

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ FACULTAD DE CIENCIAS E INGENIERÍA

"ESTUDIO EXPERIMENTAL DE LA INFLUENCIA DEL TIEMPO DE DESENCOFRADO EN EL COMPORTAMIENTO DE LOS ELEMENTOS ESTRUCTURALES EN EDIFICIOS DE DUCTILIDAD LIMITADA"

Tesis para optar el Título de **INGENIERO CIVIL**, que presenta los bachilleres:

Milagros Cecilia Dávila Pablo / Caroll Johana Fabián Santiváñez

ASESORES: Enrique Pasquel Carbajal / Gianfranco Ottazzi Pasino

Lima, noviembre de 2013

RESUMEN

La construcción de edificaciones destinadas a viviendas multifamiliares se ha incrementado en los últimos años en la ciudad de Lima. Para economizar tiempo, dinero y espacio en la obra, muchas de las empresas constructoras emplean los denominados Edificios de Muros de Ductilidad Limitada (EMDL)

El costo y el tiempo de ejecución se encuentran ligados con la seguridad; por ello, la necesidad de un proceso de ejecución lo más rápido posible hace que las losas de piso se desencofren aun cuando no tengan la resistencia suficiente para soportar las cargas de los pisos superiores. En consecuencia, el peso de una losa recién vaciada se deberá distribuir entre varias plantas parcialmente endurecidas conectadas a través de puntales. En la presente investigación se analiza cuales son las cargas actuantes durante el ciclo constructivo de tres obras.

Con la determinación de las cargas y con la ayuda del programa de análisis estructural ETABS se determinaron los momentos actuantes en los elementos estructurales durante el ciclo constructivo; y con el cálculo de ellos se determinó la resistencia requerida para soportar las cargas actuantes.

En base a las obras visitadas y analizadas y a la información relativa de las horas de desencofrado y reapuntalado, se fijó un factor de seguridad de 1.3 aproximadamente con el que estarían trabajando actualmente las obras en construcción.

El factor de seguridad se ha calculado sobre la base de la resistencia requerida para soportar las cargas actuantes y la resistencia que tiene la estructura en ese momento, cabe resaltar que esta resistencia es referencial a las probetas curadas en obra.

Con el factor de seguridad encontrado se puede decir que este tipo de estructuras durante el proceso constructivo, no deberían presentar daños estructurales utilizando un adecuado sistema de apuntalamiento y reapuntalamiento a las losas para una adecuada transmisión de cargas.

TEMA DE TESIS APROBADO POR EL DECANO

FACULTAD DE CIENCIAS E INGENIERÍA

FACULTAD

TEMA DE TESIS PARA OPTAR EL TÍTULO DE INGENIERO CIVIL

Título

"Estudio experimental de la influencia del tiempo de desencofrado en el comportamiento de los elementos

estructurales en edificios de ductilidad limitada".

Área

Estructuras -Investigación-

Asesores

Ing. Enrique Pasquel C.

Ing. Gianfranco Ottazzi P.

Alumna

MILAGROS CECILIA DÁVILA PABLO

Código

2006.0384.2.412

Alumna

CAROLL JOHANA FABIÁN SANTIVAÑEZ

Código

2005.7228.6.412

Tema N°

268

Fecha

Lima, 12 de setiembre de 2011

OBJETIVO

En esta tesis se estudia la influencia, tanto desde el punto de vista de la resistencia de los elementos y de las condiciones de servicio de los mismos, del tiempo de desencofrado de los principales elementos estructurales de los edificios de ductilidad limitada.

DESCRIPCIÓN DEL PROYECTO

El trabajo contempla dos partes:

 La primera parte teórica que permitirá identificar las principales variables que podrían afectar la resistencia y el comportamiento bajo condiciones de servicio del tiempo de desencofrado.

La segunda parte consistirá en el seguimiento en el campo de diversos
edificios de ductilidad limitada que se encuentren en la etapa de
construcción y que difieran en el proceso constructivo empleado así como
en el sistema de encofrados adoptado. Para la segunda parte se obtendrán
probetas del concreto empleado en obra que permitan establecer la
evolución en el tiempo de la resistencia en compresión, del módulo de
elasticidad y de la retracción por secado,

PLAN DE TRABAJO

Identificación de la patología en los elementos estructurales de los edificios de ductilidad limitada.

 Identificación de los principales problemas en la resistencia y en las condiciones de servicio que puede ocasionar el tiempo de desencofrado.

8

FACULTAD DE CIENCIAS E INGENIERÍA

- Ubicación de diversos edificios de ductilidad limitada en construcción con diversos tipos constructivos y sistemas de encofrado.
- Seguimiento durante la construcción de los edificios seleccionados: identificación de los defectos constructivos, tiempos de desencofrado, fisuras en muros y losas.
- Análisis experimental de la evolución en el tiempo de la resistencia a compresión del concreto, del módulo de elasticidad y de la contracción de secado.

V°B°...ا کُٹُکِ Ing. Ángel San Bartolomé Coordinador de Investigación

NOTA:

Extensión máxima: 100 páginas.

Los alumnos elaborarán un borrador de artículo con no más de 12 hojas con fines de publicación.

A mi padre, por ser mi ejemplo a seguir y por su apoyo incondicional en todo momento para lograr este objetivo

A mi madre, quien día a día ilumina mi vida.

Milagros

A mis padres por su entrega y comprensión, ya que fueron pilares fundamentales para poder culminar con el objetivo.

A mis hermanos por ser siempre el ejemplo y apoyo incondicional en mi vida.

Caroll

<u>INDICE</u>

- 1. INTRODUCCIÓN
 - 1.1 IDENTIFICACION DEL PROBLEMA
 - 1.2 OBJETIVOS:
 - 1.2.1 Objetivo General
 - 1.2.2 Objetivos Específico.
 - 1.3 METODOLOGIA DE TRABAJO
- 2. ESTADO ACTUAL DEL CONOCIMIENTO
 - 2.1. PROPIEDADES DEL CONCRETO
 - 2.1.1. Resistencia a compresión
 - 2.1.1.1 Forma de Medición y Cálculo
 - 2.1.2. Módulo de Elasticidad del Concreto
 - 2.2. MÉTODOS PARA PREDECIR EL COMPORTAMIENTO ESTRUCTURAL
 - 2.2.1 Capacidad Resistente a Flexocompresión.
 - 2.2.2 Capacidad resistente a esfuerzo cortante.
- 3. DISTRIBUCIÓN DE CARGAS DURANTE LA CONSTRUCCIÓN
 - 3.1 MODELOS TEÓRICOS
 - 3.1.1 Método Simplificado.
 - 3.2 DETERMINACION DE LAS CARGAS DE CONSTRUCCIÓN
 - 3.2.1 Cargas verticales o gravitatorias
 - 3.2.2 Cargas Horizontales
 - 3.2.3 Cargas Especiales
 - 3.2.4 Combinaciones de Carga
 - 3.3 COMPROBACION DEL PROCESO CONSTRUCTIVO EN EDIFICIOS DE MUROS DE DUCTILIDAD LIMITADA
 - 3.3.1 Ciclo Constructivo
 - 3.3.1.1 Tipo de Operaciones Constructivas
 - 3.3.1.2 Influencia del ciclo constructivo sobre la transmisión de cargas
 - 3.3.2 Determinación del Tiempo de Desencofrado
- 4. PRINCIPALES PROBLEMAS EN LOS ELEMENTOS ESTRUCTURALES DE MUROS DE DUCTILIDAD LIMITADA.
 - 4.1 MUROS
 - 4.1.1 Problemas de Vaciado
 - 4.1.1.1 Segregación
 - 4.1.1.2 Cangrejeras
 - 4.1.2 Juntas Frías.
 - 4.1.3 Grietas y Fisuras
 - 4.1.4 Deflexiones

- 5. EVALUACIÓN DE CAMPO DE PROCESOS CONSTRUCTIVOS.
 - 5.1 CARACTERÍSTICAS GENERALES DE PROYECTOS DE MUROS DE DUCTILIDAD LIMITADA
 - 5.1.1 Muros
 - 5.1.2 Losas.
 - 5.2 COMPARACIÓN DE LAS CARACTERÍSTICAS DE LOS PROYECTOS EN ESTUDIO
 - 5.2.1 Espesor, número de pisos y tipo de encofrado en losas y muros.
 - 5.2.2 Resistencias a compresión en losas y muros.
 - 5.2.3 Edad de desencofrado.
 - 5.2.4 Tiempo y tipo de curado.

5.3 PROYECTOS ESCOGIDOS PARA EL ÁNALISIS

- 5.3.1 Proyecto la Campiña II
 - 5.3.1.1 Descripción de la Obra
 - 5.3.1.2 Sectorización del vaciado de obra
 - 5.3.1.3 Análisis de Cargas
 - 5.3.1.4 Cálculo de Esfuerzos bajo cargas de servicio
 - 5.3.1.5 Propiedades del concreto en obra
 - 5.3.1.6 Comparación de los esfuerzos teóricos y reales
 - 5.3.1.7 Principales problemas presentados en los elementos estructurales.
- 5.3.2 Proyecto Parques de Villa el Salvador
 - 5.3.2.1 Descripción de la Obra
 - 5.3.2.2 Sectorización del vaciado de obra
 - 5.3.2.3 Análisis de Cargas
 - 5.3.2.4 Cálculo de Esfuerzos bajo cargas de servicio
 - 5.3.2.5 Propiedades del concreto en obra
 - 5.3.2.6 Comparación de los esfuerzos teóricos y reales
 - 5.3.2.7 Principales problemas presentados en los elementos estructurales.
- 5.3.3 Proyecto Condominio Villa Santa Clara
 - 5.3.3.1 Descripción de la Obra
 - 5.3.3.2 Sectorización del vaciado de obra
 - 5.3.3.3 Análisis de Cargas
 - 5.3.3.4 Cálculo de Esfuerzos bajo cargas de servicio
 - 5.3.3.5 Propiedades del concreto en obra
 - 5.3.3.6 Comparación de los esfuerzos teóricos y reales
 - 5.3.3.7 Principales problemas presentados en los elementos estructurales.
- 6. ENSAYOS REALIZADOS
- 7. CONCLUSIONES
- 8. BIBLIOGRAFÍA

CAPITULO 1: INTRODUCCIÓN

1.1 IDENTIFICACION DEL PROBLEMA

Hoy en día en el Perú se ha generalizado la construcción de edificaciones destinadas a viviendas multifamiliares, utilizando un sistema estructural de losas y muros delgados de concreto armado (con espesores de 10 y 12 cm), sin confinamiento de acero en los extremos de sus muros, debido a esta peculiaridad se les denomina Edificios de Muros de Ductilidad Limitada (EMDL).

Este crecimiento se dio debido al apoyo del gobierno iniciado el año 2001 para impulsar la construcción de viviendas de menor costo en el país. Dicho impulso fue posible gracias a la rapidez de construcción de este sistema, su menor costo comparado con otros métodos tradicionales, mejoras en la tecnología del concreto que permite realizar, hoy en día, vaciados con espesores reducidos y a la posibilidad de alquilar encofrados metálicos o de aluminio que simplifican el trabajo que solían realizar los encofradores.

Este tipo de estructuras tienen características especiales que hacen que su diseño y construcción no se encuentre totalmente contemplado en las normas y códigos de diseño internacionales, motivo por el cual nace esta investigación para poder estimar la resistencia mínima necesaria a la cual se están desencofrando los elementos verticales de este sistema en las diferentes obras que se están construyendo actualmente en la ciudad de Lima.

Durante el proceso constructivo de un edificio existen tres factores que se deben tener en consideración: el costo, el tiempo de ejecución y la seguridad. Las consideraciones financieras obligan a que los tiempos de ejecución sean lo más reducidos posibles. Por ello, se puede afirmar que los dos primeros factores se encuentran íntimamente relacionados y condicionados por el tercero. La necesidad de un proceso de ejecución rápido hace que las losas de piso se desencofren aun cuando no tengan la resistencia suficiente para soportar los pisos superiores. En consecuencia, el peso de una losa recién vaciada se deberá distribuir entre varias plantas parcialmente endurecidas conectándolas mediante puntales.

1.2 OBJETIVOS:

1.2.1 Objetivo General:

Determinar la resistencia de concreto necesaria para desencofrar los elementos estructurales (muros y losas) de los Edificios de Muros de Ductilidad Limitada en Lima.

1.2.2 Objetivos Específicos:

- Estimar las cargas actuantes en un edificio de muros de ductilidad limitada durante el proceso de la construcción (carga muerta y sobrecarga debida al vaciado de concreto de pisos superiores y al desencofrado) para momentos de servicio y momentos últimos.
- Determinar los esfuerzos que se producen en la estructura para las cargas actuantes.
- Establecer el factor de seguridad que garantizará que la estructura no sufra daños al ser desencofrado a un determinado porcentaje de la resistencia total especificada.
- Monitorear en campo los distintos sistemas constructivos que empleen sistemas de encofrados diferentes, analizar la influencia del sistema constructivo empleado en las resistencias alcanzadas durante el proceso constructivo e identificar los problemas estructurales más comunes que se presentan en este tipo de edificaciones.

1.3 METODOLOGÍA DE TRABAJO

Para el análisis a realizar estudiaremos primero las principales propiedades del concreto, la importancia de la resistencia que va adquiriendo el concreto en el tiempo. Una vez analizadas las principales propiedades del concreto y entendido su comportamiento, pasamos a visitar a algunas de las obras que se estan construyendo en Lima para obtener una información de cómo está funcionando este sistema actualmente.

De las obras visitadas escogimos tres obras a las cuales les realizamos un seguimiento de aproximadamente cuatro semanas a cada una de ellas. A partir de este seguimiento determinamos las cargas actuantes durante el ciclo constructivo; paralelamente realizamos una serie de ensayos a unas probetas moldeadas y curadas en obra y otras moldeadas y curadas en laboratorio que se ensayaron a compresión y además se determinó el módulo de elasticidad.

Con la información de las cargas actuantes y utilizando el programa ETABS se elaboró un modelo de elementos finitos de cada una de las losas de los edificios para realizar el análisis de las cargas correspondientes. Se realizó la corrida para las cargas actuantes en el tiempo, y del mismo modo se fue variando las propiedades del concreto que se ingresan al programa.

De los resultados obtenidos junto con los ensayos a compresión y módulo de elasticidad que realizamos con el apoyo de UNICON pudimos obtener la la resistencia mínima a la que se están desencofrando este tipo de estructuras.

Finalmente para evaluar el comportamiento del concreto a edades tempranas se realizaron ensayos de resistencia a compresión en probetas cada 12 horas hasta los 7 días, las curvas obtenidas servirán para comparar la resistencia obtenida a diferentes edades versus la resistencia necesaria para soportar las cargas actuantes.

CAPITULO 2: ESTADO ACTUAL DEL CONOCIMIENTO

2.1. EVOLUCION DE LAS PROPIEDADES DEL CONCRETO

2.1.1. Resistencia a compresión

La resistencia a compresión f'c del concreto es el esfuerzo máximo que puede soportar bajo una carga axial. La resistencia a la compresión simple es una de las características mecánicas más importantes de un concreto y se utiliza normalmente para mediciones de calidad. Los resultados obtenidos serán proporcionales a la edad del espécimen en el momento en el que se realiza el ensayo, el cual se encuentra debidamente normado según el ASTM.

Entre los factores de los cuales depende la resistencia del concreto tenemos:

- La calidad y la cantidad de los elementos constitutivos del concreto; agregados, cemento, agua y aditivos.
- La calidad del proceso de puesta en obra del concreto: mezclado, trasporte, colocación, compactación y curado; la resistencia se encontrará en relación directa a este proceso.

Dentro del primer aspecto mencionado, relacionado con la calidad y cantidad de los elementos constituyentes del concreto tenemos:

 Contenido del cemento: Las características del cemento empleado en la mezcla de concreto tendrán una gran influencia en la resistencia final del concreto, pues éste es el elemento más activo de la mezcla.
 La cantidad de cemento presente en la mezcla, es decisiva en la resistencia,

a medida que se incrementa la cantidad de cemento aumentará la resistencia.

2. Relación agua-cemento: La relación agua-cemento (a/c) es el factor más importante en la resistencia del concreto. Una determinada relación agua-cemento produce distintas resistencias de acuerdo al tipo de agregado utilizado y al tipo de cemento. Con una baja relación de agua/cemento, se reduce la porosidad de la matriz y mejora la traba que hay entre los sólidos, de esta manera aumenta la resistencia. El investigador Gonzales Cuevas en su libro "Aspectos Fundamentales del Concreto Armado" nos muestra la influencia de la relación agua/cemento en la resistencia y en forma de la curva esfuerzo vs deformación del concreto (Figura 2.1).

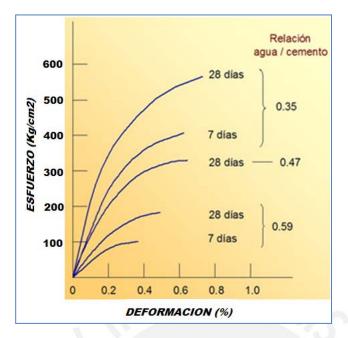


Fig. 2.1 Efecto de la relación agua/cemento en las curvas esfuerzo-deformación.

- 3. *Influencia de los Agregados:* La calidad de los agregados es un factor determinante en la resistencia del concreto, las propiedades de los agregados que más influyen en la mezcla serán:
 - -Tamaño máximo del agregado grueso
 - Granulometría, materiales bien gradados, producirán una mayor densidad.
 - La forma y la textura de los agregados inciden en la resistencia a la flexión.

Otro factor importante en la en la resistencia del concreto son las condiciones de curado, el Comité 308 del American Concrete Institute y la Portland Cement Association expresan que "el curado tiene una influencia significativa sobre las propiedades del concreto endurecido, tanto en el interior del concreto como en su superficie, tales como la resistencia, permeabilidad, resistencia a la abrasión, estabilidad de volumen y resistencia a ciclos hielo-deshielo y sustancias anticongelantes. El desarrollo de resistencia superficial puede reducirse significativamente cuando el curado es defectuoso".

2.1.1.1 Forma de Medición y Cálculo de la Resistencia a compresión:

Para el ensayo de la resistencia en compresión se preparan especímenes cilíndricos de concreto los cuales son fabricados con muestras representativas del concreto empleado en la estructura de acuerdo con "Standard Practice for Sampling Freshly Mixed Concrete" (ASTM C 172).

Pasadas 24 horas se desencofra las probetas cilíndricas y se llevan a la poza de curado donde permanecerán hasta un día antes de ser ensayados. Las probetas cilíndricas deben ser curadas de acuerdo con "Standard Practice for Making and Curing Concrete Test Specimens in the Field" (ASTM C 31M).

Para obtener la resistencia a los 28 días, se ensaya un espécimen que estuvo en la poza de curado por 28 días y se le coloca en la máquina donde será sometido a una carga axial de compresión a una velocidad que está dentro de un intervalo prescrito hasta que ocurra la falla, de acuerdo con "Test Method for Compressive Strength of Cylindrical Concrete Specimens" (ASTM C 39M).

La resistencia a compresión del espécimen se calcula dividiendo la máxima carga alcanzada durante el ensayo entre el área de la sección transversal del espécimen. A continuación se muestra una curva de desarrollo de resistencia del concreto elaborado con cemento Tipo I para concretos desarrollados por UNICON. Se muestran los límites superior e inferior entre los que se encuentran los valores de la resistencia a compresión del concreto para diferentes edades.

Tabla 2.1 Desarrollo de Resistencias para Concreto con Cemento tipo I

Edad	Lim. Inferior	Lim. Superior	Promedio Limites
1	10% f'c	40% f'c	25% f'c
3	30% f'c	60% f'c	45% f'c
7	55% f'c	85% f'c	70% f'c
14	75% f'c	105% f'c	90% f'c
28	95% f'c	125% f'c	110% f'c

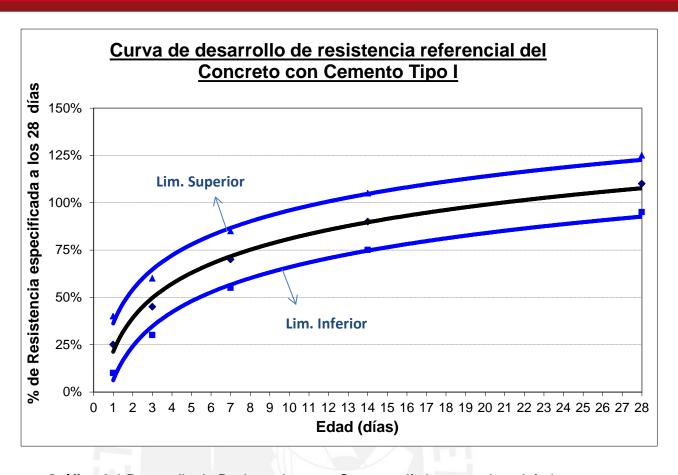


Gráfico 2.1 Desarrollo de Resistencias para Concreto, límites superior e inferior

2.1.2. Módulo de Elasticidad del Concreto

El Módulo de Elasticidad del concreto, se analiza para cargas de corta duración; ya que para esfuerzos < 50% de f'c es posible asumir para el concreto una relación lineal entre esfuerzos y deformaciones sin que haya variaciones importantes que conlleven a errores que alteren el resultado, ver *Figura 2.2*.

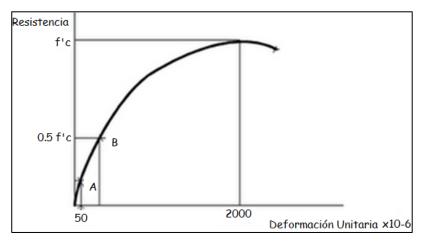
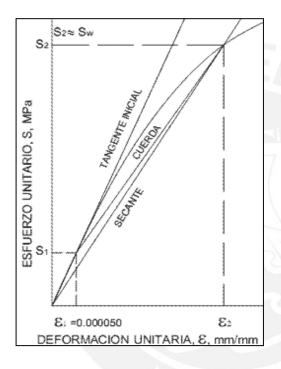
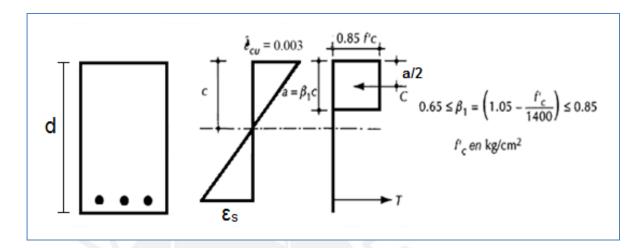



Fig. 2.2 Módulo de Elasticidad de Concreto

En el libro del Ing. Teodoro Harmsen "Diseño de Estructuras en Concreto Armado" se muestra distintas definiciones que puede adoptar el módulo de elasticidad del concreto, tal como se puede apreciar en la Figura. 2.3: módulo de tangente inicial, es un punto determinado de la curva y el módulo secante o cuerda entre dos puntos de la misma. El módulo de tangente inicial por lo general es mayor en 10% a la secante. La Norma ASTM (C469-94) especifica el modo de calcular el módulo de secante a partir de ensayos de compresión en probetas estándar de concreto.

Fig. 2.3 Definiciones Módulo de Elasticidad de Concreto

2.2. MÉTODOS PARA PREDECIR EL COMPORTAMIENTO ESTRUCTURAL


2.2.1 Capacidad Resistente a Flexión

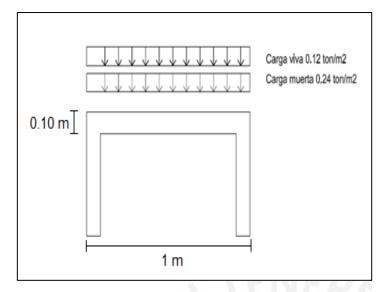
Para realizar el análisis de las solicitaciones de flexión, se tendrán en cuenta las siguientes hipótesis:

- 1) El acero y el concreto presentarán la misma deformación. (Adherencia)
- 2) No se considera la resistencia en tracción del concreto.
- 3) Se cumple la hipótesis de Navier para el concreto. (Secciones planas)
- 4) El agotamiento del concreto se produce cuando en alguna fibra se produce la máxima deformación aceptada.
- 5) Las fuerzas y momentos se encuentran en equilibrio en la sección.

La norma ACI 318-11 acepta para el análisis tanto un diagrama rectangular, trapezoidal, parabólico o la combinación de ellas, en la figura 2.4 se observa el análisis de la sección con un diagrama rectangular. La deformación última del concreto aceptada por la NTE E.060 CONCRETO ARMADO es 0.003.

Fig. 2.4 Hipótesis ACI 318-11 sobre la distribución de deformaciones y esfuerzos en la zona de compresión.

Del gráfico, se tiene que la igualdad de tracción y compresión en el bloque mostrado y asumiendo que el acero se encuentra en fluencia; tendremos la siguiente expresión


$$0.85 \, f_C^* b^* \beta_1^* c = A_S * f_Y.$$
 (1)

$$As^*fy^*(d-a/2) = Mn....(2)$$

Ejemplo:

Para efectos de la presente investigación mostramos un ejemplo numérico a utilizar. Para ello se ha utilizado el criterio de sección fisurada para el concreto, ya que a edades tempranas se presenta la acción de cargas importantes en el concreto.

Datos:

b: 1 m

h: 0.1 m

E_{acero}: 2000000 kg/cm²

f'c: 175 kg/cm²

 A_s : 1.125 cm²/m A'_s : 0.55cm²/m

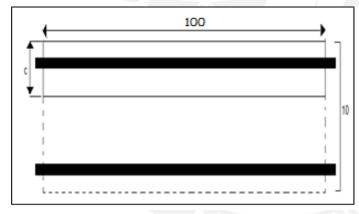
A 3 dias tenemos:

fc 3 días : 96 kg/cm2 (obtenido de la curva de Resistencia de Probetas para la primera obra en análisis mostrada en la presente tesis)

n_{3 dias}: E_{acero}/E_{concreto}= 12.5

E_{con}: 161000 kg/cm²

d:7 cm


d': 3 cm

Utilizamos las fórmulas para sección fisurada.

Cantidad de acero mínimo por metro de acuerdo a la norma:

As=0.0018bh

 $0.0018x100x10 = 1.8 \, cm^2/m$

$$100 * c * \left(\frac{c}{2}\right) + (12.5 - 1) * 0.55 * (c - 3) = 12.5 * 1.125 * (7 - c)$$

$$c = 1.34 cm$$

$$I_{cr} = \frac{100 * 1.34^{3}}{3} + (12.5 - 1)0.55 * (1.34 - 3)^{2} + 12.5 * 1.125 * (7 - 1.34)^{2}$$

$$I_{cr} = 548cm^{4}$$

$$M_{cr}^{-} = 357 \ kg - m/m$$
 ---> Sin acero

$$M_{actuante}^- = 156 kg - m/m$$

$$M_{actuante}^+ = 84 \, kg - m/m$$

(momento de agrietamiento)

--→ (momento de servicio obtenido del análisis de cargas en el ETABS de las cargas a 3 dias)

Calculamos el momento nominal Mn, para el cual la sección no se fisura con las siguientes expresiones:

$$Mn = As * fy \left(d - \frac{a}{2} \right) \dots (3) \qquad Mn = 0.85 f'c * b * a \left(d - \frac{a}{2} \right) \dots (4)$$
 Donde:
$$a = \frac{Asfy}{0.85 * f'c * b} = \frac{\rho * b * d * fy}{0.85 * f'c * b} \qquad \rho = \frac{As}{bd}$$

Asumiendo que la sección se fisura a pesar que Mservicio<Mcr, calculamos el f'c para el caso del momento actuante de servicio y del momento último.

1. Momento de Servicio:

✓ Si el momento actuante es negativo (-)

$$fc = \frac{M*c}{I} = \frac{0.156 \frac{ton}{m} * 1.34cm}{548cm^4} = 38 \frac{kg}{cm^2}$$
/c m²
40% f'c (95 kg/cm2)

"El esfuerzo de compresión bajo carga de servicio no debería exceder del 50% de f'c. En el ejemplo mostrado tenemos 40% por lo cual sabemos que la estructura no se fisuraría"

Con la expresión (3) calculamos el $\emptyset M_n$, siendo $\emptyset = 0.9$

$$\emptyset M_n = 292 \frac{kg-m}{m}$$
 $FSrotura = \frac{M_n}{M_{servicio}} x \frac{1}{\emptyset} \approx 2$

✓ Si el momento actuante fuese positivo (+) tendríamos:

$$M_{actuante} = 84 \, kg - m/m$$

$$fc = \frac{M * c}{I} = \frac{0.084 \, \frac{ton}{m} * 1.14cm}{330 \, cm^4} = 29 \frac{kg}{cm^2}$$

$$\emptyset M_n = 144 \frac{kg-m}{m}$$
 $FSrotura = \frac{M_n}{M_{Servicio}} x \frac{1}{\emptyset} \approx 1.7$

2. Momento Ultimo

$$M_{ultimo} = 1.4 M_D + 1.7 M_L = 216 \, kg - m/m$$
 (- Negativo) $M_{ultimo} = 1.4 M_D + 1.7 M_L = 125 \, kg - m/m$ (+ Positivo)

Se cumpliría la expresión $\emptyset Mn \ge Mu$

✓ Haciendo los mismos cálculos que en el caso de momentos de servicio tenemos los siguientes resultados:

Tabla 2.2 Resultados de esfuerzos en el concreto y acero

	Esfuerzos										
	Momen	to Negat	ivo (-)	Momento Positivo (+)							
	Concreto	% f'c	Acero	Concreto	% f'c	Acero					
M. Servicio	38	18%	2014	30	14%	1847					
M. Ultimo	53	25%	2780	45	21%	2748					

Para la estructura en análisis se hizo el ensayo de rotura de probetas para determinar la resistencia a compresión a los 3 días, obteniéndose 95 kg/cm2. Si vemos el cuadro anterior mostrado; tenemos que en ningunos de los casos (ya sea momento actuante positivo o negativo, momento de servicio o momento último) el esfuerzo requerido supera el f'c obtenido de las probetas. Esto quiere decir que la resistencia requerida máxima para soportar las cargas actuantes sobre la estructura bajo condiciones de servicio y bajo condiciones de carga ultima, no excede la resistencia obtenida en el concreto.

Por lo tanto la estructura podrá ser desencofrada sin ningún problema del tipo estructural (esto sin considerar problemas de proceso constructivo como: mal vibrado, juntas frias, etc)

CAPITULO 3: DISTRIBUCIÓN DE CARGAS DURANTE LA CONSTRUCCIÓN

En un proyecto de un edificio de concreto armado convencional, por lo general se asume que las cargas de construcción no sobrepasan las cargas de servicio para las que fue diseñada. Sin embargo, en la realidad esto no siempre ocurre así, los muros y losas podrían verse sometidos a cargas mayores durante la etapa constructiva que durante el uso normal del edificio. Asimismo, deberá tenerse en cuenta que estas cargas de construcción actúan en edades en las cuales el concreto no ha desarrollado aún toda su resistencia.

Por ello, en cada etapa de la construcción debería comprobarse que los elementos estructurales son capaces de resistir las cargas que actúan sobre ella. Para el planteamiento de un problema de estructuras deberá definirse los siguientes elementos:

- Modelo: en el modelo se determina la geometría de la estructura, las propiedades de los elementos que componen la estructura y la naturaleza de las uniones entre estos elementos.
- Condiciones de contorno: son los apoyos de la estructura en el terreno.
- Cargas: son las fuerzas o acciones que actúan sobre la estructura.

Por otro lado el desencofrado debe realizarse siguiendo la secuencia adecuada y reduciendo las solicitaciones. En la Figura 3.1 se puede observar las notaciones adoptadas para cada una de las solicitaciones que actúan durante el proceso constructivo.

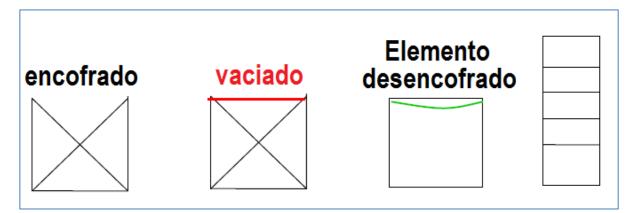


Fig. 3.1 Notación Adoptada para las solicitaciones.

3.1 MODELOS TEÓRICOS

A lo largo de los años se ha propuesto diversos métodos teóricos para el análisis de edificios durante la construcción. Por ello, la definición del modelo y de las condiciones de borde será fundamental para seleccionar un modelo teórico. Para el caso de la presente investigación se utilizará el Método Simplificado, hipótesis desarrollada por los investigadores Grundy y Kabaila, el cual es la base de muchas investigaciones referente a este tema.

3.1.1 Método Simplificado

En 1963 Grundy y Kabaila desarrollaron el Método Simplificado, llamado así debido a su sencillez. Se trata de un modelo muy empleado en la actualidad y es la base de los demás modelos (Referencia: Tesis Doctoral: Estudio Experimental del Comportamiento de Vigas de Hormigón Armado Descimbrado a Tempranas Edades de Isabel Serra Martín). Para el desarrollo de este método se tiene en cuenta las siguientes consideraciones:

- Los puntales son infinitamente rígidos, frente a la rigidez a flexión de las losas, esta suposición se justifica en el caso de Edificios de Muros de Ductilidad Limitada pues todos emplean puntales de acero.
- Los puntales se encuentran suficientemente cerca como para que sus cargas sean asimiladas a cargas uniformemente distribuidas sobre las losas de pisos inferiores.
- 4. Se ignoran los efectos de retracción y fluencia del concreto.
- Los puntales ubicados bajo la planta inferior del edificio se apoyan sobre un suelo infinitamente rígido.

Durante el ciclo constructivo de edificios de concreto armado, existen dos operaciones que afectan las solicitaciones a las que se ven sometidos los elementos estructurales del edificio

a) Vaciado de un nivel superior, si existen "n" plantas apuntaladas, el peso total "pp + peso encofrado" de la planta recién vaciada se distribuye equitativamente entre los n niveles inferiores apuntalados.

b) Desapuntalado de una planta inferior, si existen "n" plantas apuntaladas, al desapuntalar la inferior, la diferencia entre la carga total "q1" que resistía y su peso propio "q" se distribuirá entre los "n" niveles superiores.

Por lo tanto, la aplicación del Método Simplificado conduce a distribuciones de cargas que son independientes de ciertos parámetros importantes en la obra, tales como: la distancia entre puntales, la altura libre entre losas, el ritmo constructivo seguido, las dimensiones de los muros o la resistencia especificada del concreto empleado.

Para el caso de las estructuras analizadas en la presente investigación se tiene que las tres trabajaron con un máximo de dos niveles consecutivos apuntalados tal como se muestra en el esquema siguiente.

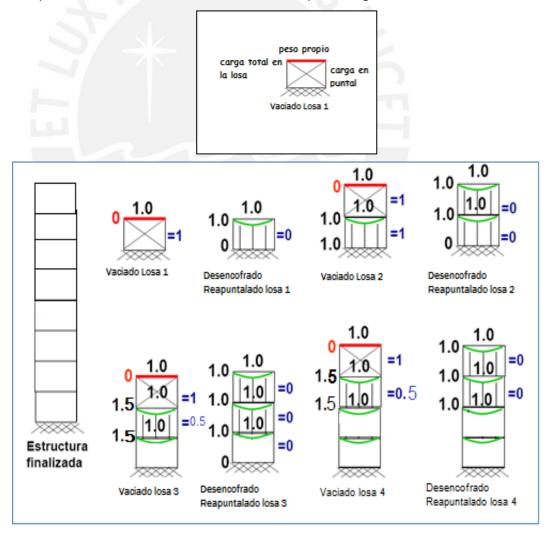


Fig. 3.2 Esquema de transmisión de cargas para 2 niveles apuntalados

3.2 DETERMINACION DE LAS CARGAS DE CONSTRUCCIÓN

3.2.1 Cargas verticales o de gravedad

Las cargas de gravedad de construcción se suelen dividir en cargas muertas y cargas vivas. Las cargas muertas o permanentes incluyen el peso propio del concreto. Las cargas vivas incluyen las sobrecargas de construcción debidas al peso de los operarios, al almacenamiento del material y equipos, y a los impactos producidos en el vertido del concreto.

En cuanto a la sobrecarga, el código ACI 318-11 señala que los elementos de encofrado deben diseñarse para unas cargas vivas de 35.1kN/m2, y en caso de que se empleen equipos motorizados durante el vaciado, y de 2.39 kN/m2 en el caso de no emplearse estos equipos.

3.2.2 Cargas Horizontales

Las cargas horizontales pueden ser originadas por el viento, por elementos de apoyo inclinados, por el impacto del concreto durante su vertido o por los movimientos de los equipos de vaciado y vibrado.

El código ACI 347 obliga a considerar unas cargas horizontales no menores a 1.5 kN/m o al 2% de la carga muerta total, distribuidas de forma lineal sobre el borde de la losa. En este valor se incluyen todas las acciones que originan cargas laterales.

Sin embargo, cabe resaltar que la presente investigación se basará solo en el análisis de cargas verticales.

3.2.3 Combinaciones de Carga

Se debe definir las combinaciones de cargas que se adecuen razonablemente a las situaciones reales que pueden originarse en obra, es necesario verificar en campo las cargas de servicio que aparecen después del vaciado, cuando el concreto entra en proceso de fraguado.

3.3 COMPROBACION DEL PROCESO CONSTRUCTIVO EN EDIFICIOS DE MUROS DE DUCTILIDAD LIMITADA

3.3.1 Ciclo Constructivo

Cuando las solicitaciones que se originan durante la construcción son excesivas, una de las opciones consiste en modificar el ciclo o esquema constructivo. El ciclo constructivo que se selecciona tendrá una gran influencia sobre la distribución de cargas en la estructura.

3.3.1.1 Tipo de Operaciones Constructivas

Durante la construcción de un edificio de muros de ductilidad limitada, en el proceso de encofrado y desencofrado podemos encontrar las siguientes situaciones:

- Apuntalamiento + encofrado: estado que corresponde al tiempo anterior al vaciado del concreto. El concreto se vierte sobre el encofrado, y dicho encofrado no se retira hasta que el concreto haya fraguado. El encofrado a su vez se encuentra colocado sobre la losa o el apuntalamiento del piso anterior.
- Retiro de Paneles metálicos de losa: recuperación del encofrado, lo elementos estructurales se encuentran encofradas hasta que pasen un número de días. En esta situación el concreto aún no es lo suficientemente resistente para aguantar las cargas que actuarán sobre él.
- Reapuntalamiento: la técnica del reapuntalamiento, consiste en retirar el encofrado de toda una planta permitiendo así la deformación de la losa por su propio peso e inmediatamente después, colocar de nuevo los puntales.

3.3.1.2 Influencia del ciclo constructivo sobre la transmisión de cargas

El uso de ciclos constructivos diferentes conduce a unas distribuciones de cargas entre encofrados y apuntalamiento muy variables. Por ejemplo, el método simplificado de Grundy y Kabaila (1963) presenta una distribución de cargas en función exclusivamente del esquema constructivo seleccionado.

Se puede comprobar que, efectivamente, las distribuciones obtenidas son diferentes dependiendo del ciclo que se utiliza para apuntalar en cada nivel del edificio. Liu et al. (1989) estudiaron más detalladamente la influencia del número de plantas apuntaladas y reapuntaladas sobre la distribución de cargas. Basándose en el método simplificado, propusieron expresiones para calcular las cargas máximas en el apuntalamiento y en el reapuntalamiento.

3.3.2 Determinación del Tiempo de Desencofrado

El proceso constructivo está directamente relacionado con la determinación de los plazos de desencofrado. Grundy y Kabaila (Referencia Tesis Doctoral: Estudio Experimental del Comportamiento de Vigas de Hormigón Armado Descimbrado a Tempranas Edades de Isabel Serra Martín), señalan que el efecto de la evolución de la rigidez del concreto resulta despreciable en la transmisión de cargas entre encofrados parcialmente endurecidos. Esto se debe a que la variación del módulo elástico Ec del concreto presenta un crecimiento muy rápido a edades cortas.

En la Figura 3.3 podemos observar como un concreto con cemento de endurecido normal ha desarrollado aproximadamente el 85% de su módulo elástico característico en una semana, mientras que el porcentaje de resistencia desarrollado en este periodo es entre el 60% y 70%. Luego se tomará en cuenta los conceptos de sección agrietada para todos los días, excepto para el primer día de que será sin agrietamiento porque el concreto está en proceso de endurecimiento, teniéndose un historial de resistencia a través del tiempo variando el módulo de elasticidad (Valores de Ensayo) y las cargas de servicio que actúan en ese momento del análisis.

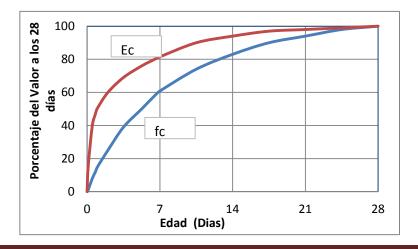


Fig. 3.3.
Comportamiento
del Ec en el
tiempo

CAPITULO 4: PRINCIPALES PROBLEMAS EN LOS ELEMENTOS ESTRUCTURALES DE MUROS DE DUCTILIDAD LIMITADA

4.1 MUROS

4.1.1 Problemas de Vaciado

Durante el vaciado de los muros, existen problemas tales como: segregación y cangrejeras.

4.1.1.1 Segregación

La segregación del concreto ocurre cuando el concreto es vaciado desde grandes alturas sin un descanso intermedio (ej. Desde la pluma de una bomba). Esto ocasiona que los materiales más gruesos (ej. Piedras mayores a ½") segreguen. Puede ocurrir también por un exceso de vibrado o mal chuseado, el cual generará la separación entre los agregados y el mortero. Por lo general, encontraremos segregaciones en la base de los muros disminuyendo el f'c en estas zonas (Figura 4.1), generándose así una zona crítica que deberá resistir esfuerzos de compresión y corte directo.

Fig. 4.1. Segregación en la base de los muros-Obra: Villa Santa Clara.

4.1.1.2 Cangrejeras

Las cangrejeras son oquedades en los muros, que se forman debido a una falta de vibrado durante el vaciado, a la poca fluidez del concreto o debido a congestión en los aceros de refuerzo. En las

Figuras 4.2 y 4.3 se muestran una cangrejera en la zona donde existe acero de refuerzo y tuberías para las instalaciones sanitarias.

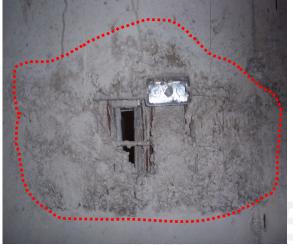


Fig. 4.2. Cangrejeras-Obra: Los Algarrobos.

Fig. 4.3. Cangrejeras-Obra: Los Algarrobos.

4.1.2 Juntas Frías

Por lo general, se presentan en la unión entre muros y losa. "Las juntas frías también se pueden presentar en los muros y losas en los cuales no se pudo completar el vaciado por falta de concreto Figura 4.4. Posteriormente se concluye el vaciado sin el uso ningún tipo de epóxico ni varillas de acero para mejorar la adherencia" (Referencia: Delgado y Rodríguez, *Edificios Peruanos con muros de Concreto de Ductilidad Limitada*" PUCP).

Fig. 4.4. Juntas Frías en losas - Fuente: Tesis: "Edificios Peruanos con muros de Concreto de Ductilidad Limitada" Delgado y Rodriguez PUCP.

4.1.3 Grietas y Fisuras

Por lo general las grietas y fisuras se forman en los vanos y su razón se debe a la ausencia de juntas de construcción, a un mal curado, o a los cambios volumétricos generados en el concreto. Otra posible causa de las fisuras es el asentamiento diferencial de la cimentación.

Aunque normalmente no representan un problema estructural, representan problemas estéticos que generarán gastos en resanes y reparaciones. En la Figura 4.4 podemos apreciar fisuras en la losa del segundo piso de la obra Terrazas de la Costanera.

Fig. 4.4. Fisuras en la losa del segundo piso-Obra Terrazas de la costanera.

4.1.4 Deflexiones

Las deflexiones excesivas en las losas pueden originarse por cargas muertas y vivas mayores a las de diseño del elemento, insuficiente refuerzo de acero en la losa, o un concreto de calidad pobre. Estos factores mencionados generarán fisuraciones excesiva en la losa. Las deflexiones pueden ser contrarrestadas con contraflechas al momento del encofrado (se encofra con un desnivel hacia arriba en la parte central).

CAPITULO 5: EVALUACIÓN EN CAMPO DE PROCESOS CONSTRUCTIVOS.

Para efectos de la presente tesis se realizó un estudio y seguimiento en campo de los diferentes procesos constructivos, resistencias de concreto, tipo de concreto, curado del concreto, tipo de encofrado empleados en las diferentes obras de Edificios de Muros de Ductilidad Limitada en la ciudad de Lima. Para ello se contó con el apoyo del área de Calidad y Soporte Técnico de UNICON quienes nos facilitaron el acceso a las diferentes obras para realizar el muestreo que procedemos a describir en las siguientes líneas. En la Tabla 5.1 se muestra la lista de las obras visitadas

Tabla 5.1. Lista de Obras visitadas

EMPRESA CONSTRU	CTORA	OBRA	DISTRITO		
Western Construction	wescon grupo inmobiliario	Edificio Villasol	Los Olivos		
COINSA	coinsa	Condominio Villa del Sol	Callao		
Inversiones inmobiliarias El Colca	imagina	Condominio Alto Colonial	Callao		
Graña y Montero	GMV	Parques Villa El Salvador	Villa el Salvador		
Graña y Montero	GMV	Parque Central – Club Residencial	Lima		
Constructora AESA	AESA CONSTRUCCIONES	Condominio Parque los Olivos	Los Olivos		
Constructora AESA	AESA CONSTRUCCIONES	Condominio Único	Breña		
FOVIME	To vime	Héroes de San Juan de Miraflores	San Juan de Miraflores		
Costanera Grupo Inmobiliario	terrazas de la costanera	Proyecto Costanera	San Miguel		
Líder Grupo Constructor	LIBER DRUPO CONSTRUCTOR	Proyecto los Algarrobos	Comas		
BESCO	B BESCO EDIFICACIONES	Villa Santa Santa Clara	Ate		
BESCO	B BESCO EDIFICACIONES	SPAZIO República	Surco		
Ay G Grupo Inmobiliario	arteco	La Campiña II	Chorrillos		

5.1 CARACTERISTICAS GENERALES DE PROYECTOS DE MUROS DE DUCTILIDAD LIMITADA

5.1.1 Muros

Tabla 5.2. Características Generales de Muros en los Proyectos.

OBRA	Número de pisos	Espesor (cm) [pisos]	f'c (kg/ cm²)	Sistema de Encofrado	Hora Inicio de Vaciado	Hora Fin de Vaciado	Duración vaciado (Horas)	Concreto vaciado por dia (m3)	Hora Inicio desencofrado	Tiempo total encofrado (horas)	Tipo de Curado	Número de Personal en el vaciado	Equipos
Edificio Villasol	12	15	210	UNISPAN	03:30 p.m.	07:00 p.m	2.5	24	08:00 a.m.	13	CURADOR QUIMICO	5	2 Vibrador
Condominio Villa del Sol	15	15 [1-10] 10 [11- 15]	210	E EGO	02:00 p.m.	06:00 p.m	4	46	06:00 a.m.	12	CURADOR QUIMICO	4	1 Vibrador
Condominio Alto Colonial	14	15 [1-6] 10 [7-14]	210	FORZA SISTEMAS DE ENCOFRADO	02:30 p.m.	07:30 p.m.	5	25	06:30 a.m.	11	CURADOR QUIMICO	4	1 Vibrador
Parques Villa El Salvador	5	10	175	FORZA SISTEMAS DE ENCOFRAD	11:00 a.m.	02:30 p.m.	3.5	35	06:00 a.m.	15.5	CURADOR QUIMICO	4	1 Vibrador
Parque Central – Club Residencial	15	15 [1-9] 10 [10- 15]	175	FORZA SISTEMAS DE ENCOFRADO	11:00 a.m.	02:30 p.m.	3.5	35	06:00 a.m.	15.5	CURADOR QUIMICO	4	1 Vibrador
Condominio Parque los Olivos	9	15 [1-4] 10 [5-9]	210	UNISPAN (9:30 a.m	12:30 p.m.	3	48	06:30 a.m.	18	CURADOR QUIMICO	3	1 Vibrador
Condominio Único	10	15 [1-4] 10 [5-10]	210	UNISPAN	9:30 a.m	12:30 p.m.	3	24	06:30 a.m.	18	CURADOR QUIMICO	7	2 Vibrador
Héroes de San Juan de Miraflores	6	10	210	FORZA SISTEMAS DE ENCOFRADO	03:00 p.m.	06:30 p.m.	3.5	54	06:30 a.m.	12.5	CURADOR QUIMICO	4	1 Vibrador
Proyecto Costanera	14	15 [1-10] 10 [11- 14]	175	EEGO	01:00 p.m.	04:30 p.m.	3.5	28	06:00 a.m.	13.5	CURADOR QUIMICO	3	1 Vibrador
Proyecto los Algarrobos	5	10	175		01:00 p.m.	04:00 p.m.	3	28	06:30 a.m.	14.5	CURADOR QUIMICO	6	1 Vibrador
Villa Santa Santa Clara	8	15	210	EEGO	02:00 p.m.	05:00 p.m.	3	24	06:30 a.m.	12.5	CURADOR QUIMICO	6	2 Vibrador
SPAZIO República	12	15	210	HARSCO	02:00 p.m.	05:00 p.m.	3	24	06:00 a.m.	15.5	CURADOR QUIMICO	6	1 Vibrador
La Campiña II	8	10	210	UNISPAN CONTROL OF ANAMACO	01:30 p.m.	04:30 p.m.	3	28	06:00 a.m.	13.5	CURADOR QUIMICO	6	1 Vibrador

5.1.2 Losas

Tabla 5.3. Características Generales de Muros en los Proyectos.

OBRA	Número de Pisos	Espesor Losas (cm)	f'c (kg/cm2)	Sistema de Encofrado	Hora Inicio de Vaciado	Hora Fin de Vaciado	Duración de vaciado (Horas)	Concreto vaciado por día (m3)	Hora Inicio desencofrado	Tiempo Total encofrado (horas)	Tiempo de curado (dias)	Tipo de Curado	Equipos empleados en el vaciado	Edad de retiro de puntales (días)
Edificio Villasol	12	15	175	UNISPAN	01:00 p.m.	3:00 p.m	02:00	18	08:00 a.m.	17	1	AGUA	Vibrador Torre Grúa	5
Condominio Villa del Sol	15	12	210	ECCO	10:00 a.m.	12:30 p.m	02:30	28	06:00 a.m.	17.5	1	CURADOR QUIMICO (*)	Vibrador Torre Grúa	7
Condominio Alto Colonial	14	12	210	FORZA SISTEMAS DE ENCOFRADO	02:30 p.m.	07:30 p.m	05:00	25	09:30 a.m.	12	3	AGUA	Balde Vibrador	6
Parques Villa El Salvador	5	10	175	FORZA SISTEMAS DE ENCOFRADO	11:00 a.m.	02:30 p.m	03:30	35	06:00 a.m.	15.5	4	AGUA	Vibrador Torre Grúa	7
Parque Central – Club Residencial	15	10	175	FORZA SISTEMAS DE ENCOFRADO	11:00 a.m.	02:30 p.m	03:30	35	06:00 a.m.	15.5	4	AGUA	Vibrador Torre Grúa	7
Condominio Parque los Olivos	9	15	210	UNISPAN	12:30 p.m.	03:30 p.m	03:00	48	08:00 a.m.	16.5	4	AGUA	Vibrador Torre Grúa	7
Condominio Único	12	15	175	UNISPAN	12:30 p.m.	03:30 p.m	03:00	22	08:00 a.m.	16.5	2	CURADOR QUIMICO (*)	Vibrador Torre Grúa	8
Héroes de San Juan de Miraflores	6	12	210	FORZA SISTEMAS DE ENCOFRADO	12:30 p.m.	03:00 p.m	02:00	54	06:30 a.m.	15.5	3	AGUA	Vibrador Torre Grúa	7
Proyecto Costanera	14	12	175	e ęc o	01:00 p.m.	04:00 p.m	03:00	28	07:30 a.m.	15.5	1	CURADOR QUIMICO (*)	Vibrador Torre Grúa	7
Proyecto los Algarrobos	5	10	210	EECO	09:30 a.m.	12:30 p.m.	03:00	28	06:00 a.m.	17.5	3	AGUA	Vibrador Torre Grúa	5
Villa Santa Santa Clara	8	15	175	EECO	11:00 a.m.	02:00 p.m	03:00	24	06:00 a.m.	17.5	2	CURADOR QUIMICO (*)	Vibrador Torre Grúa	7
SPAZIO República	12	12	210	HARSCO INFRASTRUCTURE	10:00 a.m.	02:00 p.m	04:00	24	07:00 a.m.	17	2	CURADOR QUIMICO (*)	Vibrador Torre Grúa	3
La Campiña II	8	10	175	UNISPAN (11:00 a.m.	02:30 p.m	03:30	15	07:00 a.m.	16.5	1	CURADOR QUIMICO (*)	Balde Vibrador	4

^(*) Tener en consideración que el curado con productos químicos para el caso de las losas no es el adecuado, ya que la película de producto que se coloca sobre la losa para garantizar el curado será desgastada por el tránsito del personal y por el transporte de materiales que se de en esa zona. Por ello se recomienda no aplicar este sistema de curado ya que no se garantiza un correcto curado al elemento estructural.

5.2 COMPARACIÓN DE LAS CARACTERISTICAS DE LOS PROYECTOS EN ESTUDIO

5.2.1 Espesor, Número de Pisos y tipo de Encofrado en Losas y Muros:

En los siguientes gráficos 5.1 y 5.2 se muestra la comparación del espesor y número de pisos en las losas y muros:

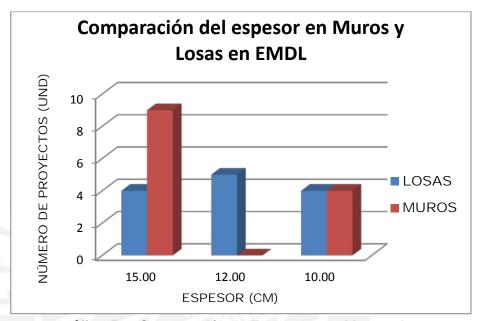
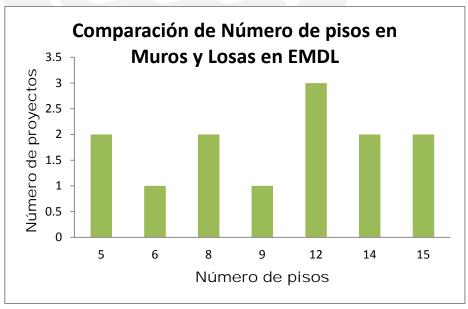



Gráfico 5.1. Comparación de Espesores en Muros y Losas

Gráfico 5.2. Comparación de Número de Pisos por Número de Proyecto.

Para el proceso de encofrado, primero se analizó la sectorización planteada por cada una de las empresas constructoras. La sectorización permite un trabajo repetitivo y más sencillo; sin embargo también incrementa el número de juntas entre los elementos estructurales. Dichas juntas deberían tener un tratamiento especial para garantizar la correcta unión entre concretos de diferentes edades, lo recomendable sería aplicar un epóxico en la zona de las juntas para así garantizar la adherencia entre ambos concretos y evitar problemas estructurales futuros.

De las trece obras visitadas, solo dos obras le daban un tratamiento a las juntas en las losas, el tratamiento consistía en rebajar la superficie aproximadamente 1 pulgada y sobre la superficie rebajada vaciaban el concreto nuevo.

En la Figura 5.1 se muestra uno de los procesos de encofrado visto en una de las obras. Los sistemas de encofrado empleados para la construcción de edificios de vivienda en nuestro país se muestran en la Tabla 5.4.

Fig. 5.1. Encofrado de muros listo para el vaciado-Obra Condominio Villa del Sol

Tabla 5.4. Sistemas de Encofrados Metálicos

ENCOFRADOS METÁLICOS							
eeco	Encofrados EFCO						
FORZA SISTEMAS DE ENCOFRADO	Forza						
UNISPAN	UNISPAN Sistemas de Encofrados y Andamios						
HARSCO	HARSCO						

En el gráfico 5.3 muestras la comparación de los sistemas de encofrado metálicos empleados por las empresas constructoras tanto para los muros como para las losas:

Gráfico 5.3. Comparación de sistemas de encofrado empleados.

5.2.2 Resistencia a Compresión en Losas y Muros:

Los muros de corte en todas las obras han sido diseñados con la Norma Peruana E. 060 de Concreto Armado, aplicándose además las ampliaciones a esta norma que se especifican en la Norma para Diseño de Edificios con Muros de Concreto de Ductilidad Limitada (EMDL). Las losas varían entre de 10 y 15 cm de espesor, los cuales cumplen con las especificaciones de la norma.

En gráfico 5.4 se muestra la comparación de los valores de la resistencia a compresión empleados en muros y losas:

Comparación de f'c en Muros y Losas de EMDL.

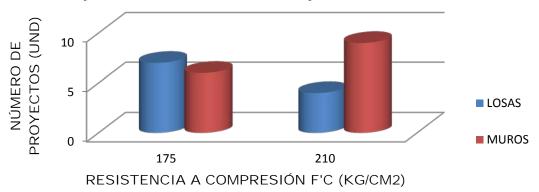


Gráfico 5.4. Comparación del f'c empleados en cada proyecto.

5.2.3 Edad de Desencofrado:

De la data mostrada en las tablas 5.2 y 5.3, elaboramos las siguientes gráficas para poder comparar y visualizar en porcentajes el tiempo de desencofrado empleado en losas y muros en cada proyecto visitado.



Gráfico 5.5. Edad de desencofrado de losas.

Del gráfico 5.5 podemos observar que un 91% de los proyectos visitados están desencofrando las losas a las 16.3 horas en promedio

En el gráfico 5.6 podemos apreciar en porcentajes los proyectos que emplean las edades de desencofrados de los muros, observándose que el 23% de las obras en análisis tarda 15.5 horas en desencofrar sus elementos verticales y un 38 % tarda 13 horas en promedio en desencofrar sus muros. Si obtenemos un promedio entre las edades de desencofrado con un mayor porcentaje de proyectos, obtenemos que la edad promedio de desencofrado en la ciudad de Lima es de 13.5 horas para elementos verticales.

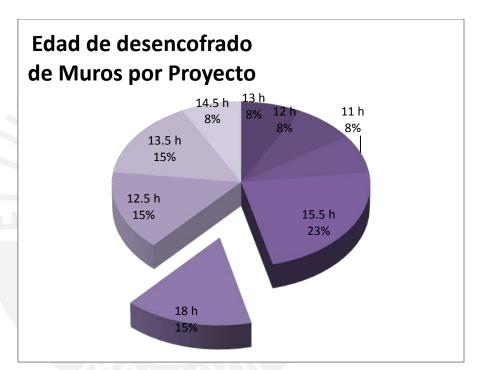


Gráfico 5.6. Edad de desencofrado de muros.

5.2.4 Tiempo y Tipos de Curado:

En las 13 obras visitadas, se encontró que para elementos verticales, todos empleaban curador químico, pues les garantizaba mantener la humedad de las caras de los muros por más tiempo. En el caso de los elementos horizontales, era diferente pues el curado químico no es recomendado para este tipo de elementos dado que la película de curado se desgasta a medida que los operarios transitan por la losa transportando material e instalándolos.

En el gráfico 5.7 se muestra la cantidad de obras que emplea curado químico y curado por vía húmeda, encontrándose en una relación de 46 % y 54 % respectivamente.

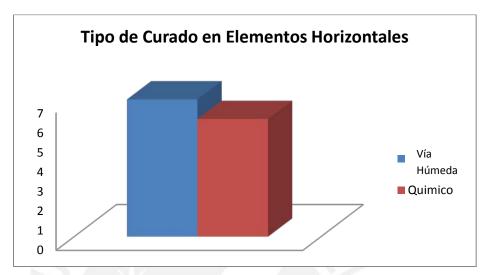


Gráfico 5.7. Tipos de Curado.

Analizando el tiempo de curado en losas, tenemos que las que emplean curado químico curan entre 1 y 2 días, mientras que los que emplean curado por vía húmeda curan entre 3 y 4 días (el primer día 3 veces y los demás días 1 sola vez)

Gráfico 5.8. Tiempo de Curado en días.

5.3 PROYECTOS ESCOGIDOS PARA EL ANÁLISIS

5.3.1. PROYECTO LA CAMPIÑA II

5.3.1.1. Descripción de la Obra

La obra se encuentra en el distrito de Chorrillos, en la Calle Ontario cuadra 1. Es un edificio de vivienda multifamiliar con la característica de emplear muros y losas de espesores reducidos (Edificios de Muros de Ductilidad Limitada), el proyecto cuenta con siete sectores contiguos; cada sector cuenta con 8 niveles, con un total de 56 departamentos. La altura libre de piso a techo es de 2.40m, el espesor de las losas y muros es 10 cm (Nótese que no cumple con las especificaciones de la norma E 060) y el área por sector es de 152.8 m2 (cada sector está compuesto por 2 departamentos).

En la figura 5.2 podemos apreciar cómo quedará la obra una vez concluida y en la figura 5.3 podemos apreciar la planta de un departamento típico de 76.4 m².

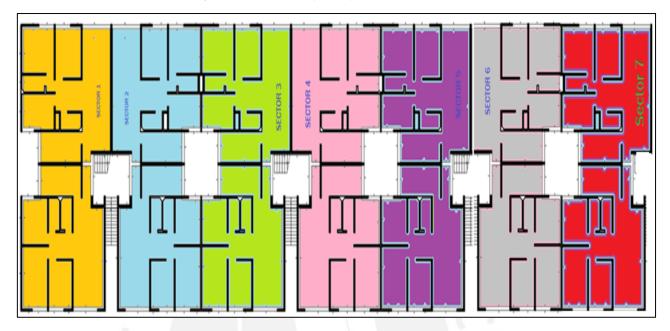
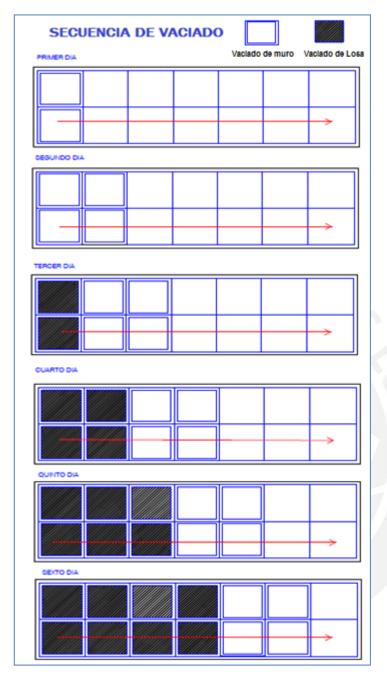


Fig. 5.3. Planta Típica de un Departamento

5.3.1.2 Sectorización del Vaciado de la Obra

En la figura 5.4 se muestra la planta de la obra, la sectorización de vaciado y el tren de trabajo empleado.


Fig. 5.4. Vista en Planta de Sectorización de Vaciado del Edificio Sector 1 – Sector 2 – Sector 3 – Sector 4 – Sector 5 – Sector 6 – Sector 7

En la figura 5.4 se muestra el esquema de la secuencia de vaciado empleado para esta obra. La obra cuenta con 7 sectores (cada sector está conformado por 2 departamentos). Por ejemplo: el día 1 se inició con el vaciado de los muros del sector 1. El día 2 se vaciaron los muros del sector 2 y a su vez se estaba preparando el encofrado de las losas del sector 1, para que éstas fueran vaciadas al día siguiente.

El día 3 se continuó con el vaciado de muros del sector 3, y se inició el vaciado de losas del sector 1. El día 4 se vaciaron los muros del sector 4 y las losas del sector 2. A continuación se muestra la secuencia de vaciado de muros y losas para cada sector.

Fig. 5.5. Vista en Planta: Secuencia de Vaciado - Obra La Campiña.

5.3.1.3 Análisis de Cargas

Para el tren de trabajo y la sectorización mostrada, se realizó el seguimiento a la obra, con visitas periódicas para poder determinar la carga real que actúa sobre el concreto desencofrado a tempranas edades.

Con las visitas realizadas a obra, se recolectó información de la evolución de las cargas a lo largo del tiempo, asimismo se realizó el análisis de las cargas actuantes con la información brindada en los planos y con lo observado en las visitas del día a día.

En la tabla 5.5 podemos apreciar los pesos y usos por metro cuadrado de encofrado de muro de cada elemento, mientras que en la tabla 5.6 observamos a detalle el cálculo del peso del encofrado de los muros así como los elementos adicionales que conforman el encofrado vertical tales como: cuñas grampas, alzaprimas, etc. en función de los pesos obtenidos de la página web de UNISPAN.

Tabla 5.5 Pesos y usos de los elementos del encofrado UNISPAN

SISTEMA DE ENCOFRADOS METALICOS UNISPAN (MUROS)												
CUÑ	IAS	GRAMP	AS	TUBO ALIN	IEADOR	CANAL ALINEADOR						
USO	PESO	USO	PESO	USO	PESO	USO	PESO					
4 und/m ²	0.15 kg	1.53 und/m ²	0.82 kg	0.14 und/m ²	22.32 kg	0.14 und/m ²	63.3 kg					

Tabla 5.6 Cálculo de pesos de elementos del encofrado de muros por sector

Elementos de Encofrados en Muros	Cálculo de Cantidad por sector	Cálculo Numérico	Cantidad	Peso Unitario (kg)	Peso Total (Kg)					
Panel muro	= m2 encofrado*uso*2 caras encofrado	111.84*0.69*2	155	63.54	19600					
Cuñas en muros	= m2 encofrado*uso*2 caras	111.84*4*2	895	0.15	130					
Grampas	= m2 encofrado*uso*2 caras	111.84*1.53*2	342	0.82	280					
Canal Alineador	= m2 encofrado*uso*2 caras	111.84*0.14*2	31	63.3	1960					
Tubo Alineador	= m2 encofrado*uso*2 caras	111.84*0.14*2	31	22.32	690					
Alzaprimas	= m2 encofrado*uso*2 caras	111.84*0.13*2	29	23	660					
Peso Total por sector (kg)										
	Peso Total Encofrado Muro por	metro cuadrado (ko	g/m²)		152.6					

En la Tabla 5.7 se muestra el cálculo del peso del encofrado de las Losas por sector de 152.8 metros cuadrados.

Tabla 5.7. Cálculo de pesos de elementos del encofrado de losas por sector

Elementos de Encofrados en Muros	Cálculo de Cantidad por sector	Cálculo Numérico Cantidad		Peso Unitario (kg)	Peso Total (Kg)					
Panel losa	= m2encofrado*uso	152.8*1	153	32.5	4973					
Grampas	= m2 encofrado*uso	152.8*1.53	202.0	0.82	166					
Canal Alineador	= m2 encofrado*uso	152.8*0.14	18.5	63.3	1170					
	Peso Total por sector (kg)									
Peso	Peso Total Encofrado Losas por metro cuadrado (kg/m²)									

En la tabla 5.8 aparecen las cargas totales que se consideraron para los diferentes pesos analizados en cada día para un total de 111.8 m² de muro y en planta 152.8m².

Tabla 5.8. Pesos Totales Considerados

	Pesos considerados	(Kg)
	Peso promedio trabajador	80
	Cilindro con agua para curado	200
	Equipo de Topografía	40
ı	Peso del acero en muros	1205
	Peso del acero en losas	310
	Peso de Instalaciones Eléctricas y Sanitarias	70
	Peso Total de Encofrado en Muros por sector	23300
	Alzaprimas	670
	Peso Encofrados Losas	7700
	Peso del Concreto en muros por sector (*)	54960
	Peso del Concreto en losas por sector (*)	34270

(*) Obtenido del metrado de los planos proporcionados por el constructor [densidad del concretox(área de la losa)x(espesor de la losa)]

En las siguientes tablas se muestran a detalle los pesos considerados y vistos en la historia de cargas en las visitas realizadas a la Obra La Campiña, también se muestra los valores de la carga total, la carga por m2 (para **152.8 m2** con que cuenta cada sector) y la carga máxima. La tabla se puede resumir en el esquema mostrado en la figura 5.6, donde se aprecia el esquema de plantas construidas y apuntaladas.

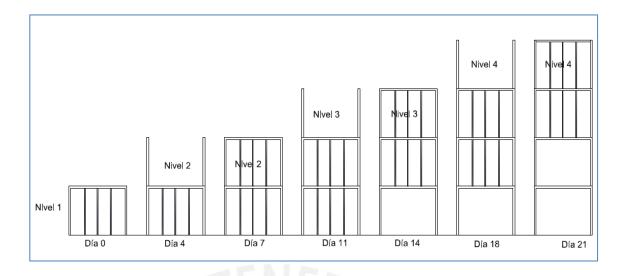


Fig. 5.6. Secuencia de avance de pisos sucesivos para un mismo sector.

Para el análisis se consideraron los pesos mostrados en la tabla 5.9:

Tabla 5.9. Peso Propio (Carga Muerta) de la losa de un sector

Peso Propio de Losa (Carga Muerta)	kg
Peso del acero en losas	320
Peso de Instalaciones Eléctricas y Sanitarias	70
Peso del Concreto en losas por sector	34300
Total	34690 (kg)
	227≈230
kg/m2 34690/152.8	kg/m²

Peso Teórico:

2,400x0.1=240 kg/m²

Tabla 5.10. Cargas vivas actuantes en losa 2 recién vaciada

Día	Tiempo	Losas sector 1	Cálculo	Carga Total (kg)	Carga por m2 (kg/m2)	Carga Max. (Kg/m2)
		Losa 1				
Día 1	5:00 - 17:00	Persona encargada de Curar la losa(1) + Cilindro de agua para curar + Herramientas + Ing. Calidad + Ing. seguridad + 2 Operarios + Piezas de Madera + 6 Baldes con residuos + Maestro de Obra + Mesa de Planos + Varillas de Acero + Capataz + 2 baldes con agua + Escobas	80 + 210 + 60 + 80 + 80 + 2*80 + 180 + 6*45 + 80 + 120 + 65 + 80 + 2*35 + 15	1550	10	10
	8:00 - 10:30	Topógrafo + 2 ayudantes + Equipos + Herramientas + Operario	80 + 2*80 + 45 + 35+ 80	400	3	
Día 2	11:30 - 14:00	Cuadrilla vaciado de losa sector 2 (5 hombres) + Herramientas + Ing. Calidad + Maestro de Obra + Piezas de madera + 2 Cilindros de agua + 6 baldes de residuos + Ing. Seguridad + Mesa de Planos + Operario	5*80 + 60 + 80 + 80 + 160 + 2*90 + 6*45 + 80 + 120 + 80	1500	10	10
	8:00 - 13:30	Cuadrilla acero muro "2" (8 hombres) + peso acero muro "2" + Capataz	8*80 + 1205 + 80	1925	13	
Día 3	14:00 - 17:00	Cuadrilla Instalaciones muro "2" (8 hombres) + peso instalaciones muro "2" + 70% peso del encofrado a colocar el día siguiente + Tablas + 5 Baldes con residuos + Mesa de Planos + 3 Baldes con agua + Varillas de acero + 3 Escaleras + Capataz + Ing. Seguridad + 2 Operarios	8*80 + 70 + 0.7*23300 + 220 + 5*45 + 120 + 3*40 + 40 + 3*60 + 80 + 80 + 2*80	18245	119	119
Día	5:00-8:00	Cuadrilla encofrados muro "2" (8 hombres) +peso muro "2" (45% peso de encofrado) + equipos + Ing. Seguridad + 2 Operarios + Capataz + Piezas de Madera + 5 Baldes con residuos + Cilindro de desmoldante	8*80 + (0.45*23300) + 30	12060	79	79
4	9:00 - 16:00	Cuadrilla vaciado muro "2" (7 hombres) + 1 operario UNICON + vibrador + ménsulas + Herramientas + Ing. Calidad + Capataz + Tablas	7*80 + 80 + 30 + 225 + 45 + 80 + 80 + 140	1240	8	
Día 5	6:30 - 9:00	Cuadrilla desencofrado muros "2" (7 hombres) + Herramientas + 70% Encofrado + Ing. Calidad + Piezas de Madera + Ing. Seguridad + 7 Baldes de residuos + Mesa para Planos + Maestro de Obra + Escalera		17720	116	116
	9:00 - 10:00	1hombre + Balde Curador Químico + Herramientas + Maestro de Obra	80 + 100 + 25 + 80	285	2	
Día 6	11:00 - 17:00	Cuadrilla encofrado losa "2" (8 hombres) + encofrados losa"2" + puntales + Ing. Calidad + Capataz + Tablas+ Ing. Seguridad + Herramientas + Cilindro Desmoldante + Mesa Planos + 2 Operarios	210 + 120 + 2*80	9950	65	65
Día	5:30-11:00	Cuadrillas Losa"2" [Acero (8 hombres) + Instalaciones (6 hombres)] + peso Losa "2" (instalaciones + acero + Encofrado + Puntales) +Ing. Calidad + Mesa de Planos +7 Baldes con residuos + Tablas + Capataz + 3 Baldes de agua + Herramientas + Dados de concreto + Operario	+ 7700 + 553.5) + 80 +	10860	71	71
7	11:00 - 15:00	Cuadrilla Vaciado Losa "2" (8 hombres) + peso losa "2" (Encofrado + Puntales + Acero + Instalaciones) + Herramientas + Ingeniero de Calidad + 2 Escaleras	8*80 + (7680 + 553.5 + 310 + 70) + 50 + 80 + 2*25	9410	62	

		Losa 2				
Día 8	6:00-9:00	Cuadrilla Desencofrado y Reapuntalado losa "2" (8 hombres) + Ing. Calidad + Herramientas + Maestro de Obra + Puntales + Tablas + Ing. Seguridad + 6 Baldes de residuos + Mesa de Planos + Capataz+ 3 Baldes de Agua + 2 Operario + 2 Escaleras	8*80 + 80 + 35 + 80 + 553.5 + 180 + 80 + 6*45 +120 + 80 + 3*50 + 2*80 + 2*25	2400	16	16
	9:00-17:00	Curador losa "2" + Cilindro de agua + Herramientas + Ing. Seguridad + Piezas de Madera + latas con residuos + Ing. Calidad + Mesa de Planos	80 + 200 + 45 + 80 + 160 + 130 + 80 + 120	895	6	
	8:00-10:30	Topógrafo + 2 ayudantes + Equipos + Maestro de Obra + Escalera	80 + 2*80 + 40 + 80 + 25	385	3	
Día 9	11:30-2:00	Cuadrilla vaciado losa sector 2 nivel "2" (5 hombres) + Capataz +Ing. Seguridad + Herramientas + Tablas + 6 Baldes con desperdicios + Mesa de Planos + Ing. Calidad + 2 Operarios + Cilindro con Agua + Capataz	5*80 + 80 + 80 + 75 + 190 + 6*45 +120 + 80 + 2*80 + 150 + 80	1685	11	11
	8:00-1:30	Cuadrilla acero muro "3" (8 hombres) + 65% peso acero + Ing. Calidad	8*80 + 0.65*1205 + 80	1500	10	
Día 10	2:00-5:00	Cuadrilla Instalaciones muro "3" (8 hombres) + 70% peso instalaciones muro "3" + 70% peso del encofrado a colocar el día sgte. + Ing. Calidad + Capataz + Tablas + Ing. Seguridad + 6 Baldes con desperdicios + Cilindro de desmoldante + 4 Escaleras + 3 Baldes con agua + 1 Operario	8*80 + 0.70*70 + 0.70*23300 + 80 + 80 + 180 + 80 + 4*45+200 + 4*50 + 3*50 + 80	18230	119	119
	5:00-8:00	Capataz + encofradores muro "3" (8 hombres) + 65% peso encofrado muro "3" + Equipos + Ing. Seguridad + Ing. Calidad + Tablas + Capataz	80 + 8*80 + 0.65*23300 + 35 + 80 + 80 + 160 + 80	16300	107	
Día 11	9:00-12:00	Cuadrilla vaciado muros "3" (8 hombres) + vibrador + ménsulas + 2 Operarios + tablas de andamios + 70% Encofrado muros "3" + Ing. Calidad + Maestro de Obra+ Ayudante + 5 Baldes de residuos + Herramientas + Capataz	8*80 + 30 + 2*80+225 + 190 + 0.70*23300 + 80 + 80 + 80 + 5*45 + 75 + 80	18175	119	119
Día 12	6:30-9:00	Cuadrilla desencofrado muro "3" (8 hombres) + 70% Encofrado + Guardia + Ing. Seguridad + Tablas + 6 Baldes de residuos + Ing. Calidad + Herramientas + Capataz + Cilindro desmoldante + Mesa para Planos	80*6 + 0.70*23300 + 80 + 80 + 160+ 6*45 +80 +75 + 80 + 210 + 120	18010	117	117
	9:00-10:00	1 hombre + Balde de Curador Químico + Ing. de Calidad + Herramientas	(80 + 100) + 80 + 60	320	2	
Día 13	11:00-5:00	Cuadrilla encofradores Iosa "3" (8 personas) + Cilindro de Desmoldante + Ing. Seguridad + 75% Peso Iosa "3" (encofrados + puntales) + Equipos + Ing. Calidad + Tablas + 2 Cilindros de agua + 6 latas con residuos + Maestro de Obra + Mesa para Planos + 2 latas de herramientas	8*80 + 210+ 80 + 0.75*(7680 + 553.5) + 65 + 80 + 160 + 2*200 + 6*45 + 80 + 120 + 2*50	8380	55	55
Día 14	8:00-11:00	Cuadrillas Losa "3" [Acero (8 hombres) + Instalaciones (6 hombres)] + Ing. Calidad + peso losa "3" (acero + instalaciones + Encofrado+ puntales) + Ing. Seguridad + Maestro de Obra + Piezas de Madera + 7 Baldes con residuos + 2 Operarios + 3 Escaleras + Capataz + Varillas de Acero + 3 baldes con agua + mesa de planos + Ing. Producción +Supervisor	8*80+ 6*80+ 80+ (70+ 310 + 7680 + 553.5) + 80+80 + 190 +7*45 + 2*80 + 3*60+80 + 45 + 3*50 + 120 + 80 + 80	11370	74	74
	11:00-3:00	Vaciado Losa "3" (8 hombres) + Peso Iosa "3" (Encofrado + Instalaciones + Acero + Puntales) + Herramientas + Ing. Seguridad + Maestro de Obra + 2 Operarios + Ing. Calidad	7*80 + (7680 + 70 + 310 + 553.5) + 35 + 80 + 80 + 2*80 + 80	9610	63	

Aplicando la hipótesis de transmisión de cargas de Grundy y Kabaila mencionada en el acápite 3.3.1 para dos niveles apuntalados y posteriores desapuntalados del piso inferior, obtenemos el esquema de cargas que actuaran sobre cada losa mostrado en la Figura 5.7. Como se puede observar en el esquema, la carga de cada losa vaciada se transmite hasta el suelo sin cargar a la losa inmediata anterior. Este efecto se da hasta que se desencofra el primer nivel y son los puntales los que se encargan de transmitir las cargas hasta el suelo; y parte de la carga se queda en la losa 1.

Al lado izquierdo a la altura de cada losa, se encuentra las proporciones de la carga muerta en kg/m² que soportará cada losa; y más abajo en la parte central de cada planta se muestra las proporciones de carga que soportarán los puntales. Del gráfico podemos observar que la losa 1 recibirá carga del peso vivo y muerto por efecto del vaciado de la losa 2, hasta que se desapuntale la planta 1. Cuando se realiza el vaciado de la losa 3, la carga en la losa 1 se incrementará hasta que se desencofre la losa 3 y quede apuntala.

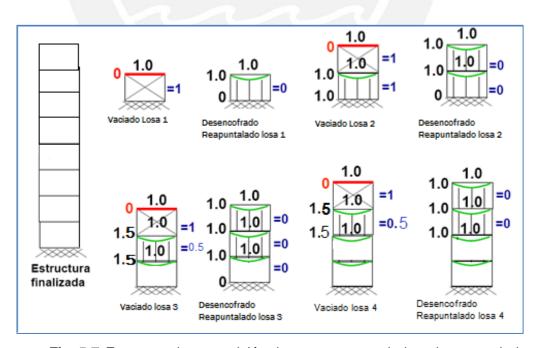


Fig. 5.7. Esquema de transmisión de cargas por vaciado y desapuntalado.

Para la losa 1, de la historia de cargas mostrada en la Tabla 5.10 elaboramos una tabla general donde se incluyen las cargas vivas y las cargas actuantes producto del proceso de vaciado, apuntalado y desapuntalado, este cuadro resumen se muestra en la Tabla 5.11.

Tabla 5.11. Cargas vivas por apuntalado y reapuntalado en Losa 1 (sin considerar su peso propio).

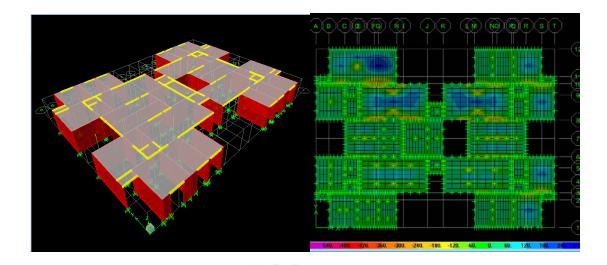
	considerar su peso propio).											
Día	Cargas de Construcción (kg/m2) (carga viva)	Carga por Desencofrado y Reapuntalado (kg/m2)	Carga por Vaciado kg/m2	Carga Total en Losa 1 kg/m2								
Día 1	10			10								
Día 2	10			10								
Día 3	119			119								
Día 4	79			79								
Día 5	116			116								
Día 6	65			65								
Día 7	71			301								
Día 8	15	Desencofrado- reapuntalado planta 2 230		245								
Día 9	11	230		241								
Día 10	119	230		349								
Día 11	119	230		349								
Día 12	117	230		347								
Día 13	55	230		285								
Día 14	74	230		419								
Día 15	9	Desencofrado- reapuntalado planta 3 (*)		9								
Día 16	12			12								

(*) Al desencofrar y reapuntalar la planta 3, también se desapuntala la planta uno; por lo tanto yo no recibirá cargas por efecto de la construcción de los pisos superiores

Con los datos de las cargas totales de la tabla 5.11 obtenemos el gráfico 5.9, en dicho gráfico observamos que los días en los que se presentan valores picos a lo largo de la historia de cargas de la losa 1 son los días 3, 5, 7,11 y 14 con cargas de 119, 116, 301, 349 y 418 kg/m² respectivamente, quedaría comprobar cuál es el f'c del concreto en estos días y cuál es su tendencia de incremento para esta estructura.

Gráfico 5.9. Historia de cargas en losa 1 (cargas adicionales al peso propio actuantes sobre la losa 1)

Haciendo el mismo análisis de cargas para la losa 2 tenemos la siguiente historia de cargas.


Gráfico 5.10. Historia de cargas en losa 2 (cargas adicionales al peso propio actuantes sobre la losa 2)

5.3.1.4 Cálculo de Esfuerzos bajo Cargas de Servicio

Para el cálculo de los esfuerzos se hará una verificación de los estados límites de servicio para la losa 1 ya que para los siguientes niveles tendrán un mismo comportamiento, puesto que todos los pisos tienen las mismas características.

Para el análisis realizado mostrado en las tablas 5.13 y 5.14 se emplearon las fórmulas explicadas en el ejemplo del capítulo 2, con la ayuda del programa ETABS para modelar las estructuras y determinar los momentos actuantes.

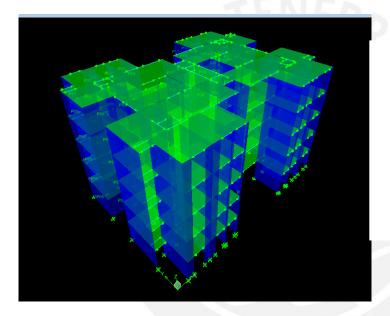


Fig. 5.8. Modelamiento de la estructura en el programa ETABS utilizando el modelo de elementos finitos para el caso de las losas

Datos Sección	Dia 1	Dia 3	Dia 7	Dia 14	Dia 21	Dia 28
f'c (kg/cm2)	210	210	210	210	210	210
b (cm)	100	100	100	100	100	100
h (cm)	10	10	10	10	10	10
d (cm)	7	7	7	7	7	7
d' (cm)	3	3	3	3	3	3
Econcreto (ensayado) (kg/cm2)	140042	160334	177270	194499	204644	212909
n	14.3	12.5	11.3	10.3	9.8	9.4
c (cm)	1.42	1.34	1.28	1.23	1.2	1.18
a (cm)	0.26	0.26	0.26	0.26	0.26	0.26
ØMn - (kg-m)/m	292.0	292.0	292.0	292.0	292.0	292.0
ØMn + (kg-m)/m	144	144	144	144	144	144

Tabla 5.12. Datos de la sección Losas 1 y 2 en el tiempo

						Los	sa 1]			
						Mome			Esfuerzos	(kg/cm2)				
		Cantid Acero				Servicio y Ultimo Kg-m/m		Momento Negativo (-)		Momento	Positivo (+)	Porc	entaje	
		Acero +	Acero -	Itr (-)	Itr (+)	M+	M-	Concreto	Acero	Concreto	Acero	f'c	f's	FS rotura
	M. Servicio	1.125	0.55	549	331	58	100	26	1459	21	1464	12%	35%	3.2
DÍA 1	M. Ultimo	1.125	0.55	549	331	82	142	37	2069	30	2066	18%	49%	2.3
	M. Servicio	1.125	0.55	548	331	84	156	38	2019	30	1856	18%	48%	2.1
DÍA 3	M. Ultimo	1.125	0.55	548	331	125	215	53	2780	45	2757	25%	66%	1.5
	M. Servicio	1.125	0.55	549	330	130	216	50	2552	43	2394	24%	61%	1.5
DÍA 7	M. Ultimo	1.125	0.55	549	330	197	339	79	3998	65	3989	38%	95%	1.0
	M. Servicio	1.125	0.55	550	331	153	262	59	2836	48	2841	28%	68%	1.2
DÍA 14	M. Ultimo	1.125	0.55	550	331	244	420	94	4542	77	4527	45%	108%	0.8
	M. Servicio	1.125	0.55	551	332	60	119	26	1231	19	1066	12%	29%	2.7
DÍA 21	M. Ultimo	1.125	0.55	551	332	134	262	57	2706	41	2373	27%	64%	1.2
	M. Servicio	1.125	0.55	552	333	79	129	28	1282	24	1346	13%	31%	2.5
DÍA 28	M. Ultimo	1.125	0.55	552	333	135	265	57	2630	41	2296	27%	63%	1.2

Tabla 5.13. Esfuerzos en el acero y concreto en Losa 1 en función de los momentos actuantes

							Losa 2							
		Cantidad	de Acero			Moment	o Máximo		Esfue	erzos				
			n 2)				Kg-m/m		Negativo (-)	Momento Positivo (+)		Porcentaje		
		Acero +	Acero -	Itr (-)	Itr (+)	M+	M-	Concreto	Acero	Concreto	Acero	f'c	f's	FS rotura
	M. Servicio	1.125	0.55	549	331	60	109	28	1590	22	1514	13%	38%	3.0
DÍA 1	M. Ultimo	1.125	0.55	549	331	83	151	39	2200	30	2091	19%	52%	2.1
	M. Servicio	1.125	0.55	548	331	84	143	35	1851	30	1856	17%	44%	2.3
DÍA 3	M. Ultimo	1.125	0.55	548	331	125	216	53	2793	45	2757	25%	67%	1.5
	M. Servicio	1.125	0.55	549	330	129	220	51	2599	43	2383	24%	62%	1.5
DÍA 7	M. Ultimo	1.125	0.55	549	330	198	340	79	4010	65	4009	38%	95%	1.0
	M. Servicio	1.125	0.55	550	331	153	262	59	2835	48	2841	28%	68%	1.2
DÍA 14	M. Ultimo	1.125	0.55	550	331	244	420	94	4542	77	4527	45%	108%	8.0
	M. Servicio	1.125	0.55	551	332	60	120	26	1242	19	1066	12%	30%	2.7
DÍA 21	M. Ultimo	1.125	0.55	551	332	134	262	57	2706	41	2373	27%	64%	1.2
	M. Servicio	1.125	0.55	552	333	74	121	26	1203	22	1262	12%	29%	2.7
DÍA 28	M. Ultimo	1.125	0.55	552	333	134	253	54	2511	40	2279	26%	60%	1.3

Tabla 5.14. Esfuerzos en el acero y concreto-Losa 2 en función de los momentos actuantes

En las tablas 5.13 y 5.14 se muestra el análisis para las losas 1 y 2 con las cargas actuantes durante el proceso constructivo. De este análisis podemos determinar que para cargas actuantes durante el proceso constructivo, la estructura estaría requiriendo un 38% del f'c a los 3 días y 45% a los 7 días para poder trabajar sin inconvenientes.

En los datos mostrados en la tabla 5.12 podemos ver cómo va cambiando el valor de "c" en función de las propiedades del concreto que se van incrementando en el tiempo (Valor del Módulo de Elasticidad obtenidos del ensayo en el laboratorio).

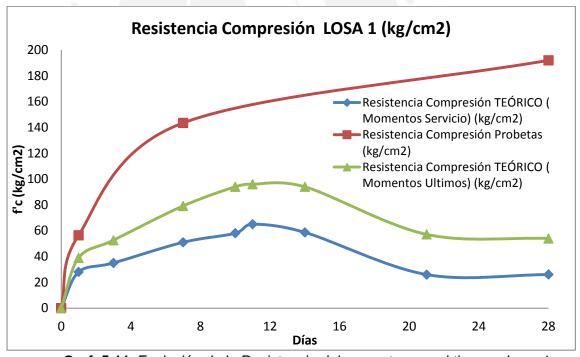
5.3.1.5 Propiedades del Concreto en Obra

Con el apoyo de UNICON, se realizaron ensayos de Resistencia a la compresión, Módulo de Elasticidad y Modulo de Poisson a probetas de concreto de 6 x 12" a 1,7 y 28 días muestreadas con el concreto que se vació en la estructura, (las probetas fueron curadas en la obra y posteriormente se llevaron al laboratorio de UNICON para ser ensayadas); esto se realizó con el objetivo de simular el comportamiento del concreto que se encuentra en la estructura. En este punto hay que tener en cuenta que las probetas curadas en laboratorio siempre presentaran valores de resistencia a compresión mayores que los de la estructura real.

Tabla 5.15. Valores de Resistencia y Modulo de Elasticidad a partir de ensayos.

Identificación	Fecha de Muestreo	Edad de Curado en Obra	Resistencia Compresión (kg/cm²)	% f'c (175kg/cm2)	Muestra	Módulo Elasticidad (kg/cm²)	Ratio de Poisson
	25/01/2012 08:25	1	61	35%	Probeta 1	149,662	0.2
1175N67A		1	01	35%	Probeta 2	147,625	0.19
A y G Grupo		7	145	83%	Probeta 1	184,384	0.18
Ing. Planta		/	145	83%	Probeta 2	182,112	0.1
Conchán.		28	198	113%	Probeta 1	218,495	0.18
					Probeta 2	219,13	0.18
		1	52	30%	Probeta 1	135,106	0.19
1175N67A		1	52	30%	Probeta 2	127,774	0.13
A y G Grupo	25/01/2012	7	142	81%	Probeta 1	165,985	0.16
Ing. Planta	09:45	,	142	0170	Probeta 2	176,597	0.17
Conchán.		28	186	106%	Probeta 1	204,835	0.18
		20	100	100%	Probeta 2	209,175	0.17

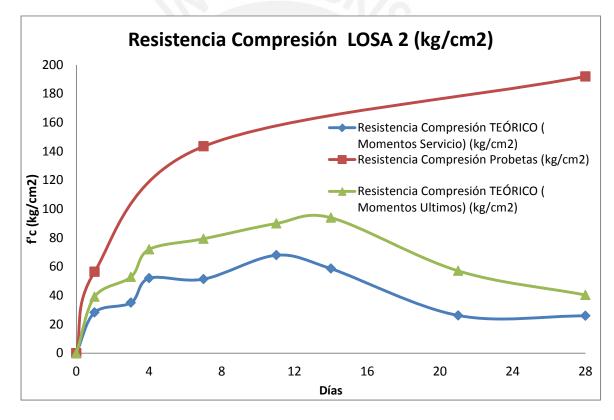
5.3.1.6 Comparación de los Esfuerzos Teóricos y Reales


Se realizó una comparación de la resistencia teórica obtenida del análisis de las cargas actuantes de servicio sobre las losas, los momentos últimos (1.4CM+ 1.7 CV), y la resistencia obtenida de los ensayos a compresión de las probetas en laboratorio. En las gráficas adjuntas, de color azul se muestra la resistencia con la que debería contar el concreto para soportar las cargas de servicio actuantes (obtenida del análisis teórico), de color verde se muestra la resistencia que se debería tener considerando

los momento últimos 1.4 CM+ 1.7 CV; y de color rojo se muestra la resistencia a compresión real obtenida de las probetas ensayadas.

Tabla 5.16. Valores de Resistencia a Compresión en el concreto Losa 1

DÍA	Resistencia Compresión TEÓRICO (Momentos Servicio) (kg/cm²)	Resistencia Compresión TEÓRICO (Momentos Ultimos) (kg/cm²)	Resistencia Compresión Probetas (kg/cm²)
0	0	0	0
1	28	39	56.5
3	35	53	
7	51	79	143.5
10	58	94	
11	65	96	
14	59	94	
21	26	57	
28	26	54	192



Graf. 5.11. Evolución de la Resistencia del concreto a en el tiempo-Losa 1

Tabla 5.17. Valores de Resistencia a Compresión en el concreto Losa 2

DÍA	Resistencia Compresión TEÓRICO (Momentos Servicio) (kg/cm²)	Resistencia Compresión TEÓRICO (Momentos Últimos) (kg/cm²)	Resistencia Compresión Probetas (kg/cm²)
0	0	0	0
1	28	39	56.5
3	35	53	
4	52	52 72	143.5
7	51	79	
11	68	90	
14	59	94	
21	26	57	
28	26	40	192

Graf. 5.12. Evolución de la Resistencia del concreto en el tiempo-Losa 2

5.3.1.7 Principales Problemas presentados en los elementos estructurales

Los principales problemas constructivos que se observaron en esta obra, son las que se muestran a continuación:

Tabla 5.18. Fallas del concreto en muros y losas.

FOTOS	DESCRIPCIÓN
	Se observa cangrejeras en el encuentro de muro con losa.
	Cangrejera por mal vibrado.
	Cangrejera por mal vibrado, se observa que este tipo de falla no es aceptable ni estética ni estructuralmente
	Fisuras en la Losa por asentamiento plástico en la capa superior.

5.3.2. PROYECTO PARQUES DE VILLA EL SALVADOR

5.3.2.1 Descripción de la Obra

La obra en análisis se encuentra en el distrito de Villa el Salvador, en la Avenida los Algarrobos. Es un edificio de vivienda multifamiliar con la característica de emplear muros y losas de espesores reducidos (Edificios de Muros de Ductilidad Limitada), cada etapa consta de un edificio de 5 pisos con 4 departamentos por piso, dando así un total de 20 departamentos. La altura libre de piso a techo es de 2.40 metros. La planta total de cada edificio es de 534 metros cuadrados. En la figura 5.9 podemos observar cómo lucirá la obra una vez concluidas todas sus etapas.

Fig. 5.9. Vista del Condominio Terminado

5.3.2.2 Sectorización del Vaciado de la Obra

En la figura 5.10 se muestra la planta de la obra, la sectorización de vaciado y el tren de trabajo empleado.

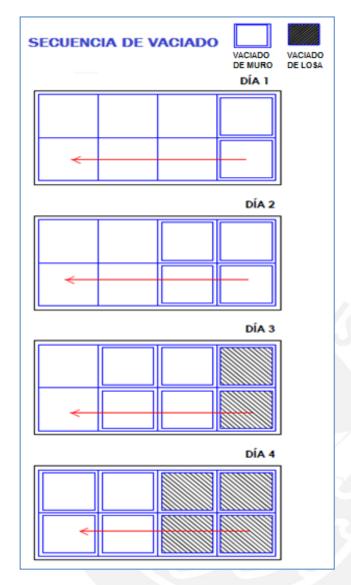


Fig. 5.10. Sectorización de Vaciados. Sector 4 – Sector 3 – Sector 2 – Sector 1

En la figura 5.11 se muestra el esquema de la secuencia de vaciado empleado para esta obra, la secuencia es muy parecida a la secuencia empleada en la obra La Campiña, a diferencia que los Parques de Villa el Salvador cuenta con 4 sectores (cada sector está conformado por 2 departamentos) . Por ejemplo: el día 1 se inició con el vaciado de los muros del sector 1. El día 2 se vaciaron los muros del sector 2 y a su vez se estaba preparando el encofrado de las losas del sector 1, para que éstas fueran vaciadas al día siguiente. El día 3 se continuó con el vaciado de muros del sector 3, y se inició el vaciado de losas del sector 1. El día 4 se vaciaron los muros del sector 4 y las losas del sector 2.

Fig. 5.11 Vista en planta. Secuencia de vaciado de una planta.

5.3.2.3 Análisis de Cargas

Para el tren de trabajo y la sectorización mostrada (Figura 5.11), se realizó el seguimiento a dicha obra, con visitas sucesivas para poder analizar cuál es la carga real que actúa sobre los elementos estructurales al momento de hacer el desencofrado a tempranas edades, pues a estructura aún no alcanza su resistencia característica.

Con las visitas realizadas a obra, se recolectó información de la evolución de las cargas a lo largo del proceso constructivo, asimismo se realizó el análisis de las cargas actuantes con la información brindada en los planos y con lo observado en las visitas del día a día.

En la tabla 5.19 podemos apreciar los pesos y usos por m2 de encofrado de cada elemento, mientras que en la tabla 5.15 observamos a detalle el cálculo del peso del encofrado de los muros así como los elementos adicionales que conforman el encofrado vertical tales como: cuñas grampas, alzaprimas, etc. en función de los pesos obtenidos de la página web de Encofrados FORSA.

Tabla 5.19 Pesos y usos de los elementos del encofrado FORSA

	SISTEMA DE ENCOFRADOS METALICOS UNISPAN								
CUÑAS GRAMPAS TUBO ALINEADOR CANAL ALINEADO					IEADOR				
USO	PESO	USO	PESO	USO	PESO	USO	PESO		
4 und/m ²	0.18 kg	1.53 und/m²	0. 64 kg	0.14 und/m ²	22.12 kg	0.14 und/m ²	40 kg		

Tabla 5.20 Cálculo de pesos de elementos del encofrado de muros

Elementos de Encofrados en Muros	Cálculo de Cantidad	Cálculo Numérico	Cantidad	Peso Unitario (kg)	Peso Total (Kg)	
Panel muro	= m2 encofrado*uso*2 caras encofrado*2 dptos por sector	140.64*0.69* 2*2	390	45.24	17640	
Cuñas en muros	= m2 encofrado*uso*2 dptos por sector	140.64*4*2	1126	0.18	200	
Grampas	= m2 encofrado*uso*2 dptos por sector	140.64*1.53* 2	435	0.64	280	
Canal Alineador	= m2 encofrado*uso*2 dptos por sector	140.64*0.14* 2	40	40	1600	
Tubo Alineador	= m2 encofrado*uso*2 dptos por sector	140.64*0.14* 2	40	22.12	880	
Alzaprimas	= m2 encofrado*uso*2 dptos por sector	140.64*0.13* 2	38	28	1060	
Peso Total por sector (kg)						
Peso Tota	al Encofrado Muro por metro	cuadrado de pl	anta (kg/m²)		202.6	

En la Tabla 5.21 se muestra el cálculo del peso del encofrado de las Losas por sector de 106.9 metros cuadrados.

Tabla 5.21 Cálculo de pesos de elementos del encofrado de losas por sector

Elementos de Encofrados en Muros	Cálculo de Cantidad por sector	Cálculo Numérico	Cantidad	Peso Unitario (kg)	Peso Total (Kg)
Panel losa	= m2encofrado*uso	106.9*1	110	45.24	4980
Grampas	= m2encofrado*uso	106.9*1.53	165	0.64	110
Canal Alineador	= m2encofrado*uso	106.9*0.14	15	40	600
	5690				
Peso T	53.2				

En la tabla 5.22 aparecen las cargas totales que se consideraron para los diferentes pesos analizados en cada día para 140.64 m² de muro y en planta 106.9 m².

Tabla 5.22 Pesos Totales Considerados

Pesos considerados	(Kg)
Peso promedio trabajador	80
Cilindro con agua para curado	200
Equipo de Topografía	40
Peso del acero en muros	1210
Peso del acero en losas	450
Peso de Instalaciones Eléctricas y Sanitarias	70
Peso Total de Encofrado en Muros por sector	21660
Alzaprimas	1900
Peso Encofrados Losas	5690
Peso del Concreto en muros por sector (*)	65595
Peso del Concreto en losas por sector (*)	31668

Se realizó el análisis de cargas para cada día, tomando en cuenta que el día 0 es el vaciado de la losa del primer nivel. A continuación se tiene el esquema que muestra la secuencia de avance de pisos para un mismo sector, en función de los días en que se inicia un nuevo nivel con el respectivo vaciado de la losa de concreto.

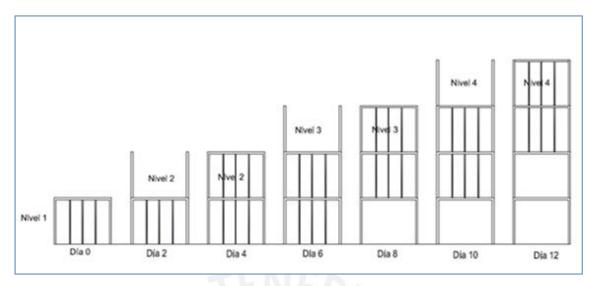


Fig. 5.12. Secuencia de avance de pisos sucesivos para un mismo sector.

En la tabla 5.23 se muestra el peso muerto considerado para cada sector en análisis:

Tabla 5.23. Peso Propio (Carga Muerta) de la losa de un sector.

Peso Propio de Losa (Carga Muerta)	kg/m2
Peso del acero en losas	446
Peso de Instalaciones Eléctricas y Sanitarias	70
Peso del Concreto en losas por sector	31668
Total	32184
kg/m2	301≈300

Tabla 5.24. Cargas en losa 1

Día	Tiempo	CARGAS sobre la Losa "1" sector 1	Cálculo	Carga Total (kg)	Carga por m2 (kg/m²)	Carga Máx. (kg/m²)
		Losa 1				
	7:00 - 9:00	Persona encargada de Curar la losa 1 + Cilindro de agua para curar	80 + 200	280	3	
	9:00 - 11:00	Topógrafo + 2 ayudantes + Equipo (Trípode, Teodolito, Mira) + Herramientas	80 + 2*80 + 40 + 25	305	3	
Día 1	11:00 - 14:00	Cuadrilla vaciado losa sector 2 (5 hombres) + Cuadrilla acero muro 2 (7 hombres) + Ing. Seguridad + 70% peso acero de muro 2 + Equipos	5*80 + 7*80 + 80 + 07*1210 + 35	9545	89	148
	2:00 - 17:30	Cuadrilla Instalaciones muro 2 (8 hombres) + peso muro 2 (45% instalaciones) + 70% peso encofrado muros a colocar el día siguiente	8*80 + (0.45* 70) + 0.70* 21660	15830	148	
Día	6:00 - 10:00	Capataz + Cuadrilla encofradores muro 2 (8 personas) + Cilindro de desmoldante + peso muro 2 (70% encofrado) + equipos + Ing. Calidad + Ing. Seguridad + 3 Escaleras + Mesa de Planos + 2 Baldes de residuos	80 + 8*80 + 200 + (0.7*21660) + 35 + 80 + 80 + 3*50 + 120 + 2*45	16640	156	156
2	11:0 - 14:30	Cuadrilla vaciado muro 2 (7 hombres) + Capataz + vibrador + ménsulas+ Equipos + Ing. Seguridad + Ing. Calidad+ 2 Hombres UNICON	7*80 + 80 + 30 + 300 + 35 + 80 + 80 + 2*80	1325	12	
	6:30 - 9:00	Cuadrilla desencofrado muros (7hombres) + Equipos + 65% Encofrado	7*80 + 35 + 0.65*21660	14675	137	
Día	9:00 - 10:00	(1hombre + Balde de Curador Químico) + Herramientas + Ing. Calidad	80 + 100 + 30 + 80	290	3	137
3	11:00 - 17:00	Cuadrillas Iosa 2 [Encofrados (8 hombres) + Acero (8 hombres)] + puntales + herramientas + Acero +Ing. Seguridad+ Capataz + Peso del encofrado	8*80 +8*80+ 506+ 45+ 446 + 80 + 80 + 5690	8130	76	101
Día	6:30 - 10:00	Cuadrilla Instalaciones Losa 2 (6 hombres) + peso Losa 2 (instalaciones + Puntales) + Maestro de Obra + Herramientas +3 Baldes con reesiduos	6*80 + (70 + 506) + 80 + 45 + 3*45	1320	12	14
4	11:00 - 15:30	Cuadrilla Vaciado Losa 2 (7hombres) + 2 operarios UNICON + puntales + Herramientas +Vibrador +Ing. De Calidad + Ing. De Seguridad	7*80 + 2*80 + 506 + 35 + 30 + 80 + 80	1451	14	14
	6:00 - 9:00	Desencofrado losa 2: Cuadrilla (6 hombres) + Ing. De Seguridad + 45% peso encofrado de losa + Herramientas + Mesa de Planos + Capataz	6*80 + 80 + 0.45*5690 + 25 + 120 + 80	3345	31	
	9:00 - 9:30	Curador de losa 2 + Cilindro con agua para curar + Maestro de Obra	80 + 200 + 80	360	3	
Día 5	9:30 - 11:30	Topógrafo + 2 ayudantes + Equipo (Trípode, Teodolito, Mira) + puntales + Ing. Calidad + Herramientas + Ing. Seguridad + Escalera	80 + 2*80 + 40 + 506 + 80 + 35 + 80 + 50	1030	10	148
	11:00 - 14:00	Cuadrilla vaciado losa sector 2 (5 hombres) + Cuadrilla acero muro 2 (8 hombres) + Ing. Seguridad+ Maestro Obra + Herramientas + 2 Escaleras	80*5 + 8*80 + (446 + 70 + 506) +80 +80 + 35 + 2*50	2360	22	
	14:00 - 17:30	Cuadrilla Instalaciones muro 3 (8 hombres) + peso muro 3 (45% instalaciones) + 70% peso del encofrado a colocar al día siguiente + Equipos	8*80 + (0.45*70) + 0.70*21660 + 25	15860	148	

Tabla 5.25. Cargas en losa 2

Día	Tiempo	CARGAS sobre la Losa "n+1" sector 1	Cálculo	Carga Total(kg)	Carga por m2 (kg/m2)	Carga Máx. (Kg/m2)
		Losa 2				
Día 6	6:00-10:00	Capataz + Cuadrilla de encofradores muro 3 (8 hombres) + peso muro 3 (50% encofrado) + Equipos + Ing. De Seguridad + Maestro de Obra + Cilindro desmoldante + Ing. Calidad + 2 escaleras + 2 baldes de residuos		12210	114	114
Dia 0	11:0-14:30	Maestro de Obra + Cuadrilla vaciado muros 3 (7 hombres) + 2 Operarios UNICON + vibrador + ménsula + Equipos+ Ing. De Calidad + 2 escaleras	80 + 7*80 + 2*80 + 45 + 300 + 35 + 80 + 2*50	1360	13	
	6:30-9:00	Cuadrilla desencofrado muro 3 (6 hombres) + Equipos + 65% Encofrado + Capataz + Ing. De Calidad + Ing. de Seguridad + 2 escaleras + 1 operario		13930	130	
Día 7	9:00-10:00	Curado (1hombre+ Balde de Curador Químico) + Ing. De Calidad + Herramientas + 1 escalera + Ing. De Seguridad + 1 balde de agua	(80 + 100) + 80 + 15 + 50 + 80 + 30	435	4	130
	11:00- 17:00	Cuadrillas Losa 3 [Encofrados (8 hombres) + Acero (8 hombres)] + Peso losa 3 (encofrados + puntales) + 45% peso del acero losa 3 + Maestro de Obra + Ing. de Calidad + Herramientas + Piezas de madera + Escalera	8*80 + (5690 + 506) + 8*80 + 0.45*446 + 80 + 80 + 25 + 120 + 50	8030	75	
Día 8	6:30-10:00	Cuadrilla Instalaciones Losa 3 (6 hombres) + peso losa 3 (30% instalaciones + puntales) + Ing. De Seguridad + Herramientas + Capataz + escalera	6*80 + (0.3*70 + 506) + 80 + 25 + 80 + 50	1240	12	14
Dia 0	11:00- 15:30	Vaciado Losa 3 (7 hombres) + 2 operarios UNICON + Peso Iosa 3 (Puntales) + Vibrador + Herramientas + Ing. De Calidad + Ing. De Seguridad + escalera	7*80 + 2*80 + (506) + 30 + 25 + 80 + 80 + 50	1490	14	14

Aplicando la hipótesis de transmisión de cargas de Grundy y Kabaila para tres niveles apuntalados y posteriormente desapuntalado del piso inferior, obtenemos el siguiente esquema de cargas que actuaran sobre cada losa. Como se puede observar en el esquema, la carga muerta de las 2 primeras losas vaciadas se transmite hasta la base rígida sin cargar a la losa inmediata anterior. Este efecto se da hasta que se desencofra el primer nivel y son los puntales los que se encargan de transmitir las cargas hasta la base rígida; y parte de la carga se queda en la losa 1.

Siendo el primer proceso de análisis, el vaciado de la losa 1, se inicia el análisis de distribución de cargas en el encofrado y los puntales respectivamente (izquierda – derecha en el esquema).

Según las hipótesis ya explicadas anteriormente en el capítulo 3 se muestra el esquema con el que se ha calculado las cargas que se están distribuyendo a medida que se van incrementando los niveles construidos.

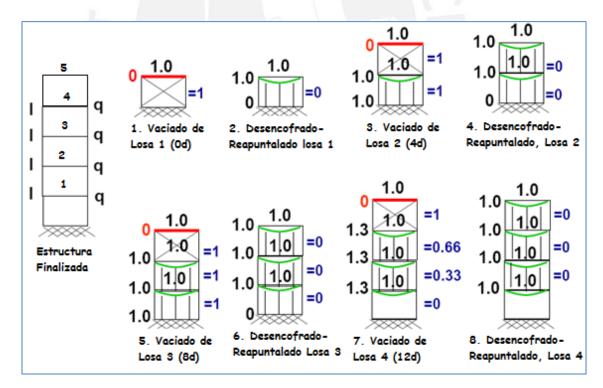


Fig 5.13 Esquema de transmisión de cargas en obra de Villa el Salvador

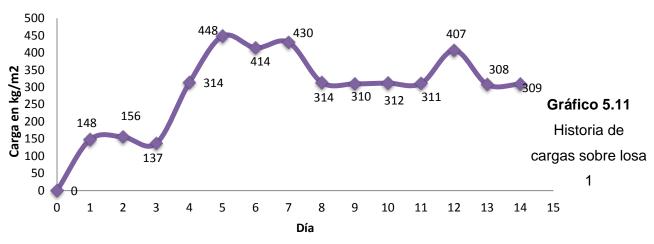

Para el caso de las cargas totales actuantes en el nivel 1 se tienen las mostradas en la tabla 5.26:

Tabla 5.26 Cargas totales actuantes en losa 1

Día	Cargas de Construcción kg/m² (peso propio)	Carga por Desencofrado y Reapuntalado kg/m²	Carga por Vaciado kg/m²	Carga considerada kg/m2	Carga Total kg/m ²
Día 1	148	Desencofrado- reapuntalado planta 1		148	148
Día 2	156			156	156
Día 3	137			137	137
Día 4	14		Vaciado de losa 2 300	300+14	314
Día 5	148	Desencofrado- reapuntalado planta 2 300		300+148	448
Día 6	114	300		300+114	414
Día 7	130	300		300+130	430
Día 8	14	300	Vaciado Losa 3 300	300+14	314
Día 9	10	Desencofrado- reapuntalado planta 3 300		10+300	310
Día 10	12	300		12+300	312
Día 11	11	300		11+300	311
Día 12	7	300	Vaciado de losa 4 100	7+300+300/3	407
Día 13	8	Desencofrado- reapuntalado planta 4 300	100	8+300	308
Día 14	9	300	100	9+300	309

Carga Adicional al Peso Propio Losa 1 (kg/m2)

Para el caso de las cargas actuantes en el nivel 2, se tiene lo siguiente:

Tabla 5.27 Historia de cargas sobre losa 2

Día	Cargas de Construcción kg/m² (peso propio)	Carga por Carga por Desencofrado y Reapuntalado kg/m²	Carga por Vaciado kg/m²	Carga considerada kg/m2	Carga Total kg/m²
Día 1	148	Desencofrado- reapuntalado planta 2		148	148
Día 2	114			114	114
Día 3	130			130	130
Día 4	15				315
Día 5	14	Desencofrado- reapuntalado planta 3 300		300+14	314
Día 6	150	300		300+150	450
Día 7	110	300		300+135	410
Día 8	135	300			435
Día 9	15	Desencofrado- reapuntalado planta 4 300		15+300	315
Día 10	12	300		12+300	312
Día 11	15	300		15+300	315
Día 12	12	300			412
Día 13	8	Desencofrado- reapuntalado planta 5 300	100		308
Día 14	7	300	100		307

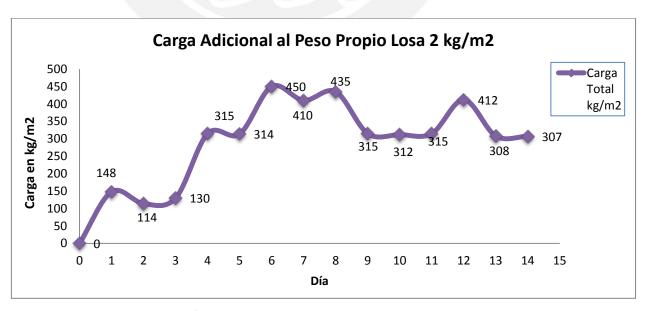


Gráfico 5.12 Historia de cargas sobre losa 2

5.3.2.4 Cálculo de Esfuerzos bajo Cargas de Servicio

Tabla 5.28. Esfuerzos en el acero y concreto en Losa 1 en función de los momentos actuantes

		LOSA 1												
		Cantidad de Acero				Momento		Esfuerzos						
	(cm 2)				Máximo Kg-m/m		Momento Negativo (-)		Momento Positivo (+)		Porcentaje			
		Acero +	Acero -	Itr (-)	Itr (+)	M+	M-	Concreto	Acero	Concreto	Acero	f'c	f's	FS rotura
	M. Servicio	1.125	0.56	548	335	37	105	26	1402	13	846	15%	33%	3.1
DÍA 1	M. Ultimo	1.125	0.56	548	335	55	159	40	2121	19	1254	23%	50%	2.0
	M. Servicio	1.125	0.56	549	335	36	102	24	1189	14	717	14%	28%	3.2
DÍA 3	M. Ultimo	1.125	0.56	549	335	53	154	36	2011	20	1180	21%	48%	2.1
	M. Servicio	1.125	0.56	549	335	68	175	35	1831	22	1210	20%	44%	1.8
DÍA 7	M. Ultimo	1.125	0.56	549	335	97	282	66	2948	36	1722	38%	70%	1.1
	M. Servicio	1.125	0.56	550	336	57	148	33	1456	18	953	19%	35%	2.2
DÍA 14	M. Ultimo	1.125	0.56	550	336	80	230	44	2261	25	1335	25%	54%	1.4
	M. Servicio	1.125	0.56	552	336	34	98	21	929	10	549	12%	22%	3.3
DÍA 21	M. Ultimo	1.125	0.56	552	336	70	197	43	1864	21	1124	25%	44%	1.6
	M. Servicio	1.125	0.56	552	337	34	99	21	917	10	536	12%	22%	3.3
DÍA 28	M. Ultimo	1.125	0.56	552	337	70	198	42	1831	21	1098	24%	44%	1.6

Tabla 5.29. Esfuerzos en el acero y concreto en Losa 2 en función de los momentos actuantes

		LOSA 2												
		Cantidad de Acero (cm 2)				Momento Máximo Kg-m/m		Esfuerzos Momento Negativo (-) Momento Positivo (+)			Porcentaje			
		Acero +	Acero -	Itr (-)	Itr (+)	M+	M-	Concreto	Acero	Concreto	Acero	f'c	f's	FS rotura
	M. Servicio	1.125	0.56	548	335	37	105	26	1402	13	837	15%	33%	3.1
DÍA 1	M. Ultimo	1.125	0.56	548	335	55	159	40	2121	19	1245	23%	50%	2.0
	M. Servicio	1.125	0.56	549	335	32	102	24	1189	12	631	14%	28%	3.2
DÍA 3	M. Ultimo	1.125	0.56	549	335	53	150	35	1959	20	1171	20%	47%	2.1
	M. Servicio	1.125	0.56	549	335	67	175	35	1831	22	1185	20%	44%	1.8
DÍA 7	M. Ultimo	1.125	0.56	549	335	96	273	64	2854	35	1698	36%	68%	1.2
	M. Servicio	1.125	0.56	550	336	57	148	33	1602	18	947	19%	38%	2.2
DÍA 14	M. Ultimo	1.125	0.56	550	336	79	234	44	2531	24	1312	25%	60%	1.4
	M. Servicio	1.125	0.56	552	336	34	98	21	929	10	543	12%	22%	3.3
DÍA 21	M. Ultimo	1.125	0.56	552	336	70	197	43	1864	21	1117	25%	44%	1.6
	M. Servicio	1.125	0.56	552	337	35	98	21	908	10	546	12%	22%	3.3
DÍA 28	M. Ultimo	1.125	0.56	552	337	70	198	42	1831	21	1091	24%	44%	1.6

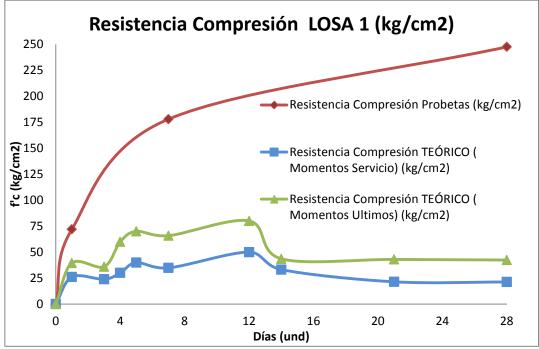
En las tablas 5.28 y 5.29 se muestra el análisis para las losas 1 y 2 con las cargas actuantes durante el proceso constructivo. De este análisis podemos determinar que para cargas actuantes durante el proceso constructivo, la estructura estaría requiriendo un 38% del f'c a los 3 días.

5.3.2.5 Propiedades del Concreto en Obra

Con el apoyo de UNICON, se realizaron ensayos de compresión y Módulo de Elasticidad en probetas de concreto a 24 horas, 7 días y 28 días a probetas que fueron curadas en obra; esto se realizó con el objetivo de simular el comportamiento del concreto que se encuentra en la estructura.

Tabla 5.30 Resultados de Probetas moldeadas en Obra

Identificación	Fecha de Muestreo	Edad	Resistencia Compresión (kg/cm²)	% f'c (175kg/cm2)	Muestra	Módulo de Elasticidad (kg/cm²)	Ratio de Poisson
		1	90	51%	Probeta 1	164,550	0.17
1175N67A					Probeta 2	150,495	0.2
Viva G y M	25/01/2010	7	182	104%	Probeta 1	206,979	0.15
Planta	2:16 pm				Probeta 2	202,506	0.17
Conchán.		28	274	157%	Probeta 1	228,618	0.2
					Probeta 2	237,975	0.18
	25/01/2010	1 54	ΕΛ	31%	Probeta 1	139,610	0.2
1175N67A			31%	Probeta 2	163,250	0.21	
Viva G y M		7	174	99%	Probeta 1	195,333	0.17
Planta	2:40 pm				Probeta 2	193,264	0.17
Conchán.		20 224		126%	Probeta 1	225,037	0.16
		28	221	120%	Probeta 2	221,450	0.17


5.3.2.6 Comparación de los esfuerzos teóricos y reales

Se realizó una comparación de la resistencia teórica obtenida del análisis de las cargas actuantes de servicio sobre las losas, los momentos últimos (1.4CM+ 1.7 CV), y la resistencia obtenida de los ensayos a compresión de las probetas. En las gráficas adjuntas, de color azul se muestra la resistencia con la que debería contar el concreto para soportar las cargas de servicio actuantes (obtenida del análisis teórico), de color verde se muestra la resistencia que se debería tener considerando los momento últimos; y de color rojo se muestra la resistencia a compresión real obtenida de las probetas.

Tabla 5.31. Valores de Resistencia a Compresión en el concreto Losa 1

DÍA	Resistencia Compresión TEÓRICO (Momentos Servicio) (kg/cm²)	Resistencia Compresión TEÓRICO (Momentos Ultimos) (kg/cm²)	Resistencia Compresión Probetas (kg/cm²)
0	0	0	0
1	26	40	72
3	24	36	
4	30	60	
5	40	70	
7	35	66	178
12	50	80	
14	33	44	
21	21	43	
28	21	42	247.5

Gráfico. 5.13. Evolución de la Resistencia del concreto a través del tiempo.

Tabla 5.32. Valores de Resistencia a Compresión en el concreto Losa

DÍA	Resistencia Compresión TEÓRICO (Momentos Servicio) (kg/cm²)	Resistencia Compresión TEÓRICO (Momentos Ultimos) (kg/cm²)	Resistencia Compresión Probetas (kg/cm²)
0	0	0	0
1	26.1	40	72
2	39.0	58	
3	23.9	35	
4	39.0	61	
6	40.5	70	
7	34.8	64	178
8	41.8	60	
14	33.2	44	
21	21.4	43	
28	21.0	42	247.5

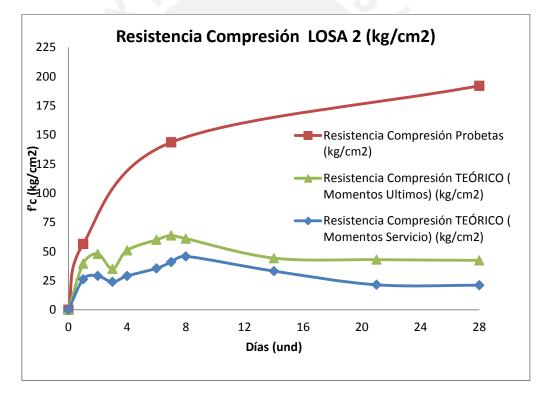


Gráfico. 5.14. Evolución de la Resistencia del concreto a través del tiempo.

5.3.2.7 Principales Problemas presentados en los elementos estructurales

En la tabla 5.33 se muestran los principales problemas presentados en los elementos estructurales debido a malos procedimientos constructivos.

Tabla 5.33 Principales problemas presentados en los elementos estructurales

FOTOS	DESCRIPCIÓN
	Se observa fisuras en las losas.
	Juntas frías en el encuentro de muros con losas.
	Muros con excesiva cantidad de burbujas de aire que reducen la resistencia.
	Segregación en la base de los muros

5.3.3. PROYECTO CONDOMINIO VILLA SANTA CLARA

5.3.3.1 Descripción de la Obra

La obra en análisis se encuentra en el distrito de Santa Clara, en la Carretera Central kilómetro 9.5 a la altura del Cruce de la Carretera Central con la Av. Torres. La estructura analizada es un edificio de vivienda multifamiliar con la característica de emplear muros y losas de espesores reducidos (Edificios de Muros de Ductilidad Limitada), el proyecto consta de 17 edificios, cada edificio cuenta con 8 pisos, dando un total de 544 departamentos en total. La altura libre de piso a techo es de 2.40 metros. Cada planta de cada edificio tiene aproximadamente 504 metros cuadrados (63 metros cuadrados por sector). En la figura 5.14, podemos apreciar cómo quedará la obra una vez concluida.

Fig.5.14. Vista de Obra concluida.

5.3.3.2 Sectorización del Vaciado de Obra

En la figura 5.15 y en la tabla adjunta, se muestra la planta de la obra, la sectorización de vaciado y el tren de trabajo empleado en el proceso constructivo.

Fig. 5.15. Sectorización de la Planta típica.

En la figura 5.16 se muestra el esquema de la secuencia de vaciado empleado para esta obra. La obra cuenta con 8 sectores (cada sector está conformado por 1 departamento). Por ejemplo: el día 1 se inició con el vaciado de los muros del sector 1. El día 2 se vaciaron los muros del sector 2 y a su vez se estaba preparando el encofrado de las losas del sector 1, para que éstas fueran vaciadas al día siguiente.

El día 4 se continuó con el vaciado de muros del sector 4, y se inició el vaciado de losas del sector 1. El día 5 se vaciaron los muros del sector 5 y las losas del sector 2. A continuación se muestra la secuencia de vaciado de muros y losas para cada día de trabajo, en la obra de Condominio de Santa Clara.

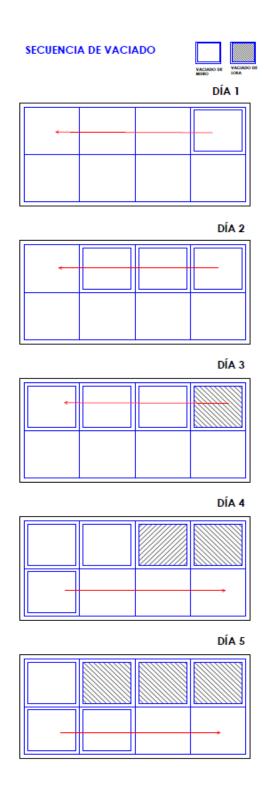


Fig. 5.16 Secuencia de Vaciado. Obra Santa Clara.

5.3.3.3 Análisis de Cargas

Para el tren de trabajo y la sectorización mostrada, se realizó el seguimiento a dicha obra, con visitas sucesivas para poder analizar cuál es la carga real que actúa sobre el concreto desencofrado a tempranas edades, pues éste aún no ha alcanzado su resistencia especificada.

En la tabla 5.34 podemos apreciar a detalle los pesos y usos por m2 de encofrado de cada elemento, teniendo en cuenta un área de encofrado de 195 m2, mientras que en la tabla 5.28 observamos a detalle el cálculo del peso del encofrado de los muros así como los elementos adicionales que conforman el encofrado vertical tales como: cuñas grampas, alzaprimas, etc. en función de los pesos obtenidos de la página web de Encofrados EFCO.

Tabla 5.34 Pesos y usos de los elementos del encofrado EFCO

	SISTEMA DE ENCOFRADOS METALICOS EFCO							
CUÑAS GRAMPAS TUBO			TUBO ALIN	IEADOR	CANAL ALII	NEADOR	TIRANTES	
USO	PESO	o uso	PESO	USO	PESO	USO	PESO	PESO
4 und/r	n ² 0.15 kg	kg 1.53 und/m ²	0.82 kg	0.14 und/m ²	22.32 kg	0.14 und/m ²	63.3 kg	0.8ml/kg

TAMAÑ	io i	(mm)	PESO	TAMA	ÑO	(mm)	PESO
Largo		Ancho	Kg	Largo		Ancho	Kg
2400 2400 2400 2400 2400 2400 2400 2400	x x x x x x x x x x x x x x x x x x x	600 550 500 450 400 350 300 250 200 125 100 600 550 400 350 300 250 200 150	63.54 62.65 54.90 53.01 48.00 44.50 37.36 28.80 26.50 23.38 19.48 15.10 32.94 30.16 27.42 27.37 24.27 21.61 19.26 17.33 13.96 11.98 7.75	900 900 900 900 900 900 900 900 900 800 8	x x x x x x x x x x x x x x x x x x x	550 500 450 400 350 250 200 150 100 600 550 500 400 350 300 250 200 150 100 600 300	23.74 23.78 21.44 19.02 16.64 14.74 12.23 10.00 9.14 5.93 23.02 21.10 21.00 19.02 16.91 14.79 13.07 11.75 8.89 8.09 5.24 18.50 11.20
900	X	600	25.91	000	٨	000	11.20

Pesos y Medidas tomadas del Catálogo de Encofrados EFCO.

Tabla 5.35 Cálculo de pesos de paneles de encofrado de Muro.

		PESO DEL ENCOF	RADO DE PANEL D	DE MURO	
	L MURO	CANTIDAD DE PANELES A 60 CM	CANTIDAD REDONDEADO	PESO (CATALOGO)	PESO TOTAL
	3.15	5.3	5	63.54	318
			1	23.38	23
	0.9	1.5	1	63.54	64
			1	37.36	37
	0.4	0.7	1	48	48
	2	3.3	3	63.54	191
			1	26.5	27
	3.55	5.9	5	63.54	318
			1	62.65	63
	2.7	4.5	4	63.54	254
			1	37.36	38
	3.25	5.4	5	63.54	318
			1	37.36	37
	1.7	2.8	2	63.54	127
			1	54.9	55
MUROS	1.9	3.2	3	63.54	191
			1	15.1	15
	1	1.7	1	63.54	64
			1	48	48
	1.2	2.0	2	63.54	127
	1.1	1.8	1	63.54	64
			1	54.9	55
	2.1	3.5	3	63.54	191
			1	37.36	37
	1.5	2.5	2	63.54	127
			1	37.36	37
	2.45	4.1	4	63.54	254
			1	15.1	15
	6.81	11.4	11	63.54	699
	_		1	26.5	27
	3.1	5.2	5	63.54	318
			1	15.1	15
	1.8	3.0	3	63.54	191
		Un la	do		4390
		Dos la	dos		8780

Tabla 5.36 Cálculo de peso total de encofrado de Muro.

Elementos de Encofrados en Muros	Cálculo de Cantidad	Cálculo Numérico	Cantidad	Peso Unitario (kg)	Peso Total (Kg)		
Panel muro	Tabla 5.6				8780		
Cuñas en muros	m2*uso	195*4	780	0.15	120		
Grampas	m2*uso	195*1.53	298.35	0.82	250		
Tubo Alineador	m2*uso	195*0.14	27.3	22.32	610		
Canal Alineador	m2*uso	195*0.14	27.3	63.3	1730		
Alzaprimas	m2*uso	195*0.13	25.35	36	920		
Tirantes	ml	41	41	0.8	40		
	TOTAL (kg)						

Tabla 5.37 Cálculo de pesos total Encofrado en Losas.

Elementos de Encofrados en Losa	Cálculo de Cantidad por sector	Cálculo Numérico	Cantidad	Peso Unitario (kg)	Peso (K	
Panel Iosa	= m2encofrado*uso	63.05*1	63	32.5	205	50
Grampas	= m2 encofrado*uso	63.05*1.53	96	0.82	80)
Canal Alineador	= m2 encofrado*uso	63.05*0.14	9	63.3	56	0
Peso Total por sector (kg) 3250						50
Peso Total Encofrado Losa por metro cuadrado (kg/m²) 51.						51.5

Tabla 5.38. Pesos Considerados en el Análisis

DESCRIPCIÓN	Pesos considerados por sector	(Kg)
PERSONAL	Peso promedio trabajador	80
T EROOMAE	Equipo de Topografía	40
HERRAMIENTAS	Cilindro con agua para curado	200
ACERO	Peso del acero en muros	480
ACERO	Peso del acero en losas	260
INSTALACIONES	Peso de Instalaciones Eléctricas y Sanitarias	70
CONCRETO	Peso del Concreto en muros	35020
SONONETO	Peso del Concreto en Iosas	20680
ENCOFRADO DE MUROS	Peso Total de Encofrado en Muros	12450
ENCOFRADO EN LOSAS	Peso Total de Encofrado en Losas	3250
PUNTALES	Peso de Puntales en Losas	380

En la tabla 5.38 se muestra a detalle los pesos considerados y vistos en la historia de cargas en las visitas a la Obra Villa Santa Clara, también se muestra los valores de la carga total, la carga por m2 (para 63 m2 de planta con que cuenta cada sector) y la carga máxima. La tabla se puede resumir en el esquema mostrado en la figura 5.17, donde se aprecia el esquema de plantas construidas y apuntaladas y se observará que a partir del nivel 2 se repetirá la misma distribución de cargas por seguir el mismo procedimiento constructivo, y como el proyecto es de 8 niveles, sólo se realizó el seguimiento hasta el cuarto nivel porque sólo 3 niveles se apuntalarán al mismo tiempo y con el ánalisis de cuatro niveles ya se tiene la historia de cargas máxima, ya que al subir los siguientes niveles, esa historia de cargas se repetirá por segunda vez.

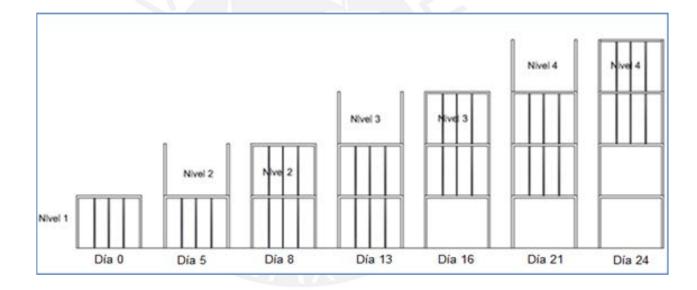


Fig. 5.17. Secuencia de avance de pisos sucesivos para un mismo sector.

Tabla 5.39. Cargas actuantes en losa 1

Día	Tiempo	CARGAS sobre la Losa "1" sector 1	Cálculo	Carga Total (kg)	Carga por m2 (kg/m2)	Carga Máxima (Kg/m2)		
	Losa 1 [sector 1]							
	7:00 - 8:00	Persona encargada de Curar la losa 1 + Cilindro de agua para curar + Herramientas + Escalera + Capataz + Ing. De Calidad + Ing. Seguridad	80 + 200 + 10 + 50 + 80 + 80 + 80	580	9			
- .	8:00 - 9:30	Topógrafo + 2 ayudantes + Equipo (Trípode, Teodolito, Mira) + Herramientas Manuales en el suelo + Capataz + Ing. Calidad + Ing. Seguridad	80 + (2*80) + 40 + 10 + 80 + 80 + 80	530	8	38		
Día 1	9:30 - 12:00	50% Peso del encofrado de losa 1 [sector 3] + cuadrilla de encofrado de losa 1 [sector 3] (6 personas) + 2 Escaleras + Ing. Calidad + Maestro de Obra	0.5*3250 + 6*80 + 2*50 + 80 + 80	2365	38			
	13:00 - 17:00	Cuadrilla acero losa 1 [sector 3] (6 personas) + 50% peso del acero de losa [sector 3] + Ing. Calidad + Capataz + Escalera + Piezas de Madera + Operario	6*80 + 0.5*260 + 80 + 50 + 120	860	14			
	7:30-10:30	Cuadrilla de Instalaciones Sanitarias y Eléctricas Iosa 1 [sector 3] (6 personas) + peso de las instalaciones Iosa 1 [sector 3] + Ing. Seguridad + Piezas de Madera + Capataz + 2 Escaleras + Balde de residuos	6*80 + 70 + 80 + 120 + 80 + 2*50 + 45	975	15			
Día 2	11:00-12:00	Cuadrilla vaciado de losa 1 [sector 3] (3 personas) +piezas de madera + 60%*puntales+ 2 Escaleras + Ing. Calidad + Ing. Seguridad + Operario	3*80 + 120 + 0.6*376 + 2*50 + 80 + 80 + 80	926	15	15		
	13:00 - 17:00	Cuadrilla de vaciado de Losa 1 [sector 3] (6 personas) + Ing. Calidad + Ing. Seguridad + Maestro de Obra +2 Operarios UNICON + Peso Vibrador	6*80 + 80 + 80 + 80 + 2*80 + 30	910	14			
	8:00 - 9:00	Topógrafo + 2 ayudantes + Equipo (Trípode, Teodolito, Mira) +Herramientas + Balde con residuos+ Ing. Calidad + Ing. Seguridad + Piezas de Madera	80 + 2*80 + 40 + 10 + 45 + 80 + 80 + 120	615	10			
Día 3	10:00 - 14:00	75% Peso del encofrado de muros 2 [sector 1] + cuadrilla encofradores de muro 2 para trasladar los encofrados (3 personas) + lng. Calidad + lng. Seguridad + Herramientas + 2 escaleras + piezas de madera + Maestro de Obra + Balde con residuos + 1 Balde con agua + 2 Operarios	0.75*12450 + 3*80 + 80 + 80 + 30 + 2*50 + 120 + 80 + 45 + 30 2*80	10303	164	164		
	8:00 - 11:30	Cuadrilla acero de muro 2 (8 hombres) + peso acero muro 2 + (50%)*peso de encofrado de muros 2 + Ing. Calidad + Maestro de Obra + Piezas de Madera	8*80 + 480 + 0.5*12450 + 80 + 80 + 120	7625	121	470		
Día 4	13:00 - 17:00	Cuadrilla Instalaciones muro 2 [sector 1] (8 hombres) + peso muro 2 (acero + instalaciones) + 75% peso del encofrado a colocar al día siguiente + Ing. Calidad + Maestro de Obra + Herramientas + Piezas de Madera + Operario	8*80 + (480+70) + 0.75*12450 + 80 + 80 + 30 + 120 + 80	10918	173	173		

			1		1	
Día 5	8:00 - 11:30	Capataz + Cuadrilla encofrados muro 2 (8 personas) + equipos +Cilindro con desmoldante + 50% peso de acero de muro 2 + Ing. Seguridad + Capataz	80 + 8*80 +50+ 150+ 50%*480 + 80 +80	1320	21	21
	13:00 - 17:00	Cuadrilla vaciado muro 2 (5 hombres) + vibrador + peso de ménsulas + Ing. Calidad + Maestro de Obra + Balde agua + Ing. Seguridad + Escalera	5*80 + 20 + 50 + 80 + 80 + 35 + 80 + 50	795	13	
Día 6	8:00 - 11:30	Cuadrilla de desencofradores muro 2 (4 personas) + Herramientas + 3 Escaleras + Ing. Seguridad + Capataz + Ing. De Calidad + Balde con residuos	4*80 + 25 + 3*50 + 80 + 80 + 80 + 45	780	12	13
	1:00 - 5:00	Persona encargada de Curar los muros 2 + Cilindro de agua para curado + Herramientas + Ing. Calidad + Ing. Seguridad + Piezas de Madera	80+200+25 + 80 + 80 + 120	585	9	
	8:00 - 11:30	Cuadrillas de encofrado para losa 2 (6 hombres) + 75% peso de encofrado de losa 2 + Cilindro con desmoldante + puntales losa 2 + 2 Escaleras + Ing. Calidad + Ing. Seguridad + Piezas de Madera + 3 Baldes con residuos + Maestro de Obra + Herramientas + 2 Operarios	6*80 + 0.75*3250 + 150 + 380 + 2*50 + 80 + 80 + 150 + 3*45 + 80 + 35 + 2*80	4267	68	
Día 7	1:00 - 5:00	Cuadrillas de habilitación de Acero losa 2 (6 hombres) + 75% peso del acero de losa 2 + 75%* peso encofrado losa 2 + peso de puntales de losa 2 + Ing. Calidad + Ing. De Seguridad + Piezas de Madera + 3 Escaleras + 3 Baldes con Residuos + Cilindro con Desmoldante + Maestro de Obra + Herramientas + Balde con agua + Ingeniero Supervisor + Mesa con planos	6*80 + 0.75*260 + 0.75*3250 + 380 +80 +80 + 180 + 3*50 + 3*45 + 200 + 80 + 35 + 35 + 80 + 100	4647	74	74
	8:00 - 11:30	Cuadrilla de Instalaciones Iosa 2 (6 hombres) + peso de instalaciones Iosa 2 + 50% peso del acero de Iosa 2 + Ing. Calidad + Ing. De Seguridad + Maestro de Obra + Piezas de Madera + 3 Escaleras + Herramientas	6*80 + 70 + 0.5*260 + 80 + 80 + 80 + 150 + 3*50 + 35	1255	20	20
Día 8	1:00 - 5:00	Cuadrilla Vaciado Losa 2 (5 hombres) + peso losa 2 (Puntales) + Herramientas + Ing. de Calidad + Ing. De Seguridad + Escaleras + Peso de Vibrador + Balde de agua + 1 Operario UNICON + Balde con residuos	5*80 + 380 + 35 + 80 + 80 + 50 +30 + 35 + 80 + 45	1215	19	20

OBSERVACION 1: A PARTIR DE QUE FRAGUA EL CONCRETO NO SE CONSIDERA EL PESO DEL CONCRETO Y ACERO EN MUROS PORQUE YA TRABAJA ADOSADO AL MURO INFERIOR Y LE TRANSMITE SU CARGA DE PESO PROPIO.

Tabla 5.40. Cargas actuantes en losa 1

Día	Tiempo	Tabla 5.40. Cargas actuantes CARGAS sobre la Losa 2 sector 1	Cálculo	Carga Total (kg)	Carga por m2 (kg/m2)	Carga Máxima (Kg/m2)
		Losa 2 [sector 1]			1	
	7:00 - 8:00	Persona encargada de Curar la losa 2 [sector 1] + Cilindro de agua para curado + Herramientas + Maestro de Obra + Ing. Calidad + Escalera	80 + 200 + 15 + 80 + 80 + 50	505	8	
Día 9	9:30 - 12:00	Topógrafo + 2 ayudantes + Equipo (Trípode, Teodolito, Mira) + Herramientas + Ing. Calidad + Escalera + Ing. Seguridad + Maestro de Obra	80 + (2*80) + 40 + 10 + 80 + 50 + 80 + 80	580	9	38
Dia 9	1:00 - 5:00	50% Peso encofrado de losa 2 [sector 3] + cuadrilla de encofrado de losa 2 [sector 3] (6 personas) + 2 Escaleras + Ing. Calidad + Piezas de Madera	0.5*3250 + 6*80 + 2*50 + 80 + 120	2405	38	
	1:00 - 5:00	Cuadrilla de acero para habilitación de losa 2 [sector 3] (6 personas) + 70% peso del acero de losa [sector 3] + Ing. Calidad + Herramientas	6*80 + 0.7* 260 + 80 + 35	777	12	
	7:30-10:30	Cuadrilla Instalaciones Sanitarias y Eléctricas losa 2 [sector 3] (6 personas) + peso de las instalaciones losa 2 [sector 3] + Ing. Seguridad + Piezas de Madera + Escalera + Ing. Seguridad + 2 Baldes con residuos +Capataz	6*80 + 70 + 80 + 120 + 50 + 80 + 2*45 + 80	1050	17	
Día 10	11:00-12:00	Cuadrilla de vaciado de losa 2 [sector 3] (6 personas) + piezas de madera + puntales + 4 Baldes con residuos + 2 Escaleras + Ing. Calidad	63*80 + 120 + 100 + 4*45 + 2*50 + 80	5620	89	89
	1:00 - 5:00	Cuadrilla de vaciado de Losa 2 [sector 3] (5 personas) + Ing. Calidad + Ing. Seguridad + 2 Escaleras + Maestro de Obra + 3 Baldes con residuos + Herramientas + Piezas de Madera + Maestro de Obra + 2 Operarios	5*80 + 80 + 80 + 2*50 + 80 + 3*45 + 30 + 120 + 80 + 2*80	1265	20	
Día 11	8:00 - 9:00	Topógrafo + 2 ayudantes + Equipo (Trípode, Teodolito, Mira) + Herramientas [sector 1] + Ing. Calidad + 2 Escaleras + Ing. Seguridad + Maestro de Obra	80 + 2*80 + 40 + 30 + 80 + 2*50 + 80 + 80	650	10	116
Dia 11	10:00 - 2:00	Cuadrilla acero de muro 3 (8 hombres) + Escalera + 50% peso muro 2 (acero) + 50% peso de encofrado de muros 3 + Ing. Calidad + Ing. Seguridad	8*80 + 50 + 0.5*480 + 0.5*12450 + 80 + 80	7315	116	
Día 12	8:00 - 11:30	75% Peso del encofrado de muros 3 [sector 1]+ cuadrilla de encofrado de muro 3 [sector 1] (3 personas) + Ing. Calidad + Herramientas + Ing. Seguridad + 2 Escaleras + Maestro de Obra + Piezas de Madera	0.5*12450 + 3*80 + 80 + 45 + 80 + 2*50 + 80 + 120	6970	111	168
Dia 12	1:00 - 5:00	Cuadrilla Instalaciones muro 3 [sector 1] (8 hombres) + 75% peso encofrado que será colocado al día siguiente + Ing. Calidad + Ing. Seguridad + Piezas de Madera + Maestro de Obra + 3 Escaleras + 2 Baldes con residuos	8*80 + 0.75*12450 + 80 + 80 + 120 + 80 + 3*50 + 2*45	10577.5	168	

Día 13	8:00 - 11:30	Capataz + Cuadrilla encofrados muro 3 [sector 1] (8 personas) + herramientas + Cilindro con desmoldante + Ing. Calidad + 2 Escaleras + Ing. Seguridad + Puntales + Piezas de Madera + Ing. Calidad +Herramientas	80+8*80+70 + 150 +80 + 2*50 + 80 + 40 + 120 + 80 + 35	1475	23	23
	1:00 - 5:00	Cuadrilla vaciado muro 3 (5 hombres) + peso de vibrador + ménsulas + Piezas de Madera + Ing. Calidad + 1 Operario UNICON + Ing. Seguridad + 2 Baldes de Agua + 2 Escaleras + Herramientas + Maestro de Obra	5*80 + 20 + 50 + 120 + 80 + 80 + 2*35 + 2*50 + 35 + 80	1035	16	
Día 14	8:00 - 11:30	Cuadrilla de desencofradores de muro 3 [sector 1] (6 personas) + Herramientas + Piezas de Madera + 3 Escaleras + Maestro de Obra + Ing. Calidad +Capataz + 60% Peso de Encofrado de Muros + Balde con residuos	6*80 + 30 + 120 + 3*50 + 80 + 80 + 0.60*12450 + 45	8455	134	134
Dia 14	1:00 - 5:00	Persona encargada de Curar los muros 3 [sector 1] + Cilindro de agua para curado + Herramientas + Ing. Calidad + Ing. Seguridad + Piezas de Madera	80+200+15 + 80 + 80 + 100	555	9	
	8:00 - 11:30	Cuadrillas de encofrado para losa 3 [sector 1] (6 hombres) + peso de encofrado de losa 3 + Cilindro con Desmoldante + puntales de losa 3	6*80 + 3250 + 150 + 376	4256	68	72
Día 15	1:00 - 5:00	Cuadrillas de habilitación de Acero losa 3 [sector 1] (6 hombres) + peso del acero de losa 3 [sector 1] + peso de encofrado losa 2 [sector 1] + peso de puntales de losa 2 [sector 1] + lng. Seguridad + lng. Calidad + Capataz + Piezas de Madera + 2 Escaleras +3 Baldes con Residuos + Operario	6*80 + 260 + 3250 + 376 + 80 + 80 + 80 + 120 + 2*50 + 3*45 + 80	4561	72	12
Día 16	8:00 - 11:30	Cuadrilla de Instalaciones losa 3 [sector 1] (6 hombres) + peso instalaciones losa 3 [sector 1] + peso del acero de losa 3 [sector 1] + 75% peso del encofrado de losa 3 [sector 1] + Ing. Calidad + Ing. Seguridad + 2 Escaleras + Piezas de Madera + Maestro de Obra + Herramientas+ 2 Baldes con agua	6*80 + 70 + 50%*260 + 0.75*3250 + 80 + 80 + 2*50 + 120 + 80 + 35 + 2*35	3682.5	58	58
	1:00 - 5:00	Cuadrilla Vaciado Losa 3 [sector 1] (5 hombres) + Herramientas + Ing. de Calidad + Ing. Seguridad + Peso vibrador + 3 Escaleras + Operario UNICON + Piezas de Madera + Maestro de Obra + 2 Baldes con residuos	5*80 + 25 + 80 + 80 + 30 + 3*50 + 80 + 150 + 80 + 2*45	1165	18	

OBSERVACION 1: A PARTIR DE QUE FRAGUA EL CONCRETO NO SE CONSIDERA EL PESO DEL CONCRETO Y ACERO EN MUROS PORQUE YA TRABAJA ADOSADO AL MURO INFERIOR Y LE TRANSMITE SU CARGA DE PESO PROPIO.

Aplicando la hipótesis de transmisión de cargas de Grundy y Kabaila para tres niveles apuntalados y posteriores desapuntalados del piso inferior, obtenemos el siguiente esquema de cargas que actuaran sobre cada losa. Como se puede observar en el esquema, la carga de cada losa vaciada se transmite hasta la base rígida sin cargar a la losa inmediata anterior. Este efecto se da hasta que se desencofra el primer nivel y son los puntales los que se encargan de transmitir las cargas hasta la base rígida; y parte de la carga se queda en la losa 1. Siendo el primer proceso de análisis, el vaciado de la losa del 1º nivel, se inicia el análisis de distribución de cargas en el encofrado y los puntales respectivamente (izquierda – derecha)

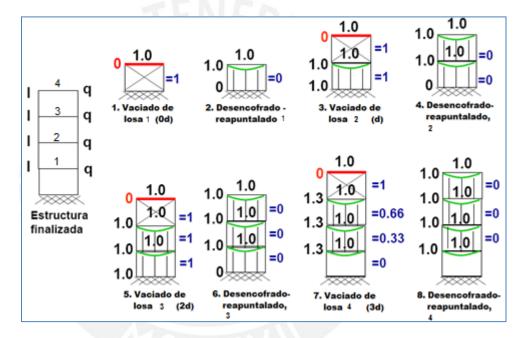


Fig. 5.18. Análisis de cargas.

Para el análisis de cargas se considerará la siguiente carga muerta para cada losa:

Tabla 5.41 Carga Muerta considerada

Peso Propio de Losa (Carga Muerta)	kg/m2
Peso del acero en losas	260
Peso de Instalaciones Eléctricas y Sanitarias	70
Peso del Concreto en losas por sector	20680
Total	21010
kg/m2	335

Por lo tanto para el análisis de historia de cargas, se tomará en cuenta las cargas que irán sobre el encofrado, ya estas cargas serán las que se trasmitan directamente al elemento, teniéndose para la losa 1 lo mostrado en la tabla 5.42:

Tabla 5.42 Análisis de Cargas Totales Losa 1

	ıaı	ola 5.42 Analisis de Carg	as Totales Losa T	
Día	Cargas de Construcción kg/m2 (peso propio)	Carga por Desencofrado y Reapuntalado kg/m2	Carga por Vaciado kg/m2	Carga Total kg/m2
Día 1	38			38
Día 2	15			15
Día 3	164			164
Día 4	118			118
Día 5	21			21
Día 6	12			12
Día 7	69			69
Día 8	20			355
Dia 9	38	Desencofrado-reapuntalado 335		373
Día 10	89	335		424
Día 11	116	335		451
Día 12	168	335		503
Día 13	23	335		358
Día 14	134	335		469
Día 15	72	335		407
Día 16	58	335		393
Día 17	6	Desencofrado-reapuntalado		6

^(*) Al desencofrar y reapuntalar la planta 3, también se desapuntala la planta uno; por lo tanto yo no recibirá cargas por efecto de la construcción de los pisos superiores

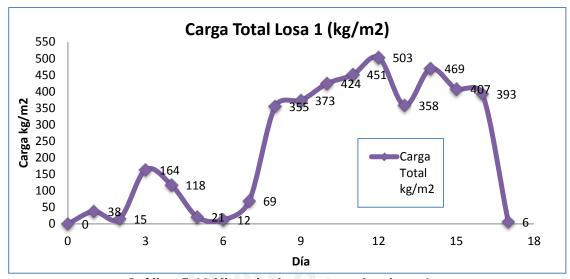


Gráfico 5.18 Historia de cargas sobre losa 1

Para el caso de la historia de cargas sobre la losa 2 se hace el análisis desde el inicio del vaciado de la respectiva losa, por lo tanto se tendrá la historia de cargas a partir del día 9, y se define de la misma manera para las losas de los niveles sucesivos, teniéndose lo siguiente:

Tabla 5.43 Cargas Totales para losa 2

Día	Cargas de Construcción kg/m2 (peso propio)	Carga por Desencofrado y Reapuntalado kg/m2	Carga por Vaciado kg/m2	Carga Total kg/m2
Día 1	38			38
Día 2	89			89
Día 3	116			116
Día 4	168			168
Día 5	23			23
Día 6	134			134
Día 7	72			72
Día 8	58			393
Día 9	89	Desencofrado-reapuntalado		424
Dia 3	09	335		424
Día 10	38	335		373
Día 11	21	335		356
Día 12	12	335		347
Día 13	58	335		393
Día 14	72	335		407
Día 15	38	335		373
Día 16	45	335		380
Día 17	6	Desencofrado-reapuntalado		

5.3.2.4 Cálculo de los esfuerzos bajo cargas de servicio

Tabla 5.44. Esfuerzos en el acero y concreto en Losa 1 en función de los momentos actuantes

			LOSA 1											
		Cantidad	de Acero			Moment	o Máximo		Esfue	rzos				
		(cn	n 2)				m/m	Momento Negativo (-)		Momento Positivo (+)		Porcentaje		
		Acero +	Acero -	Itr (-)	Itr (+)	M+	M-	Concreto	Acero	Concreto	Acero	f'c	f's	FS rotura
	M. Servicio	1.125	0.56	559	337	37	83	24	1097	18	855	14%	26%	2.0
DÍA 1	M. Ultimo	1.125	0.56	559	337	56	160	46	2110	27	1294	26%	50%	1.0
	M. Servicio	1.125	0.56	551	335	49	113	30	1261	22	946	17%	30%	1.4
DÍA 3	M. Ultimo	1.125	0.56	551	335	58	165	44	2075	25	1120	25%	49%	1.0
	M. Servicio	1.125	0.56	549	335	75	171	34	1675	31	1260	19%	40%	0.9
DÍA 7	M. Ultimo	1.125	0.56	549	335	105	292	73	2857	43	1764	42%	68%	0.6
	M. Servicio	1.125	0.56	548	335	77	179	44	1654	31	1216	25%	39%	0.9
DÍA 14	M. Ultimo	1.125	0.56	548	335	100	271	52	2503	40	1580	30%	60%	0.6
	M. Servicio	1.125	0.56	549	336	35	100	24	885	14	527	14%	21%	1.6
DÍA 21	M. Ultimo	1.125	0.56	549	336	76	202	48	1785	29	1145	27%	42%	0.8
	M. Servicio	1.125	0.56	549	336	35	103	24	894	13	517	14%	21%	1.6
DÍA 28	M. Ultimo	1.125	0.56	549	336	72	207	49	1793	28	1063	28%	43%	0.8

Tabla 5.45. Esfuerzos en el acero y concreto en Losa 2 en función de los momentos actuantes

		LOSA 2												
		Cantida	d de Acero			Mom	ento		Esfue	erzos				
		(c	m 2)			Máximo		Momento I	Negativo (-)	Momento Positivo (+)) Porcentaje		
		Acero +	Acero -	Itr (-)	Itr (+)	M+	M-	Concreto	Acero	Concreto	Acero	f'c	f's	FS rotura
	M. Servicio	1.125	0.56	548	335	37	105	26	1402	13	837	15%	33%	1.1
DÍA 1	M. Ultimo	1.125	0.56	548	335	55	159	39	2109	19	1245	22%	50%	0.7
	M. Servicio	1.125	0.56	549	335	32	102	24	1181	10	631	14%	28%	1.1
DÍA 3	M. Ultimo	1.125	0.56	549	335	53	150	35	1953	17	1044	20%	47%	0.7
	M. Servicio	1.125	0.56	549	335	67	175	41	1823	22	1185	23%	43%	0.6
DÍA 7	M. Ultimo	1.125	0.56	549	335	96	273	64	2850	31	1698	36%	68%	0.4
	M. Servicio	1.125	0.56	550	336	57	148	33	1452	18	947	19%	35%	0.8
DÍA 14	M. Ultimo	1.125	0.56	550	336	79	234	52	2296	29	1312	30%	55%	0.5
	M. Servicio	1.125	0.56	552	336	34	98	21	921	10	543	12%	22%	1.1
DÍA 21	M. Ultimo	1.125	0.56	552	336	70	197	43	1859	21	1117	24%	44%	0.6
	M. Servicio	1.125	0.56	552	337	35	98	21	904	10	546	12%	22%	1.1
DÍA 28	M. Ultimo	1.125	0.56	552	337	70	198	42	1827	21	1091	24%	44%	0.6

En las tablas 5.44 y 5.45 se muestra el análisis para las losas 1 y 2 con las cargas actuantes durante el proceso constructivo. De este análisis podemos determinar que para cargas actuantes durante el proceso constructivo, la estructura estaría requiriendo un 25% del f'c a los 3 días y 42% a los 7 días.

5.3.2.5 Propiedades del Concreto en Obra

Con el apoyo de UNICON, se realizaron ensayos de compresión y Módulo de Elasticidad en probetas de concreto vaciadas en obra a 1, 7 y 28 días; esto se realizó con el objetivo de simular el comportamiento del concreto que se encuentra en la estructura.

Tabla 5.46 Valores de Resistencia y Módulos de Elasticidad a partir de ensayos

Identificación	Fecha de Muestreo	Edad	Resistencia Compresión (kg/cm²)	% f'c (175kg/cm2)	Muestra	Módulo de Elasticidad (kg/cm²)	Ratio de Poisson
		1	84	48%	Probeta 1	100600	0.14
1175N57A		I	04	40/0	Probeta 2	161820	0.14
Besco S. A.	19/01/2012	7	177	101%	Probeta 1	227140	0.15
Planta	19/01/2012	,	177	101/6	Probeta 2	230.274	0.18
Ancieta		28	234	134%	Probeta 1	269286	0.15
					Probeta 2	246207	0.18
		1	68	39%	Probeta 1	160.512	0.14
1175N57A		I	00	39%	Probeta 2	227140 0.15 230.274 0.18 269286 0.15 246207 0.18 160.512 0.14 164.987 0.17 191.103 0.17	0.17
Besco S. A.	19/01/2012	7	166	95%	Probeta 1	191.103	0.17
Planta	19/01/2012	,	100	95%	Probeta 2	191.783	0.17
Ancieta		28 19	195	1110/	Probeta 1	222641	0.17
			195	111%	Probeta 2	224181	0.17

5.3.2.6 Comparación de los esfuerzos teóricos y Reales

Se realizó una comparación de la resistencia teórica obtenida del análisis de las cargas actuantes de servicio sobre las losas, los momentos últimos (1.4CM+ 1.7 CV), y la resistencia obtenida de los ensayos a compresión de las probetas en laboratorio. En las gráficas adjuntas, de color azul se muestra la resistencia con la que debería contar el concreto para soportar las cargas de servicio actuantes (obtenida del análisis teórico), de color verde se muestra la resistencia que se debería tener considerando los momento últimos; y de color rojo se muestra la resistencia a compresión real obtenida de las probetas ensayadas.

Tabla 5.47. Valores de Resistencia a Compresión en el concreto Losa 1

DÍA	Resistencia Compresión TEÓRICO (Momentos Servicio) (kg/cm²)	Resistencia Compresión TEÓRICO (Momentos Ultimos) (kg/cm²)	Resistencia Compresión Probetas (kg/cm²)
0	0	0	0
1	24	46	76
3	30	44	
7	34	73	172
9	40	80	
11	44	84	
12	49	90	
14	44	52	
21	24	48	
28	24	49	215

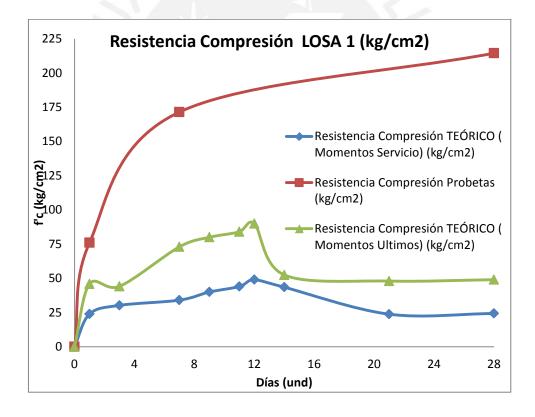


Gráfico 5.15 Resistencia a compresión Losa 1

Tabla 5.48. Valores de Resistencia a Compresión en el concreto Losa 2

DÍA	Resistencia Compresión TEÓRICO (Momentos Servicio) (kg/cm²)	Resistencia Compresión TEÓRICO (Momentos Ultimos) (kg/cm²)	Resistencia Compresión Probetas (kg/cm²)
0	0	0	0
1	26	39	76
3	24	35	
4	38	60	
7	41	64	171.5
9	44	75	
14	33	52	
21	21	43	
28	21	42	214.5

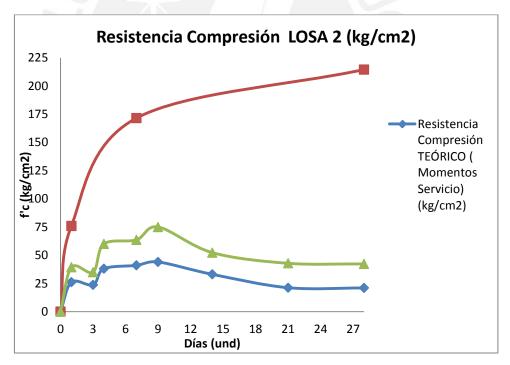


Gráfico 5.16 Resistencia a compresión Losa 2

5.3.2.7 Problemas presentados en los elementos estructurales

Los principales problemas que se observó en esta obra, son las siguientes:

Tabla 5.49 Principales problemas encontrados en la obra

FOTOS	DESCRIPCIÓN
	Se observa SEGREGACIÓN en los muros de vano de ventanas.
	Burbujas en los muros por mal uso de desmoldante.
3	Cangrejera por mal vibrado.

CAPITULO 6: ENSAYOS REALIZADOS

Adicional a los ensayos de compresión y módulo de elasticidad descritos en el capítulo 5 para cada una de las respectivas obras; se realizaron probetas de concreto de 4"x8"en el laboratorio de UNICON para evaluar la evolución de la resistencia a lo largo del tiempo en una semana (Edades tempranas). En la elaboración de dichas probetas se empleó el mismo diseño de vaciado que las que se utilizaron en cada una de las obras (Diseño: 1175N57A) y un diseño adicional (Diseño: 1210N67B)

Para cada diseño se realizaron 10 juegos de probetas cada juego contaba con 4 probetas las cuales serían ensayadas cada 12 horas hasta llegar a los 7 días (168 horas), esto nos permitió analizar mejor el comportamiento del concreto a tempranas edades en Lima así como el porcentaje de resistencia que alcanzan. Para dichos ensayos, con los resultados obtenidos se elaboraron las siguientes curvas de resistencia y las curvas con el porcentaje de resistencia alcanzado a dichas edades.

Tabla 6.1. Resultados de Ensayos a compresión Diseño: 1175N57A, para probetas curadas en laboratorio

Edad					Promedio
(Hora)		Resistenci	a (kg/cm2)		(kg/cm2)
12	32	33	33	36	34
18	58	59	54	61	58
24	68	72	65	67	68
36	88	98	88	98	93
48	117	124	117	128	122
72	141	142	138	141	141
96	143	150	141	142	144
120	163	167	164	167	165
144	185	181	184	188	185
168	211	208	214	211	211

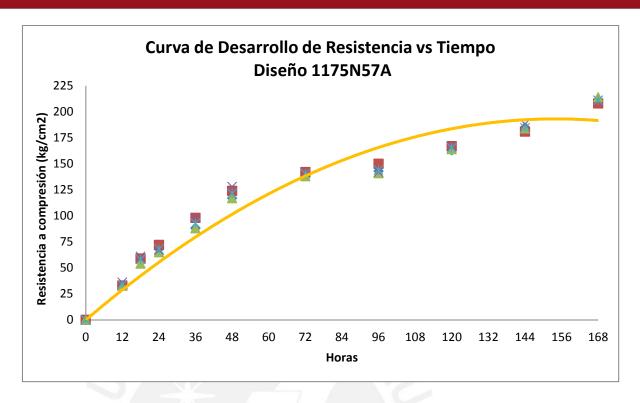


Gráfico 6.1 Resistencia a compresión Diseño: 1175N57A

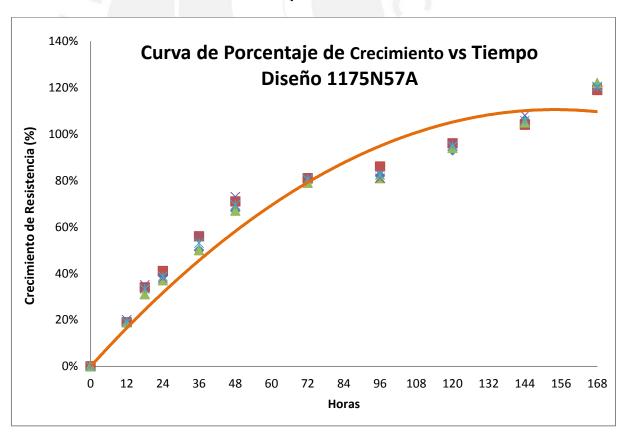


Gráfico 6.2 Porcentaje Resistencia a compresión Diseño: 1175N57A

Tabla 6.2 Resultados de Ensayos a compresión Diseño: 1210N57A, para probetas curadas en laboratorio

Edad (Hora)		Promedio (kg/cm2)			
12	44	45	44	37	43
18	67	71	73	73	71
24	96	92	99	95	96
36	118	121	121	118	120
48	131	139	133	141	136
72	155	149	149	149	151
96	165	172	166	168	168
120	185	188	184	186	186
144	211	209	210	209	210
168	227	225	228	225	226

Gráfico 6.3 Resistencia a compresión Diseño 1210N57A

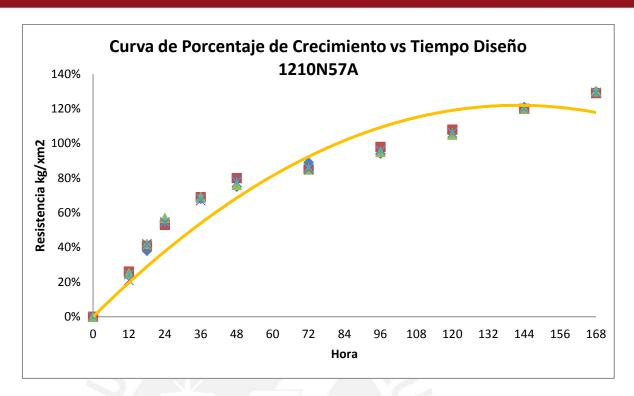
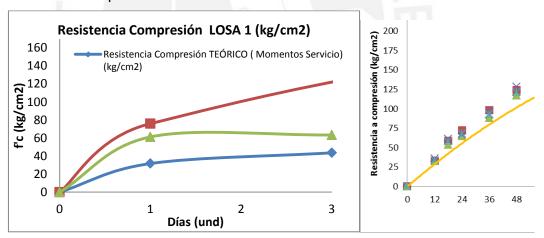


Gráfico 6.4 Porcentaje Resistencia a compresión Diseño: 1210N57A

Realizando una comparación entre la resistencia obtenida en laboratorio (CITEDEC) versus lo obtenido de las probetas curadas en obra; tenemos que para las probetas curadas en obra al día 7 están llegando a alcanzar entre un 80% - 105%, mientras que las probetas curadas en laboratorio a los 7 días están alcanzando para el diseño 1175N57A un 120% de la resistencia especificada, esto se da debido a las mejores condiciones de curado en el laboratorio.

De acuerdo a las estadísticas mostradas en el capítulo 5 de la presente investigación, el tiempo en que por lo general las empresas constructoras están desencofrando los muros y losas de los edificios con muros de ductilidad limitada es entre 11 y 18 horas. De las curvas obtenidas con los valores obtenidos en los ensayos en el laboratorio de CITEDEC-UNICON podemos ver que a las 11 y 18 horas las resistencias promedio que se alcanzaron fueron: 53 kg/cm² y 56 kg/cm² respectivamente para los ensayos realizados en laboratorio, mientras que para para las probetas que se curaron en obra las resistencias a las que se llegaron fueron: 32 kg/cm² y 56 kg/cm².


CAPITULO 7: CONCLUSIONES

- 1. Para el análisis de transmisión de las cargas vivas actuantes durante la construcción de las tres obras analizadas se aplicó la hipótesis de Grundy y Kabaila para dos niveles apuntalados. Con las cargas obtenidas, para el análisis de cada losa hicimos uso del método de los elementos finitos para así obtener los resultados de los momentos actuantes en cada losa en el programa ETABS (las corridas se hicieron para las diferentes edades de la estructura donde se presentaban cargas totales considerables). Luego aplicando las fórmulas para la sección fisurada y no fisurada del concreto pudimos obtener las resistencias teóricas que deberían tener cada una de las losas de cada obra para soportar las cargas actuantes sin tener daños estructurales. A partir de los momentos obtenidos en el ETABS se procedió a calcular las resistencias requeridas para las cargas actuantes.
- 2. Para el análisis del tiempo de desencofrado y porcentaje de f'c necesario para poder desencofrar las estructuras podemos ver que el porcentaje de resistencia alcanzado por el concreto es mucho mayor al porcentaje de resistencia necesario para soportar los momentos en la losa durante el proceso constructivo; ello brindará al constructor un factor de seguridad al momento de realizar sus desencofrados.
- 3. Los constructores de este tipo de edificaciones por lo general, tal y como se mostró en las estadísticas, desencofran las placas o muros en un promedio de 14 horas y para el caso de las losas, retiran los paneles al día siguiente dejándolas reapuntaladas por una semana en promedio. Al cabo de una semana, el concreto ya tendrá por lo menos un 70 a 80% de la resistencia especificada Tal cual se obtuvo en los ensayos realizados, y en este tiempo las cargas debido al proceso constructivo ya serán menores sobre esta losa pues las cargas vivas del personal operario y de los equipos sube de nivel y afectará a las losas superiores.
- 4. Tras visitar varias obras en Lima, se pudo constatar que los apuntalamientos de las losas, por lo general, son planificados por el ingeniero a cargo de la ejecución obra. Los calculistas no consideran en el diseño las cargas de construcción y la mayoría de veces delegan la responsabilidad de la planificación de la fase constructiva al equipo constructor. Por lo general, quienes planifican dichos procesos, usualmente proceden de acuerdo a su experiencia personal y

costumbres, más que a análisis estructurales de distribución de las cargas generadas durante el período de edificación, presentando una discrepancia importante en la cantidad y emplazamiento de los puntales y/o alzaprimas utilizadas en las obras.

- 5. La transmisión de cargas y por lo tanto las cargas que soportarían cada losa dependen del sistema de apuntalamiento y reapuntalamiento que maneje cada obra, por ejemplo algunas obras trabajan con un sistema de reapuntalado para 2 y otras para 3 niveles. Al distribuirse la carga de una losa recién vaciada entre más losas, disminuiría la carga a soportar.
- 6. Como se pudo observar en las gráficas de resistencia del concreto f'c obtenidas para momentos de cargas de servicio y momento último durante la etapa constructiva, tienen valores mayores en los 3 primeros días. Si comparamos las gráficas obtenidas para las 3 obras en sus 3 primeros días versus la curva que se obtuvo de las pruebas en laboratorio podremos ver que si se sobrepasan las resistencias requeridas a dichas edades.

En promedio entre las 3 obras, a los 3 días la estructura necesita tener 38% ≈40 % de su resistencia requerida para poder soportar los momentos últimos a los que estará sometida la estructura durante el proceso contructivo.

7. Paralelo al estudio de la transmisión de cargas y de la resistencia mínima para poder desencofrar elementos estructurales en edificios de muros de ductilidad limitada, también se realizó una recopilación de los principales problemas que presentan este tipo de edificaciones debido a malas prácticas al momento del vaciado del concreto, está información es complementada con fotografías que

fueron tomadas al momento de realizar las visitas a obra; entre las principales fallas tenemos:

- Cangrejeras.
- Segregaciones.
- Juntas Frías.
- Fisuras por Contracción plástica.
- Excesivas burbujas de aire en las placas.
- Problemas de acabado en las placas por una mala aplicación del desmoldante sobre los encofrados metálicos.
- -Mala aplicación de curado químico sobre las placas pues se observó que algunas partes tenían menor espesor de capa lo cual podría influir en que la resistencia final de la estructura no será homogénea a lo largo del elemento estructural.
- 8. Hasta el día de hoy no se han presentado problemas serios en las constructoras entrevistadas por desencofrar a estas edades, así que podemos concluir que las resistencias promedio a las cuales se está desencofrando este tipo de edificaciones en la ciudad de Lima (para el caso de las losas, dado que éstas son los elementos más críticos) es 32.4 kg/cm² y 55.7 kg/cm².

Tabla 7.1. Características de desencofrado, resistencia y %f'c requerido.

Edad de desencofrado (Horas)	Resistencia	% f'c requerido
11	32.4	19
18	55.7	32

CAPITULO 8: BIBLIOGRAFÍA

- o Apuntes del Curso de Concreto Armado 1, G. Otazzi. Lima-Perú.2010.
- Tecnología del Concreto. Fundamentos del Concreto. Enrique Pasquel.
 2000
- Tesis Doctoral: Estudio Experimental del Comportamiento de Vigas de Hormigón Armado Descimbrado a Tempranas Edades. Serra Martín Isabel. 1994. España
- Tesis: "Edificios Peruanos de Concreto con Muros de Ductilidad Limitada".
 Delgado Ehni Raúl, Rodriguez Peña, Catalina. 2006.PUCP
- Tesis: "Estudio de la Influencia de la Secuencia de Cargas de Construcción en Edificaciones Irregulares en Altura". Merino Marín, Sergio. Concepción. Marzo, 2008.
- http://upcommons.upc.edu/pfc/bitstream/2099.1/6433/6/05.pdf [Fecha de Consulta 18/08/2011 07:20 p.m]
- http://upcommons.upc.edu/pfc/bitstream/2099.1/6433/6/05.pdf [Fecha de Consulta 23/08/2011 10:50 p.m]
- http://concretoulsacancun.blogspot.com/2011/09/diseno-de-vigas-deconcreto-armado.html [Fecha de Consulta 12/09/2011 05:55 p.m]
- o Figura 2.1 http://www.upv.es/materiales/Fcm/Fcm14/pfcm14_3_1.html
 [Fecha de Consulta 13/07/2011 11:28 p.m]
- Figura 2.1 http://www.ingenierocivilinfo.com/2011/04/método-de-determinacion-del-modulo-de.html [Fecha de Consulta 14/06/2011 5:50 p.m]
- ACI COMMITTEE 347. Guide to formwork for concrete, Detroit, 1988.
- http://www.inti.gov.ar/cirsoc/pdf/publicom/Fisuracion en traccion directa.p
 http://www.inti.gov.ar/cirsoc/pdf/publicom/Fisuracion en traccion directa.p
 http://www.inti.gov.ar/cirsoc/pdf/publicom/Fisuracion en traccion directa.p
 http://www.inti.gov.ar/cirsoc/pdf/publicom/Fisuracion en traccion directa.p
 http://www.inti.gov.ar/cirsoc/pdf/publicom/Fisuracion en traccion directa.p
 http://www.inti.gov.ar/cirsoc/pdf/publicom/Fisuracion
 http://www.inti.gov.ar/cirsoc/pdf/publicom/Fisuracion</l
- https://www.google.com.pe/search?q=tesis+isabel+serra%2C+descimbrad o&oq=tesis+isabel+serra%2C+descimbrado&aqs=chrome..69i57.7351j0j8 &sourceid=chrome&espv=210&es_sm=93&ie=UTF-8 [Fecha de consulta 20/06/2013 5:00 p.m]