

ANEXO 1. CODIGO

```
function xdot = planta (ui,x)
% TERMINOS
% _____
2
% x = (u v w p q r xpos ypos zpos phi theta psi,
% Body-referenced Coordinates
% u = Surge velocity [m/s]
% v = Sway velocity [m/s]
% w = Heave velocity [m/s]
% p = Roll velocity [rad/s]
% q = Pitch velocity [rad/s]
% r = Yaw velocity [rad/s]
0
% Earth-fixed coordinates
% xpos = Position in x-direction [m]
% ypos = Position in y-direction [m]
% zpos = Position in z-direction [m]
% phi = Roll angle [rad]
% theta = Pitch angle
                         [rad]
[rad]
% psi = Yaw angle
2
%INPUT VECTOR
% ui = [delta s delta r ui]'
% Control Fin Angles
% delta s = angle of stern planes [rad]
% delta r = angle of rudder planes [rad]
8 -----
8 -----
% Obtener valores de variable estado
8
   = ui(3);
11
   = x(2);
v
   = x(3);
W
    = x(4);
р
    = x(5);
q
    = x(6);
r
phi = x(10);
theta = x(11);
psi = x(12);
state variable=[u v w p q r]';
% Obtener variables de control
delta s = ui(1);
delta r = ui(2);
۶ _____
% Matriz de transformación
§ _____
c1 = cos(phi);
c2 = cos(theta);
c3 = cos(psi);
s1 = sin(phi);
s2 = sin(theta);
```



```
s3 = sin(psi);
t2 = tan(theta);
J1= [c3*c2 (c3*s2*s1-s3*c1) (s3*s1+c3*c1*s2);
    s3*c2 (c1*c3+s1*s2*s3) (c1*s2*s3-c3*s1);
    -52
               c2*s1
                                  c1*c2
                                            ;];
J2= [1
              s1*t2
                                 c1*t2
                                           ;
    0
               c1
                                 -s1
                                            ;
                                  c1/c2
    0
               s1/c2
                                            ;];
J1J2=...
  [ J1 zeros(3);
    zeros(3)
               J2 ;];
§ _____
% Parámetros y coeficientes del vehículo
8 -----
W = 2.99e2; % Weight (N)
B = 3.08e2; % Bouyancy (N)
q = 9.8; % Force of gravity
m = W/q; % Mass of vehicle
     = -1.62; % Axial Drag kg/m
X1111
    = -3.55e1; % Added mass cross-term kg/rad
Xwq
    = -1.93; % Added mass cross-term kg*m/rad
Xqq
    = 3.55el; % Added mass cross-term kg/rad
Xvr
Xrr = -1.93; % Added mass cross-term kg*m/rad
Yvv
    = -1.31e3; % Cross-flow drag kg/m
    = 6.32e-1; % Cross-flow drag kg*m/rad2
Yrr
    = -2.86e1; % Body lift force and fin lift kg/m
Yuv
    = 3.55e1; % Added mass cross-term kg/rad
Ywp
Yur = 5.22; % Added mass cross-term and fin lift kg/rad
Ypq = 1.93; % Added mass cross-term kg*m/rad
    = -1.31e2; % Cross-flow drag kg/m
Zww
Zqq
    = -6.32e-1; % Cross-flow drag kg*m/rad2
Zuw
     = -2.86e1; % Body lift force and fin lift kg/m
    = -5.22; % Added mass cross-term and fin lift kg/rad
Zuq
Zvp
     = -3.55e1; % Added mass cross-term kg/rad
               % Added mass cross-term kg/rad
Zrp
     = 1.93;
% Centro de gravedad medido desde el centro de flotabilidad
xq = 0;
vq = 0;
zq = 1.96e-2;
% Coeficientes de las aletas de control
Yuudr = 9.64; % Rudder Lift Force kg/m*rad
Nuudr = -6.15; % Rudder Lift Moment kg/rad
Zuuds = -9.64; % Stern Lift Force kg/m*rad
Muuds = -6.15; % Stern lift Moment kg/rad
% Centro de flotabilidad con origen en la nariz del AUV
xb = -6.11e-1;
yb = 0;
zb = 0;
% Coeficientes del propulsor
Xprop = 3.86; % Propeller Thrust N
Kpp = -1.3e-1/40; % Rolling resistance kg*m2/rad2
```



```
Kprop = -5.43e-1; % Propeller Torque N*m
% Términos de masas añadidas y arrastre
Mww = 3.18; % Cross-flow drag kg
          = -1.88e2/12.5; % Cross-flow drag kg*m2/rad2
Maa
            acceler and acceler a
          = 4.86; % Added mass cross-term kg*m2/rad2
Mrp
          = -2;
Μυα
Muw
Mvp
          Nvv
Nrr
Nuv
Npq
          = -4.86;
Nwp = -1.93;
Nur = -2.00;
                                                % Added mass cross-term kg*m/rad
                                                % Added mass cross-term and fin lift kg*m/rad
% Momento de inercia con origen en centro de flotabilidad
Ixx = 1.77e-1;
Iyy = 3.45;
Izz = 3.45;
% Fuerzas y momentos no lineales de masas añadidas
Xudot = -9.30e-1; % Added mass kg

Yvdot = -3.55e1; % Added mass kg

Yrdot = 1.93; % Added mass kg

Zqdot = -1.93; % Added mass kg

Zwdot = -3.55e1; % Added mass kg

Kpdot = -7.04e-2/5; % Added mass kg*m2/rad
Mwdot = -1.93;% Added mass kg*mMqdot = -4.88;% Added mass kg*m
Nvdot = 1.93;% Added mass kg*mNrdot = -4.88;% Added mass kg*m
                                         _____
e _____
% Ecuaciones de fuerzas y momentos externos
8 _____
X = -(W-B)*sin(theta) + Xuu*u*abs(u) + (Xwq-m)*w*q + (Xqq +m*xg)*q^2
        + (Xvr+m)*v*r + (Xrr + m*xg)*r^2 -m*yg*p*q - m*zg*p*r + Xprop ;
Y = (W-B)*cos(theta)*sin(phi) + Yvv*v*abs(v) + Yrr*r*abs(r) +Yuv*u*v
        + (Ywp+m)*w*p + (Yur-m)*u*r - (m*zg)*q*r + (Ypq - m*xg)*p*q
        + Yuudr*u^2*delta r ;
Z = (W-B)*\cos(\text{theta})*\cos(\text{phi}) + Zww*w*abs(w) + Zqq*q*abs(q) + Zuw*u*w
        + (Zuq+m)*u*q + (Zvp-m)*v*p + (m*zq)*p^2 + (m*zq)*q^2
        + (Zrp - m*xg)*r*p + Zuuds*u^2*delta s ;
K = -(yg^*W - yb^*B) * \cos(theta) * \cos(phi) - (zg^*W -
        zb*B)*cos(theta)*sin(phi)+ Kpp*p*abs(p) - (Izz- Iyy)*q*r -
        (m*zg)*w*p + (m*zg)*u*r + Kprop ;
M = -(zg*W-zb*B)*sin(theta) - (xg*W-xb*B)*cos(theta)*cos(phi) +
       Mww*w*abs(w) + Mqq*q*abs(q) + (Mrp - (Ixx-Izz))*r*p + (m*zg)*v*r
        - (m*zg)*w*q + (Muq - m*xg)*u*q + Muw*u*w + (Mvp + m*xg)*v*p
        + Muuds*u^2*delta s ;
N = -(xg*W-xb*B)*cos(theta)*sin(phi) - (yg*W-yb*B)*sin(theta)
        + Nvv*v*abs(v) + Nrr*r*abs(r) + Nuv*u*v
        + (Npq - (Iyy- Ixx))*p*q + (Nwp - m*xg)*w*p + (Nur + m*xg)*u*r
        + Nuudr*u^2*delta r ;
FORCES = [X Y Z K M N]';
```


ANEXO 2. PARAMETROS DE LAS VIBRACIONES

Para la simulación realizada en ANSYS en el laboratorio INACOM, bajo la supervisión del Ing. José Chambergo, primero se realizó en AUTODESK INVENTOR el modelo. Se tuvo que seccionar lo elementos que entraban en contacto, para los contactos que realizará Ansys fuese solo con la sección en contacto y no con todo el elemento. Además, sea agruparon las piezas similares para reducir el tiempo de procesamiento, sin afectar el rendimiento del análisis. Todas las conexiones fueron tomadas como "Bonded" de contacto, ya que se tratan de superficies de contacto.

Un aspecto importante en la simulación por elementos finitos es el MESH, o malla, ya que a partir de los elementos que componen el objeto, se hacen elementos mucho más pequeños a los cuales se les aplica las funciones correspondientes al ensayo realizado, deformación, resistencia, transferencia de calor, análisis vibratorio, etc. La malla utilizada para este análisis, fue el método Hex Dominant, se prefirió este método debido a que crea una malla uniforme y bien definida tanto por el exterior con en el interior del elemento. Además, se comprobó con otros métodos de mallado, y este método presentó mejores resultados.

Object Name	Mesh
State	Solved
Display	
Display Style	Body Color
Defaults	
Physics Preference	Mechanical
Relevance	50
Sizing	
Use Advanced Size Function	On: Curvature
Relevance Center	Fine
Initial Size Seed	Active Assembly
Smoothing	High
Transition	Fast
Span Angle Center	Fine
Curvature Normal Angle	Default (13.50 °)
Min Size	Default (8.0887e-005 m)
Max Face Size	Default (8.0887e-003 m)
Max Size	1.5e-002 m
Growth Rate	Default (1.63750)
Minimum Edge Length	4.6202e-003 m
Inflation	
Use Automatic Inflation	None

Tabla 1: Parámetros generales de la Malla. Fuente: Informe de ANSYS

Inflation Option	Smooth Transition		
Transition Ratio	0.272		
Maximum Layers 5			
Growth Rate	1.2		
Inflation Algorithm	Pre		
View Advanced Options	No		
Patch Conforming Op	tions		
Triangle Surface Mesher	r Program Controlled		
Patch Independent Options			
Topology Checking	J No		
Advanced			
Number of CPUs for Parallel Part Meshing	Program Controlled		
Shape Checking	Standard Mechanical		
Element Midside Nodes	s Program Controlled		
Straight Sided Elements	No		
Number of Retries	0		
Extra Retries For Assembly	Yes		
Rigid Body Behavior	Dimensionally Reduced		
Mesh Morphing	Mesh Morphing Disabled		
Defeaturing			
Pinch Tolerance	Default (7.2798e-005 m)		
Generate Pinch on Refresh	No		
Automatic Mesh Based Defeaturing	On		
Defeaturing Tolerance	Default (4.0443e-005 m)		
Statistics			
Nodes	1957672		
Elements	532562		
Mesh Metric	Element Quality		
Min	1.594e-003		
Max	1.		
Average	0.59456		
Standard Deviation	0.31235		

Tabla 2:Parametros del método de mallado. Fuente: Informe de ANSYS

Fuente. Informe de Ansis		
Object Name	Hex Dominant Method	
State	Fully Defined	
Scope		
Scoping Method	Geometry Selection	
Geometry	28 Bodies	
Definition		
Suppressed	No	
Method	Hex Dominant	
Element Midside Nodes	Use Global Setting	
Free Face Mesh Type	All Quad	

ANEXO 3. ESPECIFICACIONES TECNICAS

Por lo mostrado en la Tabla 3, se prefiere el Arduino Mega debido a la gran cantidad de pines que posee, la cantidad de memoria RAM y a la velocidad del reloj interno.

Prestaciones	Arduino UNO	LiliPad Arduino	Arduino Mega 2560	Arduino Fio	Arduino ADK
Microcontroller	ATmega328V	ATmega168V ATmega328V	ATmega256	ATmega328P	ATmega256 0
Operating Voltage	5 V	2.7-5.5 V	5V	3.3V	5V
Input Voltage (recommended)	7-12V	2.7-5.5 V	7-12V	3.35-12 V	7- <u>12</u> V
Input Voltage (limits)	6-20V		6-20V		6-20V
Input Voltage for Charge				3.7-7V	
Digital I/O Pins	14 (of which 6 provide PWM output)	14 (of which 6 provide PWM output)	54 (of which 15 provide PWM output)	14 (of which 6 provide PWM output)	54 (of which 15 provide PWM output)
Analog Input Pins	6	6	16	8	16
DC Current per I/O Pin	40 mA	40 mA	40 mA	40 mA	40 mA
DC Current for 3.3V Pin	50 mA		50 mA		50 mA
Flash Memory	32 KB (ATmega328) of which 0.5 KB used by bootloader)	16 KB (of which 2 KB used by bootloader)	256 KB of which 8 KB used by bootloader	32 KB (of which 2 KB used by bootloader)	256 KB of which 8 KB used by bootloader
SRAM	2 KB	1 KB	8 KB	2 КВ	8 KB
EEPROM	1 KB	512 bytes	4 КВ	1 KB	4 KB
Clock Speed	16 MHz	8 MHz	16 MHz	8 MHz	16 MHz

Tabla 3: Comparación de Tarjetas Arduinos Fuente: http://www.vb-mundo.com/comparacion-de-diferentes-avr-de-arduino/

En la Tabla 4 se describe una comparación entre la tarjeta BeagleBone Black y Raspberry PI.

Tabla 4: Comparacion BeagleBone Black vs Rasperry PI Fuente: http://makezine.com/2014/02/25/how-to-choose-the-right-platform-raspberry-pi-or-beaglebone-black/

	BeagleBone Black	Raspberry Pi	
Base Price	45	35	
Processor	1GHz TI Sitara AM3359 ARM Cortex A8	700 MHz ARM1176JZFS	
RAM	512 MB DDR3L @ 400 MHz	512 MB SDRAM @ 400 MHz	
Storage	2 GB on-board eMMC, MicroSD	SD	
Video Connections	1 Micro-HDMI	1 HDMI, 1 Composite	
Supported Resolutions	1280×1024 (5:4), 1024×768 Extensive from 640×350 up (4:3), 1280×720 (16:9), 1920×1200, this includes 1080p 1440×900 (16:10) all at 16 bit 1000×1200, this includes 1080p		
Audio	Stereo over HDMI	Stereo over HDMI, Stereo from 3.5 mm jack	
Operating Systems	Angstrom (Default), Ubuntu, Android, ArchLinux, Gentoo, Minix, RISC OS, others	Raspbian (Recommended), Ubuntu, Android, ArchLinux, FreeBSD, Fedora, RISC OS, others	
Power Draw	210-460 mA @ 5V under varying conditions	150-350 mA @ 5V under varying conditions	
GPIO Capability	65 Pins	8 Pins	
Peripherals	1 USB Host, 1 Mini-USB Client, 1 10/100 Mbps Ethernet	2 USB Hosts, 1 Micro-USB Power, 1 10/100 Mbps Ethernet, RPi camera connector	

Debido a que se realizarán operaciones matriciales es importante analizar la capacidad de realizar operación con punto flotante de la tarjeta BeagleBone Black, mostrada en la Figura 1.

Floating Point Performance

Floating Point	140	
Mandelbrot single-core scalar	67 44.7 Mflops	
Dot Product single-core scalar	66 32.0 Mflops	
LU Decomposition single-core scalar	30 27.3 Mflops	
Primality Test single-core scalar	294 44.1 Mflops	
Sharpen Image single-core scalar	170 397 Kpixels/sec	
Blur Image single-core scalar	218 173 Kpixels/sec	

ANEXO 4. LISTA DE PLANOS

Número	Nombre
L1-A1	Ensamblaje General
L2-A1	Arreglo de platos
L2.1-A3	Eje de tarjetas
L2.2-A3	Plato de tarjetas
L2.3-A3	Separador intermedio
L2.4 -A3	Separador final

