Table After 80
iterations of IPOPT, the objective function J reaches the maximum value of 21.78 but
the algorithm continues because the primal and dual infeasibility do not satisfy the
convergence criterion. With the parallel CMSC method, the computational time
required for the solution is about 2746 ms, which is almost 30X faster than that reported
in for this problem using a similar parallelization approach. The better
performance of the implementation of this thesis compared to that in [115] relies on the
synchronous communication between processors, the use of a fast local Newton method
for solving the nonlinear system, and in the fact that an implementation based on C++
has, by far, a better performance than any other based on a high-level programming
language, such as Python, that does not manage directly the hardware.

Table 9.1: Result statistics for the stirred tank reactor problem

Number of variables 728
Number of eq. constraints 488
Objective Function J 21.78
Dual infeasibility 1.68-107°
Overall NLP error 1.68-107°
Total CPU time 2746 ms
T T T
20 2
15| 2
S 10 |
5 [ |
0 | | |
0 0.05 0.1 0.15 0.2
time [s]

Figure 9.2: Trajectory path of the state xg
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Figure 9.3: Optimal control trajectories uq(t), ua(t), us(t) and wuy(t)
for the stirred tank reactor problem.
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b
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Figure 9.4: Convergence of the objective function J.

To analyse how the parallelization performance scales up with the dimension of the
problem, this benchmark problem has also been solved with the serial and parallel
versions of the CMSC method considering different number of intervals for the division
of the time horizon, i.e., N = 20,40,80,100. The average computation times for the
serial and parallel cases are reported in Table The table reports the computation
time required for the evaluation step, which is the task that involves the evaluation of
functions and the solution of the local sub-problems to compute the numerical values of
G(w) and H(w) (computation of functions and sensitivities), and the computation time
required for the underlying optimization step, which is carried out by the main IPOPT
algorithm. As can be seen, the speed-up achieved by the parallel CMSC is for the
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evaluation time because it implies the parallel solution of the local sub-problems, which
is the core of the parallelization approach presented in this thesis. Since the main
computation of the IPOPT algorithm is only performed by one processor, no
improvement is expected for the optimization time. Moreover, the optimization time is
slightly slowed for the parallel case. Besides the time required for the communication
between worker and master processors, this effect is produced because the parallelization
takes place on a shared memory architecture, with limited resources (CPU bound and
memory bound) and the operational system has other processes running at the same
time. Nevertheless, this effect does not have a big influence in the overall computation
time. In general, the parallel CMSC achieves an average speed-up of 2.2 for the
evaluation step and an average speed-up of 1.4 for the overall computation time, which is
expected to increase with the dimension of the problem but represents quite an

achievement when considering fast dynamic systems.

Table 9.2: Timing results for the continuous stirred tank reactor
problem

Number of intervals
20 40 60 100

iterations 367 860 701 1528

Serial time [ms]
Evaluation 380 1664 2244 7248
Optimization 448 1404 1628 5220
Total CPU time 828 3068 3872 12468

Parallel time [ms]
Evaluation 188 764 982 3112
Optimization 486 1542 1764 5482
Total CPU time 674 2306 2746 8594

Satellite Control

The optimal control of a rigid satellite initially undergoing a tumbling motion is a
benchmark problem considered in [127, 128, [112, [115]. The dynamic of the system is
given by the following equations

. 1
é = §(W164 — woes + w3ea) ,
. 1
€y = 5(00163 + wo€q — w3el)
. 1
€3 = 5(—&)162 + wo€1 + W364) ,
. 1
€4 = §(w161 + wa€r + wses)
. (= wws +Th
wp = )
I
. Uz —I)wsw +Th
Wy = )
I
-1 T:
by = (11 2);)1w2 + T3 ’ (9.5)
3
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where €1, €2, €3 and ¢4 are the Euler parameters, w1, wo and ws are the angular velocities
with respect to the principal axes, I, Is and I3 are the principal moments of inertia and
T1, T» and T3 are the torques acting about the principal axes. The initial conditions of
the state variables are

2(0) = [0.0, 0.0, 0.0, 1.0, 0.01, 0.005, 0.001]7. (9.6)

The basic problem consist of determining the torques that bring the satellite to rest while
minimizing the integral of the control variable u(¢) and the deviation between the final
position z(t;) and the following reference position ;.. ¥

Zyep = [0.70106, 0.0923, 0.56098, 0.43043, 0.0, 0.0, 0.0]" . (9.7)

Thus, the task consists of solving the following OCP

2 tf 2
min  [@(ts) = wresl? + / ()|
u(t) 0

subject to: (9-5), (9.6), t € [0,ty],

where the final time is fixed to £y = 100s. This optimal control problem is solved with
the parallel CMSC method considering N = 60 intervals for the division of the time
horizon [0,100]s. The optimal state and control input trajectories for this OCP are
shown in Figures [0.5 and respectively, and the evolution of the objective function is
shown in Figure The OCP is solved in only 5 iterations, however, the desired
behaviour is not achieved since the final state values are far away form the desired ones.
The statistics of the problem are shown in Table The total computation time
required for the solution is of 20ms which represents, as in the previous example, a much
faster solution than that reported in for the same problem.

Table 9.3: Result statistics for the satellite control problem - case 1

Number of variables 607
Number of eq. constraints 427
Objective Function J 0.476

Dual infeasibility 5.71-10711
Overall NLP error 1-1071
Total CPU time 20

To compare the efficiency achieved using the parallel CMSC algorithm with that of the
serial approach, the problem is again solved for different number of time intervals. The
computation times are reported in Table where it can be shown that for this
problem the average times for the parallel and serial approaches are almost the same.
Since the number of iterations required for solving the problem is very small, no
significant improvement can be achieved using the parallelization scheme. Compared to
the previous example, the parallel scheme seems to perform more efficiently when solving
large scale problems that require many iterations in the optimization.

Besides the analysis of the computational performance, the controller performance is also
one of the most important items to check. As can be seen, with the problem formulation
described above, the system is not capable to achieve the desired behaviour on the states
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Figure 9.5: Optimal control input trajectories u;(t), ua(t) and us(t)
for the Satellite control problem
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Figure 9.6: Optimal state trajectories of the satellite control
problem. Angular positions (left) and angular velocities (right).
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Figure 9.7: Convergence of the objective function J for the satellite
control problem. Case 1.
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Table 9.4: Timing results for the satellite control problem - case 1

Number of intervals
20 40 60 100

iterations 10 7 5 7

Serial time [ms]
Evaluation 12 10 10 38
Optimization 14 12 10 20
Total CPU time 26 22 20 58

Parallel time [ms]
Evaluation 8 6 8 20
Optimization 16 14 12 22
Total CPU time 24 20 20 42

variables, i.e., converge to the desired reference value x,.;. Therefore, it is necessary to
reformulate the OCP to improve the performance of the controller. As has been stated
in , this control problem can be formulated as a minimum energy consumption
problem considering a fixed final state value, i.e., impose the constraint that at ¢t = ty,
the state z(¢) must be equal to the desired reference .

A special consideration must be taken into account to formulate the new OCP. Because
of the Euler’s rotation theorem, the following constraint is implicit in the dynamics (9.5|)

e1(t) + €a(t) +es(t) +ea(t) = 1. (9.9)

Thus, by imposing the final state constraint to €1, €2 and €3, the constraint on the state
€4 is automatically satisfy. With this consideration, the new OCP can be formulated as

follows:
tf

min / l|u(®)|? (9.10a)

u(t) 0
subject to:  (9.5), (9.6), te0,ty], (9.10b)
e1(ty) =0.70106 , (9.10¢)
ea(ty) = 0.0923, (9.10d)
e3(ty) = 0. 560987 (9.10e)
wi(ty) = (9.10f)
wlty) = (9.10¢)
wi(ty) = (9.10h)

The problem is solved again considering N = 60 intervals for the division of the time
horizon. The simulation results are shown in Figures and As has been expected,
the solution of the final-state constrained OCP gives suitable control inputs that drive
the state trajectory at final time to the desired reference wz,.;. The trajectories
computed for this problem are similar to that presented in for the same problem,
where direct multiple-shooting with an SQP method was used for solving the NLP.
Figure [0.10] shows the convergence rate of the objective function and Table [9.5] resumes
the statistics for this problem. Since the final state constraints increase the complexity
for solving the problem, the number of iterations is increased to 31 and so is the
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computation time, whose overall value is of 82ms.

Table 9.5: Result statistics for the satellite control problem - case 2

Number of variables 607
Number of eq. constraints 433
Objective Function .J 1.11-107
Dual infeasibility 1.64-107°
Overall NLP error 7.86- 1077
Total CPU time 82

ul (t)

| | | |

0 20 40 60 80 100
Time [s]

Figure 9.8: Optimal control trajectories with fixed value for the final
state x(ty)
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Figure 9.9: Optimal state trajectories of the satellite control problem
considering a fixed value for the final angular positions.

Table [0.6] shows the average computation time for different number of intervals. As can
be seen, different from the previous case, the number of iterations required for solving
the problem is considerable and thus, the parallelization approach achieves a better
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Figure 9.10: Convergence of the objective function J for the satellite
control problem. Case 1.

speed-up in the evaluation step. Although the optimization step is again slightly slowed
in the parallelization, the overall computation time for the parallel case is better than
that for the serial one, achieving an overall speed-up of 1.3.

Table 9.6: Timing results for the satellite control problem - case 2

Number of intervals
20 40 60 100

iterations 34 28 31 32

Serial time [ms]
Evaluation 38 48 56 132
Optimization 32 36 52 88
Total CPU time 70 84 108 220

Parallel time [ms]
Evaluation 20 24 26 54
Optimization 36 44 56 92
Total CPU time 56 68 82 146

NMPC for the Inverted Pendulum

As an application of NMPC, the inverted pendulum problem presented in Section
is solved employing the nonlinear dynamics of the system, which allows the controller
to work on the whole state-space and not only restricted to a vicinity. Based on the
two differential equations that govern the motion of the system, the following nonlinear
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state-space representation can be obtained by making simple substitutions

i’l = T2, (9.11)

gl>m? cos(x3) sin(x3)

F — bxg + mlx3 sin(z3) + 5
By = — I+ ml (9.12)

m?21? cos(x3)? ’
(M +m) <(M + m)(ml23+ N~ 1)

i3 = a4, (9.13)
ml cos(z3)(mlsin(z3)z] + F — bxa)

mgl sin(xs) +
P M+ m . (9.14)

m?21? cos(x3)?
(mi* + 1) ((M +m)(ml§+ I 1>

As can be seen, the system exhibits a high level of nonlinearity, which makes it a suitable
benchmark to test the performance of the controller. The parameters of the system are
the same as that presented in Table The task for this problem is to drive the cart

from an initial position x,(0) to a desired horizontal position z4 = 0.5 m while
minimizing the deviation of the pendulum angle . Thus the objective function is defined
as:

J = / (ql(a:l = xd)2 + qgfz:g + q;a,xg + q4:ci + ru2) dt, (9.15)

where ¢ = g3 = 2, g2 = q4 = 0.5 and r = 0.01. The following bound constraints are
imposed on the state and control variables:

Om<z <0.6m, —0.015 rad < x3 < 0.015 rad, —1N<wu<1N. (9.16)

For this application, the sampling time is set to AT = 0.1s and the prediction horizon
to N = 20, i.e., the optimization time is t; = 0.1 x 20 = 2 s in each prediction. The initial
value for the state variables is z(0) = [0 0 0.01 0]7. The trajectories of the state variables
xp(t) and O(t) and of the optimal control input F'(t) are shown in Figure For the
prediction horizon considered, the average computation time is of 12ms, which has been
obtained by performing the NMPC simulation 50 times and computing the average value.
Table[9.7 reports the average computation time for different number of prediction horizons
and the respective average number of iterations per prediction. It can be seen that by
using the warm starting technique, a very small computation time can be obtained even for
very large prediction horizons. For small prediction horizons, the computation time for the
serial and parallel implementations are almost the same and no significant improvement
can be obtained. Instead, since for a very large prediction horizon the number of IPOPT
iterations is high, the parallel solution of the NMPC problem achieves a speed-up of almost
1.7x for the overall computation time compared to the serial solution. Since typically the
prediction horizon required for real-time control is not very long, the parallel CMSC solver
can provide an efficient solution in few milliseconds when applying NMPC for real-time
control of fast dynamic systems.
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Figure 9.11: Optimal trajectories for the pendulum NMPC problem.
Position z,(t), angle 6(t) and optimal input control F(t).

Table 9.7: Timing results for the MPC of the inverted pendulum

Prediction horizon N
12 20 40 60 &0 100

iterations 12 15 18 23 28 32
Serial CPU Time [ms] 14 22 44 66 96 146
Parallel CPU Time [ms] 12 16 28 40 60 84

9.3 Summary

This chapter has presented a high performance implementation of the CMSC method
presented in Chapter [§] and has used different benchmark problems to test the efficiency
of the algorithm. Although the focus of the implementation is the solution of NMPC
problems, the CMSC method can deal with general OCPs, as has been shown in this
chapter. In general, the implementation proposed in this thesis has shown to be more
efficient than other similar implementations presented in the literature. The parallel
implementation of the CMSC method improves the computational performance in the
evaluation step, which involves the solution of the local sub-problems, i.e., the parallel
computation of functions and sensitivities, which is the core of the parallelization
approach.  For large-scale problems, whose solution requires many interior-point
iterations, the average achieved speed-up in the evaluation step is of 2.5x. Since the
main computation of the IPOPT’s algorithm is still run in a single processor, no
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improvement in the optimization step has been achieved. Besides the parallelization
approach, the implementation of this thesis achieves also high performance even for the
serial case because of the efficient local Newton algorithm implemented for the solution
of nonlinear systems. Since all the reported computational time are in the range of
milliseconds, the parallel implementation of the CMSC method presented in this thesis
represents an efficient solver suitable for the real-time control of systems with fast
dynamic, such as autonomous vehicles. In the next chapter, the parallel CMSC method
will be employed for control applications in autonomous vehicles.
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Chapter 10

Real-Time NMPC of Autonomous
Vehicles

10.1 MPC Applied to Autonomous Navigation

In the last years, MPC has become an attractive control method in the area of
autonomous navigation of mobile robots. The MPC framework offers a reliable tracking
of feasible trajectories , as the applications presented in Section have shown.
However, the real-time trajectory generation in the presence of obstacles is still very
challenging due to the complexity that this task involves. For the obstacle avoidance
problem, the dynamic of the vehicle must describe adequately the nonlinearities of the
system, which affect the behaviour of the vehicle when operating near the physical
constraints. Likewise, a suitable avoidance strategy that considers the nonholonomic
characteristics of the dynamic should be employed. Since the vehicle exhibits a fast
dynamics, all these factors make the use of MPC for autonomous navigation a
state-of-the-art research field, focusing the attention on its feasibility for real-time
control.

Two different MPC-based obstacle avoidance strategies were presented in , where
potential-like functions are used to consider the obstacles. One method formulated the
potential function penalizing the minimum distance between the vehicle and the
obstacle, while the other method uses the parallax information to penalize the relative
position between the robot and the obstacle. Both methods were tested on an urban
simulated environment, where the parallax approach showed a better behaviour.
However, the computational time required for solving each prediction is very high and,
since only simulated cases were presented, was not considered as a performance index. A
similar approach was presented in . An obstacle avoidance strategy using simple
bound constraints was presented in , where a simple kinematic model of a mobile
robot with differential wheels was considered. The MPC problem was discretized using
the Euler approximation and the gradient descent method was used for finding the
solution.

In , an online hierarchical two layer control method for autonomous navigation was
presented. They proposed to use a first control layer based on the MPC, which generates
a safety trajectory, and a second control layer, which generates the actual control inputs
to track the generated trajectory. The tracking controller consists in a PID control for
the longitudinal dynamic and an LQR control for the lateral dynamic. For the obstacle
avoidance strategy, a potential function based on the parallax angle is employed.
In , another hierarchical approach was presented. In the higher layer, the trajectory
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is computed offline using the kinematic model and the receding horizon strategy. In the
lower level, the MPC based on the single-track model is used to track the reference
trajectory. The obstacle avoidance strategy considered was the augmented cost function
through a potential function penalizing the distance between the vehicle and the
obstacle. A simple Euler discretization was used to transform the problem and the
commercial package NPSOL was used for solving the problem. The algorithm was
also implemented on a passenger car using the dSpace autobox system considering line
reference trajectories. The required computational time was reported in the range of
1072 seconds.

Different modified linearization approaches have been also studied in the recent years as
an alternative to the computationally expensive nonlinear problem. The successive
linearization approach was employed in , where a reference trajectory derived from
the kinematic car model is used for computing the Jacobian. The obstacle avoidance
strategy is introduced in the problem as linear constraints, defining a feasible region.
The resulting problem is convex and is solved using the CVX toolbox. The
computational time required for the solution was in the order of milliseconds, but the
stability properties have been not analyzed and only simple simulation results were
presented. In , a similar tailored linearization method was used, but they consider
the single-track vehicle. The avoidance strategy was introduced as safety constraints and
larger prediction horizons were used. The algorithms was implemented in a Jaguar
S-type vehicle with an OTS RT3002 sensing system and tested at medium speeds with
multiple obstacles. This result are very promising and, with some considerations, make
this approach a suitable alternative for online optimization.

A recent approach based on the Real-time Iterations (RTI) scheme was proposed
in , where the tracking and obstacle avoidance problems were addressed by making
a parametrization of the trajectory and reformulating the nonlinear time-dependent
dynamic of the vehicle into a spatial-dependent model. This approach allows to
formulate the obstacle and path constraints as simple bounds on the state variables.
Some considerations on the path curvature are taken into account for the stability of the
parametrization. The MPC problem is solved by using the multiple-shooting and RTI
techniques. The ACADO code generation toolkit and an adapted variant of the
qpOASES solver are used for the solution of the discretized problem. The algorithm was
run in Matlab and the average computational time was reported in the range of
milliseconds. Although this approach seems to be very promising, it has not been deeply
studied for general tracking problems and has not been yet implemented on a real
vehicle.

As can be seen, the use of MPC for trajectory generation and obstacle avoidance implies, in
general, the use of suitable nonlinear models and the definition of an avoidance strategy,
giving as a result an NMPC problem. When implemented on a real mobile robot, the
NMPC must be solved online and thus, an efficient and reliable solver is required to
accomplish this task. In the following, the performance of the parallel CMSC method will
be tested for the reference tracking and obstacle avoidance problems.

10.2 Obstacle Avoidance Strategies

As has been reviewed in the literature, the obstacle avoidance problem can be addressed
by using a path constraint to define a safety area for the vehicle, or by using a potential
function to penalize the distance between the vehicle and the detected obstacle. These
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two avoidance approaches will be explained in the following .

Path Constraint Approach

In order to implement the obstacle avoidance strategy, it is considered a set of constraints
based on the position of the obstacle (xyps, Yops) and the current position of the vehicle
(Zpos, Ypos)- A common approach is to introduce a curve which borders the position of
the obstacle, defining in this way a safety region between the vehicle and the obstacle.
According to and , this safety region can be modelled as an ellipse because of the
smooth characteristics it exhibits. It has been shown that this kind of safety region works
fine in practice and that any kind of obstacle can be modelled as a well dimensioned ellipse,
allowing the robot to move around the curve according to its non-holonomic properties
while meeting the physical constraints. Thus, the path constraint that defines the safety
region is given by the following inequality

(xpos - xobs)z
3 o'
a

2

(ypos ;Zyobs) < 1 ’
where a and b are the dimensions of major and minor axes of the ellipse, which center is
located at the obstacle position (Zps, Yobs). When multiple obstacles are detected, all of
them can be represented by an ellipse or, in case they are very separated, an ellipsoidal
region can be defined for each one. Within the NMPC framework, this constraints are
considered only at the discrete time points ¢; and thus, are introduced into the NLP as
algebraic inequality equations in terms of the optimization variables xpys 1 and ypes i for
the whole whole prediction horizon N, i.e.,

(10.1)

(ypos,k - yobs)2
b2

(ﬁpos,k - $obs)2
CL2

+ <1<1, k=0,1,....N<1, (10.2)

Potential Function Approach

Another very common approach for obstacle avoidance is the use of potential functions,
which are included into the objective function as augmented terms P, that penalize
the relative distance between the robot and obstacle. Considering the case of only one
obstacle, the penalization term P, is defined by a point-wise repulsive potential function
of the following form:

K obs

Py =
o (pros - xobs)z + (ypos - y0b5)2 + €

<1, (10.3)

where K5 is a gain value and € is a small positive number used to avoid non singularity.
Within the NMPC framework, similar to the path constraint approach, the potential
functions are included into the objective function J at each discrete time point #,
penalizing the relative distance between the obstacle and the optimization variables

Lpos,k and Ypos,k, 1.€.,

N K
Pps=3Y_ obs <1. (10.4)

=0 ($pos,k - xobs)Q + (ypos,k - yobs)2 +e€

The approach based on potential functions have been used intensively in the literature
because this kind of functions are very simple, differentiable and do not lead to complex
differential terms in the optimization step. However, the main drawback of this approach
is that it is not possible to define explicitly the dimension of the safety region for the robot
because it depends on the obstacle gain K,,; and on the gains of the state and control
variables in the objective function.
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NMPC

The applications for autonomous navigation using NMPC will be based on the SUMMIT
mobile robot of the SOP department, which has been employed in other works that
studied its modelling and real-time Control . The SUMMIT robot is a
high-mobility medium-size robot with a mechanical system corresponding to a 4x4 wheel
drive car. This mobile robot has a servomotor in each axle to set the steering angle and
each wheel has an independent damping system. Because of this drive characteristic, the
single-track dynamic model presented in Section [6.2] is not an accurate representation,
and thus, a more suitable dynamic model must be used for control optimization. A
practical mathematical model based on first-law equations and geometrical relationships
was developed and validated in [137], and has also been used for practical MPC-based
applications in . Considering this model, the dynamic of the SUMMIT robot is
governed by the following equations:

Co c08(0) (—25 ah %(lr = lf))

. - : m - v - cos(3) d7/ (105)
Y= 9, | (10.6)
N Co c0s(0) (5 (I +1p) + BJ(ZT —1ly) — % (lg + l?)) | (107
zp = wcos(B+1), (10.8)
Yp = vsin(B+v), (10.9)

where 3 is the side slip angle, 9 is the yaw angle, 1) is the yaw angle velocity and x, and
yp are the horizontal and vertical positions of the car with respect to the inertial
framework. The description of the parameters and their respective values is detailed in
Table based on the numerical values reported on .

The parameter ¢, is the cornering stiffness and is a value that varies depending on the
steering angle § according to the following equation:

52
Co = 384exp 0.00805 . (10.10)

Similar to the track-model, the vectors of state and control variables used for the

Figure 10.1: SUMMIT mobile robot ||
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Table 10.1: Parameters for the dynamic model of the SUMMIT robot

Parameter Value Description
m 14.695 kg mass of the vehicle
J 0.5024 kg.m? inertia moment
ly 0.1924 m distance from COG to front axle
[y 0.1776 m distance from COG to front axle

optimization are defined as

Ty B

- T2 o w . Ul . v

r=|z3| = Y|, u= 1 1= 15! (10.11)
Xq $p 2
xIs5 yp

The following physical and operational constraints are imposed on the state and control
variables:

—0.3rad < 5 < 0.3rad,
—nmrad <y < 7rad,
rad . rad
08— <9 <08 —, (10.12)
S S
m m
0l—<wv< 15—,
S S
—0.15rad < § <0.15rad,

The lower bound of 0.1 on the velocity is required because, with this velocity, the motors
apply the minimum sufficiently strong torque to move the vehicle. Likewise, an additional
constraint is imposed on the velocity when changing from rest to operation, because the
motors cannot provide the maximum torque at start up (k = 0). Thus, the following
constraints are imposed for the first and second sampling instants:

0(0) <042, w1) <082,
S S

To test the performance of the NMPC method using the solver implemented in this
thesis, the trajectory-tracking and obstacle avoidance strategies will be simulated and
experimentally tested on the SUMMIT robot. In the following, the setup of the
respective problems is described considering the procedure for the real-time
implementation.

Simulations Results

Trajectory Tracking

The trajectory tracking problem is a classical application for autonomous vehicles. The
problem consist of obtaining the optimal control inputs that make the robot follow a
given desired trajectory dref = (Trefk, Yref,k). Within the scope of NMPC, this problem
is addressed by defining a cost function J that minimizes, within the prediction horizon
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N, the relative deviation between the position of the robot at time ¢; and the respective
reference point and, generally, also the required control inputs, i.e.,

Jtrack(xy u) = Pr(xp,N - m1"ef,N)2 + Py(yp,N - yref,N)2+

=

9 9 9 9 (10.13)
qx(l'p,k - xref,k) + Qy(yp,k - yref,k) + v + T65k
1

i

Considering an initial position z(0) for the state variables, the resulting NMPC problem
is given by:
muin Jtrack (CL‘, U,)

subject to:  zg = z(0),
dynamic (T0.5),
general path constraint ((10.12]) .

To test the performance of the parallel CMSC method and of the controller, two
different tracking scenarios are simulated. The first one considers a discontinuous
reference trajectory, similar to that used in Section [6.2] and the other considers a ramp
reference trajectory. In both cases, a sampling time of AT = 0.1s is employed since
different simulation test has shown that the parallel CMSC method can solve the
problem in less time. The prediction horizon considered is of N = 20 and the gain
factors in the objective function are set to ¢, = ¢, =1, r, =75 = 0.1 and P, = P, = 2.

Figure shows the simulation results for the discontinuous (left) and ramp (right)
reference trajectories (dashed red lines) considering an initial position of
x = 1[0,0,0,0, —0.5] in both cases. All the graphics are plotted with respect to the
horizontal position X in order to show how the variables change along the trajectory
path and how the computation time is influenced by this changes. As has been
mentioned, the computation time required for the optimization is in the range of 35 to 4
ms, depending on the current position of the robot with respect to the reference
trajectory. At the beginning, where the robot is far away from the current reference
point, the solver performs a more intensive work and the required computation time is
high (about 35 ms). For the next predictions when the robot tracks the reference, the
computation time is reduced, taking an average solution time of 4 ms. This reduction on
the computation time is due to the warm starting used for initializing the new
predictions and because there are not changes in the active constraints for when the
robot tracks the desired trajectory.

The behaviour shown by the robot accomplishes the physical restrictions and, compared
to the linearization approach presented in Section the predictive behaviour of the
controller can be seen for the discontinuous path trajectory. Since NMPC does not
require a reference path for all the variables and the computational time for solving the
optimization problem is below 0.1 seconds, this solution approach is suitable for
real-time tracking control of fast autonomous vehicles.

Obstacle Avoidance

The two strategies for obstacle avoidance described in Section have been simulated
for different scenarios. In this application, the aim is to arrive at a desired final position by
following (z4,yq) while avoiding the possible obstacles that could exist in the trajectory.
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Figure 10.2: Simulation results for the reference tracking control of
the SUMMIT mobile robot. Trajectory, optimal control inputs and
computation time for two different trajectories.

Thus, the formulation of the NMPC problem using the path-constraint obstacle avoidance
technique is given by:

min J(z,u) == Pyplapn — :z:d)2 + Py(ypN — yd)2 +

u

=

-1

Qw(l'p,k - $d)2 + Qy(ynk — yd)2 + T‘v’U]% + 7‘5513
1

e
Il

subject to: 9 = x(0),
dynamic (10.5)) ,

general path constraint ((10.12)),
obstacle path constraint ((10.2]),
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while for the potential-function technique is given by:

mgn J(x,u) = Pulzpn — 24)* + Py(ypn — ya)® +

=

-1

Gz (Tpk — Ta)* + @y (Ypk — Ya)? + Tovi + 7567 + Py
1

i

subject to:  xg = z(0),
dynamic ([10.5)) ,
general path constraint (10.12]) ,

where Py is defined in [10.4 To test the avoidance strategy, we will consider the two
different obstacle distributions shown in Figure As a first scenario, it is considered
that the desired position is (x4, yq) = (13 m,0 m) and that there exists only one obstacle
located at (xops, Yobs) = (5 m,0 m). The initial condition for the state variables are all
set to zero. The sampling time of AT = 0.1s is again considered.

For the path-constraint technique, the gains in the objective function are set to
ry =15 = 0.05, ¢, = 0.1, P, = 0.5, ¢, = 0.5, P, = 2 and the parameters of the ellipse are
set to a = 1m and b = 0.6m. The deviation in the vertical position has a greater
penalization than the deviation in the horizontal position in order to minimize the
distance that the robot moves away from the horizontal line Y = 0.

For the potential function approach, the gain parameters are more carefully chosen since
the safety region of the robot depends on the value of K, with respect to the other gain
parameters. In order to compare both avoidance techniques, the parameter K, is
chosen in such way that the safety region defined by the potential function resembles the
elliptical region defined for the path constraint method. By trial and error, the gain
values for the potential function is set to K, = 0.68. The values for the gains r, s, ¢z,
qy, P and P, are set to the same values as that defined for the path constraint approach.

The NMPC must use a prediction horizon that has a sufficient length such that the
robot can detect the obstacle and accomplish the avoidance. Since the computation will
be carried out using four processors, a prediction horizon of N = 32 is considered, where
the maximum velocity of 1 7 gives a nominal prediction distance of 3.2 m. The
simulation results for both avoidance techniques are shown in Figure [[0.4] The images
on the left show the results for the path constraint technique and the images on the right
the results for the potential function technique. The upper graphics show the trajectory
performed by the robot (solid blue line) and the virtual obstacle (dashed green line).

The graphics in the middle show the optimal control inputs and the bottom graphics

y[m] y[m]
~ e M M e
o a1 Zm] o o a1 @]
Robot Obstacle Goal * Robot Obstacle 1 Obstacle 2 Goal
(0,0) (5,0) (13,0) (0,0) (5,0) (10.5,0) (15,0)

Figure 10.3: Mobile robot working area and obstacles to be
avoided.(left) First scenario. (Right) Second scenario.
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show the overall computation time for each prediction.
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Figure 10.4: Simulation results for an obstacle avoidance scenario
using the two obstacle avoidance strategies presented in Section [10.2}
(left) Path constraint method using a ellipsis. (right) Potential
function approach.

As can be seen, both methods accomplish the task but differ in how they perform the
avoidance. Using the path constraint approach, the robot moves below the X-axis (line
Y = 0), while for the potential function approach the movement is above the axis. Since
the elliptic region is defined explicitly for the path constraint approach, using this
method the robot moves slightly closer to the border than using the potential function
method. However, using the potential function method, the robot returns faster to the
X-axis.
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The overall computation time varies according to the position of the robot with respect
to the obstacle. In both cases the major computation time occur in the region around
the obstacle, with the time for the path constraint approach greater than that of the
potential function approach. This effect occurs because the OCP for the path constraint
approach considers more constraints in the formulation, which makes its solution more
complex. Instead, the OCP for the potential function approach encompasses the
avoidance strategy in the objective function, giving a simpler problem. However, despite
this effect, the overall computation time for both approaches is in the range of
milliseconds having maximum values of 34 ms and 24 ms for the path constraint and
potential function approaches, respectively.
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Figure 10.5: Simulation results for an obstacle avoidance scenario
using the two obstacle avoidance strategies presented in Section [10.2]
(left) Path constraint method. (right) Potential function approach.
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For a second scenario, it is considered that, apart from the obstacle defined before, there
exists also other obstacle located at (Zops, Yops) = (10.5 m,0 m). To emulate the range of
the sensors, it is also considered that the robot detects the second obstacle when it is at
the horizontal position z,,s = 8 m. The desired position for this second scenario is
(4,y4) = (15m,0 m). The gain values, sampling time and prediction horizon are
considered the same as that used for the previous case. Figure [10.5| shows the simulation
results for the case with two obstacles .

It can be seen that the trajectories are similar to that obtained for both methods in the
case with one obstacle. For the horizontal interval between z,,s = 0 m and zp,s = 8
m, the trajectory and control inputs are the same as before. At z,,; = 8 m, where the
second obstacle is detected, the steering angle changes for both methods and the velocity
is reduced to the minimum for the potential function method, which, in general, exhibits
more pronounced changes in the control variables. However, it can be seen that the
computation time required to avoid the second obstacle is greater than that required for
the first obstacle. This increasing in computation time is remarked in the path constraint
method because the detection of the obstacle takes place with different conditions for the
state variables, which changes the active constraints and the setup of the NMPC problem.
Nevertheless, the overall computation time is still below 50 ms, which shows the good
performance achieved by the solver.

Experimental Results

In this section, the previous algorithms are tested for the real-time control of the
SUMMIT robot. For the experimental test, a personal computer is used to carry out the
computation required for solving the NMPC problem wusing the parallel CMSC
(PCMSC) method and for sending the optimal control inputs to the robot. The
communication between the computer and the robot is through the TCP/IP protocol
using a dedicated WiFi network. The Player software is used as the interface to send the
control signal and receive the data information from the robot at each sampling time. A
scheme of the control loop is shown in Figure [10.6

Get Position(zp, yp)

CPU Tpky Ypks Upk Get Yaw(¢))
IPOPT solver SUMMIT
with PCMSC Uk, Ak Set Control(v,)

N
ﬁkv wk

Figure 10.6: Scheme of the real-time control of the SUMMIT robot.

The information received from the robot are its current position (z,,y,) and the yaw
angle 1, which are obtained through odometry. The values of 8 and ¢ are estimated
using the information of previous solutions obtained through the IPOPT solver. Due to
mechanical problems, there exists a deviation between the measured data and the actual
values of the position. Likewise, due to technical factors, the steering and velocity
control inputs that are sent to the robot differ from that that are actually applied to the
robot. Thus, correction factors are employed to eliminate this deviations, which is the
method used by . The major deviation is in the measurement of the vertical
position ¥, which, by analysing measured data, varies depending on the horizontal
position x,. Thus, the scaling of y, have been made for different intervals of z;, within
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the test interval z,, € [0,16]m and considering a nominal velocity of 1 ™.

For real hardware applications, the sampling time AT must consider the time for solving
the NMPC (), the time for obtaining the information from the robot (tsens), the time
for sending the control signal (t,,) and a possible dead time (t4), i.e.,

AT > top + tsens T tu +ta-

The time required to obtain the information from the robot and to send the control
signal is approximately 68 ms. Based on the computation times reported for the
simulations, the optimization time is considered about 100 ms. Thus, to ensure the
solution and correct transmission of the data, a sampling time of AT = 0.3 s is chosen.
Since the sampling time is grater than that used for the simulations, a prediction horizon
of N = 20 is employed, giving a nominal prediction distance of 6 m. The experimental
tests are performed considering only static virtual obstacles. The gain values and the
position of the obstacles are the same as that considered in the simulation. At each
iteration, the NMPC problem is warm-started with the solution obtained at the previous
prediction.

Figure [10.7] shows the trajectory, optimal control inputs and timing results for the
scenario with one obstacle. The upper graphics show the real trajectory of the robot
(solid blue lines) and the trajectories obtained by simulation (dashed red lines). As is
expected, the real and simulated trajectories differ slightly due to the system-model
mismatch and because no accurate data from the sensors has been obtained. The
deviation with the simulated trajectory is grater when using the potential function
approach. However, it can be seen that the computation time using the potential
function approach is smaller than that using the path constraint approach. The
maximum computation time for the potential function approach is of 38 ms and is given
at the start because the robot detects from the beginning the obstacle and modifies the
steering angle in such way that the changes in the control variables are not abrupt.
Instead, the computation time using the path constraint approach reaches a maximum
value of 52 ms, which is given when the robot is near the bound of the ellipse, which are
explicitly defined in the NMPC problem. For the final predictions (after z, = 10 m), the
overall computation time as an average value of 12 ms and remains small because there
are no more obstacles and thus, no complexity for solving the problem.

Figure shows the results obtained for the scenario with two obstacles, where it is
considered that the robot detects the second obstacle at the horizontal position z, = 8
m. It can be seen that the trajectories for avoiding the first obstacle differ slightly from
that obtained in the previous case. This is due to the the variation in the information
received from the sensors, which sets different initial conditions for the NMPC. For
avoiding the second obstacle, the trajectories are completely different. Using the path
constraint approach, the robot tries to remain as near as possible to the X-axis once the
second obstacle has been detected, and tries also to move around the bound of the ellipse
but finishes a bit away, employing more control effort to arrive at the desired point.
Instead, using the potential function approach, the robot decides to perform the
avoidance strategy immediately when the obstacle is detected. The computation time
required to avoid the second obstacle is greater for the path constraint approach,
requiring a maximum of 62 ms, while for the potential function approach, the maximum
computation time is 40 ms. Nevertheless, both maximum computation times are still
real-time feasible for the sampling time considered in the implementation and are by far
smaller than that reported in and , where the computation times were around
200 and 300 ms.
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Figure 10.7: Experimental test with the SUMMIT mobile robot.
Trajectory (up), optimal control inputs (middle) and timing results
(bottom) for a scenario with one obstacles. (left) Path constraint
approach. (right) Potential function approach. The dashed red lines in
the upper figures show the trajectories obtained by simulation for the
same cases.
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Figure 10.8: Experimental test with the SUMMIT mobile robot.
Trajectory (up), optimal control inputs (middle) and timing results
(bottom) for a scenario with two obstacles. (left) Path constraint
approach using ellipses. (right) Potential function approach. The
dashed red lines in the upper figures show the trajectories obtained by
simulation for the same cases.
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Chapter 11

Conclusions and Future Work

11.1 Conclusions

The work presented in this thesis is focused on the implementation of efficient solvers for
MPC that can be applied to the real-time control of fast sampled dynamic systems, such
as autonomous vehicles. The main limitation when using the MPC strategy for
controlling dynamic systems with high sampling rates is the computational burden
associated with the online solution of the optimization problem. In this kind of systems,
the time is critical and thus, it is necessary to employ solvers that can efficiently provide
the optimal control law within the available online computation time. In this way, the
design and implementation of efficient and reliable solvers for real-time applications
become a necessity. An efficient implementation should exploit the available
computational resources and the inherent characteristics of the problem in order to
obtain the best performance. Thus, the implementations in this work are based on
tailored algorithms for linear and nonlinear MPC that employ parallel computing on a
multiprocessor architecture. In the following, the main contributions and results
obtained in this thesis are summarized.

For the case of LMPC, three different parallel solvers have been presented. First, a whole
parallelization of the primal-dual interior-point algorithm based on the
Schur-complement decomposition method was proposed. Since the LMPC problem can
be formulated as a sparse QP problem, the solution of the resulting KKT system can be
obtained using the Schur-complement decomposition method. Moreover, the other steps
of the interior-point method are decoupled on the variables and thus, the computation
can be distributed among different processing units, giving a whole parallelization of the
algorithm. Second, a quasi-Newton method was proposed for obtaining the solution of
the dual problem. Since LMPC defines a convex problem, it is possible to obtain the
solution of the primal problem by solving the dual, which defined an objective function
that is separable in the primal optimization variables. Thus, the problem was divided
into QP sub-problems which are solved in parallel and are coordinated by the dual
variable, which is obtained using the BFGS quasi-Newton method. Third, a splitting
method based on the ADMM was proposed. The operator splitting method formulates
the problem in the consensus form and employs the standard ADMM method to obtain
the solution. The solution of N independent proximal operator problems and the update
of dual scaling variables are performed in parallel.

Besides the theoretical aspects, the performance of these methods has been tested by
implementing them on a standard multicore computer. The implementations are based
on C++ because it can implement machine code, giving applications that can run as fast
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as the hardware can do. The MPI library is employed to communicate the processors,
using especially the collective communication functions, which provide a more efficient
implementation and avoid the asynchronous operations. All the methods have taken
advantage of the warm-starting technique and the use of efficient linear algebra solvers.
The performance of the parallel solvers was tested using different benchmark problems
and was compared to that obtained with a serial implementation of the interior-point
method for the reduced QP formulation. The results obtained for the parallel solvers are
very promising and show that it is possible to solve very large-scale LMPC problems in
real-time (computation times below milliseconds). The best performance was obtained
by the operator splitting method, which has achieved high speed-up factors compared to
the serial solver. Likewise, the dual quasi-Newton method has also shown good
performance because its algorithm requires very few iterations to converge. In this way,
the parallelization approach has shown to be very efficient for solving general LMPC
problems. Even more, based on the concepts of these solvers, many works in the
literature have proposed other parallel approaches that are not considered in this thesis.

For the case of NMPC, in this thesis, we have implemented a parallelization of the
CMSC method, which is a novel method for solving general optimal control problems.
As a direct dynamic optimization method, the OCP is and transformed into an NLP and
which can be solved with efficient state-of-the-art numerical solvers. The CMSC method
employs the multiple-shooting discretization scheme to divide the problem using single
shoot intervals and uses collocation of finite elements inside each interval.  The
computation required for each shooting interval is independent of that for the other
intervals and thus, can be divided into a set of IN decoupled sub-problems. We
implement a parallelization of the local sub-problems, which involve the computation of
the state values and sensitivities at the end of each shooting interval. Furthermore, in
this thesis we have implemented a tailored local Newton’s method for solving the
nonlinear system that appears in each sub-problem, allowing in this way a very fast,
accurate, and easy solution.

The state-of-the-art solver IPOPT was used to implement the parallel CMSC method.
The implementation is again based on C++ and MPI. Through several case studies, the
performance of the parallel solver was tested and compared to the results reported in
other works. In general, it has been shown that the parallel approach only improves the
computation time required for the evaluation of functions and gradients because they
involve the solution of the local sub-problems, which is performed in parallel.
Nevertheless, the solver implemented in this thesis is, by far, more efficient than others
proposed in the literature and can be used not only for solving NMPC problems but also
for general optimal control problems. The computation times obtained show that this
solver can meet efficiently the real-time requirements of dynamic systems with high
sampling rates.

Finally, this thesis has presented the practical applications on autonomous navigation
employing the SUMMIT mobile robot and considering two different strategies for
obstacle avoidance. The dynamic model and particular constraints of the system are
described to setup the NMPC problem. Simulation and experimental tests have been
employed to evaluate the performance of the solver implemented in this thesis for
real-time control. The results show the efficiency of the CMSC method for solving
general constrained NMPC problems and the good performance of the solver, which
computation times for all the tests are in the range of milliseconds. Moreover, due to the
very small computation times, the sampling time employed for this application could be
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reduced by half in comparison with previous works that also employed the CMSC
method but reported larger computation times.

To conclude, the results obtained in this thesis show that by implementing tailored
algorithms, it is possible to use MPC for controlling fast sampled dynamic systems.
Moreover, since parallel computing is one of the main strategies that provides the high
performance, the methods developed in this thesis are suitable for their implementation
in low-cost multiprocessor architectures, such as embedded systems, providing in this
way a cheap, efficient and practical solution for real-time control.

11.2 Future Work

As has been mentioned above, the results obtained in this thesis suggest the
implementation of the parallel solvers for embedded optimization. It is possible to obtain
a powerful distributed-memory architecture by constructing a Beowulf or hybrid cluster
of embedded systems. Nowadays, most of the embedded systems are low-cost single
board shared-memory computers with high-frequency multicore processors (e.g.
Raspberry Pi and Odroid). If the computation is divided among many multicore
processors, it is possible to employ also parallel computing within each shared-memory
unit. In this way, a two-level parallelization scheme can be used to improve the overall
performance of the parallel solvers presented in this thesis. For instance, for the LMPC
solvers, a parallel linear algebra can be employed for solving the sparse linear systems in
the master unit. For the parallel CMSC solver, a shared-memory unit can be defined as
the master and run the main algorithm of IPOPT employing a parallel linear solver such
as MUMPS or PARDISO.

Apart from the computational aspects, the power consumption of the processing unit is a
key point for applications on autonomous vehicles. Nowadays, many industries are
focused on the development of electric vehicles, which have limited power resources. In
this way,the use of low power consumption processing devices will be imminent.
Furthermore, since this kind of systems work with many data and are generally
communicated with remote devices, the processing unit must be able to solve the
optimization problem and process big data within a tolerable computation time. If used
correctly, a cluster of multiprocessors can be able to meet these requirements.

This thesis employed a multiprocessor architecture to carry out the parallelization.
However, it has been shown in the literature that very high performance can be achieved
when employing field programmable devices such as the FPGA, which yields amazing
results when solving numerical problems. Although it is necessary to take care of the
floating point and pipelined operations to achieve a good hardware implementation, the
use of FPGAs seems to be the trend in real-time applications for the next years.

Beside all these hardware details, it is important to remark that the development of
efficient solvers for NMPC is still not mature. Apart from the CMSC method presented
in this thesis, recent works have proposed new methods based on the Real-Time Iteration
schemes, which tune the control action between the frameworks of LMPC and NMPC. It
seems to be an efficient approach that can be further studied in order to obtain a more
efficient algorithm to solve general NMPC problems in computation times similar to that
obtained for the linear case.
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