
PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

FACULTAD DE CIENCIAS E INGENIERÍA

FAST LIDAR DATA REGISTRATION USING GPUs

Tesis para obtener el título profesional de Ingeniero Electrónico

AUTOR:

Carlos Enrique Huapaya Avalos

ASESOR:

César Alberto Carranza de la Cruz

Lima, Agosto, 2023

Informe de Similitud

Yo, Cesar Alberto Carranza de la Cruz, docente de la Facultad de Ciencias e Ingeniería de la Pontificia

Universidad Católica del Perú, asesor de la tesis titulada FAST LIDAR DATA REGISTRATION USING GPUs,

del autor Carlos Enrique Huapaya Avalos,

dejo constancia de lo siguiente:

- El mencionado documento tiene un índice de puntuación de similitud de 10 %. Así lo consigna

el reporte de similitud emitido por el software Turnitin el 01/08/2023.

- He revisado con detalle dicho reporte y la Tesis o Trabajo de Suficiencia Profesional, y no se

advierte indicios de plagio.

- Las citas a otros autores y sus respectivas referencias cumplen con las pautas académicas.

Lugar y fecha: Lima, 25 de agosto de 2023

Apellidos y nombres del asesor: Carranza de la Cruz, Cesar Alberto

DNI: 09641576 Firma

ORCID: 0000-0003-1222-0118

Resumen

En los últimos años, la llegada de las cámaras de profundidad de bajo costo y sensores

LiDAR ha incentivado a las industrias a invertir en estas tecnologı́as, lo cual incluye

también mayor interés en investigaciones sobre procesamiento digital de señales. En esta

ocasión, la reconstrucción tridimensional de túneles mineros utilizando LiDARs y un

robot de auto-navegación ha sido propuesta como proyecto de investigación, y el

presente trabajo forma parte encargándose del alineamiento de nubes de puntos

tridimensionales en tiempo real, un proceso que es más conocido como Registro de

Nubes de Puntos. Existen muchos algoritmos que pueden resolver este problema, pero

para el proyecto, el algoritmo solo necesita calcular la alineación fina y rı́gida. Al

comparar los algoritmos de registro más avanzados, se encontró que el popular algoritmo

ICP es el más adecuado para este caso debido a su alta robustez y eficiencia. Dentro de

este algoritmo, se encuentran 3 pasos simples: relación, minimización y transformación,

junto con una colección de variaciones de estos pasos que han sido desarrolladas a lo

largo de las últimas décadas. Basándose en esto, en este trabajo se diseñó e implementó

un algoritmo ICP paralelo en CPU y GPU. Además, las optimizaciones en recursos de

memoria, ocupación de núcleos y el uso de la técnica de desenrollado de bucles para la

implementación en GPU permiten que la implementación propuesta de ICP alcance un

rendimiento 95 veces más rápido que implementaciones de CPU altamente optimizadas.

Abstract

In the last years, the advent of low-cost depth cameras and LiDAR sensors has

encouraged industries to invest in these technologies, which includes research about

digital signal processing. This time, 3D surfaces reconstructions of mining tunnels using

LiDARs and a self-navigation robot have been proposed as a research project and this

work is in charge of performing the alignment of data that come from the LiDARs in

real-time, a process that is most known as 3D Point Cloud Registration. Many

algorithms can solve this problem, but for the project, the algorithm only needs to

compute for fine-rigid alignment. Comparing state-of-the-art registration algorithms, it is

found that the popular ICP algorithm is the best suited for this case since its high

robustness and efficiency. Inside this algorithm, there are 3 simple steps: matching,

minimization, and transformation, and a diverse collection of variations of these steps

that have been developed through the last decades. Based on this, a parallel ICP

algorithm is designed and implemented in CPU and GPU. Moreover, optimizations in

memory resources, cores occupancy, and the usage of the loop unrolling technique for

the GPU implementation lead the proposed ICP implementation to reach a performance

of 95 times faster than highly-optimized CPU implementations.

Dedicado con mucho cariño a mis padres, a mi hermano,

a toda mi familia y amigos que me han brindado su apoyo a lo largo de todos estos años.

General Index

Introducción 1

1 3D Model Reconstructions and the Point Cloud Registration Problem 2

1.1 Motivation . 2

1.2 Overview . 3

1.3 State of the Art . 4

1.3.1 3D Point Cloud Registration Algorithms 4

1.3.2 Standard ICP Algorithm . 5

1.3.3 ICP Variants . 6

1.3.3.1 Selection . 7

1.3.3.2 Matching . 7

1.3.3.3 Error Metric . 8

1.3.4 ICP Biggest Drawback . 9

1.4 Graphic Processing Units (GPUs) . 9

1.5 Justification . 10

1.6 Objectives . 11

1.6.1 General Objective . 11

1.6.2 Specific Objectives . 11

2 Theoretical Framework of the ICP Algorithm 12

2.1 Complexity of Algorithms . 12

2.2 Least-Square Minimization . 14

2.3 Singular Value Decomposition (SVD) . 15

2.4 Principal Component Analysis (PCA) . 16

2.5 ICP Theory . 16

2.5.1 ICP Least-Square Model . 16

2.5.2 Matching . 17

2.5.2.1 Brute Force . 17

2.5.2.2 K-D Tree . 18

2.5.3 Error Metric and Minimization . 19

2.5.3.1 Point-to-point Error Metric 20

2.5.3.2 Point-to-plane Error Metric 21

2.5.4 RMS Error Value . 22

2.6 Parallel Programming in CUDA . 22

3 Design and Implementation of the Parallel ICP Algorithm 25

3.1 Previous Considerations . 25

3.1.1 Input Data . 25

3.1.2 Data Grouping . 25

3.2 CPU ICP Implementation . 26

3.2.1 MKL Library . 27

3.2.2 Sequential ICP Algorithm . 27

3.3 GPU ICP: Design and Implementation . 29

3.3.1 Receiving Data from the LiDAR OS1-16 29

3.3.2 Transforming Raw Data into Cartesian Coordinates 32

3.3.3 Getting Normals of Model Point Cloud Q using PCA 33

3.3.4 Finding the Correspondence using Brute Force 34

3.3.5 Minimizing the Error Metrics . 35

3.3.6 Transforming the Source Point Cloud P 36

3.3.7 Finding the Current RMS Error Value 36

3.3.8 Validation . 36

4 Results 37

4.1 Test Conditions . 37

4.1.1 Implementation Description . 37

4.1.2 Devices . 38

4.1.3 Input Data . 38

4.2 Computational Results . 40

4.2.1 Time Complexity . 40

4.2.2 Speedup . 40

4.2.3 Running Time . 41

4.2.4 Error . 42

4.3 Optimizations . 43

4.4 Testing the Optimized Parallel ICP Algorithm 44

4.5 Analysis of Results . 45

Conclusions 47

Recommendations and Future Work 48

Bibliography 49

Figure Index

1.1 Steps involved and the sequential flow in the standard ICP algorithm. 6

1.2 Comparison between the three most common matching ICP variants: Brute Force

(standard ICP), K-D Tree, and Delaunay Triangulation using the surface z = x2−

y2 with 6400 points. 8

1.3 CPU vs GPU comparison in number of core processors [22]. 10

2.1 K-D tree for a set of 3D points. Based on [20]. 19

2.2 Graphic representation of a K-D Tree in 3 dimensions. This graphic was made

using the tree in Figure 3. X, Y and Z planes are in light blue, red and green

respectively. 19

2.3 CUDA programming model [28] . 24

3.1 Two types of grouping point cloud data. 26

3.2 Sequential implementation flow diagram . 27

3.3 Sequential ICP algorithm . 28

3.4 Proposed solution model 1. 29

3.5 Proposed solution model 2. 30

3.6 LiDAR data storage . 31

3.7 Data from LiDAR OS1-16 flow diagram. 32

3.8 Parallel algorithm for coordinate conversion. 33

3.9 Normal estimation flow diagram. 34

3.10 Parallel algorithm for correspondence. 35

3.11 Parallel algorithm for transformation. 36

4.1 Synthetic data. 38

4.2 Stanford Bunny dataset. 39

4.3 Real dataset from LiDAR OS1-16. 39

4.4 Time complexity. 40

4.5 Speedup . 41

4.6 RMS error. 42

4.7 Matching optimization for 1 iteration. 44

Table Index

1.1 Comparison among three accurate registration algorithms 5

2.1 Examples of Big-O notation . 13

4.1 Synthetic data running time for 1 iteration. 42

4.2 Synthetic data running time for all iterations. 42

4.3 Optimized ICP results. 45

Acronyms

1. API: Application programming Interface

2. ASCII: American Standard Code for Information Interchange

3. BLAS: Basic Linear Algebra Subprograms

4. CPU: Central Processing Unit

5. CUBLAS: CUDA Basic Linear Algebra Subprograms

6. CUDA: Compute Unified Device Architecture

7. CPD: Coherent Point Drift

8. DO: Discriminative Optimization

9. DOF: Degrees of freedom

10. FFT: Fast Fourier Transform

11. FLANN: Fast Library for Approximate Nearest Neighbors

12. GPU: Graphics Processing Unit

13. ICP: Iterative Closest Point

14. KNN: K-Nearest Neighbors

15. LAPACK: Linear Algebra Package

16. LIDAR: Light Detection And Ranging Sensor

17. MKL: Math Kernel Library

18. NNS: Nearest Neighbor Searching

19. PCA: Principal Component Analysis

20. RAM: Random-Access Memory

21. RMS: Root Mean Squared

22. RTX: Ray Tracing Texel eXtreme

23. SVD: Singular Value Decomposition

Introduction

Light Detection and Ranging (LiDAR) sensors’ popularity has raised through the years.

Nowadays, it is easy to find lots of applications of this technology in different fields, such as

medicine, topography, and mining, among others, because of the fact that these sensors can

represent objects or places in 3D computational models with great accuracy. One of the reasons

behind its well-acceptance is that LiDARs have a very simple principle: they use light waves

from lasers to measure distances to the target and then these measurements are stored forming

point clouds. However, 3D applications require LiDAR sensors to be in movement or to take

several shots from different angles producing many point clouds that are sorted in various

positions. So, a process is required to map the clouds where they belong. This problem is known

as Point Cloud Registration.

In the scientific community, a great branch of research focuses on finding the best way to

solve this registration problem using methods and algorithms, where one of the most famous is

the Iterative Closest Point (ICP) algorithm. Its robustness, efficiency, simplicity, and powerful

variants made this algorithm to be the best choice when aligning point clouds.

Nevertheless, most of the research aims at improving the ICP in serial implementations leaving

aside the possibility to parallelize it. This work is dedicated to exploring parallelization methods

for the ICP algorithm, due to the necessity of real-time applications.

1

Chapter 1

3D Model Reconstructions and the

Point Cloud Registration Problem

This chapter describes some of the safety problems of the mining industry in Peru and one of the

solutions for these issues using 3D model reconstruction techniques with LiDARs. Later on, the

Point Cloud Registration problem, which is a fundamental part of 3D reconstructions, is defined,

and state-of-the-art solutions for it are listed. Among them, the ICP algorithm comes out to be the

most powerful and so state-of-the-art research of this algorithm is placed. Finally, the justification

and objectives are presented at the end of this chapter.

1.1 Motivation

The mining industry is a very important sector in Peru. According to [26], mining represents 10%

of the Gross National Product (GNP), and 60% of the exportations value of this country.

There are two ways to extract mineral material in Peru, which are opencast and underground

or tunnel mining. Due to their ways of operation, tunnel mining is more dangerous for workers

than opencast, because when operating underground, workers have to inspect or extract material,

whereas opencast mining only uses explosives to triturate minerals and trucks to transport them.

Inside tunnels, physical and intoxication risks are the most fatal and thus the ones that cause more

accidents in this industry. In fact, according to [1], accidents inside mining tunnels, such as rock

falls, intoxications, and contact with electrical energy represents 10 of the 23 mortal accidents

that occurred in the sector of medium- and large-scale mining industry in 2018. Besides this

2

security aspect, it is also important for mining companies to measure the volume of the mineral

material that has been extracted when building a tunnel. This activity can be accomplished with

trucks carrying the minerals and then weighted them using a scale, but this process is imprecise

and inefficient [2].

To improve the inspection and volume of material extracted processes, the application of a

self-navigation robot equipped with a LiDAR sensor and an efficient point cloud registration to

obtain 3D models of mining tunnels is vital. With this approach, it would not be necessary to send

workers to inspect tunnels and the volume calculations can be accomplished highly efficiently and

accurately.

1.2 Overview

A 3D model representation is a computational representation of an object or scene in its three

dimensions. To construct this model, 3D scanning techniques commonly require 2D data or

images of the object from different angles, which can be taken from sensors or cameras using

certain techniques.

On the one hand, optical 3D measurement techniques use laser sensors and are divided into 2

groups: time-of-flight and triangulation [34]. The time-to-flight technique consists in projecting a

beam of light onto an object and calculating the distance to it by measuring the round-trip time of

the beam with a sensor. Triangulation technique also projects a laser onto an object but in this

case, depth is measured by the deformation of the laser, using angles and the cosine law. As a

matter of fact, triangulation is mostly used when short distances are going to be measured

whereas time-to-flight is more useful for mid and long distances. On the other hand, cameras

offer some other techniques, such as photogrammetry, stereo vision, and structured light, where

the working principle is getting 2D shots of an object with a camera or arrangement of cameras

and then aligning them to construct the 3D model.

In the last decade, lots of 3D reconstruction systems combining described techniques and

including different models and types appeared. Each of them is characterized by a certain

accuracy, efficiency, and application. For instance, Structured Light Scanners (SLSs), which are

usually equipped with a projector or a laser, one or more cameras, and a computer, are greatly

accurate when the object to scan is near the system [13]; KINECT, a low-cost Microsoft

3

technology that uses the time-to-flight technique and a camera for detecting color and tracking

human movements, is suitable for representing indoor and outdoor scenes [29], [11]; and Light

Detecting and Ranging (LiDAR), a technology that purely works with the time-to-flight

technique, are systems that can almost match every 3D application, due to the fact that it offers a

large range of system products.

Whether detecting from the air or the ground, LiDAR systems are able to reach great

performance and accuracy. Applications are diverse, from creating 3D reconstructions of mining

trucks loads with an error of 4.41% [2] to generating reconstructions of large highways, giving

road features with a 5% error on average approximately [6], and huge topographic models,

resulting in an average error of a bit more than 10 cm [18]. These results indicate that LiDARs

are effective systems with high application potential.

At the same time that LiDARs take measurements, registers of it are saving all the measured

points. The groups of these points are called point clouds. After collecting different point clouds

of an object, the processing and alignment of the points are required. A well-designed aligning

step is vital for reliable results and a fast computation of it is a must if the application is real-time.

This last aspect will be the study of this work.

1.3 State of the Art

1.3.1 3D Point Cloud Registration Algorithms

Various algorithms have tried to make the aligning process simple, effective, and robust so that

they can greatly perform different applications. They can be classified into different branches [7].

To mention some of them, according to the registration process, they can be separated into coarse

and fine registration; according to the registration feature, they can be split into global and local

registration; according to the deformation, they can be partitioned into rigid and non-rigid

registration.

For the sake of clarity, this subsection is only focused on studying fine-alignment and

non-rigid algorithms, which are registrations that only converge when the point clouds are close

to each other and have only passed through rigid transformations (rotations and translations).

Here, we can find the Coherent Point Drift (CPD), the Discriminative Optimization (DO), and the

Iterative Closest Point (ICP), to mention the most known. Table 1.1 shows a comparison between

4

these three algorithms. The results are obtained from experiments evaluated in [7].

On the one hand, these results show that the CPD algorithm performs the registration process

quite worse than the other two algorithms, in the three aspects. On the other hand, the ICP and DO

algorithms are both very robust and fast, but the ICP seems to be more sensitive to noise than the

DO algorithm. However, if using a large number of points, it can be demonstrated that ICP has a

much slower computation time than DO. So, for requirements of rapidness in the application and

since the registration algorithm is needed for aligning two clouds that are very close to each other

(in a way that noise effect does not influence the alignment), the ICP is the selected registration

algorithm for this work.

Table 1.1: Comparison among three accurate registration algorithms

Registration Method CPD DO ICP

Noise Effect low low high

Operating Speed slow fast fast

Robustness bad good good

1.3.2 Standard ICP Algorithm

In its basic form, the ICP algorithm focuses on solving a Least-Square problem by iteratively

minimizing the error metric function for two given point cloud datasets: source and target. The

goal is to map the source to the target in such a way that in every iteration, they are brought

closer. If conditions are met, after a number of iterations the ICP algorithm converges and so the

output of this algorithm is the transformed source point cloud and the parameters associated with

this transformation, i.e., rotation and translation matrices.

The standard ICP algorithm can be disintegrated in 3 steps as shown in figure 1, based on

[13]. In the beginning, the matching step finds the specific correspondence of every point from

the data to the model point cloud. After this, the minimization or pose estimation step calculates

the rotation and translation that best align the point clouds. If the algorithm has not converged

until this last step, then it has to come back to the first step and start again.

5

Figure 1.1: Steps involved and the sequential flow in the standard ICP algorithm.

1.3.3 ICP Variants

In [30], a taxonomy of the ICP algorithm is presented. They can be in or added to the processes

shown in figure 1 and are the following ones:

• Selection: Data point cloud can be preprocessed to optimize the process of matching. This

can be done by grouping the data cloud according to their normals (using PCA), curvature,

or color.

• Matching: As it was mentioned, data points need to find a correspondence point in the

model data set. This can be achieved using Nearest Neighbors Searching (NNS) techniques,

such as brute force (Euclidean distance), KD-Trees, Delaunay Triangulation, and Normal

Shooting, just to mention a few.

• Weighting: From the matching process, each matched data point has a different percentage

of compatibility. This means that each point can have a weight, that can multiply its own

error metric. Normal, curvature and distance compatibility can be calculated with certain

mathematic expressions.

• Rejecting: In some cases, a number of points can be irrelevant for processing. This variant

can work with two kinds of rejections: statistical, in which a certain percentage of the total

points are rejected, and edge rejection, where points in the edge are rejected.

• Error metric: As it was mentioned, an error metric function model is defined due to the

Least- Square Minimization problem. The most common error metrics are the point-to-

point, point- to-plane and plane-to-plane minimization models.

• Minimizing: Computation of the rotation and translation variables of the data cloud using

the minimized parameters.

The presented variants itemize almost every process used in the state-of-the-art improved ICP

algorithms, even if they are recent. Also, because of the great number of options given in this

6

taxonomy, lots of combinations can be made and, as this algorithm has been obtaining popularity,

various studies are trying to find the most robust and efficient modified ICP algorithm. In the

following subsections, some of the most relevant variants are presented. The variants that are

not presented here may have little incidence in most of the cases, so they will not be covered.

Moreover, in most cases modified ICP algorithms reduced these variants to their most simplified

form.

1.3.3.1 Selection

Preprocessing is a good practice for real-time applications and so is a good initial alignment when

target and source point clouds are separated by large rotations matrices or large translation vectors,

or if a high ratio of convergence is needed when data sets are considerably near to each other. In

[4], an objective is to find an improvement of the ICP algorithm and the selected one uses a

subsampling based on the SVD method, a variant that makes this alternative a good option for real-

time scenarios given shown results. In [3], it’s proposed that a good initial guess for the alignment

based on the PCA method yields good results. In [27], it is shown that random subsampling, which

means randomly reducing the source point cloud, also improves the algorithm’s performance.

1.3.3.2 Matching

In [8], an improved ICP algorithm is presented and it uses a voxel grid method for selection and

rejection, a FLANN (Fast Library for Approximate Nearest Neighbors) algorithm, which is based

on K-D Trees for matching, and point-to-plane for the error metric. Using the bunny and happy

stand data sets, this work approaches better alignments than standard ICP and, in terms of time,

it’s four times faster than the standard algorithm. In [16], K-D Trees play an important role in

the improved algorithm, demonstrating that this matching variant has good potential. Experiments

are executed for creating a 3D representation of a tree with LiDARs. A high number of points

(≈ 200k) is used and results show that this improvement of the ICP algorithm reaches a 10 times

faster computation than the standard algorithm including a better final error metric result. In [35],

a comparison of the three most common NNS techniques (matching) is made and results show

that K-D Trees are way computationally faster than the other 2, which are the ones used in the

standard ICP, well known as brute force, and Delaunay Triangulation. Figure 1.2 reasserts this

last result, by also comparing these three techniques using a MATLAB code, taken from [14]. It

can clearly see that every matching algorithm follows the same error metric curve and thus has the

same number of iterations, but the big difference between them is how much time it takes every

method to converge. K-D Trees surpass the other two methods with a convergence time of 0.43

7

seconds.

Figure 1.2: Comparison between the three most common matching ICP variants: Brute Force
(standard ICP), K-D Tree, and Delaunay Triangulation using the surface z = x2 − y2 with 6400
points.

All of these experiments reveal that K-D Trees are powerful structures and can improve the

ICP algorithm. However, the huge disadvantage of K-D Trees is that they are very computational

expensive, which means that a big percentage of the total ICP algorithm execution time goes on

K-D Trees. The work done in [19], holds this last statement showing that 92% of the total ICP

algorithm execution time is for creating the K-D Tree and processing the NNS working with a

CPU.

1.3.3.3 Error Metric

Most of the presented mentioned research concludes that a variant in the error metric is an

important consideration for creating a well-design ICP algorithm. A generalized ICP is described

in [31] This paper demonstrates, mathematically, that point-to-point and point-to-plane error

metric expressions come from a general plane-to-plane error metric model. Generalized ICP

seems to have a better performance than point-to-plane and standard ICP error metric models.

However, due to the generalized ICP complicated model, most of the modified ICP algorithms

use point-to-plane error metric models.

8

1.3.4 ICP Biggest Drawback

By this point, it is clear that the ICP algorithm can yield high-accuracy performances in choosing

the right variants of the algorithm. Nonetheless, the biggest ICP defect is found when a locally

optimal solution problem is presented. According to [15], the ICP algorithm can easily drop on a

local optimal minimum, which is a wrong solution, for some applications. To solve this problem,

before going through the ICP algorithm, a global registration of the data sets can be made. This

registration focuses on two aspects: feature descriptors (description of a point context) and search

strategies for correspondences (strategy for point-to-point correspondence).

However, for the application of this work, this verification is not necessarily due to the fact

that the points clouds are always quite close to each other and so the ICP only computes fine

alignments.

1.4 Graphic Processing Units (GPUs)

A GPU (Graphic Processing Unit) is a piece of hardware designed principally for image

processing applications and float operations computing. As a matter of fact, due to the

powerfulness of GPUs, the number of their applications has been increasing really fast, and now

it is easy to find lots of industries using this equipment, such as game development, healthcare,

supercomputing, telecommunications, retail and so on [21].

GPUs are quite different from CPUs. Actually, there are a lot of facts to analyze when

comparing them, but maybe the most important ones are latency and throughput. Due to the fact

that a CPU is designed with few cores and the GPU with hundreds of them as shown in Figure 3,

CPUs are good at optimizing for latency because they make their cores work harder and faster

than the ones from a GPU whereas GPUs are good at optimizing for throughput since they are

equipped with lots of cores. This is why the cores from a CPU are very powerful and complex

although the ones from a GPU are less powerful and simpler. Furthermore, the main reason why

GPUs are selected for solving high-computational tasks is that they save considerable amounts of

energy that CPUs would need to complete them.

In order to optimize resources CPUs and GPUs can work together. On one side CPUs can offer

to be the head of programs and the ones preferred to run serial tasks, and on the other side, GPUs

can be the devices to execute programs that adapt better for parallelization.

9

Figure 1.3: CPU vs GPU comparison in number of core processors [22].

1.5 Justification

State-of-the-art research suggests that there are various ICP algorithms based on the presented

ICP variants. Depending on the application, combinations of the variants offer a certain efficiency

and running time. Therefore, the election of the ICP algorithm is then a good choice to perform

the 3D registration process of the mentioned application.

Nevertheless, the design and choice of the right ICP algorithm contribute to the first half of

this work. The other half comes from the implementation. Here, sequential implementations of

the ICP algorithm can highly delay the alignment when working with big quantities of data,

whereas parallel designs and implementations present the option to greatly accelerate the

algorithm’s computation. Thus, implementing a parallelized ICP algorithm can outperform any

other point cloud registration algorithm with the right implementation.

GPUs fit perfectly with the last-mentioned requirement about implementation. They have been

evolving through the years to offer technology that can enormously reduce computation times

when using big amounts of data. Then, running the parallel ICP algorithm with some of the latest

GPUs will surpass, in terms of running time, any other ICP algorithm, whether the implementation

is sequential or parallel.

10

1.6 Objectives

1.6.1 General Objective

Create a new parallel ICP algorithm and implement it on a GPU for fast computation of LiDAR

data registration.

1.6.2 Specific Objectives

• Analyze different ICP algorithms, evaluate their theoretical performance and select the best

suited for parallelization.

• Design and implement a new parallel ICP algorithm.

• Optimize the implementation to improve the running time.

• Evaluate the new algorithm performance in terms of running time and compare it with other

solutions.

11

Chapter 2

Theoretical Framework of the ICP

Algorithm

In this chapter, theoretical concepts about the ICP algorithm are covered. Furthermore, criteria to

select algorithms are approached in order to have tools to choose the best possible algorithms for

each function of the implemented algorithm.

2.1 Complexity of Algorithms

When solving any problem, different alternatives can come to mind. Expressing this from a

computational view, those alternatives turn out to be algorithms or structures. If it is supposed

that all of them can solve the problem with exactly the same result, the question would be which

one can resolve the problem more efficiently.

To address this matter, the complexity of algorithms defines multiple criteria to give

quantities of an algorithm’s performance. These criteria basically focused on finding

correspondence between a variable to analyze in relation to the number of entries of the

algorithm. From the variety of metrics, time and memory are the most important since they offer

quantities about running time and memory usage. In fact, when relating them with the number of

inputs, the resulting functions are called time and space complexity.

Comparing algorithms can be challenging using the exact complexity functions. This is why it

12

is necessary to use a sort of standard representation. The Big-O family offers a group of standard

notations than can be very useful when comparing algorithms. Among the best-known of this

family are Big-O, Big-Ω, and Big-Θ and they represent the worst, best, and average scenario in

an algorithm, respectively. As a matter of fact, according to their definition, a complexity function

is approximated by an upper bound function when using Big-O, by a lower bound function when

using Big-Ω, and by an upper and lower function when using Big-Θ [36]. Some of the examples

of the most known approximations for time complexity functions are presented in Table 2.1. The

complexity of the functions in the table goes from the lowest to the highest complexity as coming

down in the table.

Table 2.1: Examples of Big-O notation

Big-O function Function Name

O(1) Constant time

O(log n) Logarithmic time

O(n) Linear time

O(n ∗ log n) Linearithmic time

O(n2) Quadratic time

O(nc) Polynomial time

O(2n) Exponential time

Although these notations offer a good reference to compare algorithms, it is a good practice

to also consider real complexity functions or at least consider some values of running time or

usage of memory for certain input sizes. This is because, when comparing algorithms, it might

happen that a low-complexity Big-O function has a greater running time or more usage of

memory than a high-complexity function and the explanation for this is mainly the error range

that Big-O notation leaves while doing approximations.

Because the presented work’s principal objective is to implement a fast computation of the ICP

algorithm, time complexity is the selected criterion to compare algorithms. Also, since the Big-O

notation expresses the worst scenario in the algorithm, time complexity using the Big-O notation

will represent, approximately, the slowest running times in relation to the input sizes.

13

2.2 Least-Square Minimization

Least-Square minimization method is quite famous when fitting a line to a group of scattered

points with the minimum possible error. Equation 2.1 rules this method for best fitting lines. The

function f is usually called the cost function and m and b are called the arguments or the degrees

of freedom (DOF) of f [4]. The key is to find values for m and b in such a way that sum of the

squared errors is as low as possible.

f(m, b) = min
m,b

n∑
i=1

(yi − ŷ)2 (2.1)

Where:

• yi represents the scattered points.

• ŷ = m · xi + b represents the points in the best fitting line.

• n is the number of points.

The best fitting line is just one of the innumerable applications the Least-Square method has.

In general, this technique is used when an ill-posed problem is proposed, i.e. when the number of

parameters or DOF is less than the number of equations. Thus, the general equation of the Least-

Square Method is described in equation 2.2. Furthermore, depending on what it is being

minimized, the Least-Square can be linear or non-linear. The error ei gives a way to identify

whether the method is of one type or the other. If this metric changes linearly with respect to the

parameters, then the Least-Square is linear, in other cases, the method is called non-linear.

f(x1, x2, . . . , xk) = min
x1,x2,...,xk

n∑
i=1

∥ei∥2 (2.2)

Where:

• ei error at the ith point.

• x1, x2, . . . , xk are the parameters or the least squares solution.

• n is the number of points.

Since f is an Rn → R function, there are diverse ways to optimize the Least-Square problem.

Gradient-based methods [36], Newton and Quasi-Newton methods [32], Singular Value

Decomposition (SVD) [38], and Global Optimizers [36] are some the most known.

14

2.3 Singular Value Decomposition (SVD)

As it was mentioned, SVD is used to optimize Least-Squares. Actually, the ICP Least-Square

model, which will be presented in subsection 2.5.1, has a demonstrated optimization using this

method [4].

Basically SVD decomposes a matrix into three other matrices, and its definition is supported

by the theory of diagonalization of a matrix [12]. Defining M as a real n × m matrix, equation

2.3 shows the SVD for M . It is important to mention that U and V are orthogonal matrices, i.e.

UT = U−1 and V T = V −1, and Σ is a diagonal one. Also, the diagonal values of Σ are ordered

by importance, having the greatest value to the left and the smallest to the right.

M = UΣV T (2.3)

Where:

• U and V are orthogonal matrices of sizes m×m and n× n respectively.

• Σ is a diagonal m× n matrix.

Now, in order to understand what the decomposition matrices mean, the SVD of a correlation

matrix, i.e. a matrix multiplied by its transpose, is presented down below. Matrix M from equation

2.3 is used.

MMT = (UΣV T)(V ΣTUT)

MMT = UΣ2UT

or

MMT = V Σ2V T

(2.4)

Both represent an eigenvector decomposition. Using the last expression, V and Σ2 symbolize

the M correlation eigenvectors and eigenvalues, respectively. An equivalent conclusion can be

extracted for the other correlation matrix MMT . Finally, it is worth mentioning that the matrix M

uses to have more much more rows than columns or vice versa. Depending on how it is defined,

MMT will be much bigger or much smaller than MTM . This is important to consider in order to

have the dimensions of U ,Σ and V as small as possible.

15

2.4 Principal Component Analysis (PCA)

The principal component analysis offers a way to represent variance in higher dimensional data.

This method will be useful when needing the normals of a group of points, more specifically, for

a certain point and a close neighborhood to it.

PCA holds its definition with the covariance matrix of a group of points. For a given set of

points Q, the covariance matrix is detailed in equation 2.5 [35]. This covariance matrix shows

how the data deviate from the centroid. Additionally, and this is where the PCA contribution

is, the covariance matrix keeps data about in which direction points deviate from the centroid.

The method mentions that the eigenvalues of the covariance matrix quantize deviations from the

centroid in the directions of the eigenvectors associate with them. Moreover, these eigenvectors

form an orthogonal basis and are classified as the first, second, and third principal components

of the covariance matrix. It comes to happen that when points are coplanar or they are close to

having this characteristic, the third principal component gives an estimation for the normal of the

formed plane [9]. Actually, what it will be used when needing normal estimations of a point cloud

is basically form a group of points Q with a close neighborhood to each point.

Cov(Q) =
1

n

n∑
i=1

(qi − q̄) · (qi − q̄)T (2.5)

Where:

• Q = {q1, q2, . . . , qn}, qi ∈ R3.

• q̄ is the centroid of Q.

• n is the number of points.

2.5 ICP Theory

In this subsection, concepts that directly involves the ICP algorithm are covered.

2.5.1 ICP Least-Square Model

In 1991, Y. Chen and G. Medioni proposed a method to model a 3D object by using the

registration of its multiple range images [37] and one year later P. Besl and N. Mckay presented

an approach to align curves and set of points [5] .This method is called the Iterative Closest Point

(ICP). As described in chapter one, the objective is to align two point clouds, data and model,

16

using transformations. In other words, and to give them reference, data point cloud is transformed

in order to be, as close as possible, equal to the model point cloud. Although, rigid and non-rigid

transformations can be used to reach the mentioned objective, rigid ones, i.e. rotations and

translations, will be used due to of the application of this work. Equation 2.5 shows the ICP

Least- Square model to align a data point cloud, P , with a model point cloud, Q. It essentially

expresses the minimization of the sum of the Euclidean distances of P and Q point clouds by

finding the best possible R̂ matrix and t̂ vector. Applying these transformations to the data point

cloud, P , will bring it closer to the model point cloud, Q. However, the ICP process does not end

there: it iterates the minimization shown in equation 2.6 until the two clouds are close enough.

Criterions about error will be discussed in section 2.6. Finally, to make referring easier, notation

of the variables declared in this equation will be used in the rest of this chapter.

R̂, t̂ = min
R,t

n∑
i=1

∥(Rpi + t)− qi∥ (2.6)

Where:

• P = {p1, p2, . . . , pn}, pi ∈ R3.

• Q = {q1, q2, . . . , qm}, qi ∈ R3.

• R ∈ R3×3 and t ∈ R3

2.5.2 Matching

Due to the necessity of correspondence between the point clouds in equation 2.5, matching

techniques are required. What the ICP algorithm propose is to find the closest points of P in Q.

Since this process affects quite critically to the running time of the entire ICP algorithm [19] an

efficient matching algorithm must be used. Nearest Neighbor Searching (NNS) meets this

requirement with a variety of algorithms associated to it. In the rest of this subsection, notions of

some of the most relevant NNS algorithms are presented.

2.5.2.1 Brute Force

A simple way to find the correspondence between the two set of points is comparing each point of

P with all of the points from the model cloud using the Euclidean distance. Equation 2.7 sums up

mathematically the previous statement and the correspondence problem is solved by detecting the

points qj where the distance is minimum.

17

di = min

m∑
j=1

∥pi − qj∥2 (2.7)

Where:

• i = 1, 2, 3, . . . , n.

• di is the minimum distance from pi to the point cloud Q.

As it is expected, because of its naive approach, brute force could be more efficient in terms

of running time. In fact, for each iteration in the ICP algorithm, the time complexity is O(n ∗m)

[22], which corresponds to a linear correspondence of the time with respect to the size of the two

point clouds. However, one advantage that brute force has is that it does not need preprocessing.

This means that the only thing brute force needs to calculate the correspondence is the coordinates

of the two point clouds.

2.5.2.2 K-D Tree

This algorithm creates a binary tree that represents boxes graphically and it is called K-D Tree

because its definition is valid for k dimensions, where k ∈ Z+. The essence of K-D Trees for this

application is to construct the boxes separating the space, defined by a point cloud, in halves [20].

Figure 2.1 shows a K-D Tree for a set of eight random points

X = {A = (1, 0, 2);B = (10, 3, 1);C = (4, 7, 7);D = (9, 11, 3);E = (3, 5, 8);F =

(12, 1, 10);G = (−4, 5, 11);H = (−2, 2, 6)}. Every point in 3D space is chosen in such a way

that it divides the space into two halves by using planes. Each plane is selected with the median

of each coordinate. For example, at the root of this tree, the x-coordinate median of all the points

was selected and so the point E and the plane x = 3 make the first division. After that, two

groups of points are formed: one to the left of the x = 3 plane and one to the right of it. Now, in

each group y-coordinate median makes the second division and that is y = 2 for the left and

y = 3 for the right. These planes separate points in the other two groups and then the

z-coordinate oversees the next divisions, up and down. If having more points, as in this case, the

logic for keeping separating in halves starts at the x-coordinate and the explained process is

applied until each point has a plane passing through it.

18

Figure 2.1: K-D tree for a set of 3D points. Based on [20].

Figure 2.2 shows the last example K-D tree graphic representation from two views. As it was

mentioned, each point has a plane passing through it and the union of those plane represent the

also mentioned boxes.

Figure 2.2: Graphic representation of a K-D Tree in 3 dimensions. This graphic was made using
the tree in Figure 3. X, Y and Z planes are in light blue, red and green respectively.

For the application of this work, a K-D tree will be created for the model point cloud (using Q

points), this is preprocessing, and data point cloud will search nearest neighbors into this object.

This means that the tree is only created once with a time complexity of O(m ∗ logm) and the

only part that repeats through iterations is the nearest neighbor searching of data point cloud (P

points). As a matter of fact, for a single iteration in the ICP, this last process has a time complexity

of O(n ∗ logm) [22]. Making a comparison between K-D tree and brute force, it can clearly see

that, even considering their preprocessing time, K-D trees have a low time complexity than brute

force.

2.5.3 Error Metric and Minimization

A model for the standard ICP algorithm error metric was presented in equation 2.6. However,

there are other existing metrics: there are more types of them performing slower running times

than the standard algorithm [31]. In this subsection, a common error metric variant is presented.

19

Furthermore, minimizations are shown to use them in the implementation of the ICP algorithm.

2.5.3.1 Point-to-point Error Metric

Equation 2.6 suggests that the error between data and the model point cloud is calculated using

the average of the Euclidean distances. This is called the point-to-point error metric and equation

2.6 is the objective function related to it.

According to this definition, minimization can be found using linear algebra, and more

specifically SVD. The following steps solve this optimization problem. They are extracted from

[13] and the demonstration can be found in the same document.

1. Calculate the centroids of P and Q.

p̄ =
1

n

n∑
i=1

pi

q̄ =
1

m

n∑
i=1

qi

(2.8)

2. Calculate the deviations of P and Q points from the centroid.

p′i = pi − p̄, i = {1, 2, . . . , n}

q′i = qi − q̄, i = {1, 2, . . . ,m}
(2.9)

3. Compose new point clouds using the deviations of P and Q. These new point clouds will

be called P ′ and Q′. Using the last point clouds, calculate the correlation between them.

W = Q · P T (2.10)

4. Apply SVD to W.

W = UΣV T (2.11)

5. Calculate the rotation matrix R and the translation vector t that minimizes the error metric.

R = V UT

t = q̄ −Rp̄
(2.12)

20

2.5.3.2 Point-to-plane Error Metric

One of the most used error metric variants of the ICP is the point-to-plane error metric. Most of

the research cited in this work has used it. This preference over the point-to-point metric is

mainly because the point-to-plane error metric is much less sensitive to noise and since it causes

the ICP algorithm converges in fewer iterations [4].

Equation 2.13 presents the model of the point-to-plane objective function. As it is shown, one

element was added to the point-to-point error metric: normals of the model point cloud, Q, which

can be found using PCA. These normals are being multiplied for the point-to-point error metric

using the dot product. Taking into consideration that the normals are unitary, the point-to-plane

error metric symbolizes the scalar projection of the vector v⃗i onto the normal associated to the

point qi. To interpret this metric, one can say that the scalar projection grants the possibility to the

data point cloud, P , for finding an error in a whole plane instead of having the error attached to

a point of the model cloud, which is the case of the point-to-point error metric. Furthermore, this

interpretation is the reason why point-to-plane is more robust against noise than the point-to-point

error metric. However, point-to-plane assumes that the points are locally coplanar in order to get

the mentioned normals. Experiments will help to decide if the point clouds need a preprocessing

step for converting close neighborhoods of points into coplanar points.

R̂, t̂ = min
R,t

n∑
i=1

∥[(Rpi + t)− qi] · n⃗i∥2 (2.13)

Where:

• n⃗i are the normals associated for each point of the model point cloud Q.

• v⃗i = (Rpi + t)− qi is the vector traced from the point (Rpi + t) to qi.

A way to minimize this optimization problem is given in the following steps, taken from [13]:

1. Transform the rotation matrix R into the linearized matrix RL as shown in the following

21

expression.

R = RxRyRz

R =

1 0 0

0 cos θx − sin θx

0 sin θx cos θx

cos θy 0 sin θy

0 1 0

− sin θy 0 cos θy

cos θz − sin θz 0

sin θz cos θz 0

0 0 1

R =

1 −θz θy

θz 1 −θx

−θy θx 1

(2.14)

This linearization is considering that cos θ ≈ 1 and sin θ ≈ θ when θ is small. For the

application of this work, rotations are expected to be small which means that θx,θy,and θz

take small values and so the linear approximation can be applied correctly without affecting

significantly to the results.

2. Using RL, differentiate the equation 2.13 with respect to θx,θy, and θz and the components

of the translation vector Tx,Ty, and Tz and equal the result to 0.

3. As a result of differentiating, a system of linear equations comes up. So this last step is

simply to solve the system of linear equations using standard methods, as shown in [17].

2.5.4 RMS Error Value

To find the RMS error value, which is the metric that measures how close the two point clouds are

by normalizing the sum of errors of each point, this work is using equation 2.15. Notice that P

and Q points are attached to the same sub-index i, which means that this q are the correspondence

points of p found in the matching step.

eRMS =

√∑n
i=1 d

2
i

N
(2.15)

Where:

• di =
√
pi − qi =

√
(xpi − xqi)

2 + (ypi − yqi)
2 + (zpi − zqi)

2

2.6 Parallel Programming in CUDA

CUDA (Compute Unified Device Architecture) [28] is a parallel computing platform developed

by NVIDIA to enable developers to harness the power of GPUs for accelerating computations.

22

By providing extensions to popular programming languages such as C, C++, and Fortran, CUDA

allows developers to write parallel programs in a familiar environment. At the core of CUDA’s

programming model are kernel functions, which are small pieces of code that can be configured

to run in parallel on the GPU. These functions express parallelism using blocks and threads,

where blocks are essentially containers for threads, and threads are independent paths of

execution through the code. Each thread runs the same code but with different data inputs,

allowing for massive parallelism. Typically, thousands of threads are launched for parallel codes,

depending on the application and the capabilities of the GPU.

The key advantage of CUDA is its ability to exploit the parallel processing power of GPUs,

which have hundreds or thousands of cores that can work together to solve complex problems

much faster than traditional CPUs. This makes CUDA particularly useful for computationally

intensive tasks, such as simulations, machine learning, image processing, and digital signal

processing, where the ability to process large amounts of data in parallel can significantly speed

up computation times. CUDA is also highly flexible, allowing developers to customize kernel

functions to optimize performance for specific hardware configurations and computational

workloads.

The CUDA programming model is placed in Figure 2.3. At a high level, CUDA architectures

work by breaking down computational tasks into smaller units of work that can be executed in

parallel on the GPU. To achieve this, CUDA uses a programming model that is based on grids,

blocks, and threads. A grid is a two or three-dimensional array of blocks, where each block is a

group of threads. The grid defines the overall dimensions of the computation and is typically set

up by the host CPU. The size of the grid can be adjusted to match the problem size and hardware

capabilities, allowing developers to optimize performance for a specific problem. Each block, on

the other hand, is a group of threads that are executed in parallel on the GPU. Blocks are typically

smaller than grids and are used to break down the computation into smaller, more manageable

tasks. The size of each block can also be adjusted to optimize performance for a specific problem.

Finally, each thread is an individual path of execution that performs a small part of the overall

computation. Threads within a block can communicate with each other and share data through

fast shared memory, while threads in different blocks cannot communicate with each other.

The key to achieving high performance with CUDA architectures is to optimize the use of

threads within blocks and blocks within grids to minimize data movement and maximize

23

Figure 2.3: CUDA programming model [28]

parallelism. This requires careful consideration of the size of the grid and the block, as well as the

way in which data is accessed and shared between threads.

In general, CUDA architectures are designed to handle large-scale parallel computations,

such as those required in scientific simulations, machine learning, and image processing. So, by

breaking down the computation into smaller units of work that can be executed in parallel, CUDA

we can take advantage of the massive parallelism offered by GPUs and achieve significant

speedups over traditional CPUs.

24

Chapter 3

Design and Implementation of the

Parallel ICP Algorithm

This chapter begins with some previous considerations about how point cloud data is treated

through implementations. After this, a serial ICP algorithm is placed. Finally, the parallel ICP

algorithm designing is approached using a flow diagram and each of the processes presented in it

are described in detail.

3.1 Previous Considerations

3.1.1 Input Data

Two types of data are used throughout all the tests in this thesis: synthetic and real data. On the one

hand, synthetic data is created during the execution of programs and it lets the possibility of easily

varying the number of points and inserting noise; in this case, synthetic data intends to model 3D

surfaces using functions z = f(x, y) where f : R2 → R. On the other hand, real data comes from

the Ouster LiDAR OS1-16 and it is used to test the ICP implementations and to see if they work

in a real context.

3.1.2 Data Grouping

Point clouds are stored in memory in one-dimensional arrays, so if a point cloud has n points,

then the number of elements in the array is 3n. To store this data, two types of grouping are

employed in either serial or parallel implementations. Figure 3.1 shows how they are constructed.

The first type of grouping data consists in holding point clouds in arrays in such a way that the

25

Figure 3.1: Two types of grouping point cloud data.

first n cells store all the x-coordinates and the next 2n cells in the y and z coordinates. So, to get

the first point of each cloud, the program has to ask memory for the 1st, nth and (2n)th term of

the array and a similar process for all points. The second type of grouping data is based on

placing the three coordinates of each point one after another. Thus, to get the first point, the

program has to ask for memory for the 1st, 2nd and 3rd term of the vector.

Each of the types of grouping data owns some advantages and disadvantages. When trying to

access the three coordinates of a certain point using the second type of data induces a single call

to the memory due to the closeness of their memory addresses while using the first type provokes

three different calls to the memory because of the separation of the memory addresses. However,

the first type has also some advantages in comparison to the other, such as the easier way and

faster computation for processing vector and matrix operations. In conclusion, due to the fact that

some parts of the ICP algorithm work well with the first type of grouping data and some others

work well with the second type, for each specific algorithm implementation a type of grouping is

analyzed and used depending on what makes the program run faster.

3.2 CPU ICP Implementation

Two ICP algorithms are implemented on the CPU and can run either sequential or parallel (because

of the MKL library that easily allows the swapping between these two options). One uses the point-

to-point error metric and the other, the point-to-plane error metric, but the two of them utilize the

brute force algorithm for the matching step. Also, both of them use synthetic data, because it easily

allows finding the time complexity of these implementations. Furthermore, these algorithms were

implemented in C based on MATLAB code [14] and optimized using the MKL library to get the

highest performance in the CPU.

26

Figure 3.2 shows the processes involved in the main loop for both algorithms. The orange path

traces the flow for sequential ICP with the point-to-point error metric and so the green one with

the point-to-plane model.

Figure 3.2: Sequential implementation flow diagram

3.2.1 MKL Library

Due to the requirement for matrix and vector operations and the need for methods and metrics

such as SVD and Least-Squares, a high-performance library is vital for this work.

Describing itself as “the fastest and most-used math library for Intel®-based systems” on its

main page, there is no doubt about selecting others other than the MKL library [10]. CPU

implementations (sequential and parallel) using this library are guaranteed to obtain the greatest

possible performance that a CPU (equipped with an Intel processor) can offer, in such a way that

comparisons between CPU and GPU implementations are fair enough.

MKL has been designed to provide tools for the implementation of various applications.

Linear algebra, fast Fourier transforms (FFT), vector statistics & data fitting, and vector math &

miscellaneous solvers are the library packages that Intel provides. Established requirements lead

to choosing the linear algebra package.

3.2.2 Sequential ICP Algorithm

The pseudocode for the sequential ICP algorithm is shown in Figure 3.3. Notice that every step

described in Figure 3.2 has been traduced to pseudocode with the exception of the minimization

step because steps to compute it were already presented in sections 2.5.3.1 and 2.5.3.2.

27

Figure 3.3: Sequential ICP algorithm

28

3.3 GPU ICP: Design and Implementation

Two solutions are proposed for this work and, in this section, the flow diagram of the two of them

are illustrated in Figure 3.4 and Figure 3.5, where blocks in blue represent serial processes and

blocks in red represent parallelized processes.. They represent algorithms for single alignments of

certain data point clouds (P) and model point clouds (Q). If having more point clouds to align,

this whole process repeats. In the next subsections, the processes listed in the flow diagram are

described.

Figure 3.4: Proposed solution model 1.

3.3.1 Receiving Data from the LiDAR OS1-16

Ouster LiDAR sensors [23] offer reliability in the acquisition of data due to their high accuracy

and efficiency. One of the most popular models of these Ouster sensors is the OS1, which belongs

to the mid-range category. This model presents a variety of number of channels (16, 32, 64, 128)

29

Figure 3.5: Proposed solution model 2.

in five different OS1 sensor models. As a matter of fact, the greater number of channels that the

OS1 sensor has, the greater number of points scanned. For the application of this work, the OS1

with 16 channels (OS1-16) has been chosen.

Ouster LiDAR sensors have their own graphic environment called Ouster Studio, developed

by ParaView [25]. This program allows users to have two modes to see the data: online and

offline. Online mode lets users see how data is being captured in real-time, whereas offline mode

offers replays of data-capturing moments. Furthermore, this program provides different tools that

can be used to see point clouds from various perspectives and colors.

The output data of the OS1 sensors present a variety of information about the scanned

scenario, such as the distance, intensity, reflectivity, and noise of each scanned point. Also, due to

the fact that this data is in polar coordinates format, information about the azimuth and altitude

30

angles is given. The resolution of this information depends on the number of channels of the

sensor, which sets the vertical resolution, and on the LiDAR mode, which establishes the

horizontal resolution. In particular, data coming from a full rotation of the OS1-16 (1 donut) has a

vertical resolution of 1 azimuth (16 points) and a horizontal resolution of 1024 azimuths. This

means that the number of points of a donut is 16384 points, which are stored in an ASCII file of

806912 bytes separated into 64 data packets (1 data packet = 16 azimuth blocks).

The objective of this process (Data from LiDAR OS1-16) is to extract the necessary

information from the ASCII file, i.e., ranges, the azimuth, and altitude angles, store it in the CPU

memory, and then transfer it to the GPU memory. The simplest way to accomplish this is to

assign each variable an array, i.e., an array for the ranges, another for the azimuth angles, and

another for the altitude angles. However, this work selects a more efficient solution. Storing the

ranges in order according to the number of channels, azimuth block, and data packet, there is no

need to store the whole azimuth nor altitude angles arrays, which lets the implementation save

time and memory.

Figure 3.6 where ranges are denoted by r, altitude angles by ϕ and azimuth angles by θ

illustrates this last explanation; each cell is equal to 1 channel, 16 of these channels are equal to

an azimuth block and 16 azimuth blocks are equal to 1 data packet. In this case, the array in

mustard would be stored in memory for the ranges. The altitude and azimuth angles data come

from a file called beam intrinsics and from an encoder counter that the sensor has. For more

information about the LiDAR data format, refer to [24].

Figure 3.6: LiDAR data storage

The flow diagram of “Data from LiDAR OS1-16” is shown in Figure 3.7. Notice that all of

these processes are executed in the CPU. Also, it is important to mention that this algorithm is

executed twice: one time for the P point cloud and the other for the Q point cloud.

31

Figure 3.7: Data from LiDAR OS1-16 flow diagram.

3.3.2 Transforming Raw Data into Cartesian Coordinates

Now that point clouds are stored in the GPU memory in polar coordinates format, a conversion

to Cartesian coordinates is necessary. This is because most of the algorithms and methods the

ICP works with are designed for Cartesian coordinates. The algorithm of the kernel that solves

this task is presented in Figure 3.8. Each thread is in charge of one conversion and equations to

convert from polar to Cartesian was taken from [24]. Also, notice that this algorithm computes the

conversion for only one cloud; if having two clouds, then duplicate the lines from 9 to 16. Finally,

after this algorithm implementation, if using the point-to-plane model, data must still be stored in

the GPU memory in order to calculate the normals in the next procedure; otherwise, data must be

moved to the CPU to start with the ICP main loop.

32

Figure 3.8: Parallel algorithm for coordinate conversion.

3.3.3 Getting Normals of Model Point Cloud Q using PCA

For this process, this work uses the K-Nearest Neighbor PCA (KNN-PCA) method [33] to find

the normals of Q which are divided into three steps as shown in Figure 3.9. This flow diagram is

designed for finding the normals of each point of Q, so for implementing this algorithm in

parallel, each thread is in charge of finding one normal.

Each of the blocks in the flow diagram is explained in the next lines. First, to find the k

neighbors of each point, the matching algorithm is described in the next subsection. For this

implementation, the number of k nearest neighbors is 4, due to the research made in [33], which

suggests following these parameters for reaching the best performance. Although, if changing the

value of k improves the performance of the algorithm, this change will be applied. Second,

33

Figure 3.9: Normal estimation flow diagram.

covariance matrices are calculated using the theory described in Chapter 2. Third, since the

obtained covariance matrix is a 3 × 3 symmetric matrix, a simple algorithm for finding the

eigenvalues and eigenvectors is employed.

3.3.4 Finding the Correspondence using Brute Force

As has been mentioned in different parts of this document, the matching or correspondence of

points process is the most time-consuming step of the ICP. This is why lots of algorithms have

been developed and some of them were presented in Chapter 2. Nevertheless, this thesis is using

the simplest of them: Brute Force. This algorithm has a very simple way to parallelize, and many

techniques can be applied to it to improve performance.

Figure 3.10 shows up the matching algorithm to use in this work. To sum it up, it basically

measures the distance between two points and compares it with the current minimum value. This

process repeats iteratively as many times as the number of points of Q. For the implementation,

each thread is in charge of finding the nearest neighbor of each point of P.

34

Figure 3.10: Parallel algorithm for correspondence.

3.3.5 Minimizing the Error Metrics

Equations for minimizing these metrics were already covered in 2.5.3, so, in this case, CUDA

routines are employed here to compute matrices operations, decompose matrices using SVD, and

solve the system of linear equations. More specifically, the CuBLAS and CuSolver libraries are

employed to solve these tasks.

For the implementation of both error metric models, there is necessary to calculate the centroid

of the cloud or similar operations where the x-coordinates are summed up and so the y- and z-

coordinates. For the solution of this, a matrix-vector multiplication is used and the explanation is

shown in the following expression:

x0 x1 x2 . . . xn

y0 y1 y2 . . . yn

z0 z1 z2 . . . zn

1

1

1
...

1

=

xsum

ysum

zsum

 (3.1)

Where the matrix from the left 3 ×N holds the coordinates of the point cloud and the vector

from the right N × 1 is filled with ones. The result ends up in the sum of the x-coordinates in the

resultant vector followed by the y and z coordinates.

35

3.3.6 Transforming the Source Point Cloud P

Figure 3.11 shows the parallel algorithm for transforming the P point cloud through iterations

given the rotation matrix and translation vector found in the minimization step.

Figure 3.11: Parallel algorithm for transformation.

3.3.7 Finding the Current RMS Error Value

Using Equation 2.15, the RMS error can be all implemented using the CuBLAS library. In fact, it

is only needed a routine for subtract to vectors and then another one to compute the norm of the

resultant vector.

3.3.8 Validation

To know how close P and Q should be, criterions about the error are the following ones. One

the one hand, if RMS error stays in the same value from one iteration to another, it might be that

the algorithm will not get lower RMS error values in later iterations. In other words, expression

ek − ek−1 < δ becomes the first criterion that will stop the ICP algorithm, where ek represents the

RMS actual error (k iteration) and ek−1 the RMS past error (k− 1 iteration). However, sometimes

ICP keeps the RMS through a few iterations and then it converges to lower RMS error values.

This is why, another condition is taking in consideration and that is the verifying of the RMS error

in comparison to a certain threshold value. So, on the other hand, ek < eth will be the second

criterion for stopping the ICP algorithm, having eth in values around 10−6 units. To have a greater

precision, RMS threshold error will be obtained in the experiments.

36

Chapter 4

Results

This chapter presents the results of the sequential and parallel implementations of the ICP

algorithm. First, test conditions are presented to bind the implementations of this work. After

this, computational results are presented and finally, the analysis of all these results is placed.

4.1 Test Conditions

4.1.1 Implementation Description

All tests were written in C for implementations in CPU and the extension of C in CUDA for

implementations in GPU. MKL and CUDA APIs libraries were used for computing some basic

linear algebra operations, solving systems of linear equations, and computing eigenvectors.

Indeed, BLAS and LAPACK libraries were used in CPU and CuBLAS and CuSolver libraries

were used in GPU.

For CPU implementations, it is important to mention that although the MKL library was used

as much as it could, the implementation in CPU is somewhat parallel. There was a low

percentage of code that had to be sequential because MKL needed to have a specific routine.

For GPU implementations, whenever the kernel to implement was already coded in some of

the CUBLAS APIs, the correspondent routine was called. This is mainly because CuBLAS and

CuSolver are highly optimized and a lot of effort would be required to surpass those routines with

kernel implementations.

37

4.1.2 Devices

All experiments were evaluated using a CPU Intel® Core i5-9400U equipped with 4 physical cores

at 2.9GHz with 32GB of RAM memory and a GPU NVIDIA GeForce RTX 2060 equipped with

1920 CUDA cores at 1755MHz, a total amount of memory of 6GB at 7001MHz with a bus width

of 192 bits and based on the Turing architecture.

4.1.3 Input Data

Synthetic data, the Stanford Bunny dataset [33], and real data that comes from a LiDAR OS1- 16

are used in the thesis. Three different datasets were used to show the robustness of the ICP

algorithm against different data situations.

Synthetic data is generated using the surface f(x, y) = x2 − y2, x, y ∈ [−2, 2] for a variable

number of points. Figure 4.1 where the data point cloud is coloured in red and the model point

cloud in blue. Synthetic Data shows the form of the synthetic data using 16384 points for both

point clouds. Rotations are in the range of 0 to 10 degrees and translations are in the range of 0 to

1.

Figure 4.1: Synthetic data.

For the Bunny dataset, a group of 8171 points is selected for the tests. Rotations and

translation values applied in synthetic data are used in this dataset. Figure 4.2 shows the two

point clouds to align with the Stanford Bunny dataset.

38

Figure 4.2: Stanford Bunny dataset.

Finally, real data, shown in Figure 4.3, is the result of scanning a hall located in the department

O from PUCP university. In this case, 16384 points are received from the LiDAR. To match with

the application, which only requires the ICP to compute fine alignments, rotations between scans

are very small (less than 1 degree) and so translations (no more than 1 meter).

Figure 4.3: Real dataset from LiDAR OS1-16.

39

4.2 Computational Results

In this subsection, computational results, which are mainly focused on time metrics, are presented.

4.2.1 Time Complexity

For time complexity, synthetic data was utilized because it allows us to easily change in the

number of points of the point clouds. In this case, the CPU implementation was changed to use

the MKL library completely sequential and the GPU implementation ran using all necessary

cores. The result of this test is presented in Figure 21. As can be noticed, CPU implementations

have very similar results and so do GPU implementations. This is because the measured times

were only recorded for the first iteration of the corresponding implementation, and this is why

there are only two equations for tendency lines. The one that is right next to the CPU results is the

one for both CPU implementations and the other one corresponds to the GPU implementations.

Figure 4.4: Time complexity.

4.2.2 Speedup

Using the time complexity results, the speedup graph presented in Figure 22 is obtained. Amdahl

law (presented in equation 4.1) was employed for this purpose.

40

Sp(n) =
10−6n2 − 0.0021n+ 4.8625

0.0004n+ 0.8202
(4.1)

It is important to recall that the Amdahl law requires the information for a sequential factor

in the parallel implementation, which corresponds to the GPU implementation in this case. For

the implementation of this work that factor takes the value of 0 because all the GPU code was

parallelized whether using kernels or routines from the CUDA APIs.

Figure 4.5: Speedup

4.2.3 Running Time

Running times of ICP implementations were recorded in two different ways for 16384 points

using synthetic data. Table 4.1 presents the execution times for only one iteration and Table 4.2

the execution time for all the necessary iterations that the ICP took to converge.

Some important details about the following tables are mentioned in the next lines. First,

normals were not taken into consideration in Table 4.1 because it belongs to preprocessing of the

ICP and it is meant to be used in all necessary iterations. Second, speedup factors in Table 4.2

relate CPU with the GPU versions of the correspondent algorithm. Third, the CPU

implementation presented here is the parallelized version, i.e., using the MKL library in parallel

mode.

41

Table 4.1: Synthetic data running time for 1 iteration.

Matching
(ms)

Minimization
(ms)

Transformation
(ms)

Error
(ms)

Total Time
(ms)

CPU-point 326.7721 1.0227 0.0854 0.0447 328.0522

GPU-point 6.0571 1.2448 0.1030 0.2057 7.6122

CPU-plane 319.4783 1.4128 0.0955 0.0713 321.1978

GPU-plane 5.0177 0.8470 0.0682 0.1849 6.1182

Table 4.2: Synthetic data running time for all iterations.

Normals
(ms) Matching (ms) Minimization

(ms)
Transformation

(ms) Error (ms) Total Time
(ms) Iterations Speedup

factor

CPU-point — 8579.5574 4.5248 0.7190 1.0432 8585.9870 27 —

GPU-point — 147.8950 28.5900 2.3582 4.7214 183.5755 27 46.77

CPU-plane 547.5672 1571.1698 9.9679 0.2096 0.1991 2129.1136 4 –

GPU-plane 209.9402 24.1698 3.4347 0.2461 0.7697 238.5621 4 8.92

4.2.4 Error

RMS errors through the iterations of the two ICP algorithms using synthetic data with 16384 points

were registered and the results are placed in Figure 4.6.

Figure 4.6: RMS error.

42

4.3 Optimizations

As it has been shown, the matching step consumes around 80% and 99% of each iteration in the

ICP algorithm and because of this, a good optimization through the implementation of this Nearest

Neighbor algorithm is highly required. The following list shows the optimizations that were made

for this algorithm which are placed in Figure 3.10.

1. When calculating the distances between points from the cloud, the square root results not

to be necessary for finding the closest points. So, the first optimization is to get rid of this

operator.

2. The usage of registers allows access to data in a low number of clocks. Actually, in the range

of tens of clocks. So, the second optimization is to use registers for storing the points from

P and Q point clouds.

3. The loop-unroll technique divides kernel implementations, in such a way that threads do not

have to go inside the loop cycle, but they execute the whole loop in a number of instructions.

However, in this case, the for-loops are quite long, so the unrolling of the whole loop cannot

be made. Instead of this, the loop can be divided into 2, 4, 8, and so on. Although, as a result

of testing with different numbers of divisions, it comes to happen that after 2 divisions, there

is no improvement. So, the third optimization is to use the loop-unroll technique dividing

the for-loop into 2 halves.

4. The selection of the number of blocks and the number of threads inside each block plays

a really important role. It is quite desirable to have as many numbers of blocks as the

number of Streaming Multiprocessors (SMs) or a multiple of the available SMs. This is

because, blocks are normally reserved in different SMs and if the last condition is not met,

bottlenecks are produced inside blocks. In this case, the RTX 2060 has 30 SMs. Different

numbers of blocks were tested, but the one that got the greatest performance was 60 blocks.

Consequently, the number of threads in each one was the result of dividing the number of

points over the number of blocks in such a way that there are as many launched threads as

the number of points from clouds. So, for this last optimization, the selected number of

blocks is 60 for the implementation of all the kernels.

Figure 4.7 shows the comparison for a different number of points between the non-optimized

matching implementation with the optimized version using the mentioned techniques. Here, it can

be noticed that the gradient of the non-optimized implementation gets reduced to, approximately,

43

half of its value. Indeed, for 16384 points the execution time comes from 4.07 ms to 2.30 ms,

which gives a speedup of 1.77.

Figure 4.7: Matching optimization for 1 iteration.

4.4 Testing the Optimized Parallel ICP Algorithm

In this section, the three datasets presented at the beginning of this chapter are tested using the

final parallelized versions of the ICP algorithm. The results of these experiments are summarized

in Table 5. Again, ICP ran using the GPU and the two error metric models (point-to-point and

point-to-plane) and the times were measured for the whole number of iterations that took the ICP

to converge.

44

Table 4.3: Optimized ICP results.

Dataset Error metric
model

Number of
points

Normals
(ms)

ICP main
loop (ms)

Total Time
(ms) Iterations

Synthetic
Point-to-point

16384
— 90.2169 90.2169 27

Point-to-plane 100.9418 14.9802 115.9220 4

Bunny
Point-to-point

8171
— 30.5014 30.5014 17

Point-to-plane 20.2734 11.5852 31.8586 5

LiDAR OS1-16
Point-to-point

16384
— 47.6056 47.6056 14

Point-to-plane 106.1020 13.0001 119.1021 3

4.5 Analysis of Results

Figure 4.4 stresses the quadratic tendency of sequential implementations, due to the strong

presence of the matching algorithm and the linear tendency of parallel implementations. This is

produced by the fact that when using the necessary processors, the time complexity can be

reduced in an order of magnitude. In this case, O(n2) is reduced to O(n) because a number of n

processors are available in the employed GPU.

Speedup function presented in Figure 4.5 shows the high computational capability of GPUs

for processing big amounts of data. This is why, the function grows up faster as the number of

points gets bigger.

Results from Figure 4.4 and Table 4.1 show that there is almost no difference between single

iterations between the ICP point-to-point and the ICP point-to-plane. This means that the only

difference between them is that the ICP point-to-plane converges in a lower number of iterations

than the ICP point-to-point as it is shown in Figure 4.6.

Now, since each step from both algorithms takes more less the same amount of time, it is

relevant to note that the Nearest Neighbor Searching algorithm, present in the matching and

normals estimation steps, is consuming around 99.9% of the time for CPU point-to-point, 80.6%

for the GPU point-to-point, 99.9% for the CPU point-to-plane and 98.1% of the time for GPU

point-to- plane. This is why, an optimization was highly required for this algorithm. In here,

Figure 4.7 exposed the optimized matching step is almost 2 times faster than the non-optimized

45

version. Indeed, the results presented in Table 4.3 confirm this last statement if comparing the

synthetic data results from this table with the GPU results showed in Table 4.2. In fact, not only

the optimized parallel ICP implementations surpass the GPU implementations made at the

beginning, but also it far exceeds the CPU parallel implementations presented in Table 4.2 with a

factor of 95.

From Table 4.3, the speedup factor of the point-to-point implementation surpasses the point-

to-plane one and the same situation repeats in Table 4.3. This is due to the fact that, in the point-to-

plane, normal estimations require the Nearest Neighbor Searching algorithm, but multiplied by 4

times since it uses the KNN-PCA method. In consequence, the plan to minimize the execution

time of the alignment by reducing the number of iterations in the ICP algorithm does not work in

this case. Thus, the ICP point-to-point implemented in GPU has the fastest computation time.

46

Conclusions

• The successful design and implementation of a parallel ICP algorithm on a GPU

demonstrates the potential for real-time alignment of misaligned point clouds. This

advancement in algorithmic development opens up possibilities for efficient and accurate

3D point cloud registration in various applications.

• GPUs can reduce one order of magnitude from sequential time complexity, going from a

time complexity of O(n2) in the serial implementation to a time complexity of O(n) in the

parallel implementation.

• Although time complexity was reduced and the implementation of the parallel ICP algorithm

was optimized on GPU, the NNS implementation (Matching step) holds most of the running

time on all implementations. The average percentage of the total running time taken by the

NNS step in CPU and GPU implementations is 99.9% and 89.4%, respectively.

• The proposed ICP algorithm showcases remarkable resilience and efficiency in diverse

scenarios, making it a reliable and efficient choice for point cloud registration tasks when

implemented properly. It offers notable speed improvements, resulting in faster point cloud

alignment compared to traditional sequential approaches (up to a 95x speed factor).

• The optimized point-to-point GPU implementation (≈ 90 ms) performs 95 times faster than

the CPU parallel version (≈ 8500 ms) and the point-to-plane GPU implementation (≈ 115

ms) runs 13 times faster than the respective CPU parallel version (≈ 2100 ms).

• The ICP point-to-point implementations on GPU demonstrate exceptional speed and

efficiency, outperforming optimized CPU implementations. Notably, the real-time

requirement is met, as evidenced by the alignment of real point cloud data from the OS1-16

LiDAR (16384 points), which was performed with an execution time of only 47ms. This

result highlight the significant performance gains achieved by leveraging GPU technology

for point cloud registration tasks.

47

Recommendations and Future Work

• Implementing a more efficient Nearest Neighbor Searching algorithm will enormously

reduce computation times of ICP implementations presented in this work. KD Trees are

presented as a good option for optimizing this process because, as it was mentioned in

Chapter 2, its sequential time complexity of O(n ∗ log n). So, if implementing this

algorithm parallelized in GPU with at least n processors, the time complexity will get

reduced to O(log n), which can reach better results than the parallelized Brute Force with

its O(n) time complexity.

• Since the running time of each kernel in GPU parallel implementations depends directly on

the number of blocks and threads per block, it is suggested to implement a program capable

of finding the best suited values of blocks and threads per block for the GPU to use.

48

Bibliography

[1] E. Q. ACOSTA, R. A. VELASCO, N. H. ROJAS, H. M. ESPINOZA, W. S. MARROQUIN,

AND R. V. VIVAR, Análisis estadı́stico de seguridad y compendio ilustrativo de accidentes

en el sector de mediana minerı́a y gran minerı́a en 2018, 2019.

[2] L. L. AMORIM, F. MUTZ, A. F. D. SOUZA, C. BADUE, AND T. OLIVEIRA-SANTOS,

Simple and effective load volume estimation in moving trucks using lidars, Institute of

Electrical and Electronics Engineers Inc., 10 2019, pp. 210–217.

[3] M. ATTIA AND Y. SLAMA, Efficient initial guess determination based on 3d point cloud

projection for icp algorithms, Institute of Electrical and Electronics Engineers Inc., 9 2017,

pp. 807–814.

[4] B. BELLEKENS, V. SPRUYT, R. BERKVENS, AND M. WEYN, A survey of rigid 3d

pointcloud registration algorithms, 2014. Mathematic foundations are included in this paper.

[5] P. J. BESL AND N. D. MCKAY, A method for registration of 3-d shapes, IEEE Transactions

on Pattern Analysis and Machine Intelligence, 14 (1992), pp. 239–256.

[6] S. GARGOUM AND K. EL-BASYOUNY, Automated extraction of road features using lidar

data: A review of lidar applications in transportation, Institute of Electrical and Electronics

Engineers Inc., 9 2017, pp. 563–574.

[7] X. GU, X. WANG, AND Y. GUO, A review of research on point cloud registration methods,

vol. 782, Institute of Physics Publishing, 4 2020, p. 022070.

[8] W. GUAN, W. LI, AND Y. REN, Point cloud registration based on improved icp algorithm,

Institute of Electrical and Electronics Engineers Inc., 7 2018, pp. 1461–1465.

[9] H. HOPPE, T. DEROSE, T. DUCHAMP, J. MCDONALD, AND W. STUETZLE, Surface

reconstruction from unorganized points, Association for Computing Machinery (ACM),

1992, pp. 71–78.

49

[10] INTEL®, Math kernel library.

[11] S. IZADI, D. KIM, O. HILLIGES, D. MOLYNEAUX, R. NEWCOMBE, P. KOHLI,

J. SHOTTON, S. HODGES, D. FREEMAN, A. DAVISON, AND A. FITZGIBBON,

Kinectfusion: Real-time 3d reconstruction and interaction using a moving depth camera,

ACM Press, 2011, pp. 559–568.

[12] D. KALMAN, A singularly valuable decomposition: The svd of a matrix, 1 1996.

[13] H. M. KJER AND J. WILM, Evaluation of surface registration algorithms for pet motion

correction, 2010.

[14] , Iterative closest point, 2013.

[15] P. LI, R. WANG, Y. WANG, AND W. TAO, Evaluation of the icp algorithm in 3d point cloud

registration, IEEE Access, 8 (2020), pp. 68030–68048.

[16] S. LI, J. WANG, Z. LIANG, AND L. SU, Tree point clouds registration using an improved

icp algorithm based on kd-tree, vol. 2016-Novem, Institute of Electrical and Electronics

Engineers Inc., 11 2016, pp. 4545–4548.

[17] K.-L. LOW, Linear least-squares optimization for point-to-plane icp surface registration, 2

2004.

[18] G. MANDLBURGER, K. WENZEL, A. SPITZER, N. HAALA, P. GLIRA, AND N. PFEIFER,

Improved topographic models via concurrent airborne lidar and dense image matching, d-

nb.info, (2017).

[19] S. MAY, A. NUCHTER, D. QIU, AND A. NÜCHTER, Gpu-accelerated nearest neighbor

search for 3d registration, (2009).

[20] A. W. MOORE AND A. W. MOORE, Efficient memory-based learning for robot control,

(1990), pp. 64–78.

[21] NVIDIA, ¿gpu vs. cpu? ¿qué es la computación por gpu?

[22] A. NÜCHTER, K. LINGEMANN, AND J. HERTZBERG, Cached k-d tree search for icp

algorithms, 2007, pp. 419–426.

[23] OUSTER, High-resolution os1 lidar sensor: robotics, trucking, mapping.

[24] , Software user guide of the os1-16/64 high resolution lidar v1.13.0, 2019.

50

[25] PARAVIEW, Ousterstudio.

[26] C. PEÑARANDA, Minerı́a y su aporte económico al perú, 2019.

[27] F. POMERLEAU, S. MAGNENAT, F. COLAS, M. LIU, AND R. SIEGWART, Tracking a depth

camera: Parameter exploration for fast icp, (2011).

[28] PÉTER, F. H. N. FITZEK, AND VINGELMANN, Cuda, release: 10.2.89, 2020.

[29] M. A. Q. ROSALES, Registro de una secuencia temporal de nubes de puntos utilizando

tecnologı́a kinect para la reconstrucción tridimensional de material arqueológico, 2014.

[30] S. RUSINKIEWICZ AND M. LEVOY, Efficient variants of the icp algorithm, Proceedings of

International Conference on 3-D Digital Imaging and Modeling, 3DIM, (2001), pp. 145–152.

[31] A. V. SEGAL, D. HAEHNEL, AND S. THRUN, Generalized-icp, 2009.

[32] D. SUN AND J. HAN, Newton and quasi-newton methods for a class of nonsmooth equations

and related problems, SIAM Journal on Optimization, 7 (1997), pp. 463–480.

[33] S. UNIVERSITY, The stanford 3d scanning repository, 2013.

[34] G. G. VOSSELMAN AND H.-G. MAAS, Airborne and terrestrial laser scanning, Whittles

Publishing, 2010.

[35] F. WANG AND Z. ZHAO, A survey of iterative closest point algorithm, vol. 2017-Janua,

Institute of Electrical and Electronics Engineers Inc., 12 2017, pp. 4395–4399.

[36] T. WEISE, Global Optimization Algorithms -Theory and Application, vol. 1, 2 ed., 2009.

[37] C. YANG AND G. MEDIONI, Object modelling by registration of multiple range images,

Image and Vision Computing, 10 (1992), pp. 145–155.

[38] ÅKE BJÖRCK, Linear least squares problems, 2015.

51

	ea4230ed2d3b82bdb8ef61f6390678e4b9e59f2aa2caeb8f07e0249d93c93588.pdf
	dac6718cbbe8b10d3ed9b7c9a156d640711ce5e4f7ad800c8c8e22ff84a2b7a6.pdf
	968a186f5bbbb302296e54dfa0db4e60a7988e0444d8b83bdba92763e3a9de59.pdf
	Introducción
	3D Model Reconstructions and the Point Cloud Registration Problem
	Motivation
	Overview
	State of the Art
	3D Point Cloud Registration Algorithms
	Standard ICP Algorithm
	ICP Variants
	Selection
	Matching
	Error Metric

	ICP Biggest Drawback

	Graphic Processing Units (GPUs)
	Justification
	Objectives
	General Objective
	Specific Objectives

	Theoretical Framework of the ICP Algorithm
	Complexity of Algorithms
	Least-Square Minimization
	Singular Value Decomposition (SVD)
	Principal Component Analysis (PCA)
	ICP Theory
	ICP Least-Square Model
	Matching
	Brute Force
	K-D Tree

	Error Metric and Minimization
	Point-to-point Error Metric
	Point-to-plane Error Metric

	RMS Error Value

	Parallel Programming in CUDA

	Design and Implementation of the Parallel ICP Algorithm
	Previous Considerations
	Input Data
	Data Grouping

	CPU ICP Implementation
	MKL Library
	Sequential ICP Algorithm

	GPU ICP: Design and Implementation
	Receiving Data from the LiDAR OS1-16
	Transforming Raw Data into Cartesian Coordinates
	Getting Normals of Model Point Cloud Q using PCA
	Finding the Correspondence using Brute Force
	Minimizing the Error Metrics
	Transforming the Source Point Cloud P
	Finding the Current RMS Error Value
	Validation

	Results
	Test Conditions
	Implementation Description
	Devices
	Input Data

	Computational Results
	Time Complexity
	Speedup
	Running Time
	Error

	Optimizations
	Testing the Optimized Parallel ICP Algorithm
	Analysis of Results

	Conclusions
	Recommendations and Future Work
	Bibliography

