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Abstract

This paper represents empirical studies of stochastic volatility (SV) models for daily stocks
returns data of a set of Latin American countries (Argentina, Brazil, Chile, Mexico and Peru)
for the sample period 1996:01-2013:12. We estimate SV models incorporating both leverage
e¤ects and skewed heavy-tailed disturbances taking into account the GH Skew Student�s t-
distribution using the Bayesian estimation method proposed by Nakajima and Omori (2012). A
model comparison between the competing SV models with symmetric Student´s t-disturbances
is provided using the log marginal likelihoods in the empirical study. A prior sensitivity analysis
is also provided. The results suggest that there are leverage e¤ects in all indices considered but
there is not enough evidence for Peru, and skewed heavy-tailed disturbances is con�rmed only
for Argentina, symmetric heavy-tailed disturbances for Mexico, Brazil and Chile, and symmetric
Normal disturbances for Peru. Furthermore, we �nd that the GH Skew Student�s t-disturbance
distribution in the SV model is successful in describing the distribution of the daily stock return
data for Peru, Argentina and Brazil over the traditional symmetric Student´s t-disturbance
distribution.
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1 Introduction

Returns from �nancial market variables such as stock and exchange rate are characterized by
some empirical properties which are generally presented in �nancial time series. There are three
important stylized facts or properties that are found in almost all set of daily returns: i) returns
are not normally distributed; instead, the characteristics of the return distributions are excess of
kurtosis (leptokurtic) and some degree of skewness compared with the Normal distribution1, ii)
there is almost no correlation between daily returns at di¤erent lags and iii) functions of returns
can have substantial autocorrelations. For example, the autocorrelation of both absolute returns
and squared returns are positive for many lags and statistically signi�cative (Taylor, 2005). These
properties are explained in most cases by the presence of time-varying volatility and volatility
clustering over time.

Modelling time-varying volatility has been widely used in the literature of �nancial time series,
as the demand for volatility forecasts has increase to assess the �nancial risk. Two approaches that
have proven useful are the autoregressive conditional heteroskedasticity (ARCH) family, including
ARCH model developed by Engle (1982) and generalized ARCH (GARCH) model of Bollerslev
(1986), and the stochastic volatility (SV) model, �rst introduced by Taylor (1982), then Taylor
(1986) was the �rst lengthy published treatment of the problem of volatility modelling in �nance.
For extensive reviews, see Bollerslev et al. (1994) and Engle (1995) for the ARCH family models
and Shephard (2005) provide a comprehensive explanation of the SV models. Both approaches try
to model and reproduce the principal properties of the asset returns; however, the di¤erence is that
ARCH models explicitly model and specify a process for the conditional variance of returns given
past returns observed; while the SV models involve specifying a stochastic process for the volatility
and this is modelled as an unobserved variable.

Departures from normality have originated propositions of other distributions in order to capture
heavy-tailedness of the asset return distribution in the SV class of models. Heavy-tailed distur-
bances are often incorporated using distributions such as Student�s t-distribution (see, for example,
Harvey et al. (1994), Liesenfeld and Jung (2000), Chib et al. (2002), Berg et al. (2004), Jacquier
et al. (2004), Omori et al. (2007), Asai (2008), Choy et al. (2008), Nakajima and Omori (2009), Asai
and McAleer (2011), Wang et al. (2011), Nakajima (2012) and Delatola and Gri¢ n (2013)), the
Normal Inverse Gaussian distribution (NIG, see Barndor¤-Nielsen (1997) and Andersson (2001)),
the Generalized Error Distribution (GED, see Liesenfeld and Jung (2000)), the Generalized-t distri-
bution (GT, see Wang (2012) and Wang et al. (2013)), a class of mixtures of Normal distributions
(Abanto-Valle et al., 2010; Asai, 2009) and, to allow simultaneously treatment of skewness and
heavy tails in the conditional distribution of returns, the Skew-GED distribution (Cappuccio et al.,
2004, 2006), the Extended Generalized Inverse Gaussian (EGIG, see Silva et al. (2006)), the Skew
Student�s t-distribution (Tsiotas, 2012; Abanto-Valle et al., 2013) and the Generalized Hyperbolic
(GH ) Skew Student�s t-distribution (Nakajima and Omori, 2012; Trojan, 2013)2.

Another characteristic of the return distribution for �nancial variables is the asymmetric re-

1 In most cases, it is a negative skewness and it can be viewed as the case where negative returns of a given
magnitude are more likely than positive ones of the same magnitude. Regarding excess of kurtosis, it can be viewed
as the case where extreme values are more likely than would be dictated by a Normal distribution.

2 In fact, the GT-family nests a number of well-known distributions including Normal, Student-t, Laplace and
GED distributions. The class of scale mixtures of normal distributions used by Abanto-Valle et al. (2010) include
Normal, Student-t, Slash and Variance Gamma distributions. The Weibull and the Generalized Gamma distributions
are particular cases of the EGIG family, used by Silva et al. (2006).

1



sponse of volatility known as the �leverage e¤ect�: negative past innovations on asset returns tend
to increase the current volatility. First noted by Black (1976) and studied by Nelson (1991) and Yu
(2005), leverage e¤ect refers to the tendency for changes in asset prices to be negatively correlated
with changes in asset volatility. Leverage e¤ect is an important stylized fact of especially stock
return indices and has motivated consideration of asymmetric extensions of the basic SV model.

Time-varying volatility for �nancial variables of developed economies have been studied ex-
tensively; however, empirical studies of the Latin American stock market indices so far are very
scarce. The volatility characteristics of the �nancial markets in Latin America are far from being
thoroughly analyzed despite their growth in recent years. The main aim of this paper is to estimate
SV models incorporating both leverage e¤ects and skewed heavy-tailed disturbances taking into ac-
count the GH Skew Student�s t-distribution for the Latin American stock market indices using the
Bayesian estimation method proposed by Nakajima and Omori (2012). The GH skew Student�s
t-distribution includes Normal and Student�s t-distributions as special cases. Therefore, the SV
model using the GH Skew Student�s t-distribution (SVSKt model) can take a �exible form to �t
the returns and volatility characteristics because the SVSKt model is able to model substantially
skewed and heavy tailed data and includes the SV model with Normal disturbances (SV-Normal)
and the SV model with symmetric Student�s t-disturbances (SVt). We apply the SVSKt model
to daily returns of �ve Latin American stock market indices: Peru, Argentina, Mexico, Chile and
Brazil. We also include the U.S. S&P500 returns in order to perdorm some comparisons.

The GH Skew Student�s t-distribution has been studied by Aas and Ha¤ (2006) and brie�y
mentioned by Prause (1999) and Jones and Faddy (2003). It belongs to the class of GH distribu-
tions introduced by Barndor¤-Nielsen (1977) and extensively discussed by Prause (1999). The GH
distribution is a Normal variance-mean mixture and possesses a number of attractive properties:
it is closed under conditioning, marginalization, and a¢ ne transformations, ii) GH distribution
can be both symmetric and skew, and its tails are generally semiheavy and iii) GH distribu-
tion embraces many special cases including Normal, Hyperbolic, Normal Inverse Gaussian (NIG),
Variance-Gamma, Student-t and skew Student�s t-distributions (Aas and Ha¤, 2006; Nakajima and
Omori, 2012). However, estimation and identi�cation of its parameters can be di¢ cult in general
due to the �atness of the likelihood function, some parameters are hard to separate and the likeli-
hood function may have several local maxima (Prause, 1999; Aas and Ha¤, 2006; Deschamps, 2012).
Nevertheless Aas and Ha¤ (2006) noted that the GH Skew Student�s t-distribution is analytically
tractable and it may considerably alleviate the identi�cation problem mentioned above. Another
advantage is that the GH Skew Student�s t-distribution exhibit unequal thickness in both tails,
unlike to other skewed extensions of the Student-t distribution. This distribution has the property
that one tail has polynomial and the other exponential behavior and this o¤ers more �exibility3.

A main di¢ culty of the SV framework is the parameter estimation because no explicit expression
for the likelihood function of SV model is directly available due to the fact that the variance is
an unobserved component. It is possible to compute the likelihood function but this requires the
use of simulation techniques, like simulated maximum likelihood, method of simulated moments
or Markov Chain Monte Carlo (MCMC) techniques. For an overview of estimation methods of
SV models, see Shephard (1996, 2005); Ghysels et al. (1996); Broto and Ruiz (2004). Simulation

3Several articles have studied di¤erent skew t-type distributions where distributions have two tails behaving as
polynomials. This fact means that they �t heavy-tailed data well, but they do not handle substantial skewness. By
substantial skewness, Aas and Ha¤ (2006) mean cases with one heavy tail and one nonheavy tail. Their de�nition
relates to the relative fatness of the two tails of the density rather than some threshold for the skewness coe¢ cient.
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techniques require a computational burden since we need to repeat the �ltering procedure many
times to evaluate the likelihood function for each set of parameters until it reaches the maximum
(Nakajima, 2012). Computer-intesive methods are thus needed even for the simplest version of the
model4. In addition, Nakajima and Omori (2012) noted that the GH Skew Student�s t-distribution
is di¢ cult to implement in the SV context due to the large numbers of latent volatility variables. To
overcome this di¢ culty, Nakajima and Omori (2012) have proposed a Bayesian estimation method
using the MCMC algorithm for a precise and e¢ cient estimation of the SV model including both
leverage e¤ects and skewed heavy-tailed disturbances using the GH Skew Student�s t-distribution.
The key point to implement an e¢ cient MCMC algorithm in the SVSKt model is to express the
GH Skew Student�s t-distribution of the disturbance as a Normal variance-mean mixture of the
Generalized Inverse Gaussian (GIG), speci�cally the Inverse Gamma (IG) distribution as a mixing
distribution among the class of GIG distributions to nest and extend various existing SV models.

The paper is organized as follows. In Section 2, we describe a basic SV-Normal model and
introduce the GH Skew Student�s t-distribution in the SV context (SVSKt model). In addition,
we describe the Bayesian estimation method using the MCMC algorithm proposed by Nakajima
and Omori (2012). Section 3 presents empirical results based on �ve Latin American stock market
indices: Peru, Argentina, Mexico, Chile and Brazil, where the SVSKt model is applied to daily
return data using the estimation method proposed by Nakajima and Omori (2012) and the com-
peting SVt models are compared. In order to compare results, the SVSKt is also applied to US
S&P500 daily return data. A prior sensitivity analysis is also provided in this Section. Conclusions
are presented in Section 4. In the Appendix, we present the properties of the GH Skew Student�s
t-distribution, the MCMC sampling procedure in detail and the Multi-move sampler for the SVSKt
model used by Nakajima and Omori (2012).

2 Bayesian Inference for the SV Model with Leverage and Skewed Heavy-Tailed
Disturbances using the GH Skew Student�s t-Distribution

2.1 A Basic SV Model

The SV models assume that the volatility of stock returns has been generated under a latent
stochastic process. The basic discrete-time SV model with Normal disturbances can be written as

yt = exp(ht=2)�t; t = 1; : : : ; n; (1)

ht+1 = �+ �(ht � �) + �t; t = 0; : : : ; n� 1; (2)

�t � N(0; 1); (3)

�t � N(0; �2); (4)

where yt is the asset return and ht is the unobserved logarithm of the volatility. The volatility
process is commonly assumed to follow a stationary AR(1) process by imposing that the persistence
parameter satis�es the condition j�j < 1; this imply that the log-volatility process is stationary
and the initial value, h1, is assumed to follow a stationary distribution by setting h0 = � and
�0 � N(0; �2=(1� �2)). Finally, �t and �t are uncorrelated Normal distributed disturbances.

4Despite the computational costs that these techniques involving, increasing computer power and the further
development of e¢ cient sampling techniques weaken this drawback noticeably.
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There are characteristics of the return distribution for �nancial variables that the basic SV model
with Normal disturbances does not capture such as excess of kurtosis and heavy-tailedness, skewness
and the leverage e¤ects. The excess of kurtosis and skewness of the asset return distribution justify
the introduction of skewed heavy-tailed disturbances such as the GH Skew Student�s t-distribution.
On the side of the leverage e¤ects, the basic SV model does not allow that the volatility reacts with
positive or negative movements in returns. These leverage e¤ects can be incorporated in the SV
model assuming that there is any association between the return shocks (�t) and volatility shocks
(�t).

2.2 A SV Model with Leverage and Skewed Heavy-Tailed Disturbances

According to Nakajima and Omori (2012), the SV model with leverage e¤ects can be written as:

yt = exp(ht=2)�t; t = 1; : : : ; n; (5)

ht+1 = �+ �(ht � �) + �t; t = 0; : : : ; n� 1; (6)� �t�t � � N (0;�) ; with � =
h
1 ��
�� �2

i
: (7)

This model is similar to previous basic SV model, but now we allow that �t and �t are correlated
disturbances where the parameter � measures the correlations between �t and �t. We have volatility
asymmetry if � 6= 0 and speci�cally, when � < 0, this indicates a leverage e¤ect: a negative return
today will increase volatility tomorrow, and when � = 0, there is not this type of e¤ects (Yu, 2005).

Regarding the SV model incorporating both leverage e¤ects and skewed heavy-tailed distur-
bances using the GH Skew Student�s t-distribution, skewed heavy tails in the return distribution
is incorporated into the SV model by replacing the Normal disturbance �t in (5) by a disturbance
from a GH Skew Student�s t-distribution, denoted by !t. This GH Skew Student�s t-distribution
is a limiting case of the more general class of the GH distribution. Following Prause (1999) and
Aas and Ha¤ (2006), the probability density function of a GH random variable !�t is given by:

fGH(!
�;�; �; �; �!; �) =

(�2 � �2)�=2K��1=2

�
�
q
�2 + (!� � �!)2

�
exp (�(!� � �!))

p
2����1=2��K�

�
�
p
�2 � �2

��q
�2 + (x� �!)2

�1=2�� ; (8)

where Kj is the modi�ed Bessel function of the third kind of order j and the parameters must ful�ll
certain conditions; for more details see Appendix A. The GH distribution may be represented as
a Normal variance-mean mixture with the Generalized Inverse Gaussian (GIG) distribution as a
mixing distribution. This means that the GH variable !�t can be represented as:

!�t = �! + �z
�
t +

p
z�t �t; �t � N(0; 1); z�t � GIG(�; �; 
); (9)

with �t and zt independent and 
 =
p
�2 � �2. The GH Skew Student�s t-distribution is the

special case where � = ��=2(� > 0) and � ! j�j (the latter implies 
 = 0) in equation (8). The
probability density function of a GH Skew Student�s t- random variable !t is given by:
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fGHskewt(!; �; �; �!; �) =

2
1��
2 �� j�j

v+1
2 K v+1

2

�r
�2
�
�2 + (! � �!)2

��
exp (� (! � �!))

�(v2 )
p
�

�q
�2 + (! � �!)2

� v+1
2

; � 6= 0;

(10)
and

fGHskewt(!; �; �; �!) =
�(v+12 )p
���(v2 )

"
1 +

(! � �!)2

�2

#�(v+1)=2
; � = 0: (11)

where �(:) is the gamma function. The density fGHskewt(!; �; �; �!) in (11) is known as the non-
central Student�s t-distribution with � degrees of freedom.

As observed in the literature, estimation and identi�cation of GH distribution parameters can
be di¢ cult in general (Prause, 1999; Aas and Ha¤, 2006; Deschamps, 2012) even for a GH Skew
Student�s t-distribution with � = ��=2 (� > 0) and 
 = 0 (Nakajima and Omori, 2012). In order
to overcome these di¢ culties, Nakajima and Omori (2012) make the additional assumption that
� =

p
� and, show that their proposed parameterization is appropriate for the SV model with the

GH Skew Student�s t-distribution because it allows a parsimonious representation that is more
amenable to estimation and leads an e¢ cient MCMC sampling. This additional assumption yields
z�t = zt � GIG(��=2;

p
�; 0), or equivalently IG(�=2; �=2) where IG denotes the Inverse Gamma

distribution. Therefore, the GH Skew Student�s t-disturbance, !t, can be express in the form of
the normal variance-mean mixture as:

!t = �! + �zt +
p
zt�t; �t � N(0; 1); zt � IG(�=2; �=2); (12)

where �! and � are the location and skew parameters, respectively and the IG distribution is the
mixing distribution among the class of GIG distributions. Nakajima and Omori (2012) argue that
the structure of (12) leans itself well to the construction of a MCMC algorithm in the Bayesian
inference context. To allow E(!t) = 0, it is assumed that �! = ���z, where �z � E(zt) = �=(��2).
The variance of !t is only �nite when � > 4, as opposed to the symmetric Student�s t-distribution
which only requires � > 2, because of that an additional constraint is imposed, � > 4, in order to
ensure existence of the second moment of !t.

Regarding the tails of the GH Skew Student�s t-distribution, this distribution has the property
that it exhibits unequal thickness in both tails where one tail has polynomial and the other expo-
nential behavior. It is the only subclass of the GH family of distributions having this property.
Thus, the GH Skew Student�s t-distribution has one heavy and one semiheavy tail. This makes it
unique for modeling substantially skewed and heavy-tailed data as found in �nancial markets (Aas
and Ha¤, 2006; Trojan, 2013). The tails of the GH Skew Student�s t-distribution are characterized
uniquely by the parameters � and �, which determine jointly the degree of skewness and heavy
tailedness. A lower value of � (when � �xed) implies a more negative skewness as well as heavier
tails. On the other hand, as � becomes larger (when � �xed) the density becomes less skewed
and has lighter tails. The Figure 1 shows densities of the GH Skew Student�s t-distribution using
several combinations of the parameter values of � and �, and demonstrates how both parameters
determine jointly the skewness and kurtosis of the distribution.
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Figure 1. Densities of the GH Skew Student�s t-distribution. Parameter � varying using � = 0 (symmetric
t), �2 and �4 with � = 10 �xed (top); and parameter � varying using � = 5, 10 and 15 with � = �2

�xed (bottom).

Taking into account the above issues, the SV model incorporating both leverage e¤ects and
skewed heavy-tailed disturbances using the GH Skew Student�s t-distribution (SVSKt model) can
be written as:

yt = exp(ht=2)f�(zt � �z) +
p
zt�tg; t = 1; : : : ; n; (13)

ht+1 = �+ �(ht � �) + �t; t = 0; : : : ; n� 1; (14)

zt � IG(�=2; �=2); (15)� �t�t � � N (0;�) ; with � =
h
1 ��
�� �2

i
: (16)

The degree of freedom � > 4 is unknown to be estimated. The SVSKt model includes the SV
model with Normal disturbances (SV-Normal) when � = 0 and zt � 1 for all t and the SV model
with symmetric Student�s t-disturbances (SVt) when � = 0.

2.3 Bayesian Estimation of the SVSKt Model

We use the Bayesian estimation method proposed by Nakajima and Omori (2012) using the MCMC
algorithm for the SVSKt model. In this subsection, we present some preliminaries issues about the
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estimation of SV models within the Bayesian context and a brie�y discussion about the steps of
the MCMC algorithm of Nakajima and Omori (2012).

Estimation of SV models consists of two stages: estimation of the set of parameters of the model,
and estimation of the unobserved volatility time series. Techniques based on MCMC algorithms
o¤er a framework both for estimating the parameters of the SV models and for assessing the
latent volatilities. These methods have had a widespread in�uence on the theory and practice of
Bayesian inference that are based on the posterior distributions of parameters given the observed
data using the Bayes Theorem, where �(� j y) _ f(y j �)�(�) is the the posterior distribution of
parameters conditional on the data y, � is the vector that contains all parameters of the model,
f(y j �) is the likelihood function, and �(�) are the priors which are beliefs about the distributions
of the parameters. The idea behind the MCMC algorithms is to produce random variables from a
given multivariate density (the posterior density in Bayesian applications) by repeatedly sampling
a Markov chain whose invariant distribution is the target density of interest (Kim et al., 1998).
There are typically many di¤erent ways of constructing a Markov chain with this property; but a
key point is to isolate those that are simulation-e¢ cient in the context of SV models, therefore the
design of the MCMC algorithm is important for the speed of convergence of the chains.

In the SV context, the likelihood function to be maximized is given by:

f(y j �) =
Z
f(y j h; �)f(h j �)dh: (17)

where � is the vector that contains all parameters of the SV model. Jacquier et al. (1994) argue
that the likelihood function has no analytical representation and is intractable. This fact precludes
the direct analysis of the posterior density �(� j y) by MCMC methods. This problem can be
overcome by focusing instead on the density �(�; h j y); where h = (h1; : : : ; hn) is the vector of n
latent log-volatilities (Kim et al., 1998). The MCMC procedures can be developed to sample this
density without computation of the likelihood function f(y j �). These draws can be used to make
inferences by appealing to suitable ergodic Theorems for Markov chains. For example, posterior
moments and marginal densities can be estimated by averaging the relevant function of interest
over the sampled random variables. The posterior mean of � is estimated by the sample mean of
the simulated � values.

Several approaches of MCMC algorithms have been suggested for the estimation of the SV
model within the Bayesian context. Jacquier et al. (1994) use the single-move Gibbs sampling
within the Metropolis�Hastings algorithm to sample from the log-volatilities h = (h1; : : : ; hn).
This algorithm consists of generating sample of one state, ht, at a time given others, hk (k 6= t).
Some researchers have argued that when parameters are correlated, the single-move procedure
results in a slower speed of convergence of the Markov chain. Kim et al. (1998) developed the
mixture sampler that approximates the distribution of log-squared returns by mixture of Normal
distributions, allowing jointly drawing on the components of the whole vector of log-volatilities.
Another approach, developed by Shephard and Pitt (1997) and Watanabe and Omori (2004) in the
context of state space modeling, uses the multi-move sampler for generating the log-volatility in
the SV model updating several variables at a time. This algorithm can produce e¢ cient samples
from the target conditional posterior distribution by dividing the process of h = (h1; : : : ; hn) into
several blocks and generate sample of each block given other blocks. Regarding the SV model with
leverage, Omori and Watanabe (2008) developed the associated multi-move sampler and showed
that it produces e¢ cient samples. The mixture sampler and multi-move sampler are more e¢ cient
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than the single-move sampler that generate sample of one state, ht, at a time given others, hk
(k 6= t) (Nakajima, 2012).

The Bayesian estimation method proposed by Nakajima and Omori (2012) for the SVSKt
model extends the method developed by Omori and Watanabe (2008) for sampling h using the
multi-move sampler. They noted that the key point to implement an e¢ cient MCMC algorithm in
the SVSKt model is to express the GH Skew Student�s t-distribution of the disturbance as a Normal
variance-mean mixture of the GIG, as stated in (12), speci�cally the IG distribution as a mixing
distribution among the class of GIG distributions. They consider the variable zt, following the
mixing distribution, as a latent variable. The conditional posterior distribution of each parameter
is reduced to a much more tractable form conditional on zt than when the model is considered in
the direct likelihood form of the GH Skew Student�s t-distribution5. This treatment allows to draw
sample from the conditional posterior distribution of zt for t = 1; : : : n: Nakajima and Omori (2012)
use the following sampling algorithm for the SVSKt model using the MCMC method.

Let � = (�; �; �; �; �; �), fytgnt=1; fhtgnt=1, fztgnt=1 and �(�), �(#) and �(�) are the prior proba-
bility densities of �, # � (�; �)0 and � respectively. Random samples are drawn from the posterior
distribution of (�; h; z) given y. The sampling steps are given by:

1. Initialize �; h and z.

2. Generate �j�; �; �; �; �; h; z; y:

3. Generate (�; �)j�; �; �; �; h; z; y:

4. Generate �j�; �; �; �; �; h; z; y:

5. Generate �j�; �; �; �; v; h; z; y:

6. Generate �j�; �; �; �; �; h; z; y:

7. Generate zj�; h; y:

8. Generate hj�; z; y:

9. Go to 2.

The full algorithm describing more details of each sampling step can be found in Appendix B and
the details of the multi-move sampler are described in the Appendix C.

3 Empirical Application to Stock Return Data

3.1 The Data

For Bayesian estimation of the SVSKt model, we consider the daily returns of �ve Latin American
stock market indices: Peru, Argentina, Mexico, Chile and Brazil. The Latin American stock market
indices are in Table 1. We use a sample from 1996/1/2 to 2013/12/30 for all stock market indices

5Nakajima and Omori (2012) noted that when � = 0, the closed form of the density f(yt j ht), which is marginalized
over zt, is available. However, in the case � 6= 0, the closed form of the density f(yt j ht; ht+1) is not available.
Therefore, the latent variable zt plays an important role in exploring the posterior distribution using the MCMC
algorithm.

8



of Latin American except to Peru where the period is from 2001/1/2 to 2013/12/30 because there
was a change in the methodology of the IGBVL index in November 1998 and this could a¤ect the
results. In our application, we also analyze the U.S. S&P500 index from 1996/1/2 to 2013/12/30
to compare the results of literature with Latin American stock market indices. One reason is that
the U.S. stock market could be considered as a good benchmark.

Table 1. Latin American Stock Market Indices

Index Country Period
IGBVL Peru 2001/1/2 - 2013/12/30
MERVAL Argentina 1996/1/2 - 2013/12/30
MEXBOL Mexico 1996/1/2 - 2013/12/30
IPSA Chile 1996/1/2 - 2013/12/30
IBOVESPA Brazil 1996/1/2 - 2013/12/30

Stock daily returns are computed as the log di¤erence yt = logPt � logPt�1; where Pt is the
closing stock price of day t. The data were obtained from Bloomberg and the sample size di¤ers
between countries because holidays and closed days of stock markets. Table 2 shows the number
of observations and some descriptive statistics and Figure 2 shows the time series plots of the daily
stock returns.

Table 2. Summary Statistics for Daily Stock Returns Data

Index Obs. Mean S.D. Skewness Excess Kurtosis Min. Max.
IGBVL 3246 0.0008 0.0149 -0.5287 10.8286 -0.1329 0.1282
MERVAL 4439 0.0005 0.0215 -0.2801 5.3395 -0.1476 0.1612
MEXBOL 4529 0.0006 0.0151 0.0300 6.9916 -0.1431 0.1215
IBOVESPA 4456 0.0006 0.0213 0.2994 13.1430 -0.1723 0.2882
IPSA 4489 0.0003 0.0111 0.1332 7.9881 -0.0767 0.1180
S&P500 4531 0.0002 0.0127 -0.2272 7.4884 -0.0947 0.1096

Skewness statistics are sometimes used to assess the symmetry of distributions while kurtosis
statistics are often interpreted as a measure of similarity to a Normal distribution. These statistics
are sensitive to extreme observations because they make use of the third and fourth powers of the
observations, respectively. The IGBVL and the MERVAL series are negatively skewed while the
MEXBOL, IBOVESPA and the IPSA series are positively skewed. However, the skewness of the
MEXBOL is very close to zero. The IGBVL index is the most negatively skewed with �0:5287
and the IBOVESPA index is the most positive skewed with 0:2994. Regarding the kurtosis, all the
daily returns of Latin American indices considered have positive kurtosis where IBOVESPA has
the highest value 13:1430. All �ve sets of returns of Latin American indices are leptokurtic, since
all the estimates of kurtosis in Table 2 exceed 3, which is the kurtosis value for Normal distribution.
Regarding the S&P500 daily returns, this index also has negative skewness and positive kurtosis.
The summary statistics show that daily stock returns appear to be distributed with fat-tails for
the �ve Latin American empirical returns distribution of the data and negative skewness for the
IGBVL and the MERVAL. It is clear that the returns-generating process is not even approximately
Gaussian.
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Figure 2. Times series plots for IGBVL (2001/01/02 - 2013/12/30) and MERVAL, IBOVESPA, MEXBOL,
IPSA and S&P500 (1996/01/02 - 2013/12/30) daily returns.

3.2 Parameter Estimates

For parameter estimates of the SVSKt model, we use the same prior distributions as Nakajima and
Omori (2012). The following prior distributions are assumed and commonly used in the literature
(see, for example, Kim et al. (1998), Meyer and Yu (2000), Yu (2005), Omori et al. (2007), Nakajima
and Omori (2009), Nakajima (2012), Trojan (2013)):

1. Let � = 2���1 and we specify a Beta(�; �) prior distribution for �� with � = 20 and � = 1:5
which implies that the prior mean and prior standard deviation of � are (0:8605; 0:1074): Our
prior on � has the support on the interval (�1; 1) and mirrors a belief in moderate volatility
persistence with mean 0:86:

2. We assume a conjugate Inverse-Gamma prior for �2; that is �2 � IG(�; �) with shape para-
meter � = 2:5 and scale parameter � = 0:025 which implies that the prior mean and prior
standard deviation of �2 are (0:0167; 0:0236):

3. We employ a Normal prior distribution for �, that is � � N(�10; 1)6 and a U(�1; 1) prior
distribution for �:

4. We specify a standard Normal prior distribution for �; that is � � N(0; 1) and a Gamma(�; �)
prior distribution for � with shape parameter � = 16 and rate parameter � = 0:8. We
assume a additional constraint � > 4 in the prior distribution of � for ensure existence of

6Kim et al. (1998) and Meyer and Yu (2000) employ a slightly informative prior for �; � � N(0; 10).
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the second moment of !t, that is E(!2t ) < 1: Thus, the prior distribution of � is � �
Gamma(16; 0:8)I(� > 4) which implies that the prior mean and prior standard deviation of
� are (20; 5):

The MCMC simulation are conducted with 20 000 samples after discarding the initial 5 000
samples as a burn-in period for MERVAL, MEXBOL, IBOVESPA, IPSA and S&P500 and 9 000
samples as a burn-in period for IGBVL, so that the e¤ect of initial values on the posterior inference
is minimized. Using the 20 000 samples for each of the parameters, the posterior means, the
standard deviations, the 95% intervals, and the ine¢ ciency factor are obtained. The posterior
means are computed by averaging the simulated samples. The 95% intervals are calculated using
the 2.5th and 97.5th percentiles of the simulated samples. The MCMC sampler is initialized by
setting � = 0:97; � = 0:2; � = �0:3; � = �10; � = �0:3 and � = 15 for MERVAL, MEXBOL,
IBOVESPA, IPSA and S&P500 and � = 0:85; � = 0:8; � = �0:05; � = �9; � = �0:015 and � = 30
for IGBVL.

We compute the ine¢ ciency factor to check the e¢ ciency of the MCMC algorithm. The in-
e¢ ciency factor is de�ned by 1 + 2�1s=1�s; where �s is the sample autocorrelation at lag s. It
measures how well the MCMC chain mixes (Chib, 2001; Nakajima and Omori, 2009, 2012). It is
the estimated ratio of the numerical variance of the posterior sample mean to the variance of the
hypothetical sample mean from uncorrelated draws. The ine¢ ciency factor serves to quantify the
relative e¢ ciency from correlated versus independent samples. When the ine¢ ciency factor is equal
to m, we need to draw MCMC samples m times as many as uncorrelated samples. We compute
the ine¢ ciency factor using a Parzen window with bandwidth bw = 1 000.

Figures 3 - 8 show the MCMC estimation results of the SVSKt model for the IGBVL, MERVAL,
MEXBOL, IBOVESPA, IPSA and S&P500 indices, respectively. Regarding the Latin American
stock indices, the sample paths appear to be stable and the proposed estimation scheme works well
for MERVAL, MEXBOL, IBOVESPA and IPSA. In these cases, the autocorrelation over the itera-
tions is decaying and there are convergence of the Markov chains of the parameters. Regarding to
the IGBVL, we obtain poor mixing (or slow convergence) of the Markov chain for some parameters
(�; � and �) and estimation results show high autocorrelation through iterations of �; � and � with
a slowly decay. Regarding S&P500, we obtain similar results as Nakajima and Omori (2012).

Table 3 shows the estimation results of the posterior estimates: the posterior means, the stan-
dard deviation, the 95% credible intervals and the ine¢ ciency factors for the stock daily returns
data. The posterior means of �, that measure persistence of the log-volatility, are close to one
(in the range of 0:9535 to 0:9711) for MERVAL, MEXBOL, IBOVESPA and IPSA. These results
are consistent with literature that indicate the high persistence of the volatility in stock returns.
IBOVESPA and MEXBOL are more persistent, followed by IPSA and MERVAL. Regarding the
IGBVL daily returns data, it has a posterior mean of � = 0:8618, which indicates a low persistence
in comparison to the volatility of the others indices above mentioned.
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Figure 3. MCMC estimation results of the SVSKt model for IGBVL data (Peru). Sample autocorrelations
(top), sample paths (middle) and posterior densities (bottom).
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Figure 4. MCMC estimation results of the SVSKt model for MERVAL data (Argentina). Sample
autocorrelations (top), sample paths (middle) and posterior densities (bottom).
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Figure 5. MCMC estimation results of the SVSKt model for MEXBOL data (Mexico). Sample
autocorrelations (top), sample paths (middle) and posterior densities (bottom).

0 300600900

0

1 φ

0 300600900

0

1 σ

0 300600900

0

1 ρ

0 300600900

0

1 µ

0 300600900

0

1 β

0 300600900

0

1 ν

0 1000020000

0 .96

0 .97

0 .98

0 .99 φ

0 1000020000

0 .20

0 .25

σ

0 1000020000

­0 .4

­0 .3

­0 .2

ρ

0 1000020000

­8 .4

­8 .2

­8 .0
µ

0 1000020000

­0 .25

0 .00

0 .25

β

0 1000020000

15

20

25

30 ν

0 .960 .98

25

50

75

φ

0 .150 .20 .250 .3

10

20

σ

­0 .4 ­0 .2

2 .5

5 .0

7 .5

10.0 ρ

­8 .5 ­8

1

2

3

4 µ

­0 .5 0 0 .5

1

2

3

4 β

10 20 30

0 .05

0 .10

0 .15 ν

Figure 6. MCMC estimation results of the SVSKt model for IBOVESPA data (Brazil). Sample
autocorrelations (top), sample paths (middle) and posterior densities (bottom).
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Figure 7. MCMC estimation results of the SVSKt model for IPSA data (Chile). Sample autocorrelations
(top), sample paths (middle) and posterior densities (bottom).
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Figure 8. MCMC estimation results of the SVSKt model for S&P500 data (US). Sample autocorrelations
(top), sample paths (middle) and posterior densities (bottom).
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Table 3. MCMC Estimation Results of the SVSKt Model for Latin American Stock Return Data

(i) IGBVL
Parameter Mean S.D. 95% interval Ine¢ ciency

� 0.8618 0.0213 [ 0.8197, 0.9011 ] 417.43
� 0.9173 0.0682 [ 0.7602, 1.0380 ] 539.46
� -0.0475 0.0370 [ -0.1197, 0.0245 ] 59.91
� -8.8002 0.1686 [ -9.0995, -8.4321 ] 233.32
� -0.0286 0.1508 [ -0.3247, 0.2678 ] 16.87
� 35.6892 5.4920 [ 25.9746, 47.2584 ] 88.54

(ii) MERVAL
Parameter Mean S.D. 95% interval Ine¢ ciency

� 0.9535 0.0086 [ 0.9347, 0.9681 ] 129.12
� 0.2717 0.0269 [ 0.2264, 0.3316 ] 226.88
� -0.2977 0.0436 [ -0.3807, -0.2106 ] 35.47
� -8.2705 0.0951 [ -8.4565, -8.0816 ] 26.19
� -0.2464 0.0811 [ -0.4180, -0.0952 ] 82.38
� 12.2135 1.7827 [ 9.0445, 15.9292 ] 286.25

(iii) MEXBOL
Parameter Mean S.D. 95% interval Ine¢ ciency

� 0.9683 0.0057 [ 0.9562, 0.9785 ] 90.33
� 0.2362 0.0206 [ 0.2015, 0.2847 ] 176.82
� -0.3948 0.0444 [ -0.4769, -0.3014 ] 81.93
� -8.9186 0.1134 [ -9.1434, -8.6942 ] 30.52
� -0.1076 0.1194 [ -0.3389, 0.1326 ] 37.20
� 19.8882 3.2235 [ 14.2966, 27.2299 ] 265.91

(iv) IBOVESPA
Parameter Mean S.D. 95% interval Ine¢ ciency

� 0.9711 0.0053 [ 0.9601, 0.9806 ] 67.00
� 0.1969 0.0168 [ 0.1696, 0.2358 ] 246.63
� -0.3464 0.0452 [ -0.4333, -0.2551 ] 37.82
� -8.2422 0.1057 [ -8.4519, -8.0325 ] 21.19
� -0.0342 0.1107 [ -0.2437, 0.1954 ] 38.07
� 17.5026 2.6309 [ 13.1482, 23.3003 ] 159.85

(v) IPSA
Parameter Mean S.D. 95% interval Ine¢ ciency

� 0.9653 0.0062 [ 0.9520, 0.9763 ] 82.62
� 0.2226 0.0196 [ 0.1878, 0.2656 ] 179.16
� -0.2970 0.0440 [ -0.3835, -0.2120 ] 26.06
� -9.4626 0.0995 [ -9.6562, -9.2626 ] 4.26
� -0.0852 0.1872 [ -0.4475, 0.2858 ] 37.72
� 30.2523 5.1130 [ 21.1299, 41.1597 ] 166.06
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The posterior means of �, that measures the correlations between �t and �t, are estimated to be
negative for all indices considered. When � values are negative, it implies that there exist leverage
e¤ects. MEXBOL and IBOVESPA have in absolute value the highest posterior mean estimates
of � (�0:3948 and �0:3464, respectively), which imply that the leverage e¤ect is more notable for
these indices. Also the 95% credible intervals are negative implying that the posterior probability
that � is negative is greater than 0:95, and the negativity of � is credible. The same applies with
MERVAL and IPSA (posterior mean estimates for � are �0:2977 and �0:2970; respectively) where
the 95% credible intervals are negative, but it is a minor leverage e¤ect than the previous indices.
In the case of IGBVL, the posterior mean estimate of � is also negative although very close to zero
and the 95% credible intervals contain zero and positive values. This implies that the posterior
distribution of �; although mainly located in the negative range, can take positive values or even
zero, which would imply the non-existence of the leverage e¤ect in IGBVL returns. These results
support the evidence of the leverage e¤ects in Latin American stock returns data.

Regarding the parameter �, the posterior mean estimates of � show that all indices have similar
estimates in the range from 0:1969 to 0:2717 with the exception of the IGBVL returns, where the
posterior mean estimate of � takes a very high value (0:9173) compared to the other indices. This
implies that the variance of the shock �t is large and the log-volatility has more variability than the
other stock indices in Latin American. Regarding the posterior mean of �, all indices show similar
results in the range of �19:4626 to �8:2422:

As mentioned previously, the skewness and the heavy tailedness of the GH Skew Student�s
t-Distribution are determined jointly by the combination of the parameter values of � and �. With
� �xed, a lower value of � implies a more negative skewness or left-skewness as well as heavier
tails. On the other hand, with � �xed, as � becomes larger the density becomes less skewed and
has lighter tails. The posterior means of � are estimated to be negative for all indices returns data
considered. MERVAL has the less value of posterior mean estimate of � with �0:2464 and the
95% credible intervals are negative implying that the posterior probability that � is negative is
greater than 0:95, and the negativity of � is credible. However, the posterior mean estimates of
� for IGBVL, MEXBOL, IBOVESPA and IPSA are also negative but the 95% credible intervals
contain zero and positive values. We know that when � = 0 in the SVSKt model correspond to
symmetric student�s t-density. The estimates of � are very close to zero for IGBVL, IBOVESPA
and IPSA, it could imply the case of symmetric heavy tailed disturbances. Finally, the posterior
means of � are around 35:6892 for IGBVL, 12:2135 for MERVAL, 19:8882 for MEXBOL, 17:5026
for IBOVESPA and 30:2523 for IPSA returns.

Figures 9-13 show the density of the GH Skew Student�s t-distribution with the estimates
parameters of Table 3 for the indices considered. Four points are worth mentioning: (i) The
distributions of the IGBVL, MEXBOL, IBOVESPA and IPSA appear to be symmetrical, (ii) In the
cases of symmetric distributions, the MEXBOL and IBOVESPA have heavier tails than the IGBVL
and IPSA, (iii) The distribution of the IGBVL is similar to the Normal distribution and (iv) The
distribution of the MERVAL have negative skewness (asymmetric) and has heavier tails than the
others indices considered. These results support the evidence of skewed heavy-tailed disturbances
only for the MERVAL, symmetric heavy-tailed disturbances for the MEXBOL, IBOVESPA and
IPSA, and symmetric Normal disturbances for the IGBVL.
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Figure 9. Density of the GH Skew Student�s t-distribution with estimates parameters � = �0:0286 and
� = 35:6892 for IGBVL data (Peru).

Figure 10. Density of the GH Skew Student�s t-distribution with estimates parameters � = �0:2464 and
� = 12:2135 for MERVAL data (Argentina).

Figure 11. Density of the GH Skew Student�s t-distribution with estimates parameters � = �0:1076 and
� = 19:8882 for MEXBOL data (Mexico).
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Figure 12. Density of the GH Skew Student�s t-distribution with estimates parameters � = �0:0342 and
� = 17:5026 for IBOVESPA data (Brazil).

Figure 13. Density of the GH Skew Student�s t-distribution with estimates parameters � = �0:0853 and
� = 30:2523 for IPSA data (Chile).

Regarding the S&P500 daily returns, Table 4 shows the results of the posterior estimates. These
results are very similar to Nakajima and Omori (2012). The posterior mean of � are close to one
(0:9703) and this fact implies high persistence, more than Latin American stock returns considered.
The posterior mean of � is estimated to be negative (�0:6864) which imply the evidence of leverage
e¤ects for the S&P500. Also the 95% credible intervals are negative implying that the posterior
probability that � is negative is greater than 0:95, and the negativity of � is credible. The posterior
mean estimate of � is 0:2382, similar parameter estimates to MERVAL, MEXBOL, IPSA and
IBOVESPA indices. The posterior mean of � is �9:4186. The posterior mean of � is estimated
to be negative (�0:7842). Also the 95% credible intervals are negative implying that the posterior
probability that � is negative is greater than 0:95, and the negativity of � is credible. Finally, the
posterior means of � are around 24:8685. Figure 14 shows the density of the GH Skew Student�s
t-distribution with the estimates parameters of Table 4 for the US S&P500. The distribution of
the S&P500 has more negative skewness (asymmetric) and heavier tails than the Latin American
indices considered. The negative skewness and heavy tails are more notable in this case.
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Table 4. Estimation Results of the SVSKt Model for US S&P500 Stock Return Data

S&P500
Parameter Mean S.D. 95% interval Ine¢ ciency

� 0.9703 0.0040 [ 0.9622, 0.9778 ] 40.86
� 0.2382 0.0135 [ 0.2125, 0.2652 ] 89.75
� -0.6864 0.0323 [ -0.7449, -0.6199 ] 76.70
� -9.4186 0.1001 [ -9.6135, -9.2207 ] 7.79
� -0.7842 0.1899 [ -1.1837, -0.4380 ] 116.81
� 24.8685 3.8282 [ 18.2556, 33.5375 ] 189.21

Figure 14. Density of the GH Skew Student�s t-distribution with estimates parameters � = �0:7842 and
� = 24:8685 for S&P500 data (US).

The indicator of how well MCMC chain mixes is measured by the ine¢ ciency factor of the
MCMC algorithm de�ned by 1 + 2�1s=1�s as mentioned before. The ine¢ ciency factor shows
high values for parameters �; � and � for IGBVL. These results are supporting by the initial
MCMC Figure 3 that shows high autocorrelation through iterations of parameters �; � and � for
IGBVL that decay slowly. MERVAL, MEXBOL, IBOVESPA and IPSA returns show low values
of ine¢ ciency factor in all parameters estimates but parameter � and v have higher values of
ine¢ ciency factor compared with the other parameters. In general, the ine¢ ciency factor for the
parameters of the S&P500 returns have low values.

Figure 15 shows the log-volatility estimates for the Latin American stock indices returns consid-
ered. The results show that there is a similar pattern between periods of higher volatility between
the �ve Latin American indices. Most of times, these periods of high volatility are associated with
international crisis. For example, all indices had a rise in log-volatility in the period from August
to November 1998 due to the Asian crisis, which cause an contagion e¤ect. Also, all stock returns
show a considerable increase in the level of log-volatility for the period September - October 2008
associated with the outbreak of the international �nancial crisis. Another example is in July and
September 2011 by the Europe crisis.
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Figure 15. Log-volatility for IGBVL (2001/01/02 - 2013/12/30) and MERVAL, MEXBOL, IPSA,
IBOVESPA and S&P500 (1996/01/02 - 2013/12/30) daily returns.

3.3 Model Comparison

In this subsection, model comparison between competing models for the daily stock returns are
provided. We make a comparison between the SVSKt model with the SVt model (with symmetric
Student�s t-disturbances, or equivalently the SVSKt model with � = 0). All models compared are
allowed to include leverage e¤ects. Model comparison in a Bayesian framework can be performed
using posterior odds. If y = fytgnt=1 denote the returns observation vector; then, the posterior odds
in favor of model A, MA, to model B, MB, is given by:

f(MAjy)
f(MBjy)

=
f(yjMA)

f(yjMB)

f(MA)

f(MB)
; (18)

where f(Mijy) is the posterior probability of the model i with i = A;B, f(Mi) is the prior proba-
bility of the model, f(yjMi) is the marginal likelihood.

f(yjMA)
f(yjMB)

and f(MA)
f(MB)

are called Bayes factor
and prior odds, respectively. As is the usual practice, the prior odds is assumed to be 1, that is the
prior probabilities are assumed to be equal between competing models, so that the posterior odds
ratio is equal to the Bayes factor (Asai, 2009). The idea is compare the competing models using
their posterior probabilities to select the one that is the best supported by the data. We choose the
model that yields the largest posterior probability, or equivalently the largest marginal likelihood.
Thus, we choose the model A if the posterior odds or Bayes factor is greater than 1, and we choose
the model B if it is less than 1.

The marginal likelihood is de�ned by:

f(yjMi) =

Z
f(yjMi; �i)f(�ijMi)d�i; (19)
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this is, the integral of the likelihood with respect to the prior density of the parameter. To compute
the logarithm of the marginal likelihood, we follow the log marginal likelihood identity of model
Mi which is developed in Chib (1995), and that can be written as:

log f(yjMi) = log f(yjMi; �i) + log f(�ijMi)� log f(�ijMi; y); i = A; B; (20)

where �i is the set of unknown parameters for model Mi, f(yjMi; �i) is the likelihood of the model,
f(�ijMi) is the prior probability density, and f(�ijMi; y) is the posterior probability density. The
identity (20) holds for any value of �i, but following Chib (1995), Kim et al. (1998), Asai (2009),
Nakajima (2012) and Nakajima and Omori (2012), we set �i at its posterior mean calculated using
the MCMC samples to obtain a stable estimate of f(yjMi). The prior probability density can
be easily calculated, although the likelihood and posterior part must be evaluated by simulation
(Nakajima and Omori, 2012). The likelihood f(yjMi; �i) can be estimated using the particle �lter
(see, for example, Pitt and Shephard (1999), Chib et al. (2002) and Omori et al. (2007)). For
the posterior probability density f(�ijMi; y), it can be estimated using the method developed by
Chib (1995) and Chib and Jeliazkov (2001) using samples obtained through additional but reduced
iterations of the MCMC algorithm.

First, we estimate de SVt model. Figures 16 � 20 show the MCMC estimation results of the
SVt model for IGBVL, MERVAL, MEXBOL, IBOVESPA and IPSA stock returns data.
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Figure 16. MCMC estimation results of the SVt model for IGBVL data (Peru). Sample autocorrelations
(top), sample paths (middle) and posterior densities (bottom).
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Figure 17. MCMC estimation results of the SVt model for MERVAL data (Argentina). Sample
autocorrelations (top), sample paths (middle) and posterior densities (bottom).
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Figure 18. MCMC estimation results of the SVt model for MEXBOL data (Mexico). Sample
autocorrelations (top), sample paths (middle) and posterior densities (bottom).
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Figure 19. MCMC estimation results of the SVt model for IBOVESPA data (Brazil). Sample
autocorrelations (top), sample paths (middle) and posterior densities (bottom).
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Figure 20. MCMC estimation results of the SVt model for IPSA data (Chile). Sample autocorrelations
(top), sample paths (middle) and posterior densities (bottom).
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Table 5 shows the MCMC estimation results of the posterior estimates of the SVt model: the
posterior means, the standard deviation, the 95% credible intervals and the ine¢ ciency factors for
the IGBVL, MERVAL, MEXBOL, IPSA and IBOVESPA stock return data. The posterior means
of estimates parameter are very similar to the SVSKt model.

In order to compare the competing models, we estimate the log marginal likelihoods, log f(yjMi),
as follows: (i) the likelihood is estimated using the auxiliary particle �lter with 10 000 particles.
It is replicated 10 times to obtain the standard error of the likelihood estimate as in Nakajima
and Omori (2012), and (ii) the posterior probability density (�ijMi; y) is evaluated through 5 000
additional MCMC runs. Table 6 shows the estimates of the log marginal likelihoods and their
standard errors. We choose the model that yields the largest log marginal likelihood. The SVSKt
model outperforms the SVt model for IGBVL, MERVAL and IBOVESPA stock returns data and
the SVt model outperforms the SVSKt model for MEXBOL and IPSA stock returns data. We
can see that the GH Skew Student�s t-disturbance distribution in the SV model (SVSKt model)
is successful in describing the distribution of the daily stock return data for Peru, Argentina and
Brazil and the symmetric Student�s t-disturbance distribution in describing the distribution of the
daily stock return data for MEXBOL and IPSA.

3.4 Prior Sensitivity Analysis

In spite of the computational expense of implementing, prior sensitivity analysis is an important
tool in Bayesian inference because is important to assess the in�uence of the prior distribution
on the �nal inference. In order to check prior sensitivity, the posterior distribution of parameters
must be studied using a variety of prior distributions. As in Nakajima and Omori (2012), we are
focusing on the skewness and heavy-taildness parameters, � and �, to check the robustness of the
model. We focus only on these parameters because we have assumed the values commonly used in
the previous literature for the prior distributions of �; �; � and �:

The prior sensitivity analysis take into account the following priors:

� Prior #1: � � N(0; 1); � � Gamma(16; 0:8)1(� > 4);

� Prior #2: � � N(0; 4); � � Gamma(16; 0:8)1(� > 4);

� Prior #3: � � N(0; 1); � � Gamma(24; 0:6)1(� > 4);

� Prior #4: � � N(0; 4); � � Gamma(24; 0:6)1(� > 4);

� Prior #5: � � N(0; 1); � � Gamma(1:2; 0:03)1(� > 4);

where the prior mean and prior standard deviation for Gamma(16; 0:8); Gamma(24; 0:6) and
Gamma(1:2; 0:03) are (20; 5), (40; 8) and (40; 36:5), respectively. The prior #1 denote de prior
distribution assumed in the previous estimations. The prior #5 for � is rather �at compared to
priors #1 to #4 and give less information on �. Table 7 shows the parameter estimates: posterior
means, the standard deviation, the 95% credible intervals and the ine¢ ciency factors for � and �.

Regarding IGBVL, we provide a prior sensitivity analysis focusing only in the priors #1, #2
and #5 because there are problems with the convergence of the chains of the MCMC algorithm
with priors #3 and #4. The estimates for � are not a¤ected by changing the priors considered.
However, the estimates of � (estimates are similar using prior #1 and #2) are a¤ected by altering
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the prior for � from prior #1 or prior #2 to prior #5. The estimates of � get larger (from 36 to
161) implying lighter tails but similar skewness. The estimates of standard deviations for � and �
using the prior #5 are larger than the estimates using the prior #1 and #2.

Table 5. MCMC Estimation Results of the SVt Model for Latin American Stock Return Data

(i) IGBVL
Parameter Mean S.D. 95% interval Ine¢ ciency

� 0.8613 0.0209 [ 0.8183, 0.9024 ] 407.89
� 0.9823 0.0964 [ 0.7655, 1.1565 ] 634.21
� -0.0382 0.0386 [ -0.1122, 0.0401 ] 104.68
� -8.7154 0.1639 [ -9.0253, -8.3828 ] 156.46
� 36.1646 5.7485 [ 26.2375, 48.8401 ] 105.50

(ii) MERVAL
Parameter Mean S.D. 95% interval Ine¢ ciency

� 0.9533 0.0081 [ 0.9358, 0.9674 ] 103.72
� 0.2707 0.0244 [ 0.2279, 0.3256 ] 197.98
� -0.2810 0.0434 [ -0.3652, -0.1945 ] 52.60
� -8.2351 0.0948 [ -8.4186, -8.0462 ] 20.95
� 12.3573 1.9107 [ 9.2705, 16.8398 ] 253.81

(iii) MEXBOL
Parameter Mean S.D. 95% interval Ine¢ ciency

� 0.9694 0.0054 [ 0.9584, 0.9788 ] 74.32
� 0.2282 0.0178 [ 0.1973, 0.2661 ] 160.80
� -0.4037 0.0471 [ -0.4951, -0.3126 ] 94.09
� -8.9333 0.1122 [ -9.1537, -8.7119 ] 17.26
� 17.2837 3.2351 [ 12.0182, 24.5254 ] 280.95

(iv) IBOVESPA
Parameter Mean S.D. 95% interval Ine¢ ciency

� 0.9564 0.0067 [ 0.9423, 0.9687 ] 59.67
� 0.2528 0.0176 [ 0.2219, 0.2912 ] 169.99
� -0.3244 0.0447 [ -0.4091, -0.2330 ] 46.67
� -8.2198 0.0907 [ -8.3970, -8.0400 ] 11.09
� 20.1754 3.1531 [ 14.8120, 26.9762 ] 245.94

(v) IPSA
Parameter Mean S.D. 95% interval Ine¢ ciency

� 0.9649 0.0061 [ 0.9521, 0.9759 ] 85.17
� 0.2253 0.0205 [ 0.1899, 0.2718 ] 283.75
� -0.2928 0.0438 [ -0.3754, -0.2059 ] 43.86
� -9.4536 0.1004 [ -9.6466, -9.2478 ] 23.10
� 29.8385 4.8740 [ 21.3740, 40.5813 ] 165.48
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Table 6. Estimated Log Marginal Likelihoods (Log-ML)

(i) IGBVL
SVSKt 9812.000 (1.582)
SVt 9781.776 (1.557)
(ii) MERVAL
SVSKt 11469.963 (0.806)
SVt 11464.903 (0.684)
(iii) MEXBOL
SVSKt 13377.385 (0.580)
SVt 13380.232 (0.704)
(iv) IBOVESPA
SVSKt 11624.206 (0.996)
SVt 11614.349 (0.627)
(v) IPSA
SVSKt 14583.355 (0.557)
SVt 14586.065 (0.653)
*Standard errors of the log-ML in parentheses.

MERVAL estimates for (�; �) are not a¤ected by changing the prior for � from prior #1 to prior
#2, neither from prior #3 to prior #4. However, the estimates of (�; �) are a¤ected by altering
the prior for � from prior #1 to prior #3 (or from prior #2 to prior #4). The estimates of � get
smaller (from �0:25 to �0:42) and the posterior means of � get larger (from 12 to 20), implying
greater skewness and lighter tails. The posterior standard deviations become larger re�ecting the
increase in the dispersion of the prior distribution for �: Given less information on � given by prior
#5, the estimates of (�; �) are similar to the estimates obtained by using priors #1 and #2.

MEXBOL estimates for � are not a¤ected by changing the priors considered. The estimates
of � are similar using the priors #1 - #5 (in the range from �0:1076 to �0:0753). However, the
estimates of � (estimates are similar using prior #1, #2 and #5) are a¤ected by altering the prior
for � from prior #1 to prior #3 (or prior #2 to prior #4). The estimates of � get larger (from 19:5
to 27) from prior #1, #2 and #5 to prior #3 and #4, implying lighter tails but similar skewness
using the priors #3 to #4. The posterior standard deviations become larger from priors #1 and
#2 to priors #3 and #4 and the estimates of standard deviations using prior #5 is the same for �
comparing to priors #1 and #2 but larger for �:

Regarding the IBOVESPA, the estimates for (�; �) are not a¤ected by changing the prior from
prior #1 to prior #2 or to prior #5, however from prior #1, #2 or #5 to prior #3 (or from prior
#1, #2 or #5 to prior #4) the estimates for (�; �) are largely a¤ected. The estimates of � and �
get larger from �0:03 to 0:07 and from 17:5 to 29 (average), respectively, implying a disturbance
density that becomes less skewed and has lighter tails. The posterior standard deviations of (�; �)
become larger from prior #1, #2 or #5 to prior #3 (or from prior #1, #2 or #5 to prior #4).

Finally, the IPSA estimates for � are not largely a¤ected by changing the priors considered.
However, the estimates of � are a¤ected by altering the priors from prior #1 or #2 (the estimates
for � are similar with these priors) to prior #3 or #4 (the estimates of � also are similar with these
priors) or to prior #5. The posterior means of � are 30:2 using the priors #1 and #2, 50 (average)
using the priors #3 and #4, and 106:4 using the prior #5. This fact implies lighter tails but similar
skewness. The posterior standard deviations of (�; �) become larger from prior #1, #2 to prior #3
and #4, and the prior #5 has the largest posterior standard deviation (0:43 for � and 36:96 for �).
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As in Nakajima and Omori (2012), we also observed that the posterior estimate of � is sensitive
to the choice of the prior distribution for � and the posterior estimate of � is also sensitive to the
choice of the prior distribution for � because the skewness and heavy-tailedness of the GH skew
Student�s t-distribution are determined by � and � simultaneously and not individually.

4 Conclusions

In this paper, we estimate a SV model incorporating both leverage e¤ects and skewed heavy-tailed
disturbances taking into account the GH Skew Student�s t-distribution for a set of Latin American
stock market indices using the Bayesian estimation method proposed by Nakajima and Omori
(2012). We apply the SVSKt model to daily returns of �ve Latin American stock market indices:
IGBVL, MERVAL, MEXBOL, IPSA and IBOVESPA and we also analyze the U.S. S&P500 returns
to compare the results. The SVSKt model can be considered a �exible model to �t the returns
and volatility characteristics because the SVSKt model is able to model substantially skewed and
heavy tailed data and includes the SV model with Normal disturbances (SV-Normal) and the SV
model with symmetric Student�s t-disturbances (SVt).

The MCMC estimation results of the SVSKt model show that the sample paths of the iterations
of parameters are stable, and the proposed estimation scheme works well for all indices except
for the IGBVL (the Markov chains do not converge and there is high autocorrelation between
iterations). The posterior mean parameter estimates are consistent with literature that indicate
the high persistence of the volatility in stock returns. However, the results show that the IGBVL
returns have low persistence in comparison to the volatility of the others stock indices of Latin
American considered.

The results support the evidence that there are leverage e¤ects in all indices considered but
there is not enough evidence for the IGBVL. The estimates show that the leverage e¤ect is more
notable in MEXBOL and IBOVESPA, followed by MERVAL and IPSA. In the case of the IGBVL,
the posterior mean estimate of � is also negative but very close to zero, which would imply the
non-existence of the leverage e¤ect in IGBVL returns. Another important result is that the log-
volatility of IGBVL returns have more variability than the other stock returns in Latin American.
Also, the results support the evidence of skewed heavy-tailed disturbances only for the MERVAL,
symmetric heavy-tailed disturbances for the MEXBOL, IBOVESPA and IPSA, and symmetric
Normal disturbances for the IGBVL.

Finally, volatility estimates for daily stocks returns show a similar pattern between them for
the sample period considered. On the other hand, the model comparison between SVSKt and
SVt model show that the SVSKt model outperforms the SVt model for IGBVL, MERVAL and
IBOVESPA and the SVt model outperforms the SVSKt model for MEXBOL and IPSA.
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Appendix

A. The GH Skew Student t-Distribution

This appendix includes some important properties of the GH skew Student-t distribution. For a
more complete treatment, see Prause (1999), Eberlein and Hammerstein (2004) and Aas and Ha¤
(2006). The GH Skew Student t-Distribution is a limiting case of the GH distribution, which was
introduced in Barndor¤-Nielsen (1977). The univariate GH distribution can be parameterized in
several ways. Following, Prause (1999), Eberlein and Hammerstein (2004) and Aas and Ha¤ (2006),
the probability density function of a GH random variable x is given by:

fGH(x;�; �; �; �x; �) =

(�2 � �2)�=2K�� 1
2

�
�
q
�2 + (x� �x)2

�
exp (�(x� �x))

p
2����

1
2 ��K�

�
�
p
�2 � �2

��q
�2 + (x� �x)2

� 1
2
��

(A.1)

where Kj is the modi�ed Bessel function7 of the third kind of order j and x 2 R: � > 0 determines
the shape, 0 � j�j < � determines the skewness, �x 2 R is a location parameter and � > 0 serves
for the scaling. � 2 R characterizes certain subclasses and considerably in�uences the size of mass
contained in the tails . The parameters must satisfy the conditions:

7The modi�ed Bessel function of the third kind with order j, which we denote as Kj(�), has the integral represen-
tation:

Kj(x) =
1

2

Z 1

0

w��1 exp

�
�1
2
x(w + w�1)dw

�
; x > 0:

Some properties of Kj(�), taken from Abramowitz and Stegun (1972), are:

� Kj(x) = K�j(x),

� An asymptotic relations for small arguments x is given by :

Kj(x) � �(j)2j�1x�j as x! 0 and j > 0;

Kj(x) � �(�j)2�j�1xj as x! 0 and j < 0;

K0(x) � � ln(x):

� An asymptotic relation for large arguments x is given by:

Kj(x) �
r
�

2x
exp(�x) as x!1:

� If j = n+ 1
2
; n 2 Z; Kj can be calculated as follows:

Kn+ 1
2
(x) =

r
�

2x
exp(�x)

"
1 +

nX
i=1

(n+ i)!

(n� i)!i! (2x)
�i

#
; n 2 N;

� K�0:5(x) = K0:5(x) =
p

�
2x
exp(�x):
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� � 0; j�j < � if � > 0; (A.2)

� > 0; j�j < � if � = 0;
� > 0; j�j � � if � < 0:

The tails of the GH distribution behave as:

fGH(x) � const jxj��1 exp(�� jxj+ �x) as x! �1; 8�; (A.3)

hence, as long as j�j 6= �; the GH distribution has two semiheavy tails.
The GH distribution may be represented as a Normal mean-variance mixture with Generalized

Inverse Gaussian (GIG) distribution as a mixing distribution. This means that a GH variable X
can be represented as:

X = �X + �Z +
p
Z�; � � N(0; 1); Z � GIG(�; �; 
); (A.4)

with � and Z independent and 
 =
p
�2 � �2. It follows from (A.4) that X j Z = z � N(�X +

�Z;Z). The density of the GIG distribution is given by:

fGH(z;�; �; 
) =
�

�

�� z��1

2K�(
�)
exp(�1

2
(�2z�1 + 
2z)): (A.5)

Letting � = ��=2(� > 0) and � ! j�j in equation (A.1) (this is 
 = 0), we obtain the GH
Skew Student t-Distribution. Its probability density function is given by:

fGHskewt(x; �; �; �x; �) =

2
1��
2 �� j�j

�+1
2 K �+1

2

�r
�2
�
�2 + (x� �x)2

��
exp (� (x� �x))

�(�2 )
p
�

�q
�2 + (x� �x)2

� �+1
2

; � 6= 0;

(A.6)
and

fGHskewt(x; �; �; �!) =
�(�+12 )p
���(�2 )

"
1 +

(x� �x)2

�2

#�(�+1)=2
; � = 0: (A.7)

where �(:) is the gamma function. The density fGHskewt(!; �; �; �!) in (A.7) is known as the
noncentral Student�s t-distribution with � degrees of freedom, expectation �x, and variance �

2=(��
2).
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The �rst four moments of a GH skew Student t-distributed random variable X are:

E(X) = �+
��2

� � 2 ; (A.8)

V ar(X) =
2�2�4

(� � 2)2(� � 4) +
�2

� � 2 ; (A.9)

Skewness(X) =
2(� � 4)1=2���

2�2�2 + (� � 2)(� � 4)
�3=2 �3(� � 2) + 8�2�2� � 6

�
; (A.10)

Kurtosis(X) =
6�

2�2�2 + (� � 2)(� � 4)
�2 � (A.11)�

(� � 2)2(� � 4) + 16�
4�2(� � 2)(� � 4)

� � 6 +
8�4�4(5� � 22)
(� � 6)(� � 8)

�
:

We observe that for the mean and variance to exist, � > 2 and � > 4, respectively. The variance
is only �nite when � > 4, as opposed to the symmetric Student�s t-distribution. Skewness and
(excess) kurtosis are de�ned only if � > 6 and � > 8, respectively.

It follows from equation (A.3) that in the tails, the GH skew t-density is given by:

fGHskewt(x) � const jxj��=2�1 exp(� j�xj+ �x) as x! �1; (A.12)

Thus we have a heavy tail decaying as:

fGHskewt(x) � const jxj��=2�1 if
n
� < 0 and x! �1
� > 0 and x! +1 ; (A.13)

and a light tail decaying as

fGHskewt(x) � const jxj��=2�1 exp(�2 j�xj) if
n
� < 0 and x! +1
� > 0 and x! �1 : (A.14)

Thus the GH skew t-distribution has one heavy and one semiheavy tail. The heavy tail shows
polynomial and the light tail exponential behavior. It is the only member of GH family of distribu-
tions having this property. Thus the GH skew student t-distribution is able to model substantially
skewed and heavy tailed data, as found for example in �nancial markets. The tails of the GH skew
student t-distribution are characterized uniquely by parameters � and �, which determine jointly
the degree of skewness and heavy tailedness. Finally, note that the heavy tail of the GH skew
student t-distribution is heavier than the tails of the symmetric Student t-distribution, which have
two tails decaying as polynomials and decay as:

fGHt(x) � const jxj���1 as x! �1: (A.15)
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B. MCMC Algorithm for the SVSKt Model

This appendix includes each sampling step in detail of the MCMC algorithm proposed by Nakajima
and Omori (2012) for the SVSKt model. For the prior distributions of � and �; they assume
� � N(�0; �20) and � � N(�0; �20).

B.1 Generation of the parameters (�, �, �, �) (steps 2�4)

Step 2. The conditional posterior probability density �(� j �; �; �; �; �; h; z; y)(� �(�j�)) is

�(�j:) / �(�)

q
1� �2 exp

(
�(1� �

2)h
2
1

2�2
�
n�1X
t=1

(ht+1 � �ht � yt)2
2�2(1� �2)

)

/ �(�)

q
1� �2 exp

(
�
(�� ��)2

2�2�

)
; (A.16)

where ht = ht � �, yt = ��(yte
�ht=2 � �zt)=

p
zt, zt = zt � �z, �� =

Xn�1

t=1
(ht+1�yt)ht

�2h
2
1+

Xn�1

t=2
h
2
t

and

�2� =
�2(1��2)

�2h
2
1+

Xn�1

t=2
h
2
t

.

In order to sample from this conditional posterior distribution, Nakajima and Omori (2012) im-
plement the Metropolis�Hastings (MH) algorithm. They propose a candidate, �� � TN(�1;1)(��; �2�),
where TN(a;b)(�; �2) denotes the Normal distribution with mean � and variance �2 truncated on

the interval (a; b). Then, they accept it with the probability given by min
�
�(��)

p
1���2

�(�)
p
1��2

; 1

�
:

Step 3. Because the joint conditional posterior probability density �(# j �; �; �; h; z; y)(� �(#j�))

of # = (�; �)0 is given by �(#j�) / �(#)�n(1 � �2)n�12 exp

�
� (1��2)h21

2�2
�
Xn�1

t=1

(ht+1��ht�yt)2
2�2(1��2)

�
;

a probability density from which it is not easy to sample. Nakajima and Omori (2012) ap-
ply the MH algorithm based on a Normal approximation of the density around the mode. Be-
cause there is a constraint, R = f# : � > 0; j�j < 1g, on the parameter space of the poste-
rior distribution, they consider the transformation # to ! = (!1; !2)

0, where !1 = log �, and
!2 = log(1+�)� log(1��), to generate a candidate using a Normal distribution. They �rst search
for b# that approximately maximizes �(#j:), and obtain its transformed value b!. They next gener-
ate a candidate !� � N(!�;��), where !� = b! + �� @ log e�(!j�)@!

���
!=e! and ��1� = �@2 log e�(!j�)

@!@!0

���
!=e! ;

where e�(!j�) is a transformed conditional posterior density. Then, they accept the candidate !�
with probability min

n
�(#�j�)fN (!j!�;��)jJ(#)j
�(#j�)fN (!�j!�;��)jJ(#�)j ; 1

o
; where fN (xj�;�) denotes the probability density

function of a Normal distribution with mean � and covariance matrix �, and J(�) is the Jacobian
for the transformation, that is, J(#) = j d!

d#0
j+ = 2

�(1��2) . The values of (#; #
�) are evaluated at

(!; !�), respectively.
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Step 4. The conditional posterior probability density �(� j �; �; �; �; �; h; z; y)(� �(�j�)) is given

by �(�j�) / exp
�
� (���0)2

2�20
� (1��2)h21

2�2
�
Xn�1

t=1

f(ht+1��)��(ht��)�ytg2
2�2(1��2)

�
; from which Nakajima and

Omori (2012) generate �j� � N(b�; �2�); where �2� = n
1
�20
+ (1��2)(1��2)+(n�1)(1��)2

�2(1��2)

o�1
; and b� =

�2�

8<:�0
�20
+

(1��2)(1��2)h1+(1��)
Xn�1

t=1
(ht+1��ht�yt)2

�2(1��2)

9=; :
B.2 Generation of skew-t parameters (�, �, z) (steps 5�7)

Step 5. The posterior probability density �(� j �; �; �; �; �; h; z; y)(� �(�j�)) is given by �(�j�) /
exp

n
� (���0)2

2�20
�
Xn

t=1

(yt��zteht=2)2
2zteht

�
Xn�1

t=1

fht+1��ht���(yte�ht=2��zt)=
p
ztg2

2�2(1��2)

o
; from which they gen-

erate �j� � N(��; �2) where �2� =
n
1
�20
+ 1

1��2
Xn�1

t=1

z2t
zt
+ z2n

zn

o�1
; and

�� = �
2
�

n
�
�20
+ 1

1��2
Xn�1

t=1

ytzt
zteht=2

+ ynzn
znehn=2

� �
�(1��2)

Xn�1

t=1

(ht+1��ht)ztp
zt

o
:

Step 6. Because, as in Step 3, it is not easy to sample directly from the posterior probability density

of �, �(�j�) / �(�)
Yn

t=1

(�=2)�=2

�(�=2) z
��=2
t exp(� �

2zt) exp
n
�
Xn

t=1

(yt��zteht=2)2
2zteht

�
Xn�1

t=1

(ht+1��ht�yt)2
2�2(1��2)

o
;

for � > 4, they draw a sample of � using the MH algorithm based on the Normal approximation
of the posterior probability density. They generate a candidate �� using a Normal distribution
truncated on (4;1).

Step 7. The conditional posterior probability density of the latent variable zt is �(zt j �; h; y) /

g(zt)�z
�( �+1

2
+1)

t exp(� �
2zt
); and g(zt) = exp

n
� (yt��zteht=2)2

2zteht
� (ht+1��ht�yt)2

2�2(1��2) 1(t < n)
o
; where 1(�)

is an indicator function. Using the MH algorithm, they generate a candidate z�t � IG(�+12 ;
�
2 ) and

accept it with probability minfg(z
�
t )

g(zt)
; 1g.

B.3 Generation of volatility latent variable h (step 8)

Step 8. Nakajima and Omori (2012) extend the method developed by Omori and Watanabe (2008)
for sampling ht in the SVSKt model using the multi-move sampler, where the e¢ cient strategy is
to sample from the conditional posterior distribution of h = fhtgnt=1 by dividing it into several
blocks and sampling each block given the other blocks. The details of the multi-move sampler are
described in the Appendix C.
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C. Multi-Move Sampler for the SVSKt Model

Extending the algorithm of Omori and Watanabe (2008), Nakajima and Omori (2012) describe the
multi-move sampler for sampling the volatility variable h in the SVSKt model. De�ning �t = ht��;
for t = 0; : : : ; n and 
 = exp(�=2), they consider the state space model with respect to f�tgnt=1 as:

yt = f�zt +
p
zt�tg exp(�t=2); t = 1; : : : ; n; (A.17)

�t+1 = ��t + �t; t = 0; : : : ; n� 1: (A.18)

Let e� = (�; �r; �r+d+1; zr; : : : ; zr+d; yr; : : : ; yr+d). To sample a block (�r+1; : : : ; �r+d) from its
joint conditional posterior density using MH algorithm, (r � 0; d � 1; r + d � n), they sample
disturbances

(�r; : : : ; �r+d�1) � �(�r; : : : �r+d�1 j e�) / r+dY
t=r

1p
2�e�t exp

�
�(yt � e�t)2

2e�2t
�
�
r+d�1Y
t=r

f(�t)� f(�r+d);

where e�t = ��zt + �tpzt(�t+1 � ��t)=�	 exp(�t=2)
; e�2t = (1� �2t )zt exp(�t)
2;
f(�r+d) = exp

n
� (�r+d+1���r+d)2

2�2

o
1(r + d < n); and �t = �1(r + d < n). To determine the

block (r and d), they use the stochastic knots (see, for example, Shephard and Pitt (1997)). Let
� = (�r; : : : ; �r+d�1)

0 and � = (�r+1; : : : ; �r+d)
0. To construct a proposal density based on the

Normal approximation of the posterior density of �, they �rst de�ne:

L =
r+dX
t=r

�
��t
2
� (yt � e�t)2

2e�2t
�
+ log f(�r+d);

� = (�r+1; : : : ; �r+d)
0; �t =

@L

@�t
;

Q = �E( @
2L

@�@�0
) =

266664
Ar+1 Br+2 0 : : : 0
Br+2 Ar+2 Br+3 : : : 0

0 Br+3 Ar+3
. . .

...
...

. . . . . . . . . Br+d
0 : : : 0 Br+d Ar+d

377775 ;
At = �E(@

2L

@�2t
);

Bt = �E( @2L

@�t@�t�1
);

for t = r + 2; : : : ; r + d; and Br+1 = 0. For the second derivatives, they take the expectations with
respect to yt�s and obtain

At =
1

2
+
1e�2t
�
@e�t
@�t

�2
+

1e�2t�1
�
@e�t�1
@�t

�2
+
�2

�2
:1(t=r + d < n); and

Bt =
1e�2t�1 @e�t�1@�t�1

@e�t�1
@�t

:
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Applying the second-order Taylor expansion to the log of the posterior density around the mode,
� = b�, they obtain an approximate Normal density as follows:
log �(�je�) � bL+ @L

@�0

����
�=b� (� � b�) + 12(� � b�)0 E( @

2L

@�@�0
)

����
�=b� (� � b�) +

r+d�1X
t=r

(�1
2
�2t ) + (const:)

= bL+ b�0(�� b�)� 1
2
(�� b�)0 bQ(�� b�) + r+d�1X

t=r

(�1
2
�2t ) + (const:)

� log q(�je�);
where bL; b� and bQ is the value of L; � and Q at � = b� (or, equivalently at � = b�). It can be shown
that the proposal density q(�je�) is the posterior density of � for a linear Gaussian state space
model given by (A.19)- (A.21). The mode b� can be obtained by repeating the following algorithm
until it converges:

1. Initialize b� and compute b� at � = b� using the state equation (A.18) recursively.
2. Evaluate b��s; bAt�s and bBt�s at � = b�,
3. Let bDr+1 = bAr+1 and bbr+1 = b�r+1. Compute the following variables recursively for t =
r + 2; : : : ; r + d:

bDt = bAt � bD�1t�1 bB2t ; bKt =qbDt; bbt = b�t � bBt bD�1t�1bbt�1; and bBd+r+1 = 0;
4. De�ne an auxiliary variable byt = b
t + bD�1t bbt; where b
t = b�t � bD�1t bBt+1b�t+1; for t = r +

1; : : : ; r + d, and b�r+d+1 = �r+d+1;
5. Consider the linear Gaussian state space model formulated by:

byt = Zt�t +Gt�t; t = r + 1; : : : ; r + d; (A.19)

�t+1 = ��t +Ht�t; t = r; : : : ; r + d; (A.20)

�t � N(0; I2); (A.21)

where zt = 1 + � bD�1t bBt+1; Gt = ( bK�1
t ; bD�1t bBt+1�); and Ht = (0; �), for t = r + 1; : : : ; r + d

and H0 = (0; �p
1��2

). Apply the Kalman �lter and the disturbance smoother to this state

space model, and obtain the posterior mode b� and b�;
6. Go to 2.

In the MCMC sampling procedure, the current sample of � may be taken as an initial value of
the b� in Step 1. To sample � from the conditional posterior density, Nakajima and Omori (2012)
implement the AR (Accept-Reject)-MH algorithm via the simulation smoother using the mode b�
to obtain the approximated linear Gaussian state space model (A.19)- (A.21). See Omori and
Watanabe (2008) and Takahashi et al. (2009) for the detail of the AR-MH algorithm.
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