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Resumen

Esta tesis estudia fases geométricas que aparecen cuando un átomo de dos niveles

interacciona con un campo electromagnético monomodal cuantizado, un modelo

descrito por el Hamiltoniano de Rabi (HR). Como se conoce, el HR no tiene una

solución cerrada; no obstante, cuando el acoplamiento entre el átomo y campo es

débil, la aproximación de onda rotante (RWA) puede ser aplicada. Esto resulta en

el Hamiltoniano de Jaynes-Cummings (HJC), el cual es una útil solución anaĺıtica

aproximada del primero. Cuando la RWA puede ser aplicada, fenómenos f́ısicos

predichos en el modelo de Rabi deben también aparecer en el modelo de Jaynes-

Cummings; caso contario, la aproximación seŕıa f́ısicamente inconsistente. Esto

último generó una controversia después de una reciente afirmación sobre fases de

Berry en el HR. De acuerdo a ésta, la RWA no es válida para ningún valor del

acoplamiento entre el átomo y campo. Los resultados de esta investigación, cálculos

numéricos de la fase de Berry en el HR, muestran que este no es el caso y que

afirmaciones contrarias son inconsistentes con un argumento anaĺıtico que concierne

al modelo de Rabi. Adicionalmente, se muestra que estos resultados convergen a

los respectivos para el HJC, concluyendo aśı que la RWA es consistente al aplicarse

a fases de Berry, como era de esperarse. Finalmente, se discute que la aparición

de fases de Berry no depende de la condición adiabática; por lo tanto, el marco

de estudio apropiado es el cinemático, el cual contiene a la fase de Berry como un

caso particular de la fase geométrica. También se discute que el Hamiltoniano no

desempeña un rol importante, salvo de proveedor de los autovectores usados en el

cálculo de la fase geométrica. Esto manifiesta la caracteŕıstica esencial de la cual

depende la fase geométrica, que es la geometŕıa del espacio de rayos. Este espacio

depende de los tipos de evolución que sean considerados. Este punto es ilustrado

estudiando una diferente transformación unitaria en el modelo de Schwinger.
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Abstract

This thesis addresses geometric phases that appear when a two-level atom inter-

acts with a quantized one-mode electromagnetic field, a model that is described by

the Rabi Hamiltonian (RH). As it is known, the RH has no closed-form solution;

nevertheless, when the coupling between the atom and field is weak, the rotating-

wave approximation (RWA) can be applied. This results in the Jaynes-Cummings

Hamiltonian (JCH), which is a useful analytically solvable approximation of the for-

mer one. Whenever the RWA can be applied, physical phenomena predicted within

the Rabi model should also show up within the Jaynes-Cummings model; otherwise,

the approximation would be physically inconsistent. This issue became controversial

after a recent claim concerning Berry phases in the RH. According to this claim,

the RWA breaks down at all values of the coupling between the atom and field. The

results of this research, numerical calculations of Berry phases in the RH, showed

that this is not the case and that claims on the contrary are inconsistent with an

analytical argument regarding the Rabi model. Additionally, these results also con-

verge to the corresponding ones obtained with the JCH, concluding that the RWA

consistently applies when dealing with Berry phases, as expected. Finally, it is ar-

gued that the appearance of Berry phases does not depend on adiabatic conditions,

hence the appropriate framework is the kinematic one, which contains Berry’s phase

as a special case of the geometric phase. It is also argued that the Hamiltonian does

not play an essential role in the whole, except as a provider of the eigenvectors used

in the calculation of geometric phases. This brings to the fore the essential feature

on which the geometric phase depends, which is the geometry of the ray space. This

space depends on the types of evolutions being considered. This point is illustrated

by addressing a different unitary transformation in the Schwinger model.
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Chapter 1

Introduction

In quantum optics, the Rabi Hamiltonian describes the light-matter interaction; in

other words, it governs the dynamics of a two-level atom which interacts with a

quantized one-mode electromagnetic field within the dipole approximation. Despite

the fact that the Rabi Hamiltonian is one of the simplest models in physics, a closed-

form analytical solution has not been found yet. However, applying the rotating-

wave approximation (RWA), we can obtain a useful analytically solvable model

known as the Jaynes -Cummings Hamiltonian. The two Hamiltonians are given by

the following expressions, respectively:

HR =
~ω0

2
σz + ~ωa†a+ ~g (σ+ + σ−)

(
a† + a

)
(1.1)

and

HJC =
~ω0

2
σz + ~ωa†a+ ~g

(
σ+a+ σ−a

†) . (1.2)

Here, ω0 is the transition frequency of the two level-atom; ω is the single-mode

frequency of the electromagnetic field that is described through the annihilation and

creation operators a and a†, respectively; σ± are the raising and lowering Pauli op-

erators, which refer to the atomic transition; and g is the coupling constant between

the atom and field.

The conditions that need to be satisfied in order to apply the RWA are a near

resonance case, ω0 ≈ ω, and a weak atom-field interaction regime, to be more precise,

g/ω ≪ 1. Therefore, when these conditions are achieved, the Rabi Hamiltonian

is reduced to the Jaynes-Cummings one. A consequence of this is that the results

described within the Rabi model must show agreement with the ones obtained within

the Jaynes-Cummings model as long as the RWA is valid. Recently, this last issue

has generated a controversy.
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The debate began when Larson claimed that the Berry phase in the Rabi Hamil-

tonian vanishes for every value g/ω, including the ones where the RWA is well-

founded [2, 3]. These results are in contradiction with a previous work by Fuentes-

Guridi et al. that states that the Berry phase in the Jaynes-Cummings Hamiltonian

is non-vanishing [4]. In summary, the controversy is generated because, apparently,

there is an instance where the RWA breaks down, even when the needed conditions

are fulfilled.

Larson’s findings have been refuted by several authors, either through approxi-

mate solutions [5,6] or through the discussion of his theoretical approach [7]. These

authors have found that the Berry phase in the Rabi Hamiltonian is non-vanishing;

nevertheless, this controversy has not been resolved yet. In the present thesis we

address this controversy. We present both numerical and analytical evidence of

non-vanishing Berry (geometric) phases related to the Rabi model. To achieve this,

we present numerical calculations which manifest that, indeed, this phase is non-

vanishing. Also, these calculations are in accordance with an analytical argument

regarding the Rabi model, which is part of this thesis. Lastly, we show that these

numerical results converge to the Jaynes-Cummings ones when g/ω is sufficiently

small. With this, we conclude that the RWA applies properly in the instance dis-

cussed previously.

Other theoretical aspects of this controversy are examined. One of these aspects

is that the phase we are dealing with is not, strictly speaking, a Berry phase, but

rather, a geometric phase. This geometric phase is a more general concept and

includes Berry’s phase as a particular case. Likewise, we discuss the role that the

Hamiltonian performs in this matter, which is just a provider of the initial eigen-

vector used in the calculation of the respective phase. In order to illustrate these

points, we calculate the geometric phase acquired with a different unitary evolution

in the Schwinger model.

This thesis is further organized into four chapters. In Chapter 2, we briefly

explain some preliminary concepts which are used throughout this work. In Chapter

3, we summarize the controversy and present the results, which allow us to take a

stand in this debate. In Chapter 4, we discuss with more attention some theoretical

aspects which we considered before. Lastly, in Chapter 5, we draw the conclusions

of this work.
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Chapter 2

Preliminary Concepts

2.1 Rabi and Jaynes-Cummings Hamiltonians

2.1.1 Rabi Hamiltonian

The Rabi Hamiltonian was first introduced around 80 years ago to describe the inter-

action between nuclear spins with magnetic fields [8]. In quantum optics, it describes

the interaction of a two-level atom with a quantized one-mode electromagnetic field.

Thus, we can write the Hamiltonian as:

ĤR = Ĥatom + Ĥfield + Ĥint. (2.1)

Following [9], we discuss each term of Eq.(2.1).

Atomic Hamiltonian

For a two-level atom that has a ground state |g⟩ and an excited state |e⟩ with

eigenenergies Eg and Ee, respectively, the Hamiltonian in the energy representation

is as follows:

Ĥatom = Ee|e⟩⟨e|+ Eg|g⟩⟨g|. (2.2)

In this 2×2 Hilbert space, every operator can be written as a linear combination

of the identity operator Î and the Pauli matrices σ̂x, σ̂y and σ̂z. Nevertheless, a

possible better choice for an operator basis in this space is the following:

Î = |e⟩⟨e|+ |g⟩⟨g|, (2.3)

σ̂z = |e⟩⟨e| − |g⟩⟨g|, (2.4)
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σ̂+ = |e⟩⟨g|, (2.5)

σ̂− = |g⟩⟨e|. (2.6)

The usefulness of this choice becomes obvious if we look at the action of σ̂+

and σ̂− when applied to an arbitrary state in this Hilbert space. The operator σ̂+

produces a transition from the ground to the excited state, and σ̂− does the opposite.

These properties would be helpful later when we analyze the interaction between

the atom and field.

From Eqs. (2.3-2.4) we can write the atomic Hamiltonian in the following form:

Ĥatom =
Ee + Eg

2
Î +

Ee − Eg

2
σ̂z. (2.7)

However, the first term on the right side of Eq. (2.7) can be eliminated because

terms proportional to the Î have no influence on the dynamics.

Finally, taking into account the fact that Ee−Eg = ~ω0, where ω0 is the transition

frequency between the two atomic levels, Eq (2.7) can be written as:

Ĥatom =
~ω0

2
σ̂z. (2.8)

Field Hamiltonian

In free space, the atom would interact with infinite modes of the electromagnetic

field, so in order to restrict the interaction with only one mode, we confine the field

into a cavity (e.g. Cavity QED experiments).

We assume the electric field is polarized in the x-direction, which has a unit

vector e⃗x, as follows:

E⃗(r⃗, t) = e⃗xEx(z, t). (2.9)

In Eq. (2.9), we assume the term Ex(z, t) has the following monomodal character:

Ex(z, t) =

(
2ω2

V ε0

)1/2

q(t) sin kz. (2.10)

Here, V is the volume of the cavity; ε0 is the vaccum permittivity; k is the

wavenumber (module of the wavevector k⃗); and ω is the single-mode frequency of

the field. The term q(t) carries the time dependence.

In order to calculate the magnetic field, we replace Eq. (2.10) in the Maxwell

equation (no sources case) ∇× B⃗ = µ0ε0
∂E⃗
∂t
, and obtain:

B⃗(r⃗, t) = e⃗yBy(z, t), (2.11)
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with

By(z, t) =
(µ0ε0

k

)( 2ω2

V ε0

)1/2

q̇(t) cos kz. (2.12)

If we define p(t) ≡ q̇(t), we have for the energy (Hamiltonian) of the electromag-

netic field:

Hfield =
1

2

∫
dV

[
ε0E⃗

2(r⃗, t) +
1

µ0

B⃗2(r⃗, t)

]
=

1

2

∫
dV

[
ε0E

2
x(z, t) +

1

µ0

B2
y(z, t)

]
(2.13)

Replacing Eqs. (2.10-2.12), we obtain:

Hfield =
1

2

(
p2 + ω2q2

)
(2.14)

This expression is equivalent to the harmonic oscillator Hamiltonian. Thus, in

order to achieve the quantization of this problem, we identify q and p not as numbers,

but instead as operators q̂ and p̂, respectively, which obey the conmutation relation

[q̂, p̂] = i~.
In analogy to the harmonic oscillator problem, we introduce the operators â and

â†, which are referred to as the annihilation and creation operators, respectively, in

the following form:

â =
1√
2~ω

(ωq̂ + ip̂), (2.15)

â† =
1√
2~ω

(ωq̂ − ip̂). (2.16)

Replacing Eqs. (2.15-2.16) in Eq. (2.14), we get the expresion of the Hamiltonian

of the electromagnetic field:

Ĥfield = ~ω
(
â†â+

1

2

)
(2.17)

Finally, as in the previous section, by eliminating the term proportional to the

I, we get:

Ĥfield = ~ωâ†â (2.18)

Interaction Hamiltonian

The interaction between an atom and an external electromagnetic field is classically

described by the minimal-coupling Hamiltonian:

6



H =
1

2m

(
p⃗− eA⃗

)2
+ eU(r⃗, t) + V (r) (2.19)

Here, p⃗ is the momentum of the electron of charge e and mass m; A⃗(r⃗, t) and

U(r⃗, t) are the vector and scalar potentials of the external electromagnetic field,

respectively; and V (r) is the atomic binding of the electron with the nucleus.

The minimal-coupling Hamiltonian (Eq. (2.19)) can be simplified by using the

dipole approximation. In general, the wavelength of the electromagnetic field that

induces or is emitted during atomic transitions is much larger than the size of an

atom. Therefore, we can consider that all the atom, whose nucleus is located at r⃗0,

is immersed in a plane electromagnetic wave described by a vector potential A⃗(r⃗0, t)

in the following form:

A⃗(r⃗0 + r⃗, t) = A⃗(t) exp[ik⃗.(r⃗0 + r⃗)] (2.20)

Based on the fact that k⃗.r⃗ ≪ 1 (dipole approximation), we can approximately

write Eq. (2.20) as:

A⃗(r⃗0 + r⃗, t) = A⃗(t) exp(ik⃗.r⃗0)(1 + i⃗k.r⃗ + ...) ≈ A⃗(t) exp(ik⃗.r⃗0) (2.21)

In the Coulomb or ”radiation” gauge, U(r⃗, t) = 0 and ∇.A⃗(r⃗, t) = 0. As a result,

the corresponding Schrödinger equation for the minimal coupling Hamiltonian is as

follows: {
− ~2

2m

[
∇− ie

~
A⃗(r⃗0, t)

]2
+ V (r)

}
ψ(r⃗, t) = i~

∂ψ(r⃗, t)

∂t
(2.22)

Eq. (2.22) can be simplified by defining the new wavefunction:

ψ(r⃗, t) = exp

[
ie

~
A⃗(r⃗0, t).r⃗

]
ϕ(r⃗, t) (2.23)

Inserting Eq. (2.23) into Eq. (2.22), we get:

i~
[
ie

~
˙⃗
A.r⃗ϕ(r⃗, t) + ϕ̇(r⃗, t)

]
exp

(
ie

~
A⃗.r⃗

)
= exp

(
ie

~
A⃗.r⃗

)[
p2

2m
+ V (r)

]
ϕ(r⃗, t)

(2.24)

Rearranging Eq. (2.24) and taking into account that in the gauge we are working

E⃗ = − ˙⃗
A, we obtain:

i~
∂ϕ(r⃗, t)

∂t
=

[(
p2

2m
+ V (r)

)
+ (−er⃗.E⃗(r⃗0, t))

]
ϕ(r⃗, t) (2.25)
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From Eq. (2.25), we can identify:

H0 =
p2

2m
+ V (r), (2.26)

Hint = −d⃗.E⃗(r⃗0, t). (2.27)

Here, H0 is the Hamiltonian of the electron bound to the nucleus; hence, Hint is

the Hamiltonian ruling the interaction of the electron with the external electromag-

netic field in the dipole approximation, where d⃗ is the electric dipole.

In order to obtain the Hamiltonian operator for the interaction of the atom and

field, we replace the electric dipole d⃗ and the electric field E⃗ with their respective

operators:

Ĥint = − ˆ⃗
d.

ˆ⃗
E (2.28)

The electric field operator can be obtained by replacing Eqs. (2.15-2.16) into

Eq. (2.10), thus resulting in:

ˆ⃗
E = e⃗

(
~ω
ε0V

)1/2

sin kz
(
â+ â†

)
, (2.29)

where e⃗ is the polarization vector in general.

Replacing Eq. (2.29) into Eq. (2.28), we get:

Ĥint = − ˆ⃗
d.

ˆ⃗
E = λd̂

(
â+ â†

)
, (2.30)

where d̂ ≡ ˆ⃗
d.e⃗ and λ = −

(
~ω
ε0V

)1/2
sin kz.

Taking into account that the electric dipole operator
ˆ⃗
d has odd parity and the

wavefunctions of a two-level atom have defined parity (either even or odd), we can

simplify d̂ since ⟨e|d̂|e⟩ = 0 = ⟨g|d̂|g⟩. Hence, the hermitian operator d̂ can be

expressed as:

d̂ = d|g⟩⟨e|+ d∗|e⟩⟨g|. (2.31)

Because the relative phase between |e⟩ and ⟨g| can be freely chosen, we can

assume that d = d∗, i.e., d ∈ ℜ. Keeping this in mind and recalling Eqs. (2.5-2.6),

we can write Eq. (2.31) as:

d̂ = d (σ̂+ + σ̂−) . (2.32)

Finally, replacing Eq. (2.32) into Eq. (2.30), we obtain the Hamiltonian for the

8



interaction between the atom and field in the dipole approximation:

Ĥint = ~g (σ̂+ + σ̂−)
(
â+ â†

)
, (2.33)

where g ≡ dλ/~ is known as the coupling constant between the atom and field.

Introducing Eqs. (2.8, 2.18 and 2.33) into Eq. (2.1), we obtain the expression

below for the Rabi Hamiltonian:

HR =
~ω0

2
σz + ~ωa†a+ ~g (σ+ + σ−)

(
a† + a

)
(2.34)

Note that the ”hat” notation for operators has been dropped and we keep this

notation from now on.

The Rabi Hamiltonian is among the simplest ones in physics; still, it has not

been exactly solved. Despite this fact, when some specific conditions are fulfilled,

the Rabi Hamiltonian can be reduced to the Jaynes-Cummings Hamiltionian, which

we analyze next.

2.1.2 Jaynes-Cummings Hamiltonian

The Jaynes-Cummings Hamiltonian was introduced in 1963 [10] to describe the

interaction between a two-level molecule with a quantized field in order to apply

it to the beam maser. It is obtained from the Rabi Hamiltonian by applying the

so-called rotating-wave approximation (RWA).

Rotating-Wave Approximation (RWA)

The RWA was originally introduced in the context of nuclear magnetic resonance,

where a spin-1/2 interacts with two magnetic fields, one being uniform and the other

one oscillating in a plane perpendicular to the first one. The former one produces

a Larmor precession of the spin. The latter one can be decomposed into the sum

of two fields rotating in opposite directions with regard to each other. One of these

will rotate in the same direction of the precession of the spin (co-rotating), and the

other in the opposite direction (counter-rotating). Each one of these fields yields

a different effect: the co-rotating one produces constant torque on the magnetic

moment and the counter-rotating one, a time dependent torque that reverses itself

with a frequency equal to twice the Larmor one. Thus, we can neglect the counter-

rotating term of the oscillating field because its effect is small. This is originally

known as the RWA [11].
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In quantum optics, this reasoning can be applied because of the fact that every

Hamiltonian in a two-state Hilbert space can be shown to be equivalent to a spin-1/2

interacting with a magnetic field. In spite of this, the idea of neglecting counter-

rotating terms lacks a physical interpretation in the atom-field interaction context.

The standard justification of the RWA requires that the Rabi Hamiltonian

(Eq. (2.34)) be expressed in the interaction picture with reference toH0 = (~ω0/2)σz+

~ωa†a and V = ~g (σ+ + σ−)
(
a† + a

)
. We achieve this by applying the unitary

transformation:

HI(t) = U †
0V U0, (2.35)

where

U0 = exp

(
−iH0t

~

)
. (2.36)

A straightforward calculation yields:

HI(t) = ~g(σ+a exp [i(ω0 − ω)t] + σ−a
† exp [−i(ω0 − ω)t]

+σ+a
† exp [i(ω0 + ω)t] + aσ− exp [−i(ω0 + ω)t]).

(2.37)

In analogy with the nuclear magnetic resonance case, the terms σ+a and σ−a
† are

called co-rotating terms and oscillate in time with the phase factors exp [±i(ω0 − ω)],

whereas the terms σ−a and σ+a
† are called counter-rotating terms, which oscillate

with the phase factors exp [±i(ω0 + ω)].

At near resonance, ω0 ≈ ω, the co-rotating terms oscillate slowly, while the

counter-rotating terms oscillate rapidly; and if g is sufficiently small, g ≪ min{ω0, ω},
then the time scales can be detached from one another and the counter-rotating

terms can be substituted by their vanishing time average [12] regarding only the

co-rotating terms.

In a more strict mathematical way, the previous argument can be justified if we

consider the Dyson expansion of the evolution operator for the Rabi Hamiltonian

instead, which is obtained from the following expression:

U(t) = I −
(
−i
~

)∫ t

0

dt1HI(t1) +

(
−i
~

)2 ∫ t

0

dt1

∫ t1

0

dt2HI(t1)HI(t2)+(
−i
~

)3 ∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3HI(t1)HI(t2)HI(t3) + ...

(2.38)

Replacing Eq. (2.37) into Eq. (2.38), we obtain expressions consisting of time-

independent operators (e.g. σ+a, σ−a
†) accompanied by integrals of the following
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form: ∫ t

0

dt1 exp(iαt1) =
−i [exp(iαt)− 1]

α
, (2.39)

∫ t

0

dt1

∫ t1

0

dt2 exp(iαt1) exp(iαt2) =
− [exp(iαt)− 1]2

α2
(2.40)

and so on, where α = ±i(ω0 ± ω). We can observe that the co-rotating terms are

proportional to powers of g/(ω0−ω) and the counter rotating terms are proportional

to powers of g/(ω0 + ω). Thus, for the case of near resonance, ω0 ≈ ω, and when

the relative coupling is weak, g/min{ω0, ω} ≪ 1, the counter-rotating terms can be

neglected.

Therefore, when the RWA is applied to the Rabi Hamiltonian (Eq. (2.34)), i.e.,

the counter-rotating terms are eliminated, the Rabi Hamiltonian is reduced to the

Jaynes-Cummings Hamiltonian:

HJC =
~ω0

2
σz + ~ωa†a+ ~g

(
σ+a+ σ−a

†) . (2.41)

Discussion of the validity of the RWA

The validity of the Jaynes-Cummings Hamiltonian depends on the fulfillment of

some conditions. There are many cases in which these conditions hold true. This

has made the JC model a powerhouse of quantum optics, widely used and whose

predictions successfully describe diverse physical phenomena, such as, Rabi oscilla-

tions, collapse-revivals of entanglement, Schrödinger cat states, and so on. These

predictions have also been corroborated with experiments, among which was the first

implementation of the Jaynes-Cummings Hamiltonian achieved with the one-atom

maser [13]. However, the same cannot be said about the RWA, because, unlike other

approximations that are based on mathematical or physical arguments, this one has

several unsatisfactory features. One of the first features that was pointed out is

that the equation obtained from applying the RWA to the atom-field Hamiltonian

from which the master equation for the density operator is derived does not match

the one obtained from applying the RWA to the master equation obtained from the

original Hamiltonian [14]. This peculiarity of the RWA has prompted physicists to

claim that the ”generally accepted use of the RWA Hamiltonian of the system has

changed into a sort of symbol of faith” [15].

Thus, the neglecting of the counter-rotating terms turns out to be an unsatisfac-

tory argument. This point can be asserted by applying the unitary transformation

11



S = exp
[
−ixa†a− i θ

2
σz
]
to the Rabi Hamiltonian (Eq. (2.34)), which results in

the exchange of the slowly and rapidly oscillating terms. Hence, the terms that are

eliminated are the co-rotating ones.

Another debatable argument often used in textbooks is that the counter-rotating

terms do not conserve energy because they correspond to non-physical processes.

This occurs because σ−a corresponds to a transition from the ground to the excited

state under emission of a photon; and σ+a
†, to a transition from the excited to the

ground state under absorption of a photon. The problem of this argument is the use

of the word ”energy”. In the processes aforementioned, the system is considered as

a non-interacting two-level atom with a quantized electromagnetic field; however,

this is clearly not the case because the two bipartite systems are interacting with

each other, so the energies are not proportional to ~ω0 and/or ~ω.
Hence, the most suitable argument to justify the RWA is the one based on the

work of Swain [16], which consists in expanding the interaction term Hint of the

Rabi Hamiltonian in powers of g/ω. The near resonance condition, ω0 ≈ ω, is to

ensure the two-level atom condition and the small relative coupling, g/ω ≪ 1, which

allows us to disregard second order and higher terms, thereby obtaining the rotating

terms and subsequently, the Jaynes-Cummings Hamiltonian (Eq. (2.41)).

2.1.3 Rabi vs Jaynes-Cummings Hamiltonian

The previous argument of the power series expansion of g/ω allows us to discuss

the analytical solvability of the Jaynes-Cummings Hamiltonian against the Rabi

Hamiltonian.

At the first order of g/ω, i.e., the Jaynes-Cummings Hamiltonian, the possible

transitions of the initial state |e, n⟩ are shown in the following figure:

|e,n⟩

|e,n⟩ |g,n+ 1⟩

Figure 2.1: Possible transitions of the initial state |e, n⟩ in the Jaynes-Cummings Hamil-
tonian.

Instead, if we go to the second order of g/ω, i.e., the Rabi Hamiltonian (up to

the second order only), the possible transitions of the initial state |e, n⟩ are shown

in the following figure:
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|e,n⟩

|e,n⟩

|g,n+ 1⟩|g,n− 1⟩

|e,n− 2⟩ |e,n+ 2⟩

Figure 2.2: Possible transitions of the initial state |e, n⟩ in the Rabi Hamiltonian (up to
the second order). Adapted from [17].

From Fig. (2.1), we can deduce that the state |e, n⟩ only couples with the state

|g, n + 1⟩. Therefore, the infinite-dimensional matrix representation of the Rabi

Hamiltonian splits into a block-diagonal (two-dimensional) in the Jaynes-Cummings

Hamiltonian, i.e., when the RWA is invoked. As a result, each (two-dimensional)

block can be diagonalized.

On the other hand, from Fig. (2.2), we can deduce that when expanded to all

orders of g/ω, the Rabi Hamiltonian couples |e, n⟩ to an infinite number of states;

as a consequence, the diagonalization of the Rabi Hamiltonian cannot be achieved.

This issue and the fact that the Rabi Hamiltonian has no second conserved

quantity besides energy has led physicists to think that the Rabi Hamiltonian is

non-integrable; in other words, it has no analytical solution. We will see that this

is not exactly the case.

For the Jaynes-Cummings Hamiltonian, the other quantity that is conserved is

the total number of excitations of the system Nq = a†a + σ+σ−, which leads to

the diagonalization of the Hamiltonian in the subspaces {|e, n⟩, |g, n + 1⟩}. The

conserved quantity Nq in the JC model produces a U(1) symmetry, which is broken

down into a Z(2) symmetry when taking into account the counter-rotating terms.

This symmetry is related to the parity operator P = exp(iπNq), which is conserved

in the Rabi Hamiltonian. This conservation of the parity of the states enables the

division of the infinite-dimensional Hilbert space into two unconnected ones, also

infinite-dimensional (H = H+ + H−). This property was used by Braak [18] to

obtain an analytical solution to the Rabi Hamiltonian. However, these solutions

depend on a transcendental function which in turn depends on the power series of

g/ω. Therefore, the Rabi Hamiltonian is analytically solvable, but a closed-form

solution has not been found yet.

Despite this fact, many numerical calculations and approximate solutions have

been proposed for the Rabi Hamiltonian, some of which will be analyzed in the next
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chapter.

2.2 Geometric Phases

The concept of geometric phase was introduced in 1984 by Berry in a somewhat

limited context [19]. This was when a quantum system undergoes a unitary, cyclic

and adiabatic evolution. Before Berry’s work, it was assumed that when a quantum

system undergoes a unitary cyclic evolution, it acquires only a dynamical phase

which can be gauged away, i.e., eliminated, by redefining the state as |ψ⟩ → |ψ′⟩ =
eiα|ψ⟩. Berry discovered that apart from the dynamical phase, there was another

additional phase whose origin was geometrical that could not be eliminated. In the

following years, this concept was generalized and redefined. In 1987, Aharonov and

Anandan removed the condition of adiabacity [20]. In 1988, Samuel and Bhandari

claimed that the evolution neither needed to be cyclic nor unitary [21, 22]. Finally,

this concept was redefined by Mukunda and Simon in a purely kinematic approach

[23].

Next, we are going to summarize two approaches to the geometric phase based

on [24]. First, Berry’s original approach to understand what it means when we say

that we are calculating Berry’s phase, and second, the more general approach to the

geometric phase proposed by Simon and Mukunda, which is called the kinematic

approach.

2.2.1 Berry’s Approach: Berry’s phase

Suppose we have a non-conservative system whose evolution is ruled by a time-

dependent Hamiltonian H(t). This happens when a system evolves under the in-

fluence of a changing environment whose configuration can be specified by a set

of time-dependent parameters {R1(t), R2(t), ...}. A consequence of this is that all

observables, especially the Hamiltonian H(R(t)) ≡ H(R1(t), R2(t), ...), depend on

these parameters.

Assuming that there is an orthonormal basis |n,R(t)⟩ for every time t in such a

way that:

H(R(t))|n,R(t)⟩ = En(R(t)|n,R(t)⟩, (2.42)

we can write the following general state:

|ψ(t)⟩ =
∑
k

ck(t)|k,R(t)⟩. (2.43)
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The adiabatic approximation consists in taking an approximate solution of the

Louiville equation:

i~
∂ρ(t)

∂t
= [H(R(t)), ρ(t)] (2.44)

as follows:

ρ(t) = |ψ(t)⟩⟨ψ(t)| ≈ |n,R(t)⟩⟨n,R(t)|. (2.45)

This means that if the system starts as an eigenstate of the Hamiltonian, it re-

mains the same eigenstate of the Hamiltonian. It is important to note that Eq. (2.45)

can only be an approximation because if we replace it in Eq. (2.44), we obtain a

stationary state as a solution, which would be a contradiction. The adiabatic ap-

proximation (Eq. (2.45)) means that Eq. (2.43) can be written as follows:

|ψ(t)⟩ ≈ cn(t)|n,R(t)⟩ (2.46)

with cn(0) = 1.

In order to obtain the condition to consider an evolution adiabatic, we replace

Eq. (2.46) in the Schrödinger equation:

i~
∂|ψ⟩
∂d

= H(R(t))|ψ⟩, (2.47)

thereby obtaining:

dcn(t)

dt
|n,R(t)⟩ ≈ −cn

[
iEn(t)|n,R(t)⟩+

d

dt
|n,R(t)⟩

]
. (2.48)

If we multiply Eq. (2.48) by ⟨k,R(t)|, it reduces to:

⟨k,R(t)| d
dt
|n,R(t)⟩ ≈ 0, for all k ̸= n. (2.49)

Deriving Eq. (2.42) with respect to t, we can write Eq. (2.49) in the following

form:

⟨k,R(t)|dH(t)/dt|n,R(t)⟩
En(R(t))− Ek(R(t))

≈ 0, for all k ̸= n. (2.50)

This expression sets the time scale for H(t) to be considered an adiabatic evo-

lution; thus, the adiabatic approximation is correctly applied. This depends on the

transition frequencies of the evolving system (En(R(t))− Ek(R(t)))/~.
In order to obtain the equation that the coefficient cn(t) of Eq. (2.46) must

satisfy, we multiply Eq. (2.48) by ⟨n,R(t)|, which results in:
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dcn(t)

dt
= −cn(t)

[
iEn(t) + ⟨n,R(t)| d

dt
|n,R(t)⟩

]
, (2.51)

whose solution is

cn(t) = exp

[
−i
∫ t

0

En(s)ds

]
exp

[
−
∫ t

0

⟨n,R(s)| d
ds

|n,R(s)⟩ds
]
. (2.52)

From Eq. (2.52), we define the following terms:

Φdyn(t) ≡
∫ t

0

En(s)ds, (2.53)

γn(t) ≡ i

∫ t

0

⟨n,R(s)| d
ds

|n,R(s)⟩ds. (2.54)

Finally, replacing Eq. (2.52) into Eq. (2.46), we obtain the final state after the

evolution:

|Φ(t)⟩ ≈ exp [−iΦdyn(t)] exp [iγn(t)] |n,R(t)⟩. (2.55)

Here, we see that besides the usual dynamical phase Φdyn, which can be gauged-

away, another phase γn appears which is called the geometric phase. The choice of

this name becomes obvious after realizing that γn can be written in the following

way by using the chain rule for derivation:

γn(t) = i

∫ R(t)

R(0)

⟨n,R| ∂

∂Rk

|n,R⟩dRk ≡
∫ R(t)

R(0)

A(n).dR, (2.56)

where A(n) ≡ i⟨n,R|∇|n,R⟩ is the vector potential known as the Mead-Berry vector

potential. Eq. (2.56) makes it clear that γn does depend only on the path connecting

the points R(0) and R(t) in the parameter space, showing us the geometric nature

of γn.

If we do the gauge transformation |n,R⟩ → |n,R⟩′ = eiαn(R)|n,R⟩, the vector

potential and, as a consequence, the geometric phase, both transform, respectively,

as follows:

A(n) → A′(n) = A(n) −∇αn(R), (2.57)

γn(t) → γ′n(t) = γn(t)− [αn(R(t))− αn(R(0))] . (2.58)

From Eq. (2.58), we can use the gauge freedom of αn(R(t)) in order to eliminate

the phase factor γn. Indeed, if we repeat all the calculation up to Eq. (2.55) with the

aforementioned gauge transformation |n,R⟩′, we obtain Eq. (2.55) but with prime
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quantities. Therefore, choosing αn(R(t)) = −γn(t), we obtain:

|ψ(t)⟩ ≈ exp [−iΦdyn(t)] |n,R(t)⟩. (2.59)

These results were already obtained by Fock when addressing adiabatic processes

[25]. However, Berry first discovered that when we are dealing with cyclic evolution

(with period T ), i.e., R(T ) = R(0), we cannot use this gauge freedom in order to

remove the geometric phase anymore. In fact, if R(T ) = R(0), then exp [iαn(T )] =

exp [iα(0)], and αn(T ) = αn(0) + 2πm with m integer. Consequently, Eq. (2.58)

becomes:

γ′n(t) = γn(t)− 2πm. (2.60)

From Eq. (2.60), we see that there is no gauge freedom, so the geometric phase

cannot be eliminated.

In summary, whenever it is claimed that the Berry phase is being calculated, this

means that Eq. (2.54) is being used and that the adiabatic condition |ψ(t)⟩⟨ψ(t)| ≈
|n,R(t)⟩⟨n,R(t)| is being assumed.

2.2.2 Kinematic Approach: Geometric phase

Next, we are going to see how all the important features of the geometric phase

develop from a purely kinematic approach by using parallel transport.

First, we define a subset of the Hilbert space, H, whose elements are non-null

normalized vectors |ψ⟩. A curve C0 in H0 is defined by a set of vectors |ψ(s)⟩ which
are a continuous function of a parameter s ∈ [s1, s2]. Because |ψ(s)⟩ is normalized,

i.e., ⟨ψ(s)|ψ(s)⟩ = 1, ⟨ψ(s)|ψ̇(s)⟩ has a null real part. This allows us to write:

⟨ψ(s)|ψ̇(s)⟩ = iIm⟨ψ(s)|ψ̇(s)⟩. (2.61)

Additionally, we define the phase between the initial state |ψ(s1)⟩ and the final

state |ψ(s2)⟩ of a curve C0, the so-called total phase, in the following way:

Φtot(C0) = arg⟨ψ(s1)|ψ(s2)⟩ (2.62)

This phase is also called the Pancharatnam phase, which Pancharatnam himself

defined in the context of polarized states of light [26]. The total phase is generally

defined for any two non-orthogonal states, without reference to a curve that possibly

joins them with one another.

Under a gauge transformation in the form of |ψ(s)⟩ → |ψ′(s)⟩ = eiα(s)|ψ(s)⟩,
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the total phase Φtot(C0) and the quantity Im⟨ψ(s)|ψ̇(s)⟩ transform, respectively, as

follows:

Φtot(C0) → Φ′
tot(C0) = arg⟨ψ(s1)|ψ(s2)⟩+ α(s2)− α(s1), (2.63)

Im⟨ψ(s)|ψ̇(s)⟩ → Im⟨ψ′(s)|ψ̇′(s)⟩ = Im⟨ψ(s)|ψ̇(s)⟩+ ˙α(s). (2.64)

Finally, from Eqs. (2.63-2.64), we can construct the following gauge invariant

quantity as a functional of C0:

Φg(C0) = arg⟨ψ(s1)|ψ(s2)⟩ − Im

∫ s2

s1

⟨ψ(s)|ψ̇(s)⟩ds. (2.65)

This quantity is not only gauge invariant, but also re-parametrization invariant

(change in the parameter s). Gauge and re-parametrization invariance means that

although we define Φg as a functional of |ψ(s)⟩, hence, of C0, it is actually a functional
of some equivalent class of |ψ(s)⟩. As a matter of fact, the set {|ψ′⟩ = eiα|ψ⟩} is

known as the ray space R0. In our case, it is useful to work with the projector

|ψ⟩⟨ψ|, which is defined by means of a projection map π : H0 → R0. Under this

projection, the curve C0 ∈ H0 projects onto C0 ∈ R0, which is the curve defined by

|ψ(s)⟩⟨ψ(s)|, s ∈ [s1, s2]. Therefore, we write the geometric phase as a functional of

C0 as follows:

Φg(C0) = Φtot(C0)− Φdyn(C0) (2.66)

with

Φdyn(C0) = Im

∫ s2

s1

⟨ψ(s)|ψ̇(s)⟩ds. (2.67)

Lastly, we emphasize the fact that this approach is called kinematic because it

only depends on the curve C0 described during the evolution, not on the cause of

the evolution. Also, we want to highlight that this approach does not depend on the

assumptions made by Berry; therefore, the curve does not have to be closed, and

the evolution does not have to be adiabatic or unitary.
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Chapter 3

Berry Phase in Rabi Hamiltonian:

Controversy and Results

3.1 The Controversy

Since Berry’s discovery [19], geometric phases in quantum theory have drawn a

lot of attention. However, they were studied as a quantum system that undergoes

an evolution produced by an interaction with a classical field until 2002 with the

work of Fuentes-Guridi et al. [4], in which they calculated the Berry phase of a

spin-1/2 interacting with a magnetic field, while addressing the quantum nature

of the field. In more details, the Berry phase studied is the one that is acquired

when an eigenstate of the Jaynes-Cummings Hamiltonian performs an adiabatic

and cyclic evolution ruled by the unitary operator U(φ) = exp(−iφa†a). To achieve

the adiabatic and cyclic conditions, φ varies slowly from 0 to 2π.

The reason why the authors chose the particular evolution U(φ) is because when

applied to the Jaynes-Cummings Hamiltonian (in units of ~ = 1),

HJC =
ω0

2
σz + ωa†a+ g

(
σ+a+ σ−a

†) , (3.1)

we obtain the following expression:

U(φ)HJCU
†(φ) =

ω0

2
σz + ωa†a+ g

(
σ+ae

iφ + σ−a
†e−iφ

)
. (3.2)

Thus, the effect of U is to phase-shift the operators a and a†. If we replace

a and a† by their corresponding classical amplitude in Eq. (3.2), we obtain the

semiclassical Jaynes-Cummings Hamiltonian, i.e., a classical field interacting with a

two-level atom. This is the reason for the choice of U(φ).

The results obtained by Fuentes-Guridi et al. for the Berry phases γn,± are the
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following:

γn,+ = π(1− cos θn) + 2πn, (3.3)

γn,− = −π(1− cos θn) + 2π(n+ 1). (3.4)

Here, cos θn = (ω0−ω)/
√
(ω0 − ω)2 + 4g2(n+ 1). From these results, we can see

that the Berry phase is different from zero, even in the case of vacuum, i.e., n = 0.

On the other hand, in 2012, Larson claimed that the non-vanishing Berry phase

(Eqs. (3.3-3.4)) is an artifact of the RWA based upon the fact that in his work,

he discovered that when not invoking the RWA, i.e., when addressing the Rabi

Hamitlonian, the Berry phase is null regardless of the parameter choices [2]. In order

to arrive at this conclusion, Larson addressed the semiclassical case and calculated

the corresponding energy surfaces in phase-space for the Jaynes-Cummings and Rabi

Hamiltonian, obtaining the following plots:

Figure 3.1: Left figure: semiclassical energy surface for the Jaynes-Cummings Hamilto-
nian shows a CI; thus, there is a non-vanishing Berry phase in this model.
Right figure: semiclassical energy surface for the Rabi Hamiltonian does not
show a CI; thus, there is a vanishing Berry phase in this model. Adapted
from [2].

From Fig. (3.1), we can see that for the Rabi’s semiclassical Hamiltonian, the

energy surface does not contain a conical intersection (CI), whereas the one for the

Jaynes-Cummings’s semiclassical Hamiltonian does for (x,p)=(0,0). Trajectories in

the above mentioned surfaces that encircle CIs produce non-vanishing Berry phases

[25, 27]. Based on this fact, Larson allegated that the Rabi model gives rise to null

Berry phases, but in the Jaynes-Cummings model, i.e., when the RWA is applied,

there are non-vanishing Berry phases.

At this point, we can argue that this occurs only in the semiclassical case; how-

ever, when we address the fully quantum case, the conclusions could be different.

Nevertheless, Larson asserted that numerical calculations for the Rabi Hamiltonian,
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show that the Berry phase vanishes independently from the parameter choices [2].

This was shown a year later in 2013, when Larson presented the numerical diag-

onalization of the transformed Rabi Hamiltonian HR(φ) ≡ U(φ)HRU
†(φ), which

manifests that regardless the value of g, the Berry phase nullifies when φ = 2π [3].

All the above mentioned results led Larson to claim that ”imposing the RWA

in certain cavity QED systems can impart incorrect results regardless of system

parameters” [2]. This statement is very controversial because Larson claims that

there is a physical phenomenon, in this case the Berry phase, for which the RWA does

not apply even when the conditions ω0 ≈ ω and g/ω ≪ 1 are satisfied. Even though

the justification of the RWA is not very clear, this approximation has predicted

many physical phenomena seen in experiments, which leads us to the conclusion

that there is something incongruent in Larson’s claim.

The conclusions Larson reached have been disputed by several authors. For

instance, Wang et al. [7] object the way that Larson performs his semiclassical ap-

proximation, in which the operators a and a† are replaced by the corresponding

complex numbers α and α∗. Wang et al. claim that the correct way to do the semi-

classical approximation consists in applying the variational method to the effective

Hamiltonian Heff (α) ≡ ⟨α|HR|α⟩, in which |α⟩ is a coherent state, i.e., |α⟩ satisfies
the equation a|α⟩ = α|α⟩. By doing this, a non-vanishing Berry phase appears in the

Rabi model. Other authors calculate approximate solutions for the Berry phase in

the Rabi Hamiltonian that compute non-vanishing Berry phases [5, 6]. In addition,

very recently, semi-analytical results have shown that the energy landscape of the

Rabi Hamiltonian (full quantum case) does indeed present conical intersections [28].

Despite all these refutations, a final word on this controversy has not been said.

In order to help to settle this issue, we present analytical and numerical arguments.

Before doing this, we present a calculation of the eigenvalues of the Rabi Hamilto-

nian to highlight the idea that the predictions of the Rabi model and the Jaynes-

Cummings model must agree when the RWA applies and to exhibit the accuracy of

our numerical results.

3.2 Eigenvalues of the Rabi Hamiltonian

To achieve the eigenvalues of the Rabi Hamiltonian (in units of ~ = 1),

HR =
ω0

2
σz + ωa†a+ g (σ+ + σ−)

(
a† + a

)
, (3.5)

we numerically diagonalyzed the truncated Rabi matrix 22 × 22, obtaining the six

first eigenvalues with an accuracy of 99.9% for three relative detunings ∆′ ≡ (ω0 −
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ω)/ω, one corresponding to the resonant case (∆′ = 0) and the other two, to non-

resonant cases (∆′ = ±0.5). This was attained by using an N ×N Rabi matrix and

fixed N so that the results would not change by more than 0.1% if N were increased

to N + 1.

In these results, we also included the first six eigenvalues for the Jaynes-Cummings

Hamiltonian, which are written (in units of ~ = 1) as follows:

En,± = ω

(
n+

1

2

)
± 1

2

√
∆2 + 4g2(n+ 1) (3.6)

From the results in Fig. (3.2), we can see that for sufficiently small values of g/ω

the eigenvalues of the Rabi Hamiltonian converge to the corresponding ones of the

Jaynes-Cummings Hamiltonian. This is proof that the RWA correctly applies when

dealing with eigenvalues as it should be in the case of any other physical observable

described within the Rabi and Jaynes-Cummings model.

In addition, in order to show the accuracy of these numerical results, we com-

pared the numerically calculated eigenvalues of the Rabi Hamiltonian with analyti-

cally approximated solutions given by Irish [29] and by Zhang et al. [30]. The former

one is based on the generalized rotating-wave approximation (GRWA), which con-

sists in performing a change of basis before eliminating the counter-rotating terms

and reducing the matrix to a 2 × 2 block-diagonal form; and the latter one, on a

coherent-state approach.

From Fig. (3.3), we can observe that with a negligible difference, the numerical

results agree with the results of Irish, but in the case of Zhang et al., small dif-

ferences are observed for some values of g/ω. A hypothesis that can explain the

aforementioned differences is that in the corresponding deduction of their approx-

imated solution, Zhang et al. claim that some coefficients Dmn for m ̸= n can

be neglected if λ/ω ≫ 1 [30]; however, this claim has not been correctly justified

because Dmn(x) is a damped oscillatory function of x.
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Figure 3.2: Eigenvalues (in units of ω) of the Rabi and Jaynes-Cummings Hamiltonian
as a function of g/ω for three different detunings ∆′ ≡ (ω0−ω)/ω. The solid
black lines correspond to the numerical results of the Rabi Hamiltonian,
and the dashed red lines correspond to the analytical results of the Jaynes-
Cummings Hamiltonian.
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Figure 3.3: Eigenvalues (in units of ω) of the Rabi and Jaynes-Cummings Hamiltonian
as a function of g/ω. The solid black lines correspond to the numerical
results of the Rabi Hamiltonian, while the dashed red lines correspond to
analytical approximations provided by Irish (left panel) and by Zhang et
al.(right panel). In the case of Irish, we consider the non-resonant case
∆′ = −0.5 and for Zhang et al., the resonant case ∆′ = 0.
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3.3 Berry Phase of the Rabi Hamiltonian

We first present an analytical argument regarding Berry phases in the Rabi Hamil-

tonian which shows that there is a non-vanishing Berry phase in the Rabi case. This

argument is in conflict with Larson’s findings [2, 3].

First, in order to calculate the Berry phase in the Rabi model, we use the ex-

pression from Sec. (2.2.1) [2, 4–7]:

γn(t) = i

∫ t

0

⟨Ψn(s)|
d

ds
|Ψn(s)⟩ds. (3.7)

In this case, the parameter s is φ ∈ [0, 2π] and the state |Ψn(s)⟩ is U(φ)|ψn⟩,
where U(φ) = exp(−iφa†a) and ψn is the n-th eigenstate of the considered Hamil-

tonian. As a result, Eq. (3.7) can be written as follows:

γn = i

∮
⟨ψn|U †(φ)

d

dφ
U(φ)|ψn⟩dφ. (3.8)

A straightforward calculation yields:

U †(φ)
d

dφ
U(φ) = U †(φ)

(
−ia†a

)
U(φ) = U †(φ)U(φ)

(
−ia†a

)
= −ia†a (3.9)

Replacing Eq. (3.9) in Eq. (3.8), we obtain:

γn = 2π⟨ψn|a†a|ψn⟩. (3.10)

Using this expression, we can calculate the Berry phase for the Rabi or Jaynes-

Cummings Hamiltonian by substituting the respective eigenvector |ψn⟩.
In general, we can write an eigenstate of the Rabi Hamiltonian in the following

form:

|ψn⟩ =
∞∑

m=0

(An
m|e,m⟩+Bm

n |g,m⟩) , (3.11)

where {|e,m⟩, |g,m⟩}∞m=0 is a basis of the Hilbert space on which the Rabi Hamil-

tonian acts upon. Here, |e,m⟩ ≡ |e⟩⊗ |m⟩ and |g,m⟩ ≡ |g⟩⊗ |m⟩, in which the field

is in a Fock state |m⟩ with m photons.

Replacing Eq. (3.11) in Eq. (3.10), we obtain:

γn = 2π
∞∑

m=0

m
(
|An

m|
2 + |Bn

m|
2) . (3.12)
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From Eq. (3.12), we can deduce that the only instance when the Berry phase

vanishes is when An
m = 0 = Bn

m,∀m > 0, which clearly does not correspond to

an eigenvector of the Rabi Hamiltonian. This result is in discrepancy with Larson’s

findings; however, he has reported numerical results endorsing his conclusions. Even

though we are not able to determine what is wrong in Larson’s numerical calculation,

we are confident that our numerical results in Fig. (3.4) are in agreement with

Eq. (3.12) and with other authors’ findings [5–7].

We present four Berry phases associated with eigenvectors of the Rabi Hamilto-

nian using numerical calculations with the 20 × 20 Rabi matrix with an accuracy

of 99.9%, defined in the same way as in Sec. (3.2). In this case, we need a smaller

matrix to achieve this accuracy because we only calculated four Berry phases instead

of the six eigenvalues of Sec. (3.2).

From Fig. (3.4), we can observe that the Berry phases in the Rabi Hamiltonian

are non-vanishing, indeed. These results are in agreement with the approximated

solutions of Liu et al. and Deng et al.. Also, and most importantly, we can see

that the Berry phases for the Rabi Hamiltonian converge to the corresponding ones

in the Jaynes-Cummings Hamiltonian when g/ω is sufficiently small, i.e., when the

RWA can be applied. Therefore, we can conclude that the RWA is also consistent

in the instance of Berry phases as it was expected to be the case.
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Figure 3.4: Berry phases γn (in units of π) of the Rabi and Jaynes-Cummings Hamil-
tonian as a function of g/ω for three different detunings ∆′ ≡ (ω0 − ω)/ω.
The solid black lines correspond to the numerical results of the Rabi Hamil-
tonian, while the dashed red lines correspond to the analytical solutions of
the Jaynes-Cummings Hamiltonian.

27



Chapter 4

Other Theoretical Aspects of the

Controversy

4.1 Misconceptions Related to the Controversy

In spite of what we have concluded in Sec. (3.3), this controversy goes beyond

whether there is a vanishing or non-vanishing Berry phase in the Rabi Hamiltonian.

There are two points regarding this issue we would like to discuss next.

The first issue is that what we are dealing with in this controversy is not Berry’s

phase, but a geometric phase instead. Let us recall from Sec. (2.2) that the geometric

phase is a general concept which has the Berry phase as a particular case. In order

to explain this in more detail, we need to remember that in Sec. (2.2) the geometric

phase was defined as:

γ(C) = arg⟨ψ(0)|ψ(s)⟩+ i

∫ s

0

⟨ψ(s′)| d
ds′

|ψ(s′)⟩ds′. (4.1)

One of the properties of the geometric phase γ(C) is that it is invariant un-

der local gauge transformations |ψ(s)⟩ → |ψ′(s)⟩ = exp[iα(s)]|ψ(s)⟩. This prop-

erty allows us to nullify either one of the contributions, the total phase or the

dynamic one. In particular, if we use the gauge transformation |ψ(s′)⟩ → |ψ′(s′)⟩ =
exp[−i arg⟨ψ(0)|ψ(s′)⟩]|ψ(s′)⟩, we nullify the total phase [31]. Thus, using this newly

gauge-transformed state and reverting to unprimed notation, Eq. (4.1) reduces to:

γ(C) = i

∫ s

0

⟨ψ(s′)| d
ds′

|ψ(s′)⟩ds′. (4.2)

Therefore, whenever s′ = t and |ψ(t)⟩ satisfies the (gauge-transformed) Schrödinger

equation with the initial condition |ψ(t)⟩ = |n,R(0)⟩, Eq. (4.2) coincides with the

expression deduced by Berry (Eq. (2.54)). If we also assume the adiabatic condi-
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tion |ψ(t)⟩⟨ψ(t)| ≈ |n,R(t)⟩⟨n,R(t)|, then γ(C) is called Berry phase according to

common parlance.

In spite of the fact that Fuentes-Guridi et al. [4] and Larson [2] mentioned the

adiabatic approximation in their respective research, this approximation was not

used in any of their calculations. Although the experimental implementation of

the evolution U(φ) = exp[−iφa†a] may require the adiabatic condition, this does

not mean that the geometric phase acquired is linked to the adiabaticity of the

Hamiltonian evolution.

Delving into this issue, the Rabi and Jaynes-Cummings Hamiltonian are time-

independent, so the evolution generated by these does not generate a geometric

phase. Indeed, when |ψn⟩ is an eigenvector of the Rabi or Jaynes-Cummings Hamil-

tonian (H), which is the case that we are dealing with in this controversy, it only

acquires a trivial phase in the form of exp[−iHt]|ψn⟩ = exp[−iEnt]|ψn⟩. In or-

der to produce a geometric phase, the authors propose the unitary transforma-

tion H → U(φ)HU †(φ) and invoke it to be applied ”adiabatically”, i.e., φ has to

vary slowly [2]. For this to happen, φ and, as a consequence, U(φ) must be time-

dependent. Therefore, the corresponding Schrödinger equation when the system

evolves under the time-dependent unitary transformation U(φ(t)) reads:

i
∂|ψ′⟩
∂t

=

(
U(φ)HU †(φ) + i

∂U(φ)

∂t
U †(φ)

)
|ψ′⟩ ≡ H ′(t)|ψ′⟩. (4.3)

From Eq. (4.3), we can observe that a well-defined Berry phase must be related

to the evolution produced by the time-dependent Hamiltonian H ′(t). With this, we

can conclude that any phase acquired by the evolution U(φ) = exp[−iφa†a] cannot
be a Berry phase. On the other hand, we can properly define a geometric phase

from Eq. (4.1) by setting s′ = φ as well as |ψ(φ)⟩ = U(φ)|ψn⟩ and choosing to work

on a closed trajectory, which is the case addressed in the controversy, or by using

the gauge which imposes that arg⟨ψ(s = 0)|ψ(s = 2π)⟩.
The second issue of our discussion is the role that the Hamiltonian plays in

this controversy. As we have seen before, the geometric phase associated to the

evolution of the respective eigenvector is not ruled by the Rabi or Jaynes-Cummings

Hamiltonian, but instead only by the unitary operator U(φ). The Hamiltonians are

only providers of the respective initial eigenvectors |ψn⟩; once they are fixed, their

evolution is ruled by U(φ). Instead of using the Hamiltonians as providers, we

can use other unitary or even non-unitary evolutions not related in any way to the

Hamiltonians. Thus, the point we want to put under debate is how valid it is to

associate the geometric phase to the Rabi or Jaynes-Cummings Hamiltonian when

these do not rule the evolution linked to this phase.
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These two points previously discussed bring to the fore the nature of the geo-

metric phase, which is linked only to the geometry of the ray space. This fact

was summarized by Rakhecha and Wagh, who defined the geometry phase as ”the

Hamiltonian-independent, nonintegrable component of the total phase, depending

exclusively on the geometry in the ray space” [32]. Taking this into account, we find

it more suitable to adopt another formulation for the calculation of the geometric

phase.

In this formulation, the parameters Rµ are no longer related to the Hamiltonian,

but instead only to the state vectors |ψ⟩ = |ψ(R)⟩. If the parameters depend on s,

i.e., Rµ = Rµ(s), then ⟨ψ(s)|ψ̇(s)⟩ = ⟨ψ|∂µψ⟩Ṙµ(s), where the dot notation stands

for the derivative respect to s and ∂µ ≡ ∂/∂Rµ. For a closed trajectory or for the

gauge that nullifies the total phase, the geometric phase can be written as:

γ(C) = i

∮
C
⟨ψ(s)|ψ̇(s)⟩ds ≡ −

∮
C
A. (4.4)

Here, A ≡ AµdR
µ with Aµ = ⟨ψ|∂µψ⟩. If we define F ≡ dA = (Fµν/2)dR

µ∧dRν

and S as the surface bounded by the closed path C, using Stoke’s theorem, we can

write Eq. (4.4) as follows [33,34]:

γ(C) = −
∫
S
F , (4.5)

where

Fµν = −Fνµ = 2Im⟨∂µψ|∂νψ⟩. (4.6)

When the Rµ dependence of the state vectors comes from a unitary operator

U(R), i.e., |ψ(R)⟩ = U(R)|ψ(0)⟩, we can alternatively write Eq. (4.6) as:

Fµν = 2Im⟨ψ|(∂µU)†∂νU |ψ⟩. (4.7)

As we can see, the geometric phase depends on the types of evolutions U con-

sidered. This issue will be dealt within the next section.

4.2 Evolution U(θ, ϕ) in the Schwinger Model

In order to illustrate how the types of evolution affect the geometric phase, we are

going to address an evolution based on Schwinger’s approach to angular momentum.

First, we consider a Hilbert space HT = H2 ⊗ Ha ⊗ Hb, which is the direct

product of three Hilbert spaces whose orthonormal bases are {|+⟩, |−⟩}, {|n⟩a}∞n=0,

and {|n′⟩b}∞n′=0, respectively. The two last ones are Fock bases associated to two
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different modes. We then choose the following evolution expressed as the unitary

operator:

U(θ, ϕ) = exp (−iϕJz) exp (−iθJy) . (4.8)

Here, the angular momentum operators are defined in terms of the annihilation

and creation operators of modes a and b according to Schwinger’s approach:

Jx =
1

2

(
a†b+ ab†

)
, (4.9)

Jy =
1

2i

(
a†b− ab†

)
, (4.10)

Jz =
1

2

(
a†a− b†b

)
. (4.11)

Next, we apply U(θ, ϕ) to the following initial state in which we obviate the

identity operator of H2:

|Ψ±
n,n′⟩ =

1√
2
[|+⟩|n⟩a ± |−⟩|n+ 1⟩a]⊗ |n′⟩b ≡

1√
2
[|+, n⟩ ± |−, n+ 1⟩] |n′⟩. (4.12)

Replacing Eqs. (4.8-4.12) into Eq. (4.7), we observe that the only non-vanishing

terms are Fθϕ = −Fϕθ. Also, taking into consideration that ∂U(θ, ϕ)/∂θ = −iU(θ, ϕ)Jy
and ∂U(θ, ϕ)/∂ϕ = −iJzU(θ, ϕ), we obtain:

Fϕθ = 2Im⟨Ψ±
n,n′|U †(θ, ϕ)JzU(θ, ϕ)Jy|Ψ±

n,n′⟩. (4.13)

From the previous equation, we observe that in order to calculate the geometric

phase, we need to calculate first the quantity ⟨U(θ, ϕ)†JzU(θ, ϕ)Jy⟩. Recalling that

U(θ, ϕ) is a rotation operator, we get:

⟨U †JzUJy⟩ =
1

2i
sin θ⟨Jz⟩, (4.14)

This means that in order to calculate ⟨U †(θ, ϕ)JzU(θ, ϕ)Jy⟩, we need to compute

the mean value of Jz in the state |Ψ±
n,n′⟩. The action of Jz on |Ψ±

n,n′⟩ is as follows:

Jz|Ψ±
n,n′⟩ =

1

2
√
2
[(n− n′)|+, n⟩ ± (n+ 1− n′)|−, n+ 1⟩] |n′⟩. (4.15)

Replacing Eqs. (4.14-4.15) in Eq. (4.13), we obtain:

2Im⟨Ψ±
n,n′|U †(θ, ϕ)JzU(θ, ϕ)Jy|Ψ±

n,n′⟩ = − sin θ [(n− n′)/2 + 1/2] /2. (4.16)
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Inserting this expression in Eq. (4.5), we get:

γnn′ = −
∫
S

F = −
∫∫

Fϕθdθdϕ =
1

2

[
(n− n′) +

1

2

] ∫∫
sin θdθdϕ. (4.17)

If we define Ω as the solid angle subtended by the closed path C, we finally

obtain:

γnn′ =

[
(n− n′) +

1

2

]
Ω

2
. (4.18)

This result was first found by Fuentes-Guridi et al. [4]. As we have seen previ-

ously, neither the Hamiltonian nor the adiabatic approximation needed to be invoked

in order to obtain the geometric phase γnn′ . Even more, referring to a Hamiltonian

may sometimes lead to incorrect physical interpretations regarding geometric phases,

one instance being the case of Fuentes-Guridi et al.. We need to recall that their re-

sult was interpreted in terms of a Hamiltonian H2q
0 , which describes a scheme where

a two-level atom interacts with two modes of an electromagnetic field. This Hamilto-

nian is obtained from the resonant Jaynes-Cummings Hamiltonian plus an additional

term ωb†b that is related to the second field mode, i.e., H2q
0 = HJC(ω0 = ω) + ωb†b.

Initially, there is no interaction between the two-level atom and the field; however,

when the U(θ, ϕ) is applied, the interaction is produced [4, 35]. This led Fuentes-

Guridi et al. to claim that the non-vanishing geometric phase γ0 = Ω/4, which

arises when the field is in the vacuum state, is a feature that has ”no semiclassical

correspondence on account of the absence of a classical interpretation of a vacuum

state” [4]. Nevertheless, as we shall see next, this conclusion is not correct.

4.2.1 Connection Between Schwinger’s Approach and An-

gular Momentum Algebra

First, we will give a brief review of how Schwinger’s approach connects to standard

angular momentum algebra. The standard basis of the latter one

{|j,m⟩, j = 0, 1/2, 1, . . . ;m = −j, . . . , j} consists of common eigenvectors of the com-

muting operators J2 and Jz, i.e., J
2|j,m⟩ = j(j+1)|j,m⟩ and Jz|j,m⟩ = m|j,m⟩. It

can be proved that there is a one-to-one correspondence between Schwinger’s states

|n, n′⟩ and the standard ones, |j,m⟩, which is given by n = j + m, n′ = j − m.

The Hilbert space HT = H2 ⊗ Ha ⊗ Hb is isomorph to HT = H2 ⊗ HJ , where

H2 = Span {|+⟩, |−⟩} and HJ = Span {|j,m⟩}. Hence, HT = Span {|±, j,m⟩}.
The initial states addressed in Eq. (4.12) have the feature of being entangled
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states, which can be written using the basis |j,m⟩ in the following form:

|Ψ±
n,n′⟩ =

1√
2
[|+, j,m⟩ ± |−, j + 1/2,m+ 1/2⟩] . (4.19)

Here, we can eliminate |±⟩ ∈ H2 because explicitly the evolution U(θ, ϕ) reads

I2 ⊗ U(θ, ϕ); thus, it does not affect the subspace H2. As a result, we consider that

the entangled state |Ψ±
n,n′⟩ can be rewritten in the following superposition state:

|Ψ±
n,n′⟩ ≡

1√
2
[|j,m⟩ ± |j + 1/2,m+ 1/2⟩] . (4.20)

Making the same calculations as the ones in Sec .(4.2), we obtain the following

geometric phase for the superposition state:

γm =

(
m+

1

4

)
Ω. (4.21)

As we can see from Eq. (4.21), the particular case where γ0 = Ω/4 is not related

to the quantum vacuum because it was obtained in an angular momentum con-

text, which can be exhibited in both a classical and a quantum-mechanical frame-

work. Therefore, the claim made by Fuentes-Guridi et al. that states that the

non-vanishing geometric phase γ0 = Ω/4 has ”no semicassical correspondence” [4]

is incorrect. Indeed, a classical framework in which this ”vacuum” geometric phase

can be achieved is when the following initial states are considered:

|Ψ±
j,m⟩ =

1√
2
[|j,m⟩ ± |j + 1,m+ 1⟩] . (4.22)

Under the evolution of U(θ, ϕ), these states produce the following geometric

phase:

γm =

(
m+

1

2

)
Ω. (4.23)

The states given in Eq. (4.22) can be generated with classical light beams car-

rying orbital angular momentum by setting j integer, and then be submitted under

the application of U(θ, ϕ). In this physical realization, the quantum nature of the

phenomenon does not need to be invoked, thus, having a classical correspondence.

4.2.2 Generalization for Open Paths

Lastly, we would like to point out the fact that the geometric phase is not restricted

only to closed paths, but to any general path C. To stress this fact, we are going to

address the geometric phase generated by the evolution U(θ, ϕ) for an open trajec-
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tory, so unlike before, this time we need to take into account the two contributions of

the geometric phase, the dynamic and the total (Pancharatnam) phase. To achieve

this, we are going to address the formal definition of the geometric phase given in

Eq. (4.1).

First, the calculation of the dynamic contribution requires the evaluation of the

following quantities:

⟨U †∂θU⟩Ψ± = −i⟨Jy⟩Ψ± = 0, (4.24)

⟨U †∂ϕU⟩Ψ± = −i⟨Jz cos θ − Jx sin θ⟩Ψ± = −i cos θ⟨Jz⟩Ψ± = −i
(
m+

1

4

)
cos θ.

(4.25)

Using the parameter-invariance of the geometric phase, we can assume ϕ = ϕ(θ),

i.e., θ is the parameter which describes the curve C. Hence, the dynamic contribution

to the geometric phase reads:

i

∫ θ

0

⟨ψ(θ′)|ψ̇(θ′)⟩dθ′ = i

∫ θ

0

⟨U †∂ϕU⟩Ψ±dθ′ = −
(
m+

1

4

)
sin θ. (4.26)

The Pancharatnam contribution is computed as follows:

arg⟨Ψ±
j,m|U(θ, ϕ)|Ψ±

j,m⟩ = arg⟨Ψ±
j,m|e−iϕJze−iθJy |Ψ±

j,m⟩. (4.27)

If we make use of the Wigner coefficients djm′,m ≡ ⟨j,m′|e−iθJy |j,m⟩ ∈ R [36],

Eq. (4.27) can be written in the following form:

arg⟨Ψ±
j,m|U(θ, ϕ)|Ψ±

j,m⟩ = arg

[
e−imϕ

2

(
djm,m + e−iϕ/2d

j+1/2
m+1/2,m+1/2

)]
, (4.28)

which results in

arg⟨Ψ±
j,m|U(θ, ϕ)|Ψ±

j,m⟩ = −mϕ− arctan

(
d
j+1/2
m+1/2,m+1/2 sinϕ/2

djm,m + d
j+1/2
m+1/2,m+1/2 cosϕ/2

)
. (4.29)

Finally, replacing Eqs. (4.27-4.29) into Eq. (4.1), we obtain:

γj,m = −mϕ− arctan

(
d
j+1/2
m+1/2,m+1/2 sinϕ/2

djm,m + d
j+1/2
m+1/2,m+1/2 cosϕ/2

)
−
(
m+

1

4

)
sin θ, (4.30)

which is the geometric phase acquired under the evolution U(θ, ϕ) when addressing
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open paths.
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Chapter 5

Summary and Conclusions

In this thesis, we have dealt with an ongoing controversy regarding Berry phases

related to the Rabi Hamiltonian. Apparently, the main focus of this controversy

is whether or not the Berry phase in the Rabi Hamiltonian is vanishing or non-

vanishing. However, the striking feature of this controversy is that the validity of

the widely-known RWA is put under debate. Larson’s findings [2, 3] show that the

Berry phase in the Rabi Hamiltonian vanishes for cases that other authors find

it to be non-vanishing [4–7]. If this were to be true, then the RWA would break

down when dealing with Berry phases. This statement emphasizes the importance

of putting an end to this debate.

In Chapter 3, we presented analytical and numerical results of a non-vanishig

Berry phase acquired when an eigenstate of the Rabi Hamiltonian evolves under

the unitary transformation U(φ) = exp
[
−ia†a

]
with φ ∈ [0, 2π]. Even more, our

numerical results converge to the corresponding ones obtained with the Jaynes-

Cummings Hamiltonian for sufficiently small values of g/ω. In light of these results,

we can conclude that the RWA fully holds when dealing with Berry phases.

In Chapter 4, we discussed several theoretical aspects regarding the previously

mentioned controversy, which had not been debated before. First, we saw that

the adiabatic approximation did not need to be applied in any of the calculations;

therefore, we cannot be dealing with Berry’s phase. We also presented analytical

arguments that lead to the conclusion that the phase obtained after the evolution

of U(φ) must be a geometric phase, which is a more general concept. Second, we

observed that the respective Hamiltonian, HJC or HR, is only a provider of the

initial eigenvector, and that it does not rule the evolution of the eigenvector. With

this, we can conclude that the Hamiltonian does not play an essential role in the

controversy. Finally, based on these two conclusions, we propose that the most suit-

able framework to deal with these phases is the kinematic one posed by Mukunda
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and Simon [23], which focuses on the essential connection between geometric phases

and the geometry of the ray space. In order to illustrate this point, we also stud-

ied the geometric phase obtained from the evolution under the unitary operator

U(θ, ϕ) = exp (−iϕJz) exp (−iθJy). Analyzing these results, we saw that when we

refer to a Hamiltonian, the physical interpretation of a phenomenon may be ob-

scured rather than clarified, as when relating the ”vacuum” geometric phase with

the quantum nature of the field. We have proven that this statement is not true by

addressing the connection between Schwinger’s approach with the standard angular

momentum algebra. Finally, we generalyzed this evolution for the cases of open

paths C to show that the condition of closed paths is not essential.

In summary, with this work, we believe to have contributed to settle the afore-

mentioned controversy and dealt with some important misconceptions regarding

Berry’s/geometric phases. Future work regarding this thesis could be the experi-

mental realization of the geometric phase acquired under the evolution of U(θ, ϕ)

and the corresponding test of our results related to the ”vacuum” geometric phase

and to open paths.
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