AD620

FEATURES

EASY TO USE

Gain Set with One External Resistor (Gain Range 1 to 1000)
Wide Power Supply Range ($\pm 2.3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$)
Higher Performance than Three Op Amp IA Designs
Available in 8-Lead DIP and SOIC Packaging
Low Power, 1.3 mA max Supply Current
EXCELLENT DC PERFORMANCE ("B GRADE")
$50 \mu \mathrm{~V}$ max, Input Offset Voltage
$0.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max, Input Offset Drift
1.0 nA max, Input Bias Current

100 dB min Common-Mode Rejection Ratio ($\mathbf{G}=10$)
LOW NOISE
$9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, @ 1 kHz , Input Voltage Noise
$0.28 \mu \mathrm{~V}$ p-p Noise (0.1 Hz to 10 Hz)
EXCELLENT AC SPECIFICATIONS
120 kHz Bandwidth (G = 100)
15 us Settling Time to 0.01\%
APPLICATIONS
Weigh Scales
ECG and Medical Instrumentation
Transducer Interface
Data Acquisition Systems
Industrial Process Controls
Battery Powered and Portable Equipment

PRODUCT DESCRIPTION

The AD620 is a low cost, high accuracy instrumentation amplifier that requires only one external resistor to set gains of 1 to

Figure 1. Three Op Amp IA Designs vs. AD620

CONNECTION DIAGRAM
8-Lead Plastic Mini-DIP (N), Cerdip (Q) and SOIC (R) Packages

1000. Furthermore, the AD620 features 8-lead SOIC and DIP packaging that is smaller than discrete designs, and offers lower power (only 1.3 mA max supply current), making it a good fit for battery powered, portable (or remote) applications.
The AD620, with its high accuracy of 40 ppm maximum nonlinearity, low offset voltage of $50 \mu \mathrm{~V}$ max and offset drift of $0.6 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max, is ideal for use in precision data acquisition systems, such as weigh scales and transducer interfaces. Furthermore, the low noise, low input bias current, and low power of the AD620 make it well suited for medical applications such as ECG and noninvasive blood pressure monitors.

The low input bias current of 1.0 nA max is made possible with the use of Super β eta processing in the input stage. The AD620 works well as a preamplifier due to its low input voltage noise of $9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at $1 \mathrm{kHz}, 0.28 \mu \mathrm{~V}$ p-p in the 0.1 Hz to 10 Hz band, $0.1 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ input current noise. Also, the AD620 is well suited for multiplexed applications with its settling time of 15μ s to 0.01% and its cost is low enough to enable designs with one inamp per channel.

Figure 2. Total Voltage Noise vs. Source Resistance

REV. E

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties

NOTES
${ }^{1}$ See Analog Devices military data sheet for 883 B tested specifications.
${ }^{2}$ Does not include effects of external resistor R_{G}.
${ }^{3}$ One input grounded. G = 1 .
${ }^{4}$ This is defined as the same supply range which is used to specify PSR.
Specifications subject to change without notice.

TESIS PUCP AD620

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

Supply Voltage . ± 18 V Internal Power Dissipation ${ }^{2}$. 650 mW
Input Voltage (Common Mode) . \pm V $_{S}$
Differential Input Voltage . ± 25 V
Output Short Circuit Duration Indefinite
Storage Temperature Range (Q) $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Storage Temperature Range (N, R) $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Operating Temperature Range
AD620 (A, B) . $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
AD620 (S) . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature Range
(Soldering 10 seconds)
$+300^{\circ} \mathrm{C}$

NOTES

${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{2}$ Specification is for device in free air:
8-Lead Plastic Package: $\theta_{\mathrm{IA}}=95^{\circ} \mathrm{C} / \mathrm{W}$
8-Lead Cerdip Package: $\theta_{\mathrm{JA}}=110^{\circ} \mathrm{C} / \mathrm{W}$
8 -Lead SOIC Package: $\theta_{\mathrm{JA}}=155^{\circ} \mathrm{C} / \mathrm{W}$

ORDERING GUIDE

Model	Temperature Ranges	Package Options
AD620AN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-8$
AD620BN	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{N}-8$
AD620AR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SO-8
AD620AR-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$13{ }^{\prime \prime}$ REEL
AD620AR-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	7 REEL
AD620BR	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SO-8
AD620BR-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$13{ }^{\prime \prime}$ REEL
AD620BR-REEL 7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$77^{\prime \prime}$ REEL
AD620ACHIPS	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Die Form
AD620SQ/883B	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$\mathrm{Q}-8$

* $\mathrm{N}=$ Plastic DIP; Q = Cerdip; SO = Small Outline

METALIZATION PHOTOGRAPH

Dimensions shown in inches and (mm).
Contact factory for latest dimensions.

*FOR CHIP APPLICATIONS: THE PADS $1 \mathrm{R}_{\mathrm{G}}$ AND $8 \mathrm{R}_{\mathrm{G}}$ MUST BE CONNECTED IN PARALLEL TO THE EXTERNAL GAIN REGISTER R_{G}. DO NOT CONNECT THEM IN SERIES TO R_{G}. FOR UNITY GAIN APPLICATIONS WHERE R_{G} IS NOT REQUIRED, THE PADS $1 R_{G}$ MAY SIMPLY BE BONDED TOGETHER, AS WELL AS THE PADS $8 \mathrm{R}_{\mathrm{G}}$.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD620 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Typical Characteristics (@ $+25^{\circ}$, $V_{\mathrm{s}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, unless otherwise noted)

Figure 3. Typical Distribution of Input Offset Voltage

Figure 4. Typical Distribution of Input Bias Current

Figure 5. Typical Distribution of Input Offset Current

Figure 6. Input Bias Current vs. Temperature

Figure 7. Change in Input Offset Voltage vs. Warm-Up Time

Figure 8. Voltage Noise Spectral Density vs. Frequency, ($G=1-1000$)

Figure 9. Current Noise Spectral Density vs. Frequency

Figure 10a. 0.1 Hz to 10 Hz RTI Voltage Noise ($G=1$)

Figure 10b. 0.1 Hz to 10 Hz RTI Voltage Noise ($G=1000$)

Figure 11. 0.1 Hz to 10 Hz Current Noise, $5 \mathrm{pA} /$ Div

Figure 12. Total Drift vs. Source Resistance

Figure 13. CMR vs. Frequency, RTI, Zero to $1 \mathrm{k} \Omega$ Source Imbalance

Figure 14. Positive PSR vs. Frequency, RTI ($G=1-1000$)

Figure 15. Negative PSR vs. Frequency, RTI ($G=1-1000$)

Figure 16. Gain vs. Frequency

Figure 17. Large Signal Frequency Response

Figure 18. Input Voltage Range vs. Supply Voltage, $G=1$

Figure 19. Output Voltage Swing vs. Supply Voltage, $G=10$

Figure 20. Output Voltage Swing vs. Load Resistance

Figure 21. Large Signal Pulse Response and Settling Time $G=1(0.5 \mathrm{mV}=0.01 \%)$

Figure 22. Small Signal Response, $G=1, R_{L}=2 k \Omega$, $C_{L}=100 \mathrm{pF}$

Figure 23. Large Signal Response and Settling Time, $G=10(0.5 \mathrm{mV}=001 \%)$

Figure 24. Small Signal Response, $G=10, R_{L}=2 k \Omega$, $C_{L}=100 \mathrm{pF}$

Figure 25. Large Signal Response and Settling Time, $G=100$ ($0.5 \mathrm{mV}=0.01 \%$)

Figure 26. Small Signal Pulse Response, $G=100$, $R_{L}=2 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$

Figure 27. Large Signal Response and Settling Time, $G=1000$ ($0.5 \mathrm{mV}=0.01 \%$)

Figure 28. Small Signal Pulse Response, $G=1000$, $R_{L}=2 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$

Figure 29. Settling Time vs. Step Size ($G=1$)

Figure 30. Settling Time to 0.01% vs. Gain, for a 10 V Step

Figure 31a. Gain Nonlinearity, $G=1, R_{L}=10 \mathrm{k} \Omega$ $(10 \mu \mathrm{~V}=1 \mathrm{ppm})$

Figure 31b. Gain Nonlinearity, $G=100, R_{L}=10 \mathrm{k} \Omega$ ($100 \mu \mathrm{~V}=10 \mathrm{ppm}$)

Figure 31c. Gain Nonlinearity, $G=1000, R_{L}=10 \mathrm{k} \Omega$ (1 mV = 100 ppm)

*ALL RESISTORS 1% TOLERANCE
Figure 32. Settling Time Test Circuit

Figure 33. Simplified Schematic of AD620

THEORY OF OPERATION

The AD620 is a monolithic instrumentation amplifier based on a modification of the classic three op amp approach. Absolute value trimming allows the user to program gain accurately (to 0.15% at $G=100$) with only one resistor. Monolithic construction and laser wafer trimming allow the tight matching and tracking of circuit components, thus ensuring the high level of performance inherent in this circuit.
The input transistors Q1 and Q2 provide a single differentialpair bipolar input for high precision (Figure 33), yet offer 10x lower Input Bias Current thanks to Super β eta processing. Feedback through the Q1-A1-R1 loop and the Q2-A2-R2 loop maintains constant collector current of the input devices Q1, Q2 thereby impressing the input voltage across the external gain setting resistor R_{G}. This creates a differential gain from the inputs to the $\mathrm{A} 1 / \mathrm{A} 2$ outputs given by $\mathrm{G}=(\mathrm{R} 1+\mathrm{R} 2) / \mathrm{R}_{\mathrm{G}}+1$. The unity-gain subtracter A3 removes any common-mode signal, yielding a single-ended output referred to the REF pin potential.
The value of R_{G} also determines the transconductance of the preamp stage. As R_{G} is reduced for larger gains, the transconductance increases asymptotically to that of the input transistors. This has three important advantages: (a) Open-loop gain is boosted for increasing programmed gain, thus reducing gainrelated errors. (b) The gain-bandwidth product (determined by $\mathrm{C} 1, \mathrm{C} 2$ and the preamp transconductance) increases with programmed gain, thus optimizing frequency response. (c) The input voltage noise is reduced to a value of $9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, determined mainly by the collector current and base resistance of the input devices.
The internal gain resistors, R1 and R2, are trimmed to an absolute value of $24.7 \mathrm{k} \Omega$, allowing the gain to be programmed accurately with a single external resistor.

The gain equation is then

$$
G=\frac{49.4 k \Omega}{R_{G}}+1
$$

so that

$$
R_{G}=\frac{49.4 k \Omega}{G-1}
$$

Make vs. Buy: A Typical Bridge Application Error Budget The AD620 offers improved performance over "homebrew" three op amp IA designs, along with smaller size, fewer components and $10 \times$ lower supply current. In the typical application, shown in Figure 34, a gain of 100 is required to amplify a bridge output of 20 mV full scale over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The error budget table below shows how to calculate the effect various error sources have on circuit accuracy.
Regardless of the system in which it is being used, the AD620 provides greater accuracy, and at low power and price. In simple
systems, absolute accuracy and drift errors are by far the most significant contributors to error. In more complex systems with an intelligent processor, an autogain/autozero cycle will remove all absolute accuracy and drift errors leaving only the resolution errors of gain nonlinearity and noise, thus allowing full 14-bit accuracy.

Note that for the homebrew circuit, the OP07 specifications for input voltage offset and noise have been multiplied by $\sqrt{2}$. This is because a three op amp type in-amp has two op amps at its inputs, both contributing to the overall input error.

PRECISION BRIDGE TRANSDUCER

Figure 34. Make vs. Buy

Table I. Make vs. Buy Error Budget

Error Source	AD620 Circuit Calculation	"Homebrew" Circuit Calculation	Error, ppm of Full Scale	
			AD620	Homebrew
ABSOLUTE ACCURACY at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ Input Offset Voltage, $\mu \mathrm{V}$ Output Offset Voltage, $\mu \mathrm{V}$ Input Offset Current, nA CMR, dB	$\begin{aligned} & 125 \mu \mathrm{~V} / 20 \mathrm{mV} \\ & 1000 \mu \mathrm{~V} / 100 / 20 \mathrm{mV} \\ & 2 \mathrm{nA} \times 350 \Omega / 20 \mathrm{mV} \\ & 110 \mathrm{~dB} \rightarrow 3.16 \mathrm{ppm}, \times 5 \mathrm{~V} / 20 \mathrm{mV} \end{aligned}$	$\begin{aligned} & (150 \mu \mathrm{~V} \times \sqrt{2}) / 20 \mathrm{mV} \\ & ((150 \mu \mathrm{~V} \times 2) / 100) / 20 \mathrm{mV} \\ & (6 \mathrm{nA} \times 350 \Omega) / 20 \mathrm{mV} \\ & (0.02 \% \text { Match } \times 5 \mathrm{~V}) / 20 \mathrm{mV} / 100 \end{aligned}$	$\begin{array}{r} 6,250 \\ 500 \\ 18 \\ 791 \end{array}$	$\begin{array}{r} 10,607 \\ 150 \\ 53 \\ 500 \end{array}$
DRIFT TO $+85^{\circ} \mathrm{C}$ Gain Drift, ppm $/{ }^{\circ} \mathrm{C}$ Input Offset Voltage Drift, $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ Output Offset Voltage Drift, $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & (50 \mathrm{ppm}+10 \mathrm{ppm}) \times 60^{\circ} \mathrm{C} \\ & 1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \times 60^{\circ} \mathrm{C} / 20 \mathrm{mV} \\ & 15 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \times 60^{\circ} \mathrm{C} / 100 / 20 \mathrm{mV} \end{aligned}$	Total Absolute Error $\begin{aligned} & 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \text { Track } \times 60^{\circ} \mathrm{C} \\ & \left(2.5 \mu \mathrm{~V} /{ }^{\mathrm{C}} \times \sqrt{2} \times 60^{\circ} \mathrm{C}\right) / 20 \mathrm{mV} \\ & \left(2.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \times 2 \times 60^{\circ} \mathrm{C}\right) / 100 / 20 \mathrm{mV} \end{aligned}$	$\begin{array}{r} 7,558 \\ 3,600 \\ 3,000 \\ 450 \end{array}$	$\begin{array}{r} 11,310 \\ 6,000 \\ 10,607 \\ 150 \end{array}$
RESOLUTION Gain Nonlinearity, ppm of Full Scale Typ $0.1 \mathrm{~Hz}-10 \mathrm{~Hz}$ Voltage Noise, $\mu \mathrm{V}$ p-p	$\begin{aligned} & 40 \mathrm{ppm} \\ & 0.28 \mu \mathrm{~V}-\mathrm{p} / 20 \mathrm{mV} \end{aligned}$	Total Drift Error $\begin{aligned} & 40 \mathrm{ppm} \\ & (0.38 \mu \mathrm{~V}-\mathrm{p} \times \sqrt{2}) / 20 \mathrm{mV} \end{aligned}$	$\begin{array}{r} 7,050 \\ 40 \\ 14 \end{array}$	$\begin{array}{r} 16,757 \\ 40 \\ 27 \end{array}$
		Total Resolution Error	54	67
		Grand Total Error	14,662	28,134

$G=100, V_{S}= \pm 15 \mathrm{~V}$.
(All errors are \min / max and referred to input.)

Figure 35. A Pressure Monitor Circuit which Operates on a +5 V Single Supply

Pressure Measurement

Although useful in many bridge applications such as weigh scales, the AD620 is especially suitable for higher resistance pressure sensors powered at lower voltages where small size and low power become more significant.
Figure 35 shows a $3 \mathrm{k} \Omega$ pressure transducer bridge powered from +5 V . In such a circuit, the bridge consumes only 1.7 mA . Adding the AD620 and a buffered voltage divider allows the signal to be conditioned for only 3.8 mA of total supply current.
Small size and low cost make the AD620 especially attractive for voltage output pressure transducers. Since it delivers low noise and drift, it will also serve applications such as diagnostic noninvasive blood pressure measurement.

Medical ECG

The low current noise of the AD620 allows its use in ECG monitors (Figure 36) where high source resistances of $1 \mathrm{M} \Omega$ or higher are not uncommon. The AD620's low power, low supply voltage requirements, and space-saving 8-lead mini-DIP and SOIC package offerings make it an excellent choice for battery powered data recorders.
Furthermore, the low bias currents and low current noise coupled with the low voltage noise of the AD620 improve the dynamic range for better performance.
The value of capacitor C 1 is chosen to maintain stability of the right leg drive loop. Proper safeguards, such as isolation, must be added to this circuit to protect the patient from possible harm.

Figure 36. A Medical ECG Monitor Circuit

Precision V-I Converter

The AD620, along with another op amp and two resistors, makes a precision current source (Figure 37). The op amp buffers the reference terminal to maintain good CMR. The output voltage V_{X} of the AD620 appears across R1, which converts it to a current. This current less only, the input bias current of the op amp , then flows out to the load.

Figure 37. Precision Voltage-to-Current Converter (Operates on $1.8 \mathrm{~mA}, \pm 3 \mathrm{~V}$)

GAIN SELECTION

The AD620's gain is resistor programmed by R_{G}, or more precisely, by whatever impedance appears between Pins 1 and 8 . The AD620 is designed to offer accurate gains using $0.1 \%-1 \%$ resistors. Table II shows required values of R_{G} for various gains. Note that for $G=1$, the R_{G} pins are unconnected $\left(R_{G}=\infty\right)$. For any arbitrary gain R_{G} can be calculated by using the formula:

$$
R_{G}=\frac{49.4 k \Omega}{G-1}
$$

To minimize gain error, avoid high parasitic resistance in series with R_{G}; to minimize gain drift, R_{G} should have a low TC -less than $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$-for the best performance.

Table II. Required Values of Gain Resistors

$\mathbf{1 \%}$ Std Table Value of $\mathbf{R}_{\mathbf{G}}, \boldsymbol{\Omega}$	Calculated Gain	$\mathbf{0 . 1 \% \text { Std Table }}$ Value of $\mathbf{R}_{\mathbf{G}}, \boldsymbol{\Omega}$	Calculated Gain
49.9 k	1.990	49.3 k	2.002
12.4 k	4.984	12.4 k	4.984
5.49 k	9.998	5.49 k	9.998
2.61 k	19.93	2.61 k	19.93
1.00 k	50.40	1.01 k	49.91
499	100.0	499	100.0
249	199.4	249	199.4
100	495.0	98.8	501.0
49.9	991.0	49.3	1,003

INPUT AND OUTPUT OFFSET VOLTAGE

The low errors of the AD620 are attributed to two sources, input and output errors. The output error is divided by G when referred to the input. In practice, the input errors dominate at high gains and the output errors dominate at low gains. The total V_{OS} for a given gain is calculated as:

Total Error RTI = input error + (output error/G)
Total Error RTO $=$ (input error $\times \mathrm{G}$) + output error

REFERENCE TERMINAL

The reference terminal potential defines the zero output voltage, and is especially useful when the load does not share a precise ground with the rest of the system. It provides a direct means of injecting a precise offset to the output, with an allowable range of 2 V within the supply voltages. Parasitic resistance should be kept to a minimum for optimum CMR.

INPUT PROTECTION

The AD620 features 400Ω of series thin film resistance at its inputs, and will safely withstand input overloads of up to $\pm 15 \mathrm{~V}$ or $\pm 60 \mathrm{~mA}$ for several hours. This is true for all gains, and power on and off, which is particularly important since the signal source and amplifier may be powered separately. For longer time periods, the current should not exceed $6 \mathrm{~mA}\left(\mathrm{I}_{\mathrm{IN}} \leq\right.$ $\mathrm{V}_{\mathrm{IN}} / 400 \Omega$). For input overloads beyond the supplies, clamping the inputs to the supplies (using a low leakage diode such as an FD333) will reduce the required resistance, yielding lower noise.

RF INTERFERENCE

All instrumentation amplifiers can rectify out of band signals, and when amplifying small signals, these rectified voltages act as small dc offset errors. The AD620 allows direct access to the input transistor bases and emitters enabling the user to apply some first order filtering to unwanted RF signals (Figure 38), where $R C \approx 1 /(2 \pi f)$ and where $f \geq$ the bandwidth of the AD620; $\mathrm{C} \leq 150 \mathrm{pF}$. Matching the extraneous capacitance at Pins 1 and 8 and Pins 2 and 3 helps to maintain high CMR.

Figure 38. Circuit to Attenuate RF Interference

COMMON-MODE REJECTION

Instrumentation amplifiers like the AD620 offer high CMR, which is a measure of the change in output voltage when both inputs are changed by equal amounts. These specifications are usually given for a full-range input voltage change and a specified source imbalance.
For optimal CMR the reference terminal should be tied to a low impedance point, and differences in capacitance and resistance should be kept to a minimum between the two inputs. In many applications shielded cables are used to minimize noise, and for best CMR over frequency the shield should be properly driven. Figures 39 and 40 show active data guards that are configured to improve ac common-mode rejections by "bootstrapping" the capacitances of input cable shields, thus minimizing the capacitance mismatch between the inputs.

Figure 39. Differential Shield Driver

Figure 40. Common-Mode Shield Driver

GROUNDING

Since the AD620 output voltage is developed with respect to the potential on the reference terminal, it can solve many grounding problems by simply tying the REF pin to the appropriate "local ground."
In order to isolate low level analog signals from a noisy digital environment, many data-acquisition components have separate analog and digital ground pins (Figure 41). It would be convenient to use a single ground line; however, current through ground wires and PC runs of the circuit card can cause hundreds of millivolts of error. Therefore, separate ground returns should be provided to minimize the current flow from the sensitive points to the system ground. These ground returns must be tied together at some point, usually best at the ADC package as shown.

Figure 41. Basic Grounding Practice

GROUND RETURNS FOR INPUT BIAS CURRENTS

Input bias currents are those currents necessary to bias the input transistors of an amplifier. There must be a direct return path for these currents; therefore, when amplifying "floating" input
sources such as transformers, or ac-coupled sources, there must be a dc path from each input to ground as shown in Figure 42. Refer to the Instrumentation Amplifier Application Guide (free from Analog Devices) for more information regarding in amp applications.

Figure 42a. Ground Returns for Bias Currents with Transformer Coupled Inputs

Figure 42b. Ground Returns for Bias Currents with Thermocouple Inputs

Figure 42c. Ground Returns for Bias Currents with AC Coupled Inputs

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

Plastic DIP (N-8) Package

Cerdip (Q-8) Package

SOIC (SO-8) Package

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

Features

- High-performance, Low-power AVR ${ }^{\circledR}$ 8-bit Microcontroller
- Advanced RISC Architecture
- 130 Powerful Instructions - Most Single-clock Cycle Execution
- 32×8 General Purpose Working Registers
- Fully Static Operation
- Up to 16 MIPS Throughput at 16 MHz
- On-chip 2-cycle Multiplier
- Nonvolatile Program and Data Memories
- 8K Bytes of In-System Self-Programmable Flash

Endurance: 10,000 Write/Erase Cycles

- Optional Boot Code Section with Independent Lock Bits

In-System Programming by On-chip Boot Program
True Read-While-Write Operation

- 512 Bytes EEPROM

Endurance: 100,000 Write/Erase Cycles

- 1K Byte Internal SRAM
- Programming Lock for Software Security
- Peripheral Features
- Two 8-bit Timer/Counters with Separate Prescaler, one Compare Mode
- One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode
- Real Time Counter with Separate Oscillator
- Three PWM Channels
- 8-channel ADC in TQFP and MLF package

Six Channels 10-bit Accuracy
Two Channels 8-bit Accuracy

- 6-channel ADC in PDIP package

Four Channels 10-bit Accuracy
Two Channels 8-bit Accuracy

- Byte-oriented Two-wire Serial Interface
- Programmable Serial USART
- Master/Slave SPI Serial Interface
- Programmable Watchdog Timer with Separate On-chip Oscillator
- On-chip Analog Comparator
- Special Microcontroller Features
- Power-on Reset and Programmable Brown-out Detection
- Internal Calibrated RC Oscillator
- External and Internal Interrupt Sources
- Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and Standby
- I/O and Packages
- 23 Programmable I/O Lines
- 28-lead PDIP, 32-lead TQFP, and 32-pad MLF
- Operating Voltages
- 2.7-5.5V (ATmega8L)
- 4.5-5.5V (ATmega8)
- Speed Grades
- 0-8 MHz (ATmega8L)
- 0-16 MHz (ATmega8)
- Power Consumption at $4 \mathbf{M h z}, \mathbf{3 V}, 25^{\circ} \mathrm{C}$
- Active: 3.6 mA
- Idle Mode: 1.0 mA
- Power-down Mode: $0.5 \mu \mathrm{~A}$

8-bit $A V \boldsymbol{R}^{\bullet}$ with 8 K Bytes In-System Programmable Flash

ATmega8 ATmega8L

Summary

DEL PERÚ

Pin Configurations

PDIP

	\checkmark	
(RESET) PC6	128	$\square \mathrm{PC5}$ (ADC5/SCL)
(RXD) PDO	227	$\square \mathrm{PC4}$ (ADC4/SDA)
(TXD) PD1	$3 \quad 26$	\square PC3 (ADC3)
(INT0) PD2	425	\square PC2 (ADC2)
(INT1) PD3	$5 \quad 24$	$\square \mathrm{PC1}$ (ADC1)
(XCK/T0) PD4	$6 \quad 23$	$\square \mathrm{PCO}$ (ADC0)
VCC	722	\square GND
GND	$8 \quad 21$	\square AREF
(XTAL1/TOSC1) PB6	920	\square AVCC
(XTAL2/TOSC2) PB7	1019	\square PB5 (SCK)
(T1) PD5	$11 \quad 18$	\square PB4 (MISO)
(AINO) PD6	$12 \quad 17$	\square PB3 (MOSI/OC2)
(AIN1) PD7	$13 \quad 16$	$\square \mathrm{PB} 2$ (SS/OC1B)
(ICP1) PB0	$14 \quad 15$	$\square \mathrm{PB} 1$ (OC1A)

TQFP Top View

ATmega8(L)

Overview

Block Diagram

The ATmega8 is a low-power CMOS 8-bit microcontroller based on the AVR RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega8 achieves throughputs approaching 1 MIPS per MHz, allowing the system designer to optimize power consumption versus processing speed.

Figure 1. Block Diagram

4 Casanvisima

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega8 provides the following features: 8 K bytes of In-System Programmable Flash with Read-While-Write capabilities, 512 bytes of EEPROM, 1K byte of SRAM, 23 general purpose I/O lines, 32 general purpose working registers, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, a byte oriented Two-wire Serial Interface, a 6-channel ADC (eight channels in TQFP and MLF packages) where four (six) channels have 10-bit accuracy and two channels have 8 -bit accuracy, a programmable Watchdog Timer with Internal Oscillator, an SPI serial port, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next Interrupt or Hardware Reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-power consumption.
The device is manufactured using Atmel's high density non-volatile memory technology. The Flash Program memory can be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip boot program running on the AVR core. The boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash Section will continue to run while the Application Flash Section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System SelfProgrammable Flash on a monolithic chip, the Atmel ATmega8 is a powerful microcontroller that provides a highly-flexible and cost-effective solution to many embedded control applications.
The ATmega8 AVR is supported with a full suite of program and system development tools, including C compilers, macro assemblers, program debugger/simulators, In-Circuit Emulators, and evaluation kits.

Disclaimer
Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized.

Pin Descriptions

VCC

GND
Port B (PB7..PB0) XTAL1/ XTAL2/TOSC1/TOSC2

Port C (PC5..PC0)

PC6/RESET

Port D (PD7..PD0)

RESET

Digital supply voltage.
Ground.
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.
Depending on the clock selection fuse settings, PB6 can be used as input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
Depending on the clock selection fuse settings, PB7 can be used as output from the inverting Oscillator amplifier.
If the Internal Calibrated RC Oscillator is used as chip clock source, PB7.. 6 is used as TOSC2.. 1 input for the Asynchronous Timer/Counter2 if the AS2 bit in ASSR is set.

The various special features of Port B are elaborated in "Alternate Functions of Port B" on page 56 and "System Clock and Clock Options" on page 23.

Port C is an 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.

If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical characteristics of PC6 differ from those of the other pins of Port C .

If the RSTDISBL Fuse is unprogrammed, PC6 is used as a Reset input. A low level on this pin for longer than the minimum pulse length will generate a Reset, even if the clock is not running. The minimum pulse length is given in Table 15 on page 36. Shorter pulses are not guaranteed to generate a Reset.

The various special features of Port C are elaborated on page 59.
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.
Port D also serves the functions of various special features of the ATmega8 as listed on page 61.

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 15 on page 36 . Shorter pulses are not guaranteed to generate a reset.

PONTIFICIA
UNIVERSIDAD
DEL PERÚ

AVCC

AREF

ADC7.. 6 (TQFP and MLF Package Only)

AVCC is the supply voltage pin for the A/D Converter, Port C (3..0), and ADC (7..6). It should be externally connected to V_{CC}, even if the ADC is not used. If the ADC is used, it should be connected to V_{CC} through a low-pass filter. Note that Port C (5..4) use digital supply voltage, V_{CC}.

AREF is the analog reference pin for the A/D Converter.
In the TQFP and MLF package, ADC7.. 6 serve as analog inputs to the A/D converter. These pins are powered from the analog supply and serve as 10 -bit ADC channels.

Register Summary

PONTIFICIA
UNIVERSIDAD
DEL PERÚ

Register Summary (Continued)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x01 (0x21)	TWSR	TWS7	TWS6	TWS5	TWS4	TWS3	-	TWPS1	TWPS0	170
0x00 (0x20)	TWBR	Two-wire Serial Interface Bit Rate Register								168

Notes: 1. Refer to the USART description for details on how to access UBRRH and UCSRC.
2. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
3. Some of the Status Flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O Register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers 0×00 to $0 \times 1 \mathrm{~F}$ only.

Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	\＃Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS					
ADD	Rd，Rr	Add two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}+\mathrm{Rr}$	Z，C，N，V，H	1
ADC	Rd，Rr	Add with Carry two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}+\mathrm{Rr}+\mathrm{C}$	Z，C，N，V，H	1
ADIW	Rdi，K	Add Immediate to Word	Rdh： $\mathrm{Rdl} \leftarrow$ R Rdh：Rdl +K	Z，C，N，V，S	2
SUB	Rd，Rr	Subtract two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{Rr}$	Z，C，N，V，H	1
SUBI	Rd，K	Subtract Constant from Register	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{K}$	Z，C，N，V，H	1
SBC	Rd，Rr	Subtract with Carry two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{Rr}-\mathrm{C}$	Z，C，N，V，H	1
SBCI	Rd，K	Subtract with Carry Constant from Reg．	$\mathrm{Rd} \leftarrow \mathrm{Rd}$－K－C	Z，C，N，V，H	1
SBIW	Rdil， K	Subtract Immediate from Word	Rdh：Rdl \leftarrow Rdh：Rdl－K	Z，C，N，V，S	2
AND	Rd，Rr	Logical AND Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{Rr}$	Z，N，V	1
ANDI	Rd，K	Logical AND Register and Constant	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{K}$	Z，N，V	1
OR	Rd，Rr	Logical OR Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd} v \mathrm{Rr}$	Z，N，V	1
ORI	Rd，K	Logical OR Register and Constant	$\mathrm{Rd} \leftarrow \mathrm{Rd} v \mathrm{~K}$	Z，N，V	1
EOR	Rd，Rr	Exclusive OR Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd} \oplus \mathrm{Rr}$	Z，N，V	1
COM	Rd	One＇s Complement	$\mathrm{Rd} \leftarrow 0 \mathrm{xFF}-\mathrm{Rd}$	Z，C，N，V	1
NEG	Rd	Two＇s Complement	$\mathrm{Rd} \leftarrow 0 \times 00-\mathrm{Rd}$	Z，C，N，V，H	1
SBR	Rd，K	Set Bit（s）in Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} v \mathrm{~K}$	Z，N，V	1
CBR	Rd，K	Clear Bit（s）in Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet(0 \times F F-K)$	Z，N，V	1
INC	Rd	Increment	$\mathrm{Rd} \leftarrow \mathrm{Rd}+1$	Z，N，V	1
DEC	Rd	Decrement	$\mathrm{Rd} \leftarrow \mathrm{Rd}-1$	Z，N，V	1
TST	Rd	Test for Zero or Minus	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{Rd}$	Z，N，V	1
CLR	Rd	Clear Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} \oplus \mathrm{Rd}$	Z，N，V	1
SER	Rd	Set Register	$\mathrm{Rd} \leftarrow 0 \mathrm{xFF}$	None	1
MUL	Rd，Rr	Multiply Unsigned	$\mathrm{R} 1: \mathrm{R0} \leftarrow \mathrm{Rd} \times \mathrm{Rr}$	Z，C	2
MULS	Rd，Rr	Multiply Signed	$\mathrm{R} 1: \mathrm{R} 0 \leftarrow \mathrm{Rd} \times \mathrm{Rr}$	Z，C	2
MULSU	Rd，Rr	Multiply Signed with Unsigned	$\mathrm{R} 1: \mathrm{R0} \leftarrow \mathrm{Rd} \times \mathrm{Rr}$	Z，C	2
FMUL	Rd，Rr	Fractional Multiply Unsigned	$\mathrm{R} 1: \mathrm{R} 0 \leftarrow(\mathrm{Rd} \times \mathrm{Rr}) \ll 1$	Z，C	2
FMULS	Rd，Rr	Fractional Multiply Signed	$\mathrm{R} 1: \mathrm{R} 0 \leftarrow(\mathrm{Rd} \times \mathrm{Rr}) \ll 1$	Z，C	2
FMULSU	Rd，Rr	Fractional Multiply Signed with Unsigned	$\mathrm{R} 1: \mathrm{R} 0 \leftarrow(\mathrm{Rd} \times \mathrm{Rr}) \ll 1$	Z，C	2
BRANCH INSTRUCTIONS					
RJMP	k	Relative Jump	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	2
IJMP		Indirect Jump to（Z）	$\mathrm{PC} \leftarrow \mathrm{Z}$	None	2
RCALL	k	Relative Subroutine Call	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	3
ICALL		Indirect Call to（Z）	$\mathrm{PC} \leftarrow \mathrm{Z}$	None	3
RET		Subroutine Return	$\mathrm{PC} \leftarrow$ STACK	None	4
RETI		Interrupt Return	$\mathrm{PC} \leftarrow$ STACK	1	4
CPSE	Rd，Rr	Compare，Skip if Equal	if（ $\mathrm{Rd}=\mathrm{Rr}$ ） $\mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1／2／3
CP	Rd，Rr	Compare	$\mathrm{Rd}-\mathrm{Rr}$	Z，N，V，C，H	1
CPC	Rd， Rr	Compare with Carry	$\mathrm{Rd}-\mathrm{Rr}-\mathrm{C}$	Z，N，V，C，H	1
CPI	Rd，K	Compare Register with Immediate	Rd－K	Z，N，V，C，H	1
SBRC	Rr，b	Skip if Bit in Register Cleared	if $(\operatorname{Rr}(\mathrm{b})=0) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1／2／3
SBRS	Rr，b	Skip if Bit in Register is Set	if $(\operatorname{Rr}(\mathrm{b})=1) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1／2／3
SBIC	P，b	Skip if Bit in I／O Register Cleared	if $(\mathrm{P}(\mathrm{b})=0) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1／2／3
SBIS	P，b	Skip if Bit in I／O Register is Set	if $(\mathrm{P}(\mathrm{b})=1) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1／2／3
BRBS	s， k	Branch if Status Flag Set	if（SREG（s）＝1）then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BRBC	s， k	Branch if Status Flag Cleared	if（SREG（s）$=0$ ）then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BREQ	k	Branch if Equal	if $(Z=1)$ then $P C \leftarrow P C+k+1$	None	1／2
BRNE	k	Branch if Not Equal	if $(Z=0)$ then $P C \leftarrow P C+k+1$	None	1／2
BRCS	k	Branch if Carry Set	if（ $\mathrm{C}=1$ ）then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BRCC	k	Branch if Carry Cleared	if（ $\mathrm{C}=0$ ）then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BRSH	k	Branch if Same or Higher	if（ $\mathrm{C}=0$ ）then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BRLO	k	Branch if Lower	if（ $\mathrm{C}=1$ ）then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BRMI	k	Branch if Minus	if $(\mathrm{N}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BRPL	k	Branch if Plus	if（ $\mathrm{N}=0$ ）then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BRGE	k	Branch if Greater or Equal，Signed	if（ $\mathrm{N} \oplus \mathrm{V}=0$ ）then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BRLT	k	Branch if Less Than Zero，Signed	if（ $\mathrm{N} \oplus \mathrm{V}=1$ ）then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BRHS	k	Branch if Half Carry Flag Set	if（ $\mathrm{H}=1$ ）then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BRHC	k	Branch if Half Carry Flag Cleared	if（ $\mathrm{H}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BRTS	k	Branch if T Flag Set	if $(\mathrm{T}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BRTC	k	Branch if T Flag Cleared	if（ $\mathrm{T}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BRVS	k	Branch if Overflow Flag is Set	if $(\mathrm{V}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1／2
BRVC	k	Branch if Overflow Flag is Cleared	if $(V=0)$ then $P C \leftarrow P C+k+1$	None	1／2
Mnemonics	Operands	Description	Operation	Flags	\＃Clocks

A 血画
rickinn
del perú

Instruction Set Summary (Continued)

BRIE	k	Branch if Interrupt Enabled	if ($\mathrm{I}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRID	k	Branch if Interrupt Disabled	if $(\mathrm{I}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
DATA TRANSFER INSTRUCTIONS					
MOV	Rd, Rr	Move Between Registers	$\mathrm{Rd} \leftarrow \mathrm{Rr}$	None	1
MOVW	Rd, Rr	Copy Register Word	$\mathrm{Rd}+1: \mathrm{Rd} \leftarrow \mathrm{Rr}+1: \mathrm{Rr}$	None	1
LDI	Rd, K	Load Immediate	$\mathrm{Rd} \leftarrow \mathrm{K}$	None	1
LD	Rd, X	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{X})$	None	2
LD	Rd, X_{+}	Load Indirect and Post-Inc.	$\mathrm{Rd} \leftarrow(\mathrm{X}), \mathrm{X} \leftarrow \mathrm{X}+1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$\mathrm{X} \leftarrow \mathrm{X}-1, \mathrm{Rd} \leftarrow(\mathrm{X})$	None	2
LD	Rd, Y	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{Y})$	None	2
LD	Rd, $\mathrm{Y}+$	Load Indirect and Post-Inc.	$\mathrm{Rd} \leftarrow(\mathrm{Y}), \mathrm{Y} \leftarrow \mathrm{Y}+1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$\mathrm{Y} \leftarrow \mathrm{Y}-1, \mathrm{Rd} \leftarrow(\mathrm{Y})$	None	2
LDD	Rd, $\mathrm{Y}+\mathrm{q}$	Load Indirect with Displacement	$\mathrm{Rd} \leftarrow(\mathrm{Y}+\mathrm{q})$	None	2
LD	Rd, Z	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{Z})$	None	2
LD	Rd, Z_{+}	Load Indirect and Post-Inc.	$\mathrm{Rd} \leftarrow(\mathrm{Z}), \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$\mathrm{Z} \leftarrow \mathrm{Z}-1, \mathrm{Rd} \leftarrow(\mathrm{Z})$	None	2
LDD	Rd, $\mathrm{Z}+\mathrm{q}$	Load Indirect with Displacement	$\mathrm{Rd} \leftarrow(\mathrm{Z}+\mathrm{q})$	None	2
LDS	Rd, k	Load Direct from SRAM	$\mathrm{Rd} \leftarrow(\mathrm{k})$	None	2
ST	X, Rr	Store Indirect	$(\mathrm{X}) \leftarrow \mathrm{Rr}$	None	2
ST	$\mathrm{X}+\mathrm{R} \mathrm{R}$	Store Indirect and Post-Inc.	$(\mathrm{X}) \leftarrow \mathrm{Rr}, \mathrm{X} \leftarrow \mathrm{X}+1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$\mathrm{X} \leftarrow \mathrm{X}-1,(\mathrm{X}) \leftarrow \mathrm{Rr}$	None	2
ST	Y, Rr	Store Indirect	$(\mathrm{Y}) \leftarrow \mathrm{Rr}$	None	2
ST	$\mathrm{Y}+$, Rr	Store Indirect and Post-Inc.	$(\mathrm{Y}) \leftarrow \mathrm{Rr}, \mathrm{Y} \leftarrow \mathrm{Y}+1$	None	2
ST	$-\mathrm{Y}, \mathrm{Rr}$	Store Indirect and Pre-Dec.	$\mathrm{Y} \leftarrow \mathrm{Y}-1,(\mathrm{Y}) \leftarrow \mathrm{Rr}$	None	2
STD	$\mathrm{Y}+\mathrm{q}, \mathrm{Rr}$	Store Indirect with Displacement	$(\mathrm{Y}+\mathrm{q}) \leftarrow \mathrm{Rr}$	None	2
ST	Z, Rr	Store Indirect	$(\mathrm{Z}) \leftarrow \mathrm{Rr}$	None	2
ST	Z + , Rr	Store Indirect and Post-Inc.	(Z) $\leftarrow \mathrm{Rr}, \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$\mathrm{Z} \leftarrow \mathrm{Z}-1,(\mathrm{Z}) \leftarrow \mathrm{Rr}$	None	2
STD	Z q, Rr	Store Indirect with Displacement	$(\mathrm{Z}+\mathrm{q}) \leftarrow \mathrm{Rr}$	None	2
STS	k, Rr	Store Direct to SRAM	$(\mathrm{k}) \leftarrow \mathrm{Rr}$	None	2
LPM		Load Program Memory	$\mathrm{R} 0 \leftarrow(\mathrm{Z})$	None	3
LPM	Rd, Z	Load Program Memory	$\mathrm{Rd} \leftarrow(\mathrm{Z})$	None	3
LPM	Rd, Z_{+}	Load Program Memory and Post-Inc	$\mathrm{Rd} \leftarrow(\mathrm{Z}), \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	3
SPM		Store Program Memory	$(\mathrm{Z}) \leftarrow \mathrm{R} 1: \mathrm{R} 0$	None	-
IN	Rd, P	In Port	$\mathrm{Rd} \leftarrow \mathrm{P}$	None	1
OUT	P, Rr	Out Port	$\mathrm{P} \leftarrow \mathrm{Rr}$	None	1
PUSH	Rr	Push Register on Stack	STACK $\leftarrow \mathrm{Rr}$	None	2
POP	Rd	Pop Register from Stack	$\mathrm{Rd} \leftarrow \mathrm{STACK}$	None	2
BIT AND BIT-TEST INSTRUCTIONS					
SBI	P, b	Set Bit in I/O Register	$\mathrm{l} / \mathrm{O}(\mathrm{P}, \mathrm{b}) \leftarrow 1$	None	2
CBI	P, b	Clear Bit in I/O Register	$1 / \mathrm{O}(\mathrm{P}, \mathrm{b}) \leftarrow 0$	None	2
LSL	Rd	Logical Shift Left	$\mathrm{Rd}(\mathrm{n}+1) \leftarrow \operatorname{Rd}(\mathrm{n}), \mathrm{Rd}(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$\mathrm{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \operatorname{Rd}(7) \leftarrow 0$	Z,C,N, V	1
ROL	Rd	Rotate Left Through Carry	$\mathrm{Rd}(0) \leftarrow \mathrm{C}, \mathrm{Rd}(\mathrm{n}+1) \leftarrow \operatorname{Rd}(\mathrm{n}), \mathrm{C} \leftarrow \operatorname{Rd}(7)$	Z,C,N, V	1
ROR	Rd	Rotate Right Through Carry	$\operatorname{Rd}(7) \leftarrow C, \operatorname{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \mathrm{C} \leftarrow \operatorname{Rd}(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$\operatorname{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \mathrm{n}=0 . .6$	Z,C,N, V	1
SWAP	Rd	Swap Nibbles	$\operatorname{Rd}(3.0) \leftarrow \operatorname{Rd}(7 . .4), \operatorname{Rd}(7 . .4) \leftarrow \operatorname{Rd}(3 . .0)$	None	1
BSET	s	Flag Set	SREG(s) $\leftarrow 1$	SREG(s)	1
BCLR	S	Flag Clear	SREG(s) $\leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$\mathrm{T} \leftarrow \operatorname{Rr}$ (b)	T	1
BLD	Rd, b	Bit load from T to Register	$\operatorname{Rd}(\mathrm{b}) \leftarrow \mathrm{T}$	None	1
SEC		Set Carry	$\mathrm{C} \leftarrow 1$	C	1
CLC		Clear Carry	$\mathrm{C} \leftarrow 0$	C	1
SEN		Set Negative Flag	$N \leftarrow 1$	N	1
CLN		Clear Negative Flag	$\mathrm{N} \leftarrow 0$	N	1
SEZ		Set Zero Flag	$\mathrm{Z} \leftarrow 1$	Z	1
CLZ		Clear Zero Flag	$\mathrm{Z} \leftarrow 0$	z	1
SEI		Global Interrupt Enable	$1 \leftarrow 1$	1	1
CLI		Global Interrupt Disable	$1 \leftarrow 0$	1	1
SES		Set Signed Test Flag	$\mathrm{S} \leftarrow 1$	S	1
CLS		Clear Signed Test Flag	$\mathrm{S} \leftarrow 0$	S	1
SEV		Set Twos Complement Overflow.	$V \leftarrow 1$	V	1
CLV		Clear Twos Complement Overflow	$\mathrm{V} \leftarrow 0$	V	1
SET		Set T in SREG	$\mathrm{T} \leftarrow 1$	T	1
Mnemonics	Operands	Description	Operation	Flags	\#Clocks

Instruction Set Summary (Continued)

CLT	Clear T in SREG	$\mathrm{T} \leftarrow 0$	T	1
SEH	Set Half Carry Flag in SREG	$\mathrm{H} \leftarrow 1$	H	1
CLH	Clear Half Carry Flag in SREG	$\mathrm{H} \leftarrow 0$	H	1
MCU CONTROL INSTRUCTIONS				
NOP	No Operation		None	1
SLEEP	Sleep	(see specific descr. for Sleep function)	None	1
WDR	Watchdog Reset	(see specific descr. for WDR/timer)	None	1

No olvide citar esta tesis

DEL PERÚ

Ordering Information

Speed (MHz)	Power Supply	Ordering Code	Package	Operation Range
8	2.7-5.5	ATmega8L-8AC	32A	Commercial
		ATmega8L-8PC	28P3	$\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
		ATmega8L-8MC	32M1-A	
		ATmega8L-8AI	32A	Industrial
		ATmega8L-8PI	28P3	($-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$)
		ATmega8L-8MI	32M1-A	
16	4.5-5.5	ATmega8-16AC	32A	Commercial
		ATmega8-16PC	28P3	$\left(0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$)
		ATmega8-16MC	32M1-A	
		ATmega8-16AI	32A	Industrial
		ATmega8-16PI	28P3	$\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$
		ATmega8-16MI	32M1-A	

Note: This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

Package Type	
32A	32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP)
28P3	28-lead, 0.300 " Wide, Plastic Dual Inline Package (PDIP)
32M1-A	32-pad, $5 \times 5 \times 1.0$ body, Lead Pitch 0.50 mm Micro Lead Frame Package (MLF)

Packaging Information

32A

DEL PERÚ

28P3

Note: 1. Dimensions D and E1 do not include mold Flash or Protrusion. Mold Flash or Protrusion shall not exceed $0.25 \mathrm{~mm}(0.010$ ").

(Unit of Measure $=$ mm)				
SYMBOL	MIN	NOM	MAX	NOTE
A	-	-	4.5724	
A1	0.508	-	-	
D	34.544	-	34.798	Note 1
E	7.620	-	8.255	
E1	7.112	-	7.493	Note 1
B	0.381	-	0.533	
B1	1.143	-	1.397	
B2	0.762	-	1.143	
L	3.175	-	3.429	
C	0.203	-	0.356	
eB	-	-	10.160	
e		2.540 TYP		

09/28/01

DRAWING NO.	REV.
28P3	B

32M1-A

DEL PERÚ

Erratas

ATmega8

Rev. D, E, F, and G

The revision letter in this section refers to the revision of the ATmega8 device.

- CKOPT Does not Enable Internal Capacitors on XTALn/TOSCn Pins when 32 KHz Oscillator is Used to Clock the Asynchronous Timer/Counter2

1. CKOPT Does not Enable Internal Capacitors on XTALn/TOSCn Pins when 32 KHz Oscillator is Used to Clock the Asynchronous Timer/Counter2
When the internal RC Oscillator is used as the main clock source, it is possible to run the Timer/Counter2 asynchronously by connecting a 32 KHz Oscillator between XTAL1/TOSC1 and XTAL2/TOSC2. But when the internal RC Oscillator is selected as the main clock source, the CKOPT Fuse does not control the internal capacitors on XTAL1/TOSC1 and XTAL2/TOSC2. As long as there are no capacitors connected to XTAL1/TOSC1 and XTAL2/TOSC2, safe operation of the Oscillator is not guaranteed.
Problem fix/Workaround
Use external capacitors in the range of $20-36 \mathrm{pF}$ on XTAL1/TOSC1 and XTAL2/TOSC2. This will be fixed in ATmega8 Rev. G where the CKOPT Fuse will control internal capacitors also when internal RC Oscillator is selected as main clock source. For ATmega8 Rev. G, CKOPT $=0$ (programmed) will enable the internal capacitors on XTAL1 and XTAL2. Customers who want compatibility between Rev. G and older revisions, must ensure that CKOPT is unprogrammed (CKOPT $=1$).

Datasheet Change Log for ATmega8

Changes from Rev. 2486K-08/03 to Rev. 2486L-10/03

Changes from Rev. 2486K-08/03 to Rev. 2486L-10/03

Changes from Rev. 2486J-02/03 to Rev. 2486K-08/03

Changes from Rev. 24861-12/02 to Rev. 2486J-02/03

This document contains a log on the changes made to the datasheet for ATmega8.

All page numbers refers to this document.

1. Updated "Calibrated Internal RC Oscillator" on page 28.

All page numbers refers to this document.

1. Removed "Preliminary" and TBDs from the datasheet.
2. Renamed ICP to ICP1 in the datasheet.
3. Removed instructions CALL and JMP from the datasheet.
4. Updated $\mathrm{t}_{\text {RST }}$ in Table 15 on page 36, V_{BG} in Table 16 on page 40, Table 100 on page 239 and Table 102 on page 241.
5. Replaced text "XTAL1 and XTAL2 should be left unconnected (NC)" after Table 9 in "Calibrated Internal RC Oscillator" on page 28. Added text regarding XTAL1/XTAL2 and CKOPT Fuse in "Timer/Counter Oscillator" on page 30.
6. Updated Watchdog Timer code examples in "Timed Sequences for Changing the Configuration of the Watchdog Timer" on page 43.
7. Removed bit 4, ADHSM, from "Special Function IO Register - SFIOR" on page 56.
8. Added note 2 to Figure 103 on page 212.
9. Updated item 4 in the "Serial Programming Algorithm" on page 233.
10. Added $\mathrm{t}_{\text {wd fuse }}$ to Table 97 on page 234 and updated Read Calibration Byte, Byte 3, in Table 98 on page 235.
11. Updated Absolute Maximum Ratings* and DC Characteristics in "Electrical Characteristics" on page 237.

All page numbers refers to this document.

1. Updated $\mathrm{V}_{\text {вот }}$ values in Table 15 on page 36.
2. Updated "ADC Characteristics" on page 243.
3. Updated "ATmega8 Typical Characteristics" on page 244.
4. Updated "Erratas" on page 16.

All page numbers refers to this document.

4
Ceanduaisload
$\approx \sim 3 \mid$ DEL PERÚ

1. Improved the description of "Asynchronous Timer Clock - clkASY" on page 24.
2. Removed reference to the "Multipurpose Oscillator" application note and the " 32 kHz Crystal Oscillator" application note, which do not exist.
3. Corrected OCn waveforms in Figure 38 on page 88.
4. Various minor Timer 1 corrections.
5. Various minor TWI corrections.
6. Added note under "Filling the Temporary Buffer (Page Loading)" on page 213 about writing to the EEPROM during an SPM Page load.
7. Removed ADHSM completely.
8. Added section "EEPROM Write during Power-down Sleep Mode" on page 21.
9. Removed XTAL1 and XTAL2 description on page 5 because they were already described as part of "Port B (PB7..PB0) XTAL1/ XTAL2/TOSC1/TOSC2" on page 5.
10. Improved the table under "SPI Timing Characteristics" on page 241 and removed the table under "SPI Serial Programming Characteristics" on page 236.
11. Corrected PC6 in "Alternate Functions of Port C" on page 59.
12. Corrected PB6 and PB7 in "Alternate Functions of Port B" on page 56.
13. Corrected 230.4 Mbps to 230.4 kbps under "Examples of Baud Rate Setting" on page 156.
14. Added information about PWM symmetry for Timer 2 in "Phase Correct PWM Mode" on page 111.
15. Added thick lines around accessible registers in Figure 76 on page 166.
16. Changed "will be ignored" to "must be written to zero" for unused Z-pointer bits under "Performing a Page Write" on page 213.
17. Added note for RSTDISBL Fuse in Table 87 on page 220.
18.Updated drawings in "Packaging Information" on page 13.

Changes from Rev. 2486H-09/02 to Rev. 2486I-12/02

Changes from Rev. 2486G-09/02 to Rev. 2486H-09/02

1. Added errata for Rev D, E, and F on page 16.
1.Changed the Endurance on the Flash to 10,000 Write/Erase Cycles.

Changes from Rev. 2486F-07/02 to Rev. 2486G-09/02

Changes from Rev. 2486E-06/02 to Rev. 2486F-07/02

Changes from Rev. 2486D-03/02 to Rev. 2486E-06/02

Changes from Rev. 2486C-03/02 to Rev. 2486D-03/02

All page numbers refers to this document.
1 Updated Table 103, "ADC Characteristics," on page 243.

All page numbers refers to this document.
1 Changes in "Digital Input Enable and Sleep Modes" on page 53.
2 Addition of OCS2 in "MOSI/OC2 - Port B, Bit 3" on page 57.
3 The following tables has been updated:
Table 51, "CPOL and CPHA Functionality," on page 129, Table 59, "UCPOL Bit Settings," on page 155, Table 72, "Analog Comparator Multiplexed Input(1)," on page 192, Table 73, "ADC Conversion Time," on page 197, Table 75, "Input Channel Selections," on page 203, and Table 84, "Explanation of Different Variables used in Figure 103 and the Mapping to the Z-pointer," on page 218.

5 Changes in "Reading the Calibration Byte" on page 230.

6 Corrected Errors in Cross References.

All page numbers refers to this document.
1 Updated Some Preliminary Test Limits and Characterization Data The following tables have been updated:
Table 15, "Reset Characteristics," on page 36, Table 16, "Internal Voltage Reference Characteristics," on page 40, DC Characteristics on page 237, Table, "ADC Characteristics," on page 243.

2 Changes in External Clock Frequency
Added the description at the end of "External Clock" on page 30.
Added period changing data in Table 99, "External Clock Drive," on page 239.

3 Updated TWI Chapter

More details regarding use of the TWI bit rate prescaler and a Table 65, "TWI Bit Rate Prescaler," on page 170.

All page numbers refers to this document.
1 Updated Typical Start-up Times.
The following tables has been updated:
Table 5, "Start-up Times for the Crystal Oscillator Clock Selection," on page 26, Table 6, "Start-up Times for the Low-frequency Crystal Oscillator Clock Selection," on page 26, Table 8, "Start-up Times for the External RC Oscillator Clock Selection," on page 27, and Table 12, "Start-up Times for the External Clock Selection," on page 30.

2 Added "ATmega8 Typical Characteristics" on page 244.

Changes from Rev. 2486B-12/01 to Rev. 2486C-03/02

All page numbers refers to this document.

1 Updated TWI Chapter.
More details regarding use of the TWI Power-down operation and using the TWI as Master with low TWBRR values are added into the datasheet.

Added the note at the end of the "Bit Rate Generator Unit" on page 167.
Added the description at the end of "Address Match Unit" on page 167.
2 Updated Description of OSCCAL Calibration Byte.
In the datasheet, it was not explained how to take advantage of the calibration bytes for 2, 4, and 8 MHz Oscillator selections. This is now added in the following sections:

Improved description of "Oscillator Calibration Register - OSCCAL" on page 29 and "Calibration Byte" on page 221.

3 Added Some Preliminary Test Limits and Characterization Data.
Removed some of the TBD's in the following tables and pages:
Table 3 on page 24, Table 15 on page 36, Table 16 on page 40 , Table 17 on page 42 , "TA $=-40 \times C$ to $85 \times C, V C C=2.7 \mathrm{~V}$ to 5.5 V (unless otherwise noted)" on page 237, Table 99 on page 239, and Table 102 on page 241.

4 Updated Programming Figures.
Figure 104 on page 222 and Figure 112 on page 232 are updated to also reflect that AVCC must be connected during Programming mode.

5 Added a Description on how to Enter Parallel Programming Mode if RESET Pin is Disabled or if External Oscillators are Selected.

Added a note in section "Enter Programming Mode" on page 224.

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G750QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.
© Atmel Corporation 2003. All rights reserved. Atmel ${ }^{\circledR}$ and combinations thereof, AVR $^{\circledR}$, and AVR Studio ${ }^{\circledR}$ are the registered trademarks of Atmel Corporation or its subsidiaries. Microsoft ${ }^{\circledR}$, Windows ${ }^{\circledR}$, Windows $N T^{\oplus}$, and Windows XP^{\circledR} are the registered trademarks of Microsoft Corporation. Other terms and product names may be the trademarks of others

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

Future Technology Devices International Ltd FT232R USB UART IC

The FT232R is a USB to serial UART interface with the following advanced features:

- Single chip USB to asynchronous serial data transfer interface.
- Entire USB protocol handled on the chip. No USB specific firmware programming required.
- Fully integrated 1024 bit EEPROM storing device descriptors and CBUS I/O configuration.
- Fully integrated USB termination resistors.
- Fully integrated clock generation with no external crystal required plus optional clock output selection enabling a glue-less interface to external MCU or FPGA.
- Data transfer rates from 300 baud to 3 Mbaud (RS422, RS485, RS232) at TTL levels.
- 128 byte receive buffer and 256 byte transmit buffer utilising buffer smoothing technology to allow for high data throughput.
- FTDI's royalty-free Virtual Com Port (VCP) and Direct (D2XX) drivers eliminate the requirement for USB driver development in most cases.
- Unique USB FTDIChip-ID ${ }^{\text {TM }}$ feature.
- Configurable CBUS I/O pins.
- Transmit and receive LED drive signals.
- UART interface support for 7 or 8 data bits, 1 or 2 stop bits and odd / even / mark / space / no parity
- FIFO receive and transmit buffers for high data throughput.
- Synchronous and asynchronous bit bang interface options with RD\# and WR\# strobes.
- Device supplied pre-programmed with unique USB serial number.
- Supports bus powered, self powered and highpower bus powered USB configurations.
- Integrated +3.3 V level converter for USB I/O.
- Integrated level converter on UART and CBUS for interfacing to between +1.8 V and +5 V logic.
- True $5 \mathrm{~V} / 3.3 \mathrm{~V} / 2.8 \mathrm{~V} / 1.8 \mathrm{~V}$ CMOS drive output and TTL input.
- Configurable I/O pin output drive strength.
- Integrated power-on-reset circuit.
- Fully integrated AVCC supply filtering - no external filtering required.
- UART signal inversion option.
- +3.3V (using external oscillator) to +5.25 V (internal oscillator) Single Supply Operation.
- Low operating and USB suspend current.
- Low USB bandwidth consumption.
- UHCI/OHCI/EHCI host controller compatible.
- USB 2.0 Full Speed compatible.
- $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ extended operating temperature range.
- Available in compact Pb-free 28 Pin SSOP and QFN-32 packages (both RoHS compliant).

[^0]
1 Typical Applications

- USB to RS232/RS422/RS485 Converters
- Upgrading Legacy Peripherals to USB
- Cellular and Cordless Phone USB data transfer cables and interfaces
- Interfacing MCU/PLD/FPGA based designs to USB
- USB Audio and Low Bandwidth Video data transfer
- PDA to USB data transfer
- USB Smart Card Readers
- USB Instrumentation
- USB Industrial Control
- USB MP3 Player Interface
- USB FLASH Card Reader and Writers
- Set Top Box PC - USB interface
- USB Digital Camera Interface
- USB Hardware Modems
- USB Wireless Modems
- USB Bar Code Readers
- USB Software and Hardware Encryption Dongles

1.1 Driver Support

Royalty free VIRTUAL COM PORT (VCP) DRIVERS for...

- Windows 98, 98SE, ME, 2000, Server 2003, XP and Server 2008
- Windows 7 32,64-bit
- Windows XP and XP 64-bit
- Windows Vista and Vista 64-bit
- Windows XP Embedded
- Windows CE 4.2, 5.0 and 6.0
- Mac OS 8/9, OS-X

Royalty free D2XX Direct Drivers (USB Drivers + DLL S/W Interface)

- Windows 98, 98SE, ME, 2000, Server 2003, XP and Server 2008
- Windows 7 32,64-bit
- Windows XP and XP 64-bit
- Windows Vista and Vista 64-bit
- Windows XP Embedded
- Windows CE 4.2, 5.0 and 6.0
- Linux 2.4 and greater
- Linux 2.4 and greater

The drivers listed above are all available to download for free from FTDI website (www.ftdichip.com). Various 3rd party drivers are also available for other operating systems - see FTDI website (www.ftdichip.com) for details.
For driver installation, please refer to http://www.ftdichip.com/Documents/InstallGuides.htm

1.2 Part Numbers

Part Number	Package
FT232RQ-xxxx	32 Pin QFN
FT232RL-xxxx	28 Pin SSOP

Note: Packing codes for $x x x x$ is:

- Reel: Taped and Reel, (SSOP is 2,000pcs per reel, QFN is 6,000pcs per reel).
- Tube: Tube packing, 47pcs per tube (SSOP only)
- Tray: Tray packing, 490pcs per tray (QFN only)

For example: FT232RQ-Reel is 6,000pcs taped and reel packing

1.3 USB Compliant

The FT232R is fully compliant with the USB 2.0 specification and has been given the USB-IF Test-ID (TID) 40680004 (Rev B) and 40770018 (Rev C).

2 FT232R Block Diagram

Figure 2.1 FT232R Block Diagram
For a description of each function please refer to Section 4.

Table of Contents

1 Typical Applications 2
1.1 Driver Support 2
1.2 Part Numbers 2
Note: Packing codes for $\mathbf{x x x x}$ is: 2
1.3 USB Compliant 3
2 FT232R Block Diagram 4
3 Device Pin Out and Signal Description 7
3.1 28-LD SSOP Package 7
3.2 SSOP Package Pin Out Description 7
3.3 QFN-32 Package 10
3.4 QFN-32 Package Signal Description 10
3.5 CBUS Signal Options 13
4 Function Description 14
4.1 Key Features 14
4.2 Functional Block Descriptions 15
5 Devices Characteristics and Ratings. 17
5.1 Absolute Maximum Ratings 17
5.2 DC Characteristics 18
5.3 EEPROM Reliability Characteristics 21
5.4 Internal Clock Characteristics 21
6 USB Power Configurations 23
6.1 USB Bus Powered Configuration 23
6.2 Self Powered Configuration 24
6.3 USB Bus Powered with Power Switching Configuration 25
6.4 USB Bus Powered with Selectable External Logic Supply 26
7 Application Examples 27
7.1 USB to RS232 Converter 27
7.2 USB to RS485 Coverter 28
7.3 USB to RS422 Converter 29
7.4 USB to MCU UART Interface 30
7.5 LED Interface 31
7.6 Using the External Oscillator 32
8 Internal EEPROM Configuration 33
9 Package Parameters 35
9.1 SSOP-28 Package Dimensions 35
9.2 QFN-32 Package Dimensions 36
9.3 QFN-32 Package Typical Pad Layout 37
9.4 QFN-32 Package Typical Solder Paste Diagram 37
9.5 Solder Reflow Profile 38
10 Contact Information 39
Appendix A - References 40
Appendix B - List of Figures and Tables 41
Appendix C - Revision History 43

3 Device Pin Out and Signal Description

3.1 28-LD SSOP Package

Figure 3.1 SSOP Package Pin Out and Schematic Symbol

3.2 SSOP Package Pin Out Description

Note: The convention used throughout this document for active low signals is the signal name followed by a \#

Pin No.	Name	Type	Description
15	USBDP	I/O	USB Data Signal Plus, incorporating internal series resistor and $1.5 \mathrm{k} \Omega$ pull up resistor to 3.3V.
16	USBDM	I/O	USB Data Signal Minus, incorporating internal series resistor.

Table 3.1 USB Interface Group

Pin No.	Name	Type	Description
4	VCCIO	PWR	+1.8V to +5.25V supply to the UART Interface and CBUS group pins (1...3, 5, 6, 9...14, 22, 23). In USB bus powered designs connect this pin to 3V3OUT pin to drive out at +3.3V levels, or connect to VCC to drive out at 5V CMOS level. This pin can also be supplied with an external +1.8 V to +2.8V supply in order to drive outputs at lower levels. It should be noted that in this case this supply should originate from the same source as the supply to VCC. This means that in bus powered designs a regulator which is supplied by the +5V on the USB bus should be used.
7,18,	GND	PWR	Device ground supply pins
21			

Pin No.	Name	Type	Description
17	3V3OUT	Output	+3.3V output from integrated LDO regulator. This pin should be decoupled to ground using a 100nF capacitor. The main use of this pin is to provide the internal +3.3V supply to the USB transceiver cell and the internal $1.5 \mathrm{k} \Omega$ pull up resistor on USBDP. Up to 50mA can be drawn from this pin to power external logic if required. This pin can also be used to supply the VCCIO pin.
20	VCC	PWR	+3.3V to +5.25V supply to the device core. (see Note 1)
25	AGND	PWR	Device analogue ground supply for internal clock multiplier

Table 3.2 Power and Ground Group

Pin No.	Name	Type	Description
8,24	NC	NC	No internal connection
19	RESET\#	Input	Active low reset pin. This can be used by an external device to reset the FT232R. If not required can be left unconnected, or pulled up to VCC.
26	TEST	Input	Puts the device into IC test mode. Must be tied to GND for normal operation, otherwise the device will appear to fail.
27	OSCI	Input	Input 12MHz Oscillator Cell. Optional - Can be left unconnected for normal operation. (see Note 2)
28	OSCO	Output	Output from 12MHZ Oscillator Cell. Optional - Can be left unconnected for normal operation if internal Oscillator is used. (see Note 2)

Table 3.3 Miscellaneous Signal Group

Pin No.	Name	Type	Description
1	TXD	Output	Transmit Asynchronous Data Output.
2	DTR\#	Output	Data Terminal Ready Control Output / Handshake Signal.
3	RTS\#	Output	Request to Send Control Output / Handshake Signal.
5	RXD	Input	Receiving Asynchronous Data Input.
6	RI\#	Input	Ring Indicator Control Input. When remote wake up is enabled in the internal EEPROM taking RI\# low (20ms active Iow pulse) can be used to resume the PC USB host controller from suspend.
9	DSR\#	Input	Data Set Ready Control Input / Handshake Signal.
10	DCD\#	Input	Data Carrier Detect Control Input.
11	CTS\#	Input	Clear To Send Control Input / Handshake Signal. 12 CBUS4
I/O	Configurable CBUS output only Pin. Function of this pin is configured in the device internal EEPROM. Factory default configuration is SLEEP\#. See CBUS Signal Options, Table 3.9.		
13	CBUS2	I/O	Configurable CBUS I/O Pin. Function of this pin is configured in the device internal EEPROM. Factory default configuration is TXDEN. See CBUS Signal Options, Table 3.9.

Pin No.	Name	Type	Description
14	CBUS3	I/O	Configurable CBUS I/O Pin. Function of this pin is configured in the device internal EEPROM. Factory default configuration is PWREN\#. See CBUS Signal Options, Table 3.9. PWREN\# should be used with a 10k Ω resistor pull up.
22	CBUS1	I/O	Configurable CBUS I/O Pin. Function of this pin is configured in the device internal EEPROM. Factory default configuration is RXLED\#. See CBUS Signal Options, Table 3.9.
23	CBUS0	I/O	Configurable CBUS I/O Pin. Function of this pin is configured in the device internal EEPROM. Factory default configuration is TXLED\#. See CBUS Signal Options, Table 3.9.

Table 3.4 UART Interface and CUSB Group (see note 3)

Notes:

1. The minimum operating voltage VCC must be +4.0 V (could use VBUS $=+5 \mathrm{~V}$) when using the internal clock generator. Operation at +3.3 V is possible using an external crystal oscillator.
2. For details on how to use an external crystal, ceramic resonator, or oscillator with the FT232R, please refer Section 7.6
3. When used in Input Mode, the input pins are pulled to VCCIO via internal $200 \mathrm{k} \Omega$ resistors. These pins can be programmed to gently pull low during USB suspend (PWREN\# = " 1 ") by setting an option in the internal EEPROM.

3.3 QFN-32 Package

Figure 3.2 QFN-32 Package Pin Out and schematic symbol

3.4 QFN-32 Package Signal Description

Pin No.	Name	Type	Description
14	USBDP	I/O	USB Data Signal Plus, incorporating internal series resistor and $1.5 \mathrm{k} \Omega$ pull up resistor to +3.3V.
15	USBDM	I/O	USB Data Signal Minus, incorporating internal series resistor.

Table 3.5 USB Interface Group

Pin No.	Name	Type	Description
1	VCCIO	PWR	+1.8 V to +5.25 V supply for the UART Interface and CBUS group pins (2,3 , $6,7,8,9,1011,21,22,30,31,32)$. In USB bus powered designs connect this pin to 3 V 3 OUT to drive out at +3.3 V levels, or connect to VCC to drive out at +5 V CMOS level. This pin can also be supplied with an external +1.8 V to +2.8 V supply in order to drive out at lower levels. It should be noted that in this case this supply should originate from the same source as the supply to VCC. This means that in bus powered designs a regulator which is supplied by the +5 V on the USB bus should be used.
4, 17, 20	GND	PWR	Device ground supply pins.

Pin No.	Name	Type	Description
16	3V3OUT	Output	+3.3V output from integrated LDO regulator. This pin should be decoupled to ground using a 100nF capacitor. The purpose of this output is to provide the internal +3.3 V supply to the USB transceiver cell and the internal 1.5k pull up resistor on USBDP. Up to 50mA can be drawn from this pin to power external logic if required. This pin can also be used to supply the VCCIO pin.
19	VCC	PWR	+3.3 V to +5.25V supply to the device core. (See Note 1).
24	AGND	PWR	Device analogue ground supply for internal clock multiplier.

Table 3.6 Power and Ground Group

Pin No.	Name	Type	Description
5,12, 13,23, 25,29	NC	NC	No internal connection. Do not connect.
18	RESET\#	Input	Active low reset. Can be used by an external device to reset the FT232R. If not required can be left unconnected, or pulled up to VCC.
26	TEST	Input	Puts the device into IC test mode. Must be tied to GND for normal operation, otherwise the device will appear to fail.
27	OSCI	Input	Input 12MHz Oscillator Cell. Optional - Can be left unconnected for normal operation. (See Note 2).
28	OSCO	Output	Output from 12MHZ Oscillator Cell. Optional - Can be left unconnected for normal operation if internal Oscillator is used. (See Note 2).

Table 3.7 Miscellaneous Signal Group

Pin No.	Name	Type	Description
30	TXD	Output	Transmit Asynchronous Data Output.
31	DTR\#	Output	Data Terminal Ready Control Output / Handshake Signal.
32	RTS\#	Output	Request to Send Control Output / Handshake Signal.
2	RXD	Input	Receiving Asynchronous Data Input.
3	RI\#	Input	Ring Indicator Control Input. When remote wake up is enabled in the internal EEPROM taking RI\# low (20ms active low pulse) can be used to resume the PC USB host controller from suspend.
7	DSR\#	Input	Data Set Ready Control Input / Handshake Signal.
7	DCD\#	Input	Data Carrier Detect Control Input.
8	CTS\#	Input	Clear To Send Control Input / Handshake Signal.
9	CBUS4	I/O	Configurable CBUS output only Pin. Function of this pin is configured in the device internal EEPROM. Factory default configuration is SLEEP\#. See CBUS Signal Options, Table 3.9.
10	CBUS2	I/O	Configurable CBUS I/O Pin. Function of this pin is configured in the device internal EEPROM. Factory default configuration is TXDEN. See CBUS Signal Options, Table 3.9.

Clearance No.: FTDI\# 38

Pin No.	Name	Type	Description
11	CBUS3	I/O	Configurable CBUS I/O Pin. Function of this pin is configured in the device internal EEPROM. Factory default configuration is PWREN\#. See CBUS Signal Options, Table 3.9. PWREN\# should be used with a 1Ok Ω resistor pull up.
21	CBUS1	I/O	Configurable CBUS I/O Pin. Function of this pin is configured in the device internal EEPROM. Factory default configuration is RXLED\#. See CBUS Signal Options, Table 3.9.
22	CBUSO	I/O	Configurable CBUS I/O Pin. Function of this pin is configured in the device internal EEPROM. Factory default configuration is TXLED\#. See CBUS Signal Options, Table 3.9.

Table 3.8 UART Interface and CBUS Group (see note 3)
Notes:

1. The minimum operating voltage VCC must be +4.0 V (could use VBUS $=+5 \mathrm{~V}$) when using the internal clock generator. Operation at +3.3 V is possible using an external crystal oscillator.
2. For details on how to use an external crystal, ceramic resonator, or oscillator with the FT232R, please refer to Section 7.6.
3. When used in Input Mode, the input pins are pulled to VCCIO via internal $200 \mathrm{k} \Omega$ resistors. These pins can be programmed to gently pull low during USB suspend (PWREN\# = "1") by setting an option in the internal EEPROM.

3.5 CBUS Signal Options

The following options can be configured on the CBUS I/O pins. CBUS signal options are common to both package versions of the FT232R. These options can be configured in the internal EEPROM using the software utility FT_PPROG or MPROG, which can be downloaded from the FTDI Utilities (www.ftdichip.com). The default configuration is described in Section 8.

CBUS Signal Option	Available On CBUS Pin	Description
TXDEN	CBUS0, CBUS1, CBUS2, CBUS3, CBUS4	Enable transmit data for RS485
PWREN\#	CBUS0, CBUS1, CBUS2, CBUS3, CBUS4	Output is low after the device has been configured by USB, then high during USB suspend mode. This output can be used to control power to external logic P-Channel logic level MOSFET switch. Enable the interface pull-down option when using the PWREN\# in this way.*
TXLED\#	CBUS0, CBUS1, CBUS2, CBUS3, CBUS4	Transmit data LED drive: Data from USB Host to FT232R. Pulses low when transmitting data via USB. See Section 7.5 for more details.
RXLED\#	CBUS0, CBUS1, CBUS2, CBUS3, CBUS4	Receive data LED drive: Data from FT232R to USB Host. Pulses low when receiving data via USB. See Section 7.5 for more details.
TX\&RXLED\#	CBUS0, CBUS1, CBUS2, CBUS3, CBUS4	LED drive - pulses low when transmitting or receiving data via USB. See Section 7.5 for more details.
SLEEP\#	CBUS0, CBUS1, CBUS2, CBUS3, CBUS4	Goes low during USB suspend mode. Typically used to power down an external TTL to RS232 level converter IC in USB to RS232 converter designs.
CLK48	CBUS0, CBUS1, CBUS2, CBUS3, CBUS4	$48 \mathrm{MHz} \pm 0.7 \%$ Clock output. **
CLK24	CBUS0, CBUS1, CBUS2, CBUS3, CBUS4	24 MHz Clock output.**
CLK12	CBUS0, CBUS1, CBUS2, CBUS3, CBUS4	$12 \mathrm{MHz} \mathrm{Clock} \mathrm{output.**}$
CLK6	CBUS0, CBUS1, CBUS2, CBUS3, CBUS4	$6 \mathrm{MHz} \pm 0.7 \%$ Clock output. **
CBitBangI/O	CBUS0, CBUS1, CBUS2, CBUS3	CBUS bit bang mode option. Allows up to 4 of the CBUS pins to be used as general purpose I/O. Configured individually for CBUS0, CBUS1, CBUS2 and CBUS3 in the internal EEPROM. A separate application note, AN232R-01, available from FTDI website (www.ftdichip.com) describes in more detail how to use CBUS bit bang mode.
BitBangWRn	CBUS0, CBUS1, CBUS2, CBUS3	Synchronous and asynchronous bit bang mode WR\# strobe output.
BitBangRDn	CBUS0, CBUS1, CBUS2, CBUS3	Synchronous and asynchronous bit bang mode RD\# strobe output.

Table 3.9 CBUS Configuration Control

* PWREN\# must be used with a $10 \mathrm{k} \Omega$ resistor pull up.
**When in USB suspend mode the outputs clocks are also suspended.

4 Function Description

The FT232R is a USB to serial UART interface device which simplifies USB to serial designs and reduces external component count by fully integrating an external EEPROM, USB termination resistors and an integrated clock circuit which requires no external crystal, into the device. It has been designed to operate efficiently with a USB host controller by using as little as possible of the total USB bandwidth available.

4.1 Key Features

Functional Integration. Fully integrated EEPROM, USB termination resistors, clock generation, AVCC filtering, POR and LDO regulator.

Configurable CBUS I/O Pin Options. The fully integrated EEPROM allows configuration of the Control Bus (CBUS) functionality, signal inversion and drive strength selection. There are 5 configurable CBUS I/O pins. These configurable options are

TXDEN - transmit enable for RS485 designs.
PWREN\# - Power control for high power, bus powered designs.
TXLED\# - for pulsing an LED upon transmission of data.
RXLED\# - for pulsing an LED upon receiving data.
TX\&RXLED\# - which will pulse an LED upon transmission OR reception of data.
SLEEP\# - indicates that the device going into USB suspend mode.
7. CLK48 / CLK24 / CLK12 / CLK6 - 48MHz, $24 \mathrm{MHz}, 12 \mathrm{MHz}$, and 6 MHz clock output signal options.
The CBUS pins can also be individually configured as GPIO pins, similar to asynchronous bit bang mode. It is possible to use this mode while the UART interface is being used, thus providing up to 4 general purpose I/O pins which are available during normal operation. An application note, AN232R-01, available from FTDI website (www.ftdichip.com) describes this feature.
The CBUS lines can be configured with any one of these output options by setting bits in the internal EEPROM. The device is supplied with the most commonly used pin definitions pre-programmed - see Section 8 for details.

Asynchronous Bit Bang Mode with RD\# and WR\# Strobes. The FT232R supports FTDI's previous chip generation bit-bang mode. In bit-bang mode, the eight UART lines can be switched from the regular interface mode to an 8-bit general purpose I/O port. Data packets can be sent to the device and they will be sequentially sent to the interface at a rate controlled by an internal timer (equivalent to the baud rate pre-scaler). With the FT232R device this mode has been enhanced by outputting the internal RD\# and WR\# strobes signals which can be used to allow external logic to be clocked by accesses to the bit-bang I/O bus. This option will be described more fully in a separate application note available from FTDI website (www.ftdichip.com).
Synchronous Bit Bang Mode. The FT232R supports synchronous bit bang mode. This mode differs from asynchronous bit bang mode in that the interface pins are only read when the device is written to. This makes it easier for the controlling program to measure the response to an output stimulus as the data returned is synchronous to the output data. An application note, AN232R-01, available from FTDI website (www.ftdichip.com) describes this feature.
FTDIChip-ID ${ }^{\text {TM }}$. The FT232R also includes the new FTDIChip-ID ${ }^{\text {TM }}$ security dongle feature. This FTDIChip-ID ${ }^{\text {TM }}$ feature allows a unique number to be burnt into each device during manufacture. This number cannot be reprogrammed. This number is only readable over USB and forms a basis of a security dongle which can be used to protect any customer application software being copied. This allows the possibility of using the FT232R in a dongle for software licensing. Further to this, a renewable license scheme can be implemented based on the FTDIChip-ID ${ }^{\text {TM }}$ number when encrypted with other information. This encrypted number can be stored in the user area of the FT232R internal EEPROM, and can be decrypted, then compared with the protected FTDIChip-ID ${ }^{\text {TM }}$ to verify that a license is valid. Web based applications can be used to maintain product licensing this way. An application note, AN232R-02, available from FTDI website (www.ftdichip.com) describes this feature.
The FT232R is capable of operating at a voltage supply between +3.3 V and +5 V with a nominal operational mode current of 15 mA and a nominal USB suspend mode current of $70 \mu \mathrm{~A}$. This allows greater margin for peripheral designs to meet the USB suspend mode current limit of 2.5 mA . An integrated level converter within the UART interface allows the FT232R to interface to UART logic running at $+1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, +3.3 V or +5 V .

4.2 Functional Block Descriptions

The following paragraphs detail each function within the FT232R. Please refer to the block diagram shown in Figure 2.1

Internal EEPROM. The internal EEPROM in the FT232R is used to store USB Vendor ID (VID), Product ID (PID), device serial number, product description string and various other USB configuration descriptors. The internal EEPROM is also used to configure the CBUS pin functions. The FT232R is supplied with the internal EEPROM pre-programmed as described in Section 8. A user area of the internal EEPROM is available to system designers to allow storing additional data. The internal EEPROM descriptors can be programmed in circuit, over USB without any additional voltage requirement. It can be programmed using the FTDI utility software called MPROG, which can be downloaded from FTDI Utilities on the FTDI website (www.ftdichip.com).
+3.3 V LDO Regulator. The +3.3 V LDO regulator generates the +3.3 V reference voltage for driving the USB transceiver cell output buffers. It requires an external decoupling capacitor to be attached to the 3 V 30 T regulator output pin. It also provides +3.3 V power to the $1.5 \mathrm{k} \Omega$ internal pull up resistor on USBDP. The main function of the LDO is to power the USB Transceiver and the Reset Generator Cells rather than to power external logic. However, it can be used to supply external circuitry requiring a +3.3 V nominal supply with a maximum current of 50 mA .

USB Transceiver. The USB Transceiver Cell provides the USB 1.1/ USB 2.0 full-speed physical interface to the USB cable. The output drivers provide +3.3 V level slew rate control signalling, whilst a differential input receiver and two single ended input receivers provide USB data in, Single-Ended-0 (SEO) and USB reset detection conditions respectfully. This function also incorporates the internal USB series termination resistors on the USB data lines and a $1.5 \mathrm{k} \Omega$ pull up resistor on USBDP.

USB DPLL. The USB DPLL cell locks on to the incoming NRZI USB data and generates recovered clock and data signals for the Serial Interface Engine (SIE) block.
Internal 12MHz Oscillator - The Internal 12 MHz Oscillator cell generates a 12 MHz reference clock. This provides an input to the x 4 Clock Multiplier function. The 12 MHz Oscillator is also used as the reference clock for the SIE, USB Protocol Engine and UART FIFO controller blocks.

Clock Multiplier / Divider. The Clock Multiplier / Divider takes the 12 MHz input from the Internal Oscillator function and generates the $48 \mathrm{MHz}, 24 \mathrm{MHz}, 12 \mathrm{MHz}$ and 6 MHz reference clock signals. The 48 Mz clock reference is used by the USB DPLL and the Baud Rate Generator blocks.

Serial Interface Engine (SIE). The Serial Interface Engine (SIE) block performs the parallel to serial and serial to parallel conversion of the USB data. In accordance with the USB 2.0 specification, it performs bit stuffing/un-stuffing and CRC5/CRC16 generation. It also checks the CRC on the USB data stream.

USB Protocol Engine. The USB Protocol Engine manages the data stream from the device USB control endpoint. It handles the low level USB protocol requests generated by the USB host controller and the commands for controlling the functional parameters of the UART in accordance with the USB 2.0 specification chapter 9.
FIFO RX Buffer (128 bytes). Data sent from the USB host controller to the UART via the USB data OUT endpoint is stored in the FIFO RX (receive) buffer. Data is removed from the buffer to the UART transmit register under control of the UART FIFO controller. (Rx relative to the USB interface).
FIFO TX Buffer (256 bytes). Data from the UART receive register is stored in the TX buffer. The USB host controller removes data from the FIFO TX Buffer by sending a USB request for data from the device data IN endpoint. (Tx relative to the USB interface).

UART FIFO Controller. The UART FIFO controller handles the transfer of data between the FIFO RX and TX buffers and the UART transmit and receive registers.
UART Controller with Programmable Signal Inversion and High Drive. Together with the UART FIFO Controller the UART Controller handles the transfer of data between the FIFO RX and FIFO TX buffers and the UART transmit and receive registers. It performs asynchronous 7 or 8 bit parallel to serial and serial to parallel conversion of the data on the RS232 (or RS422 or RS485) interface.

Control signals supported by UART mode include RTS, CTS, DSR, DTR, DCD and RI. The UART Controller also provides a transmitter enable control signal pin option (TXDEN) to assist with interfacing to RS485 transceivers. RTS/CTS, DSR/DTR and XON / XOFF handshaking options are also supported. Handshaking is handled in hardware to ensure fast response times. The UART interface also supports the RS232 BREAK setting and detection conditions.

Additionally, the UART signals can each be individually inverted and have a configurable high drive strength capability. Both these features are configurable in the EEPROM.
Baud Rate Generator - The Baud Rate Generator provides a $16 x$ clock input to the UART Controller from the 48 MHz reference clock. It consists of a 14 bit pre-scaler and 3 register bits which provide fine tuning of the baud rate (used to divide by a number plus a fraction or "sub-integer"). This determines the baud rate of the UART, which is programmable from 183 baud to 3 Mbaud.

The FT232R supports all standard baud rates and non-standard baud rates from 183 Baud up to 3 Mbaud. Achievable non-standard baud rates are calculated as follows -

Baud Rate $=3000000 /(n+x)$
where ' n ' can be any integer between 2 and 16,384 ($=2^{14}$) and ' x ' can be a sub-integer of the value 0 , $0.125,0.25,0.375,0.5,0.625,0.75$, or 0.875 . When $\mathrm{n}=1, x=0$, i.e. baud rate divisors with values between 1 and 2 are not possible.

This gives achievable baud rates in the range 183.1 baud to 3,000,000 baud. When a non-standard baud rate is required simply pass the required baud rate value to the driver as normal, and the FTDI driver will calculate the required divisor, and set the baud rate. See FTDI application note AN232B-05 on the FTDI website (www.ftdichip.com) for more details.

RESET Generator - The integrated Reset Generator Cell provides a reliable power-on reset to the device internal circuitry at power up. The RESET\# input pin allows an external device to reset the FT232R.

RESET\# can be tied to VCC or left unconnected if not being used.

5 Devices Characteristics and Ratings

5.1 Absolute Maximum Ratings

The absolute maximum ratings for the FT232R devices are as follows. These are in accordance with the Absolute Maximum Rating System (IEC 60134). Exceeding these may cause permanent damage to the device.

Parameter	Value	Unit
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	Degrees C
Floor Life (Out of Bag) At Factory Ambient $\left(30^{\circ} \mathrm{C} / 60 \%\right.$ Relative Humidity)	168 Hours (IPC/JEDEC J-STD-033A MSL Level 3 Compliant)*	Hours
Ambient Temperature (Power Applied)	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	MTTF FT232RL
MTTF FT232RQ	11162037	hours
VCC Supply Voltage	-0.5 to +6.00	V
DC Input Voltage - USBDP and USBDM	-0.5 to +3.8	V
DC Input Voltage - High Impedance		
Bidirectionals		

Table 5.1 Absolute Maximum Ratings

* If devices are stored out of the packaging beyond this time limit the devices should be baked before use. The devices should be ramped up to a temperature of $+125^{\circ} \mathrm{C}$ and baked for up to 17 hours.

5.2 DC Characteristics

DC Characteristics (Ambient Temperature $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Description	Minimum	Typical	Maximum	Units	Conditions
VCC1	VCC Operating Supply Voltage	4.0	---	5.25	V	Using Internal Oscillator
VCC1	VCC Operating Supply Voltage	3.3	---	5.25	V	Using External Crystal
VCC2	VCCIO Operating Supply Voltage	1.8	---	5.25	V	
Icc1	Operating Supply Current	---	15	---	mA	Normal Operation
Icc2	Operating Supply Current	50	70	100	$\mu \mathrm{A}$	USB Suspend
3V3	3.3 v regulator output	3.0	3.3	3.6	V	

Table 5.2 Operating Voltage and Current

Parameter	Description	Minimum	Typical	Maximum	Units	Conditions
Voh	Output Voltage High	3.2	4.1	4.9	V	I source $=2 \mathrm{~mA}$
Vol	Output Voltage Low	0.3	0.4	0.6	V	I sink $=2 \mathrm{~mA}$
Vin	Input Switching Threshold	1.0	1.2	1.5	V	$* *$
VHys	Input Switching Hysteresis	20	25	30	mV	$* *$

Table 5.3 UART and CBUS I/O Pin Characteristics (VCCIO = +5.0V, Standard Drive Level)

Parameter	Description	Minimum	Typical	Maximum	Units	Conditions
Voh	Output Voltage High	2.2	2.7	3.2	V	I source $=1 \mathrm{~mA}$
Vol	Output Voltage Low	0.3	0.4	0.5	V	I sink $=2 \mathrm{~mA}$
Vin	Input Switching Threshold	1.0	1.2	1.5	V	$* *$
VHys	Input Switching Hysteresis	20	25	30	mV	$* *$

Table 5.4 UART and CBUS I/O Pin Characteristics (VCCIO = +3.3V, Standard Drive Level)

Parameter	Description	Minimum	Typical	Maximum	Units	Conditions
Voh	Output Voltage High	2.1	2.6	2.8	V	I source $=1 \mathrm{~mA}$
Vol	Output Voltage Low	0.3	0.4	0.5	V	I sink $=2 \mathrm{~mA}$
Vin	Input Switching Threshold	1.0	1.2	1.5	V	$* *$
VHys	Input Switching Hysteresis	20	25	30	mV	$* *$

Table 5.5 UART and CBUS I/O Pin Characteristics (VCCIO = +2.8V, Standard Drive Level)

Parameter	Description	Minimum	Typical	Maximum	Units	Conditions
Voh	Output Voltage High	1.32	1.62	1.8	V	I source $=0.2 \mathrm{~mA}$
Vol	Output Voltage Low	0.06	0.1	0.18	V	I sink $=0.5 \mathrm{~mA}$
Vin	Input Switching Threshold	1.0	1.2	1.5	V	$* *$
VHys	Input Switching Hysteresis	20	25	30	mV	$* *$

Table 5.6 UART and CBUS I/O Pin Characteristics (VCCIO = +1.8V, Standard Drive Level)

Parameter	Description	Minimum	Typical	Maximum	Units	Conditions
Voh	Output Voltage High	3.2	4.1	4.9	V	I source $=6 \mathrm{~mA}$
Vol	Output Voltage Low	0.3	0.4	0.6	V	I sink $=6 \mathrm{~mA}$
Vin	Input Switching Threshold	1.0	1.2	1.5	V	$* *$
VHys	Input Switching Hysteresis	20	25	30	mV	$* *$

Table 5.7 UART and CBUS I/O Pin Characteristics (VCCIO = +5.0V, High Drive Level)

Parameter	Description	Minimum	Typical	Maximum	Units	Conditions
Voh	Output Voltage High	2.2	2.8	3.2	V	I source $=3 \mathrm{~mA}$
Vol	Output Voltage Low	0.3	0.4	0.6	V	I sink $=8 \mathrm{~mA}$
Vin	Input Switching Threshold	1.0	1.2	1.5	V	$* *$
VHys	Input Switching Hysteresis	20	25	30	mV	$* *$

Table 5.8 UART and CBUS I/O Pin Characteristics (VCCIO = +3.3V, High Drive Level)

Parameter	Description	Minimum	Typical	Maximum	Units	Conditions
Voh	Output Voltage High	2.1	2.6	2.8	V	I source $=3 \mathrm{~mA}$
Vol	Output Voltage Low	0.3	0.4	0.6	V	I sink $=8 \mathrm{~mA}$
Vin	Input Switching Threshold	1.0	1.2	1.5	V	$* *$
VHys	Input Switching Hysteresis	20	25	30	mV	$* *$

Table 5.9 UART and CBUS I/O Pin Characteristics (VCCIO = +2.8V, High Drive Level)

Parameter	Description	Minimum	Typical	Maximum	Units	Conditions
Voh	Output Voltage High	1.35	1.67	1.8	V	I source $=0.4 \mathrm{~mA}$
Vol	Output Voltage Low	0.12	0.18	0.35	V	I sink $=3 \mathrm{~mA}$
Vin	Input Switching Threshold	1.0	1.2	1.5	V	$* *$
VHys	Input Switching Hysteresis	20	25	30	mV	$* *$

Table 5.10 UART and CBUS I/O Pin Characteristics (VCCIO = +1.8V, High Drive Level)
** Only input pins have an internal $200 \mathrm{~K} \Omega$ pull-up resistor to VCCIO

Parameter	Description	Minimum	Typical	Maximum	Units	Conditions
Vin	Input Switching Threshold	1.3	1.6	1.9	V	
VHys	Input Switching Hysteresis	50	55	60	mV	

Table 5.11 RESET\# and TEST Pin Characteristics

Parameter	Description	Minimum	Typical	Maximum	Units	Conditions
UVoh	I/O Pins Static Output (High)	2.8		3.6	V	$\mathrm{RI}=1.5 \mathrm{k} \Omega$ to 3V3OUT (D+) RI = $15 \mathrm{~K} \Omega$ to GND (D-)
UVol	I/O Pins Static Output (Low)	0		0.3	V	$\begin{gathered} \mathrm{RI}=1.5 \mathrm{k} \Omega \text { to } \\ 3 \mathrm{~V} 3 \mathrm{OUT}(\mathrm{D}+) \mathrm{RI}= \\ 15 \mathrm{k} \Omega \text { to } \mathrm{GND}(\mathrm{D}-) \end{gathered}$
UVse	Single Ended Rx Threshold	0.8		2.0	V	
UCom	Differential Common Mode	0.8		2.5	V	
UVDif	Differential Input Sensitivity	0.2			V	
UDrvZ	Driver Output Impedance	26	29	44	Ohms	See Note 1

Table 5.12 USB I/O Pin (USBDP, USBDM) Characteristics

5.3 EEPROM Reliability Characteristics

The internal 1024 Bit EEPROM has the following reliability characteristics:

Parameter	Value	Unit
Data Retention	10	Years
Read / Write Cycle	10,000	Cycles

Table 5.13 EEPROM Characteristics

5.4 Internal Clock Characteristics

The internal Clock Oscillator has the following characteristics:

Parameter	Value			Unit
	Minimum	Typical	Maximum	
Frequency of Operation (see Note 1)	11.98	12.00	12.02	MHz
Clock Period	83.19	83.33	83.47	ns
Duty Cycle	45	50	55	$\%$

Table 5.14 Internal Clock Characteristics
Note 1: Equivalent to +/-1667ppm

Parameter	Description	Minimum	Typical	Maximum	Units	Conditions
Voh	Output Voltage High	2.1	2.8	3.2	V	I source $=$ 3 mA
Vol	Output Voltage Low	0.3	0.4	0.6	V	I sink $=8 \mathrm{~mA}$
Vin	Input Switching Threshold	1.0	1.2	1.5	V	

Table 5.15 OSCI, OSCO Pin Characteristics - see Note 1
Note1: When supplied, the FT232R is configured to use its internal clock oscillator. These characteristics only apply when an external oscillator or crystal is used.

6 USB Power Configurations

The following sections illustrate possible USB power configurations for the FT232R. The illustrations have omitted pin numbers for ease of understanding since the pins differ between the FT232RL and FT232RQ package options.
All USB power configurations illustrated apply to both package options for the FT232R device. Please refer to Section 3 for the package option pin-out and signal descriptions.

6.1 USB Bus Powered Configuration

Figure 6.1 Bus Powered Configuration
Figure 6.1 Illustrates the FT232R in a typical USB bus powered design configuration. A USB bus powered device gets its power from the USB bus. Basic rules for USB bus power devices are as follows -
i) On plug-in to USB, the device should draw no more current than 100 mA .
ii) In USB Suspend mode the device should draw no more than 2.5 mA .
iii) A bus powered high power USB device (one that draws more than 100 mA) should use one of the CBUS pins configured as PWREN\# and use it to keep the current below 100 mA on plug-in and 2.5 mA on USB suspend.
iv) A device that consumes more than 100 mA cannot be plugged into a USB bus powered hub.
v) No device can draw more than 500 mA from the USB bus.

The power descriptors in the internal EEPROM of the FT232R should be programmed to match the current drawn by the device.

A ferrite bead is connected in series with the USB power supply to reduce EMI noise from the FT232R and associated circuitry being radiated down the USB cable to the USB host. The value of the Ferrite Bead depends on the total current drawn by the application. A suitable range of Ferrite Beads is available from Steward (www.steward.com), for example Steward Part \# MI0805K400R-10.

Note: If using PWREN\# (available using the CBUS) the pin should be pulled to VCCIO using a $10 \mathrm{k} \Omega$ resistor.

6.2 Self Powered Configuration

Figure 6.2 Self Powered Configuration
Figure 6.2 illustrates the FT232R in a typical USB self powered configuration. A USB self powered device gets its power from its own power supply, VCC, and does not draw current from the USB bus. The basic rules for USB self powered devices are as follows -
i) A self powered device should not force current down the USB bus when the USB host or hub controller is powered down.
ii) A self powered device can use as much current as it needs during normal operation and USB suspend as it has its own power supply.
iii) A self powered device can be used with any USB host, a bus powered USB hub or a self powered USB hub.
The power descriptor in the internal EEPROM of the FT232R should be programmed to a value of zero (self powered).

In order to comply with the first requirement above, the USB bus power (pin 1) is used to control the RESET\# pin of the FT232R device. When the USB host or hub is powered up an internal $1.5 \mathrm{k} \Omega$ resistor on USBDP is pulled up to +3.3 V (generated using the 4 K 7 and 10 k resistor network), thus identifying the device as a full speed device to the USB host or hub. When the USB host or hub is powered off, RESET\# will be low and the FT232R is held in reset. Since RESET\# is low, the internal $1.5 \mathrm{k} \Omega$ resistor is not pulled up to any power supply (hub or host is powered down), so no current flows down USBDP via the $1.5 \mathrm{k} \Omega$ pull-up resistor. Failure to do this may cause some USB host or hub controllers to power up erratically.
Figure 6.2 illustrates a self powered design which has a +4 V to +5.25 V supply.
Note:

1. When the FT232R is in reset, the UART interface I/O pins are tri-stated. Input pins have internal $200 \mathrm{k} \Omega$ pull-up resistors to VCCIO, so they will gently pull high unless driven by some external logic.
2. When using internal FT 232 R oscillator the VCC supply voltage range must be +4.0 V to 5.25 V .
3. When using external oscillator the VCC supply voltage range must be +3.3 V to 5.25 V

Any design which interfaces to +3.3 V or +1.8 V would be having a +3.3 V or +1.8 V supply to VCCIO.

6.3 USB Bus Powered with Power Switching Configuration

Figure 6.3 Bus Powered with Power Switching Configuration
A requirement of USB bus powered applications, is when in USB suspend mode, the application draws a total current of less than 2.5 mA . This requirement includes external logic. Some external logic has the ability to power itself down into a low current state by monitoring the PWREN\# signal. For external logic that cannot power itself down in this way, the FT232R provides a simple but effective method of turning off power during the USB suspend mode.

Figure 6.3 shows an example of using a discrete P-Channel MOSFET to control the power to external logic. A suitable device to do this is an International Rectifier (www.irf.com) IRLML6402, or equivalent. It is recommended that a "soft start" circuit consisting of a $1 \mathrm{k} \Omega$ series resistor and a $0.1 \mu \mathrm{~F}$ capacitor is used to limit the current surge when the MOSFET turns on. Without the soft start circuit it is possible that the transient power surge, caused when the MOSFET switches on, will reset the FT232R or the USB host/hub controller. The soft start circuit example shown in Figure 6.3 powers up with a slew rate of approximaely $12.5 \mathrm{~V} / \mathrm{ms}$. Thus supply voltage to external logic transitions from GND to +5 V in approximately 400 microseconds.

As an alternative to the MOSFET, a dedicated power switch IC with inbuilt "soft-start" can be used. A suitable power switch IC for such an application is the Micrel (www.micrel.com) MIC2025-2BM or equivalent.

With power switching controlled designs the following should be noted:
i) The external logic to which the power is being switched should have its own reset circuitry to automatically reset the logic when power is re-applied when moving out of suspend mode.
ii) Set the Pull-down on Suspend option in the internal FT232R EEPROM.
iii) One of the CBUS Pins should be configured as PWREN\# in the internal FT232R EEPROM, and used to switch the power supply to the external circuitry. This should be pulled high through a $10 \mathrm{k} \Omega$ resistor.
iv) For USB high-power bus powered applications (one that consumes greater than 100 mA , and up to 500 mA of current from the USB bus), the power consumption of the application must be set in the Max Power field in the internal FT232R EEPROM. A high-power bus powered application uses the descriptor in the internal FT232R EEPROM to inform the system of its power requirements.
v) PWREN\# gets its VCC from VCCIO. For designs using 3 V 3 logic, ensure VCCIO is not powered down using the external logic. In this case use the +3 V 30 UT

6.4 USB Bus Powered with Selectable External Logic Supply

Figure 6.4 USB Bus Powered with +3.3V or +5V External Logic Power Supply
Figure 6.4 illustrates a USB bus power application with selectable external logic supply. The external logic can be selected between +3.3 V and +5 V using the jumper switch. This jumper is used to allow the FT232R to be interfaced with a +3.3 V or +5 V logic devices. The VCCIO pin is either supplied with +5 V from the USB bus (jumper pins1 and 2 connected), or from the +3.3 V output from the FT232R 3V3OUT pin (jumper pins 2 and 3 connected). The supply to VCCIO is also used to supply external logic.

With bus powered applications, the following should be noted:
i) To comply with the 2.5 mA current supply limit during USB suspend mode, PWREN\# or SLEEP\# signals should be used to power down external logic in this mode. If this is not possible, use the configuration shown in Section 6.3.
ii) The maximum current sourced from the USB bus during normal operation should not exceed 100 mA , otherwise a bus powered design with power switching (Section 6.3) should be used.

Another possible configuration could use a discrete low dropout (LDO) regulator which is supplied by the 5 V on the USB bus to supply between +1.8 V and +2.8 V to the VCCIO pin and to the external logic. In this case VCC would be supplied with the +5 V from the USB bus and the VCCIO would be supplied from the output of the LDO regulator. This results in the FT232R I/O pins driving out at between +1.8 V and +2.8 V logic levels.

For a USB bus powered application, it is important to consider the following when selecting the regulator:
i) The regulator must be capable of sustaining its output voltage with an input voltage of +4.35 V . An Low Drop Out (LDO) regulator should be selected.
ii) The quiescent current of the regulator must be low enough to meet the total current requirement of $<=2.5 \mathrm{~mA}$ during USB suspend mode.

A suitable series of LDO regulators that meets these requirements is the MicroChip/Telcom (www.microchip.com) TC55 series of devices. These devices can supply up to 250 mA current and have a quiescent current of under $1 \mu \mathrm{~A}$.

7 Application Examples

The following sections illustrate possible applications of the FT232R. The illustrations have omitted pin numbers for ease of understanding since the pins differ between the FT232RL and FT232RQ package options.

7.1 USB to RS232 Converter

Figure 7.1 Application Example showing USB to RS232 Converter
An example of using the FT232R as a USB to RS232 converter is illustrated in Figure 7.1. In this application, a TTL to RS232 Level Converter IC is used on the serial UART interface of the FT232R to convert the TTL levels of the FT232R to RS232 levels. This level shift can be done using the popular "213" series of TTL to RS232 level converters. These " 213 " devices typically have 4 transmitters and 5 receivers in a 28 -LD SSOP package and feature an in-built voltage converter to convert the +5 V (nominal) VCC to the $+/-9$ volts required by RS232. A useful feature of these devices is the SHDN\# pin which can be used to power down the device to a low quiescent current during USB suspend mode.

A suitable level shifting device is the Sipex SP213EHCA which is capable of RS232 communication at up to 500 k baud. If a lower baud rate is acceptable, then several pin compatible alternatives are available such as the Sipex SP213ECA, the Maxim MAX213CAI and the Analogue Devices ADM213E, which are all suitable for communication at up to 115.2 k baud. If a higher baud rate is required, the Maxim MAX3245CAI device is capable of RS232 communication rates up to 1Mbaud. Note that the MAX3245 is not pin compatible with the 213 series devices and that the SHDN pin on the MAX device is active high and should be connect to PWREN\# pin instead of SLEEP\# pin.

In example shown, the CBUS0 and CBUS1 have been configured as TXLED\# and RXLED\# and are being used to drive two LEDs.

7.2 USB to RS485 Coverter

Figure 7.2 Application Example Showing USB to RS485 Converter
An example of using the FT232R as a USB to RS485 converter is shown in Figure 7.2. In this application, a TTL to RS485 level converter IC is used on the serial UART interface of the FT232R to convert the TTL levels of the FT232R to RS485 levels.

This example uses the Sipex SP481 device. Equivalent devices are available from Maxim and Analogue Devices. The SP481 is a RS485 device in a compact 8 pin SOP package. It has separate enables on both the transmitter and receiver. With RS485, the transmitter is only enabled when a character is being transmitted from the UART. The TXDEN signal CBUS pin option on the FT232R is provided for exactly this purpose and so the transmitter enable is wired to CBUS2 which has been configured as TXDEN. Similarly, CBUS3 has been configured as PWREN\#. This signal is used to control the SP481's receiver enable. The receiver enable is active low, so it is wired to the PWREN\# pin to disable the receiver when in USB suspend mode. CBUS2 = TXDEN and CBUS3 = PWREN\# are the default device configurations of the FT232R pins.

RS485 is a multi-drop network; so many devices can communicate with each other over a two wire cable interface. The RS485 cable requires to be terminated at each end of the cable. A link (which provides the 120Ω termination) allows the cable to be terminated if the SP481 is physically positioned at either end of the cable.

In this example the data transmitted by the FT232R is also present on the receive path of the SP481.This is a common feature of RS485 and requires the application software to remove the transmitted data from the received data stream. With the FT232R it is possible to do this entirely in hardware by modifying the example shown in Figure 7.2 by logically OR'ing the FT232R TXDEN and the SP481 receiver output and connecting the output of the OR gate to the RXD of the FT232R.

Note that the TXDEN is activated 1 bit period before the start bit. TXDEN is deactivated at the same time as the stop bit. This is not configurable.

7.3 USB to RS422 Converter

Figure 7.3 USB to RS422 Converter Configuration
An example of using the FT232R as a USB to RS422 converter is shown in Figure 7.3. In this application, two TTL to RS422 Level Converter ICs are used on the serial UART interface of the FT232R to convert the TTL levels of the FT232R to RS422 levels. There are many suitable level converter devices available. This example uses Sipex SP491 devices which have enables on both the transmitter and receiver. Since the SP491 transmitter enable is active high, it is connected to a CBUS pin in SLEEP\# configuration. The SP491 receiver enable is active low and is therefore connected to a CBUS pin PWREN\# configuration. This ensures that when both the SP491 transmitters and receivers are enabled then the device is active, and when the device is in USB suspend mode, the SP491 transmitters and receivers are disabled. If a similar application is used, but the design is USB BUS powered, it may be necessary to use a P-Channel logic level MOSFET (controlled by PWREN\#) in the VCC line of the SP491 devices to ensure that the USB standby current of 2.5 mA is met.

The SP491 is specified to transmit and receive data at a rate of up to 5 Mbaud. In this example the maximum data rate is limited to 3 Mbaud by the FT232R.

7.4 USB to MCU UART Interface

Figure 7.4 USB to MCU UART Interface
An example of using the FT232R as a USB to Microcontroller (MCU) UART interface is shown in Figure 7.4. In this application the FT232R uses TXD and RXD for transmission and reception of data, and RTS\# / CTS\# signals for hardware handshaking. Also in this example CBUSO has been configured as a 12 MHz output to clock the MCU.

Optionally, RI\# could be connected to another I/O pin on the MCU and used to wake up the USB host controller from suspend mode. If the MCU is handling power management functions, then a CBUS pin can be configured as PWREN\# and would also be connected to an I/O pin of the MCU.

7.5 LED Interface

Any of the CBUS I/O pins can be configured to drive an LED. The FT232R has 3 configuration options for driving LEDs from the CBUS. These are TXLED\#, RXLED\#, and TX\&RXLED\#. Refer to Section 3.5 for configuration options.

Figure 7.5 Dual LED Configuration

An example of using the FT232R to drive LEDs is shown in Figure 7.5. In this application one of the CBUS pins is used to indicate transmission of data (TXLED\#) and another is used to indicate receiving data (RXLED\#). When data is being transmitted or received the respective pins will drive from tri-state to low in order to provide indication on the LEDs of data transfer. A digital one-shot is used so that even a small percentage of data transfer is visible to the end user.

Figure 7.6 Single LED Configuration
Another example of using the FT232R to drive LEDs is shown in Figure 7.6. In this example one of the CBUS pins is used to indicate when data is being transmitted or received by the device (TX\&RXLED). In this configuration the FT232R will drive only a single LED.

7.6 Using the External Oscillator

The FT232R defaults to operating using its own internal oscillator. This requires that the device is powered with VCC $(\min)=+4.0 \mathrm{~V}$. This supply voltage can be taken from the USB VBUS. Applications which require using an external oscillator, $\mathrm{VCC}=+3.3 \mathrm{~V}$, must do so in the following order:

1. When device powered for the very first time, it must have VCC $>+4.0 \mathrm{~V}$. This supply is available from the USB VBUS supply $=+5.0 \mathrm{~V}$.
2. The EEPROM must then be programmed to enable external oscillator. This EEPROM modification cannot be done using the FTDI programming utility, MPROG. The EEPROM can only be reconfigured from a custom application. Please refer to the following applications note on how to do this:
http://www.ftdichip.com/Documents/AppNotes/AN_100_Using_The_FT232_245R_With_External_ Osc(FT_000067).pdf
3. The FT232R can then be powered from $\mathrm{VCC}=+3.3 \mathrm{~V}$ and an external oscillator. This can be done using a link to switch the VCC supply.

The FT232R will fail to operate when the internal oscillator has been disabled, but no external oscillator has been connected.

8 Internal EEPROM Configuration

Following a power-on reset or a USB reset the FT232R will scan its internal EEPROM and read the USB configuration descriptors stored there. The default factory programmed values of the internal EEPROM are shown in Table 8.1.

Parameter	Value	Notes
USB Vendor ID (VID)	0403h	FTDI default VID (hex)
USB Product UD (PID)	6001h	FTDI default PID (hex)
Serial Number Enabled?	Yes	
Serial Number	See Note	A unique serial number is generated and programmed into the EEPROM during device final test.
Pull down I/O Pins in USB Suspend	Disabled	Enabling this option will make the device pull down on the UART interface lines when in USB suspend mode (PWREN\# is high).
Manufacturer Name	FTDI	
Product Description	FT232R USB UART	
Max Bus Power Current	90 mA	
Power Source	Bus Powered	
Device Type	FT232R	
USB Version	0200	Returns USB 2.0 device description to the host. Note: The device is a USB 2.0 Full Speed device ($12 \mathrm{Mb} / \mathrm{s}$) as opposed to a USB 2.0 High Speed device (480Mb/s).
Remote Wake Up	Enabled	Taking RI\# low will wake up the USB host controller from suspend in approximately 20 ms .
High Current I/Os	Disabled	Enables the high drive level on the UART and CBUS I/O pins.
Load VCP Driver	Enabled	Makes the device load the VCP driver interface for the device.
CBUS0	TXLED\#	Default configuration of CBUSO - Transmit LED drive.
CBUS1	RXLED\#	Default configuration of CBUS1 - Receive LED drive.
CBUS2	TXDEN	Default configuration of CBUS2 - Transmit data enable for RS485
CBUS3	PWREN\#	Default configuration of CBUS3 - Power enable. Low after USB enumeration, high during USB suspend mode.

Parameter	Value	Notes
CBUS4	SLEEP\#	Default configuration of CBUS4 - Low during USB suspend mode.
Invert TXD	Disabled	Signal on this pin becomes TXD\# if enable.
Invert RXD	Disabled	Signal on this pin becomes RXD\# if enable.
Invert RTS\#	Disabled	Signal on this pin becomes RTS if enable.
Invert CTS\#	Disabled	Signal on this pin becomes CTS if enable.
Invert DTR\#	Disabled	Signal on this pin becomes DTR if enable.
Invert DSR\#	Disabled	Signal on this pin becomes DSR if enable.
Invert DCD\#	Disabled	Signal on this pin becomes DCD if enable.
Invert RI\#	Disabled	Signal on this pin becomes RI if enable.

Table 8.1 Default Internal EEPROM Configuration

The internal EEPROM in the FT232R can be programmed over USB using the FTDI utility program MPROG. MPROG can be downloaded from FTDI Utilities on the FTDI website (www.ftdichip.com). Version 2.8a or later is required for the FT232R chip. Users who do not have their own USB Vendor ID but who would like to use a unique Product ID in their design can apply to FTDI for a free block of unique PIDs. Contact FTDI support for this service.

9 Package Parameters

The FT232R is available in two different packages. The FT232RL is the SSOP-28 option and the FT232RQ is the QFN-32 package option. The solder reflow profile for both packages is described in Section 9.5.

9.1 SSOP-28 Package Dimensions

Figure 9.1 SSOP-28 Package Dimensions

The FT232RL is supplied in a RoHS compliant 28 pin SSOP package. The package is lead (Pb) free and uses a 'green' compound. The package is fully compliant with European Union directive 2002/95/EC.

This package is nominally $5.30 \mathrm{~mm} \times 10.20 \mathrm{~mm}$ body ($7.80 \mathrm{~mm} \times 10.20 \mathrm{~mm}$ including pins). The pins are on a 0.65 mm pitch. The above mechanical drawing shows the SSOP-28 package.

All dimensions are in millimetres.
The date code format is $\mathbf{Y Y X X}$ where $X X=2$ digit week number, $Y Y=2$ digit year number. This is followed by the revision number.

The code $\mathbf{X X X X X X X X X X X X}$ is the manufacturing LOT code. This only applies to devices manufactured after April 2009.

9.2 QFN-32 Package Dimensions

Note: The pin \#1 ID is connected internally to the device's central heat sink area. It is recommended to ground the central heat sink area of the device.

Dimensions in mm.
Figure 9.2 QFN-32 Package Dimensions

The FT232RQ is supplied in a RoHS compliant leadless QFN-32 package. The package is lead (Pb) free, and uses a 'green' compound. The package is fully compliant with European Union directive 2002/95/EC.

This package is nominally $5.00 \mathrm{~mm} \times 5.00 \mathrm{~mm}$. The solder pads are on a 0.50 mm pitch. The above mechanical drawing shows the QFN-32 package. All dimensions are in millimetres.

The centre pad on the base of the FT232RQ is not internally connected, and can be left unconnected, or connected to ground (recommended).

The date code format is $\mathbf{Y Y X X}$ where $X X=2$ digit week number, $\mathrm{YY}=2$ digit year number.
The code $\mathbf{X X X X X X X}$ is the manufacturing LOT code. This only applies to devices manufactured after April 2009.

9.3 QFN-32 Package Typical Pad Layout

Figure 9.3 Typical Pad Layout for QFN-32 Package

9.4 QFN-32 Package Typical Solder Paste Diagram

Figure 9.4 Typical Solder Paste Diagram for QFN-32 Package

9.5 Solder Reflow Profile

The FT232R is supplied in Pb free 28 LD SSOP and QFN-32 packages. The recommended solder reflow profile for both package options is shown in Figure 9.5.

Figure 9.5 FT232R Solder Reflow Profile
The recommended values for the solder reflow profile are detailed in Table 9.1. Values are shown for both a completely Pb free solder process (i.e. the FT 232 R is used with Pb free solder), and for a non- Pb free solder process (i.e. the FT232R is used with non-Pb free solder).

Profile Feature	Pb Free Solder Process	Non-Pb Free Solder Process
Average Ramp Up Rate (T_{s} to T_{p})	$3^{\circ} \mathrm{C} /$ second Max.	$3^{\circ} \mathrm{C} /$ Second Max.
Preheat - Temperature Min (T_{s} Min.) - Temperature Max (T_{s} Max.) - Time (t_{s} Min to t_{s} Max)	$\begin{gathered} 150^{\circ} \mathrm{C} \\ 200^{\circ} \mathrm{C} \\ 60 \text { to } 120 \text { seconds } \end{gathered}$	$\begin{gathered} 100^{\circ} \mathrm{C} \\ 150^{\circ} \mathrm{C} \\ 60 \text { to } 120 \text { seconds } \end{gathered}$
Time Maintained Above Critical Temperature T_{L} : - Temperature (T_{L}) - Time (t_{L})	$217^{\circ} \mathrm{C}$ 60 to 150 seconds	$183^{\circ} \mathrm{C}$ 60 to 150 seconds
Peak Temperature (T_{p})	$260^{\circ} \mathrm{C}$	$240^{\circ} \mathrm{C}$
Time within $5^{\circ} \mathrm{C}$ of actual Peak Temperature $\left(t_{p}\right)$	20 to 40 seconds	20 to 40 seconds
Ramp Down Rate	$6^{\circ} \mathrm{C} /$ second Max.	$6^{\circ} \mathrm{C} /$ second Max.
Time for $\mathrm{T}=25^{\circ} \mathrm{C}$ to Peak Temperature, T_{p}	8 minutes Max.	6 minutes Max.

Table 9.1 Reflow Profile Parameter Values

10 Contact Information

Head Office - Glasgow, UK

Future Technology Devices International Limited
Unit 1, 2 Seaward Place
Centurion Business Park
Glasgow, G41 1HH
United Kingdom
Tel: +44 (0) 1414292777
Fax: +44 (0) 1414292758
E-mail (Sales) sales1@ftdichip.com
E-mail (Support) support1@ftdichip.com
E-mail (General Enquiries) admin1@ftdichip.com
Web Site URL http://www.ftdichip.com
Web Shop URL http://www.ftdichip.com

Branch Office - Taipei, Taiwan

Future Technology Devices International Limited (Taiwan)
2F, No 516, Sec. 1 NeiHu Road
Taipei 114
Taiwan, R.O.C.
Tel: +886(0) 287913570
Fax: +886(0)287913576
E-mail (Sales) tw.sales1@ftdichip.com
E-mail (Support) tw.support1@ftdichip.com
E-mail (General Enquiries) tw.admin1@ftdichip.com
Web Site URL http://www.ftdichip.com

Branch Office - Hillsboro, Oregon, USA

Future Technology Devices International Limited (USA)
7235 NW Evergreen Parkway, Suite 600
Hillsboro, OR 97123-5803
USA
Tel: +1 (503) 5470988
Fax: +1 (503) 5470987
E-Mail (Sales) us.sales@ftdichip.com
E-Mail (Support) us.admin@ftdichip.com
Web Site URL http://www.ftdichip.com
Branch Office - Shanghai, China

Future Technology Devices International Limited (China)
Room 408, 317 Xianxia Road,
ChangNing District,
ShangHai, China
Tel: +86 (21) 62351596
Fax: +86(21) 62351595
E-Mail (Sales): cn.sales@ftdichip.com
E-Mail (Support): cn.support@ftdichip.com
E-Mail (General Enquiries): cn.admin1@ftdichip.com
Web Site URL: http://www.ftdichip.com

Distributor and Sales Representatives

Please visit the Sales Network page of the FTDI Web site for the contact details of our distributor(s) and sales representative(s) in your country.

Appendix A - References

Useful Application Notes

http://www.ftdichip.com/Documents/AppNotes/AN232R-01 FT232RBitBangModes.pdf
http://www.ftdichip.com/Documents/AppNotes/AN 107 AdvancedDriverOptions AN 000073.pdf
http://www.ftdichip.com/Documents/AppNotes/AN232R-02 FT232RChipID.pdf
http://www.ftdichip.com/Documents/AppNotes/AN 121 FTDI Device EEPROM User Area Usage.pdf
http://www.ftdichip.com/Documents/AppNotes/AN_120 Aliasing_VCP_Baud_Rates.pdf
http://www.ftdichip.com/Documents/AppNotes/AN_100_Using_The_FT232_245R_With_External_Osc(FT_ 000067).pdf
http://www.ftdichip.com/Resources/Utilities/AN 126 User Guide For FT232 Factory\%20test\%20utility. pdf
http://www.ftdichip.com/Documents/AppNotes/AN232B-05_BaudRates.pdf
http://www.ftdichip.com/Documents/InstallGuides.htm

Appendix B - List of Figures and Tables

List of Figures

Figure 2.1 FT232R Block Diagram 4
Figure 3.1 SSOP Package Pin Out and Schematic Symbol 7
Figure 3.2 QFN-32 Package Pin Out and schematic symbol 10
Figure 6.1 Bus Powered Configuration 23
Figure 6.2 Self Powered Configuration 24
Figure 6.4 USB Bus Powered with +3.3 V or +5 V External Logic Power Supply 26
Figure 7.1 Application Example showing USB to RS232 Converter 27
Figure 7.2 Application Example Showing USB to RS485 Converter 28
Figure 7.3 USB to RS422 Converter Configuration 29
Figure 7.4 USB to MCU UART Interface 30
Figure 7.5 Dual LED Configuration 31
Figure 7.6 Single LED Configuration 31
Figure 9.1 SSOP-28 Package Dimensions 35
Figure 9.2 QFN-32 Package Dimensions. 36
Figure 9.3 Typical Pad Layout for QFN-32 Package 37
Figure 9.4 Typical Solder Paste Diagram for QFN-32 Package 37
Figure 9.5 FT232R Solder Reflow Profile 38
List of Tables
Table 3.1 USB Interface Group 7
Table 3.2 Power and Ground Group 8
Table 3.3 Miscellaneous Signal Group 8
Table 3.4 UART Interface and CUSB Group (see note 3) 9
Table 3.5 USB Interface Group 10
Table 3.6 Power and Ground Group 11
Table 3.7 Miscellaneous Signal Group 11
Table 3.8 UART Interface and CBUS Group (see note 3) 12
Table 3.9 CBUS Configuration Control 13
Table 5.1 Absolute Maximum Ratings 17
Table 5.2 Operating Voltage and Current 18
Table 5.3 UART and CBUS I/O Pin Characteristics (VCCIO $=+5.0 \mathrm{~V}$, Standard Drive Level) 18
Table 5.4 UART and CBUS I/O Pin Characteristics (VCCIO $=+3.3 \mathrm{~V}$, Standard Drive Level) 18
Table 5.5 UART and CBUS I/O Pin Characteristics (VCCIO $=+2.8 \mathrm{~V}$, Standard Drive Level) 19
Table 5.6 UART and CBUS I/O Pin Characteristics (VCCIO $=+1.8 \mathrm{~V}$, Standard Drive Level) 19
Table 5.7 UART and CBUS I/O Pin Characteristics (VCCIO $=+5.0 \mathrm{~V}$, High Drive Level) 19
Table 5.8 UART and CBUS I/O Pin Characteristics (VCCIO $=+3.3 \mathrm{~V}$, High Drive Level) 19
Table 5.9 UART and CBUS I/O Pin Characteristics (VCCIO $=+2.8 \mathrm{~V}$, High Drive Level) 20
Table 5.10 UART and CBUS I/O Pin Characteristics (VCCIO $=+1.8 \mathrm{~V}$, High Drive Level) 20
Table 5.11 RESET\# and TEST Pin Characteristics 20
Table 5.12 USB I/O Pin (USBDP, USBDM) Characteristics 21
Table 5.13 EEPROM Characteristics 21
Table 5.14 Internal Clock Characteristics 21
Table 5.15 OSCI, OSCO Pin Characteristics - see Note 1 22
Table 8.1 Default Internal EEPROM Configuration 34
Table 9.1 Reflow Profile Parameter Values 38

Appendix C - Revision History

Document Title:

Document Reference No.:
Clearance No.:
Product Page:
Document Feedback:

USB UART IC FT232R
FT_000053
FTDI\# 38
http://www.ftdichip.com/FTProducts.htm
Send Feedback

Version 0.90 Initial Datasheet Created

Version 0.96 Revised Pre-release datasheet October 2005

Version 1.02 Minor revisions to datasheet
Version 1.03 Manufacturer ID added to default EEPROM configuration; Buffer sizes added

December 2005
December 2005
January 2006
January 2006
June 2008

Version 2.00 Reformatted, updated package info, added notes for 3.3V operation; Part numbers, TID; added UART and CBUS characteristics for +1.8 V ; Corrected RESET\#; Added MTTF data; Corrected the input switching threshold and input hysteresis values for VCCIO $=5 \mathrm{~V}$
Version 2.01 Corrected pin-out number in table3.2 for GND pin18. Improved graphics on some Figures.
Add packing details. Changed USB suspend current spec from 500uA to 2.5 mA Corrected Figure 9.2 QFN dimensions.

August 2008
Version 2.02 Corrected Tape and Reel quantities.
Added comment "PWREN\# should be used with a $10 \mathrm{k} \Omega$ resistor pull up". Replaced TXDEN\# with TXDEN since it is active high in various places.
Added lot number to the device markings.
Added 3V3 regulator output tolerance.
Clarified VCC operation and added section headed "Using an external Oscillator" Updated company contact information.

April 2009
Version 2.03 Corrected the RX/TX buffer definitions to be relative to the USB interface
June 2009
Version 2.04 Additional dimensions added to QFN solder profile
June 2009
Version 2.05 Modified package dimensions to $5.0 \times 5.0+/-0.075 \mathrm{~mm}$. December 2009
and Solder paste diagram to $2.50 \times 2.50+/-0.0375 \mathrm{~mm}$
Added Windows 7 32, 64 bit driver support
Added FT_PROG utility references
Added Appendix A-references.Figure 2.1 updated.
Updated USB-IF TID for Rev B
Version 2.06 Updated section 6.2, Figure 6.2 and the note, May 2010
Updated section 5.3, Table 5.13, EEPROM data retention time
Version 2.07 Added USB Certification Logos
July 2010
Version 2.08 Updated USB-IF TID for Rev C April 2011
Version 2.09 Corrected Rev C TID number April 2011
Version 2.10 Table 3.9, added clock output frequency within $\pm 0.7 \%$ March 2012 Edited Table 3.9, TXLED\# and TXLED\# Description Added feedback links

Precision, Low Power INSTRUMENTATION AMPLIFIERS

FEATURES

- LOW OFFSET VOLTAGE: $50 \mu \mathrm{~V}$ max
- LOW DRIFT: $0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max
- LOW INPUT BIAS CURRENT: 5nA max
- HIGH CMR: 120dB min
- INPUTS PROTECTED TO $\pm 40 \mathrm{~V}$
- WIDE SUPPLY RANGE: ± 2.25 to $\pm 18 \mathrm{~V}$
- LOW QUIESCENT CURRENT: 700 $\mu \mathrm{A}$
- 8-PIN PLASTIC DIP, SO-8

APPLICATIONS

- BRIDGE AMPLIFIER
- THERMOCOUPLE AMPLIFIER
- RTD SENSOR AMPLIFIER
- MEDICAL INSTRUMENTATION
- DATA ACQUISITION

DESCRIPTION

The INA128 and INA129 are low power, general purpose instrumentation amplifiers offering excellent accuracy. Their versatile 3-op amp design and small size make them ideal for a wide range of applications. Current-feedback input circuitry provides wide bandwidth even at high gain $(200 \mathrm{kHz}$ at $\mathrm{G}=100)$.

A single external resistor sets any gain from 1 to 10,000 . INA128 provides an industry standard gain equation; INA129's gain equation is compatible with the AD620.

The INA128/INA129 is laser trimmed for very low offset voltage $(50 \mu \mathrm{~V})$, $\operatorname{drift}\left(0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right)$ and high com-mon-mode rejection (120 dB at $\mathrm{G} \geq 100$). It operates with power supplies as low as $\pm 2.25 \mathrm{~V}$, and quiescent current is only $700 \mu \mathrm{~A}$-ideal for battery operated systems. Internal input protection can withstand up to $\pm 40 \mathrm{~V}$ without damage.
The INA128/INA129 is available in 8 -pin plastic DIP, and SO-8 surface-mount packages, specified for the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range. The INA128 is also available in dual configuration, the INA2128.

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, unless otherwise noted.

PARAMETER	CONDITIONS	INA128P, U INA129P, U			INA128PA, UA INA129PA, UA			UNITS				
		MIN	TYP	MAX	MIN	TYP	MAX					
INPUT Offset Voltage, RTI Initial vs Temperature vs Power Supply Long-Term Stability Impedance, Differential Common-Mode	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }} \text { to } \mathrm{T}_{\text {MAX }} \\ \mathrm{V}_{\mathrm{S}}= \pm 2.25 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \end{gathered}$ $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ $\begin{gathered} V_{C M}= \pm 13 \mathrm{~V}, \Delta \mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega \\ \mathrm{G}=1 \\ \mathrm{G}=10 \\ \mathrm{G}=100 \\ \mathrm{G}=1000 \end{gathered}$	$\begin{gathered} (\mathrm{V}+)-2 \\ (\mathrm{~V}-)+2 \\ \\ 80 \\ 100 \\ 120 \\ 120 \end{gathered}$	$\begin{gathered} \pm 10 \pm 100 / \mathrm{G} \\ \pm 0.2 \pm 2 / \mathrm{G} \\ \pm 0.2 \pm 20 / \mathrm{G} \\ \pm 0.1 \pm 3 / \mathrm{G} \\ 10^{10} \\| 2 \\ 10^{11} \\| 9 \\ (\mathrm{~V}+)-1.4 \\ (\mathrm{~V}-)+1.7 \\ \\ 86 \\ 106 \\ 125 \\ 130 \end{gathered}$	$\begin{gathered} \pm 50 \pm 500 / \mathrm{G} \\ \pm 0.5 \pm 20 / \mathrm{G} \\ \pm 1 \pm 100 / \mathrm{G} \end{gathered}$ ± 40	$\begin{gathered} * \\ * \\ \\ 73 \\ 93 \\ 110 \\ 110 \end{gathered}$	$\begin{gathered} \pm 25 \pm 100 / \mathrm{G} \\ \pm 0.2 \pm 5 / \mathrm{G} \\ * \\ * \\ * \\ * \\ * \\ * \\ \\ * \\ * \\ * \\ * \end{gathered}$	$\begin{gathered} \pm 125 \pm 1000 / \mathrm{G} \\ \pm 1 \pm 20 / \mathrm{G} \\ \pm 2 \pm 200 / \mathrm{G} \\ \\ \\ * \end{gathered}$	$\begin{gathered} \mu \mathrm{V} \\ \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\ \mu \mathrm{~V} / \mathrm{V} \\ \mu \mathrm{~V} / \mathrm{mo} \\ \Omega \\| \mathrm{pF} \\ \Omega \\| \mathrm{pF} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~V} \\ \mathrm{~dB} \\ \mathrm{~dB} \\ \mathrm{~dB} \\ \mathrm{~dB} \end{gathered}$				
BIAS CURRENT vs Temperature Offset Current vs Temperature			$\begin{gathered} \pm 2 \\ \pm 30 \\ \pm 1 \\ \pm 30 \end{gathered}$	$\begin{aligned} & \pm 5 \\ & \pm 5 \end{aligned}$		$\begin{aligned} & \text { } \\ & \text { 水 } \\ & * \\ & * \\ & * \end{aligned}$	$\begin{aligned} & \pm 10 \\ & \pm 10 \end{aligned}$	$\begin{gathered} \mathrm{nA} \\ \mathrm{pA} /{ }^{\circ} \mathrm{C} \\ \mathrm{nA} \\ \mathrm{pA} /{ }^{\circ} \mathrm{C} \end{gathered}$				
NOISE VOLTAGE, RTI $\begin{aligned} & f=10 \mathrm{~Hz} \\ & f=100 \mathrm{~Hz} \\ & f=1 \mathrm{kHz} \\ & f_{B}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \end{aligned}$ Noise Current $\begin{aligned} & f=10 \mathrm{~Hz} \\ & f=1 \mathrm{kHz} \\ & f_{B}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \end{aligned}$	$\mathrm{G}=1000, \mathrm{R}_{\mathrm{S}}=0 \Omega$		$\begin{gathered} 10 \\ 8 \\ 8 \\ 0.2 \\ 0.9 \\ 0.3 \\ 30 \end{gathered}$,		$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mathrm{nV} / \sqrt{\mathrm{Hz}}$ $\mu \mathrm{Vp}$-p $\mathrm{pA} / \sqrt{\mathrm{Hz}}$ $\mathrm{pA} / \sqrt{\mathrm{Hz}}$ pAp-p				
GAIN Gain Equation, INA128 INA129 Range of Gain Gain Error Gain vs Temperature ${ }^{(2)}$ $50 \mathrm{k} \Omega$ (or $49.4 \mathrm{k} \Omega$) Resistance ${ }^{(2,3)}$ Nonlinearity	$\begin{gathered} G=1 \\ G=10 \\ G=100 \\ G=1000 \\ G=1 \\ V_{0}= \pm 13.6 \mathrm{~V}, \mathrm{G}=1 \\ \mathrm{G}=10 \\ \mathrm{G}=100 \\ \mathrm{G}=1000 \end{gathered}$	1	$\left(\begin{array}{c} 1+\left(50 \mathrm{k} \Omega / \mathrm{R}_{\mathrm{G}}\right) \\ 1+\left(49.4 \mathrm{k} \Omega / \mathrm{R}_{\mathrm{G}}\right) \\ \pm 0.01 \\ \pm 0.02 \\ \pm 0.05 \\ \pm 0.5 \\ \pm 1 \\ \pm 25 \\ \pm 0.0001 \\ \pm 0.0003 \\ \pm 0.0005 \\ \pm 0.001 \end{array}\right.$	$\begin{gathered} 10000 \\ \pm 0.024 \\ \pm 0.4 \\ \pm 0.5 \\ \pm 1 \\ \pm 10 \\ \pm 100 \\ \pm 0.001 \\ \pm 0.002 \\ \pm 0.002 \\ \text { (Note 4) } \end{gathered}$	*		$\begin{gathered} * \\ \pm 0.1 \\ \pm 0.5 \\ \pm 0.7 \\ \pm 2 \\ * \\ * \\ \pm 0.002 \\ \pm 0.004 \\ \pm 0.004 \\ * \end{gathered}$	V/V V/V V/V \% \% \% \% $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ \% of FSR \% of FSR \% of FSR \% of FSR				
OUTPUT Voltage: Positive Negative Load Capacitance Stability Short-Circuit Current	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & (\mathrm{V}+)-1.4 \\ & (\mathrm{~V}-)+1.4 \end{aligned}$	$\begin{gathered} (\mathrm{V}+)-0.9 \\ (\mathrm{~V}-)+0.8 \\ 1000 \\ +6 /-15 \end{gathered}$		*	$*$ $*$ $*$ $*$		$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{pF} \\ \mathrm{~mA} \end{gathered}$				
FREQUENCY RESPONSE Bandwidth, -3 dB Slew Rate Settling Time, 0.01\% Overload Recovery	$\begin{gathered} G=1 \\ G=10 \\ G=100 \\ G=1000 \\ V_{O}= \pm 10 \mathrm{~V}, \mathrm{G}=10 \\ \mathrm{G}=1 \\ \mathrm{G}=10 \\ \mathrm{G}=100 \\ \mathrm{G}=1000 \\ 50 \% \text { Overdrive } \end{gathered}$		1.3 700 200 20 4 7 7 9 80 4			$\begin{aligned} & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \\ & * \end{aligned}$		MHz kHz kHz kHz V/ $\mu \mathrm{s}$ $\mu \mathrm{s}$				
POWER SUPPLY Voltage Range Current, Total	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	± 2.25	$\begin{array}{r} \pm 15 \\ \pm 700 \\ \hline \end{array}$	$\begin{array}{r} \pm 18 \\ \pm 750 \\ \hline \end{array}$	*	$\begin{aligned} & * \\ & * \\ & \hline \end{aligned}$	$\begin{aligned} & * \\ & * \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{V} \\ \mu \mathrm{~A} \\ \hline \end{array}$				
TEMPERATURE RANGE Specification Operating $\begin{array}{ll} \theta_{\mathrm{JA}} & \text { 8-Pin Dip } \\ & \text { SO-8 SOIC } \end{array}$		$\begin{aligned} & -40 \\ & -40 \end{aligned}$	$\begin{gathered} 80 \\ 150 \end{gathered}$	$\begin{gathered} 85 \\ 125 \end{gathered}$	$\begin{aligned} & * \\ & * \end{aligned}$	$*$ $*$ $*$	*	$\begin{gathered} { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$				

* Specification same as INA128P, U or INA129P, U.

NOTE: (1) Input common-mode range varies with output voltage-see typical curves. (2) Guaranteed by wafer test. (3) Temperature coefficient of the $50 \mathrm{k} \Omega$ (or $49.4 \mathrm{k} \Omega$) term in the gain equation. (4) Nonlinearity measurements in $G=1000$ are dominated by noise. Typical nonlinearity is $\pm 0.001 \%$.

8-Pin DIP and SO-8

ABSOLUTE MAXIMUM RATINGS

Supply Voltage ... $\pm 18 \mathrm{~V}$	
Analog Input Voltage Range .. $\pm 40 \mathrm{~V}$	
Output Short-Circuit (to ground)	Continuous
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature	$+150^{\circ} \mathrm{C}$
Lead Temperature (solder	$+300^{\circ} \mathrm{C}$

PIN CONFIGURATION

20
 DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION

$\left.$| PRODUCT | PACKAGE | PACKAGE
 DRAWING
 NUMBER${ }^{(1)}$ |
| :--- | :---: | :---: | :---: | | TEMPERATURE |
| :---: |
| RANGE | \right\rvert\,

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

TYPICAL PERFORMANCE CURVES
At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.

POSITIVE POWER SUPPLY REJECTION
vs FREQUENCY

COMMON-MODE REJECTION vs FREQUENCY

NEGATIVE POWER SUPPLY REJECTION

PONTIFICIA
UNIVERSIDAD
CATOLIC
DEL PERU
TYPICAL PERFORMANCE CURVES (CONT) At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.

QUIESCENT CURRENT and SLEW RATE

INPUT OFFSET VOLTAGE WARM-UP

TYPICAL PERFORMANCE CURVES (CONT)
At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.

TOTAL HARMONIC DISTORTION + NOISE
vs FREQUENCY

TYPICAL PERFORMANCE CURVES (CONT)

At $T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$, unless otherwise noted.

$5 \mu \mathrm{~s} / \mathrm{div}$

$5 \mu \mathrm{~s} / \mathrm{div}$

$20 \mu \mathrm{~s} / \mathrm{div}$

LARGE-SIGNAL
($\mathrm{G}=100,1000$)

$20 \mu \mathrm{~s} / \mathrm{div}$

VOLTAGE NOISE 0.1 to 10 Hz
INPUT-REFERRED, $\mathrm{G} \geq 100$

1s/div

Figure 1 shows the basic connections required for operation of the INA128/INA129. Applications with noisy or high impedance power supplies may require decoupling capacitors close to the device pins as shown.

The output is referred to the output reference (Ref) terminal which is normally grounded. This must be a low-impedance connection to assure good common-mode rejection. A resistance of 8Ω in series with the Ref pin will cause a typical device to degrade to approximately 80 dB CMR $(\mathrm{G}=1)$.

SETTING THE GAIN

Gain is set by connecting a single external resistor, R_{G}, connected between pins 1 and 8 :

INA128:

$$
\begin{equation*}
\mathrm{G}=1+\frac{50 \mathrm{k} \Omega}{\mathrm{R}_{\mathrm{G}}} \tag{1}
\end{equation*}
$$

INA129:

$$
\begin{equation*}
\mathrm{G}=1+\frac{49.4 \mathrm{k} \Omega}{\mathrm{R}_{\mathrm{G}}} \tag{2}
\end{equation*}
$$

Commonly used gains and resistor values are shown in Figure 1.
The $50 \mathrm{k} \Omega$ term in Equation 1 ($49.4 \mathrm{k} \Omega$ in Equation 2) comes from the sum of the two internal feedback resistors of A_{1} and A_{2}. These on-chip metal film resistors are laser trimmed to
accurate absolute values. The accuracy and temperature coefficient of these internal resistors are included in the gain accuracy and drift specifications of the INA128/INA129.
The stability and temperature drift of the external gain setting resistor, R_{G}, also affects gain. R_{G} 's contribution to gain accuracy and drift can be directly inferred from the gain equation (1). Low resistor values required for high gain can make wiring resistance important. Sockets add to the wiring resistance which will contribute additional gain error (possibly an unstable gain error) in gains of approximately 100 or greater.

DYNAMIC PERFORMANCE

The typical performance curve "Gain vs Frequency" shows that, despite its low quiescent current, the INA128/INA129 achieves wide bandwidth, even at high gain. This is due to the current-feedback topology of the input stage circuitry. Settling time also remains excellent at high gain.

NOISE PERFORMANCE

The INA128/INA129 provides very low noise in most applications. Low frequency noise is approximately $0.2 \mu \mathrm{Vp}-\mathrm{p}$ measured from 0.1 to $10 \mathrm{~Hz}(\mathrm{G} \geq 100)$. This provides dramatically improved noise when compared to state-of-theart chopper-stabilized amplifiers.

FIGURE 1. Basic Connections.

The INA128/INA129 is laser trimmed for low offset voltage and offset voltage drift. Most applications require no external offset adjustment. Figure 2 shows an optional circuit for trimming the output offset voltage. The voltage applied to Ref terminal is summed with the output. The op amp buffer provides low impedance at the Ref terminal to preserve good common-mode rejection.

FIGURE 2. Optional Trimming of Output Offset Voltage.

INPUT BIAS CURRENT RETURN PATH

The input impedance of the INA128/INA129 is extremely high-approximately $10^{10} \Omega$. However, a path must be provided for the input bias current of both inputs. This input bias current is approximately ± 2 nA. High input impedance means that this input bias current changes very little with varying input voltage.
Input circuitry must provide a path for this input bias current for proper operation. Figure 3 shows various provisions for an input bias current path. Without a bias current path, the inputs will float to a potential which exceeds the commonmode range, and the input amplifiers will saturate.

If the differential source resistance is low, the bias current return path can be connected to one input (see the thermocouple example in Figure 3). With higher source impedance, using two equal resistors provides a balanced input with possible advantages of lower input offset voltage due to bias current and better high-frequency common-mode rejection.

INPUT COMMON-MODE RANGE

The linear input voltage range of the input circuitry of the INA128/INA129 is from approximately 1.4 V below the positive supply voltage to 1.7 V above the negative supply. As a differential input voltage causes the output voltage increase, however, the linear input range will be limited by the output voltage swing of amplifiers A_{1} and A_{2}. So the

FIGURE 3. Providing an Input Common-Mode Current Path.
linear common-mode input range is related to the output voltage of the complete amplifier. This behavior also depends on supply voltage-see performance curves "Input Common-Mode Range vs Output Voltage".
Input-overload can produce an output voltage that appears normal. For example, if an input overload condition drives both input amplifiers to their positive output swing limit, the difference voltage measured by the output amplifier will be near zero. The output of A_{3} will be near 0 V even though both inputs are overloaded.

LOW VOLTAGE OPERATION

The INA128/INA129 can be operated on power supplies as low as $\pm 2.25 \mathrm{~V}$. Performance remains excellent with power supplies ranging from $\pm 2.25 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$. Most parameters vary only slightly throughout this supply voltage range-see typical performance curves. Operation at very low supply voltage requires careful attention to assure that the input voltages remain within their linear range. Voltage swing requirements of internal nodes limit the input commonmode range with low power supply voltage. Typical performance curves, "Input Common-Mode Range vs Output Voltage" show the range of linear operation for $\pm 15 \mathrm{~V}, \pm 5 \mathrm{~V}$, and $\pm 2.5 \mathrm{~V}$ supplies.

NOTE: Due to the INA128's current-feedback topology, V_{G} is approximately 0.7 V less than the common-mode input voltage. This DC offset in this guard potential is satisfactory for many guarding applications.

FIGURE 4. ECG Amplifier With Right-Leg Drive.

FIGURE 5. Bridge Amplifier.

FIGURE 6. AC-Coupled Instrumentation Amplifier.

FIGURE 7. Thermocouple Amplifier With RTD ColdJunction Compensation.

FIGURE 8. Differential Voltage to Current Converter.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

Low Power, Single Resistor Gain Programmable, Precision Instrumentation Amplifier DESCRIPTIOn

features

- Supply Current: 530 A A Max
- Meets IEC 1000-4-2 Level 4 ($\pm 15 \mathrm{kV}$) ESD Tests with Two External 5k Resistors
- Single Gain Set Resistor: G=1 to 10,000
- Gain Error: G = 10, 0.4\% Max
- Input Offset Voltage Drift: $0.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ Max
- Gain Nonlinearity: G = 10, 20ppm Max
- Input Offset Voltage: 40 1 V Max
- Input Bias Current: 250pA Max
- PSRR at $A_{V}=1$: 103 dB Min
- CMRR at $A_{V}=1: 90 \mathrm{~dB}$ Min
- Wide Supply Range: $\pm 2.3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- 1 kHz Voltage Noise: $10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- 0.1 Hz to 10 Hz Noise: $0.28 \mu \mathrm{~V}_{\text {p-p }}$
- Available in 8-Pin PDIP and SO Packages

APPLICATIONS

- Bridge Amplifiers
- Strain Gauge Amplifiers
- Thermocouple Amplifiers
- Differential to Single-Ended Converters
- Differential Voltage to Current Converters
- Data Acquisition
- Battery-Powered and Portable Equipment
- Medical Instrumentation
- Scales

The $\mathrm{LT}{ }^{\circledR} 1168$ is a micropower, precision instrumentation amplifier that requires only one external resistor to set gains of 1 to 10,000 . The low voltage noise of $10 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ (at 1 kHz) is notcompromised by low powerdissipation (350uAtypical for $\pm 15 \mathrm{~V}$ supplies). The wide supply range of $\pm 2.3 \mathrm{Vto} \pm 18 \mathrm{~V}$ allows the LT1168 to fit into a wide variety of industrial as well as battery-powered applications.
The highaccuracy of the LT1168 is due to a20ppm maximum nonlinearity and 0.4% maxgainerror ($\mathrm{G}=10$). Previous monolithic instrumentation amps cannot handle a 2 k load resistor whereas the nonlinearity of the LT1168 is specified for loads as low as 2k. The LT1168 is laser trimmed for very low input offsetvoltage ($40 \mu \mathrm{~V}$ max), drift ($0.3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$), highCMRR (90 dB , $G=1$) and PSRR ($103 \mathrm{~dB}, \mathrm{G}=1$). Low input bias currents of 250pA max are achieved with the use of superbeta processing. The output can handle capacitive loads up to 1000 pF in any gain configuration while the inputs are ESD protected up to 13kV (human body). The LT1168 with two external 5k resistors passes the IEC 1000-4-2 level 4 specification.
The LT1168 is a pin-for-pin improved second source for the AD620 and INA118. The LT1168, offered in 8-pin PDIP and SO packages, requires significantly less PC board areathan discrete op amp resistor designs. These advantages make the LT1168 the most cost effective solution for precision instrumentation amplifier applications.

[^1]TYPICAL APPLICATION

Gain Nonlinearity

ABSOLUTE MAXIMUM RATINGS

(Note 1)
Supply Voltage ... $\pm 20 \mathrm{~V}$
Differential Input Voltage (Within the
Supply Voltage) $\pm 40 \mathrm{~V}$
Input Voltage (Equal to Supply Voltage) $\pm 20 \mathrm{~V}$
Input Current (Note 2) $\pm 20 \mathrm{~mA}$
Output Short-Circuit Duration (Note 3) Indefinite
Operating Temperature Range (Note 4) .. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Specified Temperature Range
LT1168AC/LT1168C (Note 5) $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT1168AI/LT1168I $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)
.................. $300^{\circ} \mathrm{C}$

Order Options Tape and Reel: Add \#TR

Lead Free: Add \#PBF Lead Free Tape and Reel: Add \#TRPBF Lead Free Part Marking: http://www.linear.com/leadfree/

PACKAGE/ORDER InFORMATION

	ORDER PART NUMBER
	LT1168ACN8
	LT1168ACS8
	LT1168AIN8
	LT1168AIS8
	LT1168CN8
	LT1168CS8
8 -LEAD PDIP	LT1168IN8
S8 PACKAGE 8-LEAD PLASTIC SO	LT1168IS8
$\begin{aligned} & T_{\text {JMAX }}=150^{\circ} \mathrm{C}, \theta_{\mathrm{A} A}=150^{\circ} \mathrm{C} / \mathrm{W}(\mathrm{~N} 8) \\ & \mathrm{T}_{\text {JIMAX }}=150^{\circ} \mathrm{C}, \theta_{J A}=190^{\circ} / \mathrm{W}(\mathrm{~S}) \end{aligned}$	S8 PART MARKING
	1168A 1168
	1168AI 1168I

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS

$T_{A}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{OV}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS (Note 6)	LT1168AC/LT1168AI			LT1168C/LT1168I			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
G	Gain Range	$\mathrm{G}=1+\left(49.4 \mathrm{k} / \mathrm{R}_{\mathrm{G}}\right)$	1		10k	1		10k	
	Gain Error	$\begin{aligned} & G=1 \\ & G=10 \text { (Note 7) } \\ & G=100 \text { (Note 7) } \\ & G=1000 \text { (Note 7) } \end{aligned}$		$\begin{gathered} 0.008 \\ 0.04 \\ 0.04 \\ 0.08 \end{gathered}$	$\begin{gathered} 0.02 \\ 0.4 \\ 0.5 \\ 0.5 \end{gathered}$		$\begin{gathered} 0.015 \\ 0.05 \\ 0.05 \\ 0.08 \end{gathered}$	$\begin{gathered} 0.03 \\ 0.5 \\ 0.6 \\ 0.6 \end{gathered}$	\% $\%$ $\%$ $\%$
	Gain Nonlinearity (Notes 7, 8)	$\begin{aligned} & V_{0}= \pm 10 \mathrm{~V}, \mathrm{G}=1 \\ & \mathrm{~V}_{0}= \pm 10 \mathrm{~V}, \mathrm{G}=10 \text { and } 100 \\ & \mathrm{~V}_{0}= \pm 10 \mathrm{~V}, \mathrm{G}=1000 \end{aligned}$		$\begin{gathered} 2 \\ 10 \\ 20 \end{gathered}$	$\begin{gathered} 6 \\ 20 \\ 40 \end{gathered}$		$\begin{gathered} \hline 3 \\ 15 \\ 25 \end{gathered}$	$\begin{aligned} & 10 \\ & 25 \\ & 60 \end{aligned}$	ppm ppm ppm
		$\begin{aligned} & V_{0}= \pm 10 \mathrm{~V}, \mathrm{G}=1, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{~V}_{0}= \pm 10 \mathrm{~V}, \mathrm{G}=10 \text { and } 100, R_{\mathrm{L}}=2 \mathrm{k} \\ & \mathrm{~V}_{0}= \pm 10 \mathrm{~V}, \mathrm{G}=1000, R_{\mathrm{L}}=2 \mathrm{k} \end{aligned}$		$\begin{gathered} 4 \\ 20 \\ 40 \end{gathered}$	$\begin{aligned} & 15 \\ & 40 \\ & 75 \end{aligned}$		$\begin{gathered} 5 \\ 30 \\ 50 \end{gathered}$	$\begin{aligned} & 20 \\ & 60 \\ & 90 \end{aligned}$	ppm ppm ppm
$\mathrm{V}_{\text {OST }}$	Total Input Referred Offset Voltage $\mathrm{V}_{\text {OST }}=\mathrm{V}_{\text {OSI }}+\mathrm{V}_{\text {OSO }} / \mathrm{G}$								
$\mathrm{V}_{\text {OSI }}$	Input Offset Voltage	$\mathrm{G}=1000, \mathrm{~V}_{S}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		15	40		20	60	$\mu \mathrm{V}$
Vos0	Output Offset Voltage	$G=1, V_{S}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$		40	200		50	300	$\mu \mathrm{V}$
Ios	Input Offset Current			50	300		60	450	pA
I_{B}	Input Bias Current			40	250		80	500	pA
e_{n}	Input Noise Voltage, RTI	$\begin{aligned} & 0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz}, \mathrm{G}=1 \\ & 0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz}, \mathrm{G}=1000 \end{aligned}$		$\begin{aligned} & 2.00 \\ & 0.28 \end{aligned}$			$\begin{aligned} & 2.00 \\ & 0.28 \end{aligned}$		$\mu V_{\text {P-P }}$ $\mu V_{\text {P-P }}$
	Input Noise Voltage Density, RTI	$\mathrm{f}_{0}=1 \mathrm{kHz}$		10	15		10	15	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
	Output Noise Voltage Density, RTI	$\mathrm{f}_{0}=1 \mathrm{kHz}$ (Note 9)		165	220		165	220	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current	$\mathrm{f}_{0}=0.1 \mathrm{~Hz}$ to 10 Hz		5			5		pAp-p
	Input Noise Current Density	$\mathrm{f}_{0}=10 \mathrm{~Hz}$		74			74		$\mathrm{fA} / \sqrt{\mathrm{Hz}}$
R IN	Input Resistance	$\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}$	300	1250		200	1250		$\mathrm{G} \Omega$

ELECTRICPL CHPRACTRISTIC $T_{A}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS (Note 6)	LT1168AC/LT1168AI			LT1168C/LT1168I			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{Cl}_{\text {In(DIFF) }}$	Differential Input Capacitance	$\mathrm{f}_{0}=100 \mathrm{kHz}$	1.6			1.6			pF
$\mathrm{C}_{\text {IN(CM) }}$	Common Mode Input Capacitance	$\mathrm{f}_{0}=100 \mathrm{kHz}$	1.6			1.6			pF
$\mathrm{V}_{\text {CM }}$	Input Voltage Range	$\begin{aligned} & \mathrm{G}=1, \text { Other Input Grounded } \\ & \mathrm{V}_{\mathrm{S}}= \pm 2.3 \mathrm{~V} \text { to } \pm 5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & -V_{S}+1.9 \\ & -V_{S}+1.9 \\ & \hline \end{aligned}$		$\begin{aligned} & +V_{S}-1.2 \\ & +V_{S}-1.4 \end{aligned}$	$\begin{aligned} & -V_{S}+1.9 \\ & -V_{S}+1.9 \end{aligned}$		$\begin{aligned} & +V_{S}-1.2 \\ & +V_{S}-1.4 \\ & \hline \end{aligned}$	V
CMRR	Common Mode Rejection Ratio	1k Source Imbalance, $\begin{aligned} V_{C M} & =0 V \text { to } \pm 10 \mathrm{~V} \\ G & =1 \\ G & =10 \\ G & =100 \\ G & =1000 \end{aligned}$	90 95 106 115 120 135 126 140			85 95 100 115 110 135 120 140			dB $d B$ $d B$ $d B$
PSRR	Power Supply Rejection Ratio	$\begin{aligned} V_{S} & = \pm 2.3 V \text { to } \pm 18 \mathrm{~V} \\ G & =1 \\ G & =10 \\ G & =100 \\ G & =1000 \end{aligned}$	$\begin{aligned} & 103 \\ & 122 \\ & 131 \\ & 135 \end{aligned}$	$\begin{aligned} & 108 \\ & 128 \\ & 145 \\ & 150 \end{aligned}$		100 108 118 128 126 145 130 150			dB $d B$ $d B$ $d B$
Is	Supply Current	$\mathrm{V}_{\mathrm{S}}= \pm 2.3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$		350	530	350530			$\mu \mathrm{A}$
$\mathrm{V}_{\text {OUT }}$	Output Voltage Swing	$\begin{array}{\|l\|} \hline \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \\ \mathrm{~V}_{\mathrm{S}}= \pm 2.3 \mathrm{~V} \text { to } \pm 5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & -V_{S}+1.1 \\ & -V_{S}+1.2 \\ & \hline \end{aligned}$		$\begin{aligned} & +V_{S}-1.2 \\ & +V_{S}-1.3 \end{aligned}$	$\begin{aligned} & -V_{S}+1.1 \\ & -V_{S}+1.2 \end{aligned}$		$\begin{aligned} & +V_{S}-1.2 \\ & +V_{S}-1.3 \end{aligned}$	V V
$\underline{\text { IOUT }}$	Output Current		2032			$20 \quad 32$			mA
BW	Bandwidth	$\begin{aligned} & G=1 \\ & G=10 \\ & G=100 \\ & G=1000 \end{aligned}$	$\begin{gathered} 400 \\ 200 \\ 13 \\ 1 \end{gathered}$			$\begin{gathered} 400 \\ 200 \\ 13 \\ 1 \end{gathered}$			$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \\ & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$
SR	Slew Rate	$\mathrm{G}=1, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	0.30 .5			0.30 .5			V/us
	Settling Time to 0.01\%	$\begin{aligned} & \text { 10V Step } \\ & \qquad \begin{array}{l} G=1 \text { to } 100 \\ G=1000 \end{array} \end{aligned}$	$\begin{gathered} 30 \\ 200 \end{gathered}$			$\begin{gathered} 30 \\ 200 \end{gathered}$			$\mu \mathrm{S}$ $\mu \mathrm{S}$
REFIN	Reference Input Resistance		60			60			$\mathrm{k} \Omega$
$\underline{\text { IREFIN }}$	Reference Input Current	$\mathrm{V}_{\text {REF }}=0 \mathrm{~V}$	18			18			$\mu \mathrm{A}$
$\mathrm{V}_{\text {REF }}$	Reference Voltage Range		$-V_{S}+1.6$		$+V_{S}-1.6$	$-\mathrm{V}_{\mathrm{S}}+1.6$		$+V_{S}-1.6$	V
AVREF	Reference Gain to Output		1 ± 0.0001			1 ± 0.0001			

The \bullet denotes the specifications which apply over the $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}= \pm \mathbf{1 5 V}, \mathrm{V}_{\mathrm{CM}}=\mathbf{0 V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ unless otherwise noted.

LT1168
ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the $0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathbf{0 V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS (Note 6)		LT1168AC			LT1168C			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
$\mathrm{V}_{\text {OST }}$	Total Input Referred Offset Voltage $\mathrm{V}_{\text {OST }}=\mathrm{V}_{\text {OSI }}+\mathrm{V}_{0 S O} / \mathrm{G}$									
$\mathrm{V}_{\text {OSI }}$	Input Offset Voltage	$\mathrm{V}_{S}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet		18	60		23	80	$\mu \mathrm{V}$
$\mathrm{V}_{\text {OSIH }}$	Input Offset Voltage Hysteresis	(Notes 7, 10)	\bullet		3.0			3.0		$\mu \mathrm{V}$
$\mathrm{V}_{\text {OSO }}$	Output Offset Voltage	$\mathrm{V}_{S}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	\bullet		60	380		70	500	$\mu \mathrm{V}$
$\mathrm{V}_{\text {OSOH }}$	Output Offset Voltage Hysteresis	(Notes 7, 10)	\bullet		30			30		$\mu \mathrm{V}$
$\mathrm{V}_{\text {OSI }} / \mathrm{T}$	Input Offset Drift (RTI)	(Note 9)	\bullet		0.05	0.3		0.06	0.4	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {OSO }} / \mathrm{T}$	Output Offset Drift	(Note 9)	\bullet		0.7	3		0.8	4	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current		\bullet		100	400		120	550	pA
Ios/T	Input Offset Current Drift		\bullet		0.3			0.4		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		\bullet		65	350		105	600	pA
$\mathrm{I}_{\mathrm{B}} / \mathrm{T}$	Input Bias Current Drift		\bullet		1.4			1.4		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
$V_{C M}$	Input Voltage Range	$\begin{gathered} G=1, \text { Other Input Grounded } \\ V_{S}= \pm 2.3 \mathrm{~V} \text { to } \pm 5 \mathrm{~V} \\ V_{S}= \pm 5 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \\ \hline \end{gathered}$	\bullet	$\begin{aligned} & -V_{S}+2.1 \\ & -V_{S}+2.1 \end{aligned}$		$\begin{aligned} & +V_{S}-1.3 \\ & +V_{S}-1.4 \end{aligned}$	$\begin{aligned} & -V_{S}+2.1 \\ & -V_{S}+2.1 \\ & \hline \end{aligned}$		$\begin{aligned} & +V_{S}-1.3 \\ & +V_{S}-1.4 \end{aligned}$	V V
CMRR	Common Mode Rejection Ratio	1k Source Imbalance, $\begin{aligned} V_{C M} & =0 \mathrm{~V} \text { to } \pm 10 \mathrm{~V} \\ G & =1 \\ G & =10 \\ G & =100 \\ G & =1000 \end{aligned}$	$\bullet \cdot$	$\begin{gathered} 88 \\ 100 \\ 115 \\ 117 \end{gathered}$	$\begin{gathered} 92 \\ 110 \\ 120 \\ 135 \end{gathered}$		$\begin{gathered} 83 \\ 97 \\ 113 \\ 114 \end{gathered}$	$\begin{gathered} 92 \\ 110 \\ 120 \\ 135 \end{gathered}$		$d B$ $d B$ $d B$ $d B$
PSRR	Power Supply Rejection Ratio	$\begin{aligned} V_{S} & = \pm 2.3 V \text { to } \pm 18 \mathrm{~V} \\ G & =1 \\ G & =10 \\ G & =100 \\ G & =1000 \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & 102 \\ & 123 \\ & 127 \\ & 129 \end{aligned}$	$\begin{aligned} & 115 \\ & 130 \\ & 135 \\ & 145 \end{aligned}$		$\begin{gathered} 98 \\ 118 \\ 124 \\ 126 \\ \hline \end{gathered}$	$\begin{aligned} & 115 \\ & 130 \\ & 135 \\ & 145 \\ & \hline \end{aligned}$		$d B$ $d B$ $d B$ $d B$
IS	Supply Current	$\mathrm{V}_{S}= \pm 2.3 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	\bullet		390	615		390	615	$\mu \mathrm{A}$
Vout	Output Voltage Swing	$\begin{aligned} \mathrm{R}_{\mathrm{L}} & =10 \mathrm{k} \\ \mathrm{~V}_{\mathrm{S}} & = \pm 2.3 \mathrm{~V} \text { to } \pm 5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{S}} & = \pm 5 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & -V_{S}+1.4 \\ & -V_{S}+1.6 \end{aligned}$		$\begin{aligned} & +V_{S}-1.3 \\ & +V_{S}-1.5 \end{aligned}$	$\begin{aligned} & -V_{S}+1.4 \\ & -V_{S}+1.6 \end{aligned}$		$\begin{aligned} & +V_{S}-1.3 \\ & +V_{S}-1.5 \end{aligned}$	V
$\underline{\text { IOUT }}$	Output Current		\bullet	16	25		16	25		mA
SR	Slew Rate	$\mathrm{G}=1, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	\bullet	0.25	0.48		0.25	0.48		$\mathrm{V} / \mathrm{\mu s}$
$\underline{\mathrm{V}_{\text {REF }}}$	Voltage Range	(Note 9)	\bullet	$-V_{S}+1.6$		$+V_{S}-1.6$	$-\mathrm{V}_{S}+1.6$		$+V_{S}-1.6$	V

The \bullet denotes the specifications which apply over the $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ unless otherwise noted. (Note 8)

SYMBOL	PARAMETER	CONDITIONS (Note 6)		LT1168AI			LT1168I			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
	Gain Error	$\mathrm{G}=1$	\bullet		0.014	0.04		0.015	0.05	\%
		$\mathrm{G}=10$ (Note 7)	\bullet		0.600	1.9		0.700	2.0	\%
		$G=100$ (Note 7)	\bullet		0.600	2.0		0.700	2.1	\%
		$\mathrm{G}=1000$ (Note 7)	\bullet		0.600	2.1		0.700	2.2	\%
G_{N}	Gain Nonlinearity (Notes 7, 8)	$V_{0}= \pm 10 \mathrm{~V}, \mathrm{G}=1$	\bullet		3	20		5	25	ppm
		$V_{0}= \pm 10 \mathrm{~V}, \mathrm{G}=10$ and 100	-		10	35		15	40	ppm
		$\mathrm{V} 0= \pm 10 \mathrm{~V}, \mathrm{G}=1000$	\bullet		30	70		35	100	ppm
$\Delta \mathrm{G} / \Delta \mathrm{T}$	Gain vs Temperature	G < 1000 (Note 7)	\bullet		100	200		100	200	ppm $/{ }^{\circ} \mathrm{C}$
										1168fa

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ temperature range. $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathbf{0 V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}$ unless otherwise noted. (Note 5)

SYMBOL	PARAMETER	CONDITIONS (Note 6)		LT1168AI			LT1168I			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
$V_{\text {OST }}$	Total Input Referred Offset Voltage $\mathrm{V}_{\text {OST }}=\mathrm{V}_{\text {OSI }}+\mathrm{V}_{\text {OSO }} / \mathrm{G}$									
$\mathrm{V}_{0 \text { S }}$	Input Offset Voltage		\bullet		20	75		25	100	$\mu \mathrm{V}$
$\mathrm{V}_{\text {OSIH }}$	Input Offset Voltage Hysteresis	(Notes 7, 10)	\bullet		3.0			3.0		$\mu \mathrm{V}$
$V_{\text {OSO }}$	Output Offset Voltage		\bullet		180	500		200	600	$\mu \mathrm{V}$
$\mathrm{V}_{\text {OSOH }}$	Output Offset Voltage Hysteresis	(Notes 7, 10)	\bullet		30			30		$\mu \mathrm{V}$
$\mathrm{V}_{\text {os/ }} / T$	Input Offset Drift (RTI)	(Note 9)	\bullet		0.05	0.3		0.06	0.4	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {OSO/ }}$	Output Offset Drift	(Note 9)	\bullet		0.8	5		1	6	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current		\bullet		110	550		120	700	pA
$\underline{\text { Ios/T }}$	Input Offset Current Drift		\bullet		0.3			0.3		$\mathrm{pA}^{\circ} \mathrm{C}$
I_{B}	Input Bias Current		\bullet		120	500		220	800	pA
$\mathrm{I}_{\mathrm{B}} / \mathrm{T}$	Input Bias Current Drift		\bullet		1.4	-		1.4		$\mathrm{pA} /{ }^{\circ} \mathrm{C}$
V_{Cm}	Input Voltage Range	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 2.3 \mathrm{~V} \text { to } \pm 5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \\ & \hline \end{aligned}$	\bullet	$\begin{aligned} & -V_{S}+2.1 \\ & -V_{S}+2.1 \end{aligned}$		$\begin{aligned} & +V_{S}-1.3 \\ & +V_{S}-1.4 \end{aligned}$	$\begin{aligned} & -V_{S}+2.1 \\ & -V_{S}+2.1 \end{aligned}$		$\begin{aligned} & +V_{S}-1.3 \\ & +V_{S}-1.4 \end{aligned}$	V
CMRR	Common Mode Rejection Ratio	1k Source Imbalance, $\begin{aligned} V_{C M} & =0 V \text { to } \pm 10 \mathrm{~V} \\ G & =1 \\ G & =10 \\ G & =100 \\ G & =1000 \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{gathered} 86 \\ 98 \\ 114 \\ 16 \end{gathered}$	$\begin{gathered} 90 \\ 105 \\ 118 \\ 133 \\ \hline \end{gathered}$		$\begin{aligned} & 81 \\ & 95 \\ & 112 \\ & 112 \end{aligned}$	$\begin{aligned} & 90 \\ & 105 \\ & 118 \\ & 133 \end{aligned}$		dB dB dB dB
PSRR	Power Supply Rejection Ratio	$\begin{aligned} V_{S} & = \pm 2.3 V \text { to } \pm 18 \mathrm{~V} \\ G & =1 \\ G & =10 \\ G & =100 \\ G & =1000 \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{aligned} & 100 \\ & 120 \\ & 125 \\ & 128 \\ & \hline \end{aligned}$	$\begin{aligned} & 112 \\ & 125 \\ & 132 \\ & 140 \\ & \hline \end{aligned}$		$\begin{gathered} 95 \\ 115 \\ 120 \\ 125 \\ \hline \end{gathered}$	$\begin{aligned} & 112 \\ & 125 \\ & 132 \\ & 140 \\ & \hline \end{aligned}$		dB dB dB dB
Is	Supply Current		\bullet		420	650		420	650	$\mu \mathrm{A}$
$V_{\text {OUT }}$	Output Voltage Swing	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}= \pm 2.3 \mathrm{~V} \text { to } \pm 5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 5 \mathrm{~V} \text { to } \pm 18 \mathrm{~V} \end{aligned}$	\bullet	$\begin{aligned} & \hline-V_{S}+1.4 \\ & -V_{S}+1.6 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline+V_{S}-1.3 \\ & +V_{S}-1.5 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline-V_{S}+1.4 \\ -V_{S}+1.6 \end{array}$		$\begin{aligned} & +V_{S}-1.3 \\ & +V_{S}-1.5 \\ & \hline \end{aligned}$	V V
IOUT	Output Current		\bullet	15	22		15	22		mA
SR	Slew Rate		\bullet	0.22	0.41		0.22	0.42		$\mathrm{V} / \mathrm{\mu s}$
$\mathrm{V}_{\text {ReF }}$	Voltage Range	(Note 9)	\bullet	$-\mathrm{V}_{\mathrm{S}}+1.6$		$+\mathrm{V}_{S}-1.6$	$-\mathrm{V}_{\mathrm{S}}+1.6$		$+V_{S}-1.6$	V

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: If the input voltage exceeds the supplies, the input current should be limited to less than 20 mA .
Note 3: A heat sink may be required to keep the junction temperature below absolute maximum.
Note 4: The LT1168AC/LT1168C are guaranteed functional over the operating temperature range of $-40^{\circ} \mathrm{C}$ and $85^{\circ} \mathrm{C}$.
Note 5: The LT1168AC/LT1168C are guaranteed to meet specified performance from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. The LT1168AC/LT1168C are designed, characterized and expected to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ but are not tested or QA sampled at these temperatures. The LT1168AI/LT1168I are guaranteed to meet specified performance from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Note 6: Typical parameters are defined as the 60% of the yield parameter distribution.
Note 7: Does not include the tolerance of the external gain resistor R_{G}.
Note 8: This parameter is measured in a high speed automatic tester that does not measure the thermal effects with longer time constants. The magnitude of these thermal effects are dependent on the package used, heat sinking and air flow conditions.
Note 9: This parameter is not 100% tested.
Note 10: Hysteresis in offset voltage is created by package stress that differs depending on whether the IC was previously at a higher or lower temperature. Offset voltage hysteresis is always measured at $25^{\circ} \mathrm{C}$, but the IC is cycled to $85^{\circ} \mathrm{Cl}$-grade (or $70^{\circ} \mathrm{C} \mathrm{C}$-grade) or $-40^{\circ} \mathrm{C}$-grade ($0^{\circ} \mathrm{C} \mathrm{C}$-grade) before successive measurement. 60% of the parts will pass the typical limit on the data sheet.

TYPICAL PERFORMARCE CHARACTERISTICS

1168 G0
Distribution of Input Offset Voltage Drift

1168 GO

Warm-Up Drift

Distribution of Input Offset Voltage

Output Offset Voltage
Long-Term Drift

1168 G05

Gain vs Frequency

Distribution of Output Offset Voltage Drift

Input Offset Voltage
Long-Term Drift

1168 G05

Voltage Noise Density vs Frequency

TYPICAL PERFORMARCE CHARACTERISTICS

1168 G10

0.1 Hz to 10 Hz Current Noise

1168 G13
Overshoot vs Capacitive Load

0.1 Hz to 10 Hz Noise Voltage,
 RTI $G=1000$

Short-Circuit Current vs Time

TIME FROM OUTPUT SHORT TO GROUND (MINUTES)

Input Bias Current

Current Noise Density vs Frequency

1168 G12
Output Impedance vs Frequency

Input Offset Current

TYPICAL PERFORMANCE CHARACTERISTICS

1168 G19

Settling Time (0.1\%) vs Load Capacitance

1168 G22
Rising Edge Settling Time
(0.10\%)

Settling Time vs Step Size

1168 G20

Settling Time vs Gain

1168 G21

都

Settling Time (0.01\%)
vs Load Capacitance

Input Bias and Offset Current vs Temperature

Undistorted Output Swing vs Frequency

TYPICAL PERFORMARCE CHARACTERISTICS

Large-Signal Transient Response

Small-Signal Transient Response

Large-Signal Transient Response

TYPICAL PERFORMANCE CHARACTERISTICS

Large-Signal Transient Response

Large-Signal Transient Response

Small-Signal Transient Response

Small-Signal Transient Response

Negative Power Supply Rejection Ratio vs Frequency

1168 G39

1168 G40

Common Mode Rejection Ratio vs Frequency (1k Source Imbalance)

1168 G41

Supply Current vs Temperature

BLOCK DIAGRAM

Figure 1. Block Diagram

THEORY OF OPERATION

The LT1168 is a modified version of the three op amp instrumentation amplifier. Laser trimming and monolithic construction allow tight matching and tracking of circuit parameters over the specified temperature range. Refer to the block diagram (Figure 1) to understand the following circuit description. The collector currents in Q1 and Q2 are trimmed to minimize offset voltage drift, thus assuring a high level of performance. R1 and R2 are trimmed to an absolute value of 24.7 k to assure that the gain can be set accurately $(0.6 \%$ at $G=100)$ with only one external resistor R_{G}. The value of R_{G} in parallel with $R 1$ ($R 2$) determines the transconductance of the preamp stage. As R_{G} is reduced for larger programmed gains, the transconductance of the input preamp stage increases to that of the input transistors Q1 and Q2. This increases the open-loop gain when the programmed gain is increased, reducing the input referred gain related errors and noise. The input
voltage noise at gains greater than 50 is determined only by Q1 and Q2. At lower gains the noise of the difference amplifier and preamp gain setting resistors increase the noise. The gain bandwidth product is determined by C 1 , C2 and the preamp transconductance which increases with programmed gain. Therefore, the bandwidth does not drop proportionally with gain.
The input transistors Q1 and Q2 offer excellent matching, which is inherent in NPN bipolar transistors, as well as picoampere input bias current due to superbeta processing. The collector currents in Q1 and Q2 are held constant due to the feedback through the Q1-A1-R1 loop and Q2-A2-R2 loop which in turn impresses the differential input voltage across the external gain set resistor R_{G}. Since the current that flows through R_{G} also flows through R1 and R2, the ratios provide a gained-up differential

THEORY OF OPGRATION

voltage, $G=(R 1+R 2) / R_{G}$, to the unity-gain difference amplifier A3. The common mode voltage is removed by A3, resulting in a single-ended output voltage referenced to the voltage on the REF pin. The resulting gain equation is:

$$
\mathrm{G}=\left(49.4 \mathrm{k} \Omega / \mathrm{R}_{\mathrm{G}}\right)+1
$$

solving for the gain set resistor gives:

$$
R_{G}=49.4 \mathrm{k} \Omega /(\mathrm{G}-1)
$$

Table 1 shows appropriate 1% resistor values for a variety of gains.
Table 1

DESIRED GAIN	$\mathbf{R}_{\mathbf{G}}$	CLOSEST 1\% VALUE	RESULTANT GAIN
1	Open	Open	1
2	49400Ω	49900Ω	1.99
5	12350Ω	12400Ω	4.984
10	5488.89Ω	5490Ω	9.998
20	2600Ω	2610Ω	19.93
50	1008.16Ω	1000Ω	50.4
100	498.99Ω	499Ω	99.998
200	248.24Ω	249Ω	199.4
500	99Ω	100Ω	495
1000	49.95Ω	49.4Ω	1001

Input and Output Offset Voltage

The offset voltage of the LT1168 has two components: the output offset and the input offset. The total offset voltage referred to the input (RTI) is found by dividing the output offset by the programmed gain (G) and adding it to the input offset. At high gains the input offset voltage dominates, whereas at low gains the output offset voltage dominates. The total offset voltage is:

Total input offset voltage (RTI)
= input offset + (output offset/G)
Total output offset voltage (RTO) = (input offset •G) + output offset

Reference Terminal

The reference terminal is one end of one of the four 30 k resistors around the difference amplifier. The output
voltage of the LT1168 (Pin 6) is referenced to the voltage on the reference terminal (Pin 5). Resistance in series with the REF pin must be minimized for best common mode rejection. For example, a 6Ω resistance from the REF pin to ground will not only increase the gain error by 0.02% but will lower the CMRR to 80 dB .

Input Voltage Range

The input voltage range for the LT1168 is specified in the data sheet at 1.4 V below the positive supply to 1.9 V above the negative supply for a gain of one. As the gain increases the input voltage range decreases. This is due to the IR drop across the internal gain resistors R1 and R2 in Figure 1. For the unity gain condition there is no IR drop across the gain resistors R1 and R2, the output of the GM amplifiers is just the differential input voltage at Pin 2 and Pin 3 (level shifted by one V_{BE} from Q1 and Q2). When a gain resistor is connected across Pins 1 and 8 , the output swing of the GM cells is now the differential input voltage (level shifted by V_{BE}) plus the differential voltage times the gain (ratio of the internal gain resistors to the external gain resistor across Pins 1 and 8). To calculate how close to the positive rail the input ($\mathrm{V}_{\text {IN }}$) can swing for a gain of 2 and a maximum expected output swing of 10 V , use the following equation:

$$
+V_{S}-V_{\text {IN }}=-0.5-\left(V_{\text {OUT }} / G\right) \cdot(G-1) / 2
$$

Substituting yields:

$$
-0.5-(10 / 2) \cdot(1 / 2)=-3 V
$$

below the positive supply or 12 V for a 15 V supply. To calculate how far above the negative supply the input can swing for a gain of 10 with a maximum expected output swing of -10 V , the equation for the negative case is:

$$
-V_{S}+V_{I N}=1.5-\left(V_{O U T} / G\right) \cdot(G-1) / 2
$$

Substituting yields:

$$
1.5-(-10 / 10) \cdot 9 / 2=6 V
$$

above the negative supply or -9 V for a negative supply voltage of -15 V . Figures 2 and 3 are for the positive common mode and negative common mode cases respectively.

TESIS PUCP

THEORY OF OPERATION

Figure 2. Positive Input Range vs Output Voltage for Different Gains

1168 F03
Figure 3. Negative Input Voltage Range vs Output Voltage for Various Gains

Single Supply Operation

For best results under single supply operation, the REF pin should be raised above the negative supply (Pin 4) and one of the inputs should be at least 2.5 V above ground. The barometer application later in this data sheet is an example that satisfies these conditions. The resistance $\mathrm{R}_{\text {SET }}$ from the bridge transducer to ground sets the operating current for the bridge, and with R6, also has the effect of raising the input common mode voltage. The output of the LT1168 is always inside the specified range since the barometric pressure rarely goes low enough to cause the output to clip (30.00 inches of Hg corresponds to 3.000 V). For applications that require the output to swing at or below the REF
potential, the voltage on the REF pin can be further level shifted. The application in the front of this data sheet, Single Supply Pressure Monitor, is an example. An op amp is used to buffer the voltage on the REF pin since a parasitic series resistance will degrade the CMRR.

Output Offset Trimming

The LT1168 is laser trimmed for low offset voltage so that no external offset trimming is required for most applications. In the event that the offset needs to be adjusted, the circuit in Figure 4 is an example of an optional offset adjust circuit. The op amp buffer provides a low impedance to the REF pin where resistance must be kept to minimum for best CMRR and lowest gain error.

Figure 4. Optional Trimming of Output Offset Voltage

Input Bias Current Return Path

The low input bias current of the LT1168 (250pA) and the high input impedance ($200 \mathrm{G} \Omega$) allow the use of high impedance sources without introducing additional offset voltage errors, even when the full common mode range is required. However, a path must be provided for the input bias currents of both inputs when a purely differential signal is being amplified. Without this path the inputs will float to either rail and exceed the input common mode range of the LT1168, resulting in a saturated input stage. Figure 5 shows three examples of an input bias current

THEORY OF OPGRATION

path. The first example is of a purely differential signal source with a $10 \mathrm{k} \Omega$ input current path to ground. Since the impedance of the signal source is low, only one resistor is needed. Two matching resistors are needed for higher
impedance signal sources as shown in the second example. Balancing the input impedance improves both common mode rejection and DC offset.

Figure 5. Providing an Input Common Mode Current Path

APPLICATIONS INFORMATION

The LT1168 is a low power precision instrumentation amplifier that requires only one external resistor to accurately set the gain anywhere from 1 to 1000. The LT1168 is trimmed for critical DC parameters such as gain error ($0.04 \%, G=10$), input offset voltage ($40 \mu \mathrm{~V}, \mathrm{RTI}$), CMRR (90 dB min, $G=1$) and PSRR (103 dB min, $G=1$). These trims allow the amplifier to achieve very high DC accuracy. The LT1168 achieves low input bias current of just 250pA (max) through the use of superbeta processing. The output can handle capacitive loads up to 1000pF in any gain configuration and the inputs are protected against ESD strikes up to $\pm 13 \mathrm{kV}$ (human body).

Input Protection

The LT1168 can safely handle up to $\pm 20 \mathrm{~mA}$ of input current in an overload condition. Adding an external 5 k input resistor in series with each input allows DC input fault voltage up to $\pm 100 \mathrm{~V}$ and improves the ESD immunity to $\pm 8 \mathrm{kV}$ (contact) and $\pm 15 \mathrm{kV}$ (air discharge), which is the IEC 1000-4-2 level 4 specification. If lower value input resistors must be used, a clamp diode from the positive supply to each input will maintain the IEC 1000-4-2
specification to level 4 for both air and contact discharge. A 2N4393 drain/source to gate is a good low leakage diode for use with resistors between 1k and 20k, see Figure 6. The input resistors should be carbon and not metal film or carbon film in order to withstand the fault conditions.

Figure 6. Input Protection

RFI Reduction

In many industrial and data acquisition applications, instrumentation amplifiers are used to accurately amplify small signals in the presence of large common mode

APPLICATIONS INFORMATION

voltages or high levels of noise. Typically, the sources of these very small signals (on the order of microvolts or millivolts) are sensors that can be a significant distance from the signal conditioning circuit. Although these sensors may be connected to signal conditioning circuitry, using shielded or unshielded twisted-pair cabling, the cabling may act as antennae, conveying very high frequency interference directly into the input stage of the LT1168.

The amplitude and frequency of the interference can have an adverse effect on an instrumentation amplifier's input stage by causing an unwanted DC shift in the amplifier's input offset voltage. This well known effect is called RFI rectification and is produced when out-of-band interference is coupled (inductively, capacitively or via radiation) and rectified by the instrumentation amplifier's input transistors. These transistors act as high frequency signal detectors, in the same way diodes were used as RF envelope detectors in early radio designs. Regardless of the type of interference or the method by which it is coupled into the circuit, an out-of-band error signal appears in series with the instrumentation amplifier's inputs.

To significantly reduce the effect of these out-of-band signals on the input offset voltage of instrumentation amplifiers, simple lowpass filters can be used at the inputs. This filter should be located very close to the input pins of the circuit. An effective filter configuration is illustrated in Figure 7, where three capacitors have been added to the inputs of the LT1168. Capacitors $\mathrm{C}_{\mathrm{XCM} 1}$ and CXCM2 form lowpass filters with the external series resistors $\mathrm{R}_{\mathrm{S} 1,2}$ to any out-of-band signal appearing on each of the input traces. Capacitor $\mathrm{C}_{\text {XD }}$ forms a filter to reduce any unwanted signal that would appear across the inputtraces. An added benefit to using $C_{X D}$ is that the circuit's AC common mode rejection is not degraded due to common mode capacitive imbalance. The differential mode and common mode time constants associated with the capacitors are:

$$
\begin{aligned}
& t_{D M(L P F)}=\left(R_{S 1}+R_{S 2}\right)\left(C_{X D}+C_{X C M 1}+C_{X C M 2}\right) \\
& t_{\mathrm{CM}(L P F)}=\left(R_{S 1} \| R_{S 2}\right)\left(C_{X C M 1}+C_{X C M 2}\right)
\end{aligned}
$$

Setting the time constants requires a knowledge of the frequency, or frequencies of the interference. Once this
frequency is known, the common mode time constants can be set followed by the differential mode time constant. To avoid any possibility of inadvertently affecting the signal to be processed, set the common mode time constant an order of magnitude (or more) smaller than the differential mode time constant. Set the common mode time constants such that they do not degrade the LT1168 inherent AC CMR. Then the differential mode time constant can be set for the bandwidth required for the application. Setting the differential mode time constant close to the sensor's BW also minimizes any noise pickup along the leads. To avoid any possibility of common mode to differential mode signal conversion, match the common mode time constants to 1% or better. If the sensor is an RTD or a resistive strain gauge and is in proximity to the instrumentation amplifier, then the series resistors $\mathrm{R}_{\mathrm{S} 1,2}$ can be omitted.

Figure 7. Adding a Simple RC Filter at the Inputs to an Instrumentation Amplifier is Effective in Reducing Rectification of High Frequency Out-of-Band Signals

Nerve Impulse Amplifier

The LT1168's low current noise makes it ideal for EMG monitors that have high source impedances. Demonstrating the LT1168's ability to amplify low level signals, the circuit in Figure 8 takes advantage of the amplifier's high gain and low noise operation. This circuit amplifies the low level nerve impulse signals received from a patient at Pins 2 and $3 . \mathrm{R}_{\mathrm{G}}$ and the parallel combination of R 3 and R 4 set a gain of ten. The potential on LT1112's Pin 1 creates

APPLICATIONS INFORMATION

a ground for the common mode signal. C1 was chosen to maintain the stability of the patient ground. The LT1168's high CMRR ensures that the desired differential signal is amplified and unwanted common mode signals are attenuated. Since the DC portion of the signal is not important, R6 and C2 make up a 0.3 Hz highpass filter. The AC signal at LT1112's Pin 5 is amplified by a gain of 101 set by R7/R8 +1. The parallel combination of C 3 and R 7 form a lowpass filter that decreases this gain at frequencies above 1 kHz . The ability to operate at $\pm 3 \mathrm{~V}$ on $350 \mu \mathrm{~A}$ of supply current makes the LT1168 ideal for battery-powered applications. Total supply current for this application is 1.05 mA . Proper safeguards, such as isolation, must be added to this circuit to protect the patient from possible harm.

Low IB Favors High Impedance Bridges, Lowers Dissipation

The LT1168's low supply current, low supply voltage operation and low input bias currents allow it to fit nicely into battery-powered applications. Low overall power dissipation necessitates using higher impedance bridges. The single supply pressure monitor application on the front of this data sheet, shows the LT1168 connected to the differential output of a 3.5 k bridge. The picoampere input bias currents keep the error caused by offset current to a negligible level. The LT1112 level shifts the LT1168's reference pin and the ADC's analog ground pins above ground. The LT1168's and LT1112's combined power dissipation is still less than the bridge's. This circuit's total supply current is just 2.2 mA .

Figure 8. Nerve Impulse Amplifier

Figure 9. Precision Temperature Without Precision Resistors

1168 F10
Figure 10. Response of Figure 9 for Various Thermistors

No ci.ide citar esta tesis

TYPICAL APPLICATIONS

Single Supply Barometer

AC Coupled Instrumentation Amplifier

4-Digit Pressure Sensor

S8 Package
8-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG \# 05-08-1610)

INCHES
2. DRAWING NOT TO SCALE
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)

LT1168

TYPICAL APPLICATION

Low Power Programmable Audio HPF/LPF with "Pop-Less" Switching

RELATGD PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1043	Dual Precision Instrumentation Building Block	Switched Capacitor, Rail-to-Rail Input, 120dB CMRR
LTC1100	Precision Chopper-Stabilized Instrumentation Amplifier	$\mathrm{G}=10$ or $100, \mathrm{~V}_{0 \mathrm{~S}}=10 \mu \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=50 \mathrm{pA}$
LT1101	Precision, Micropower, Single Supply Instrumentation Amplifier	$\mathrm{G}=10$ or $100, \mathrm{I}_{\mathrm{S}}=105 \mu \mathrm{~A}$
LT1102	High Speed, JFET Instrumentation Amplifier	$\mathrm{G}=10$ or 100, Slew Rate $=30 \mathrm{~V} / \mu \mathrm{S}$
LT1167	Single Resistor Programmable Precision Instrumentation Amplifier	Lower Noise than LT1168, $\mathrm{e}_{\mathrm{N}}=7.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$

12064 TL064A - TL064B

LOW POWER J-FET QUAD OPERATIONAL AMPLIFIERS

■ VERY LOW POWER CONSUMPTION : $200 \mu \mathrm{~A}$

- WIDE COMMON-MODE (UP TO $\mathrm{V}_{\mathrm{Cc}}{ }^{+}$) AND DIFFERENTIAL VOLTAGE RANGES

■ LOW INPUT BIAS AND OFFSET CURRENTS
■ OUTPUT SHORT-CIRCUIT PROTECTION
■ HIGH INPUT IMPEDANCE J-FET INPUT STAGE
■ INTERNAL FREQUENCY COMPENSATION
■ LATCH UP FREE OPERATION
■ HIGH SLEW RATE : $3.5 \mathrm{~V} / \mathrm{\mu s}$

DESCRIPTION

The TL064, TL064A and TL064B are high speed J-FET input quad operational amplifiers. Each of these J-FET input operational amplifiers incorporates well matched, high voltage J-FET and bipolar transistors in a monolithic integrated circuit.

The device features high slew rate, low input bias and offset currents, and low offset voltage temperature coefficient.

ORDER CODE

Part Number	Temperature Range	Package	
		N	D
TL064M/AM/BM	$-55^{\circ} \mathrm{C},+125^{\circ} \mathrm{C}$	\bullet	\bullet
TL064I/AI/BI	$-40^{\circ} \mathrm{C},+105^{\circ} \mathrm{C}$	\bullet	\bullet
TL064C/AC/BC	$0^{\circ} \mathrm{C},+70^{\circ} \mathrm{C}$	\bullet	\bullet
Example : TL064IN			

N = Dual in Line Package (DIP)
D = Small Outline Package (SO) - also available in Tape \& Reel (DT)

PIN CONNECTIONS (top view)

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	TL064M, AM, BM	TL064I, AI, BI	TL064C, AC, BC	Unit
V_{CC}	Supply voltage - note ${ }^{1)}$		± 18		V
V_{i}	Input Voltage - note ${ }^{2)}$		± 15		V
$V_{\text {id }}$	Differential Input Voltage - note ${ }^{3)}$		± 30		V
$\mathrm{P}_{\text {tot }}$	Power Dissipation		680		mW
	Output Short-circuit Duration - note ${ }^{4)}$		Infinite		
$\mathrm{T}_{\text {oper }}$	Operating Free-air Temperature Range	-55 to +125	-40 to +105	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range		-65 to +150		${ }^{\circ} \mathrm{C}$

1. All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between $\mathrm{V}_{\mathrm{CC}}{ }^{+}$and V_{CC}.
2. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less.
3. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
4. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded

ELECTRICAL CHARACTERISTICS
$\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=+25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	TL064M			TL064I			TL064C			Unit
		Min.	Typ.	Max.	Min.	Typ.	Max.	Min.	Typ.	Max.	
$\mathrm{V}_{\text {io }}$	$\begin{gathered} \text { Input Offset Voltage }\left(\mathrm{R}_{\mathrm{s}}=50 \Omega\right) \\ \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{gathered}$		3	$\begin{gathered} 6 \\ 15 \end{gathered}$		3	$\begin{aligned} & 6 \\ & 9 \end{aligned}$		3	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	mV
$D V_{\text {io }}$	Temperature Coefficient of Input Offset Voltage ($\mathrm{R}_{\mathrm{s}}=50 \Omega$)		10			10			10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {io }}$	Input Offset Current - note ${ }^{1)}$ $\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$		5	$\begin{gathered} 100 \\ 20 \end{gathered}$		5	$\begin{gathered} 100 \\ 10 \end{gathered}$		5	$\begin{gathered} 200 \\ 5 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{l}_{\text {ib }}$	$\begin{gathered} \text { Input Bias Current - note 1 } \\ T_{\text {amb }}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{gathered}$		30	$\begin{gathered} 200 \\ 50 \end{gathered}$		30	$\begin{gathered} 200 \\ 20 \end{gathered}$		30	$\begin{gathered} 400 \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{V}_{\text {icm }}$	Input Common Mode Voltage Range	± 11.5	$\begin{aligned} & +15 \\ & -12 \end{aligned}$		± 11.5	$\begin{aligned} & +15 \\ & -12 \end{aligned}$		± 11	$\begin{aligned} & +15 \\ & -12 \end{aligned}$		V
$V_{\text {opp }}$	$\begin{gathered} \text { Output Voltage Swing }\left(R_{\mathrm{L}}=10 \mathrm{k} \Omega\right) \\ \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{gathered}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	27		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	27		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	27		V
A_{vd}	Large Signal Voltage Gain $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{o}}= \pm 10 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	6		$\begin{aligned} & 4 \\ & 4 \end{aligned}$	6		$\begin{aligned} & 3 \\ & 3 \end{aligned}$	6		V/mV
GBP	$\begin{gathered} \text { Gain Bandwith Product } \\ \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \end{gathered}$		1			1			1		MHz
R_{i}	Input Resistance		10^{12}			10^{12}			10^{12}		Ω
CMR	Common Mode Rejection Ratio $R_{S}=50 \Omega$	80	86		80	86		70	76		dB
SVR	Supply Voltage Rejection Ratio $R_{S}=50 \Omega$	80	95		80	95		70	95		dB
I_{CC}	Supply Current, Per Amplifier $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, no load, no signal		200	250		200	250		200	250	$\mu \mathrm{A}$
$\mathrm{V}_{01} / \mathrm{V}_{02}$	Channel Separation $\mathrm{A}_{\mathrm{v}}=100, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$		120			120			120		dB
P_{D}	Total Power Consumption $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, no load, no signal		6	7.5		6	7.5		6	7.5	mW
SR	$\begin{aligned} & \text { Slew Rate } \\ & V_{i}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{~A}_{\mathrm{V}}=1 \end{aligned}$	1.5	3.5		1.5	3.5		1.5	3.5		V/us
t_{r}	$\begin{gathered} \hline \text { Rise Time } 5 \text { (see figure 1) } \\ V_{i}=20 \mathrm{mV}, R_{L}=10 \mathrm{k} \Omega, \\ C_{L}=100 \mathrm{pF}, A_{V}=1 \end{gathered}$		0.2			0.2			0.2		$\mu \mathrm{S}$
K_{ov}	$\begin{array}{\|l} \hline \text { Overshoot Factor (see figure 1) } \\ V_{i}=20 \mathrm{mV}, R_{L}=10 \mathrm{k} \Omega, \\ C_{L}=100 \mathrm{pF}, A_{v}=1 \text { (see figure 1) } \end{array}$		10			10			10		\%
e_{n}	Equivalent Input Noise Voltage $R_{S}=100 \Omega, f=1 \mathrm{KHz}$		42			42			42		$\frac{n \mathrm{~V}}{\sqrt{\mathrm{~Hz}}}$

1. The input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive.

Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible.

TL064 - TL064A - TL064B

ELECTRICAL CHARACTERISTICS
$\mathrm{V}_{\mathrm{CC}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	TL064AC, Al, AM			TL064BC, BI, BM			Unit
		Min.	Typ.	Max.	Min.	Typ.	Max.	
$\mathrm{V}_{\text {io }}$	$\begin{gathered} \text { Input Offset Voltage }\left(\mathrm{R}_{\mathrm{s}}=50 \Omega\right) \\ \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{gathered}$		3	$\begin{gathered} 6 \\ 7.5 \end{gathered}$		2	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	mV
DV ${ }_{\text {io }}$	Temperature Coefficient of Input Offset Voltage ($\mathrm{R}_{\mathrm{s}}=50 \Omega$)		10			10		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\mathrm{l}_{\text {io }}$	Input Offset Current - note ${ }^{1)}$ $\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$		5	$\begin{gathered} 100 \\ 3 \end{gathered}$		5	$\begin{gathered} 100 \\ 3 \end{gathered}$	$\begin{aligned} & \mathrm{pA} \\ & \mathrm{nA} \end{aligned}$
$\mathrm{l}_{\text {ib }}$	Input Bias Current - note 1 $\begin{aligned} & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{aligned}$		30	$\begin{gathered} 200 \\ 7 \end{gathered}$		30	$\begin{gathered} 200 \\ 7 \end{gathered}$	$\begin{aligned} & \text { pA } \\ & \text { nA } \end{aligned}$
$\mathrm{V}_{\mathrm{icm}}$	Input Common Mode Voltage Range	± 11.5	$\begin{aligned} & +15 \\ & -12 \end{aligned}$		± 11.5	$\begin{aligned} & \hline+15 \\ & -12 \end{aligned}$		V
$V_{\text {opp }}$	$\begin{gathered} \text { Output Voltage Swing }\left(R_{L}=10 \mathrm{k} \Omega\right) \\ T_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ T_{\min } \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\max } \end{gathered}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	27		$\begin{aligned} & 20 \\ & 20 \end{aligned}$	27		V
A_{vd}	$\begin{gathered} \text { Large Signal Voltage Gain } \\ R_{L}=10 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \\ T_{\mathrm{amb}}=25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\text {min }} \leq \mathrm{T}_{\mathrm{amb}} \leq \mathrm{T}_{\text {max }} \end{gathered}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	6		$\begin{aligned} & 4 \\ & 4 \end{aligned}$	6		V / mV
GBP	Gain Bandwidth Product $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		1			1		MHz
R_{i}	Input Resistance		10^{12}			10^{12}		Ω
CMR	Common Mode Rejection Ratio $R_{S}=50 \Omega$	80	86		80	86		dB
SVR	Supply Voltage Rejection Ratio $R_{S}=50 \Omega$	80	95		80	95		dB
I_{CC}	Supply Current (Per Amplifier) $\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$, no load, no signal		200	250		200	250	$\mu \mathrm{A}$
$\mathrm{V}_{01} / \mathrm{V}_{02}$	Channel Separation $\mathrm{A}_{\mathrm{v}}=100, \mathrm{~T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$		120			120		dB
P_{D}	Total Power Consumption (Each Amplifier) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$, no load, no signal		6	7.5		6	7.5	mW
SR	Slew Rate $V_{i}=10 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}, A_{v}=1$	1.5	3.5		1.5	3.5		$\mathrm{V} / \mu \mathrm{s}$
t_{r}	Rise Time $V_{i}=20 \mathrm{mV}, R_{L}=10 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}, A_{\mathrm{v}}=1$		0.2			0.2		$\mu \mathrm{s}$
K_{ov}	Overshoot Factor (see figure 1) $V_{i}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{~A}_{\mathrm{v}}=1$		10			10		\%
e_{n}	Equivalent Input Noise Voltage $R_{S}=100 \Omega, f=1 \mathrm{KHz}$		42			42		$\frac{\mathrm{nV}}{\sqrt{\mathrm{Hz}}}$

1. The input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive.

Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible.

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE versus SUPPLY VOLTAGE

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE versus LOAD RESISTANCE

DIFFERENTIAL VOLTAGE AMPLIFICATION versus FREE AIR TEMPERATURE

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE versus FREE AIR TEMPERATURE

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE versus FREQUENCY

LARGE SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT versus FREQUENCY

SUPPLY CURRENT PER AMPLIFIER versus SUPPLY VOLTAGE

TOTAL POWER DISSIPATED versus FREE AIR TEMPERATURE

NORMALIZED UNITY GAIN BANDWIDTH
SLEW RATE, AND PHASE SHIFT versus TEMPERATURE

SUPPLY CURRENT PER AMPLIFIER versus FREE AIR TEMPERATURE

COMMON MODE REJECTION RATIO versus FREE AIR TEMPERATURE

INPUT BIAS CURRENT versus FREE AIR TEMPERATURE

VOLTAGE FOLLOWER LARGE SIGNAL PULSE OUTPUT VOLTAGE versus ELAPSED TIME RESPONSE

EQUIVALENT INPUT NOISE VOLTAGE versus FREQUENCY

PARAMETER MEASUREMENT INFORMATION

Figure 1 : Voltage Follower

Figure 2 : Gain-of-10 Inverting Amplifier

TYPICAL APPLICATIONS

AUDIO DISTRIBUTOR AMPLIFIER

PACKAGE MECHANICAL DATA
14 PINS - PLASTIC DIP

Dimensions	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
a1	0.51			0.020		
B	1.39		1.65	0.055		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20		0.335	
E		8.5			0.100	
e		2.54			0.600	
e3		15.24				0.280
F			7.1		0.130	0.201
i			5.1			0.100
L		3.3				

PACKAGE MECHANICAL DATA
14 PINS - PLASTIC MICROPACKAGE (SO)

Dimensions	Millimeters			Inches		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A			1.75		!	0.069
a1	0.1		0.2	0.004		0.008
a2			1.6			0.063
b	0.35		0.46	0.014		0.018
b1	0.19		0.25	0.007		0.010
C		0.5			0.020	
c1	45° (typ.)					
D (1)	8.55		8.75	0.336		0.344
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		7.62			0.300	
F (1)	3.8		4.0	0.150		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.020		0.050
M			0.68			0.027
S	8° (max.)					

Note : (1) D and F do not include mold flash or protrusions - Mold flash or protrusions shall not exceed 0.15 mm (. 066 inc) ONLY FOR DATA BOOK.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics

© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom
© http://www.st.com

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

```
%% Apertura del serie (COM)
```

```
%borrar previos
delete(instrfind({'Port'},{'COM4'}));
%crear objeto serie
s=serial('COM4');
set(s,'Baudrate',9600); % se configura la velocidad a 9600 Baudios
set(s,'StopBits',1); % se configura bit de parada a uno
set(s,'DataBits',8); % se configura que el dato es de 8 bits, debe estar
entre 5 y 8
set(s,'Parity','odd'); % se configura sin paridad
set(s,'Terminator','CR/LF');% "c" caracter con que finaliza el envío
warning('off','MATLAB:serial:fscanf:unsuccessfulRead');
%abrir puerto
fopen(s);
%% Preparar medida
% parámetros de medidas
tmax = 10; % tiempo de captura en s
rate = 79; % resultado experimental
% preparar la figura
f = figure('Name','Captura');
a = axes('XLim',[0 tmax],'YLim',[0 5.1]);
l1 = line(nan,nan,'Color','r','LineWidth',2);
xlabel('Tiempo (s)')
ylabel('Voltaje (V)')
title('Captura de señal EMG')
grid on
hold on
```

```
%% Bucle
```

%% Bucle
% inicializar
% inicializar
v1 = zeros(1,tmax*rate);
v1 = zeros(1,tmax*rate);
i = 1;
i = 1;
t = 0;
t = 0;
% ejecutar bucle cronometrado
tic
while t<tmax
t = toc;
% leer del puerto serie
a = fscanf(s,'%d')';
v1(i)=a(1)*5/256;
% dibujar en la figura
x = linspace(0,i/rate,i);
set(l1,'YData',v1(1:i),'XData',x);
drawnow
% seguir
i = i+1;
end
% resultado del cronometro
clc;
fprintf('%g s de captura a %g cap/s \n',t,i/t);

```
```

%%
fclose(s);
delete(s);
clear s;

```
\% Apertura del serie (COM)
\%borrar previos
delete(instrfind(\{'Port'\},\{'COM4'\}));
ocrear objeto serie
s=serial('COM4');
set(s,'Baudrate',9600); \% se configura la velocidad a 9600 Baudios
set(s,'StopBits',1); \% se configura bit de parada a uno
set(s,'DataBits',8); \% se configura que el dato es de 8 bits, debe estar
entre 5 y 8
set(s,'Parity','odd'); \% se configura sin paridad
set (s,'Terminator','CR/LF'); o "c" caracter con que finaliza el envío warning('off','MATLAB:serial:fscanf:unsuccessfulRead');
\%abrir puerto
fopen(s);
\%\% Preparar medida
```

% parámetros de medidas
tmax = 10; % tiempo de captura en s
rate = 55; % resultado experimental
% preparar la figura
f1 = figure('Name','Captura');
a = axes('XLim',[0 tmax],'YLim',[0 5.1]);
l1 = line(nan,nan,'Color','r','LineWidth',2);
xlabel('Tiempo (s)')
ylabel('Voltaje (V)')
grid on
hold on
f2 = figure('Name','Captura');
b = axes('XLim',[0 tmax],'YLim',[0 5.1]);
l2 = line(nan,nan,'Color','b','LineWidth',2);
xlabel('Tiempo (s)')
ylabel('Voltaje (V)')
title('Captura de la señal de EMG')
grid on
hold on

```
\%\% Bucle
\% inicializar
v1 = zeros(1,tmax*rate);
v2 = zeros(1,tmax*rate);
i = 1;
\(t=0\);
\% ejecutar bucle cronometrado
tic
while t<tmax
    t = toc;
    \% leer del puerto serie
    \(\mathrm{a}=\mathrm{fscanf}\left(\mathrm{s}, \mathrm{\prime} \% \mathrm{~d}, \circ \mathrm{o} \mathrm{l}^{\prime}\right)\) ';
    v1 (i) \(=\) a (1) *5/256;
    v2 (i) \(=\) a (2) *5/256;
    \% dibujar en la figura
\(x=\operatorname{linspace}(0, i / r a t e, i) ;\)
set (l1, 'YData', v1 (1:i), 'XData', x) ;
set (12, 'YData', v2(1:i),'XData',x);
drawnow
\% seguir
\(i=i+1\);
end
\% resultado del cronometro
clc;
fprintf('\%g s de captura a \%g cap/s \(\left.\backslash n^{\prime}, t, i / t\right) ;\)
\(\% \%\)
fclose (s);
delete(s);
clear s; del peru
```

; BASIC .ASM template file for AVR

```
.include "C:\VMLAB\include\m8def.inc"
; Define here Reset and interrupt vectors, if any
;
.def dato=r18
.def canal=r17
.cseg
    .org 0
reset:
    rjmp start
;***************************************************
;************ROGRAMA PRINCIPAL
;*******************
;**********************************************
start:
Idi R16,high(RAMEND) ;Valor inicial del puntero de pila
out SPH,R16
Idi R16,low(RAMEND)
out SPL,R16
Idi r16, \$FF
out ddrb, r16
Idi r16,0
out portb, r16
rcall Configura_ADC
rcall Configura_USART
Idi canal, 0
Empezar_conversion:
; Bit6 = ADSC, Start Conversion
    cpi canal,0
    breq analog_0
    cpi canal,1
    breq analog_1
    cpi canal,2
    breq analog_2
cpi canal,3
breq analog_3
cpi canal,4
breq analog_4
cpi canal,5
breq analog_5
analog_0:
cbi ADMUX, 0 ;se elige canal 0
cbi ADMUX, 1
cbi ADMUX, 2
sbi ADCSR, 6
Esperar_final0:
sbic ADCSR, 6
rjmp Esperar_final0
in dato, ADCH ;solo ADCH xq res = 8 bits
rcall usart
inc canal
rjmp Empezar_conversion
analog_1:
sbi ADMUX, \(0 \quad\);se elige canal 1
cbi ADMUX, 1
cbi ADMUX, 2
sbi ADCSR, 6
Esperar_final1:
sbic ADCSR, 6
rjmp Esperar_final1
in dato, ADCH ;solo ADCH xq res \(=8\) bits
rcall usart
inc canal
rjmp Empezar_conversion
analog_2:
cbi ADMUX, \(0 \quad\);se elige canal 2
sbi ADMUX, 1
cbi ADMUX, 2
sbi ADCSR, 6
Esperar_final2:
sbic ADCSR, 6
rjmp Esperar_final2
in dato, ADCH ;solo ADCH xq res \(=8\) bits
rcall usart
inc canal
rjmp Empezar_conversion
analog_3:
sbi ADMUX, \(0 \quad\);se elige canal 3
sbi ADMUX, 1
cbi ADMUX, 0
sbi ADCSR, 6
Esperar_final3:
sbic ADCSR, 6
rjmp Esperar_final3
in dato, ADCH ;solo \(\mathrm{ADCH} \times \mathrm{xq}\) res \(=8\) bits
rcall usart
inc canal
rjmp Empezar_conversion
analog_4:
cbi ADMUX, \(0 \quad\);se elige canal 4
cbi ADMUX, 1
sbi ADMUX, 2
sbi ADCSR, 6
Esperar_final4:
sbic ADCSR, 6
rjmp Esperar_final4
in dato, ADCH ;solo ADCH xq res \(=8\) bits
rcall usart
inc canal
rjmp Empezar_conversion
analog_5:
sbi ADMUX, \(0 \quad\);se elige canal 5
cbi ADMUX, 1
sbi ADMUX, 2
sbi ADCSR, 6
Esperar_final5:
sbic ADCSR, 6
rjmp Esperar_final5
in dato, ADCH ;solo ADCH xq res \(=8\) bits
rcall usart
Idi canal, 0
rjmp Empezar_conversion
```

;***
;*
;*************COnfigura ADC*****************************
;*
Configura_ADC:
push r16

```
; PC: entrada, pull-up off
Idi r16,\$00
out DDRC, r16
;Idi r16,\$00
;out PORTC, r16
; Ref \(=\mathrm{AVcc}=\mathrm{Vcc}\), Left Adjust( \(\mathrm{n}=8 \mathrm{bits}\) )
Idi r16, 0b01100000
out ADMUX, r16
;ADC enabled, ADCclk \(=1 / 32 \mathrm{clk}\)
Idi r16, 10000101
out ADCSR, r16
pop r16
ret
;******************************************************
;******************************************************
;*************COnfigura USART
\(; * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\)
Configura_USART:
push r16
; \(\mathrm{U} 2 \mathrm{X}=1\) velocidad doble
Idi \(\quad\) r16, ( \(0 \ll\) RXC | \(0 \ll\) TXC | \(1 \ll\) U2X | \(0 \ll\) MPCM)
out UCSRA, r16
;velocidad 9600, 16Mhz
Idi r16, high(\$CF)
out UBRRH, r16
Idi r16, low(\$cF)
out UBRRL, r16
;comunicacion asincrona, paridad impar, 1 bit de parada, 8 bits de datos
Idi \(\quad\) r16, ( \(1 \ll\) URSEL | \(0 \ll\) UMSEL | \(1 \ll U P M 1|1 \ll U P M 0| 0 \ll U S B S|1 \ll U C S Z 1| 1 \ll U C S Z O)\)
out UCSRC, r16
;interrupciones inhabilitadas, TX y Rx habilitadas
Idi \(\quad\) r16, \((0 \ll\) RXCIE | \(0 \ll\) TXCIE | \(0 \ll\) UDRIE | \(1 \ll\) RXEN | \(1 \ll\) TXEN | \(0 \ll\) UCSZ2 \(\mid 0 \ll\) TXB8 \()\)
out UCSRB, r16
pop r16
ret
```

ret

```
```

;***

;**************USART **********************************
;***

```
usart:

EsperaTxLibre:
sbis UCSRA, UDRE
rjmp EsperaTxLibre
out UDR, dato
ret```


[^0]:    Neither the whole nor any part of the information contained in, or the product described in this manual, may be adapted or reproduced in any material or electronic form without the prior written consent of the copyright holder. This product and its documentation are supplied on an as-is basis and no warranty as to their suitability for any particular purpose is either made or implied. Future Technology Devices International Ltd will not accept any claim for damages howsoever arising as a result of use or failure of this product. Your statutory rights are not affected. This product or any variant of it is not intended for use in any medical appliance, device or system in which the failure of the product might reasonably be expected to result in personal injury. This document provides preliminary information that may be subject to change without notice. No freedom to use patents or other intellectual property rights is implied by the publication of this document. Future Technology Devices International Ltd, Unit 1, 2 Seaward Place, Centurion Business Park, Glasgow G41 1HH United Kingdom. Scotland Registered Company Number: SC136640

[^1]:    $\boldsymbol{\Omega}$, LT, LTC and LTM are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

