

ANEXO 01.01: CRONOGRAMA PRELIMINAR

AÑO: 2014

	30 Lunes	01 Martes	02 Miércoles	03 Jueves	04 Viernes	05 Sábado	06 Domingo
	50 Lulies	OT MAILES	Desmoldado e	35 Juneves	V- Memes	Japado -	oo Iponiiiigo
		Elaboración EP1- 0.68H67		inicio de curado EP1- 0.68H67. Desmoldado e inicio de curado EP2-0.68H67 y			
			Elaboración EP2-0.68H67 y EP3-0.68H67	EP3-0.68H67			
	07 Lunes	08 Martes	09 Miércoles	10 Jueves	11 Viernes	12 Sábado	13 Domingo
		Ensayo a compresión EP1- 0.68H67	Ensayo a compresión EP2- 0.68H67 y EP3- 0.68H67	EBA	2/0		
	14 Lunes	15 Martes	16 Miércoles	17 Jueves	18 Viernes	19 Sábado	20 Domingo
U L			Elaboración EP6- 0.80H67				
0		Elaboración EP4- 0.70H67 y EP5- 0.75H67	Desmoldado e inicio de curado EP4-0.70H67 y EP5-0.75H67	Desmoldado e inicio de curado EP6-0.80H67			
	Ĺ		Fabricación vigas EP6- 0.80H67			-	
	21 Lunes	22 Martes	23 Miércoles	24 Jueves	25 Viernes	26 Sábado	27 Domingo
		Ensayo a compresión EP4- 0.70H67 y EP5- 0.75H67	Ensayo a compresión EP6- 0.80H67	Elaboración EP7- 0.75H67	Desmoldado e inicio de curado EP7-0.75H67		
	28 Lunes	29 Martes	30 Miércoles	31 Jueves	01 Viernes	02 Sábado	03 Domingo
		Elaboración EP8- 0.75H67	Desmoldado e inicio de curado EP8-0.75H67	Ensayo a compresión EP7- 0.75H67			
	04 Lunes	05 Martes	06 Miércoles	07 Jueves	08 Viernes	09 Sábado	10 Domingo
		Ensayo a compresión EP8- 0.75H67					
	11 Lunes	12 Martes	13 Miércoles	14 Jueves	15 Viernes	16 Sábado	17 Domingo
A G O		Elaboración EP9- 0.70H67 y EP10- 0.75H67	Desmoldado e inicio de curado EP9-0.70H67 y EP10-0.75H67				
S	18 Lunes	19 Martes	20 Miércoles	21 Jueves	22 Viernes	23 Sábado	24 Domingo
T 0		Ensayo a compresión EP9- 0.70H67 y EP10- 0.75H67		Elaboración EP11-0.70H67	Desmoldado e inicio de curado EP11-0.70H67		
	25 Lunes	26 Martes	27 Miércoles	28 Jueves	29 Viernes	30 Sábado	31 Domingo
				Ensayo a compresión EP11-0.70H67			

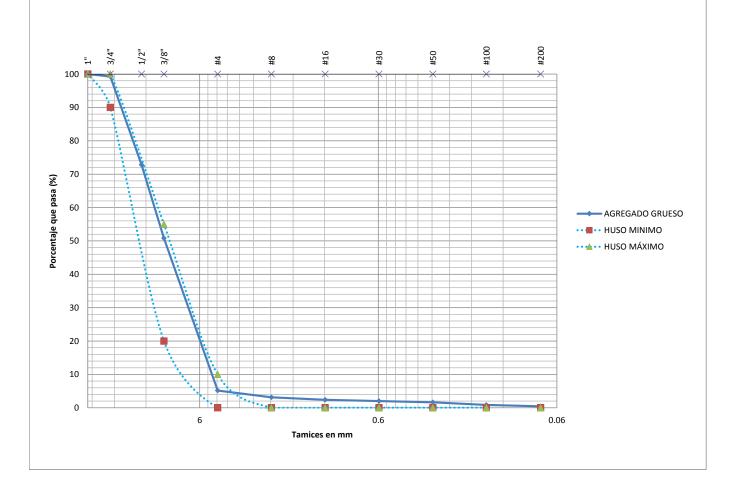
ANEXO 01.02: CRONOGRAMA DE LA ELABORACIÓN Y ENSAYOS DE LOS ELEMENTOS DE CONCRETO (VIGAS Y MUROS)

AÑO 2014

	01 Lunes	02 Martes	03 Miércoles	04 Jueves	05 Viernes	06 Sábado	07 Domingo
S E T I	Preparación de moldes (vigas)	Vaciado vigas tipo 1, 2 y 3.	Desmoldado e inicio de curado vigas tipo 1, 2 y 3. Preparación de moldes (vigas)	Vaciado vigas tipo 4, 5 y 6.	Desmoldado e inicio de curado vigas tipo 4, 5 y 6. Preparación de moldes (vigas) Vaciado vigas tipo 7, 8, 3 y 6.	Desmoldado e inicio de curado vigas tipo 7, 8, 3 y 6.	
M	08 Lunes	09 Martes	10 Miércoles	11 Jueves	12 Viernes	13 Sábado	14 Domingo
В			FEA	FA			
R	15 Lunes	16 Martes	17 Miércoles	18 Jueves	19 Viernes	20 Sábado	21 Domingo
	22 Lunes	23 Martes	24 Miércoles	25 Jueves	26 Viernes	27 Sábado	28 Domingo
	29 Lunes	30 Martes	01 Miércoles	02 Jueves	03 Viernes	04 Sábado	05 Domingo
	06 Lunes	07 Martes	08 Miércoles	09 Jueves	10 Viernes	11 Sábado	12 Domingo
	13 Lunes	14 Martes	15 Miércoles	16 Jueves	17 Viernes	18 Sábado	19 Domingo
	20 Lunes	21 Martes	22 Miércoles	23 Jueves	24 Viernes	25 Sábado	26 Domingo
О	27 Lunes	28 Martes	29 Miércoles	30 Jueves	31 Viernes	01 Sábado	02 Domingo
C T U B R		Ensayo a compresión y ultrasonido vigas tipo 1, 2 y 3.	Ensayo con ultrasonido vigas tipo 1, 2 y 3.	Ensayo a compresión y ultrasonido vigas tipo 4, 5 y 6.	Ensayo con ultrasonido vigas tipo 4, 5 y 6. Preparación de		
		Preparación de moldes (vigas)	Vaciado vigas con cubos	Desmoldado e inicio de curado vigas con cubos.	Ensayo a compresión vigas tipo 7, 8, 3 y 6.		

	03 Lunes	04 Martes	05 Miércoles	06 Jueves	07 Viernes	08 Sábado	09 Domingo
N O V	Ensayo con ultrasonido vigas tipo 7, 8, 3 y 6.	Ensayo con ultrasonido vigas tipo 7, 8, 3 y 6. Desmoldado e inicio de	Ensayo con ultrasonido vigas tipo 7, 8, 3 y 6.	Desmoldado e inicio de	Vicines	oo jaabaa	Domingo
I E M B	Vaciado muros 1, 2 y 3.	curado muros 1, 2 y 3. Preparación de moldes (muros)	Vaciado muros 4, 5 y 6.	curado muros 4, 5 y 6.			
E	10 Lunes	11 Martes	12 Miércoles	13 Jueves	14 Viernes	15 Sábado	16 Domingo
	17 Lunes	18 Martes	19 Miércoles	20 Jueves	21 Viernes	22 Sábado	23 Domingo
	24 Lunes	25 Martes	26 Miércoles	27 Jueves	28 Viernes	29 Sábado	30 Domingo
	01 Lunes	02 Martes	03 Miércoles	04 Jueves	05 Viernes	06 Sábado	07 Domingo
D I C	Ensayo a compresión probetas muros 1, 2 y 3.	3 7 →	Ensayo con ultrasonido muros 1, 2 y 3. Ensayo a compresión probetas muros 4, 5 y 6.	Ensayo con ultrasonido muros 1, 2 y 3.	Ensayo con ultrasonido muros 1, 2 y 3.		
E	08 Lunes	09 Martes	10 Miércoles	11 Jueves	12 Viernes	13 Sábado	14 Domingo
M B R	Ensayo con ultrasonido muros 4, 5 y 6.	Ensayo con ultrasonido muros 4, 5 y 6.	~		3/		
E	15 Lunes	16 Martes	17 Miércoles	18 Jueves	19 Viernes	20 Sábado	21 Domingo
	22 1	22 Martos	24 Miércoles	25 Jueves	26 Viernes	27 Sábado	20 Damings
	22 Lunes	23 Martes	24 Ivilercoles	25 Jueves	26 Viernes	27 580800	28 Domingo
	29 Lunes	30 Martes	31 Miércoles	01 Jueves	02 Viernes	03 Sábado	04 Domingo

LABORATORIO MECÁNICA DE SUELOS


CARACTERÍSTICAS FÍSICAS DE LOS AGREGADOS

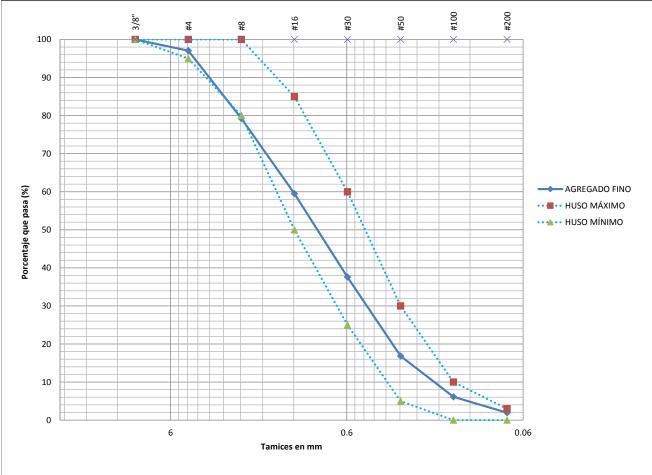
MUESTRA: Piedra huso 67. FECHA DE INICIO: 11 de Junio de 2014 CANTERA: Jicamarca. DESARROLLADO POR: Alumnos - tesis

PLANTA: UNICON - MATERIALES. NORMA DE REFERENCIA:

DIRECCION: Av. Enrique Meiggs Mz. Unica Lt. 1B. Urb. Repsa Camena.

	GI	RANULOMETRÍA	CARACTERÍSTICAS FÍSICAS			
MALLA	PESO RETENIDO (gramos)	% RETENIDO	% RETENIDO ACUMULADO	% PASANTE ACUMULADO	TAMAÑO MÁXIMO	3/4"
1"	0.0	0.0	0.0	100.0	ABSORCIÓN	1.08%
3/4"	75.0	0.8	0.8	99.3	ABSORCION	1.06%
1/2"	2641.0	26.4	27.2	72.8	CONTENIDO DE HUMEDAD	0.73%
3/8"	2199.0	22.0	49.2	50.8	CONTENIDO DE HOMEDAD 0.7	
#4	4562.0	45.7	94.8	5.2	PESO UNITARIO SUELTO (ton/m3)	
#8	203.3	2.0	96.9	3.1		
#16	73.7	0.7	97.6	2.4	PESO UNITARIO COMPACTADO (ton/m3)	1.53
#30	40.0	0.4	98.0	2.0	PESO ONITARIO COMPACTADO (LOIT/IIIS)	1.55
#50	35.7	0.4	98.4	1.6	PESO ESPECÍFICO (ton/m3)	2.67
#100	76.5	0.8	99.1	0.9	PESO ESPECIFICO (toll/llis)	2.07
#200	42.8	0.4	99.6	0.4	OBSERVACIONES:	
FONDO	45.1	0.4	100.0	0.0	el máximo admitido según la NTP 400.037.	
TOTAL	9994.1	100	MÓDULO DE FINEZA	6.35		

LABORATORIO MECÁNICA DE SUELOS


CARACTERÍSTICAS FÍSICAS DE LOS AGREGADOS

MUESTRA: Arena lavada FECHA DE INICIO: 11 de Junio de 2014
CANTERA: Jicamarca DESARROLLADO POR: Alumnos - tesis

PLANTA: UNICON - MATERIALES.

DIRECCIÓN: Av. Enrique Meiggs Mz. Unica Lt. 1B. Urb. Repsa Camena.

	GI	RANULOMETRÍA	CARACTERÍSTICAS FÍSICAS			
MALLA	PESO RETENIDO (gramos)	% RETENIDO	% RETENIDO ACUMULADO	% PASANTE ACUMULADO	MÓDULO DE FINEZA	3.04
1"		0.0	0.0	100.0	ABSORCIÓN	1.74%
3/4"		0.0	0.0	100.0	ABSORCION	1.74%
1/2"		0.0	0.0	100.0	CONTENIDO DE HUMEDAD	6.75%
3/8"		0.0	0.0	100.0	CONTENIDO DE HOMEDAD 6.	
#4	14.9	3.0	3.0	97.0	PESO UNITARIO SUELTO (ton/m3)	
#8	89.6	17.8	20.8	79.3		
#16	99.4	19.7	40.5	59.5	PESO UNITARIO COMPACTADO (ton/m3)	1.60
#30	110.4	21.9	62.4	37.6	FESO ONITANIO COMPACTADO (IOII/IIIS)	1.00
#50	104.5	20.8	83.2	16.8	PESO ESPECÍFICO (ton/m3)	2.62
#100	54.0	10.7	93.9	6.1	FESO ESFECIFICO (toll/1113)	2.02
#200	21.0	4.2	98.1	2.0	OBSERVACIONES:	
FONDO	9.8	2.0	100.0	0.0	El porcentaje que pasa la malla #200 = 1.95%, es menor a	a 5%,
TOTAL	503.6	100	MÓDULO DE FINEZA	3.04	el máximo admitido según la NTP 400.037.	

ANEXO 03

INFORME DE LA CALIDAD DEL CEMENTO SOL TIPO I

IIVI ORIVIE BI	E LA CALIDAD DEL CEM		entos Portland NTP	
Análisis químico	Valores	334.009, ASTM C-150		
Dióxido de Sílice (SiO ₂)	19.09%	,		
Oxido de Aluminio (Al ₂ O ₃)	5.78%			
Oxido de Fierro(Fe ₂ O ₃)	2.96%			
Oxido de Calcio (CaO)	62.25%			
Oxido de Magnesio (MgO)	2.96%	máx.	6.00%	
Trióxido de Azufre (SO ₃)	3.10%	máx.	3.50%	
Oxido de Potasio (K₂O)	0.89%			
Oxido de Sodio (Na ₂ O ₃)	0.28%	1/5		
Perdida por ignición (PI)	2.00%	máx.	3.00%	
Alcális totales	0.87%			
Fases Minerológicas (según Bogue)				
C₃S (Silicato Tricálcico)	51.80%			
C₂S (Silicato Dicálcico)	15.21%			
C₃A (Aluminato Tricálcico)	10.22%			
C₄AF(Ferro Aluminato Tetracálcico)	8.93%	y /		
Ensayo de finezas				
Retenidos en malla 325	6.00%			
Superficie específica BLAINE	336 m2/kg	mín.	260 m2/kg	

The Chemical Company

Polyheed® 770R

Aditivo Reductor de Agua y Retardador del Fraguado del Concreto

RECOMENDADO PARA:

Polyheed 770R se recomienda cuando se requiere un fraguado lento del concreto (por ejemplo en clima cálido). Este aditivo mejora los concretos bombeado, lanzado (mezclas húmedas), el colocado en forma convencional. También mejora el concreto normal, reforzado, pretensado, ligero y de peso normal. Se puede usar en concreto arquitectónico, blanco y de color.

POLYHEED 770R se puede usar en combinación con aditivos inclusores de aire, siempre que éstos satisfagan las especificaciones AASHTO, ASTM y CRD. Cuando se desee concreto con aire incluído, se recomienda el uso de aditivos inclusores de aire BASF Construction Chemicals. En estos casos, cada aditivo debe dosificarse por separado dentro de la mezcladora.

DESCRIPCION:

Polyheed 770R es un aditivo líquido, listo para usarse, que aumenta el tiempo de fraguado facilitando las operaciones de colado y acabado del concreto. Excede los requerimientos de la norma ASTM C-494 Tipos B y D, específicamente en:

- Mayor resistencia a la compresión y a la flexión.
- Menor contenido de agua para una trabajabilidad determinada.
- Características retardantes del fraguado.

CARACTERISTICAS Y BENEFICIOS:

Polyheed 770-R, con sus características retardantes de fraguado, ayuda a obtener un concreto con las siguientes características:

- · Mejora la trabajabilidad.
- Reduce la segregación y el sangrado
- Dependiendo de la dosificación, proporciona un retardo del fraguado desde ligero hasta moderado.
- Brinda características superiores de acabado en superficies planas y cimbradas.

RESISTENCIA A LA COMPRESIÓN:

El concreto mejorado con POLYHEED 770R tendrá una resistencia a la compresión mayor después del fraguado inicial. En comparación con el concreto sin aditivo, desarrolla resistencias más altas en las edades iniciales y finales, en condiciones de curado similares.

DOSIFICACION:

Polyheed 770R se recomienda en un rango de 220 a 550 ml por cada 100 kg de cemento (densidad de 1,27 gr/cm³. Sin embargo, las

variaciones de los ingredientes de la mezcla y las condiciones de la obra, pueden requerir dosificaciones diferentes.

TIEMPO DE FRAGUADO:

Dentro del rango normal de dosificación, POLYHEED 770R retardará el fraguado del concreto entre 1 y 2 1/2 horas respecto del tiempo de fraguado de un concreto sin aditivo. Esto depende de los materiales usados y la temperatura. Se recomienda preparar mezclas de prueba con materiales y condiciones semejantes a las del campo, a fin de determinar la dosificación adecuada.

MODO DE EMPLEO:

Polyheed 770R debe agregarse junto con el agua de mezcla. Nunca se añada directamente al cemento ó a los agregados secos.

TIEMPO DE ALMACENAJE:

En envases originales cerrados y almacenados en un sitio fresco y seco, POLYHEED 770-R mantiene sus propiedades durante un mínimo de 12 meses.

ENVASE:

Polyheed 770-R se suministra en tambores de 208 litros y a granel.

PRECAUCION:

Si POLYHEED 770R se congela, llévese a una temperatura de 2°C o más, y agítese hasta que esté completamente reconstituido. No usar aire a presión para agitarlo.

Para mayor información sobre POLYHEED 770R y su recomendación en mezclas con características especiales, diríjase a su representante BASF Construction Chemicals.

NEOPLAST MR 500[®]

ADITIVO REDUCTOR DE AGUA DE RANGO MEDIO CON RETARDO

DESCRIPCION

NEOPLAST MR 500 es un aditivo líquido, reductor de agua de rango medio, empleado en climas templados y cálidos. Puede ser empleado como plastificante y/o súper plastificante dependiendo de la dosis.

APLICACIONES PRINCIPALES

Como plastificante:

Al ser adicionado en una mezcla de concreto incrementa el asentamiento sin necesidad de aumentar la cantidad de agua, obteniendo concretos fluidos aptos para una buena colocación de concretos caravista y elaboración de elementos prefabricados.

Como reductor de agua:

Incorporado en la mezcla de concreto puede reducir el agua de diseño hasta en un 25% manteniendo constante el asentamiento y logrando altas resistencias en todas las edades, consiguiendo concretos más impermeables y durables.

Como ahorrador de cemento:

Cuando se reduce el requerimiento de agua en la mezcla de concreto, se puede reducir la cantidad de cemento, haciendo concretos de buena calidad a bajo costo.

CARACTERISTICAS/BENEFICIOS

Concreto Plástico

- Mejora las labores de acabado.
- Mejora la trabajabilidad.
- · Reduce los requerimientos de agua.
- Reduce la segregación.
- Mejora los tiempos de fraguado.

Concreto Endurecido

- Mejora todas las resistencias.
- Reduce la permeabilidad.
- Mejora la apariencia del acabado.
- Reduce el agrietamiento.
- · Mejora la durabilidad.
- · No mancha.

INFORMACION TECNICA

Apariencia : Líquido

Color : Marrón oscuro
Densidad : 1.190 +/- 0.01 kg/l

Solubilidad : Al agua

DOSIFICACION

NEOPLAST MR 500 se dosifica a razón de 0.3% a 1.5% del peso del cemento.

RESULTADOS TIPICOS DE INGENIERIA

Los siguientes resultados fueron obtenidos en condiciones de laboratorio.

Resistencia	s	Compresión	Flexión
3 días		125%	115%
7 días		116%	108%
28 días		110%	105%
Tiempo de F	raguado		
Fraguado	Inicial	+ 90 min.	
Fraguado	Final	+ 90 min.	

Resultados comparado con la mezcla de concreto de referencia.

PRESENTACION

Cilindro 250kg 55.5 galones* Balde 20kg 4.4 galones* *galones americanos aproximados.

VIDA UTIL DE ALMACENAMIENTO 1 año. NEOPLAST MR 500 debe almacenarse en su envase original herméticamente cerrado y bajo techo.

NORMAS/ ESPECIFICACIONES

 Está formulado para cumplir con las especificaciones para aditivos ASTM C-494, tipo D.

DIRECCIONES PARA SU USO

Agregue **NEOPLAST MR-500** diluido con la última parte del agua de amasado a la preparación de la mezcla, no vierta sobre el cemento seco.

Se recomienda la utilización de **NEOPLAST MR 500** a dosis de 0.3% a 0.7% del peso del cemento como plastificante y 0.7% a 1.5% como súper plastificante.

Los resultados a obtener varían con los diversos tipos de cementos, la calidad de agregados y las proporciones del diseño. Se recomienda realizar ensayos previos en la obra para determinar la dosificación adecuada, de acuerdo al tipo de obra o proyecto a realizar.

NEOPLAST MR 500 se puede dosificar en obra o en planta dependiendo de las necesidades y comportamiento del diseño.

Si se desea acelerar, aumentar las resistencias del concreto y reducir la permeabilidad, deberá disminuirse el agua de amasado y realizar ensayos de asentamiento. La máxima cantidad

de agua a reducir se logra cuando se llegue al mínimo asentamiento permitido.

NEOPLAST MR 500 es compatible con otros aditivos, sin embargo cada aditivo deber ser agregado por separado.

NEOPLAST MR 500 puede reaccionar con el agente inclusor de aire aumentando su eficiencia para incluir aire. Se debe reducir la cantidad del AIRMIX 200 aproximadamente en un 50%.

NEOPLAST MR 500 no contiene cloruro de calcio u otros ingredientes potenciales de corrosión.

PRECAUCIONES/RESTRICCIONES

- Se deben tomar precauciones para mantener NEOPLAST MR 500 sobre el punto de congelamiento; sin embargo, el congelamiento y descongelamiento no dañará el material si éste se agita completamente. Nunca lo agite con aire o lanza de aire.
- · No utilice aire para su agitación
- No lo dosifique directamente sobre el cemento seco.

LIMPIEZA

Limpie con agua las herramientas y el equipo antes que se endurezca el mortero y/o concreto.

INSTRUCCIONES DE SEGURIDAD

Durante la manipulación usar las medidas de seguridad apropiadas. Usar el equipo de protección personal apropiado.

Evitar el contacto con la piel, ojos y vías respiratorias. En caso de contacto con la piel, lavar con abundante agua, para mayor información consultar la hoja de seguridad del producto.

PUNDIT® PL-200 VELOCIDAD DE PULSO ULTRASÓNICO

PUNDIT® PL-200PE PULSO-ECO ULTRASÓNICO

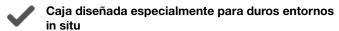
TESIS PUCP

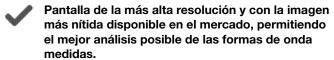
PUNDIT® PANTALLA TACTII

UNIVERSAL

Proceq: historia de innovación desde 1954

Proceq SA of Switzerland, fundada en 1954, es un fabricante líder de instrumentos portátiles de la más alta calidad para la ejecución de ensayos no destructivos de materiales. El omnipresente martillo para ensayos de hormigón Original Schmidt y el patentado SilverSchmidt (valor Q) son sólo un extracto de los inventos de los que Proceq se siente orgullosa.


Norma industrial Pundit


De hecho, el Pundit es una marca de norma industrial y ampliamente reconocido como el primer dispositivo de campo (in situ) comercial para la medición de velocidad de pulso ultrasónico. Proceq adquirió Pundit en 2009 y, más tarde, lanzó al mercado los populares Pundit Lab y Pundit Lab+.

Nueva pantalla táctil Pundit

El **Pundit PL-200** y el **Pundit PL-200PE** continúan la ilustre tradición que comenzó en los años 1970. Son los primeros productos de Proceq desarrollados usando una unidad de pantalla táctil de nueva generación y de diseño protegido.

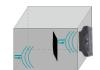
Memoria flash de 8 GB, permitiendo un almacenamiento de hasta 100'000 escaneados A

Procesador de doble núcleo que soporta diversas interfaces de comunicación y periféricos

Concepto modular: ampliable con todos los transductores de velocidad de pulso y pulso-eco de Proceq

Inversión de futuro: los futuros productos ultrasónicos Pundit van a ser directamente compatibles

Descripción general de aplicaciones


Pundit PL-200

Transmisión de paso: acceso de dos lados

Pundit PL-200PE

Pulso-eco: acceso de un solo lado

Evaluación de la calidad del hormigón

Velocidad de pulso ultrasónico

Uniformidad

Resistencia a la compresión y SONREB

Determinación de Detección

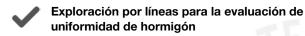
profundidad de grieta Módulo de elasticidad Espesor de losa desde un solo lado

Detección y localización de huecos, tuberías, grietas (paralelas a la superficie) y nidos de abeja

Modos de escaneado

Escaneados A Exploración por líneas Escaneados A Escaneados B

¡Nunca antes el usuario ha tenido tal control sobre el procedimiento de medición en tiempo real directamente in situ!



VELOCIDAD DE PULSO ULTRASÓNICO

Pundit PL-200: la nueva referencia para ensayos de velocidad de pulso ultrasónico

Instrumento de ensayos ultrasónico mejor en su clase proporcionando características superiores para la ejecución de ensayos in situ:

Almacenamiento y revisión de formas de onda en el mismo instrumento

Configuraciones de acceso directo en la pantalla de medición

Cursor dual para la evaluación manual de Escaneado A

Cursor separado para medir la amplitud de la señal

Medición mejorada de la velocidad superficial

Disparo automático y manual, con umbral de disparo ajustable por el usuario

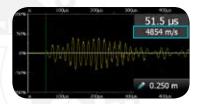
Frecuencia de actualización de Escaneado A de hasta 40 Hz

Ampliable con el transductor pulso-eco Pundit

Información de pedido Pundit PL-200

Número de pieza: 327 10 001

Consistiendo de: pantalla táctil Pundit, 2 transductores de 54 kHz, 2 cables BNC de 1.5 m, acoplador, varilla de calibración, cable adaptador BNC, cargador de batería, cable USB, DVD con software, documentación, correa de carga y estuche de transporte


Exhaustivos modos de medición

Exploración por líneas

Evalúa la uniformidad del hormigón y detecta grietas así como otros defectos. Las velocidades de pulso son visualizadas en forma de línea.

Velocidad de pulso

Calcula la velocidad de pulso del material ensayado.

Resistencia a la compresión

Determina la resistencia a la compresión usando la correlación de velocidad de pulso ultrasónico o usando SONREB.

Profundidad de grietas

Determina la profundidad de grietas verticales según BS 1881.

Velocidad superficial

Determina la velocidad superficial según BS 1881.

Tiempo de transmisión: mide el tiempo de transmisión.

Distancia: calcula la distancia entre los transductores.

Normas: EN12504-4 (Europa), ASTM C 597-02 (Norteamérica), BS 1881 Parte 203 (UK), ISO1920-7:2004 (internacional), IS13311 (India), CECS21 (China).

VELOCIDAD DE PULSO ULTRASÓNICO

Transductores de velocidad de pulso

Proceq ofrece una exhaustiva gama de transductores, proporcionando la más alta exactitud y un comprobado historial de campo. La selección del transductor correcto depende del tamaño de áridos/grano y de las dimensiones del objeto de ensayo.

Ancho de banda y tamaño	Límites del objeto de ensayo			Aplicaciones
de apertura	Longitud de onda*	Tamaño de grano máximo	Dimensión lateral mínima	
Transductores de onda P				
24 kHz Ø50 mm x 95 mm	154 mm	≈ 77 mm	154 mm	» Hormigón: áridos muy gruesos y objetos grandes (varios metros)
54 kHz Ø50 mm x 46 mm	68.5 mm	≈ 34 mm	69 mm	» Hormigón» Madera» Roca
150 kHz Ø28 mm x 46 mm	24.7 mm	≈ 12 mm	25 mm	» Material de grano fino» Ladrillos refractarios» Roca (núcleos NX)
250 kHz Ø28 mm x 46 mm	14.8 mm	≈ 7 mm	15 mm	 » Material de grano fino » Ladrillos refractarios » Roca » Uso en objetos pequeños
500 kHz Ø57 mm x 32 mm	7.4 mm	≈ 3 mm	7 mm	 » Material de grano fino » Ladrillos refractarios » Roca » Uso en objetos pequeños
54 kHz Ø50 mm x 100 mm	68.5 mm	≈ 34 mm	69 mm	 » Hormigón: superficies rugosas y redondeadas (sin necesidad de acoplador) » Madera » Roca (lugares de Patrimonio)
Transductor de onda transvers	al			
250 kHz Ø41 mm x 32 mm	10 mm	≈ 5 mm	Mayor que el espesor del objeto.	 » Usado para la determinación del módulo de elasticidad » Hormigón, madera, roca (sólo muestras pequeñas) » Requiere acoplador especial para ondas transversales

 $^{^*}$ Se ha usado una velocidad de pulso de 3700 m/s (onda longitudinal) y de 2500 m/s (onda transversal) para computar las longitudes de onda.

PULSO-ECO ULTRASÓNICO

Pundit PL-200PE: pionera ejecución de ensayos de pulso-eco ultrasónico

La tecnología pulso-eco extiende ampliamente el rango de aplicaciones de la unidad de pantalla táctil Pundit y ofrece una variedad de características especiales:

Determinación del espesor de losa desde un solo lado

Detección y localización de huecos, tuberías, grietas (paralelas a la superficie) y nidos de abeja

La avanzada tecnología de seguimiento de eco ayuda a identificar el eco principal

Los botones de control y la retroalimentación óptica directamente en la sonda aumentan la eficiencia de medición

Estimación automática de velocidad de pulso

Fácil medición de Escaneado B a través de marca central y reglas directamente en la sonda

Transductor de contacto en seco: ninguna necesidad de acoplador, apropiado para la medición en superficies rugosas

Manejo ligero y ergonómico

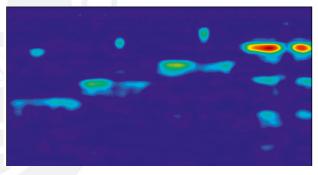
Ampliable con transductores de velocidad de pulso

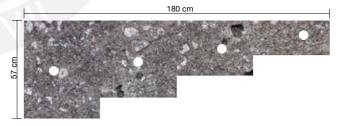
Información de pedido Pundit PL-200PE

Número de pieza: 327 20 001

Consistiendo de: pantalla táctil Pundit, transductor pulsoeco Pundit incl. cable, dispositivo de ensayos de contacto, cargador de batería, cable USB, DVD con software, documentación, correa de carga y estuche de transporte

Modos de escaneado


Escaneado A


- » El Escaneado A permite el análisis directo de la señal sin procesar.
- » Filtros digitales para mejor visibilidad del eco y mejor supresión de ruido.
- » Lectura automática del espesor de losa (detector de eco).

Escaneado B

- » Se proporciona una vista transversal perpendicular a la superficie de escaneado. Facilita la búsqueda de tuberías, grietas, huecos, etc.
- » Procesamiento de imágenes de vanguardia para una mejor calidad de la imagen.
- » El posicionamiento del cursor permite la lectura directa del espesor de losa y la localización de objetos o defectos ocultos.

Ejemplo: Escaneado B de un objeto de hormigón que contiene tuberías de acero:

Marca central y reglas directamente en el transductor ayudan en la generación del Escaneado B:

PUNDIT® PL-200PE PULSO-ECO ULTRASÓNICO

Transductor pulso-eco

El transductor pulso-eco es un transductor de ondas transversales diseñado para la operación con una sola mano o con las dos manos. Es particularmente apropiado para la ejecución de ensayos donde el espacio confinado sólo permite el acceso de un solo lado.

Anchura de banda y tamaño de apertura

50 kHz

2x25 cm²

Límites del objeto de ensayo

Longitud de Tamaño de Dimens onda* grano máximo mínima 50 mm 50 mm 2 veces

2 veces el Ti espesor (h

Dimensión lateral Profundidad de Objeto mínimo mínima penetración detectable

Típicamente 500 mm (hasta 1000 mm bajo condiciones ideales)

Cilindro de aire de

^{*}Se ha usado una velocidad de pulso de 2500 m/s para computar la longitud de onda.

Entrenamiento ultrasónico experto

La ejecución de ensayos con la tecnología de pulso-eco requiere profundos conocimientos del objeto de ensayo y de las características de aplicación. Proceq ofrece exhaustivos seminarios de capacitación impartiendo estos conocimientos, así como de todas las funcionalidades y características de los instrumentos Pundit. A los clientes de Pundit PL-200PE, Proceq les recomienda registrarse para el entrenamiento Advanced Ultrasonic Tomography Applications [aplicaciones avanzadas de la tomografía ultrasónica]. Véanse los detalles en la siguiente página.

Tras haber completado exitosamente el entrenamiento **Advanced Ultrasonic Tomography Applications**, los clientes de Pundit PL-200PE obtendrán acceso* a "Ask Malcolm", un servicio de soporte de aplicaciones global proporcionado por un equipo de reconocidos expertos que disponen de muchos años de experiencia práctica en la inspección no destructiva in situ.

*Los términos y condiciones son aplicables.

Concepto de entrenamiento de ensayos no destructivos de hormigón

Los módulos de entrenamiento de Proceq se centran sobre todo en un enfoque práctico a la ejecución de ensayos rutinarios de la calidad de hormigón in situ usando la gama de **productos ultrasónicos Pundit**.

Las instalaciones de entrenamiento se encuentran en la sede de Proceq en Schwerzenbach (Suiza), en Chicago (EE.UU.), en Singapur y Londres (UK). Todos los módulos de entrenamiento se llevan a cabo en inglés (posibilidad de organizarlos en alemán, francés y español sobre demanda).

Los costos del entrenamiento incluyen todos los materiales de entrenamiento y documentos necesarios, y excluyen el viaje, la acomodación y las comidas. Las fechas de los cursos son determinadas por parte de Proceq. Por favor, póngase en contacto con su representante local de Proceq.

Puntos esenciales de la ejecución de ensayos no destructivos de hormigón usando métodos ultrasónicos

Descripción	Requisitos previos	Duración	Emplazamientos	N° de curso
Características de hormigón; descripción general de métodos de	Cualquier formación técnica o experiencia previa con productos	2 días	 Schwerzenbach (Zurich, Suiza) 	970 00 300
ensayo no destructivo; principios de velocidad de pulso ultrasónico y métodos para la evaluación de la resistencia compresión de hormi-	para ensayos no destructivos permitirá una comprensión más rápida y profunda del material del curso.		 Chicago (Estados Unidos de Norteamérica) 	
gón, detección de huecos y grietas;			 Singapure 	
tipos de transductor; entrenamiento en el producto y práctico (Pundit Lab, Pundit Lab+, Pundit PL-200).			 Londres (Reino Unido) 	

Advanced Ultrasonic Tomography Applications [aplicaciones avanzadas de la tomografía ultrasónica]

Descripción	Requisitos previos	Duración	Emplazamientos	Nº de curso
Métodos ultrasónicos para la ejecución de ensayos no destructivos para evaluar hormigón desde una sola superficie; uso de la tomografía para detectar huecos llenos de aire y grietas; localización de elementos estructurales que incluyen barras de armadura, tuberías, conductos y nidos de abeja. Entrenamiento en el producto y práctico (Pundit PL-200PE); revisión e interpretación detalladas de ejemplos específicos de aplicación tomográfica.	Se espera que los participantes sean usuarios experimentados de productos para la ejecución de ensayos no destructivos; cualquier experiencia ultrasónica in situ permitirá una discusión centrada en temas de aplicación específicos.	2 días	 Schwerzenbach (Zuerich, Suiza) Chicago (Estados Unidos de Norteamérica) Singapur Londres (Reino Unido) 	970 00 400

Servicio de soporte de aplicación

"Ask Malcolm" es un servicio de soporte de aplicación proporcionado por Proceq a los propietarios y usuarios del PL-200PE que han completado el módulo de entrenamiento avanzado correspondiente. Es soportado por un equipo de expertos reconocidos que disponen de muchos años de experiencia práctica en la inspección no destructiva in situ.

Requisitos previos

Compra de un PL-200PE; conclusión del módulo "Advanced Ultrasonic Tomography Applications" con el nº de curso 970 00 400

Acceso

Página web de Proceq

VELOCIDAD DE PULSO ULTRAS

PUNDIT® PL-200PE PULSO-ECO ULTRASÓNICO

Información de pedido

Huidadaa

Unidades	
N° DE PIEZA	DESCRIPCIÓN
327 10 001	Pundit PL-200
327 20 001	Pundit PL-200PE
327 10 002	Pantalla táctil Pundit sin transductores
Transducto	ores suplementarios
325 40 026S	2 transductores de 24 kHz
325 40 131S	2 transductores de 54 kHz
325 40 141S	2 transductores de 150 kHz
325 40 177S	2 transductores de 250 kHz
325 40 175S	2 transductores de 500 kHz
325 40 176	2 transductores exponenciales de 54 kHz, incl. varilla de calibración
325 40 049	2 transductores de onda transversal de 250 kHz, incl. acoplador
327 40 130	Transductor pulso-eco Pundit, incl. cable y dispositivo de ensayo de contacto

Acces	orios	
327 01	043	Correa de carga completa
325 40	150	Porta transductor completo
327 01	049	Cable adaptador BNC para Pundit PL-200
325 40	021	Cable con enchufe BNC, 1.5 m (5 ft)
325 40	022	Cable con enchufe BNC, 10 m (33 ft)
710 10	031	Acoplador ultrasónico, 250 ml
325 40	048	Acoplador de onda transversal, 100 g
327 01	033	Batería completa
327 01	053	Cargador rápido (externo)
710 10	028	Varilla de calibración de 25 µs para Pundit PL-200
710 10	029	Varilla de calibración de 100 µs para Pundit PL-200

Especificación técnica

		Pundit PL-200	Pundit PL-200PE
Alcance		0.1 – 7	′930 µs
Resolución		0.1 μs (< 793 μs), 1 μs (> 793 μs)
Pantalla		Pantalla de colores d	le 7", 800x480 píxeles
Voltaje de pulso	Velocidad de pulso	100 – 4	150 Vpp
	Pulso-Eco	_	100 – 400 Vpp
Ancho de ba	anda	20 – 5	00 kHz
Ganancias o	lel receptor	1x - 10'000x (0 -	· 80dB) [11 pasos]
Memoria		Memoria flash	interna de 8 GB
Configuracion regional	ón	•	es métricas e imperia- os idiomas
Batería		Polímero de liti	o, 3.6 V, 14.0 Ah
Duración de la batería	ı	> 8h (en modo de o	operación estándar)
Temperatura de servicio	1	funcio 0°C – 40°C (cargando	ando, instrumento nando) , instrumento apagado) (no cargando)
Humedad		< 95 % HR, s	sin condensar
Clasificació	n IP	IP	54

Servicio postventa y soporte

Proceq provee el mejor soporte y servicio postventa disponible en la industria a través de los centros de servicio postventa certificados globales de Proceq. Lo mismo resulta en un soporte completo para el Pundit PL-200 y el Pundit PL-200PE mediante nuestro servicio postventa y establecimientos de soporte globales.

Información de garantía

Cada instrumento dispone de la garantía Proceq estándar y de las opciones de garantía extendida.

- » Componentes electrónicos del instrumento: 24 meses
- » Elementos mecánicos del instrumento: 6 meses

Sujeto a modificaciones sin previo aviso. Toda la información contenida en esta documentación se presenta de buena fe y se supone correcta. Proceq SA no asume garantía y excluye cualquier responsabilidad con respecto a la integridad y/o la exactitud de la información. Para el uso y la aplicación de cualquier producto fabricado y/o vendido por Proceq SA se remite explícitamente a las instrucciones de servicio correspondientes.

Proceq SA

Ringstrasse 2 8603 Schwerzenbach Suiza

Teléfono: +41 (0)43 355 38 00 +41 (0)43 355 38 12

info@proceq.com www.proceq.com

810 327 01S ver 10 2013 © Proceq SA, Suiza. Todos los derechos reservados.

0.5

ANEXO 06.01

CÓDIGO DE MEZCLA:

V1 - V14

FECHA:

Varios

Varios

AGR. FINO/AGR.GLOBAL:

0.5

TANDA DE PRUEBA: 80 Litros AGR.GRUESO/AGR.GLOBAL:

CARACTERÍSTICAS FÍSICAS DE LOS MATERIALES Y DE LA MEZCLA DE PRUEBA

MATERIALES	PROCEDENCIA	PESO ESPECÍFICO	MÓDULO DE	HUMEDAD	ABSORCIÓN	PESO SECO		CORRECCIÓN POR HUMEDAD Y	TANDA	DE PRUEBA
WATERIALES	PROCEDENCIA	(kg/m3)	FINEZA	(%)	(%)	(Kg)	VOLUMEN (m3)	ABSORCIÓN(Kg)	DOSIFICACIÓN	UNIDAD
CEMENTO	SOL TIPO I	3110	-	-	-	285.714	0.0919	285.714	22.86	Kg.
AGUA	PUCP	1000	-	10	D. E. P.	200.000	0.2000	186.862	14.95	Kg.
ARENA	JICAMARCA	2620	3.04	3.6	1.74	898.306	0.3429	913.936	73.11	Kg.
PIEDRA HUSO 67	JICAMARNA	2670	6.35	0.69	1.08	915.449	0.3429	925.336	74.03	Kg.
NEOPLAST MR500	QUIMICA SUIZA	1190	1137	-	-	2.857	0.0024	2.857	192.08	Mililitros
AIRE	-			-	-	-	0.0200	-	-	-
TOTAL	-	-			-	2302.326	1.0000	2314.705	-	-

ANEXO 06.02

CÓDIGO DE MEZCLA: M1,

M1, M2 y M4

FECHA:

VARIOS

RELACIÓN a/c:

0.7

AGR. FINO/AGR.GLOBAL:

0.5

TANDA DE PRUEBA:

90 Litros

AGR.GRUESO/AGR.GLOBAL:

0.5

CARACTERÍSTICAS FÍSICAS DE LOS MATERIALES Y DE LA MEZCLA DE PRUEBA

MATERIALES	PROCEDENCIA	PESO ESPECÍFICO	MÓDULO DE	HUMEDAD	ABSORCIÓN	PESO SECO		CORRECCIÓN POR HUMEDAD Y	TANDA	DE PRUEBA
WATERIALES	PROCEDENCIA	(kg/m3)	FINEZA	(%)	(%)	(Kg)	VOLUMEN (m3)	ABSORCIÓN(Kg)	DOSIFICACIÓN	UNIDAD
CEMENTO	SOL TIPO I	3110	-	-	-	307.143	0.0988	307.143	27.64	Kg.
AGUA	PUCP	1000	-		R. F.	215.000	0.2150	205.542	18.50	Kg.
ARENA	JICAMARCA	2620	3.04	2.94	1.74	869.394	0.3318	884.521	79.61	Kg.
PIEDRA HUSO 67	JICAMARNA	2670	6.35	0.97	1.08	885.985	0.3318	895.554	80.60	Kg.
NEOPLAST MR500	QUIMICA SUIZA	1190	1 3	-	-	3.071	0.0026	3.071	232.29	Mililitros
AIRE	-	-	-	-	-	-	0.0200	-	-	-
TOTAL	-	-		, -		2280.593	1.0000	2295.831	-	-

ANEXO 06.03

CÓDIGO DE MEZCLA:

M3, M5 y M6

FECHA:

VARIOS

RELACIÓN a/c:

0.6

AGR. FINO/AGR.GLOBAL:

0.5

TANDA DE PRUEBA:

90 Litros

AGR.GRUESO/AGR.GLOBAL:

0.5

CARACTERÍSTICAS FÍSICAS DE LOS MATERIALES Y DE LA MEZCLA DE PRUEBA

MATERIALES	PROCEDENCIA	PESO ESPECÍFICO	MÓDULO DE	HUMEDAD	ABSORCIÓN	PESO SECO		CORRECCIÓN POR HUMEDAD Y	TANDA	DE PRUEBA
IVIATERIALES	PROCEDENCIA	(kg/m3)	FINEZA	(%)	(%)	(Kg)	VOLUMEN (m3)	ABSORCIÓN(Kg)	DOSIFICACIÓN	UNIDAD
CEMENTO	SOL TIPO I	3110	-	-	-	358.333	0.1152	358.333	32.25	Kg.
AGUA	PUCP	1000	-	7		215.000	0.2150	205.783	18.52	Kg.
ARENA	JICAMARCA	2620	3.04	2.94	1.74	847.267	0.3234	862.010	77.58	Kg.
PIEDRA HUSO 67	JICAMARNA	2670	6.35	0.97	1.08	863.437	0.3234	872.762	78.55	Kg.
NEOPLAST MR500	QUIMICA SUIZA	1190		-	-	3.583	0.0030	3.583	271.01	Mililitros
AIRE	-			-	-	-	0.0200	-	-	-
TOTAL	-	-	/ - (-	2287.621	1.0000	2302.471	-	-

ANEXO 07: RESUMEN DE ESCANEO DE LAS VIGAS - PULSO ECO (ONDA S)

Este anexo es un resumen del anexo digital 1, el cual sólo muestra los errores encontrados por medio del escáner de ultrasonido, es decir, la diferencia de las dimensiones escaneadas entre las dimensiones reales. Por cada tipo de viga se ha buscado encontrar el máximo sesgo.

VIGA TIPO 1 (ESCANEO HORIZONTAL, RECUBRIMIENTO Y ANCHO):

		ERRO	R EN ESFER	AS DE POLI	STIRENO E	XPANDIDO	DE 1.4 cm	DE DIÁMETR	O (VIGAS T	IPO 1)
	DE VIGA Y NALIZADA		OR ESCANE RIZONTAL (_		OR ESCANE BRIMIENTO	_		CANEADO A	
		В	С	D	В	С	D	В	С	D
	DERECHA	-	-		-	-	-	-	-	-
V1-1L-1	IZQUIERDA	-	-	la -\	E-D	<u>.</u> -	-	-	-	-
V1 11 1	SUPERIOR	0	0.5	PiA	-0	3.1	-	-	0.4	-
	INFERIOR	-///	7	-	-	1/-0	-	-	-	-
	DERECHA	7 - 4	A -	-	-	CO		-	-	-
V1-1L-2	IZQUIERDA	13/		-	< ∀ 1•	1	-	-	-	-
V 1-1L-2	SUPERIOR	7.1	\ \ \ -	-	-	-		-	1	-
	INFERIOR	-1.9	1.2	0.2	4.2	4.0	4.1	3.8	2.7	1.8
	DERECHA	-	-	-	-	- "	-	-	-	-
V1-1L-3	IZQUIERDA	-	-	-	-	-	10-	-	-	-
V1-1L-3	SUPERIOR	-	-		\	/-/ \	-	-	-	-
	INFERIOR	-	0.7	-3.8		3.4	4.1	-	1.5	4.0
	DERECHA	-	·	- \\\	_ - -		7 -	-	-	-
V1-1L-4	IZQUIERDA			(-)		4	-	-	-	-
VI 11 4	SUPERIOR	-	-	-	-	-	-	-	-	-
	INFERIOR	-2.2	-1.3	-2.3	4.8	4.8	4.9	0.7	0.6	0.9
	DERECHA	1-1	-	-	-	->/	- /	-	-	-
V2-1L-1	IZQUIERDA	-			- 200	-/-	-	-	-	-
*	SUPERIOR	-	-	-	-	- A		-	-	-
	INFERIOR	-	4-	-	-		-	-	-	-
	DERECHA	-	$M_{\overline{1}}/\kappa$	A 74 5	7 1- 1	\\\-\ <u>\</u>	-	-	-	-
V2-1L-2	IZQUIERDA	-		//\ `	\ -\	-	-	-	-	-
	SUPERIOR	-	-		-	-	-	-	-	-
	INFERIOR	2.7	2.2	-0.9	4.8	4.7	4.5	1.7	1.5	2.8
				T	I	T		1		
ERROR I	MAX (cm)	2.7	2.2	0.2	4.8	4.8	4.9	3.8	2.7	4.0
ERROR	MIN (cm)	-2.2	-1.3	-3.8	4.2	3.1	4.1	0.7	0.4	0.9

VIGA TIPO 2 (ESCANEO HORIZONTAL, RECUBRIMIENTO Y ANCHO):

		ERRO	R EN ESFER	AS DE POLIE	STIRENO E	XPANDIDO	DE 1.4 cm [E DIÁMETR	O (VIGAS T	IPO 2)
	DE VIGA Y NALIZADA		OR ESCANE RIZONTAL (OR ESCANE	_		CANEADO A BOLITAS (cm	
	•	В	С	D	В	С	D	В	С	D
	DERECHA	-	4.3	2.2	-	6.4	2.7	-	3.2	3.3
V2-2L(5)-3	IZQUIERDA	-	-	-	-	-	-	-	-	-
VZ-ZL(3)-3	SUPERIOR	=	-	-	-	-	-	-	-	-
	INFERIOR	-	-	-	-		-	-	-	=.
	DERECHA	-	ı	-	-	=.	-	-	-	ı
V2-2L(5)-4	IZQUIERDA	-	-	-	-	-	-	-	-	-
V Z-ZL(3)-4	SUPERIOR	-	-0.2	-	-	-	-	-	-	-
	INFERIOR	-3.1	-	1.2	6.0	=.	5.7	1.8	-	2.8
	DERECHA	-	-	-	-	-	-	-	-	-
\\2 2\(\f\\ 4	IZQUIERDA	-	-	-	-	-	-	-	-	-
V3-2L(5)-1	SUPERIOR	-	-	-	-	-	-	-	-	-
	INFERIOR	3.5	-	-3.7	-	-	-	-	-	-
	DERECHA	-	-	-	-	-	-	-	-	-
\/2 21 /F\ 2	IZQUIERDA	-	-	-	-	-	-	-	-	-
V3-2L(5)-2	SUPERIOR	-	-	-	-	-	-	-	-	-
	INFERIOR	-	-	-	-	-	-	-	-	-
	DERECHA	-	-	-	-	-	-	-	-	-
\/2 21 /F\ 2	IZQUIERDA	-	-	-	-	-	-	-	-	-
V3-2L(5)-3	SUPERIOR	-	-	-	-	-	-	-	-	-
	INFERIOR	-	-	-	-	-	-	-	-	-
	DERECHA	-	•	-	-	-	-	-	-	-
\/2 21/E\ 4	IZQUIERDA	-	-	-1.6	-	-	-	-	-	-
V3-2L(5)-4	SUPERIOR	-	-	-	-	-	-	-	-	-
	INFERIOR	-	-	-	-	-	-	-	-	-
							A y			
ERROR N	ЛАХ (cm)	3.5	4.3	2.2	6.0	6.4	5.7	1.8	3.2	3.3
ERROR I	VIIN (cm)	-3.1	-0.2	-3.7	6.0	6.4	2.7	1.8	3.2	2.8

^(*) Las zonas marcadas de verde corresponden a localizaciones por pérdida de energía en el fondo de la viga.

VIGA TIPO 3 (ESCANEO HORIZONTAL, RECUBRIMIENTO Y ANCHO):

		ERRO	R EN ESFERA	AS DE POLIE	STIRENO E	XPANDIDO	DE 1.4 cm l	DE DIÁMETR	O (VIGAS T	IPO 3)
	DE VIGA Y IALIZADA		OR ESCANE	_		OR ESCANE	-		CANEADO A OLITAS (cm	
		В	С	D	В	С	D	В	С	D
	DERECHA	-	-	-	-	-	-	-	-	-
V4-2L(2)-1	IZQUIERDA	-	-	-	-	-	-	-	-	-
V4-2L(2)-1	SUPERIOR	-	-	-	-	-	-	-	-	-
	INFERIOR	-	-	-	-	-	-	-	-	-
	DERECHA	-	-	-	-	-	-	-	-	-
V4-2L(2)-2	IZQUIERDA	-	-	-	-	-	-	-	-	-
v ~ L(~ j - ~	SUPERIOR	-	-	-	-	-	-	-	-	-
	INFERIOR	-	-	-	-	-	-	-	-	-
	DERECHA	-	-	-	-	-	-	-	-	-
V/1-21/2\-2	I-2L(2)-3 I-2L(2)-3 IZQUIERDA SUPERIOR INFERIOR DERECHA	-	-	-	-	-	-	-	-	-
V4-2L(2)-3		-	-	-	-	-	-	-	-	-
1	INFERIOR	-	0.0	-2.0	-	1.0	9.4	-	1.6	2.3
17	DERECHA	-	-	-	-	-	-	-	-	-
V4-2L(2)-4	IZQUIERDA	-	-	-	-	-	-	-	-	-
V4-2L(2)-4	SUPERIOR	-	-	-	-	-	-	-	-	-
	INFERIOR	-	-	-	-	-	-	-	-	-
	DERECHA	-	-	-	-	-	-	-	-	-
V13-2L(2)-1	IZQUIERDA	-	-	-	-	-	-	-	-	
V 13-2L(2)-1	SUPERIOR	-	-	-	-	-	-	-	-	-
	INFERIOR	-	-	-	-	-	-	-	-	-
	DERECHA	-	-	-	-	-	-	-	-	-
V13-2L(2)-2	IZQUIERDA	-	-	-	-	-	-	-	-	
• ±3-2L(2)-2	SUPERIOR	-	-	2.6	-	-	-0.7	-	-	3.0
	INFERIOR	-	-	-4.4	-	-	9.2	-	-	2.8
		1								
ERROR N	/IAX (cm)	0.0	0.0	2.6	0.0	1.0	-0.7	0.0	1.6	3.0
ERROR I	VIIN (cm)	0.0	0.0	2.6	0.0	1.0	-0.7	0.0	1.6	3.0

^(*) Las zonas marcadas de rojo corresponden a vaciós que se encuentran dentro de la zona muerta y/o campo cercano, por lo que no se tomarán en cuenta en los datos analizados.

VIGA TIPO 4 (ESCANEO HORIZONTAL, RECUBRIMIENTO Y ANCHO):

		ERRO	R EN ESFER	AS DE POLIE	STIRENO E	XPANDIDO	DE 2.5 cm l	DE DIÁMETR	O (VIGAS T	IPO 4)
	DE VIGA Y IALIZADA		OR ESCANE RIZONTAL (_		OR ESCANE	_		CANEADO A BOLITAS (cm	
		В	С	D	В	С	D	В	С	D
	DERECHA	-	-0.1	-	-	-	-	=	-	-
V6-2L(2)-1	IZQUIERDA	0.0	0.2	-0.1	5.0	5.2	5.0	1.5	-0.4	1.0
V 0-2L(2)-1	SUPERIOR	-1.6	-	-	4.4	-	-	-0.4	-	-
	INFERIOR	0.1	-	0.9	4.4	-	4.1	-0.5	-	0.9
	DERECHA	-	-	-	-	-	-	-	-	-
V6 21/2\ 2	IZQUIERDA	-	0.7	-	-	4.9	-	-	0.1	-
V6-2L(2)-2	SUPERIOR	-	-	-	-	-	-	-	-	-
	INFERIOR	-	0.4	1.7	-	3.4	4.5	-	-0.2	2.0
	DERECHA	-	-	-	-	-	-	-	-	-
VC 21/2\ 2		0.4	0.6	-0.3	-	-	-	-	-	-
VO-2L(2)-3		-0.6	0.5	0.6	5.0	7.7	4.8	0.9	1.5	0.3
<u> 3</u> 	INFERIOR	-	-	-	-	-	-	-	-	-
ī	DERECHA	-	0.4	-1.9	-	4.8	1.7	-	2.5	-1.4
VC 21/2\ 4	IZQUIERDA	-	2.6	-	-	-	-	-	-	-
V6-2L(2)-4	SUPERIOR	-4.0	-2.2	-	-5.1	1.1	-	0.2	0.6	-
	INFERIOR	-	-	-	-	-	-	-	-	-
	DERECHA	-0.1	-	-	6.0	-	-	0.7	-	-
V7-2L(2)-1	IZQUIERDA	-	-0.4	1.1	-	5.0	-	-	2.6	-
V /-ZL(Z)-1	SUPERIOR	1.1	1.2	0.8	4.4	-	3.3	1.5		1.7
	INFERIOR	-	1.5	0.7	-	3.9	4.7	-	1.9	-0.3
	DERECHA	0.2	0.1	0.8	4.9	6.2	6.6	0.0	1.5	1.0
V7-2L(2)-2	IZQUIERDA	-	0.4	-	-	4.9	-	-	1.3	-
v /-ZL(Z)-Z	SUPERIOR	-0.5	-	-0.5	4.5	-	4.7	1.2	-	0.0
	INFERIOR	-0.8	-	0.8	5.1	-	5.1	0.1	-	0.7
				a 2000			$\Lambda = J$			
ERROR N	ЛАХ (cm)	1.1	2.6	1.7	6.0	7.7	6.6	1.5	2.6	2.0
ERROR MIN (cm)		-4.0	-2.2	-1.9	-5.1	1.1	1.7	-0.5	-0.4	-1.4

^(*) Las zonas marcadas de verde corresponden a localizaciones por pérdida de energía en el fondo de la viga.

VIGA TIPO 5 (ESCANEO HORIZONTAL, RECUBRIMIENTO Y ANCHO):

		ERRO	R EN ESFER	AS DE POLIE	STIRENO E	XPANDIDO	DE 2.5 cm l	DE DIÁMETR	O (VIGAS T	IPO 5)
	DE VIGA Y IALIZADA		OR ESCANE RIZONTAL (-		OR ESCANE	_		CANEADO A	
		В	С	D	В	С	D	В	С	D
	DERECHA	-0.6	-	-1.0	5.0	-	5.2	0.8	-	1.3
V7-2L(5)-3	IZQUIERDA	-	-	-	-	-	-	-	-	-
V /-ZL(3)-3	SUPERIOR	-	-	-	-	-	-	-	-	-
	INFERIOR	-2.5	-	-1.0	8.2	-	8.0	4.3	-	2.4
	DERECHA	-	-	-	-	-	-	-	-	-
V7-2L(5)-4	IZQUIERDA	-	-3.1	-	-	5.2	-	-	1.7	-
v /-2L(3)-4	SUPERIOR	-0.3	-	0.2	0.8	-	-0.3	0.2	-	1.7
	INFERIOR	-	2.8	-	-	1.2	-	-	0.8	-
	DERECHA	0.1	-	0.6	-	-	-	-	-	-
\/9_2 /5_1	2L(5)-1 IZQUIERDA SUPERIOR INFERIOR DERECHA	-3.6	0.3	2.4	3.6	5.4	5.1	1.3	2.6	2.2
VO-2L(3)-1		-	-	-	-	-	-	-	-	-
		-3.1	0.5	-	4.9	0.1	-	2.7	3.3	-
	DERECHA	-	-	3.3	-	-	5.4	-	-	1.2
V8-2L(5)-2	IZQUIERDA	-3.5	-	2.5	5.4	-	0.0	0.3	-	2.3
VO-2L(3)-2	SUPERIOR	-0.4	-	2.5	2.1	-	0.6	1.1	-	0.6
	INFERIOR	-	-0.7	-	-	1.0	-	-	2.2	-
	DERECHA	-	-1.5	-0.1	-	-	-	-	-	-
V8-2L(5)-3	IZQUIERDA	-	-	-	-	-	-	-	-	-
VO-2L(3)-3	SUPERIOR	0.9	-	2.0	0.4	-	2.0	2.2	-	1.2
	INFERIOR	-0.5	2.6	0.9	9.3	0.2	9.2	1.0	4.2	-
	DERECHA	-	0.3	-	-	-	-	-	-	-
V8-2L(5)-4	IZQUIERDA	-2.7	0.0	3.0	5.2	3.5	5.3	1.3	1.2	1.4
VO-ZL(3)-4	SUPERIOR	-	-	-	-	-	-	-	-	-
	INFERIOR	-	-	-	-	-	-	-	-	-
ERROR MAX (cm)		0.9	2.8	3.3	5.4	5.4	5.4	2.2	4.2	2.3
ERROR N	ИIN (cm)	-3.6	-3.1	-1.0	0.4	0.1	-0.3	0.2	0.8	0.6

^(*) Las zonas marcadas de verde corresponden a localizaciones por pérdida de energía en el fondo de la viga.

^(*) Las zonas marcadas de rojo corresponden a vacios que se encuentran dentro de la zona muerta y/o campo cercano, por lo que no se tomarán en cuenta en los datos analizados.

VIGA TIPO 6 (ESCANEO HORIZONTAL, RECUBRIMIENTO Y ANCHO):

		ERRO	R EN ESFER	AS DE POLIE	STIRENO E	KPANDIDO	DE 2.5 cm [DE DIÁMETR	O (VIGAS T	IPO 6)
	DE VIGA Y NALIZADA		OR ESCANE. RIZONTAL (-		OR ESCANE BRIMIENTO	_		CANEADO A BOLITAS (cm	
		В	С	D	В	С	D	В	С	D
	DERECHA	ı	-	-	-	-	-	-	-	-
V9-1L-1	IZQUIERDA	0.2	0.1	0.1	-	-	-	-	-	-
A 2-11-1	SUPERIOR	-	-	0.1	-	-	1.4	-	-	1.5
	INFERIOR	0.4	-0.5	1.6	4.6	4.8	4.8	1.5	1.2	1.9
	DERECHA	1	-	-	-	-	-	-	-	1
V9-1L-2	IZQUIERDA	1	-	-	-	-	-	-	-	1
A 3-11-5	SUPERIOR	-	-	-	-	-	-	-	-	-
	INFERIOR	-0.3	-0.3	1.7	3.8	3.9	4.0	3.4	1.6	2.7
	DERECHA	-0.5	0.3	0.8	4.3	3.9	4.4	0.5	0.2	1.0
V0 11 2	IZQUIERDA	-0.3	-0.1	-0.3	-	-	-	-	-	-
V9-1L-3	SUPERIOR	3.1	3.0	3.9	-0.6	-0.3	-0.8	1.9	0.4	1.1
	INFERIOR	-0.1	0.4	1.0	4.1	4.2	4.5	3.2	1.0	1.9
	DERECHA	1.4	0.4	0.9	-	-	-	-	-	-
\/O 41 4	IZQUIERDA	0.0	-0.1	0.2	4.9	4.9	4.6	0.0	2.6	3.0
V9-1L-4	SUPERIOR	0.3	-	0.8	3.8	-	3.8	3.0	-	1.2
	INFERIOR	-	-	-	-	-	-	-	-	-
	DERECHA	0.7	0.0	1.6	2.9	0.0	0.0	-0.6	0.2	-0.4
V13-1L-3	IZQUIERDA	0.4	0.2	0.5	5.0	2.4	2.3	-0.7	1.5	2.0
A12-11-2	SUPERIOR	-0.2	0.0	-0.3	-	-	-	-	-	-
	INFERIOR	-0.2	-0.2	0.5	5.5	5.3	5.4	1.6	1.4	1.8
	DERECHA	0.4	0.5	0.7	3.6	3.7	3.5	1.6	0.4	1.0
V13-1L-4	IZQUIERDA	-1.8	0.3	-0.3	-	-	-	-	-	-
V 13-1L-4	SUPERIOR	0.2	-0.3	0.4	-	1.8	4.6	-	0.4	0.6
	INFERIOR	1.2	1.5	0.4	1.1	0.0	-1.4	2.6	0.8	1.1
				42			1			
ERROR N	ИАХ (cm)	3.1	3.0	3.9	5.5	5.3	5.4	3.4	2.6	3.0
ERROR I	VIIN (cm)	-1.8	-0.5	-0.3	-0.6	-0.3	-1.4	-0.7	0.2	-0.4

^(*) Las zonas marcadas de verde corresponden a localizaciones por pérdida de energía en el fondo de la viga.

VIGA TIPO 7 (ESCANEO HORIZONTAL, RECUBRIMIENTO Y ANCHO):

			•	ERROR EN	ESFERAS D	E POLIESTIR	ENO EXPAN	NDIDO DE 5	cm DE DIÁN	METRO (VIG	AS TIPO 7)	-	
	DE VIGA Y IALIZADA	ERROR E	ESCANEADO	HORIZON	TAL (cm)	ERROR ES	CANEADO F	RECUBRIMI	ENTO (cm)	ERROR E		ANCHO DE	BOLITAS
	•	Α	В	С	D	Α	В	С	D	Α	В	С	D
	DERECHA	-0.9	-0.8	0.5	0.8	-	-	-	-	-	-	-	-
V10-4BO-1	IZQUIERDA	-0.5	-	-	0.9	-	-	-	-	-	-	-	-
V10-4BU-1	SUPERIOR	2.1	-	-	0.3	5.0	-	-	-	-2.0	-	-	-
	INFERIOR	0.4	0.1	-0.7	-0.6	4.5	2.1	2.4	4.6	-0.2	-1.1	-2.2	-1.5
	DERECHA	-0.6	0.1	-	1.8	-	-	-	-	-	-	-	-
V10-4BO-2	IZQUIERDA	1.6	0.1	-0.1	0.5	-	-	-	-	-	-	-	-
V10-4BU-2	SUPERIOR	-	-	-	-	-	-	-	-	-	-	-	-
	INFERIOR	2.3	-	0.8	-0.2	-1.7	-	2.2	4.6	1.0	-	2.1	1.1
	DERECHA	-1.2	-	0.7	1.9	-	-	-	-	-	-	-	-
V10-4BO-3	IZQUIERDA	0.1	0.4	-0.5	0.5	-	-	-	-	-	-	-	-
V10-460-3	SUPERIOR	-	0.2	-0.4	-	-	4.4	4.3	-	-	-0.4	-1.6	-
	INFERIOR	0.8	-0.2	1.4	-0.1	4.0	1.7	1.6	2.9	2.2	-2.3	0.6	-0.5
	DERECHA	0.0	0.0	0.5	1.0	-	-	-	-	-	-	-	-
V10-4BO-4	IZQUIERDA	0.5	-0.2	0.4	0.3	-	4.4	4.1	-	-	-2.0	-1.8	-
V10-460-4	SUPERIOR	-	0.4	0.8	0.3	-	-	-	-	-	-	-	-
	INFERIOR	-	0.5	0.1	-0.4	-	4.8	5.4	5.0	-	1.8	2.8	0.5
	DERECHA	-	0.1	-1.4	-	-	2.6	3.0	-	-	-2.8	-2.3	-
V44 4DO 4	IZQUIERDA	-	0.9	1.0	0.7	-	-	-	-	-	-	-	-
V11-4BO-1	SUPERIOR	0.5	-0.5	-2.2	1.1	-	-	-	-	-	-	-	-
	INFERIOR	0.0	0.4	-	-0.4	3.0	3.7	-	2.6	0.4	-0.4	-	-0.5
	DERECHA	2.6	-	-	-	-0.1	-	-	-	-1.3	-	-	-
V44 4DO 3	IZQUIERDA	-0.5	-0.3	-0.4	1.1	-	-	-	-	-	-	-	-
V11-4BO-2	SUPERIOR	-	0.7	-0.1	-0.4	-	8.2	-	-	-	-2.5	-	-
	INFERIOR	-0.2	-0.6	1.4	0.0	-1.5	0.7	1.4	-0.1	-0.3	1.9	-0.9	0.1
						1			10				
ERROR N	ЛАХ (cm)	2.6	0.9	1.4	1.9	4.5	4.8	5.4	5.0	2.2	1.9	2.8	1.1
ERROR I	VIIN (cm)	-1.2	-0.8	-1.4	-0.6	-1.7	0.7	1.4	-0.1	-1.3	-2.8	-2.3	-1.5

^(*) Las zonas marcadas de verde corresponden a localizaciones por pérdida de energía en el fondo de la viga.

^(*) No se tomará ningún dato de las caras marcadas de rojo debido a que en estas, todas las esferas se encuentran dentro de la zona muerta y/o campo cercano.

VIGA TIPO 8 (ESCANEO HORIZONTAL, RECUBRIMIENTO Y ANCHO):

		ERRO	R EN ESFE	RAS DE POLI	ESTIRENO	EXPANDIDO	DE 5 cm D	E DIÁMETRO	(VIGAS TI	PO 8)
	DE VIGA Y IALIZADA		OR ESCANE RIZONTAL (OR ESCANE			CANEADO A	
		Α	В	С	Α	В	С	Α	В	С
	DERECHA	-0.5	0.7	2.9	-	-	-	-	-	-
V11-3BO-3	IZQUIERDA	-0.5	1.2	3.3	-	3.8	-	-	-2.0	-
A11-2PO-2	SUPERIOR	1.2	0.4	0.5	5.7	2.4	3.2	-1.5	-1.7	-0.2
	INFERIOR	-1.2	0.2	1.2	-	5.1	-	-	1.3	-
	DERECHA	-1.9	1.2	0.0	-	-	-	-	-	-
V11-3BO-4	IZQUIERDA	0.9	-0.2	-	-	-	-	-	-	-
v 11-3DU-4	SUPERIOR	-0.4	0.5	-0.4	-	9.1	7.5	-	-0.8	-1.2
	INFERIOR	0.3	-0.2	-2.4	3.0	4.4	1.9	1.1	0.2	1.1
	DERECHA	0.4	-1.0	-1.3	2.7	-	3.0	-1.1	-	-0.3
V12-3BO-1	IZQUIERDA	-0.2	-0.1	1.8	-		-	-	-	-
V12-3BU-1	SUPERIOR	1.6	0.5	-0.3	4.5	8.6	4.5	-2.6	-1.3	-1.1
	INFERIOR	-0.6	-0.4	0.9	2.7	-3.7	1.4	-0.3	0.0	-1.9
	DERECHA	-	-	1.8	-	-	-	-	-	-
V12-3BO-2	IZQUIERDA	-	1.5	-	-		-	-	-	-
V12-3BU-2	SUPERIOR	-	-0.4	-	-	8.6	-	-	-0.5	-
	INFERIOR	-0.3	0.3	-0.2	1.7	-2.3	4.4	-1.5	-0.8	-0.5
	DERECHA	-	-0.3	-0.5	-	-	-	-	-	-
V42 2DO 2	IZQUIERDA	-0.5	-0.6	-0.5	-	-	-	-	-	-
V12-3BO-3	SUPERIOR	-	-	-	-	-	-	-	-	-
	INFERIOR	-0.2	0.1	-0.1	3.3	4.6	-0.8	0.8	1.7	1.3
	DERECHA	1.2	-0.4	-0.9	2.7	1.3	1.4	-0.5	0.6	0.2
V42 2DO 4	IZQUIERDA	-	-0.8	1.9	-	-	5.4	-	-	-0.5
V12-3BO-4	SUPERIOR	0.0	-0.7	-1.2	-	9.9		-	-1.0	-
	INFERIOR	0.8	-0.1	-0.8	-0.6	3.2	2.7	0.9	1.1	0.3
				22			1			
ERROR N	ЛАХ (cm)	1.2	1.5	3.3	5.7	5.1	5.4	1.1	1.7	1.3
ERROR N	VIIN (cm)	-1.9	-1.0	-2.4	-0.6	-3.7	-0.8	-1.5	-2.0	-1.9

^(*) Las zonas marcadas de verde corresponden a localizaciones por pérdida de energía en el fondo de la viga.

^(*) No se tomará ningún dato de las caras marcadas de rojo debido a que en estas, todas las esferas se encuentran dentro de la zona muerta y/o campo cercano.

VIGAS CON CUBOS DE POLIESTIRENO (ESCANEO HORIZONTAL, RECUBRIMIENTO Y ANCHO):

CÓDIGO DE VIGA Y CARA ANALIZADA		ERROR EN CUBOS DE POLIESTIRENO EXPANDIDO DE 5,7 Y 10 cm		
		ERROR ESCANEADO HORIZONTAL (cm)	ERROR ESCANEADO RECUBRIMIENTO (cm)	ERROR ESCANEADO ANCHO DE BOLITAS (cm)
		Α	Α	Α
V14-5cm	DERECHA	2.8	-	-
	IZQUIERDA	-1.5	-	-
	SUPERIOR	3.3	-0.5	0.6
	INFERIOR	2.8	0.0	-0.4
V14-7cm	DERECHA	-0.2	2.7	-1.4
	IZQUIERDA	1.9	2.6	-1.0
	SUPERIOR	-1.2	-	-
	INFERIOR	-0.4	1.4	-0.1
V14-10cm	DERECHA	0.4	7.0	-0.2
	IZQUIERDA	0.0	1.5	0.6
	SUPERIOR	-0.9	-	-
	INFERIOR	1.6	1.7	-0.9
ERROR MAX (cm)		2.8	2.7	-0.1
ERROR MIN (cm)		-1.5	-0.5	-1.4

^(*) Las zonas marcadas de verde corresponden a localizaciones por pérdida de energía en el fondo de la viga.

^(*) No se tomará ningún dato de las caras marcadas de rojo debido a que en estas, los cubos se encuentran dentro de la zona muerta y/o campo cercano.