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Resumen

La convección es el proceso en el que los fluidos menos densos se elevan sobre otros

más densos. Se encuentra presente en fenómenos naturales tan diversos como el

almacenamiento natural de CO2, la propagación de ondas viajeras, y la formación de

columnas de basalto. Por lo tanto, determinar las condiciones bajo las que se produce

convección representa un desafío importante. La convección puede originarse por

gradientes de densidad debidos a expansión térmica o a cambios de composición en

los fluidos. Modelos anteriores y experimentos realizados en la reacción de iodato-

ácido arsenioso determinaron que los gradientes del primer tipo producen efectos

insignificantes en comparación con los del segundo. Desarrollamos un modelo no-lineal

para la propagación de frentes de reacción delgados en reacciones autocatalíticas que

ocurren en un sistema bidimensional. Empleamos una ecuación de calor (advección-

difusión) para determinar la distribución de temperaturas en el sistema, la ley de Darcy

para determinar la velocidad de los fluidos, y la relación eikonal para describir la

propagación de los frentes. Los efectos térmicos del modelo dan lugar a frentes planos,

no-axisimétricos, y axisimétricos. Sometemos la solución de frente plano de nuestro

sistema a un análisis lineal de estabilidad. Para ello introducimos perturbaciones

pequeñas, obteniendo así un sistema lineal de ecuaciones para la evolución de dichas

perturbaciones. Mediante este análisis determinamos las condiciones para el desarrollo

de frentes convectivos. Resumimos estos resultados en el plano generado por nuestros

parámetros de control — los números de Rayleigh — y sugerimos posibles usos para

este modelo.
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Abstract

Convection, the process in which less dense fluids rise above denser ones, pervades

nature: it can be found in phenomena so diverse as natural CO2 storage, propagation

of travelling waves, and formation of basalt columns. Determining the conditions

under which convection occurs, therefore, poses an alluring challenge. In fluid media,

density gradients due to either thermal expansion or changes in composition can ignite

convection. Previous models and experiments in the iodate-arsenous acid reaction

determined that the former type of gradients were unimportant in comparison to the

latter. We develop a nonlinear model for thin fronts propagating in autocatalytic reactions

occurring in a two-dimensional system: an advection-diffusion heat equation with a

source term to determine the temperature distribution inside the system, Darcy’s law

to determine how the fluids flow, and the eikonal relation to describe how the fronts

propagate. The thermal effects included in our model result in flat, non-axisymmetric,

and axisymmetric fronts. We carry out a linear stability analysis of the flat front solution.

To this end we introduce small perturbations to said solution, and obtain a linear system

of equations that describe how the perturbations grow. This analysis determines the

conditions for convective fronts to emerge. We summarize these results in the plane

generated by our control parameters — the Rayleigh numbers — and suggest possible

uses for our model.
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1. Introduction

The breadth of complex phenomena that can be studied using relatively simple math-

ematical models is astonishing: the diffusion equation accounts for the propagation

of crime hot spots [1], the Lorenz system simulates forced dissipative flows in the

atmosphere [2], the Swift-Hohenberg equation yields patterns of vegetation growth in

arid regions [3], the Kuramoto-Daido model describes the synchronization of neural

networks [4], and that is just to mention one application per model.

Chemical systems provide a great environment for studying diverse phenomena. In

autocatalytic reactions, one of the reactants enhances its own production rate by

consuming other reactants. These reactions are exothermic, meaning that they release

heat to the surrounding environment [5]–[6]. The complex interplay between chemical

reaction and molecular diffusivity creates a moving interface that separates reactants

from products — we call this interface reaction front [7]. Reactants and products have

different compositions and may be at different temperatures; this leads to density

gradients across the front. These gradients generate buoyant forces, which in turn

result in the macroscopic fluid flow called convection. Countless natural processes,

such as travelling waves [8], basalt fingers formation [9], the genesis of the Moon’s early

magnetic field [10], and the leakage of natural CO2 storage sources [11], are rooted

in convection. This fact motivates studying the conditions under which convection

occurs.

One such autocatalytic reaction is the iodate oxidation of arsenous acid. In it both

iodide (I−) and iodate (IO3
−) ions are present initially; the former species consumes the

latter to enhance its own production [12]–[13]. The iodate-arsenous acid reaction has

been studied experimentally and theoretically in thin capilar tubes and Hele-Shaw cells,

which consist of two plates separated by a small gap that stores reactants and products

[14]. The appeal of Hele-shaw cells resides in that they are a good approximation to

simpler two-dimensional systems. Theoretical work by Wilder et al. [15] as well as

experiments by Masere et al. [16] established that composition gradients can account

entirely for convection in the iodate-arsenous acid reaction. If, however, the thermal and

convective lengths of the system are similar — meaning that the temperature decays

over the same distance in which convection takes place — the contributions of thermal
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gradients affect the onset of convection, as was shown by Vásquez et al. [17].

Two types of reaction fronts exist: thin fronts, in which the width that separates reacted

and unreacted regions is much smaller than any other length scale in the system,

and thick fronts, which exhibit large irregular deformations called fingers. The latter

have been extensively studied accounting for heat effects [18] and even heat losses

[19]–[20]. Thin fronts can be described with front propagation equations that model

different reactions. Studies on thin-front models were carried out without considering

heat effects [16] — or considering infinite or zero thermal diffusivity — because previous

research had shown that thermal gradients affect the onset of convection significantly

less than composition gradients [21].

Aiming to fill in this knowledge gap, we developed and studied a thin-front model that

accounts for both thermal and composition density gradients. This model should repro-

duce previous results in the appropriate limit, which would underscore the importance

of heat effects. We obtained our model assuming that the mass continuity equation

holds, and that fluid density varies linearly with temperature and has a discontinuous

jump at the front due to differences in composition. We also considered the front as a

heat source with a curvature smaller than other length scales. It is worth mentioning

that we can consider the fluids to be incompressible in using the continuity equation

— the changes in density will affect only the large gravity term in the equation for fluid

flow.

y

x

g

Figure 1.1: The physical system consists of two substances separated by a reaction

front. These substances are contained in a very long and narrow tube (not shown to

scale) set up vertically in a gravitational field.

The system we studied consists of a long two-dimensional tube standing vertically on a

gravitational field, as shown in Fig. 1.1. Since the fluids can only move in a plane, the

tube is equivalent to an idealized Hele-Shaw cell. Inside the tube, two substances in

aqueous solution undergo an autocatalytic chemical reaction. Although our model can
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be applied to many autocatalytic reactions, we focused on the physical and chemical

parameters corresponding to the iodate-arsenous acid reaction. The front separating

the substances releases heat as it propagates upwards. We described its time evolution

in a moving reference frame with the same orientation as the laboratory frame depicted

in the diagram.

In Chapter 2 we introduce the nonlinear system of equations that describe the thin-

front model, set up a system of nondimensional units, and define appropriate control

parameters. We then obtain a convectionless solution for the previous system. To

complete our theoretical framework, we carry out a linear stability analysis: we perturb

the previous solution and keep only first-order terms. In Chapter 3 we explain the

computational algorithms, numerical schemes, and parameters used in the calculations.

Chapter 4 presents the results of the nonlinear and linear simulations, which we

comment and contrast with previous results. Finally, in Chapter 5 we summarize what

we have done, our results, and suggest improvements and possible directions for further

research.
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2. Theoretical background

2.1 Nonlinear Model

In developing our nonlinear model, we will use a front propagation equation to describe

the evolution of the interface that separates reacted and unreacted fluids. The position

of the front will be described with a function H = H(y, t). We will also need two

properties of the fluids: their temperature and velocity field. A scalar field T = T (x, y, t)

will describe the former and a vector field v = v(x, y, t) the latter.

The functional form of the fluid density comprises both thermal and compositional

contributions. As the fluids get hotter they undergo volumetric expansion, which we

approximate to first order of the corresponding Taylor series. We assume this expansion

to be very small. Let ρ0 be the density of the reacted fluid, T1 its temperature, and α

the thermal expansion coefficient. The density is given by

ρ(x, y, t) = ρ0 [1− α (T − T1) + βΘ(x−H)] , with α ≡ − 1

ρ0

(
∂ρ

∂T

)
T1

. (2.1)

The parameter β is the fractional density change between reactants and products, and

Θ(x−H) represents the Heaviside step function, which is defined as

Θ(x−H) =

0, if x < H,

1, if x ≥ H.
(2.2)

The fluid velocity field and density satisfy the continuity equation

∂ρ

∂t
+∇ · ρv = 0. (2.3)

It encloses the requirement of mass conservation and holds true in particular for our

closed system. Following the Boussinesq approximation [22], we assume that density

changes will only affect terms that include the gravitational acceleration. This yields the

continuity equation for incompressible flow

∇ · v = 0. (2.4)
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In electromagnetism, the magnetic field B satisfies ∇ ·B = 0, a condition similar to

Eq. 2.4. A simple theorem of vector algebra states that any such vector field can be

written as B =∇×A, where the vector potential A is not unique [23]. This allows us to

eliminate some redundant degrees of freedom in Maxwell’s equations — the equations

that dictate how the electric and magnetic fields change in space and time due to

sources — which in turn makes them easier to solve. This vector-potential formulation

of electromagnetism will play a crucial role in our calculations.

We now introduce and describe the main equations of our model:

• Our heat equation is a modified version of the diffusion equation for the material

system’s temperature. It accounts for three processes: diffusion, the change

of T in time due to temperature differences across the system; advection, the

macroscopic fluid displacement that transports heat from one region to another;

and heat liberation due to a source, the moving front.

• Darcy’s law models fluid flow through a porous medium, which is equivalent to

the flow inside a Hele-Shaw cell — see, for example, Ref. [11]. It relates these

flows to the pressure (P ) gradient, the fluid density, and gravity.

• The eikonal relation approximates the normal speed of the front as the sum of

the flat-front speed C0 — the speed the front would have if it were flat — and the

molecular diffusivity DC multiplied by the front curvature K = −∇ · n̂, where n̂

is the unit vector normal to the front, pointing towards the unreacted fluid [24].

This relation holds true only for small curvatures. Since the front propagates in a

moving fluid, we couple the normal component of the fluid velocity, n̂ · v, to this

equation.

Let DT denote the thermal diffusivity of the fluids, κ their permeability, µ their viscosity,

and g = −gx̂ gravity. With these considerations in mind, our equations are given by

∂T

∂t
+ v · ∇T = DT∇2T +Qδ (x−H) ,

v = −κ
µ

(∇P + ρg) ,

C = C0 +DCK + n̂ · v|x=H .

(2.5a)

(2.5b)

(2.5c)

Equations 2.5 present us with some difficulties:

• We have introduced a new variable, the pressure, in the description of the fluid

flow. Therefore, we would need to include an additional equation — with all the

assumptions and requirements it entails — for the pressure’s time evolution.

• The eikonal relation, as it stands, requires the computation of the front curvature,

which must be obtained from H at every instant. It also obscures the way in which

the front evolves.
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For these reasons, we must recast the previous equations into a more tractable form.

As we will see, this comes at the cost of having to solve slightly more complicated

equations, but it will allow us to compute the solutions.

The continuity equation for incompressible flow (Eq. 2.4) allows us to introduce a vector

potential Ψ = (0, 0, ψ), whose z-component is the stream function ψ. This potential

satisfies

∇×Ψ = v =

(
∂ψ

∂y
,−∂ψ

∂x
, 0

)
. (2.6)

In this equation, the flow field has been extended to be three-dimensional; we will use

only its x- and y-components in what follows. To eliminate P , an irrelevant degree of

freedom, we compute the following quantity using first Eq. 2.6 and then Eq. 2.5b:

∂vx
∂y
− ∂vy
∂x

=
∂2ψ

∂x2
+
∂2ψ

∂y2
= ∇2ψ

= −κ
µ

(
∂2P

∂y∂x
+ g

∂ρ

∂y
− ∂2P

∂x∂y

)
= −κg

µ

∂ρ

∂y
. (2.7)

In accordance with the Boussinesq approximation, we will not neglect the derivative in

the right hand side of the last equality. This term can be calculated substituting in the

density from Eq. 2.1, which yields a Poisson equation for the stream function:

∇2ψ =
κgρ0α

µ

∂T

∂y
+
κgρ0β

µ

∂H

∂y
δ(x−H). (2.8)

The eikonal relation must be rewritten in order to obtain a front evolution equation.

Inspecting the system’s geometry — and considering the front’s boundary conditions,

which we discuss below — we find that the normal vector pointing towards the unreacted

fluid is given by (1,− ∂H/∂y ). Now we can write the normal speed and curvature in

2.5c as functions of the front’s derivatives:

n̂ · x̂∂H
∂t

=
∂H/∂t√

1 + (∂H/∂y )2
= C0 +DC

∂2H
/
∂y2

[1 + (∂H/∂y )2]3/2
+ n̂ · v|x=H . (2.9)

Then, we multiply both sides of the last equality by the square root factor:

∂H

∂t
= C0

√
1 + (∂H/∂y )2 +DC

∂2H
/
∂y2

1 + (∂H/∂y )2
+ vx − vy

∂H

∂y
. (2.10)

Finally, we approximate the resulting terms using the binomial approximation (1 +x)n ≈
1 + nx — which is valid if |x| � 1 — and obtain

∂H

∂t
= C0 +

C0

2

(
∂H

∂y

)2

+DC
∂2H

∂y2
+ vx − vy

∂H

∂y
, (2.11)

where we have neglected the O
(
H3
)

term. It is worth recalling that in this last equation

the components of v must be computed at x = H.
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We now introduce the time and length scales τ and `. These involve the thermal

diffusivity and flat front speed, and are defined as

τ ≡ DTC
−2
0 and ` ≡ DTC

−1
0 . (2.12)

The non-dimensional flat front speed is then given by C ′0 = C0/(`/τ) = 1. We also

define a temperature scale as the difference between reacted and unreacted fluid

temperatures ∆T ≡ T1 − T0 for flat front propagation. With these scales we define a

set of primed, dimensionless variables as functions of the original variables:

x = x′`, y = y′`, t = t′τ,

H = H ′`, T = T ′∆T, ψ = ψ′`2τ−1.

(2.13)

(2.14)

After introducing the new variables in the previous equations, dropping the primes, and

reordering the new terms, we obtain the nondimensional system

∂T

∂t
+ v · ∇T = ∇2T +Qδ (x−H) ,

∇2ψ = RaT
∂T

∂y
+ RaC

∂H

∂y
δ(x−H),

∂H

∂t
= C0 +

1

2

(
∂H

∂y

)2

+
1

L

∂2H

∂y2
+ vx − vy

∂H

∂y
.

(2.15a)

(2.15b)

(2.15c)

In Eq. 2.15c we have introduced the Lewis number, L ≡ DT /DC , which characterizes

the chemical reaction of interest. The change of scales gives us two important dimen-

sionless parameters that measure the intensity of thermal and composition gradients:

the thermal and composition Rayleigh numbers

RaT ≡
κgρ0τα∆T

µ`
and RaC ≡

κgρ0τβ

µ`
. (2.16)

In what follows, all quantities will be nondimensional unless dimensions are explicitly

indicated.

To complete our prescription for solving the nonlinear model we must impose appropri-

ate boundary conditions. The front is an impermeable boundary that separates reacted

and unreacted fluids. As a consequence, the derivative with respect to y of the front

height function H(y, t) must equal zero at y = 0 and y = Ly. The initial conditions for

both T and H are small perturbations about 0. We assumed that the top of the tube is

cooled — accounting for the fact that it is far away from the heat source: the front — so

that T (x = Lx, y, t) = 0. At the other boundaries we impose no-penetration boundary

conditions, i.e. n̂ · ∇T = 0, meaning that heat does not flow into or out of the tube. By

the same token, the velocity field must also satisfy no-penetration boundary conditions.

To ensure that it does, we set the stream function equal to zero at the boundaries.
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2.2 Zeroth-Order Solution

In absence of convection, the solution of Eq. 2.15c corresponds to a flat front that

propagates with constant speed. In this case it is possible to find an analytical solution

of the nonlinear system. We call it zeroth-order solution and denote the functions with

a superscript:
(
T (0), ψ(0), H(0)

)
. For simplicity, we switch to a reference frame that

moves with speed C0. In the new frame the flat front is given by H(0) = 0, so Eq. 2.15a

becomes
∂T

∂t
= ∇2T +Qδ(x) + C0

∂T

∂x
. (2.17)

Changing reference frames introduces the last term in Eq. 2.17; the advection term

v · ∇T does not appear in it because we assumed that there is no fluid flow. The

steady-state solution for the simplified heat equation is given by

T (0) =

Q/C0, for x < 0,

(Q/C0)e
−C0x, for x ≥ 0.

(2.18)

The Poisson equation for ψ(0) turns into a Laplace equation: T (0) and H(0) have no y-

dependence, so both terms in the right-hand side of Eq. 2.15b vanish. Since the stream

function is subjected to null boundary conditions, its zeroth-order solution takes the

form ψ(0) = 0, which is consistent with the assumption of no fluid flow (v(0) = 0).

In the next section, after developing the bases of linear stability analysis, we will perturb

the base state and determine the conditions for the perturbations to grow or decay in

time.

2.3 Linear Stability Analysis

Let us consider the simplest nontrivial dynamical system, in which the time evolution of

a single variable is given by
du

dt
= f(u); (2.19)

in general f is a nonlinear function of u. We assume that this system has a stationary

state u(0), for which both sides of the previous equation equal 0. To probe the stability of

this solution, we add a small perturbation u(1) to it. We introduce the perturbed solution

in Eq. 2.19, and obtain

du(0)

dt
+

du(1)

dt
=

du(1)

dt
= f

(
u(0) + u(1)

)
. (2.20)

Since u(1) is assumed to be small, we can Taylor-expand the last term in Eq. 2.20 to

obtain
du(1)

dt
= f

(
u(0)

)
+ u(1)f ′

(
u(0)

)
+ . . . = u(1)f ′

(
u(0)

)
+ . . . , (2.21)
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where f ′ denotes the derivative of f with respect to u (evaluated at the stationary state)

and the ellipses denote higher-order terms in u(1). If f ′
(
u(0)

)
6= 0, these terms can be

neglected [25]. After defining λ ≡ f ′
(
u(0)

)
, Eq. 2.21 becomes

du(1)

dt
= λu(1). (2.22)

If λ were positive, the solution would be a growing exponential, meaning that the

system stops being in the steady state. If λ were negative, the system would converge

asymptotically to the steady state by virtue of the decaying exponential.

The previous procedure can be extended to higher-dimensional systems of n unknowns

uT = (u1, ..., un), which are functions of time and evolve according to

du

dt
= F (u) . (2.23)

F is then linearized about a perturbed stationary state u(0) + u(1) to obtain differential

equations for the perturbations:

du(1)

dt
= F̃ · u(1), (2.24)

where the matrix F̃ stands for the linearization of F. The solution of Eq. 2.24 can in

principle be written as a linear combination of the eigenvectors of F̃ , with the coefficients

involving exponentials of the corresponding eigenvalues. This procedure can in turn

be extended to unknowns that depend on more than one variable — see, for instance,

[26].

We begin our linear stability analysis substituting the perturbed base state into our

nonlinear system:

∂T (1)

∂t
+v(1) · ∇

(
T (0) + T (1)

)
= ∇2

(
T (0) + T (1)

)
+Qδ(x−H(1)) + C0

dT (0)

dx
+ C0

∂T (1)

∂x
,

∇2ψ(1) = RaT
∂T (1)

∂y
+ RaC

∂H(1)

∂y
δ(x−H(1)),

∂H(1)

∂t
=

1

2

(
∂H(1)

∂y

)2

+
1

L

∂2H(1)

∂y2
+ vx

(1) − vy(1)
∂H(1)

∂y
.

(2.25a)

(2.25b)

(2.25c)

Since T (0) satisfies

∇2T (0) + C0
dT (0)

dx
+Qδ(x) = 0, (2.26)

we can plug this equality in Eq. 2.25a, cancel the first two terms (of Eq. 2.26), and

rearrange to obtain

∂T (1)

∂t
+ v(1) · ∇

(
T (0) + T (1)

)
= ∇2T (1) −Qδ(x) +Qδ(x−H(1)) + C0

∂T (1)

∂x
. (2.27)
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We would like to keep one delta-function term in order to have a heat source in our

linear stability analysis. To this end, let us first recall that a function’s derivative can be

written as
df

dx
= lim

h→0

f(x)− f(x− h)

h
. (2.28)

The derivative of a delta function can be defined rigorously using distribution theory

[27]. H(1) is a very small perturbation and, as we shall see, can decay to 0 only in the

limit t → ∞. We therefore approximate all δ(x −H(1)) by δ′(x), the derivative of δ(x)

with respect to x:

δ(x−H(1)) ≈ δ(x)−H(1)δ′(x). (2.29)

After neglecting the terms nonlinear in T (1), ψ(1), or H(1) and simplifying we obtain the

linearized system

∂T (1)

∂t
+ v(1) · ∇T (0) = ∇2T (1) −QH(1)δ′(x) + C0

∂T (1)

∂x
,

∇2ψ(1) = RaT
∂T (1)

∂y
+ RaC

∂H(1)

∂y
δ(x),

∂H(1)

∂t
=

1

L

∂2H(1)

∂y2
+ vx

(1).

(2.30a)

(2.30b)

(2.30c)

We will now perturb the base state solution of the previous section expressing the

perturbations with Fourier series. Let us recall that ∂H/∂y , ∂T/∂y , and ψ equal 0 at

the tube’s walls. This allows us to use sine or cosine functions accordingly to match the

boundary conditions: 

T (1) =
∑
q

Tq(x, t) cos(qy),

ψ(1) =
∑
q

ψq(x, t) sin(qy),

H(1) =
∑
q

Hq(t) cos(qy).

(2.31a)

(2.31b)

(2.31c)

Finally, after substituting single modes in Eqs. 2.30, dropping the subscripts, and

simplifying, we obtain a linear system:

∂T

∂t
=
∂2T

∂x2
− q2T − qψdT (0)

dx
−QHδ′(x) + C0

∂T

∂x
,

∂2ψ

∂x2
= q2ψ − q [RaTT + RaCHδ(x)] ,

dH

dt
=
−q2
L

H + qψ|x=0.

(2.32a)

(2.32b)

(2.32c)

The solutions to the linearized system can be found by looking for functions of the

form T = T (x)eσt, ψ = ψ(x)eσt, H = H̃eσt. For each value of the wavenumber q we

obtain an eigenvalue system for the growth rate σ. Therefore, perturbations will decay

to zero if all the growth rates have negative real parts — i.e., the system will be stable

10



when subjected to those perturbations. In contrast, if at least one growth rate has a

positive real part, the perturbations will grow exponentially and destabilize the base

state
(
T (0), ψ(0), H(0)

)
. This would result in different types of non-flat convective fronts.

Instead of solving the eigenvalue equation we start with a small perturbation and let it

evolve using Eqs. 2.32. After sufficient time has ellapsed, the term with the dominating

eigenvalue — be it positive or negative — takes over T (1), ψ(1), and H(1). We can then

fit these functions as exponentials and calculate said eigenvalue, as we will explain in

the next section.
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3. Numerical methods

The nonlinear and linear systems — Eqs. 2.15 and 2.32, respectively — were solved

numerically using finite-differences schemes. We discretized our computational domain

using a two-dimensional grid (xi, yj) of mesh length ∆x and width ∆y; our unknown

functions evolved in discrete time steps tn = n∆t. This way, we expressed the discrete

temperature as Tni,j ≡ T (xi, yj , tn) and wrote the other functions in a similar manner. All

derivatives were discretized via finite-differences approximations to second order in

position, for example
∂2T

∂x2
→

Tni+1,j − 2Tni,j + Tni−1,j
∆x2

, (3.1)

and first order in time,
∂T

∂t
→

Tn+1
i,j − Tni,j

∆t
. (3.2)

The corresponding uncertainties were O
(
∆x2

)
, O
(
∆y2

)
, and O(∆t) [28].

Since real computational domains cannot have infinite extension, we restricted ours

to the set of points {(x, y) : [−Lx,Lx] × [0, Ly]}, where Lx and Ly are the tube’s

half-length and width, respectively. The grid representing this domain consisted of

2nx× ny points; nx and ny were varied in order to keep the dimensions of the mesh

rectangles constant at ∆x = Lx/nx = 6.25 × 10−2 and ∆y = Ly/ny = 4.54 × 10−2.

Numerical stability constrained the uncertainties to satisfy the inequality

∆t

(
1

∆x2
+

1

∆y2

)
≤ 1

2
, (3.3)

in order for the numerical scheme of the diffusion equation to work — see Ref. [29].

With this restriction and the previous values of ∆x and ∆y in mind, we set ∆t =

5× 10−4.

For the nonlinear calculations we Euler-integrated forward in time Eqs. 2.15a and

2.15c — computing Tn+1
i,j and Hn+1

j in each time step — until a steady state was

reached. In some cases the solutions converged, whereas in others they presented

small oscillations ranging from O
(
10−5

)
to O

(
10−9

)
. Since these fluctuations were

much smaller than the uncertainties, e.g. ∆x2 = 3.91× 10−3, we neglected them. The

subroutine GENBUN from the FISHPAK package [30] solved directly the discretized

version of the Laplace equation for ψ, Eq. 2.15b. To verify the consistency of our

12



solutions we computed and compared both sides of Eqs. 2.15 at arbitrary times using

the previously obtained solutions.

In order to write an algorithm for any equation, we must specify a finite computational

domain beforehand. As time passes, the singularity of the delta function in Eq. 2.15a

shifts further away along the x-axis — we would need to declare an enormous domain.

This would slow down the computations. We avoided this problem switching to a system

that moves with a given speed u(t), such that in the new frame H is always centered

at x = 0. In practice the front’s shape and speed will vary until the system reaches a

steady state. For our calculations we set u(t) equal to the speed of the average front

position.

To implement the delta function in two spatial dimensions we employed the Poisson

kernel, which is given by

δ (x−H) = lim
ε→0

1

π

ε

(x−H)2 + ε2
. (3.4)

This representation assigns a number to each point in the grid. The assigned values

drop drastically as we move away from x = H because points outside the front release

no heat. In order to use Eq. 3.4, we had to tune ε via trial and error. Since this

parameter represents the length scale in which the discrete delta function decays away

from H, we used ∆x and ∆y as references to find the correct tuning value and found

that ε = 6.25× 10−2 gave the best fit to the base state.

For the linear stability analysis, we solved the discretized versions of Eqs. 2.30a and

2.30c via Euler-integration. The linearized Poisson equation for the stream function,

Eq. 2.30b, called for a different approach: a relaxation scheme [31] calculated ψ(1) at

every time step. To implement δ′(x) we used the rectangular function suggested in Ref.

[32].

When solving the linear system, we could not always expect everything to converge: if

the real part of the growth rate were positive, the perturbations would grow indefinitely.

Instead, we ran the programs until the largest eigenvalue dominated completely the

growth or decay. Once it did, the perturbations would have a time dependence of

eσt. Then we would be able to fit the solutions as exponential functions. To do this

we took three values of T at different times, and computed the growth rate that the

perturbation would have if these points described an exponential function. This quantity

eventually converged, indicating that the perturbation was dominated by the largest

eigenvalue.

To model the iodate-arsenous acid reaction, we set the diffusivities DT = 1.45 ×
10−3cm2/s and DC = 2 × 10−5cm2/s, using the same parameters as Edwards et al.

[21]. As a consequence, the Lewis number took the value L = 72.5.
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Both systems were solved using codes written in FORTRAN 90. After compiling the

codes, we submitted the resulting programs to the computational unit of the university’s

Physics Department. The execution times of the nonlinear calculations ranged from

half an hour to almost two days, depending on the tube’s dimensions. On the other

hand, the programs that solved the linear system were each completed in less than

twenty minutes.
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4. Results and discussion

4.1 Flat-Front Stability Analysis

We carried out a linear stability analysis to probe the importance of thermal gradients.

To do this, we fixed RaC = 0.0 and varied RaT over a positive range of values. As we

previously discussed, perturbations to the front grow or decay exponentially as eσt —

where σ corresponds to the the growth rate with the largest real part — after sufficient

time has ellapsed. Our results are summarized in Fig. 4.1. To understand this figure,

we must first note that

• if Re[σ(q)] > 0, the perturbations grow and destabilize the flat front — the quadratic

term in the front equation (Eq. 2.15c) halts this growth, resulting in the steady

states presented in the following section;

• but if Re[σ(q)] < 0, the perturbations wane in time, which means that the flat front

remains stable.

We see then that, as thermal density gradients — represented by larger RaT — increase,

the flat front becomes unstable to perturbations of larger wavenumbers q. Tubes of

width Ly < π/q filter out perturbations of wavelength larger than Ly, i.e., of wavenumber

smaller than q. Therefore, only large wavenumbers are allowed in sufficiently narrow

tubes, which according to Fig. 4.1 results in growth rates with negative real part —

flat fronts will be stable in narrow tubes. As thermal gradients strengthen, the tubes

allowing stable flat fronts will need to be more narrow because the range of unstable

perturbations increases.

Given positive composition Rayleigh numbers — which indicate inherently unstable

configurations because the fluid on top is denser than the one below — we expect

non-flat fronts to develop. The dispersion curves A and B in Fig. 4.2a — corresponding

to RaC = 0.3, RaT = 2.0 and RaC = 0.1, RaT = 0.75, respectively — show that curved

fronts appear at values of Ly = π/q < 1. In general, the wavenumber of a perturbation

determines the stability of a front. Nevertheless, we also found that if the thermal

gradient is reversed, the system can be stable: for sufficiently negative RaT, the real

part of the growth rate can be negative for all q. We observe this behavior in curves
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Figure 4.1: The perturbations’ growth rates as functions of the wavenumber, for different

values of RaT and RaC = 0.0. In tubes of width greater than or equal to a critical value —

corresponding to the wavenumber at which Re[σ(q)] changes sign — the perturbations

grow and destabilize the flat front.

C (RaC = 0.0, RaT = −0.5) and D (RaC = 0.1, RaT = −2.0). In curve E (RaC = 0.4,

RaT = −1.5) the compositional gradient has overpowered its thermal counterpart, thus

disrupting the previously mentioned stability.

We obtain unconditionally stable configurations when both RaT and RaC are negative,

as shown in curves F (RaC = −0.05, RaT = −0.25) and G (RaC = −0.1, RaT = −1.5)

of Fig. 4.2b. Edwards et al. [21] argued that sufficiently strong thermal gradients could

ignite convection in configurations where the lighter fluid is on top of the heavier one,

i.e., in systems with RaC < 0. Curves H (RaC = −0.2, RaT = 2.5) and I (RaC = −0.1,

RaT = 0.75) confirm this conjecture: the growth rates are positive in a range of

wavenumbers and negative outside of it, recovering the behavior observed in Fig.

4.1.

Finally, we summarize this section’s results using the parameter space spanned by the

Rayleigh numbers, as D’Hernoncourt et al. did in Refs. [33] and [34]. We define the

Rayleigh plane as the set of points with coordinates (RaC,RaT). Figure 4.3 shows this

plane in the domain we covered in our linear stability analysis. The instability region

contains the unstable configurations of the system and is colored red; points in the

stability region, colored blue, represent systems where flat fronts are stable. The first

quadrant corresponds to entirely unstable configurations. In the third quadrant, both

Rayleigh numbers are negative and the fronts are always stable. Configurations in the

second and fourth quadrants of the plane will allow flat fronts depending on the values

of the Rayleigh numbers.
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(a) Curve A corresponds to RaC = 0.3 and

RaT = 2.0; curve B to RaC = 0.1 and RaT =

0.75; curve C to RaC = 0.0 and RaT = −0.5;

curve D to RaC = 0.1 and RaT = −2.0; and

curve E to RaC = 0.4 and RaT = −1.5.
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(b) Curve F corresponds to RaC = −0.05 and

RaT = −0.25; curve G to RaC = −0.1 and

RaT = −1.5; curve H to RaC = −0.2 and

RaT = 2.5; and curve I to RaC = −0.1 and

RaT = 0.75.

Figure 4.2: Dispersion relations for different combinations of RaT and RaC.
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Figure 4.3: The red region in the Rayleigh plane corresponds to situations in which

the perturbation wavenumber determines whether the flat front is stable or unstable;

configurations in the blue region are unconditionally stable.
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Figure 4.4: The steady-state non-axisymmetric and axisymmetric fronts for Ly = 6.0

and Ly = 13.0, respectively, in their velocity fields. The abscissas and ordinates

correspond to the horizontal and vertical directions, respectively.

4.2 Nonlinear System

We explored the front’s behavior at the onset of convection by solving the full set of

nonlinear equations, Eqs. 2.15. The effects of thermal gradients on front propagation

interested us; therefore, we studied our nonlinear system without considering com-

positional effects. Since we aimed to study reaction fronts not far from the onset of

convection, the fluid velocity and the spatial derivatives of the front height function were

taken to be small. The product of these two quantities would be smaller than both, so

we neglected the last term in Eq. 2.15c. The nonlinear simulations were carried out

using RaC = 0.0,RaT = 3.0, and Q = 1 and yielded three types of fronts:

• a flat front in tubes of width Ly < 1.26,

• a non-axisymmetric front when 1.26 ≤ Ly < 12.8, and

• an axisymmetric front for Ly ≥ 12.8.

We stress that the tube width at which the front transitions from flat to non-axisymmetric

coincides with the results of the linear stability analysis (see Fig. 4.1).

As Figs. 4.4a and 4.4b show, in the non-axisymmetric case the fluids rise on one

side of the tube and fall on the other, whereas in the axisymmetric case they rise

at the center and fall on the sides. Previous theoretical works — which accounted

only for compositional density gradients and excluded thermal effects — showed that

flat fronts become non-axisymmetric at the onset of convection [35] and that these

fronts shift to the axisymmetric mode in presence of stronger convective effects [36].

These predictions, which did not account for finite thermal diffusivities, agree with the

experimental findings of Masere et al. [16]. The non-axisymmetric fronts we obtained
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Figure 4.5: Color maps of the steady-state stream function and temperature for Ly = 6.0.

The abscissas and ordinates correspond to the horizontal and vertical directions,

respectively.
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Figure 4.6: Color maps of the steady-state stream function and temperature for Ly =

13.0. The abscissas and ordinates correspond to the horizontal and vertical directions,

respectively.

have no local extrema — their only extrema occur at the boundaries, as in Fig. 4.4a —

whereas their counterparts in the previous reference do have a local maximum near

the center.

Figure 4.5 displays color maps of T and ψ in a tube of width Ly = 6.0, correspond-

ing to non-axisymmetric convection. Accordingly, Fig. 4.6 shows the corresponding

variables but for the axisymmetric case (Ly = 13.0). The qualitative features of all non-

axisymmetric fronts resemble the results in Fig. 4.5; similarly, fronts in the axisymmetric

regime resemble Fig. 4.6. The steady-state stream functions shown in Figs. 4.5a and

4.6a forecast, via Eq. 2.6, convection rolls in the velocity field; we therefore call them

convection rolls too. In most cases corresponding to the non-axisymmetric mode we

found ψ-surfaces with one roll, whereas two rolls were present in the axisymmetric

mode. In both cases the temperature profiles show pronounced peaks near the fronts’

extrema — heat concentrates in these zones, which are colored dark-red in Figs. 4.5b
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Figure 4.7: The back end temperature in the steady state is inversely proportional to the

front speed. When the front becomes axisymmetric, the speeds drop and the back end

temperatures rise, which results in a few points’ overlapping. The speeds are measured

in the laboratory frame.

and 4.6b.

The zeroth-order temperature, Eq. 2.18, predicts that, in absence of convection, the

temperature below the front would be inversely proportional to the front speed. Since

convection increases the front speed, it is interesting to observe how the temperature

changes due to this increase in speed. We could still expect a 1/u-dependence at

the bottom of the tube because convective effects decay exponentially in the vertical

direction — as seen, for example, in Ref. [21]. The results plotted in Fig. 4.7 con-

firm our forecast: the temperature at the back end of the tube, in the axisymmetric

and non-axisymmetric branches, is inversely proportional to the speed enhanced by

convection.

To get a quantitative idea of how much the front deviates from flatness, we computed

the variance of the discrete front using the formula

Var(tn) =

∑
j

(
Hn
j − H̄n

)2
ny

, (4.1)

where, at time tn, H̄n is the average position of H, Hn
j = H(yj , tn) the discrete front,

and ny the number of points. We computed the right-hand side of Eq. 2.15c to calculate

the front speed; all points had the same speed in the steady state. By virtue of the

curvature term in the eikonal relation, the upper parts of the fronts in Figs. 4.4a and

4.4b should move with speed less than C0. The fluid velocity, however, tends to raise

these parts and eventually overcomes the curvature term. Our results show that, as

the fronts become more curved, they move faster: Figures 4.8a and 4.8b show that the
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Figure 4.8: The steady-state front speed and variance in are larger in wider tubes.

The curves break at Ly = 12.8, when the front transits from non-axisymmetric to

axisymmetric.

front speed and variance increased with the tube width. At Ly = 12.8 both parameters

drop, signaling the change to the axisymmetric mode. Increasing the tube width further,

we observe a corresponding increase in front speed and variance.
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5. Conclusions

We have presented a nonlinear system of equations that describe how the temperature,

velocity field, and front height in a chemical reaction evolve in time. This model accounts

for both thermal and chemical composition gradients. Perturbing the system’s flat front

solution and carrying out a linear stability analysis on it gave us a linearized system

for the time evolution of the perturbations. The computational algorithms we devised

solved both systems employing various well-known numerical schemes.

Our nonlinear model yielded three types of front — flat, non-axisymmetric, and axisym-

metric — which resemble previous results obtained in models that neglected thermal

effects. The temperature at the back-end of the tube behaved as predicted by the

flat-front solution of the heat equation in spite of convective effects. The plots of steady-

state speed and variance as functions of the tube width indicate that the eikonal relation

has coupled correctly in our model. The results of the stability analysis divided the

Rayleigh plane — the parameter space of the Rayleigh numbers — in two regions: the

stability region, in which flat fronts remain undisturbed, and the instability region, where

non-axisymmetric and axisymmetric fronts develop. Depending on the sign of RaT,

sufficiently strong thermal gradients can either disrupt otherwise stable configurations

or stabilize inherently unstable configurations.

Our nonlinear results resemble those presented in Ref. [16]. Only the non-axisymmetric

fronts are distinctly different from the ones in said reference — this is to be expected

because those results were obtained in a cylindrical geometry. Solving the system

at larger tube widths could reveal new convective front modes. Given the available

computational resources, however, it would take days to solve Eqs. 2.15 for higher

values of nx and ny.

Solving for H caused some computational difficulties: the discretized version of Eq.

2.15c required that we used a small ∆t — unlike reaction-diffusion systems, which

can be modelled using time steps of ∆t ∼ 1. We suggest solving the heat and front

equations employing a Runge-Kutta scheme. This way, a time step as small as ours

would not be needed, which would reduce significantly the computation time (at the

cost of having to implement a more complex algorithm).
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Working with the parameters corresponding to the iodate-arsenous acid reaction, we

have shown the applicability of our model for autocatalytic reaction fronts. If we were to

choose different thermal and molecular diffusivities (characteristic of other reactions),

we would obtain different Lewis numbers — for example, the chlorite-tetrathionate

reaction is characterized by a Lewis number L ∼ 10. Exploring further regions of the

Rayleigh plane for the iodate-arsenous acid reaction or any other autocatalytic reaction

could yield instability regions that, counterintuitively, do not occupy the full extent of the

third quadrant. This would indicate the presence of more complex phenomena such as

double-diffusive processes [37].
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